LIST OF FIGURES

Figure 1.1:	Schematic diagram of hydrologic cycle	1
Figure 2.1:	Flow chart of literature review on impact of seawater intrusion to coastal activities	12
Figure 2.2:	Typical vertical cross sections of seawater intrusion in coastal aquifers.	22
Figure 2.3:	Freshwater lens in aquifer (Todd and Mays, 2005)	22
Figure 2.4:	Groundwater map of Peninsula Malaysia	24
Figure 2.5:	Regional geological map of Langat Basin	26
Figure 2.6:	Geological formation overview of Langat Basin	28
Figure 2.7:	Saline and freshwater interface in Langat Basin mainland: 15km from shoreline	32
Figure 2.8:	Distribution of chloride content within the aquifer	33
Figure 2.9:	Diagram of the oil palm root system	40
Figure 2.10:	Location Map of Langat River Basin and Carey Island	45
Figure 2.11:	Locations of the monitoring wells from previous study	48
Figure 2.12:	Depths of Gula Formation and Simpang Formation at the area studied.	49
Figure 2.13:	Sg. Judah village subsurface profile A-B and geochemistry data at semi-confined aquifer	50
Figure 2.14:	Sg. Judah village subsurface profile C-D and geochemistry data at semi-confined aquifer	51
Figure 2.15:	Sg. Bumbun village subsurface profile and geochemistry data at semi-confined aquifer	52
Figure 2.16:	Sg. Rambai and Kepau Laut village subsurface profile and geochemistry data at semi-confined aquifer	53
Figure 2.17:	History of groundwater usage in Carey Island	56

Figure 3.1:	Flow chart of methodology	62
Figure 3.2:	Locations of monitoring wells, resistivity survey lines, rainfall station and land survey reference	66
Figure 3.3:	BM 3082 used as referred datum for all elevation of monitoring Wells	67
Figure 3.4:	Concept of elevation survey	67
Figure 3.5:	Route map of survey elevations and closed loops elevations conducted at study area	68
Figure 3.6:	An example of data collection for elevation surveys	69
Figure 3.7:	Example of topography map (view plan) at the southwest study Area	70
Figure 3.8:	Example of topography map at the southwest study area	70
Figure 3.9:	An example of rainfall data for year 2010 obtained from DID	73
Figure 3.10:	An example of tide level for year 2009 obtained from DSMM	74
Figure 3.11:	Datum-level observation for 22 years (1984 to 2005) for standard national tides of Kelang Station.	75
Figure 3.12:	Drilling by rotary wash boring at MW5	78
Figure 3.13:	Drilling by rotary wash boring at MW 14	78
Figure 3.14:	Spring core-catcher embedded in spilt spoon to optimize recovery of sand samples	79
Figure 3.15:	Subsurface hydrogeology materials mapping from particle size distribution at southwest area	80
Figure 3.16:	An example of particle size distribution results for MW1	82
Figure 3.17:	An example of corrected bore log results for MW1	83
Figure 3.18:	An example of subsurface profile at studied area	84
Figure 3.19:	Installation of 2 m-thick well screen at MW5	86
Figure 3.20:	Installation of PVC pipe at MW12	86
Figure 3.21:	Pouring of sandy gravel of 1.2-2.4 mm grain size post-installation of PVC pipe	87

Figure 5.22.	Schematic diagram of the monitoring well at the site	88
Figure 3.23:	Suction pump to remove sedimentary materials from the monitoring well	89
Figure 3.24:	Fine soil materials (silt and clay) removed from well	89
Figure 3.25:	Measurements of groundwater table when referring to mean sea level datum	90
Figure 3.26:	Two piezometers, one filled with freshwater and the other with saline aquifer water, open to the same point in the aquifer	92
Figure 3.27:	Groundwater sampling via bailer at MW12	93
Figure 3.28:	The field equipment: (a) bailer, (b) dip meter, and (c) physical parameter tester EC 300 YSI	95
Figure 3.29:	The EC300 YSI is calibrated against a standard potassium chloride (KCl) solution of 1.411 mS/cm conductivity before direct measurement is made on site	96
Figure 3.30:	Dionex Ion Chromatography model ICS2000 used for the anion tests	97
Figure 3.31:	Anion data from IC Equipment	100
Figure 3.32:	Cation data from ICP Equipment	101
Figure 3.32: Figure 3.33:	Cation data from ICP Equipment Terrameter equipment's and accessories	101 104
Figure 3.32: Figure 3.33: Figure 3.34:	Cation data from ICP Equipment Terrameter equipment's and accessories Resistivity survey conducted at MW11	101 104 104
Figure 3.32: Figure 3.33: Figure 3.34: Figure 3.35:	Cation data from ICP Equipment Terrameter equipment's and accessories Resistivity survey conducted at MW11 Locations of resistivity survey and monitoring wells in the study area	101 104 104 105
Figure 3.32: Figure 3.33: Figure 3.34: Figure 3.35: Figure 3.36:	Cation data from ICP EquipmentTerrameter equipment's and accessoriesResistivity survey conducted at MW11Locations of resistivity survey and monitoring wells in the study areaThe arrangement of electrodes for a 2-D electrical survey and the sequence of measurements used to build up a pseudo-section	101 104 104 105
Figure 3.32: Figure 3.33: Figure 3.34: Figure 3.35: Figure 3.36: Figure 3.37:	Cation data from ICP EquipmentTerrameter equipment's and accessoriesResistivity survey conducted at MW11Locations of resistivity survey and monitoring wells in the study areaThe arrangement of electrodes for a 2-D electrical survey and the sequence of measurements used to build up a pseudo-sectionEquipment set up and cable arrangement for four wheel	101 104 104 105 107
Figure 3.32: Figure 3.33: Figure 3.34: Figure 3.35: Figure 3.36: Figure 3.37: Figure 3.38:	Cation data from ICP EquipmentTerrameter equipment's and accessoriesResistivity survey conducted at MW11Locations of resistivity survey and monitoring wells in the study areaThe arrangement of electrodes for a 2-D electrical survey and the sequence of measurements used to build up a pseudo-sectionEquipment set up and cable arrangement for four wheelExamples of data cover of Wenner using Wenner-L and Wenner-S configuration with takeout spacing 1 meter	101 104 105 107 107 108
 Figure 3.32: Figure 3.33: Figure 3.34: Figure 3.35: Figure 3.36: Figure 3.37: Figure 3.38: Figure 3.39: Figure 3.40: 	 Cation data from ICP Equipment Terrameter equipment's and accessories Resistivity survey conducted at MW11 Locations of resistivity survey and monitoring wells in the study area The arrangement of electrodes for a 2-D electrical survey and the sequence of measurements used to build up a pseudo-section Equipment set up and cable arrangement for four wheel Examples of data cover of Wenner using Wenner-L and Wenner-S configuration with takeout spacing 1 meter Apparent resistivity data collected from site resistivity measurement An example of apparent resistivity data due to poor grounding 	 101 104 104 105 107 107 108 110

Figure 3.41:	An example of apparent resistivity data in profile form	113
Figure 3.42:	An example of apparent resistivity data after provided good grounding for MW7	114
Figure 3.43:	An example of apparent resistivity data on profile form.	115
Figure 3.44:	An example of apparent resistivity data after bad data points has been removed using edit data in Res2Dinv program	115
Figure 3.45:	MW7 resistivity images inversion from incomplete resistivity data	118
Figure 3.46:	MW7 resistivity images inversion after steps taken for improvement ground contact and injected current	118
Figure 3.47:	MW7 resistivity image, August 2009	120
Figure 3.48:	MW7 inversion file, August 2009	120
Figure 3.49:	A trench is dug; 1 m long, 0.5 m wide, 0.5 m deep	122
Figure 3.50:	The pore fluids measurements conducted at the field	122
Figure 4.1:	The flowchart of the results for the surface and sub-surface characteristics of Carey Island	127
Figure 4.2(a):	Approximate land use in Carey Island before 1900s covering by mangroves	129
Figure 4.2 (b):	Carey Island's land use, 1974 and 2010.	130
Figure 4.3:	Topography and monitoring well at study area	131
Figure 4.4:	Three dimensional topography view of study area	132
Figure 4.5:	Plan view of drainage distribution at study area	133
Figure 4.6:	Three dimensional drainage distribution view of study area	134
Figure 4.7:	Dry and wet seasons deduced from analysis of Carey Island's 2000–2011 monthly rainfall data.	137
Figure 4.8:	Sea tide level observation from August 2009 until March 2011	138
Figure 4.9:	Locations of monitoring wells	143

Figure 4.10:	Subsurface hydrogeology materials mapping from PSD result of 1.5 m depth	144
Figure 4.11:	Subsurface hydrogeology materials mapping from PSD results relative to ground surface from 4.50 m until 21.00m depth	145
Figure 4.12:	Subsurface hydrogeology materials mapping from PSD results relative to ground surface from 24.00 m until 39.00m depth	146
Figure 4.13:	A-A' cross-section of the studied area's subsurface profile showing unconfined and semi-confined aquifers	147
Figure 4.14:	B-B' cross-section of the studied area's subsurface profile showing unconfined and semi-confined aquifers	147
Figure 4.15:	Subsurface profile of C-C' cross-section of the studied area's subsurface profiles showing unconfined and semi-confined aquifers	148
Figure 4.16:	D-D' cross-section of the studied area's subsurface profile showing unconfined and semi-confined aquifers	148
Figure 4.17:	Subsurface profile of E-E' cross-section of the studied area's subsurface profile showing unconfined and semi-confined aquifers	149
Figure 4.18:	Subsurface profile of F-F' cross-section of the studied area's subsurface profile showing unconfined and semi-confined aquifers.	149
Figure 4.19:	Groundwater tables of the monitoring wells in unconfined aquifer.	151
Figure 4.20:	Groundwater tables of the monitoring wells in semi-confined aquifer	152
Figure 4.21:	Plot of TDS against time (in days), for monitoring wells located at unconfined aquifer	154
Figure 4.22:	Plot of TDS against time (in days), for monitoring wells located at semi-confined monitoring well	155
Figure 4.23:	Locations of the monitoring wells, and the boundary between unconfined and semi-confined aquifers	161
Figure 4.24:	Depths of Gula Formation and Simpang Formation at the area studied.	162

Figure 4.25:	Most of the groundwater tables of the monitoring wells in unconfined aquifer were influenced by seasonal precipitation	166
Figure 4.26:	Most of the groundwater tables of the monitoring wells in semi- confined aquifer slightly influenced by seasonal precipitation	167
Figure 4.27:	The groundwater levels in all monitoring wells in unconfined aquifer as well as the minimum and maximum tide levels for the monitoring period of one and half year (August 2009 to March 2011).	170
Figure 4.28:	Higher groundwater tables observed at MW12, followed by MW13, MW6, MW 14, MW11, MW5, MW7 and MW10	172
Figure 4.29:	Higher TDS values contradicts with the sequent of higher groundwater in monitoring wells as shown in Figure 4.23	173
Figure 4.30:	Cross section C-C' showed east side TDS higher than west side	176
Figure 4.31:	Cross section E-E' showed east side TDS higher than west side	176
Figure 4.32:	Cross section F-F' showed east side TDS higher than west side	177
Figure 5.1:	Flowchart of subsurface resistivity results and the correlation with groundwater quality	179
Figure 5.2:	Locations of resistivity survey and monitoring wells in study area	182
Figure 5.3:	MW3 resistivity images, August 2009	183
Figure 5.4:	MW3 resistivity image, November 2009	183
Figure 5.5:	MW4 resistivity image, November 2009	183
Figure 5.6:	MW4 resistivity image, February 2010	184
Figure 5.7:	MW5 resistivity image, August 2009	184
Figure 5.8:	MW5 resistivity image, February 2010	184
Figure 5.9:	MW6 resistivity image, August 2009	184
Figure 5.10:	MW6 resistivity image, November 2009	185
Figure 5.11:	MW7 resistivity image, August 2009	185
Figure 5.12:	MW7 resistivity image, November 2009	185
Figure 5.13:	MW8 resistivity image, August 2009	185

Figure 5.14:	MW8 resistivity image, February 2010	186
Figure 5.15:	MW10 resistivity image, August 2009	186
Figure 5.16:	MW10 resistivity image, February 2010	186
Figure 5.17:	MW11 resistivity image, August 2009	186
Figure 5.18:	MW11 resistivity image, February 2010	187
Figure 5.19:	MW12 resistivity image, August 2009	187
Figure 5.20:	MW12 resistivity image, February 2010	187
Figure 5.21:	Subsurface resistivity versus water resistivity.	190
Figure 5.22:	Subsurface resistivity versus TDS.	191
Figure 5.23:	TDS versus specific water conductance	192
Figure 5.24:	Analysis showing grain size in fine clean sand experiments near MW7 being almost identical with MW12 grain size	194
Figure 5.25:	Subsurface resistivity versus TDS in field calibration	195
Figure 5.26:	TLERT measurement results of MW12 at 11.00 a.m.–1.00 p.m.; 26 August 2009; a) Inversion results in the first time as reference model at 11.00 a.m12.00 p.m., b) Inversion results in the second time at 12.00 p.m1.00 p.m., and c) MW12 resistivity change percentages	199
Figure 5.27:	a) Inversion results in the third time at 1.00 p.m2.00 p.m., and b) MW12 resistivity change percentages	199
Figure 5.28:	a) Inversion results in the fourth time at 2.00 p.m3.00 p.m., and b) MW12 resistivity change percentages	200
Figure 5.29:	a) Inversion results in the fifth time at 3.00 p.m4.00 p.m., and b) MW12 resistivity change percentages	200
Figure 5.30:	a) Inversion results in the sixth time at 4.00 p.m5.00 p.m., and b) MW12 resistivity change percentages	200
Figure 5.31:	TLERT measurement results of MW12 at 10.00 a.m 12.00 a.m.; 10 February 2010; a) Inversion results in the first time as reference model at 10.00 a.m11.00 a.m., b) Inversion results in the second time at 11.00 a.m 12.00 p.m., and c) MW12 resistivity change percentages	201

	202 202 202 202 206
2	202 202 206
2	202 206
2	206
2	
	207
2	210
2	210
2	211
2	211
2	211
2	211
2	212
2	212
2	212
2	212
2	213
2	213
2	213
2	213
2	214
	214
	y i i i i i i i i i i i i i i i i i i i

Figure 6.19:	Electrical resistivity image for profile L17-L17'	214
Figure 6.20:	Two dimensional analysis of hydraulic head of the groundwater using the observed groundwater level	218
Figure 6.21:	Three dimensional analysis of hydraulic head of the groundwater using the observed groundwater level	218
Figure 6.22:	Resistivity distribution relative to elevation at 1.25 m depth and agriculture drainage system	219
Figure 6.23:	Resistivity distribution relative to elevation from 5.0 to 21.8 m depth	220
Figure 6.24:	Resistivity distribution relative to elevation from 26.22 to 42.34 m depths	221
Figure 6.25:	Conductivity image for profile L1-L1'	224
Figure 6.26:	Conductivity image for profile L2-L2'	224
Figure 6.27:	Conductivity image for profile L3-L3'	224
Figure 6.28:	Conductivity image for profile L4-L4'	224
Figure 6.29:	Conductivity image for profile L5-L5'	225
Figure 6.30:	Conductivity image for profile L6-L6	225
Figure 6.31:	Conductivity image for profile L7-L7'	225
Figure 6.32:	Conductivity image for profile L8-L8'	225
Figure 6.33:	Conductivity image for profile L9-L9'	225
Figure 6.34:	Conductivity image for profile L10-L10'	226
Figure 6.35:	Conductivity image for profile L11-L11'	226
Figure 6.36:	Conductivity image for profile L12-L12'	226
Figure 6.37:	Conductivity image for profile L13-L13'	226
Figure 6.38:	Conductivity image for profile L14-L14'	226
Figure 6.39:	Conductivity image for profile L15-L15'	227
Figure 6.40:	Conductivity image for profile L16-L16'	227
Figure 6.41:	Conductivity image for profile L17-L17'	227

Figure 6.42:	Conductivity distribution relative to elevation at 1.25 m depth and agriculture drainage system	228
Figure 6.43:	Conductivity distribution relative to elevation at 5.0 to 14.10 m depth	229
Figure 6.44:	Conductivity distribution relative to elevation at 21.80 to 42.34 m depth	230
Figure 6.45:	Diagram shows the interaction between severe erosion, mangrove and oil palm in Carey Island	233