TABLE OF CONTENTS

ACKNOWLEDGEMENT	i
ABSTRACT	ii
ABSTRAK	iv
TABLE OF CONTENTS	vii
LIST OF FIGURE	xi
LIST OF TABLE	xix
LIST OF SCHEME	XX
CHAPTER 1 INTRODUCTION	1
References	3
CHAPTER 2 THEORY AND LITERATURE REVIEW	
2.1 Introduction	4
2.2 Copper(II) Carboxylates	4
2.2.1 Structural elucidation	5
(a) Elemental analyses	7
(b) Fourier transform infrared spectroscopy	8
(c) UV-visible spectroscopy	9
2.2.2 Thermal properties	11
(a) <i>Thermogravimetry</i>	11
(b) Differential scanning calorimetry	13
2.2.3 Magnetism	15
2.2.4 Redox properties	19
2.3 Solar Materials	20

	2.3.1 Band gap	22
	2.3.2 Photoluminescence spectroscopy	24
Re	eferences	26
C	HAPTER 3 EXPERIMENTAL	
3.	1 Materials	29
3.2	2 Synthesis	31
	3.2.1 One-pot reaction	31
	(a) $K_2[Cu_2(p-OC_6H_4COO)_2(CH_3CH=CHCOO)_2]$	31
	(b) <i>K</i> [<i>Cu</i> ₂ (<i>p</i> - <i>OC</i> ₆ <i>H</i> ₄ <i>COO</i>)(<i>CH</i> ₃ <i>CH</i> = <i>CHCOO</i>) ₃]	31
	(c) $K_3[Cu_2(p-OC_6H_4COO)_3(CH_3CH=CHCOO)]$	32
	(d) $K_2[Cu_2(p-OC_6H_4COO)_2(CH_2=C(CH_3)COO)_2]$	32
	(e) $K[Cu_2(p-OC_6H_4COO)(CH_2=C(CH_3)COO)_3]$	32
	(f) $K_3[Cu_2(p-OC_6H_4COO)_3(CH_2=C(CH_3)COO)]$	32
	3.2.2 Ligand-exchange reaction	33
	(a) Synthesis of $[Cu_2(p-HOC_6H_4COO)_n(CH_3CH=CHCOO)_{4-n}]$	33
	(b) [Cu ₂ (p-HOC ₆ H ₄ COO)(CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO) ₃]	35
	(c) $[Cu_2(p-HOC_6H_4COO)((CH_3)_3CCOO)_3]$	36
	(d) [Cu ₂ (p-HOC ₆ H ₄ COO)(CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)COO) ₃]	36
	(e) $[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_7CH((CH_2)_5CH_3)COO)_3]$	37
	3.2.3 K[Cu ₂ (p-OC ₆ H ₄ COO)(CH ₃ (CH ₂)7CH=CH(CH ₂)7COO) ₃]	38
3.3 Instrumental Analyses		
	3.3.1 Elemental analyses	39
	3.3.2 Fourier transform infrared spectroscopy	39
	3.3.3 Ultraviolet-visible spectroscopy	39

3.3.4 Thermogravimetric analysis	40	
3.3.5 Differential scanning calorimetry	40	
3.3.6 Room-temperature magnetic susceptibility	40	
3.3.7 Cyclic voltammetry	41	
3.3.8 Photoluminescence spectroscopy	41	
3.3.9 Single crystal X-ray crystallography	41	
CHAPTER 4 RESULTS AND DISCUSSION		
4.1 Introduction 42		
4.2 One-Pot Reaction	46	
4.2.1 K _n [Cu ₂ (p-OC ₆ H ₄ COO) _n (CH ₃ CH=CHCOO) _{4-n}]		
(a) $K_2[Cu_2(p-OC_6H_4COO)_2(CH_3CH=CHCOO)_2]$	46	
(b) <i>K</i> [<i>Cu</i> ₂ (<i>p</i> - <i>OC</i> ₆ <i>H</i> ₄ <i>COO</i>)(<i>CH</i> ₃ <i>CH</i> = <i>CHCOO</i>) ₃]	60	
(c) $K_3[Cu_2(p-OC_6H_4COO)_3(CH_3CH=CHCOO)]$	71	
(d) Summary	71	
$4.2.2 K_n [Cu_2(p-OC_6H_4COO)_n (CH_2=C(CH_3)COO)_{4-n}]$		
(a) $K_2[Cu_2(p-OC_6H_4COO)_2(CH_2=C(CH_3)COO)_2]$	73	
(b) $K[Cu_2(p-OC_6H_4COO)(CH_2=C(CH_3)COO)_3]$	78	
(c) $K_3[Cu_2(p-OC_6H_4COO)_3(CH_2=C(CH_3)COO)]$	83	
(d) Summary	88	
4.3 Ligand-Exchange Reaction		
4.3.1 [Cu ₂ (p-HOC ₆ H ₄ COO) _n (CH ₃ CH=CHCO)) _{4-n}]		
(a) $[Cu_2(p-HOC_6H_4COO)_2(CH_3CH=CHCOO)_2]$	93	
(b) $[Cu_2(p-HOC_6H_4COO)(CH_3CH=CHCOO)_3]$	102	
(c) $[Cu_2(p-HOC_6H_4COO)_3(CH_3CH=CHCOO)]$	109	
(d) Summary	111	

4.3.2 [Cu ₂ (p-HOC ₆ H ₄ COO)(CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO) ₃]	112
4.3.3 $[Cu_2(p-HOC_6H_4COO)((CH_3)_3CCOO)_3]$	119
4.3.4 [Cu ₂ (p-HOC ₆ H ₄ COO)(CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)COO) ₃]	128
4.3.5 [<i>Cu</i> ₂ (<i>p</i> -HOC ₆ <i>H</i> ₄ COO)(<i>CH</i> ₃ (<i>CH</i> ₂) ₇ <i>CH</i> ((<i>CH</i> ₂) ₅ <i>CH</i> ₃)COO) ₃]	134
4.3.6 Summary	140
4.4 Conversion to Ionic Complex	142
4.5 Photoluminescence Spectroscopy	146
References	149

CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORKS

5.1 Conclusions	151
5.2 Suggestions for Future Works	152

Appendices

LIST OF FIGURE

Figure	Description	Page
Figure 2.1	The paddle-wheel structure of [Cu ₂ (RCOO) ₄]	5
Figure 2.2	Coordination modes of RCOO ⁻ anion	5
Figure 2.3	Structure of (a) $bis(\mu$ -diphenylacetato- $O:O'$)dicopper(II); and	6
	(b) <i>catena</i> -poly[[bis(µ-diphenylacetato-O:O')dicopper](µ ₃ -	
	diphenylacetato-1- O :2- O ':1'- O ')(μ_3 -diphenylacetato-1- O :2-	
	<i>O</i> ':2'- <i>O</i> ')] (showing only the linkage at the centres)	
Figure 2.4	Structure of (a) tetrakis(μ -1-phenylcyclopropane-1-	7
	carboxylato-O,O')bis(ethanol-O)dicopper(II); and (b)	
	poly[tetrakis(µ-1-phenylcyclopropane-1-carboxylato-	
	<i>O</i> , <i>O</i> ')bis(ethanol- <i>O</i>)dicopper(II)] (showing only the linkage	
	at the centres)	
Figure 2.5	Colour wheel	9
Figure 2.6	geometry at the copper center (a) tetrahedral; (b) square	10
	pyramidal; and (c) square planar	
Figure 2.7	The energy of the d orbitals in a square planar copper(II)	11
	centre	
Figure 2.8	TGA of calcium oxalate (CaC ₂ O ₄ .H ₂ O)	12
Figure 2.9	Structure of [Cu ₂ (C ₆ H ₄ COO) ₄ (EtOH) ₂]	13
Figure 2.10	Features and assignation of DSC curve	14
Figure 2.11	Structure of [Cu ₂ (CH ₃ (CH ₂) ₁₄ COO) ₄]	14

Figure 2.12	Structure of tetrakis(μ -(2,2-(dioctyl(acetate))-	15
	O,O')bis(copper(II)	
Figure 2.13	Alignment of electrons in a sample: (a) paramagnetic;	16
	(b) diamagnetic	
Figure 2.14	Electron alignment in a paramagnetic sample:	16
	(a) antiferromagnetism; (b) ferromagnetism; (c)	
	ferrimagnetism	
Figure 2.15	Structure of [Cu ₂ (CH ₃ COO) ₄ (H ₂ O) ₂]	18
Figure 2.16	Cyclic voltammogram of a reversible process	20
Figure 2.17	Energy arrangement in atoms	22
Figure 2.18	Jablonski diagram	24
Figure 3.1	Structural formulas of the carboxylic acids used for the	30
	synthesis of ionic copper(II) mixed carboxylates	
Figure 3.1	Structural formula of (a) $[Cu_2(CH_3(CH_2)_{14}COO)_4]$; and	43
	(b) [Cu ₂ CH ₃ (CH ₂) ₇) ₂ CHCOO) ₄]	
Figure 3.1	Structural formula of a copper(I) complex with 1,8-	44
	naphthalenedithiolate	
Figure 3.1	Structural formula of a copper(I) complex with 2,9-	44
	phenylethynyl-1,10-phenantroline	
Figure 3.1	FTIR spectrum of Complex 1	47
Figure 3.1	FTIR spectrum of <i>p</i> -HOC ₆ H ₄ COOH	47
Figure 3.1	FTIR spectrum of CH ₃ CH=CHCOOH	48
Figure 3.1	UV of Complex 1 in (a) solid; and (b) solution	48

Figure 4.8	Assignment of electronic transitions for a square pyramidal	49
	Complex 1 (not to scale)	
Figure 4.9	Proposed structural formula of Complex 1 (K^+ ion and H_2O	49
	solvate are not shown)	
Figure 4.10	TGA of Complex 1	50
Figure 4.11	DSC of Complex 1	51
Figure 4.12	CV of Complex 1	52
Figure 4.13	Structural formula of [Cu(CH ₃ COO) ₂ (2,2'-bipy)] [10]	53
Figure 4.14	FTIR of Complex 2	54
Figure 4.15	UV of Complex 2 in (a) solid; and (b) solution	55
Figure 4.16	Proposed structural formula of Complex 2, showing the	56
	<i>trans</i> - isomer)	
Figure 4.17	TGA of Complex 2	57
Figure 4.18	DSC of Complex 2	58
Figure 4.19	CV of Complex 2	59
Figure 4.20	FTIR of Complex 3	61
Figure 4.21	UV-vis spectrum of Complex 3 (a) as a solid; and (b) in	(1
	solution	61
Figure 4.22	Proposed structural formula of Complex 3	62
Figure 4.23	TGA of Complex 3	63
Figure 4.24	DSC of Complex 3	64
Figure 4.25	CV of Complex 3	65
Figure 4.26	FTIR of Complex 4	66
Figure 4.27	The UV-vis spectrum of Complex 4 (a) as a solid; and	67
	(b) in solution	

Figure 4.28	Proposed structural formula of Complex 4	67
Figure 4.29	TGA of Complex 4	68
Figure 4.30	DSC of Complex 4	69
Figure 4.31	CV of Complex 4	70
Figure 4.32	FTIR of dark brown powder	71
Figure 4.33	FTIR of Complex 5	74
Figure 4.34	FTIR of CH ₂ =C(CH ₃)COOH	74
Figure 4.35	UV-vis spectrum of Complex 5 (a) as a solid; and (b) in	75
	solution	
Figure 4.36	Proposed structural formula of [Complex 5] ⁻ (K ⁺ ions are not	75
	shown)	
Figure 4.37	TGA of Complex 5	76
Figure 4.38	DSC of Complex 5	77
Figure 4.39	CV of Complex 5	78
Figure 4.40	FTIR of Complex 6	79
Figure 4.41	UV-vis of Complex 6 (a) as a solid; and (b) in solution	80
Figure 4.42	Proposed structural formula of Complex 6	80
Figure 4.43	TGA of Complex 6	81
Figure 4.44	DSC of Complex 6	82
Figure 4.45	CV of Complex 6	83
Figure 4.46	FTIR of Complex 7	84
Figure 4.47	UV-vis spectrum of Complex 7 (a) as a solid; and (b) in	84
	solution	
Figure 4.48	Proposed structural formula of Complex 7	85
Figure 4.49	TGA of Complex 7	86

Figure 4.50	DSC of Complex 7	87
Figure 4.51	CV of Complex 7	88
Figure 4.52	FTIR of [Cu ₂ (<i>p</i> -HOC ₆ H ₄ COO) ₄]	90
Figure 4.53	An ORTEP presentation of the blue crystal	91
Figure 4.54	The packing pattern of blue crystal, viewed along the	91
	crystallographic <i>c</i> -axis	
Figure 4.55	FTIR of Complex 8	94
Figure 4.56	FTIR of [Cu ₂ (CH ₃ CH=CHCOO) ₄]	95
Figure 4.57	UV-vis of Complex 8 in (a) solid; and (b) solution	96
Figure 4.58	Proposed structural formula of Complex 8	96
Figure 4.59	TGA of Complex 8	97
Figure 4.60	DSC of Complex 8	98
Figure 4.61	CV of Complex 8	99
Figure 4.62	FTIR of Complex 9	101
Figure 4.63	UV-vis spectrum of Complex 9 (a) as a solid; and (b) in	101
	solution	
Figure 4.64	Proposed structural formula of Complex 9 (non-coordinated	102
	H ₂ O molecules are not shown)	
Figure 4.65	FTIR of Complex 10	103
Figure 4.66	UV-vis spectrum of Complex 10 (a) as a solid; and b) in	104
	solution	
Figure 4.67	Proposed structural formula of Complex 10	104
Figure 4.68	TGA of Complex 10	105

Figure 4.69	DSC of Complex 10	106
Figure 4.70	CV of Complex 10	108
Figure 4.71	FTIR spectrum of green powder	109
Figure 4.72	FTIR spectrum of the purple powder	110
Figure 4.73	FTIR spectrum of green powder	111
Figure 4.74	FTIR spectrum of Complex 11	113
Figure 4.75	FTIR spectrum of [Cu ₂ (CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO) ₄]	114
	(starting material)	
Figure 4.76	UV-vis spectrum of Complex 11 in methanol	114
Figure 4.77	Proposed structural formula of Complex 11	115
Figure 4.78	TGA of Complex 11	116
Figure 4.79	DSC of Complex 11	117
Figure 4.80	CV of Complex 11	118
Figure 4.81	FTIR of Complex 12	120
Figure 4.82	FTIR of [Cu ₂ ((CH ₃) ₃ CCOO) ₄] (starting material)	120
Figure 4.83	UV-vis spectrum of Complex 12 in solution	121
Figure 4.84	Proposed structural formula of Complex 12 (pyridinium ion	122
	is not shown)	
Figure 4.85	TGA of Complex 12	122
Figure 4.86	DSC of Complex 12	123
Figure 4.87	CV of Complex 12	124
Figure 4.88	An ORTEP presentation of Complex 13	126
Figure 4.89	The packing pattern of Complex 13, viewed along the	126
	crystallographic <i>b</i> -direction.	
Figure 4.90	FTIR of Complex 14	129

Figure 4.91	FTIR of [Cu ₂ (CH ₃ (CH ₂) ₃ CH(C ₂ H ₅)COO) ₄] (starting	129
	material)	
Figure 4.92	UV-vis spectrum of Complex 14 (a) as a solid; (b) in	130
	solution	
Figure 4.93	Proposed structural formula of Complex 14 (CH ₃ CH ₂ OH	130
	solvates are not shown; two dimers are shown to show square	
	pyramidal Cu(II) centres)	
Figure 4.94	TGA of Complex 14	131
Figure 4.95	DSC of Complex 14	132
Figure 4.96	CV of Complex 14	133
Figure 4.97	FTIR spectrum of Complex 15	135
Figure 4.98	FTIR spectrum of [Cu ₂ (CH ₃ (CH ₂) ₇ CH((CH ₂) ₅ CH ₃)COO) ₄]	135
	(starting material)	
Figure 4.99	UV-vis spectrum of Complex 15 (a) as a solid; (b) in	136
	solution	
Figure 4.100	Proposed structural formula of Complex 15	137
Figure 4.101	TGA of Complex 15	138
Figure 4.102	DSC of Complex 15	139
Figure 4.103	CV of Complex 15	140
Figure 4.104	FTIR spectrum of Complex 17	143
Figure 4.105	UV-vis spectrum of Complex 17 in methanol	143
Figure 4.106	Proposed structural formula of Complex 17	144
Figure 4.107	TGA of Complex 17	145

Figure 4.108	B DSC of Complex 17	145
Figure 4.109 PL spectrum of (a) Complex 1 ; (b) Complex 2 ; (c) Complex		
	3 ; (d) Complex 4 ; (e) Complex 6 ; (f) Complex 7 ; (g)	
	Complex 8; and (h) Complex 15	
Figure 5.1	Structural formulas of organic cations	153
Figure 5.2	Conjugated ligands	153

LIST OF TABLE

Table	Description	Page
Table 4.1	FTIR data and assignment for Complex 2	54
Table 4.2	Analytical results for complexes from the one-pot reaction	72
Table 4.3	Analytical results for complexes from the one-pot reaction	89
Table 4.4	Crystallographic and refinement details of blue crystal	92
Table 4.5	Hydrogen bonds [Å and deg.] of blue crystal	92
Table 4.6	Analytical results for complexes from the ligand-exchange	112
	reaction	
Table 4.7	Crystallographic and refinement details of Complex 13	127
Table 4.8	Selected bond lengths [Å] of Complex 13	128
Table 4.9	Hydrogen bonds [Å and deg.] of Complex 13	128
Table 4.10	Complexes from the ligand-exchange reaction	141
Table 4.11	The PL data	148

LIST OF SCHEME

Scheme	Description	Page
Scheme 2.1	Thermal decomposition of CaC ₂ O ₄ .H ₂ O	12
Scheme 4.1	EC mechanism of Complex 8	99
Scheme 4.2	Redox process of Complex 10	108
Scheme 4.3	The ECE mechanism of Complex 12	125
Scheme 4.4	Redox process of Complex 14	133