Yogurt is a healthy food and it has become a good candidate for fortification with many healthful ingredients including fruits, herbs, prebiotics, probiotics, and omega-3 fatty acids. Whatever the fortification strategies, it is essential that the finished product retain a desirable taste, becomes more nutritious and has long shelf life. The present study investigated the benefits green tea would bring to increase yogurt properties by virtue of the high levels of flavonoids which can protect cells and tissues from oxidative damage by scavenging oxygen-free radicals. The presence of green tea would however affect yogurt bacteria fermentation of milk and subsequently the typical fermentation products responsible for the physicochemical properties (e.g. organic acids), nutritional (e.g. digested protein and carbohydrate) and functional (e.g. bioactive peptides, organic acids, viable lactic acid bacteria) values of yogurt. On the other hand changing acidic environment and microbial metabolic activities are expected to exert profound effects on the breakdown of green tea phytochemical contents and subsequently any biological activities associated with these compounds.

Milk was incubated (41°C) with starter culture (SC) in the presence of two types of green tea (MGT and JGT) until pH of yogurt reached 4.5. The resulting green-tea-yogurts were evaluated with respect to changes in antioxidant activity, phenolic compounds, the growth of lactic acid bacteria (LAB), acidification, exopolysaccharide (EPS) content, organic acids and rheological characteristics of yogurt during fermentation and storage at 4°C. The total phenolic content (TPC) was higher in MGT than those from JGT leaves infusion. Major phenolic compounds (gallocatechin, epicatechin, epigallocatechin gallate, quercetin-rhamnosylgalactoside, and kaempferol-3-O-rutinoside) in MGT leaves infusion were higher in those JGT leaves infusion. Diphenyl picrylhydrazyl (DPPH, %) and ferric reducing antioxidant power (FRAP, mmol/L) methods were used to evaluate the antioxidant capacity of yogurts. Inhibition of DPPH oxidation was highest for MGTY followed by JGTY and PY whereas FRAP value showed highest (p>0.05) ferric reduction power for MGTY followed by JGTY and PY. Viable *S.thermophilus* and *Lactobacillus spp.* counts in yogurt were highest in MGTY followed by JGTY and PY. Proteolysis in green tea yogurts increased with increasing fermentation time resulting in highest OPA
values for MGTY followed by PY at pH 4.5. Viable cells count (VCC) of *S. thermophilus spp.* increased by day 7 of storage with highest number present in MGTY followed by JGTY and PY. *Lactobacilus* spp. VCC decreased gradually for all yogurts during the 28 days of storage. Maximum DPPH inhibition by yogurts was shown on day 7 of storage by MGTY followed by JGTY and PY. The addition of green tea increased the FRAP values in MGTY which was 3 fold higher than JGTY and PY. Four major compounds were detected in green tea yogurts (quercetin-rhamnosyl, gallocatechin, kaempferol-3-rutinoside and epicatechin) with higher amounts present in MGTY than in JGTY but these tend to diminish by 28 days of refrigerated storage. The presence of green tea resulted in higher score recorded for overall appearance, colour, aroma and flavor in MGTY and JGTY compared with PY. However green tea yogurts showed more fluid like characteristics with distinct pseudo plastic properties and lesser ability to resist deformation upon applied shear. The presence of green tea during fermentation of milk increased the radical scavenging activities of yogurt and it stimulated the growth of both *S. thermophilus* and *L. bulgaricus* resulting in increased proteolysis of milk protein, acidification, enzymes activity and organoleptic properties. The catechin-related compounds, despite being not stable during refrigerated storage and had negative effects on rheology, have promising biological effects in increasing the nutritional and functional properties of yogurt.
Yogurt adalah makanan yang sihat dan ia menjadi perantara yang baik diperkaya dengan pelbagai ramuan seperti buah-buahan, herba, prebiotik, probiotik dan asid lemak omega. Teramatlah penting, walau apa sahaja strategi pemerka yang baik, memastikan produk terbentuk itu menjadi lebih berkhasiat dan tahan lama dalam simpanan. Kajian ini meneliti manfaat-manfaat yang boleh dibawa teh hijau dalam usaha meningkat kandungan yogurt hasil kebaikan flavonoid tinggi yang boleh melindungi sel-sel dan tisu dari kerosakan oksidatif akibat radikal-radikal bebas oksigen. Kehadiran teh hijau ini bagaimanapun akan mempengaruhi penapaian susu dan seterusnya produk-produk penapaian lazim bertanggungjawab ke atas ciri-ciri kimia-fizik (contoh: asid-asid organik), nilai-nilai nutrisi (contoh: kehadaman protein dan karbohidrat) dan fungsi (seperti peptida-peptida bioaktif, asid-asid organik, bakteria laktik asid hidup) yogurt. Sebaliknya perubahan sekitaran berasid dan aktiviti-aktiviti metabolik mikrob dijangka memberi kesan-kesan jelas ke atas peleraian kandungan fitokimia teh hijau dan seterusnya aktiviti-aktiviti biologi berkaitan sebatian-sebatian ini. Susu dieram (41°C) dengan bakteria pemula dalam kehadiran dua jenis teh hijau (MGT dan JGT) sehingga pH yogurt mencecah 4.5. Yogurt-TEH hijau terhasil telah dinilai merujuk kepada perubahan dalam aktiviti antioksidan, sebatian-sebatian fenolik, pertumbuhan bakteria asid laktik, pengasidan, kandungan eksopolisakarida, asid-asid organik dan ciri-ciri reologi yogurt semasa penapaian dan penyimpanan pada 4°C. Jumlah kandungan fenol adalah lebih tinggi dalam MGT berbanding daripad JGT. Sebatian fenolik utama (gallocatechin, epicatechin, epigallocatechin gallate, quercetin-rhamnosylgalactoside, kaempferol-3-O-rutinoside) dalam MGT adalah lebih tinggi daripada yang diperolehi dalam JGT. Kaedah-kaedah difenilpikrilhidrazil (DPPH,%) dan kuasa pengurangan antioksidan ferrik (mmol / L) diguna untuk menilai kapasiti antioksidan yogurt. Perencatan oksidasi DPPH adalah tertinggi untuk yogurts-MGT (MGTY) diikuti yogurts-JGT (JGTY) dan yogurts-biasa (PY) (39.18 ± 0.77, 31.19 ± 0.14 dan 17.43 ± 0.21% masing-masing) manakala nilai-nilai FRAP menunjukkan kuasa penurunan ferrik tertinggi bagi MGTY diikuti JGTY dan PY. *S. thermophilus* dan *Lactobacillus spp.* hidup dalam yogurt adalah tertinggi dalam MGT (119.1±0.98x10^6 and 15.21±0.70 x10^8 cfu ml^-1 masing-masing) diikuti oleh JGT (121.34 ± 1.43 x10^6 and 11.06±1.7 x10^8 cfu ml^-1 masing-masing) dan PY (104.65± 2.7 x10^6 and
Proteolisis dalam yogurt-yogurt teh hijau meningkat seiringan dengan peningkatan masa penapaian menyebabkan kepekatan nilai OPA tertinggi (p <0.05) bagi MGT diikuti JGT dan PY (22.4 ± 0.5, 18.11 ± 0.23 dan 9.22 ± 1.0 mg / mL masing-masing) di pH 4.5. Kiraan sel hidup (VCC) *S. thermophilus spp.* meningkat menjelang simpanan dingin hari ke-7 dengan bilangan tertinggi dalam MGT diikuti JGT dan PY (138.1±0.48, 129.34±0.87 and 110.22±0.99 x 10^6 cfu ml^-1 masing-masing). VCC *Lactobacillus spp.* berkurang secara beransur-ansur untuk semua jenis yogurt sepanjang tempoh 28 hari simpanan dingin. Perencatan maksima DPPH oleh yogurt berlaku dihari ke-7 simpanan bagi MGT (42.23±1.5%) diikuti JGT dan PY (37.11± 1.15% and 24.19± 2.01% masing-masing). Tanbahan teh hijau meningkatkan nilai-nilai FRAP bagi MGT (14.19± 3.67 mmol/L) adalah bersamaan 3 kali ganda dari JGT (3.79 ± 1.06 mmol/L) berbanding PY (1.25± 0.45 mmol/L). Empat sebatian utama (quercetin-rhamnosyl, galloatechin, kaempferol-3-rutinoside dan epicatechin) telah dikesan dalam sampel yogurt teh hijau dengan kepekatan tertinggi didapati dalam MGT berbanding dengan JGT tetapi sebatian-sebatian ini cenderung menghilang menjelang 28 hari simpanan yogurt. Kehadiran teh hijau dalam yogurt menyebabkan skor lebih tinggi untuk penampilan keseluruhan, warna, aroma dan rasa bagi MGT dan JGT berbanding dengan PY. Bagaimanapun yogurt-yogurt teh hijau menunjukkan lebih ciri-ciri kecairan dengan ciri-ciri plastik-pseudo dan kurang keupayaan merintang deformasi apabila dikenakan ricihan. Kehadiran teh hijau semasa penapaian susu meningkatkan aktiviti-aktiviti pengaut radikal yogurt dan merangsang pertumbuhan kedua-dua *S. thermophilus* and *L. bulgaricus* menyebabkan meningkatnya proteolisis protein susu, pengasidan dan ciri-ciri organoleptik. Sebatian-sebatian berkait-katekin, walaupun tidak stabil semasa simpanan dingin dan memberi kesan negatif ke atas reologi, mempunyai potensi kesan-kesan biologi dalam meningkatkan ciri-ciri nutrisi dan fungsi yogurt.
ACKNOWLEDGEMENT

First of all I thank God. I like to express my utmost gratitude to HIM for allowing me to complete this thesis in sound health and mind despite some difficulties that I faced.

Here, I would like to take the opportunity to express my deepest gratitude to those who made the success of this project possible.

I am extremely grateful to my supervisor, Associate Professor Dr. Ahmad Salihin Hj Baba, for his continuing support throughout my study. Toward my ups and downs during the 3.5 years, his empathy and help has made my academic life much easier. His unwavering support has ensured my success in what is to be one of my life’s greatest achievements.

My greatest gratitude goes to my husband, Dr. Hossein, who always gives so much space for my personal development. His leadership in the family provides a very fertile ground for our daughter and me to grow and flourish. His sacrifice is beyond compare.

I take this opportunity to express the profound gratitude from my deep heart to my beloved daughter, Ghazal. There is absolutely no way to thank her enough. Without her patience, I would not have been able to finish my study.

Last but far from least, my sincerest regards to my parents whose absolute supported unconditional love throughout my life has brought me to this position. I would like also thank to my dearest sisters for their support, encouragement and motivation.
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1 Introduction .. 1

1.2 Statement of problem ... 3

Reference .. 5

CHAPTER 2: LITERATURE REVIEW

2.1 Cow’s Milk .. 6

 2.1.1 Composition and nutritional value of cow’s milk ... 6

 2.1.2 Supplementation of milk or milk products with polyphenols ... 7

 2.1.3 Milk polyphenols and antioxidant activity 7

2.2 Yogurt .. 8

 2.2.1 Definition and history of yogurt 8

 2.2.2 Manufacture of yogurt 9

 2.2.3 Factors affecting physical properties of fermented milks 11

 2.2.4 Types of yogurt .. 12

 2.2.5 Nutritional value of yogurt 12

 2.2.6 Health benefits of yogurt 14

 2.2.7 Biodefense properties of yogurt 14

 2.2.8 Quality of yogurt 16

 2.2.9 Rheological properties of yogurt 16
2.2.10 Separation of whey

2.3 Sensory evaluation

2.4 Problems in low-fat yogurt

2.5 Probiotics and health
 2.5.1 Interaction between LAB in milk
 2.5.2 Type of probiotics
 2.5.2.a Lactobacillus delbrueckii ssp. bulgaricus
 2.5.2.b Streptococcus thermophilus
 2.5.3 Probiotics in yogurt
 2.5.4 Characteristics of common probiotics
 2.5.5 Factors affecting viability of probiotic bacteria

2.6 Tea
 2.6.1 Tea plant
 2.6.2 Types of tea
 2.6.3 Manufacture of tea
 2.6.3.a Withering
 2.6.3.b Steaming
 2.6.3.c Rolling
 2.6.3.d Drying

2.7 Green tea and chemical composition
 2.7.1 Polyphenols
 2.7.2 Flavonoids
CHAPTER 3: MATERIALS AND METHODS

3.1 Introduction 62
3.2 Milk and yogurt bacteria 62
3.3 Preparation of starter culture 63
3.4 Preparation of green tea infusions 64
3.5 Preparation of plain and tea-yogurt 64
3.6 Preparation of yogurt extract 64
3.7 pH and titratable (TA) determination 65
3.8 Total phenolic content (TPC) analysis 65
3.9 Determination of antioxidant activity 66
 3.9.1 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical inhibition (DRI) assay 66
 3.9.2 Ferric reducing/antioxidant power (FRAP) 67
3.10 Proteolytic activity by o-Phthalaldehyde (OPA) method 68

References 48
3.10.1 Preparation of OPA reagent

3.10.2 Tryptone standard curve

3.11 Exopolysaccharide (EPS) isolation and estimation

3.11.1 Phenol-sulfuric method

3.12 Determination of enzyme activity

3.12.1 α-Amylase inhibition assay

3.12.1.a Amylase enzyme solution

3.12.1.b Sodium phosphate buffer (0.02 M), pH 6.9 with .006 M sodium chloride

3.12.1.c Dinitrosalicylic acid (DNSA) reagent

3.12.1.d 1% starch solution

3.12.1.e α-Amylase inhibition assay

3.12.2 α--Glucosidase inhibition

3.12.2.a α-Glucosidase enzyme solution

3.12.2.b 0.1M potassium phosphate buffer (pH 6.90)

3.12.2.c 5mM p-nitrophenyl-α-D-glucopyranoside substrate solution

3.12.2.d α-Glucosidase Inhibition assay

3.12.3 Calculation of IC50 for enzyme inhibition activity

3.13 Rheology measurements

3.13.1 Oscillation measurement

3.13.2 Viscometry measurement

3.14 Syneresis
3.14.1 Water holding capacity (WHC) 77
3.14.2 Total solid 78

3.15 Microbial assay 78
3.15.1 Enumeration of viable cell (VCC) in yogurt 78
3.15.2 MRS agar preparation 78
3.15.3 M17 agar preparation 79
3.15.4 Preparation of peptone water buffer 79

3.16 Determination of organic acids 80
3.16.1 Analysis of organic acid 80
3.17 LC-MS analysis of phenolic compounds and organic acids 80
3.18 Sensory analysis 81
3.19 Statistical analysis 82

References 83

CHAPTER 4: ANTIOXIDANT ACTIVITY IN GREEN TEA INFUSIONS: PHENOLIC AND ORGANIC ACIDS PROFILE
4.1 Introduction 85
4.2 Materials and Methods 86
4.2.1 Plant materials 86
4.2.2 Chemical and standards 86
4.2.3 Preparation of the green tea infusion 87
4.2.4 Determination of total phenolic content 87
4.2.5 Determination of antioxidant activity 87
 4.2.5.a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical inhibition (DRI) assay 87
 4.2.5.b Ferric reducing/antioxidant power (FRAP) 87
4.2.6 Determination of organic acids in green tea 87
4.2.7 Determination of phenolic compounds in green tea 88
4.2.8 Statistical analysis 88

4.3 Results and Discussion 88
 4.3.1 Determination of total content of green tea infusion 88
 4.3.2 Antioxidant activity of green tea infusion 89
 4.3.3 Determination of organic acid in green tea infusion 91
 4.3.4 Quantitative analysis of major phenolic compound identified in green tea 93

4.4 Conclusion 100

References 101

CHAPTER 5: EVALUATION OF ANTIOXIDANT ACTIVITY AND MICROBIAL GROWTH IN GREEN TEA YOGURT DURING FERMENTATION
5.1 Introduction 104
5.2 Materials and Methods 105
 5.2.1 pH and titrable acid(TA) determination 106
 5.2.2 Analysis of total phenolic content (TPC) 106
 5.2.3 Determination of antioxidant activity 106
 5.2.4 Determination of viability of lactic acid bacteria (LAB) 106
5.2.5 Determination of organic acids	107
5.2.6 Proteolytic activity by O-Phthalaldehyde (OPA) method	107
5.3 Results and Discussion	107
5.3.1 Effects of green tea on acidification during the fermentation of milk	107
5.3.2 Effects of green tea on total phenolic content (TPC) of fermented milk	110
5.3.3 Effect of green tea on antioxidant activity of fermented milk	111
5.3.4 Effect of green tea on ferric reducing antioxidant power of fermented milk	113
5.3.5 Effects of green tea on yogurt bacteria growth during fermentation of milk	114
5.3.6 Effects of green tea on organic acid production during fermentation of milk	117
5.3.6.a Citric acid	118
5.3.6.b Lactic acid	118
5.3.6.c Acetic acid	119
5.3.6.d Pyruvic acid	121
5.3.6.e Propionic acid	121
5.3.6.f Succinic acid	122
5.3.7 Effects of green tea on proteolysis of milk protein during fermentation of milk	125
5.4 Conclusion	126
References	128
CHAPTER 6: EFFECTS OF GREEN TEA (Camellia sinensis) ON ANTIOXIDANT PROPERTIES OF YOGURT DURING STORAGE AS EVALUATED BY CHANGES IN POLYPHENOLIC COMPOUNDS CHARACTERISTICS BY LC-MS

6.1 Introduction 134

6.2 Materials and Methods 136

 6.2.1 Plants material 136
 6.2.2 Milk and yogurt bacteria 136
 6.2.3 Preparation of starter culture and tea infusion 136
 6.2.4 Preparation of plain and tea yogurt 137
 6.2.5 Preparation of yogurt extract 137
 6.2.6 pH and titrable acid (TA) determination 137
 6.2.7 Total phenolic content analysis 137
 6.2.8 Determination of antioxidant activity 137
 6.2.9 Determination of viable lactic acid bacteria (LAB) 137
 6.2.10 Exopolysaccharide (EPS) isolation and estimation 138
 6.2.11 Proteolytic activity in yogurt by o-Phthalaldehyde (OPA) method 138
 6.2.12 Determination of enzyme activity 138
 6.2.13 LC-MS analysis of phenolic compounds 138
 6.2.14 Statistical analysis 138

6.3 Results and Discussion 138

 6.3.1 Effects of green tea on the changes of acidification of yogurts during storage 138
 6.3.2 Effects of green tea on viable cell count in yogurts during refrigerated storage 140
6.3.3 Effects of green tea on exopolysaccharides (EPS) content in yogurt during fermentation and refrigerated storage

6.3.4 Effects of green tea on proteolytic activity (OPA values) of yogurts during storage

6.3.5 Effects of green tea on total phenolic content (TPC) of yogurts during storage

6.3.6 Effect of green tea extracts on the changes of antioxidant activity of yogurts during storage

6.3.6.a DPPH radical inhibition (DRI) assay

6.3.7 Effect of green tea on ferric reducing antioxidant power (FRAP) of yogurts during storage

6.3.8 Effects of green tea on inhibition enzymes of yogurts during storage

6.3.8.a Alpha-amylase inhibition

6.3.8.b Alpha-glucosidase inhibition

6.3.9 Changes of green tea polyphenolic compounds during refrigerated storage of yogurt as determined by LC/MS

6.4 Conclusion

References

CHAPTER 7: RHEOLOGICAL PROPERTIES AND SENSORY CHARACTERISTICS OF GREEN TEA YOGURT DURING STORAGE

7.1 Introduction

7.2 Materials and Methods

7.3 Results and discussion
7.3.1 Effects of green tea on rheological characteristics of refrigerated yogurt 185

7.3.1.a Apparent viscosity 186

7.3.2 Dynamic rheological 188

7.3.2.a Frequency sweep 188

7.3.2.b Amplitude sweep 193

7.3.3 Effects of green tea on sensory evaluation of yogurt 197

7.3.4 Effects of green tea on water holding capacity (WHC) of yogurt during storage 199

7.3.5 Effects of green tea on changes of syneresis on yogurt during storage 201

7.3.6 Effect of green tea on total solid content in yogurt 203

7.4 Conclusion 205

References 206

Appendices 209
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Potential clinic targets of probiotic intervention</td>
<td>23</td>
</tr>
<tr>
<td>3.1 Nutritional profiles (per 100 ml serving) of (4% full cream) milk</td>
<td>63</td>
</tr>
<tr>
<td>4.1 Total phenolic content (TPC), radical-scavenging activity (DPPH) and ferric reducing/antioxidant power (FRAP) of MGT and JGT</td>
<td>91</td>
</tr>
<tr>
<td>4.2 Contents of organic acids (mg L(^{-1})) in green tea infusions</td>
<td>93</td>
</tr>
<tr>
<td>4.3 Major phenolic compounds in MGT and JGT infusion</td>
<td>96</td>
</tr>
<tr>
<td>5.1 Changes of pH during fermentation of milk with green tea at 41°C</td>
<td>109</td>
</tr>
<tr>
<td>5.2 Changes of titratable acid (TA; % lactic acid equivalent) of green tea yogurts during fermentation of milk at 41°C</td>
<td>109</td>
</tr>
<tr>
<td>5.3 Viable cell counts (VCC) of Lactobacillus ssp. (cfu x10(^8) mL(^{-1})) in green tea yogurts during fermentation of milk</td>
<td>116</td>
</tr>
<tr>
<td>5.4 Viable cell counts (VCC) of S. thermophilus. (cfu x10(^6) mL(^{-1})) in green tea yogurts during fermentation of milk</td>
<td>117</td>
</tr>
<tr>
<td>5.5 Effects of green tea on organic acid production in yogurt during fermentation of milk</td>
<td>123</td>
</tr>
<tr>
<td>6.1 pH and titratable acid (as % lactic acid) of yogurts during storage</td>
<td>140</td>
</tr>
<tr>
<td>6.2 Total phenolic content of green tea and plain -yogurts during storage (4°C)</td>
<td>148</td>
</tr>
<tr>
<td>6.3 Changes in percent (%) (\alpha)-amylase inhibition of plain and green tea – yogurts during storage at 4°C</td>
<td>153</td>
</tr>
<tr>
<td>6.4 Changes in percent (%) (\alpha)-glucosidase inhibition of plain and green tea – yogurts during storage at 4°C</td>
<td>156</td>
</tr>
<tr>
<td>6.5 Concentration of bioactive compound in Malaysian green tea yogurt extract during 28 day of storage</td>
<td>163</td>
</tr>
<tr>
<td>6.6 Concentration of bioactive compounds in Japanese green tea yogurt extract during 28 days of refrigerated storage</td>
<td>164</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Tea plant with two leaves and a bud on the top along with blossoms</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Processing steps in different types of tea</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>Structures of polyphenols</td>
<td>36</td>
</tr>
<tr>
<td>2.4</td>
<td>Structures of flavonoids</td>
<td>37</td>
</tr>
<tr>
<td>2.5</td>
<td>Green tea catechins</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Proposed metabolic pathway of green tea catechins</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Typical standard curve of gallic acid for the estimation of total phenolic content in yogurts</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Calibration curve of FeSO₄7H₂O for the estimation of Ferric reducing/antioxidant power (FRAP) in yogurts</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Typical standard curve of tryptone for OPA peptides (mg/g)</td>
<td>69</td>
</tr>
<tr>
<td>4.1</td>
<td>LC/MS analysis of phenolic compounds in Malaysian green tea (20µL) analyzed on a 50mm x 1.1 mm, column C18</td>
<td>98</td>
</tr>
<tr>
<td>4.2</td>
<td>Major phenolic compounds in Japanese green tea (20µL) analyzed on 50mm x 1.1 mm, column C18 eluted</td>
<td>99</td>
</tr>
<tr>
<td>5.1</td>
<td>Total phenolic concentrations (µgGAE/mL) in plain- and green tea-yogurts during fermentation</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>Antioxidant capacity (% inhibition of DPPH oxidation) by plain- and green tea-yogurts during fermentation</td>
<td>113</td>
</tr>
<tr>
<td>5.3</td>
<td>The FRAP (ferric reducing antioxidant power) values of yogurts in the absence or presence of green tea extracts</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>Changes in o-phthalaldehyde (OPA) values in plain- and green tea-yogurts during fermentation (41 °C)</td>
<td>126</td>
</tr>
<tr>
<td>6.1</td>
<td>Viable Lactobacillus spp. count (10⁸ cfu mL⁻¹) during storage period</td>
<td>141</td>
</tr>
</tbody>
</table>
6.2 Viable *S. thermophilus* spp. count (10^6 cfu mL⁻¹) during storage period

6.3 Changes of exopolysaccharide (EPS) content of yogurts during storage at 4°C

6.4 Changes in o-phthaldialdehyde (OPA) values in plain- and green-yogurts during refrigerated storage (4 °C)

6.5 Antioxidant capacity (% inhibition of DPPH oxidation) by plain- and green tea yogurts was determined during 28 day of refrigerated (4 °C) storage

6.6 Ferric reducing antioxidant power (FRAP; mmol/L) by plain- and green tea yogurts were determined during 28 day of refrigerated (4 °C storage)

6.7 IC₅₀ value for α-amylase inhibition by plain and green tea-yogurts during storage at 4°C

6.8 IC₅₀ value for α-glucosidase inhibition by plain and green tea-yogurts during storage at 4°C

6.9 Major phenolic compounds in Malaysian green tea yogurt (20µL) analyzed in day 1 of storage on 50mm x 1.1 mm, column C18 eluted

6.10 Major phenolic compounds in Malaysian green tea yogurt (20µL) analyzed in day 7 of storage on 50mm x 1.1 mm, column C18 eluted

6.11 Major phenolic compounds in Malaysian green tea yogurt (20µL) analyzed in day 14 of storage on 50mm x 1.1 mm, column C18 eluted

6.12 Major phenolic compounds in Malaysian green tea yogurt (20µL) analyzed in day 21 of storage on 50mm x 1.1 mm, column C18 eluted

6.13 Major phenolic compounds in Malaysian green tea yogurt (20µL) analyzed in day 28 of storage on 50mm x 1.1 mm, column C18 eluted

6.14 Major phenolic compounds in Japanese green tea yogurt (20µL) analyzed in day 1 of storage on 50mm x 1.1 mm,
6.15 Major phenolic compounds in Japanese green tea yogurt (20µL) analyzed in day 7 of storage on 50mm x 1.1 mm, column C18 eluted

6.16 Major phenolic compounds in Japanese green tea yogurt (20µL) analyzed in day 14 of storage on 50mm x 1.1 mm, column C18 eluted

6.17 Major phenolic compounds in Japanese green tea yogurt (20µL) analyzed in day 21 of storage on 50mm x 1.1 mm, column C18 eluted

6.18 Major phenolic compounds in Japanese green tea yogurt (20µL) analyzed in day 28 of storage on 50mm x 1.1 mm, column C18 eluted

7.1 Viscosities of fresh plain, Malaysia green tea and Japanese green tea-yogurt

7.2 Viscosity for plain yogurt during storage

7.3 Viscosity of Malaysian green tea yogurt during storage

7.4 Figure 7.4 Viscosity of Japanese green tea yogurt during storage

7.5 Frequency sweep of fresh plain yogurt, Malaysia green tea yogurt and Japanese green tea yogurt

7.6 Frequency sweep for Malaysia’s green tea yogurt for 1st day, 7th day, 14th day, 21st day and 28th day

7.7 Frequency sweep for Japanese green tea yogurt during storage

7.8 Frequency sweep for plain yoghurt for 1st day, 7th day, 14th day, 21st day and 28th day

7.9 Amplitude sweep of fresh plain, Malaysia green tea and Japanese green tea

7.10 Amplitude sweep for plain yogurt during storage

7.11 Amplitude sweep for Malaysian green tea yogurt during storage
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.12</td>
<td>Amplitude sweep for Japanese green tea yogurt during storage</td>
<td>196</td>
</tr>
<tr>
<td>7.13</td>
<td>Sensory analysis results of plain and green tea yogurts</td>
<td>199</td>
</tr>
<tr>
<td>7.14</td>
<td>Water holding capacity of yogurt by adding green tea during storage</td>
<td>201</td>
</tr>
<tr>
<td>7.15</td>
<td>Effects of Green tea extract on the syneresis of yogurt</td>
<td>203</td>
</tr>
<tr>
<td>7.16</td>
<td>Changes in total solid content of yogurts during refrigerated storage</td>
<td>204</td>
</tr>
</tbody>
</table>
ABBREVIATION

°C Degree Celsius
%
μ Micro
cfu Colony forming unit
Da Dalton
dH2O Distilled water
DPPH 1,1-diphenyl-2-picrylhydrazyl
DRY radical inhibition
EPS Exopolysaccharide
etc et cetera
FRAP Ferric reducing/antioxidant power
g Gram
G’ Storage modulus
G” Loss modulus
GAE Gallic acid equivalents
H Hour
HCL Hydrochloride acid
Hz Hertz
HPLC High performance liquid chromatography
i.e. For example
JGT Japanese Green Tea
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JGTY</td>
<td>Japanese Green Tea Yogurt</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LAB</td>
<td>Lactic Acid Bacteria</td>
</tr>
<tr>
<td>Lb</td>
<td>Lactobacillus delbrueckii ssp. Bulgaricus</td>
</tr>
<tr>
<td>Lactobacillus spp</td>
<td>L. acidophilus, L. bulgaricus, L. casei, L. delbrueckii, L. fermentum, L. plantarum, L. reuteri</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid Chromatography-Mass Spectrometry</td>
</tr>
<tr>
<td>MGT</td>
<td>Malaysian Green Tea</td>
</tr>
<tr>
<td>MGTY</td>
<td>Malaysian Green Tea Yogurt</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>OPA</td>
<td>O-Phthalaldehyde</td>
</tr>
<tr>
<td>pH</td>
<td>Hydrogen ion concentration</td>
</tr>
<tr>
<td>rad/s</td>
<td>Radian per second</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>ssp</td>
<td>Subspecies</td>
</tr>
<tr>
<td>TA</td>
<td>Titratable acid</td>
</tr>
<tr>
<td>TPC</td>
<td>Total Phenolic Content</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>VCC</td>
<td>Viable Cell Counts</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>V</td>
<td>volume(s)</td>
</tr>
<tr>
<td>WHC</td>
<td>Water holding capacity</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Wt</td>
<td>Weight</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
</tbody>
</table>
List of publications and scientific presentations during PhD study:

S. Amirdivani, & A.S. Baba (2011). Changes in yogurt fermentation characteristics, and antioxidant potential and in vitro inhibition of angiotensin-1 converting enzyme upon the inclusion of peppermint, dill and basil. LWT - Food Science and Technology 44, 1458-1464

S. Amirdivani & A.S. Baba (2012). Effect of green tea (*Camellia sinensis*) on antioxidant properties of yogurts as evaluated by changes in polyphenolic compounds characterised by LC-MS/MS. University of Malaya (Presentation).