ABSTRACT

Oxidative stress-induced neurodegenerative diseases have become more prevalent lately due to the stressful environment and lifestyle. Growing empirical scientific evidences which support the use of plant-derived antioxidants in the control of neurodegenerative disorders has been validated in the present investigation. *Loranthus parasiticus* (L.) Merr, a Chinese traditional folk medicine which has been used in treating brain diseases was selected for the present study. Therefore, *L. parasiticus* was hypothesized to exhibit antioxidative and neuroprotective properties in NG108-15 neuroprotection model. *Loranthus parasiticus* aqueous fraction (LPAF) which showed the highest antioxidative and neuroprotective activities against H$_2$O$_2$ among the tested extract and fractions was subjected to a bioassay-guided fractionation and isolation approach to identify the most potent neuroprotective compound. (+)-Catechin was found to be the most potent neuroprotective compound and its underlying mechanisms were evaluated subsequently. (+)-Catechin significantly reduced reactive oxygen species production, phosphatidylserine externalization, mitochondrial membrane potential depolarization, sub-G$_1$ apoptotic fraction induction, and increased the percentage of cell viability following H$_2$O$_2$-induced oxidative stress insult. Moreover, (+)-catechin increased the H$_2$O$_2$-induced reduction of SOD and GPx activities. (+)-Catechin also upregulated Bcl-2 and downregulated Bax, resulting in a decreased ratio of Bax/Bcl-2. Interestingly, oxidative stress-induced overexpression of chemokine CCL21 was significantly attenuated by (+)-catechin, indicating a novel role of (+)-catechin in neuroprotection context via the regulation of neuronal chemokine CCL21. Collectively, the present findings have proven our hypothesis and support the use of *L. parasiticus* in managing oxidative stress related neurodegenerative diseases.
ABSTRAK

ACKNOWLEDGEMENTS

First of all I would like to thank Almighty God for giving me strength, confidence, mercy, and supremacy to have my research project completed along this tough journey.

I have been indebted in the preparation of this thesis to my supervisor, Assoc. Prof. Dr. Habsah Abdul Kadir whose patience and benevolence, as well as her intelligent guidance and research experience, have been invaluable to me. Under her sharp supervision, I have obtained research grants and scholarship awards continually throughout the research project.

The help of the staff particularly Mr Asokan and Ms Ng Swee Yee has directly and indirectly accelerate my research progress during the work. I am very grateful to their responsibilities, kindness, and assistance.

My special appreciation goes to Dr Lee Hong Boon and Mr Lim Siang Hui at CARIF for the use of flow cytometry and Dr Ling Sui Kiong and Ms Tan Hooi Poay for their intellectual guidance in conducting the phytochemical research.

On a special note I would like to thank also to all my friends for their caring and support to make this thesis a success.

I would also like to express my gratitude to all my lab mates for their numerous ideas and practical discussion to accomplish the work.
Outside the lab, despite the geographical distance, my family members are always nearby. I thank my family members and relatives for their continually courage, love, and support over my researching life.

Thank you.
TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS ... vi

LIST OF FIGURES .. xii

LIST OF TABLES ... xv

LIST OF ABBREVIATIONS .. xvi

CHAPTER 1 INTRODUCTION

1.1 Background .. 1

1.2 Objectives ... 2

 1.2.1 Overall objective ... 2

 1.2.2 Specific objectives .. 2

CHAPTER 2 LITERATURE REVIEW

2.1 Neurodegeneration .. 4

 2.1.1 Brain and nervous system 5

 2.1.2 Reactive oxygen species 6

 2.1.3 Oxidative stress .. 7

 2.1.4 Mitochondria in relation to neurodegeneration 9

 2.1.5 Apoptosis in neuronal cell death 12

 2.1.6 Cell cycle event .. 15

2.2 Neuroprotection .. 19

 2.2.1 Phytochemicals as neuroprotective agents 22

 2.2.2 Catechins ... 23

 2.2.3 The role of intracellular GSH in neuroprotection 25

 2.2.4 The role of intracellular antioxidant enzymes in neuroprotection 31
2.2.5 Bcl-2 family members as regulators of apoptosis ..33
 2.2.5.1 Bcl-2 ..33
 2.2.5.2 Bax ...35
2.2.6 The role of neuronal chemokines in neuroprotection36
 2.2.7 Chemokine CCL21 ...38
2.3 Mistletoes ..38
 2.3.1 The plant, \textit{L. parasiticus} ...39
 2.3.2 Ethnopharmacological uses of \textit{L. parasiticus}39
 2.3.3 Reported phytochemical and biological activities of \textit{L. parasiticus}39
2.4 NG108-15 neuroprotection model ...40

CHAPTER 3 MATERIALS AND METHODS
3.1 Materials ...48
 3.1.1 Solvents ..48
 3.1.2 Cell line ...48
 3.1.3 Culture medium ..48
 3.1.4 Reagents and chemicals ...48
 3.1.5 Biochemical assay kits ...49
 3.1.6 Oligonucleotides ...49
 3.1.7 Antibodies ..50
 3.1.8 Instruments/Equipments ...50
3.2 Methods ...52
 3.2.1 Extraction and fractionation of \textit{L. parasiticus} ..52
 3.2.1.1 Collection of \textit{L. parasiticus} ...52
 3.2.1.2 Preparation of \textit{L. parasiticus} ...52
 3.2.1.3 Solvent extraction and fractionation of \textit{L. parasiticus}52
3.2.2 Antioxidant studies ...53
 3.2.2.1 DPPH free radical scavenging activity assay53
 3.2.2.2 Reducing power activity assay ..53
 3.2.2.3 Lipid peroxidation inhibitory assay54
 3.2.2.4 Total phenolic content ..54
3.2.3 Cell culture ..55
 3.2.3.1 Maintenance of cells ...55
 3.2.3.2 Cryopreservation of cells ...55
 3.2.3.3 Reviving of cells ..56
 3.2.3.4 Subculturing of cells ..56
 3.2.3.5 Counting of cells ..56
3.2.4 Neuroprotective experimental design57
 3.2.4.1 Induction of oxidative damage57
 3.2.4.2 MTT cell viability assay ..57
3.2.5 Bioassay-guided isolation of neuroprotective compounds from
 LPAF ...58
 3.2.5.1 Fractionation and purification of LPAF58
 3.2.5.2 Thin layer chromatography ...59
 3.2.5.3 Liquid chromatography mass spectroscopy60
 3.2.5.4 NMR spectroscopy ...60
 3.2.5.4.1 AC trimer ...60
 3.2.5.4.2 (+)-Catechin ...60
3.2.6 Fluorescence microscopy detection of DAPI nuclear stain.........61
3.2.7 Measurement of total intracellular GSH content61
3.2.8 Determination of intracellular reactive oxygen species using
 DCF-DA stain ...62
3.2.9 Assessment of externalization of phosphatidylserine using annexin V/PI labeling .. 62

3.2.10 Detection of mitochondrial membrane potential by JC-1 stain .. 62

3.2.11 Analysis of cell cycle events using PI stain ... 63

3.2.12 SOD enzyme activity assay .. 64

3.2.13 GPx enzyme activity assay .. 64

3.2.14 Analysis of Bax, Bcl-2, and CCL21 gene expression via Q-PCR65

3.2.15 Flow cytometric analysis of Bax, Bcl-2, and CCL21 protein expression by immunofluorescence staining 70

3.2.16 Data analysis .. 70

CHAPTER 4 RESULTS

4.1 Evaluation of antioxidative activities of the extract and fractions of \textit{L. parasiticus} ... 71

4.1.1 LPAF showed the strongest DPPH free radical scavenging activity ... 71

4.1.2 LPAF possessed the highest reducing power activity74

4.1.3 LPAF exhibited the strongest inhibitory activity in lipid peroxidation ... 74

4.1.4 LPAF yielded the highest phenolic content 77

4.2 Assessment of neuroprotective effect of the extract and fractions of \textit{L. parasiticus} ... 77

4.2.1 Effect of H$_2$O$_2$-induced oxidative damage in NG108-15 cells77

4.2.2 LPAF increased the cell viability after H$_2$O$_2$ insult 79

4.3 Evaluation of neuroprotective potential of LPAF 79
4.3.1 LPAF inhibited apoptotic nuclear morphological changes79
4.3.2 LPAF attenuated H$_2$O$_2$-induced depletion of GSH82
4.3.3 LPAF decreased H$_2$O$_2$-induced reactive oxygen species formation82
4.3.4 LPAF mitigated H$_2$O$_2$-induced externalization of phosphatidylserine ..85
4.3.5 LPAF prevented H$_2$O$_2$-induced depolarization of mitochondrial membrane potential ..85
4.3.6 LPAF abrogated H$_2$O$_2$-induced appearance of subG$_1$-cells90
4.4 Isolation of AC trimer and (+)-catechin via bioactivity-guided approach90
4.4.1 Phytochemical analysis of LPAF ..90
4.4.2 (+)-Catechin exerted stronger neuroprotective activity compared to AC trimer by showing a higher percentage cell viability after H$_2$O$_2$ insult ..97
4.5 Neuroprotective mechanism elucidation on (+)-catechin97
4.5.1 Effect of (+)-catechin on apoptotic markers ..97
4.5.1.1 (+)-Catechin reduced reactive oxygen species formation97
4.5.1.2 (+)-Catechin alleviated externalization of phosphatidylserine ..100
4.5.1.3 (+)-Catechin attenuated dissipation of mitochondrial membrane potential ..103
4.5.1.4 (+)-Catechin blocked accumulation of subG$_1$-cells106
4.5.2 Effect of (+)-catechin on intracellular antioxidant enzymes106
4.5.2.1 (+)-Catechin improved SOD enzyme activity106
4.5.2.2 (+)-Catechin increased GPx enzyme activity110
4.5.3 Effect of (+)-catechin on gene expression analysis110

4.5.3.1 (+)-Catechin decreased the expression of Bax, increased the expression of Bel-2, and reduced the ratio of Bax/Bel-2110

4.5.3.2 (+)-Catechin attenuated the induction of chemokine CCL21 ...111

4.5.4 Effect of (+)-catechin on protein expression level118

4.5.4.1 (+)-Catechin downregulated Bax expression and upregulated Bel-2 expression ..118

4.5.4.2 (+)-Catechin downregulated the expression of chemokine CCL21 ..118

CHAPTER 5 DISCUSSION ...121

CHAPTER 6 CONCLUSION ...138

BIBLIOGRAPHY ..139

APPENDIX ..175
LIST OF FIGURES

Figure 1. Free radical and reactive oxygen species formation as shown in equations (Kehrer, 2000) ...8

Figure 2. Two major apoptotic signaling routes: extrinsic (death receptor-mediated) pathway and intrinsic (mitochondrial-mediated) pathway (Gomez-Sintes et al., 2011) ...16

Figure 3. Phases of cell cycle ..20

Figure 4. Chemical structure of (-)-epicatechin ...26

Figure 5. Chemical structure of (-)-epicatechin gallate ...26

Figure 6. Chemical structure of (-)-epigallocatechin ...27

Figure 7. Chemical structure of (-)-epigallocatechin gallate ..27

Figure 8. Chemical structure of (+)-catechin ...28

Figure 9. Chemical structure of (+)-gallocatechin ...28

Figure 10. Outline of main intracellular antioxidant enzymes namely SOD, GPx, and catalase involved in the prevention of reactive oxygen species (Reiter, 1995) ...32

Figure 11. Image of Loranthus parasiticus ...42

Figure 12. Chemical structure of coriamyrtin ...43

Figure 13. Chemical structure of tutin ...43

Figure 14. Chemical structure of coriatin ..44

Figure 15. Chemical structure of corianin ...44

Figure 16. Chemical structure of avicularin ...45

Figure 17. Chemical structure of quercetin ...45

Figure 18. Chemical structure of quercetin-3-arabinoside ..46

Figure 19. Graphical abstract illustrating experimental design47

Figure 20. Principle of SOD assay kit ...66
Figure 21. Principle of GPx assay kit ...67

Figure 22. Effects of LPEE, LPEAF, and LPAF on DPPH free radical scavenging
activity ..72

Figure 23. Effects of LPEE, LPEAF, and LPAF on reducing power activity75

Figure 24. Effects of LPEE, LPEAF, and LPAF on lipid peroxidation inhibitory
activity ..76

Figure 25. Effects of H2O2-induced oxidative stress in NG108-15 cells by MTT cell
viability assay ...78

Figure 26. Neuroprotective effects of LPEE, LPEAF, and LPAF on the viability of
NG108-15 cells ...80

Figure 27. Morphological apoptotic nuclear analysis of LPAF treated NG108-15 cells
by DAPI staining ..81

Figure 28. Effect of LPAF against H2O2-induced GSH depletion in NG108-15 cells .83

Figure 29. Effect of LPAF on reactive oxygen species formation by H2O2 in NG108-15
cells ..84

Figure 30. Effect of LPAF against H2O2-induced externalization of phosphatidylserine
in NG108-15 cells ...87

Figure 31. Effect of LPAF on the change of mitochondrial membrane potential
following H2O2 insult in NG108-15 cells ..89

Figure 32. Effect of LPAF on cell cycle event in NG108-15 cells92

Figure 33. Flow chart of the bioassay-guided fractionation and isolation of
neuroprotective compounds from LPAF ...93

Figure 34. AC trimer isolated from L. parasiticus ...94

Figure 35. (+)-Catechin isolated from L. parasiticus ..94

Figure 36. Effect of (+)-catechin on H2O2-induced reactive oxygen species formation in
NG108-15 cells ..99
Figure 37. Effect of (+)-catechin on the phosphatidylserine externalization in NG108-15 cells ...102

Figure 38. Effect of (+)-catechin on mitochondrial membrane potential in NG108-15 cells ...105

Figure 39. Effect of (+)-catechin on cell cycle distribution in NG108-15 cells108

Figure 40. Effect of (+)-catechin on SOD activity in NG108-15 cells109

Figure 41. Effect of (+)-catechin on GPx activity in NG108-15 cells112

Figure 42. Effect of (+)-catechin on the Bcl-2 and Bax gene expression levels in NG108-15 cells ...116

Figure 43. Effect of (+)-catechin on chemokine CCL21 gene expression level in NG108-15 cells ...117

Figure 44. Effect of (+)-catechin on Bcl-2 and Bax protein expression in NG108-15 cells ...119

Figure 45. Effect of (+)-catechin on CCL21 protein expression in NG108-15 cells ..120
LIST OF TABLES

Table 1. Primer sequence for Bax, Bcl-2, CCL21, and HMBS ..51
Table 2. Cycling conditions for Q-PCR ...68
Table 3. Reaction mixture for Q-PCR ...69
Table 4. Antioxidative properties of L. parasiticus extract and fractions (LPEE, LPEAF, and LPAF) in DPPH free radical scavenging activity, lipid peroxidation inhibitory activity, and total phenolic content quantified by Folin-Ciocalteu reaction ...73
Table 5. 1H-NMR spectroscopic data of AC trimer ..95
Table 6. 13C-NMR spectroscopic data of AC trimer ..95
Table 7. 1H-NMR spectroscopic data of (+)-catechin ...96
Table 8. 13C-NMR spectroscopic data of (+)-catechin ..96
Table 9. Neuroprotective activities of two isolated proanthocyanidins from LPAF namely AC trimer and (+)-catechin following H2O2 insult in NG108-15 cells ..98
Table 10. Alterations in the activities of SOD and GPx by (+)-catechin and EGCG following H2O2 exposure in NG108-15 cells ...113
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC</td>
<td>American type culture collection</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptosis-inducing factor</td>
</tr>
<tr>
<td>APAF</td>
<td>Apoptosis protease activating factor</td>
</tr>
<tr>
<td>BH</td>
<td>Bcl-2 homology</td>
</tr>
<tr>
<td>BHT</td>
<td>Butylated hydroxytoluene</td>
</tr>
<tr>
<td>BD</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CDK</td>
<td>Cyclin-dependent kinase</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DCH-DA</td>
<td>2,7 dichlorofluorescein diacetate</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>DTNB</td>
<td>5',5'-dithio-bis(2-nitrobenzoic acid)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGCG</td>
<td>(−)-epigallocatechin-3-gallate</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescent activated cell sorting</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-associated protein with death domain</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>Ferric chloride</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>Ferrous sulfate</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>GAE/gDW</td>
<td>Gallic acid equivalent per gram of dry weight</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GSSG</td>
<td>Oxidized glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione-S-transferase</td>
</tr>
<tr>
<td>HAT</td>
<td>Hypoxanthine-aminopterin-thymidine</td>
</tr>
<tr>
<td>HMBS</td>
<td>Hydroxymethylbilane synthase</td>
</tr>
<tr>
<td>HNE</td>
<td>4-hydroxy-2-nonenal</td>
</tr>
<tr>
<td>H₂O</td>
<td>Water</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulfuric acid</td>
</tr>
<tr>
<td>IC₅₀</td>
<td>50% inhibitory concentration</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunoglobulin G</td>
</tr>
<tr>
<td>JC-1</td>
<td>5,5',6,6'-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolylcarbocyanine iodide</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography mass spectroscopy</td>
</tr>
<tr>
<td>LPAF</td>
<td>Loranthus parasiticus aqueous fraction</td>
</tr>
<tr>
<td>LPEAF</td>
<td>Loranthus parasiticus ethyl acetate fraction</td>
</tr>
<tr>
<td>LPEE</td>
<td>Loranthus parasiticus ethanol extract</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-domethylthiazol-2-yl)-2,5-diphenyltetrazolim</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>Na₂HPO₄</td>
<td>Disodium hydrogen phosphate</td>
</tr>
<tr>
<td>NaH₂PO₄</td>
<td>Sodium dihydrogen phosphate</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>NG108-15</td>
<td>Mouse neuroblastoma x rat glioma hybrid cell line</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>O$_2^-$</td>
<td>Superoxide anions</td>
</tr>
<tr>
<td>OH$^+$</td>
<td>Hydroxyl radicals</td>
</tr>
<tr>
<td>ONOO$^-$</td>
<td>Peroxynitrite</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>Q-PCR</td>
<td>Real time-polymerase chain reaction</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>TBA</td>
<td>Thiobarbituric acid</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>WST-1</td>
<td>2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt</td>
</tr>
<tr>
<td>XO</td>
<td>Xanthine oxidase</td>
</tr>
</tbody>
</table>