LIST OF FIGURES

Fig. 2.1	Chemical structure of amylose	8
Fig. 2.2	Chemical structure of amylopectin	8
Fig. 2.3	Cross section view of bast and core fiber plant stem	12
Fig. 2.4	Chemical structure of cellulose	15
Fig. 2.5	Chemical structure of different carbon sugars in hemicellulose	17
Fig. 2.6	Chemical structure of lignin	18
Fig. 2.7	Chemical structure of pectin	19
Fig. 3.1	The chemical structure of PVA	29
Fig. 3.2	The rice plant (*Oryza sativa*)	32
Fig. 3.3	Rice starch granule	33
Fig. 3.4	Tapioca plant and its tuberous roots	34
Fig. 3.5	Tapioca starch granule	36
Fig. 3.6	The sago palm (*Metroxylon sagu Rottb*)	37
Fig. 3.7	Sago starch granule	39
Fig. 3.8	*Buluh minyak or bambusa vulgaris*	41
Fig. 3.9	The kenaf plant (*Hibiscus cannabinus L.*)	43
Fig. 3.10	The kenaf stalks	45
Fig. 3.11	*Hibiscus sabdariffa var. altissima*	46
Fig. 3.12	The *Hibiscus sabdariffa var. sabdariffa*	47
Fig. 3.13	The roselle stems	48
Fig. 3.14	The Napier/Elephant grass	49
Fig. 3.15	Napier grass stalks	50
Fig. 4.1	FTIR spectra of pure PVA in the frequency range of 650 - 4000 cm$^{-1}$	71
Fig. 4.2	FTIR spectrum of tapioca, rice and sago starch powder in the frequency range of 650-4000 cm$^{-1}$	73
Fig. 4.3 FTIR spectrum of alkali treated bamboo, kenaf, roselle and Napier fibers in the frequency range of 650-4000 cm\(^{-1}\) .. 75

Fig. 4.4 FTIR spectrum of pure PVA, pure tapioca starch, PVA/1TS and PVA/3TS in the frequency range of 650-4000 cm\(^{-1}\) ... 76

Fig. 4.5 FTIR spectrum of pure PVA, pure rice starch, PVA/1RS and PVA/3RS in the frequency range of 650-4000 cm\(^{-1}\) ... 77

Fig. 4.6 FTIR spectrum of pure PVA, pure sago starch, PVA/1SS and PVA/3SS in the frequency range of 650-4000 cm\(^{-1}\) ... 77

Fig. 4.7 FTIR spectrum of pure PVA, treated bamboo fiber, PVA/1TS/1BB and PVA/1TS/3BB in the frequency range of 650-4000 cm\(^{-1}\) .. 80

Fig. 4.8 FTIR spectrum of pure PVA, treated kenaf fiber, PVA/1TS/1KF and PVA/1TS/3KF in the frequency range of 650-4000 cm\(^{-1}\) .. 81

Fig. 4.9 FTIR spectrum of pure PVA, treated roselle fiber, PVA/1TS/1ROS and PVA/1TS/3ROS in the frequency range of 650-4000 cm\(^{-1}\) .. 81

Fig. 4.10 FTIR spectrum of pure PVA, treated Napier fiber, PVA/1TS/1NP and PVA/1TS/3NP in the frequency range of 650-4000 cm\(^{-1}\) .. 82

Fig. 4.11 FTIR spectrum of pure PVA, treated bamboo fiber, PVA/1RS/1BB and PVA/1RS/3BB in the frequency range of 650-4000 cm\(^{-1}\) .. 82

Fig. 4.12 FTIR spectrum of pure PVA, treated kenaf fiber, PVA/1RS/1KF and PVA/1RS/3KF in the frequency range of 650-4000 cm\(^{-1}\) .. 83

Fig. 4.13 FTIR spectrum of pure PVA, treated roselle fiber, PVA/1RS/1ROS and PVA/1RS/3ROS in the frequency range of 650-4000 cm\(^{-1}\) .. 83

Fig. 4.14 FTIR spectrum of pure PVA, treated Napier fiber, PVA/1RS/1NP and PVA/1RS/3NP in the frequency range of 650-4000 cm\(^{-1}\) .. 84

Fig. 4.15 FTIR spectrum of pure PVA, treated bamboo fiber, PVA/1SS/1BB and PVA/1SS/3BB in the frequency range of 650-4000 cm\(^{-1}\) .. 84

Fig. 4.16 FTIR spectrum of pure PVA, treated kenaf fiber, PVA/1SS/1KF and PVA/1SS/3KF in the frequency range of 650-4000 cm\(^{-1}\) .. 85

Fig. 4.17 FTIR spectrum of pure PVA, treated roselle fiber, PVA/1SS/1ROS and PVA/1SS/3ROS in the frequency range of 650-4000 cm\(^{-1}\) .. 85

Fig. 4.18 FTIR spectrum of pure PVA, treated Napier fiber, PVA/1SS/1NP and PVA/1SS/3NP in the frequency range of 650-4000 cm\(^{-1}\) .. 86

Fig. 4.19 X-ray diffraction pattern of pure PVA ... 91

Fig. 4.20 X-ray diffractograms of tapioca, rice and sago .. 93
Fig. 4.21 X-ray diffractograms of treated roselle, kenaf, bamboo, and napier

Fig. 4.22 X-ray diffractograms of pure PVA, PVA/1TS, PVA/3TS and pure tapioca starch

Fig. 4.23 X-ray diffractograms of pure PVA, PVA/1RS, PVA/3RS and pure rice starch

Fig. 4.24 X-ray diffractograms of pure PVA, PVA/1SS, PVA/3SS and pure sago starch

Fig. 4.25 X-ray diffractograms of pure PVA, PVA/1TS, PVA/1TS/1BB and PVA/1TS/3BB

Fig. 4.26 X-ray diffractograms of pure PVA, PVA/1TS, PVA/1TS/1KF and PVA/1TS/3KF

Fig. 4.27 X-ray diffractograms of pure PVA, PVA/1TS, PVA/1TS/1ROS and PVA/1TS/3ROS

Fig. 4.28 X-ray diffractograms of pure PVA, PVA/1TS, PVA/1TS/1NP and PVA/1TS/3NP

Fig. 4.29 X-ray diffractograms of pure PVA, PVA/1RS, PVA/1RS/1BB and PVA/1RS/3BB

Fig. 4.30 X-ray diffractograms of pure PVA, PVA/1RS, PVA/1RS/1KF and PVA/1RS/3KF

Fig. 4.31 X-ray diffractograms of pure PVA, PVA/1RS, PVA/1RS/1ROS and PVA/1RS/3ROS

Fig. 4.32 X-ray diffractograms of pure PVA, PVA/1RS, PVA/1RS/1NP and PVA/1RS/3NP

Fig. 4.33 X-ray diffractograms of pure PVA, PVA/1SS, PVA/1SS/1BB and PVA/1SS/3BB

Fig. 4.34 X-ray diffractograms of pure PVA, PVA/1SS, PVA/1SS/1KF and PVA/1SS/3KF

Fig. 4.35 X-ray diffractograms of pure PVA, PVA/1SS, PVA/1SS/1ROS and PVA/1SS/3ROS

Fig. 4.36 X-ray diffractograms of pure PVA, PVA/1SS, PVA/1SS/1NP and PVA/1SS/3NP

Fig. 4.37 SEM image of treated bamboo fibers at 400x magnification

Fig. 4.38 SEM image of treated bamboo fibers at 3000x magnification

Fig. 4.39 SEM image of treated kenaf fibers at 400x magnification
Fig. 4.40 SEM image of treated kenaf fibers at 3000x magnification.................. 109
Fig. 4.41 SEM image of treated roselle fibers at 400x magnification.................. 109
Fig. 4.42 SEM image of treated roselle fibers at 3000x magnification.................. 109
Fig. 4.43 SEM image of treated Napier fibers at 400x magnification.................. 109
Fig. 4.44 SEM image of treated Napier fibers at 3000x magnification.................. 109
Fig. 4.45 SEM image of pure PVA film at 500x magnification......................... 111
Fig. 4.46 SEM image of PVA/1TS film at 500x magnification......................... 112
Fig. 4.47 SEM image of PVA/3TS film at 500x magnification......................... 112
Fig. 4.48 SEM image of PVA/1RS film at 500x magnification......................... 112
Fig. 4.49 SEM image of PVA/3RS film at 500x magnification......................... 112
Fig. 4.50 SEM image of PVA/1SS film at 500x magnification......................... 112
Fig. 4.51 SEM image of PVA/3SS film at 500x magnification......................... 112
Fig. 4.52 SEM image of PVA/1TS/1BB at 25x magnification............................ 114
Fig. 4.53 SEM image of PVA/1TS/3BB at 25x magnification............................ 114
Fig. 4.54 SEM image of PVA/1TS/1KF at 25x magnification............................ 114
Fig. 4.55 SEM image of PVA/1TS/3KF at 25x magnification............................ 114
Fig. 4.56 SEM image of PVA/1TS/1ROS at 25x magnification.......................... 115
Fig. 4.57 SEM image of PVA/1TS/3ROS at 25x magnification.......................... 115
Fig. 4.58 SEM image of PVA/1TS/1NP at 25x magnification............................ 115
Fig. 4.59 SEM image of PVA/1TS/3NP at 25x magnification............................ 115
Fig. 4.60 SEM image of PVA/1RS/1BB at 25x magnification............................ 115
Fig. 4.61 SEM image of PVA/1RS/3BB at 25x magnification............................ 115
Fig. 4.62 SEM image of PVA/1RS/1KF at 25x magnification............................ 116
Fig. 4.63 SEM image of PVA/1RS/3KF at 25x magnification............................ 116
Fig. 4.64 SEM image of PVA/1RS/1ROS at 25x magnification.......................... 116
Fig. 4.65 SEM image of PVA/1RS/3ROS at 25x magnification.......................... 116
Fig. 4.66 SEM image of PVA/1RS/1NP at 25x magnification

Fig. 4.67 SEM image of PVA/1RS/3NP at 25x magnification

Fig. 4.68 SEM image of PVA/1SS/1BB at 25x magnification

Fig. 4.69 SEM image of PVA/1SS/3BB at 25x magnification

Fig. 4.70 SEM image of PVA/1SS/1KF at 25x magnification

Fig. 4.71 SEM image of PVA/1SS/3KF at 25x magnification

Fig. 4.72 SEM image of PVA/1SS/1ROS at 25x magnification

Fig. 4.73 SEM image of PVA/1SS/3ROS at 25x magnification

Fig. 4.74 SEM image of PVA/1SS/1NP at 25x magnification

Fig. 4.75 SEM image of PVA/1SS/3NP at 25x magnification

Fig. 4.76 SEM image of fractured surface of PVA/1TS/1BB at 1000x magnification

Fig. 4.77 SEM image of fractured surface of PVA/1TS/3BB at 1000x magnification

Fig. 4.78 SEM image of fractured surface of PVA/1TS/3KF at 1000x magnification

Fig. 4.79 SEM image of fractured surface of PVA/1TS/1ROS at 1000x magnification

Fig. 4.80 SEM image of fractured surface of PVA/1TS/3ROS at 1000x magnification

Fig. 4.81 SEM image of fractured surface of PVA/1TS/1NP at 1000x magnification

Fig. 4.82 SEM image of fractured surface of PVA/1TS/3NP at 1000x magnification

Fig. 4.83 SEM image of fractured surface of PVA/1RS/1BB at 1000x magnification

Fig. 4.84 SEM image of fractured surface of PVA/1RS/3BB at 1000x magnification

Fig. 4.85 SEM image of fractured surface of PVA/1RS/3KF at 1000x magnification
Fig. 4.86 SEM image of fractured surface of PVA/1RS/3ROS at 1000x magnification ... 121

Fig. 4.87 SEM image of fractured surface of PVA/1RS/3NP at 1000x magnification ... 121

Fig. 4.88 SEM image of fractured surface of PVA/1SS/3BB at 1000x magnification ... 122

Fig. 4.89 SEM image of fractured surface of PVA/1SS/3KF at 1000x magnification ... 122

Fig. 4.90 SEM image of fractured surface of PVA/1SS/1ROS at 1000x magnification ... 122

Fig. 4.91 SEM image of fractured surface of PVA/1SS/3ROS at 1000x magnification ... 122

Fig. 4.92 SEM image of fractured surface of PVA/1SS/3NP at 1000x magnification ... 122

Fig. 4.93 TG curves for the degradation of PVA in nitrogen atmosphere at 10°C/min .. 124

Fig. 4.94 TG curves for the degradation of different starches in nitrogen atmosphere at 10°C/min .. 125

Fig. 4.95 TG curves for the degradation of different treated natural fibers in nitrogen atmosphere at 10°C/min .. 127

Fig. 4.96 TG curves for the degradation of PVA/1TS and PVA/3TS composites. The curves were compared with the TG curves of pure PVA and pure tapioca starch ... 129

Fig. 4.97 TG curves for the degradation of PVA/1RS and PVA/3RS composites. The curves were compared with the TG curves of pure PVA and pure rice starch .. 130

Fig. 4.98 TG curves for the degradation of PVA/1SS and PVA/3SS composites. The curves were compared with the TG curves of pure PVA and pure sago starch .. 130

Fig. 4.99 TG thermograms of pure PVA, treated bamboo fiber, PVA/1TS, PVA/1TS/1BB and PVA/1TS/3BB between the temperature range of 50°C to 900°C .. 132

Fig. 4.100 TG thermograms of pure PVA, treated kenaf fiber, PVA/1TS, PVA/1TS/1KF and PVA/1TS/3KF between the temperature range of 50°C to 900°C .. 133
Fig. 4.101 TG thermograms of pure PVA, treated roselle fiber, PVA/1TS, PVA/1TS/1ROS and PVA/1TS/3ROS between the temperature range of 50°C to 900°C……………………………………………………… 133

Fig. 4.102 TG thermograms of pure PVA, treated Napier fiber, PVA/1TS, PVA/1TS/1NP and PVA/1TS/3NP between the temperature range of 50°C to 900°C……………………………………………………… 134

Fig. 4.103 TG thermograms of pure PVA, treated bamboo fiber, PVA/1RS, PVA/1RS/1BB and PVA/1RS/3BB between the temperature range of 50°C to 900°C……………………………………………………… 134

Fig. 4.104 TG thermograms of pure PVA, treated kenaf fiber, PVA/1RS, PVA/1RS/1KF and PVA/1RS/3KF between the temperature range of 50°C to 900°C……………………………………………………… 135

Fig. 4.105 TG thermograms of pure PVA, treated roselle fiber, PVA/1RS, PVA/1RS/1ROS and PVA/1RS/3ROS between the temperature range of 50°C to 900°C……………………………………………………… 135

Fig. 4.106 TG thermograms of pure PVA, treated Napier fiber, PVA/1RS, PVA/1RS/1NP and PVA/1RS/3NP between the temperature range of 50°C to 900°C……………………………………………………… 136

Fig. 4.107 TG thermograms of pure PVA, treated bamboo fiber, PVA/1SS, PVA/1SS/1BB and PVA/1SS/3BB between the temperature range of 50°C to 900°C……………………………………………………… 136

Fig. 4.108 TG thermograms of pure PVA, treated kenaf fiber, PVA/1SS, PVA/1SS/1KF and PVA/1SS/3KF between the temperature range of 50°C to 900°C……………………………………………………… 137

Fig. 4.109 TG thermograms of pure PVA, treated roselle fiber, PVA/1SS, PVA/1SS/1ROS and PVA/1SS/3ROS between the temperature range of 50°C to 900°C……………………………………………………… 137

Fig. 4.110 TG thermograms of pure PVA, treated Napier fiber, PVA/1SS, PVA/1SS/1NP and PVA/1SS/3NP between the temperature range of 50°C to 900°C……………………………………………………… 138

Fig. 4.111 Storage modulus (E') versus temperature at 1 Hz for pure PVA in film form………………………………………………………………… 141

Fig. 4.112 tan δ versus temperature at 1 Hz for pure PVA in film form………… 142

Fig. 4.113 DSC thermogram for pure PVA in film form………………………… 143

Fig. 4.114 Storage modulus (E') vs. temperature for PVA/1TS and PVA/3TS composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………………………… 145
Fig. 4.115 Storage modulus \((E') \) vs. temperature for PVA/1RS and PVA/3RS composites. The thermograms were compared with the DMA thermogram for pure PVA………………………………………………………… 146

Fig. 4.116 Storage modulus \((E') \) vs. temperature for PVA/1SS and PVA/3SS composites. The thermograms were compared with the DMA thermogram for pure PVA………………………………………………………… 146

Fig. 4.117 Loss factor \((\tan \delta) \) vs. temperature for PVA/1TS and PVA/3TS composites. The thermograms were compared with the DMA thermogram for pure PVA………………………………………………………… 147

Fig. 4.118 Loss factor \((\tan \delta) \) vs. temperature for PVA/1RS and PVA/3RS composites. The thermograms were compared with the DMA thermogram for pure PVA………………………………………………………… 148

Fig. 4.119 Loss factor \((\tan \delta) \) vs. temperature for PVA/1SS and PVA/3SS composites. The thermograms were compared with the DMA thermogram for pure PVA………………………………………………………… 148

Fig.4.120 DSC thermogram for PVA/1TS/1BB………………………………………………………… 153

Fig 4.121 DSC thermogram for PVA/1TS/3BB………………………………………………………… 153

Fig. 4.122 DSC thermogram for PVA/1TS/1KF………………………………………………………… 153

Fig. 4.123 DSC thermogram for PVA/1TS/3KF………………………………………………………… 153

Fig. 4.124 DSC thermogram for PVA/1TS/1ROS………………………………………………………… 154

Fig. 4.125 DSC thermograms for PVA/1TS/3ROS………………………………………………………… 154

Fig. 4.126 DSC thermogram for PVA/1TS/1NP………………………………………………………… 154

Fig. 4.127 DSC thermogram for PVA/1TS/3NP………………………………………………………… 154

Fig. 4.128 DSC thermogram for PVA/1RS/1BB………………………………………………………… 155

Fig. 4.129 DSC thermogram for PVA/1RS/3BB………………………………………………………… 155

Fig. 4.130 DSC thermogram for PVA/1RS/1KF………………………………………………………… 155

Fig. 4.131 DSC thermogram for PVA/1RS/3KF………………………………………………………… 155

Fig. 4.132 DSC thermogram for PVA/1RS/1ROS………………………………………………………… 156

Fig. 4.133 DSC thermogram for PVA/1RS/3ROS………………………………………………………… 156

Fig. 4.134 DSC thermogram for PVA/1RS/1NP………………………………………………………… 156

Fig. 4.135 DSC thermogram for PVA/1RS/3NP………………………………………………………… 156
Fig. 4.136 DSC thermogram for PVA/1SS/1BB…………………………………… 157
Fig. 4.137 DSC thermogram for PVA/1SS/3BB…………………………………… 157
Fig. 4.138 DSC thermogram for PVA/1SS/1KF…………………………………… 157
Fig. 4.139 DSC thermogram for PVA/1SS/3KF…………………………………… 157
Fig. 4.140 DSC thermogram for PVA/1SS/1ROS………………………………… 158
Fig. 4.141 DSC thermogram for PVA/1SS/3ROS………………………………… 158
Fig. 4.142 DSC thermogram for PVA/1SS/1NP…………………………………… 158
Fig. 4.143 DSC thermogram for PVA/1SS/3NP…………………………………… 158
Fig. 4.144 Storage modulus (E') vs. temperature for PVA/1TS/1BB and PVA/1TS/3BB composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 159
Fig. 4.145 Storage modulus (E') vs. temperature for PVA/1TS/1KF and PVA/1TS/3KF composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 159
Fig. 4.146 Storage modulus (E') vs. temperature for PVA/1TS/1ROS and PVA/1TS/3ROS composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 160
Fig. 4.147 Storage modulus (E') vs. temperature for PVA/1TS/1NP and PVA/1TS/3NP composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 160
Fig. 4.148 Storage modulus (E') vs. temperature for PVA/1RS/1BB and PVA/1RS/3BB composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 161
Fig. 4.149 Storage modulus (E') vs. temperature for PVA/1RS/1KF and PVA/1RS/3KF composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 161
Fig. 4.150 Storage modulus (E') vs. temperature for PVA/1RS/1ROS and PVA/1RS/3ROS composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 162
Fig. 4.151 Storage modulus (E') vs. temperature for PVA/1RS/1NP and PVA/1RS/3NP composites. The thermograms were compared with the DMA thermogram for pure PVA…………………………………… 162
Fig. 4.152 Storage modulus (E') vs. temperature for PVA/1SS/1BB and PVA/1SS/3BB composites. The thermograms were compared with
the DMA thermogram for pure PVA.......................... 163

Fig. 4.153 Storage modulus (E') vs. temperature for PVA/1SS/1KF and PVA/1SS/3KF composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 163

Fig. 4.154 Storage modulus (E') vs. temperature for PVA/1SS/1ROS and PVA/1SS/3ROS composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 164

Fig. 4.155 Storage modulus (E') vs. temperature for PVA/1SS/1NP and PVA/1SS/3NP composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 164

Fig. 4.156 Loss factor (tan δ) vs. temperature for PVA/1TS/1BB and PVA/1TS/3BB composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 166

Fig. 4.157 Loss factor (tan δ) vs. temperature for PVA/1TS/1KF and PVA/1TS/3KF composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 166

Fig. 4.158 Loss factor (tan δ) vs. temperature for PVA/1TS/1ROS and PVA/1TS/3ROS composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 167

Fig. 4.159 Loss factor (tan δ) vs. temperature for PVA/1TS/1NP and PVA/1TS/3NP composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 167

Fig. 4.160 Loss factor (tan δ) vs. temperature for PVA/1RS/1BB and PVA/1RS/3BB composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 168

Fig. 4.161 Loss factor (tan δ) vs. temperature for PVA/1RS/1KF and PVA/1RS/3KF composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 168

Fig. 4.162 Loss factor (tan δ) vs. temperature for PVA/1RS/1ROS and PVA/1RS/3ROS composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 169

Fig. 4.163 Loss factor (tan δ) vs. temperature for PVA/1RS/1NP and PVA/1RS/3NP composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 169

Fig. 4.164 Loss factor (tan δ) vs. temperature for PVA/1SS/1BB and PVA/1SS/3BB composites. The thermograms were compared with the DMA thermogram for pure PVA.......................... 170

Fig. 4.165 Loss factor (tan δ) vs. temperature for PVA/1SS/1KF and PVA/1SS/3KF composites. The thermograms were compared with
the DMA thermogram for pure PVA

Fig. 4.166 Loss factor (tan δ) vs. temperature for PVA/1SS/1ROS and PVA/1SS/3ROS composites. The thermograms were compared with the DMA thermogram for pure PVA.

Fig. 4.167 Loss factor (tan δ) vs. temperature for PVA/1SS/1NP and PVA/1SS/3NP composites. The thermograms were compared with the DMA thermogram for pure PVA.

Fig. 4.168 Storage modulus (E’) vs. temperature for PVA/1RS/1B, PVA/1TS/1BB and PVA/1SS/1BB composites.

Fig. 4.169 Storage modulus (E’) vs. temperature for PVA/1RS/3BB, PVA/1TS/3BB and PVA/1SS/3BB composites.

Fig. 4.170 Storage modulus (E’) vs. temperature for PVA/1RS/1KF, PVA/1TS/1KF and PVA/1SS/1KF composites.

Fig. 4.171 Storage modulus (E’) vs. temperature for PVA/1RS/3KF, PVA/1TS/3KF and PVA/1SS/3KF composites.

Fig. 4.172 Storage modulus (E’) vs. temperature for PVA/1RS/1ROS, PVA/1TS/1ROS and PVA/1SS/1ROS composites.

Fig. 4.173 Storage modulus (E’) vs. temperature for PVA/1RS/3ROS, PVA/1TS/3ROS and PVA/1SS/3ROS composites.

Fig. 4.174 Storage modulus (E’) vs. temperature for PVA/1RS/1NP, PVA/1TS/1NP and PVA/1SS/1NP composites.

Fig. 4.175 Storage modulus (E’) vs. temperature for PVA/1RS/3NP, PVA/1TS/3NP and PVA/1SS/3NP composites.

Fig. 4.176 Tensile strength values for PVA blended with different concentrations of different starches.

Fig. 4.177 Young modulus values for PVA blended with different concentrations of different starches.

Fig. 4.178 Percent elongation at break values for PVA blended with different concentrations of different starches.

Fig. 4.179 Tensile strength values for PVA blended with 1g of tapioca starch and different concentrations of different fibers.

Fig. 4.180 Tensile strength values for PVA blended with 1 g of rice starch and different concentrations of different fibers.

Fig. 4.181 Tensile strength values for PVA blended with 1 g of sago starch and different concentrations of different fibers.
Fig. 4.182 Tensile strength values for different sets of PVA blended with 1g of different starches and reinforced with 1g of different fibers…….. 185

Fig. 4.183 Tensile strength values for different sets of PVA blended with 1g of different starches and reinforced with 3g of different fibers…….. 186

Fig. 4.184 Young modulus values for PVA blended with 1g of tapioca starch and different concentration of different fibers………………………. 188

Fig. 4.185 Young modulus values for PVA blended with 1g of rice starch and different concentration of different fibers………………………. 188

Fig. 4.186 Young modulus values for PVA blended with 1g of sago starch and different concentration of different fibers………………………. 189

Fig. 4.187 Percent elongation at break values for PVA blended with 1g of tapioca starch and different concentration of different fibers……….. 190

Fig. 4.188 Percent elongation at break values for PVA blended with 1g of rice starch and different concentration of different fibers……………….. 191

Fig. 4.189 Percent elongation at break values for PVA blended with 1g of sago starch and different concentration of different fibers………………… 191

Fig. 4.190 Weight loss of PVA/starch blends for the outdoor soil burial experiment……………………………………………………………….. 195

Fig. 4.191 Weight loss of PVA/starch blends for the indoor soil burial experiment……………………………………………………………… 195

Fig. 4.192 SEM micrograph of pure PVA film surface after 2 weeks of indoor burial…………………………………………………… 197

Fig. 4.193 SEM micrograph of pure PVA film surface after 2 weeks of outdoor burial…………………………………………………… 197

Fig. 4.194 SEM micrograph of PVA/1TS film surface after 2 weeks of indoor burial…………………………………………………… 197

Fig. 4.195 SEM micrograph of PVA/1TS film surface after 2 weeks of outdoor burial…………………………………………………… 197

Fig. 4.196 SEM micrograph of PVA/3TS film surface after 2 weeks of indoor burial…………………………………………………… 197

Fig. 4.197 SEM micrograph of PVA/3TS film surface after 2 weeks of outdoor burial…………………………………………………… 197

Fig. 4.198 SEM micrograph of PVA/1RS film surface after 2 weeks of indoor burial…………………………………………………… 198
Fig. 4.199 SEM micrograph of PVA/1RS film surface after 2 weeks of outdoor burial.

Fig. 4.200 SEM micrograph of PVA/3RS film surface after 2 weeks of indoor burial.

Fig. 4.201 SEM micrograph of PVA/3RS film surface after 2 weeks of outdoor burial.

Fig. 4.202 SEM micrograph of PVA/1SS film surface after 2 weeks of indoor burial.

Fig. 4.203 SEM micrograph of PVA/1SS film surface after 2 weeks of outdoor burial.

Fig. 4.204 SEM micrograph of PVA/3SS film surface after 2 weeks of indoor burial.

Fig. 4.205 SEM micrograph of PVA/3SS film surface after 2 weeks of outdoor burial.

Fig. 4.206 Weight loss for the composites of PVA blended with tapioca starch and different concentrations of different fibers for the outdoor soil burial experiment.

Fig. 4.207 Weight loss for the composites of PVA blended with tapioca starch and different concentrations of different fibers for the indoor soil burial experiment.

Fig. 4.208 Weight loss for the composites of PVA blended with rice starch and different concentrations of different fibers for the outdoor soil burial experiment.

Fig. 4.209 Weight loss for the composites of PVA blended with rice starch and different concentrations of different fibers for the indoor soil burial experiment.

Fig. 4.210 Weight loss for the composites of PVA blended with sago starch and different concentrations of different fibers for the outdoor soil burial experiment.

Fig. 4.211 Weight loss for the composites of PVA blended with sago starch and different concentrations of different fibers for the indoor soil burial experiment.

Fig. 4.212 SEM micrograph of PVA/1TS/1BB film surface after 2 weeks of indoor burial.

Fig. 4.213 SEM micrograph of PVA/1TS/1BB film surface after 2 weeks of outdoor burial.
Fig. 4.214 SEM micrograph of PVA/1TS/3BB film surface after 2 weeks of indoor burial………………………………………………………………………………..……. 205
Fig. 4.215 SEM micrograph of PVA/1TS/3BB film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 205
Fig. 4.216 SEM micrograph of PVA/1TS/1KF film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 205
Fig. 4.217 SEM micrograph of PVA/1TS/1KF film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 205
Fig. 4.218 SEM micrograph of PVA/1TS/3KF film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 205
Fig. 4.219 SEM micrograph of PVA/1TS/3KF film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 205
Fig. 4.220 SEM micrograph of PVA/1TS/1ROS film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 206
Fig. 4.221 SEM micrograph of PVA/1TS/1ROS film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 206
Fig. 4.222 SEM micrograph of PVA/1TS/3ROS film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 206
Fig. 4.223 SEM micrograph of PVA/1TS/3ROS film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 206
Fig. 4.224 SEM micrograph of PVA/1TS/1NP film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 206
Fig. 4.225 SEM micrograph of PVA/1TS/1NP film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 206
Fig. 4.226 SEM micrograph of PVA/1TS/3NP film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 207
Fig. 4.227 SEM micrograph of PVA/1TS/3NP film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 207
Fig. 4.228 SEM micrograph of PVA/1RS/1BB film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 207
Fig. 4.229 SEM micrograph of PVA/1RS/1BB film surface after 2 weeks of outdoor burial……………………………………………………………………………………………………. 207
Fig. 4.230 SEM micrograph of PVA/1RS/3BB film surface after 2 weeks of indoor burial……………………………………………………………………………………………………. 207
Fig. 4.231 SEM micrograph of PVA/1RS/3BB film surface after 2 weeks of outdoor burial. 207

Fig. 4.232 SEM micrograph of PVA/1RS/1KF film surface after 2 weeks of indoor burial. 208

Fig. 4.233 SEM micrograph of PVA/1RS/1KF film surface after 2 weeks of outdoor burial. 208

Fig. 4.234 SEM micrograph of PVA/1RS/3KF film surface after 2 weeks of indoor burial. 208

Fig. 4.235 SEM micrograph of PVA/1RS/3KF film surface after 2 weeks of outdoor burial. 208

Fig. 4.236 SEM micrograph of PVA/1RS/1ROS film surface after 2 weeks of indoor burial. 208

Fig. 4.237 SEM micrograph of PVA/1RS/1ROS film surface after 2 weeks of outdoor burial. 208

Fig. 4.238 SEM micrograph of PVA/1RS/3ROS film surface after 2 weeks of indoor burial. 209

Fig. 4.239 SEM micrograph of PVA/1RS/3ROS film surface after 2 weeks of outdoor burial. 209

Fig. 4.240 SEM micrograph of PVA/1RS/1NP film surface after 2 weeks of indoor burial. 209

Fig. 4.241 SEM micrograph of PVA/1RS/1NP film surface after 2 weeks of outdoor burial. 209

Fig. 4.242 SEM micrograph of PVA/1RS/3NP film surface after 2 weeks of indoor burial. 209

Fig. 4.243 SEM micrograph of PVA/1RS/3NP film surface after 2 weeks of outdoor burial. 209

Fig. 4.244 SEM micrograph of PVA/1SS/1BB film surface after 2 weeks of indoor burial. 210

Fig. 4.245 SEM micrograph of PVA/1SS/1BB film surface after 2 weeks of outdoor burial. 210

Fig. 4.246 SEM micrograph of PVA/1SS/3BB film surface after 2 weeks of indoor burial. 210

Fig. 4.247 SEM micrograph of PVA/1SS/3BB film surface after 2 weeks of outdoor burial. 210
Fig. 4.248 SEM micrograph of PVA/1SS/1KF film surface after 2 weeks of indoor burial…………………………………………………………….. 210

Fig. 4.249 SEM micrograph of PVA/1SS/1KF film surface after 2 weeks of outdoor burial…………………………………………………………….. 210

Fig. 4.250 SEM micrograph of PVA/1SS/3KF film surface after 2 weeks of indoor burial…………………………………………………………….. 211

Fig. 4.251 SEM micrograph of PVA/1SS/3KF film surface after 2 weeks of outdoor burial…………………………………………………………….. 211

Fig. 4.252 SEM micrograph of PVA/1SS/1ROS film surface after 2 weeks of indoor burial…………………………………………………………….. 211

Fig. 4.253 SEM micrograph of PVA/1SS/1ROS film surface after 2 weeks of outdoor burial…………………………………………………………….. 211

Fig. 4.254 SEM micrograph of PVA/1SS/3ROS film surface after 2 weeks of indoor burial…………………………………………………………….. 211

Fig. 4.255 SEM micrograph of PVA/1SS/3ROS film surface after 2 weeks of outdoor burial…………………………………………………………….. 211

Fig. 4.256 SEM micrograph of PVA/1SS/1NP film surface after 2 weeks of indoor burial…………………………………………………………….. 212

Fig. 4.257 SEM micrograph of PVA/1SS/1NP film surface after 2 weeks of outdoor burial…………………………………………………………….. 212

Fig. 4.258 SEM micrograph of PVA/1SS/3NP film surface after 2 weeks of indoor burial…………………………………………………………….. 212

Fig. 4.259 SEM micrograph of PVA/1SS/3NP film surface after 2 weeks of outdoor burial…………………………………………………………….. 212