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Abstract 

 

 

This thesis develops mixture model clustering algorithms scalable to data sets 

that do not fit into the computer memory buffer. Two algorithms, FlexClust and 

FlexClustMix, are proposed for clustering very large continuous and mixed data sets 

respectively. The basic framework of the algorithms is to scale down data 

incrementally using data compression, and incorporates the later compressed data 

into the current model with the ability to recover new clusters that have been missed 

out in the earlier compressed data. It consists of three modules: 1) incremental 

compression, 2) detecting change in cluster structure, and 3) update of current 

model. 

In FlexClust, Gaussian mixture model is used to compress data. The 

incorporation of the incrementally compressed data into the current model is done 

through the proposed bi-Gaussian mixture model. In FlexClustMix, a mixture model 

for mixed data, the Gaussian location model, which speeds up parameters estimation, 

is proposed for compression. The incorporation of the incrementally compressed 

data into the current model is done through the proposed bi-Gaussian location model. 

A model selection criterion, modified Bayes factor (MBF), is proposed to 

detect changes in clusters structure due to the incrementally added data and to 

recover any small clusters that have been missed out in the initial sample.  

FlexClust and FlexClustMix are tested over very large continuous and mixed 

data sets respectively and the results are promising. 
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Glossary 
 

 

 
Buffer memory/ Buffer 
A portion of a computer's memory that is set aside as a temporary holding place for 
data that is being sent to or received from an external device, such as a hard disk 
drive, keyboard or printer. It is different from hard disk space. 
 
Classification 
Given a set of predefined categorical classes for the target variable, determine to 
which of these classes a specific unit belongs. 
 
Classification accuracy 
The rate of allocate units in the right class, in relation to the given classification. For 
example, classify cat in the classification of animal is a right allocation. 
Classification accuracy = 1-misclassification rate. (see misclassification rate). 
 
Complete pass/scan through the data 
Read or search all the data. 
 
Condensed/compressed data 
A specific set of quantities (prototype) that used to summarize or describe the data 
points having specific structure particularly a dense region. 
 
Cluster structure 
The features of cluster distributions such as orientation, size, and shape. 
 
Data condensation/compression 
The process to summarize or describe the data points having specific structure 
particularly a dense region. 
 
Data points in buffer memory 
(see buffer memory). 
 
Hard disk space 
Space that available on the hard disk for storing files. It is different from buffer 
memory. 
 
Incremental data condensation/compression 
Data condensation/compression that is being carried out part by part on a data set. 
(see data condensation/ compression). 
 
Labelled data 
Data that the class of each data point is known. (see unlabelled data). 
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Misclassification 
Allocation of unit in a wrong class, in relation to a given classification. For instance, 
a business is classified in Trade instead of Industry.  
 
Misclassification rate 
Rate of misclassification. It is equal to the number of misclassified units divided by 
the total number of units. (see misclassification) 
 
Mixture distribution 
A probability distribution which is expressed as a convex combination of other 
probability distributions. 
 
Prototype 
Summarized information for the condensed/compressed data (see condensed/ 
compressed data). 
 
Prototype system 
A set of prototypes. (see prototype). 
 
Scale down data 
A process to reduce the size of a data set under study. 
 
Scalable  
Capable of being changed in size. For example, a Web site's design and hardware are 
considered scalable if the site can handle a significant increase in traffic.  
 
Unlabelled data 
Data that the class of each data point is unknown. (see labelled data) 
 

v 
 



Table of Contents 

 

 

Abstract              ii 
Acknowledgement            iii 
Glossary             iv 
Table of Contents             vi 
List of Figures                   viii 
List of Tables                           x 
 

 

1   Introduction            1

1.1 Clustering and Data Mining.................................................................1 
1.1.1 Finite Mixture Model ...............................................................3 

1.2 Challenges in Clustering Very Large Data Sets.................................10 
1.3 Complications in Clustering Analysis ...............................................13 
1.4 The Thesis ..........................................................................................15 

1.4.1 Motivation..............................................................................15 
1.4.2 Objectives of the Thesis.........................................................15 
1.4.3 Contribution of the Thesis .....................................................16 

1.5 Overview of Thesis ............................................................................17 
 
 
2 A Review of Clustering for Massive Data Sets               19 

2.1 Scale-Up Model-based Clustering Algorithm....................................19 
2.2 Scale Down Data Techniques ............................................................21 

2.2.1 Sampling ................................................................................21 
2.2.2 Data Condensation .................................................................26 

2.3 Change in Clusters Structure .............................................................35 
2.4 Estimating the Number of Clusters for Condensed Data...................37 
2.5 Mixed Variables Model-based Clustering .........................................39 

 
 
3 Determining the Number of Components in Bi-mixture model  42 

3.1 Semi Supervised Learning and Partial Classification........................42 
3.2 Detecting Change in Clusters Structure: A Modified Bayes Factor ..45 
3.3 Properties of MBF..............................................................................53 
3.4 Bi-Gaussian Mixture Model ..............................................................53 
3.5 Experimental Result...........................................................................56 

3.5.1 Simulation Study 1.................................................................57 
3.5.2 Simulation Study 2.................................................................59 

3.6 Conclusion .........................................................................................61 

                                                                                                                                     vi



 
 
4 Scalable Clustering Algorithm for Very Large Data    62 

4.1 Incremental Compression Into Flexible Number of Clusters 
(FlexClust) .........................................................................................62 

4.2 The FlexClust Clustering Algorithm .................................................63 
4.3 Components of the FlexClust Architecture........................................65 

4.3.1 Incremental Sampling and Compression ...............................65 
4.3.2 Model Update.........................................................................66 
4.3.3 Model at a Certain Iteration ...................................................70 

4.4 Properties of FlexClust Algorithm.....................................................70 
4.5 Experimental Evaluation....................................................................71 

4.5.1 Simulation Study 1.................................................................75 
4.5.2 Simulation Study 2.................................................................82 
4.5.3 Simulation Study 3.................................................................84 

4.6 Application to Real Data....................................................................86 
            4.7       Very Large Simulated Data ...............................................................89 

4.8 Discussion and Conclusion ................................................................90 
 
 
5 Scalable Mixture Model Clustering Algorithm for Mixed Data   97 

5.1 Conditional Gaussian Model..............................................................97 
5.2 Gaussian Location Model (GLM)....................................................103 
5.3 Simulation for GLM ........................................................................106 

5.3.1 Simulation Study 1...............................................................106 
5.3.2 Simulation Study 2...............................................................109 
5.3.3 Simulation Study 3...............................................................110 

5.4 Scalable Clustering Algorithm for Mixed Data ...............................112 
5.5 Simulation for FlexClustMix ...........................................................113 
5.6 Conclusion .......................................................................................119 

 
 
6 Conclusion and Future Work               121 

6.1 Contributions....................................................................................121 
6.2 Application.......................................................................................125 
6.3 Limitation and Future work .............................................................125 

 

 

References 
 

 

 vii



List of Figures 

 

 

Figure 3.1. True clusters structure (scatter plot) and the MLE of means and 
covariances for the model fitted by: a) classified data (‘o’, blue dotted 
line), unclassified data (‘x’, red dashed line), and bi-Gaussian mixture 
model (‘+’, black solid line,), and b) bi-Gaussian mixture model (‘+’, 
black solid line), combined data (‘x’, green dashed line), and true model 
(‘o’, red solid line). (Note: ellipsoids visualized by 90% normal 
tolerance). ...............................................................................................59 

Figure 3.2. True clusters structure (scatter plot) and the MLE of means and 
covariances for the model fitted by: a) classified data (‘o’, blue dotted 
line), unclassified data (‘x’, red dashed line), and bi-Gaussian mixture 
model (‘+’, black solid line), and b) bi-Gaussian mixture model (‘+’, 
black solid line), and combined data (‘x’, green dashed line). (Note: 
ellipsoids visualized by 90% normal tolerance). ....................................59 

Figure 4.1. The overview of FlexClust. .....................................................................65 

Figure 4.2. Three possibilities when a cluster T1 is compared to the existing 5 
clusters: a) add a new cluster, b) merge with an existing cluster, and c) 
merge two existing clusters. ...................................................................67 

Figure 4.3. True clusters structure (scatterplot of 10% of the total data points) for the 
data simulated from a seven-component multivariate normal mixture, 
which has different shape, volume and orientation. (Note: ‘+’ represent 
means, and covariances are visualized by 90% normal tolerance 
ellipsoids). ..............................................................................................77 

Figure 4.4.True clusters structure (scatterplot of 10% of the total data points) and the 
MLE of the true model means and covariances (‘x’, red dotted line) 
compared to the current model (‘+’, black solid line) fitted from 
incremental compression after: a) initial sample, b) 3 samples, and c) the 
final sample, in one of the experiments of FlexClust [500]. (Note: 
covariances are visualized by 90% normal tolerance ellipsoids). ..........78 

Figure 4.5. True clusters structure (scatterplot of 10% of the total data points), and 
the MLE of means and covariances obtained using: a) sufficient EM 
[500]-misses out cluster 6 but identifies superfluous clusters at cluster 1 
and 2, and b) sufficient EM [800]-misses out cluster 6 but identifies 2 
identical cluster 4. (Refer Figure 4.3 for note.) ......................................78 

Figure 4.6. True clusters structure (scatterplot of 10% of the total data points), and 
the MLE of means and covariances obtained using: a) strategy III [500], 
and b) strategy III [1000]. Both miss out cluster 6 but identify 
superfluous clusters with k=10. (Refer Figure 4.3 for note.)..................78 

 viii



Figure 4.7. True clusters structure (scatterplot of 10% of the total data points), and 
the MLE of means and covariances obtained using: (a) FlexClust [500] 
(k = 7*), (b) FlexClust [1000] (k = 7*). (Refer Figure 4.3 for note.) .....81 

Figure 4.8. True clusters structure (scatterplot of 10% of the total data points), and 
the MLE of means and covariances obtained using: a) sufficient EM 
[500], and b) sufficient [800]. Non global maximum likelihood 
estimators and no assignment to some of the clusters. (Refer Figure 4.3 
for note.) .................................................................................................81 

Figure 4.9. True clusters structure (scatterplot of 10% of the total data points), and 
the MLE of means and covariances obtained using: a) strategy III [500], 
and b) strategy III [1000]. Non global maximum likelihood estimators. 
No assignment to one of the 10 clusters and some clusters are sparse. 
(Refer Figure 4.3 for note.).....................................................................81 

Figure 4.10. Classification structure obtained using: a) SPSS TwoStep (k = 5), and b) 
CLARA (k = 5). Plots use 10% of the total observations.......................82 

Figure 4.11.  RGB image of the St Paulia data set ....................................................88 

Figure 4.12. Ground true image on St Paulia RGB image data in (a). Segmentation 
results on the image data obtained by: b) FlexClust [1000] (k = 24), c) 
FlexClust [2000] (k = 34), d) sufficient EM [1000], (k = 26), e) sufficient 
EM [2000] (k = 27), f) strategy III [1000] ((k = 11), and g) strategy III 
[2000] (k = 10)........................................................................................88 

Figure 4.13. Difference of mean misclassification rates between FlexClust and 
sufficient EM. .........................................................................................92 

Figure 4.14. Difference of mean misclassification rates between FlexClust and 
strategy III. .............................................................................................93 

Figure 4.15. Percentages of experiments that are able to identify the correct number 
of clusters and correct clusters................................................................94 

Figure 4.16. Performance of average execution time according to (a) number of 
clusters, (b) data size. .............................................................................95 

Figure 5.1. Plot of the simulated data for (a) sample 1 in 3D using the mixed data, 
(b) sample 1 using the continuous variables, (c) combined data of sample 
1 and 2 in 3D using the mixed data, and (d) combined data of sample 1 
and 2 using the continuous variables. (Red dot and black star are two 
clusters of sample 1; green circle and blue triangle are two clusters of 
sample 2). .............................................................................................117 

 

 

 ix



List of Tables 

 

 

Table 1.1. Parameterizations of the covariance matrix Σk in the Gaussian mixture 
models and their geometric interpretation...................................................5 

Table 3.1. Classification accuracy and log-likelihood for bi-Gaussian mixture model 
and Gaussian mixture model in simulation study 1. The bi-Gaussian 
mixture model fitted on data that divided into classified and unclassified 
data according to different ratio. The Gaussian mixture model fitted on the 
combined data............................................................................................57 

Table 3.2. Results for models obtained from bi-Gaussian mixture model and 
Gaussian mixture model in simulation study 1. Unclassified data in the bi-
Gaussian mixture model are generated from different mixture proportions 
and with new cluster added. The Gaussian mixture model fitted on the 
combined data............................................................................................57 

Table 3.3. Table. Classification accuracy and log-likelihood for bi-Gaussian mixture 
model and Gaussian mixture model in simulation study 2. The bi-Gaussian 
mixture model fitted on data that divided into classified and unclassified 
data according to different ratio. The Gaussian mixture model fitted on the 
combined data............................................................................................60 

Table 3.4. Results for models obtained from bi-Gaussian mixture model and 
Gaussian mixture model in simulation study 2. Unclassified data in the bi-
Gaussian mixture model are generated from different mixture proportions 
and with new cluster added. The Gaussian mixture model fitted on the 
combined data............................................................................................60 

Table 4.1. Number of clusters and percentages of getting the correct clusters 
obtained using sufficient EM, SPSS TwoStep, strategy III, CLARA and 
FlexClust algorithm on the simulated data. (Numbers in the brackets 
indicate the number of prototypes for sufficient EM algorithm, and the 
sample size for Strategy III and the proposed FlexClust algorithm).........76 

Table 4.2. Misclassification rate obtained using sufficient EM, SPSS TwoStep, 
strategy III, CLARA and FlexClust algorithm on the simulated data. 
(Refer Figure 4.3 for note.) .......................................................................79 

Table 4.3. Misclassification rate and numbers of clusters using sufficient EM, SPSS 
TwoStep, strategy III, CLARA, and FlexClust on the data generated from 
wine data set. See caption of Table 4.1. ....................................................83 

Table 4.4. Misclassification rate and numbers of clusters using sufficient EM, SPSS 
TwoStep, strategy III, CLARA, and FlexClust on the data generated from 
iris data set. See caption of Table 4.1........................................................85 

 x



Table 4.5. Number of clusters obtained using the sufficient EM, strategy III and 
FlexClust on the St Paulia data. See caption of Table 4.1.........................89 

Table 4.6. Misclassification rates for one-time compression and incremental 
compression methods for data sets with different dimensions..................91 

Table 4.7. Misclassification rates for incremental sampling and random sampling for 
data sets with different dimensions. ..........................................................93 

Table 5.1. Misclassification rates for simulation study 1 using location model, 
restricted location model and the proposed Gaussian location model. ...107 

Table 5.2. Average estimates and standard errors of the parameters means and 
covariances for the two continuous variables for simulation study 1 using 
location model, restricted location model, and the proposed Gaussian 
location model. ........................................................................................108 

Table 5.3. Misclassification rate for simulation study 2 using restricted location 
model and the proposed Gaussian location model. .................................110 

Table 5.4. The means, covariances of two continuous variables, number of 
observations for each level of the multinomial variables, for four groups 
from Franco et al. (2002).........................................................................111 

Table 5.5. Means, variances, covariances, and number of observations for each level 
of the multinomial variable for four clusters in simulation study 3 obtained 
using the modified location model and the proposed model. ..................111 

Table 5.6. Average estimates of means and covariances and misclassification for the 
bi-Gaussian location model and the Gaussian location model on the 
simulated data. The bi-Gaussian location model fitted on the simulated 
data that divided into two samples according to different ratios. The 
Gaussian location model fitted on the combined data.............................115 

Table 5.7. Average estimates of means and covariances and misclassification for the 
bi-Gaussian location model and the Gaussian location model on the 
simulated data. Data for sample 2 in the bi-Gaussian location model are 
generated from different mixture proportions and with new cluster added. 
The Gaussian location model fitted on the combined data......................115 

Table 6.1. Comparison of results for the proposed FlexClust and the other 
compression-based and sampling-based methods. ..................................123 

Table 6.2. Comparison of results for the proposed Gaussian location model and other 
parametric models for clustering mixed data. .........................................124 

 

 xi



1  

Introduction 
 
 

1.1 Clustering and Data Mining 
 Clustering is a process used to explore inter relationships among a set of data 

items (objects, observations, feature, etc.), and group them according to their 

similarities. Cluster analysis is also known as an unsupervised learning method 

because there is no priori group labeling for the data items. Generally, there are five 

clustering methods: partitioning, hierarchical, density-based, grid-based and model-

based. The partitioning methods divide a given data set into clusters to optimize an 

objective function, such as sum of within group sum of squares (Ward, 1963) and 

distance between groups. Partitioning methods use iterative relocation technique to 

relocate the data items until there is no change in the gravity centres. The most well 

known partitioning methods are the k-means and k-medoids. Some scalable 

partitioning clustering algorithms have been introduced, for example, CLARA 

(Kaufman & Rousseeuw, 1990) and scalable k-means (Bradley, Fayyad & Reina, 

1998a). The disadvantage of this method is that the clusters formed have only 

spherical shapes. Another widely used clustering method is the hierarchical method, 

in which data items are grouped into a tree of clusters or dendrogram. There are two 

types of hierarchical method: agglomerative and divisive. In the agglomerative 

method, the clusters are formed in a bottom up fashion until all data items belong to 

the same cluster, whereas the divisive method splits the data items into smaller 

clusters in a top down fashion until each cluster contains only singleton. Various 

criteria are used to decide which clusters should be merged or split. The most typical 

criterion used in the agglomerative method is to merge the closest pair of clusters 
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based on a specified measure such as single-link, complete link and average-link. 

However, the effectiveness of the splitting process relies on the types of measure 

used. The hierarchical methods suffer from their inability to perform adjustment 

once the splitting or merging decision is made. Some examples of scalable 

hierarchical clustering algorithms are shown in BIRCH (Zhang, Ramakrishnan & 

Livny, 1996), CURE (Guha, Rastogi & Shim, 1998) and CHAMELEON (Karypis, 

Han & Kumar, 1999). In density-based methods, clusters are formed based on 

density of data items in a region, where for each data item of a cluster the 

neighbourhood of a given radius has to contain at least a minimum number of data 

items. The most well known density-based clustering algorithm is the DBSCAN 

(Ester, Kriegel, Sander & Xu, 1996). Some of the works on clustering large data sets 

using density-based methods are shown in DBCLASD (Xu, Ester, Kriegel & Sander, 

1998) and OPTICS (Ankerst, Breunig, Kriegel & Sander, 1999). In grid-based 

method, the clustering space is first quantized into a finite number of cells, and then 

cells that contain more than a certain number of points are combined to form 

clusters. Examples of the scalable grid-based clustering algorithms are STING 

(Wang, Yang & Muntz, 1997) and CLIQUE (Agrawal, Gehrke, Gunopulos & 

Raghavan, 1998). 

 In practice, most clustering is done based on heuristic but intuitively 

reasonable procedures. Although considerable work has been researched on these 

methods, their statistical properties are generally unknown, and there is little 

systematic guidance provided for solving basic practical questions in cluster analysis 

such as: 1) how many clusters are in the data, 2) which clustering method should be 

used, and 3) how outlier should be handled (Fraley & Raftery, 1998). Actually, 

clustering strategies can be based on probabilistic models (Bock, 1996). Using the 
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inferential approach, the conditions for a clustering method to work well can be 

clarified. This has led to the development of new clustering methods, for instance, 

finite mixture models have been applied in cluster analysis. Examples of pioneering 

works can be seen in Day (1969) and Wolfe (1967). This model-based clustering 

method will be the focus of this thesis. 

 

1.1.1 Finite Mixture Model  

In mixture model clustering, the d-dimensional random observations of size 

n, , are assumed to have been generated from a mixture of a finite number, 

say G, of underlying probability distributions in which each component represents a 

different group or cluster. Let 

nxx ,...,1

)|( kikf θx  be the conditional probability density 

function for an observation xi given that it is from the k-th component parameterised 

by θk, the mixture density for each xi is expressed as 

  , i = 1, 2, …, n      (1.1) )|()|(
1

k

G

k
ikki ff θπ∑

=

= xΨx

where kπ  is the non negative mixture proportion for the k-th component which 

satisfies , and Ψ = (π1
1

=∑
=

G

k
kπ 1, …, πG, θ1, …, θG) is the vector consists of all the 

unknown parameters. 

Usually, the component-conditional densities are taken to be the same 

parametric family (Ng & McLachlan, 2003). This thesis concentrates on the case 

where )|( kikf θx  is Gaussian as it is a model that has been used with considerable 

success in a number of applications (McLachalan & Basford, 1988; Banfield & 

Raftery, 1993; Celeux & Govert, 1995; Dasgupta & Raftery, 1998). On top of that, 

density estimation theory states that any distribution can be effectively approximated 
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by Gaussian mixture model (Bradley et al., 1998b).  In Gaussian mixture models, the 

parameter θk consists of a mean vector kµ  and a covariance matrix Σk, and the 

density has the form 

      )|( kikf θx = ),|( kkik Σµφ x = ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −Σ−Σ −−−

kik
T

kik

p

µµπ xx 12
1

2
2
1exp||)2( . (1.2) 

The clusters fitted by Gaussian mixture model centred at the means kµ , and the 

covariance Σk determines their other geometric characteristics like shapes, volumes 

and orientations.  

 Banfield et al. (1993) developed a Gaussian model-based clustering 

framework to allow features of cluster distributions (orientation, size, and shape) to 

vary between clusters or constrained to be the same for all clusters. This is done by 

parameterizing the covariance matrix, Σk, in term of its eigenvalue decomposition in 

the form 

  ,      (1.3) T
kkkkk DADλ=Σ

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix with 

eigenvalues of Σk on the diagonal, and λk is a scalar. The orientation of the principal 

components of Σk is determined by Dk. The features of cluster distributions are 

estimated from the data. Table 1.1 shows the geometric interpretation of various 

parameterizations adopted from Fraley & Raftery (1998, 2003). 

The maximum likelihood estimate (MLE) of Ψ based on a set of n 

independent observations, x  =  (x1, …, xn), is  

       (1.4) 
)|(logmaxargˆ xΨ

Ψ
Ψ L=

 where log L(Ψ| x) is the log-likelihood function given by 
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 .  (1.5) 
∑ ∑∏

= ==

===
n

i

G

k
kikk

n

i
iflL

1 11
);(log)|(log)()|(log θφπ xΨxΨxΨ

In general, the MLE of parameters of mixture model can be estimated iteratively by 

applying the expectation-maximization (EM) algorithm (Dempster, Laird & Rubin, 

1977).  

Table 1.1. Parameterizations of the covariance matrix Σk in the Gaussian mixture models and their 
geometric interpretation. 

Σk Distribution Volume Shape Orientation Identifier in 
MCLUST 

λ I Spherical equal equal NA EII 
λk I Spherical variable equal NA VII 
λ A Diagonal equal equal coordinate axes EEI 
λk A Diagonal variable equal coordinate axes VEI 
λ Ak Diagonal equal variable coordinate axes EVI 
λk Ak Diagonal variable variable coordinate axes VVI 

TDADλ  Ellipsoidal equal equal equal EEE 
T
kk ADDλ  Ellipsoidal equal equal variable EEV 
T
kkk ADDλ  Ellipsoidal variable equal variable VEV 
T
kkkk DADλ  Ellipsoidal variable variable variable VVV 

 

EM Algorithms for Clustering 

The EM algorithm (Dempster et al., 1977) for clustering is a general 

approach to maximize likelihood in the presence of a set of unobservable group-

indicator  treated as incomplete data. Each of these indicators has the form 

 with  

n,...,zz1

),...,( 1 iGii zz=z

  ,    (1.6) 
⎩
⎨
⎧

=
otherwise0

 group  tobelongs  xif1 k
z i

ik

and  are independently and identically distributed according to a multinomial 

distribution taking G mutually exclusive values with probabilities 

n,...,zz1

Gππ ,...,1 . Let the 

“complete data” be , the complete data log likelihood is given by ),( iii zxy =

 5



  .   (1.7) ∑∑
= =

=
n

i
k

G

k
ikkikzL

1 1
)]|(log[),(log θφπ xx|zΨ

The EM algorithm estimates the parameters in the mixture models by iterating 

between two steps, the E-step and the M-step, repeatedly until the estimates 

converged.  

E-step: Compute the expected value of the complete log-likelihood, 

conditioned on the observed data xi and the current parameter estimates. Since 

(1.7) is linear with respect to , the E-step is reduced to the computation of 

the conditional expectation of 

ikz

ikz  given the observation xi and current 

parameter estimates. For a given current parameter estimates at t-th iteration, 

, )(tΨ

  
∑ =

Σ

Σ
= G

k
t

k
t

kik
t

k

t
k

t
kik

t
kt

ikz
1

)()()(

)()()(
)(

),|(
),|(

µφπ
µφπ

x
x ,     (1.8) 

for i = 1,…,n and k = 1,…,G.  

M-step: Maximize the complete data log-likelihood (1.7) with each  

replaced by its current conditional expectation . Update the estimates to 

 as follows 

)1( −t
ikz

)(t
ikz

)1( +tΨ

        (2.9a) ∑ =
+ = n

i
t

ik
t

k zn
1

)()1(

           
n

n t
kt

k

)1(
)1(

+
+ =π       (2.9b) 

           
k

n
i i

(t)
ikt

k n
z∑ =+ = 1)1( x

µ       (2.9c) 
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n
i

t
ki

t
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t
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z
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1
)1()(

1
)(

)1( +
=

+

=

+ −−=Σ ∑
∑

µµ xx   (2.9d) 
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As a greedy algorithm, EM ensures the log-likelihood increases monotonically and 

satisfies 

 .      (1.10) )()( )()1( tt LL Ψ>Ψ +

The iteration stops when the increase in the log-likelihood becomes smaller than a 

pre-set threshold. Let the MLE for  be , the observed data xΨ Ψ̂ i can be assigned to 

the component of the mixture with the highest estimated posterior probability where 

   .     (1.11) 
⎩
⎨
⎧ =

=
otherwise0

ˆmaxarg if1
ˆ ikkig

zg
z

Overall, the EM algorithm is an efficient and stable numerical procedure for 

finding MLEs. However, EM algorithm is sensitive to the initialization and thus it 

does not guarantee converge to the global maximum. The convergence rate of EM 

may be very slow if the clusters are not well separated. It can be seen from (1.7) that 

the E-step scans through each observation xi. Hence, for large data set that is too 

huge to be loaded into the buffer memory, the EM algorithm would be impractical.  

 

Bayesian Model Selection Criteria 

One of the advantages of using mixture model clustering is that it allows the 

use of approximated Bayes factors to compare models. Through the available 

approaches, for instance EM algorithm, a sequence of mixture models with different 

parameter estimates is obtained for a range of values of the number of clusters. Most 

often, the selection of the best fitted model among all includes maximization of 

likelihood. 

Let x = , be d-dimensional random observations of size n to be 

described using a model M

nxx ,...,1

k selected from a sequence of candidate models M1, …, 

ML, which are not necessary nested. Assumed that each Mk is uniquely parameterised 
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by a vector Θk, and let p denotes the functionally independent parameters to be 

estimated in Θk, and the number of clusters for the model, k, is not considered as an 

independent parameter. Let  represents the likelihood of the data for the 

model M

)|( xΘkL

k. If EM-based approaches are used to find the maximum mixture 

likelihood, an approximation to twice the log Bayes factor called the Bayesian 

Information Criterion (BIC) (Schwarz, 1978) can be obtained which defined as  

  BIC =     (1.12) npL k log)|ˆ(log2 +− xΘ

where log  is the maximized mixture log-likelihood for model.  )|ˆ( xΘkL

For model with more clusters, the number of parameters also increases, and this 

leads to increase in the likelihood. Hence, the likelihood cannot be used directly in 

assessing the best fitted mixture model. An additional term is added to the log-

likelihood in BIC to penalize the complexity of the model so that more parsimonious 

model with less number of clusters could be selected as the best fitted model. From 

(1.12), the larger the log , the more likely the model is better fitted, and this 

implies that the smaller value of BIC suggests stronger evidence for the model. The 

BIC can be used to compare models with differing parameterisations, differing 

numbers of components, or both. Although regularity conditions for the BIC do not 

hold for mixture models, there is considerable theoretical and practical support for its 

use. Leroux (1992) showed that model selection based on BIC values does not 

underestimate the number of groups asymptotically. Keribin (1998) showed that BIC 

is consistent for the number of groups. A range of applications using BIC for model 

selection has shown good results (Dasgupta & Raftery, 1998; Mukerjee, Feigelson, 

Babu, Murtagh, Fraley & Raftery, 1998, Stanford & Raftery, 2000). 

)|ˆ( xΘkL
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Advantages of Mixture Model Clustering 

 It has been recognized that mixture models are mathematically sound to 

answer the practical questions arising in cluster analysis (McLachlan & Basford, 

1988; Fraley & Raftery, 1998). First, the question of how many clusters are in the 

data can be approached through an assessment of how many components are needed 

in the mixture model, and models with different number of components can be 

compared. Second, the problem of choosing an appropriate clustering method can be 

recast as statistical model choice. Thirdly, the outliers can be handled by adding one 

or more components in the mixture model. Mixture models have since been 

increasingly used for clustering. However, their practical applications without 

modification can be inadequate for large data sets.  

 

Clustering Moderately Large Data Sets 

 Mixture model clustering methods, which originated from statistics, have 

been developed to identify natural groups for relatively small data sets, making them 

inappropriate if not infeasible for massive data sets. This complication challenges the 

emergence of powerful mixture model clustering algorithms to manage the data 

avalanche. Over the years, mixture model clustering algorithms for moderately large 

data sets have received growing interest, and the problem has remained an extensive 

research topic. For instance, some scalable mixture model clustering algorithms have 

been developed and applied in the area of microarray analysis (McLachlan, Bean & 

Ng, 2008), magnetic resonance image segmentation (Banfield & Raftery, 1993; 

Wehren, Simonetti & Buydens, 2002; Wehrens, Buydens, Fraley & Raftery, 2004), 

software metrics and tomography (Maitra, 2001), web mining (Steiner & Hudec, 

2007). However, advances in computing technology make data collection and 
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storage easier than ever before and this has led to a rapid growth of vast databases. 

The existing mixture model clustering algorithms developed for moderately large 

data sets cannot cop with the vast databases. To find patterns in very large data sets 

becomes even more challenging than ever. This will be discussed in the following 

section. 

 

1.2 Challenges in Clustering Very Large Data Sets 
 As data mining is characterized by intensive computations on large amount 

of data, the development of new clustering analysis algorithms assist in transforming 

the data into valuable knowledge encounters a few complications discussed below. 

 

Scalability and Exhaustiveness 

 Massive data set may involve several millions of records. The most 

significant challenges in clustering massive data set are scalability and consistent 

quality performance as the data size grows. According to Bradley, Fayyad and Reina 

(1998a, 1998b, 2000) and Fraley (1999), a clustering algorithm is considered 

scalable if the running time grows linearly in proportion to the size of the database 

and can be handled by the main memory and disk space.  Apparently, the ability of 

clustering algorithms to perform well with massive data is constrained by three main 

resources: size of database, memory space and time. In traditional applications of 

clustering in data mining, database size tends to be the dominant problem. However, 

in many real applications, the bottleneck is time and memory. When data is typically 

in oversupply, unfortunately, the ability of the current clustering algorithms to 

analyze these data sets within a reasonable time frame and within the available 

computational resources have not kept pace. As a result, full advantage of the data 
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cannot be taken of because most of the data go unused and the obtained model may 

under fit. Thus, the development of clustering algorithms scalable to data size and 

memory capacity becomes a priority. Currently, the development of efficient 

algorithms concentrates on the feasibility of mining data sets that do not fit in main 

memory but require sequential scans of the data from the disk. Some related works 

have been shown by Shafer, Agrawal and Mehta (1996) and Bradley et al. (1998a, 

1998b, 2000). 

With the expansion of the Internet, data arrives at an explosive rate. It 

becomes a reality that the present clustering algorithms cannot even mine a fraction 

of the massive data within satisfactory time. In particular, data accumulates faster 

than it can be mined. In this situation the clustering algorithms are not exhaustive, 

and some data remains unexplored and its amount grows tremendously as time 

progresses. This leads to more storage of data needed to be preserved for future use 

and the transfer of data from one storage device to another during clustering 

processing is difficult.  

 

Open data stream 

When the source of data is an open data stream, the application of clustering 

algorithms based on the concept of mining a fixed size data set becomes 

questionable and determining how many clusters in the data set becomes a key 

challenge. Most clustering algorithms for data mining assume that training data is a 

random sample drawn from a stationary distribution. These clustering algorithms 

learn an incorrect number of clusters and cluster structure when they erroneously 

assume that the database is stationary but in fact it is changing. For an open data 

stream, the number and structure of clusters may change over time. In many cases, it 
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is more accurate to assume that there are possible changes in the existing model 

structure where new clusters are added to it or the existing clusters are merged. Thus, 

it is challenging to develop clustering algorithms in data mining that operate 

continuously and dynamically within strict resource constraints, incorporate data sets 

as they arrive and keep the learned model up to date so that it will never lose 

potentially valuable information. 

 

High dimensional data 

Apart from the large number of data points, another aspect of massive data is 

the high dimensionality (Fayyad & Smith, 1996). The ability of present clustering 

method to handle high dimensional data is still very limited. There are two major 

challenges for clustering high dimensional data. The first one is the curse of 

dimensionality (Bellman, 1961). With increasing dimensionality, the time 

complexity of many existing clustering algorithms to explore clusters is exponential 

and soon become computationally intractable and therefore inapplicable in many real 

applications. Secondly, the specificity of similarities between points in a high 

dimensional space diminishes. It was proven in Beyer, Goldstein, Ramakrishnan and 

Shaft (1999) that for any point in a high dimensional space, the expected gap 

between the Euclidean distance to the closest neighbour and that to the farthest point 

shrinks as the dimensionality grows. This phenomenon may render many clustering 

algorithms for data mining ineffective and fragile because the model becomes 

vulnerable to the presence of noise. Most of the efforts to tackle high dimensional 

data clustering are confined to conducting pre-clustering step either by feature 

extraction or dimensionality reduction. However, both pre-clustering methods have 

their shortcomings.  
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This thesis focuses on the first two challenges in clustering very large data 

sets mentioned above. Scalable model-based clustering algorithms are proposed to 

work within memory limit, and can be applied for clustering open data stream. Effort 

to tackle high dimensional data is beyond the scope of this thesis. It is assumed that 

the data sets to be used in this thesis are either of reasonable dimension or 

appropriate techniques have been employed to reduce their dimensions. 

 

1.3 Complications in Clustering Analysis 
When the central issues for clustering large data are focus on computational 

scalability in term of the data size, dimensionality and memory space, there are 

special requirements posed by the applications of clustering analysis that complicate 

the challenges in clustering large data. The following are some of these typical 

requirements of clustering analysis listed down by Han and Kaufmann (2001) and 

the related problems that are of concern in this thesis. 

Ability to deal with attributes of different types: Most clustering algorithms 

assume data sets where objects are defined on either numerical values or 

categorical attributes. In such case, algorithms for clustering continuous data 

and categorical data can be used respectively. However, the data in the real 

world usually contains continuous and categorical attributes, that is, mixed 

attributes. This complicates the situation, in particular, when the similarity 

between categorical attributes is not taken into consideration during clustering. 

To solve the problem, most clustering algorithms use the approach of 

converting one type of the attributes to the other and then apply single-type 

attribute clustering algorithms. However, such transformation leads to two 
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major problems: the loss of semantics and waste of storage when the domain of 

the categorical attribute is large.  

Discovery of arbitrary shaped clusters: Different types of clustering 

algorithms will find different types of cluster structures. Some examples can be 

seen in Gionis, Mannila  and Tsaparas (2007), and Halkidi and Vazirgiannis 

(2008). Distance-based clustering algorithms using Euclidean or Manhattan 

distance measures tend to identify spherical clusters with similar size and 

density.  

Minimal requirement for domain knowledge: Many clustering algorithms 

require some user-defined parameters, such as the number of clusters, average 

dimensionality of the cluster and etc. However, in practical application, such 

information is unknown and difficult to determine.  

Insensitivity to the order of input records: Some clustering algorithms are 

sensitive to the input order of the data. For instance, clustering algorithms 

based on CF-tree: BIRCH (Zhang, Ramakrishnan & Livny, 1996) and 

TwoStep SPSS (SPSS Inc., 2003) may produce dramatically different 

clustering result when different input orders are used even though the data set 

are actually the same.  

The proposed clustering algorithms in this thesis apply model-based clustering 

method to address the above complications. 
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1.4 The Thesis 
1.4.1 Motivation 

How well a model-based algorithm performs in clustering massive data is 

constrained by the size of database, memory space and time spent. Working on 

compressed data rather than individual data points relaxes all these restrictions at the 

same time. However, the present compression techniques do not preserve the clusters 

structure well and cause loss of information. Most practical compression methods 

are based largely on heuristic but intuitively reasonable procedures. It motivates this 

thesis to use mixture model for data compression. Mixture model has solid 

mathematical foundations from the statistics community. It can describe clusters 

with a variety of shapes from data set either with continuous or mixed attributes, and 

have the advantage of automatically determining the number of clusters.  

To work beyond the limitation of memory buffer, clustering algorithms that 

compress massive data set incrementally and incorporate the compressed 

information into the in-memory model are much desired. However, related works 

only considered the case where the clusters are not overlapping and the number of 

clusters is assumed known and constant throughout incremental compression. In 

actual fact, any newly arrived data may cause the in-memory model obsolete. It 

motivates this thesis to develop scalable clustering algorithm that allows 

incorporation of newly compressed data into the current model with the flexibility of 

allowing change in the clusters structure, and operates continuously and dynamically 

within strict memory constraint. 

  

1.4.2 Objectives of the Thesis 

The main objective of this thesis is to develop scalable and exhaustive 

mixture model clustering algorithms for very large data sets that do not fit in the 
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computer memory buffer. Two algorithms, FlexClust and FlexClustMix are 

developed respectively for continuous data and mixed data. The proposed algorithms 

compress data incrementally according to the available memory buffer using the 

appropriate mixture model according to the type of data and incorporate the 

compressed information into the current model with the flexibility of allowing 

changes in the clusters structure and the number of clusters. 

The sub-objective of this thesis is to develop a model selection criterion 

based on the Bayesian approach to determine the changes in clusters structure and 

number of clusters between the current model and the data drawn incrementally in 

the memory buffer. 

Another sub-objective of this thesis is to develop models according to the 

type of data for incorporating incrementally compressed information characterized 

by maximum likelihood estimates (MLEs) into the current models with the 

flexibility of allowing changes in the clusters structure and the number of clusters. 

The last objective of this thesis is to develop a mixture model for clustering 

mixed data, which reduces the number of parameters to be estimated in the EM 

algorithm and can be incorporated into the proposed FlexClust algorithm for the 

development of the FlexClustMix algorithm. 

 

1.4.3 Contribution of the Thesis 

The contributions of this thesis are given below. 

1 It introduces two scalable mixture model clustering algorithms, FlexClust 

and FlexClustMix, respectively for continuous and mixed data sets that do 

not fit in the memory buffer. The algorithms can be applied to find useful 
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information in the areas that involve large data set such as web mining, 

image segmentation, software metrics and tomography, and transaction data. 

2 It adapts the joint probability distribution for mixed variables that suggested 

by Cox (1972), which has not been explored any further, to propose a 

mixture model for mixed data, Gaussian location model. The Gaussian 

location model reduces the number of parameters to be estimated during the 

EM algorithm, thus speeding up parameters estimation, and therefore it is 

suited for clustering very large mixed data sets.  

3 It proposes two mixture distributions, the bi-Gaussian mixture model and bi-

Gaussian location model, which allow changes in the number of mixture 

components, to incorporate the incrementally compressed continuous and 

mixed data respectively into the current models. The models accommodate 

clusters that recovered from the later compressed data.   

 

1.5 Overview of Thesis 
This thesis consists of six chapters. The present chapter gives the research 

background and lists the main challenges and complications in clustering very large 

data sets. 

Chapter 2 surveys the techniques used to handle large data set in clustering. 

Techniques on scaling up model based clustering method and techniques for scaling 

down data set are discussed. Sequential clustering algorithms that allow change of 

clusters structure are covered. Clustering methods for mixed data, particularly on 

conditional Gaussian model and its derivations, are reviewed.  

Chapter 3 extends the work of partial classification to the case where the 

unclassified data is drawn from or outside the population of the trained model. It 
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paves the way to the development of the bi-Gaussian mixture model. The derivation 

of a proposed model selection criterion, modified Bayes factor (MBF), is presented. 

In Chapter 4, the framework used to develop a scalable mixture model 

clustering algorithm FlexClust for continuous data sets that do not fit in the memory 

is presented. This framework consists of three parts: incremental data compression, 

determination of cluster identity, and incorporation of newly condensed data. The 

performance of FlexClust is examined for both synthetic and real world data, and the 

results are compared to a number of current clustering algorithms.  

 In Chapter 5, a mixture model for clustering mixed data, Gaussian location 

model, is first developed and its performance is compared to some existing models. 

The incorporation of the Gaussian location model into FlexClust algorithm to 

develop a scalable mixture model for clustering very large mixed data sets, 

FlexClustMix, is described. The evaluation of the FlexClustMix algorithm on very 

large mixed data is presented.   

Chapter 6 concludes and discusses the contributions and limitations of the 

thesis and presents some research directions for future work.  
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2  

A Review of Clustering for Massive Data Sets 
 

In this chapter, the review starts with the related work in scaling clustering 

algorithm for large data set in the direction of scaling up algorithm and scaling down 

data set. The focus is particularly on the method of scaling down data especially 

incremental data condensation which actually motivates the proposed scalable 

clustering algorithm. Sequential clustering algorithms that allow change in clusters 

structure are also reviewed to shed some light in developing the proposed clustering 

algorithms. This follows the relevant work in estimating the number of clusters 

specifically for condensed data. Lastly, the clustering algorithms for mixed data are 

reviewed. 

 

2.1 Scale-Up Model-based Clustering Algorithm 
In model-based clustering method, the Expectation-Maximization (EM) 

algorithm (Dempster, Laird & Rubin, 1977) is usually used for iterative maximum 

likelihood estimation. McLachlan and Krishnan (1997) had detailed some desired 

properties for the EM algorithm. Unfortunately, the EM algorithm needs a complete 

pass through the data in every iteration and this causes very slow convergence. This 

problem becomes more severe when the data set is large. In most of the research 

efforts, the direction to scale up model-based methods for large data set clustering is 

to speed up the EM algorithm convergence.  

In Gaussian mixture model where the computational of M-step is simple, the 

computation time for EM algorithm to convergence depends mainly on the E-step 

because E-step passes each data points (Ng & McLachlan, 2003). Thus, as an 
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adaptation to scale up EM algorithm to large data sets, various improvements have 

been done on the E-step. Variants of EM algorithm based on a partial E-step have 

been proposed to accelerate the convergence rate. For instance, in incremental EM 

(Neal & Hinton, 1998), E-step is performed to update parameters in blocks of 

observations at a time before the next M-step is undertaken. The argument is that 

updating blocks of observations is quicker than a complete scan of all the 

observations, however, a full E-step is performed for the first scan to avoid 

premature component starvation (Thiesson, Meek & Heckerman, 2001). For lazy 

EM (McLachlan & Peel, 2000), the posterior probabilities of component 

membership of some observations are not updated on every E-step. On the E-step, 

those observations with maximum posterior probability above a threshold close to 1 

are held fixed whereas the remaining observations are updated. In sparse EM (Neal 

& Hinton, 1998), for a given observation only posterior probabilities of component 

membership above a certain threshold are updated on E-step while the posterior 

probabilities of the remaining components of the mixture are held fixed. In both 

sparse EM and lazy EM, the M-step only update the corresponding mixture 

parameters, and a full E-step is performed periodically to ensure convergence.  

 There are also techniques being introduced to switch alternatively with the 

iteration of EM algorithm so that the convergence of EM can be speeded up. For 

instances, the conjugate-gradient acceleration of Jamshidian and Jennrich (1993), 

and Newton approximations, which includes the quasi-Newton methods (Lange, 

1995; Aitken & Aitken, 1996; Jamshidian & Jennrich, 1997). However, these 

techniques were developed for small data sets.  

 The efforts of scaling up model-based clustering algorithms by speeding up 

the EM algorithm have lagged behind the development of scalable clustering. Even 
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though these methods reduce computational time, they still require full scan of all 

the observations in some EM iterations. Apparently, when the data set is too large to 

be loaded into the memory buffer, these techniques would be impractical. Hence, to 

date, scaling up model-based clustering algorithms is still not a satisfying solution 

for very large data sets. A more promising approach would be the scaling down of 

the data. 

 

2.2 Scale Down Data Techniques 
Clustering methods are developed based on small data set. Various 

adaptations have been applied to scale up these basic clustering methods to 

accommodate huge data set. Unfortunately, working along this line is to complicate 

the complexity problem. Alternatively, if the large data set can be scaled down 

without much loss of information, it can be clustered using the existing clustering 

methods which perform well on small data set. This is not only assuring the 

clustering result, but also saves a lot of computational time and enables clustering of 

large data set works within the limited memory buffer. The critical issue in scaling 

down data would be how to avoid the loss of information. In general, there are two 

common approaches in scaling down data in the discussion as follows.   

 

2.2.1 Sampling  

A general intuitive approach to scale down data is through sampling. A 

sample is assumed to reflect the whole data structure and thus the clustering result 

can be generalized to the entire data. Nevertheless, a number of critical issues have 

to be addressed: sampling method to be employed, incorporation of sampling in 

large data clustering, and the appropriate sample size used.  
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2.2.1.1 Random Sample Training 

 Researchers usually obtain random sample to represent large data set but 

perform according to different procedures to speed up large data clustering. 

Commonly, a random sample is used as training data to obtain a model, and this 

model from the sample data is then used to perform discriminant analysis to classify 

the rest of the data. The notion is shown in CLARA (Clustering LARge Application) 

(Kaufman & Rousseeuw, 1990). CLARA draws a random sample of the data set and 

applies k-medoids to cluster the sample, then classifies the rest of the data points to 

the nearest medoids of the sample. The procedures are repeated for a few times to 

find a set of medoids that gives the best clustering result with the smallest average 

distance. CLARA assumes the number of clusters is known. The procedure with the 

flavour of discriminant analysis is also applied in model-based clustering for 

segmenting magnetic resonance image (Banfield et al., 1993; Wehren, Simonetti & 

Buydens, 2002).  A random sample is first taken as training set and fitted into a 

mixture model. The resulting model is then applied to perform discriminant analysis 

to classify the remaining data. Basically, it is an extension of the final E-step from 

the sample model to obtain conditional probabilities of the remaining data (Fradley 

& Raftery, 2002). Wehrens, Buydens, Fraley and Raftery (2004) showed that this 

simple method may lead to unstable results. Thus, they suggest two modifications to 

a stable method with better performance: 1) several tentative models are identified 

from the sample instead of one, and 2) more EM iterations are used instead of just 

one E-step to classify the whole data set.   

Rocke and Dai (2003) proposed the concept of sampling and subsampling to 

improve the training of model from sample, and the trained model is used to classify 

the remainder. In the proposed strategy, a random sample is first fitted using EM 
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algorithm to find the group labels. Multiple stratified samples from the sample are 

then drawn to find the estimates with the highest likelihood via EM algorithm. The 

maximum likelihood estimates of the subsample are used as initial values to perform 

EM algorithm to fit a model for the sample or on a supersample which is much 

larger than the sample. Multiple random samples are selected to repeat the process of 

model training. The best model obtained is then used to classify the whole data set. 

The idea of subsampling the sample of training data is also shown in Davidson and 

Satyanarayana (2003) to speed up k-means clustering. The subsamples of a randomly 

selected training data are clustered by k-means, and then the resulting cluster centers 

are bootstrapped and averaged to build a single model to be applied to the whole data 

set.  

 

2.2.1.2 Recovery of Small clusters 

Although various strategies as described above have been proposed to use 

random sample to train a model that can be extended to classify a large population, 

the question of how accurate is the trained model has not been addressed. The 

efficiency of the trained model depends on the strategies used to train it, and also the 

quality of the drawn sample used for training. These training strategies may reduce 

the accuracy of the classifier model for pathological or non-representative sample. 

Even in the case where all the clusters in the data are of equal importance, sampling 

may provide significant different solution from the one obtained from the entire data 

set (Posse, 2001). Another possible reason which causes break down of the model 

trained from random sample is when there are small clusters in the large data set. 

The fact is that random sampling may not be able to capture enough representatives 

from small clusters, and in some cases the representatives from the small clusters are 
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identified as noise or outlier. As a result, small clusters may be underestimated or 

being missed out (Gordon, 1986; Fayyad & Smyth, 1996). Fayyad et al. (1996) 

improved this by proposing iterated sampling in which data points from the 

remainder that do not fit well (with low probabilities) in any clusters of the model 

trained from the sample are accumulated for further investigation. If the number of 

poorly classified data points is small, a small sample from the data set is selected and 

mixed with these data points to form a second sample. Then, clustering is performed 

on the second sample to look for tight clusters which are considered as candidates of 

newly discovered small clusters. Fradley and Raftery (2002) modified the above 

iterating sampling in the selection of second sample. Instead of merely a small 

sample from the data set, an equal proportion stratified sample from those which 

have been fitted well in any clusters is mixed to the poorly classified data points. 

Fraley, Raftery and Wehrens (2005) extended the iterating sampling to incremental 

model-based clustering for identifying small clusters in large data set. The poorly 

classified data points are grouped in a separated cluster, and run one or more steps of 

EM algorithm. If it improves BIC, the decision of adding new small cluster to the 

model is made. The procedure repeats and new small clusters can be added 

incrementally. These latest development in iterating sampling are contradicted with 

the concept of sample trimming. The basic idea of sample trimming is to remove 

outliers that are not sufficiently representative of the data set as a whole so that the 

trimmed sample reflects more accurately the parent population and improves 

estimates from random sample (Miller, 1986). To enhance the possibility of the 

inclusion of small clusters at each stage of the incremental sampling in a multistage 

clustering algorithm, Maitra (2001) proposed a scheme to progressively increase 

their weights. The progressive scheme of Maitra (2001) and iterated sampling of 
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Fayyad et al (1996) are adapted in this thesis to propose a procedure to discover 

small clusters. 

To reduce the biases caused by random sampling when the cluster sizes are 

skewed, Palmer and Faloutsos (2000) proposed density biased sampling which is 

based on the concept of weighted sample. The sampling method favours clusters 

containing fewer data points, and thus avoids the missing of these small clusters.  

However, the implementation of the sampling method needs a prior knowledge of 

how the data is distributed. Although this can be approximated using hashing based 

bin labels, still a full database scan is required and it may be computationally 

intractable for large data set.   

 

2.2.1.3 Optimal Sample Size 

While generating good and representative samples remains a challenging 

issue for sampling, determining an optimal sample size for model training is another 

difficulty. Domingos and Hulten (2001) used Hoeffding bound (Hoeffding, 1967) to 

derive a bound on the accuracy of the output as a function of sample size to choose a 

sample size for k-means clustering. A usual way of optimal sample size 

determination is usually assisted by a learning curve which is constructed from 

growing samples to bigger and bigger sizes until a stopping criterion is satisfied. 

Dynamic sampling (John & Langley, 1996) and progressive sampling (Provost, 

Jensen & Oates, 1999) have been used to draw a sequence of data sets and are 

stopped when the accuracy of the current data set meets the predefined thresholds. 

However, these two sampling methods do not consider the computation costs. Meek, 

Theiesson and Heckerman (2001) incorporated the learning curve method into the 

model-based clustering method to determine sample size. In a mixture model with 
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known number of components, the learning algorithm grows the sample sizes until 

the expected costs outweigh the expected benefit associated with training. Actually, 

it is likely that the sample size required to estimate the model accuracy of the whole 

data set varies according to data set. Instead of finding the optimal sample size, 

Fraley et al. (2005) suggested to draw multiple samples in any sampling-based 

strategy to increase the chances to find a good model for the data. Some related 

works are shown in Kaufman et al. (1990), Rocke et al. (2003) and Wehrens et al. 

(2004).  

 

2.2.1.4 Sampling for Memory Buffer 

Despite the improvement in clustering speed, applying sampling to scale 

down data in most of the works is limited to sample model training and extending 

the trained sample model to the full data set. Bradley et al. (1998a; 1998b; 2000) had 

shown another branch of using sample to scale down data. They considered a very 

practical case where the data size is larger than the available memory size, and 

applied sampling to load data incrementally and incorporated in an incremental 

clustering algorithm. Indeed, this approach motivates the scalable and exhaustive 

clustering algorithm in this thesis.  

 

2.2.2 Data Condensation 

Data condensation or data compression has been widely applied in image 

processing which is also known as vector quantization (Gersho & Gray, 1992). The 

notion of data condensation was initialled to free more disk memory for the 

computation of large database. To scale down data through data condensation is 

often referred to as summarizing or describing the data points having specific 

structure particularly a dense region by a specific set of quantities (prototype). In this 
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case, data condensation can actually be considered as a clustering process at pre-

clustering stage. Prototype characterized by triple sufficient statistics has been 

widely used because it can be accommodated in most of the clustering methods. For 

instance, a triple of summarized information (SUM, SUMSQ, N), where SUM and 

SUMSQ are the linear sum and the sum of square of the compressed data points, and 

N is the number of data points in the compressed set, has been used in Bradley et al. 

(1998a, 1998b, 2000), Zhang et al. (1996), and Jin, Leung, Wong and Xu (2005), 

whereas a triple of sufficient statistics ),,( nSx , where x  and S are the mean and 

covariance of the compressed data points, and n is the number of data points of the 

compressed set, has been used in Steiner and Hudec (2007) and Tantrum Murua, and 

Stuetzle. (2002). A set of these prototypes forms a prototype system that represents 

the original data set, which needs less storage compared to retaining all the data 

points. However, scaling down data using data condensation faces two critical 

challenges: 1) condensing data sets that do not fit in the computer memory buffer, 

and 2) loss of information. These two challenges are closely related to the data 

condensation procedure, the condensation method and the resulting prototype. The 

related works in these issues as discussed in the following have inspired the direction 

of this thesis.  

 

2.2.2.1 Condensation Procedures 

In general, there are two procedures for data condensation: 1) one time 

condensation and independent from the clustering algorithm, and 2) incremental 

condensation and closely related to the current fit of the clustering model. 
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One Time Condensation 

In the one time condensation procedure, all the data are loaded in the 

memory, and data condensation is carried out to create in-memory summary of data 

before any clustering algorithm is performed. One major advantage of the one time 

condensation procedure is that the condensation is done on the entire data set as a 

whole and thus avoids loss of information due to partition or sampling of data. There 

are few well known clustering algorithms in the literature applied data condensation 

approaches according to this contemplation. BIRCH (Balanced Iterative Reducing 

and Clustering Using Hierarchies) (Zhang et al., 1996) introduces two core concepts 

for incremental one time condensation: Clustering Feature (CF) and CF tree. The 

Clustering Feature is a triple summarized information about the compressed compact 

data points in a subcluster, CF = (N, LS, SS), where N is the number of data points in 

the subcluster, LS and SS are the linear sum and the square sum of the N data points 

respectively. The CF tree is a summary of the subclusters which is used for guiding 

new insertion of subclusters represented by their CF vectors into the closest leaf 

node. When CFs are incrementally computed, the CF tree will be built dynamically. 

By controlling both the branching factor and threshold parameters, the CF tree can 

be rebuilt by splitting or merging the leaf node or non leaf node to prevent it running 

out of memory. Then, a hierarchical agglomerative clustering algorithm is applied to 

cluster the leaf nodes of the CF tree. Lastly, k-means is used for refining the 

clustering of data points and this allows data points grouped in the initial cluster to 

be separated from that group. This refining step overcomes the inability of pure 

hierarchical method to perform adjustment once a merge or a split decision has been 

executed. However, like other tree-structure clustering methods, BIRCH also faces 

the drawback of dependence of data input order. Based on the framework of BIRCH, 
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a CF for mixed data was developed in the format CF = (N, LS, SS, Nkl ), where N, LS 

and SS have the same definitions as BIRCH, and Nkl is the number of data points 

whose k-th categorical attribute takes the l-level (Chiu, Fang, Chen, Wang & Jeris, 

2001). Since CF uses notion of radius and diameter from centroid to compress the 

dense region, BIRCH and other clustering algorithms that applied CF do not perform 

well if the original clusters are not in spherical shape (Palmer & Faloutsos, 2000; 

Han et al., 2001). Apart from that, using CF vector to represent condensed data 

raises three problems: 1) structural distortions, 2) size distortions, and 3) lost objects 

(Breunig, Kriegel, Kroger & Sander, 2001). The latter two problems have a rather 

straightforward solution by weighing each CF but improve very little on the 

clustering quality. To solve the structural distortion problem, a new prototype for the 

compressed data points so called Data Bubbles (Breunig et al., 2001) is introduced to 

speed up the hierarchical clustering algorithm OPTICS (Ordering Points To Identify 

the Clustering Structure) (Ankerst, Breunig, Kriegel & Sander, 1999). Data Bubbles 

has the distance measure B = (rep, n, extent, nnDist), where rep is a representative 

for a set of data and the natural choice is the mean, n is the number of compressed 

data points, extent is a radius extends around rep such that most of the compressed 

points are located, and nnDist is a function denoting the estimated average k-nearest 

neighbor distances within the compressed data points for some values k.  

To speed up the time consuming iterative refinement clustering algorithm for 

very large database, the concept of data condensation has also been incorporated 

with EM algorithm in Gaussian mixture modeling to develop new algorithms such 

like EMACF (EM Algorithm for Clustering Features) (Jin et al., 2005) and sufficient 

EM algorithm (Steiner et al., 2007). The concept in EMACF and sufficient EM 

algorithms is to condense data points in subclusters from a large data set into 
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prototypes, and then fit a mixture model for the prototype system by a variant of EM 

algorithm. EMACF algorithm introduces BIRCH-based and grid-based method to 

condense subcluster and represents it by CF vector whereas sufficient EM employs 

k-means for data compression and represents the condensed data by a prototype 

characterized by a triple of sufficient statistics ),,( nSx , where x  and S are the mean 

and variance of the subcluster, and n is the number of data points in the subcluster. 

Instead of the observed data points, the subcluster means are used in the variant of 

EM in EMACF and sufficient EM. The density of a subculster mean is defined by a 

mixture of Gaussian distribution weighted by the number of observed data points in 

the subcluster. The parameters of component means are estimated by the sum of 

weighted subcluster means. The distinct difference between EMACF and sufficient 

EM is the estimation of component covariance matrices. The former uses sum of 

weighted covariance between subcluster means whereas the latter uses not only 

weighted covariance between subcluster means but also includes the sum of 

weighted covariance within subcluster means. The advantage of such inclusion is 

that it takes into account the structure information of the original data, but it results 

in non monotonically convergence of likelihood function. Thus, additional 

conditions are considered for termination for sufficient EM, which are the sums of 

absolute changes in the mixture parameters respectively must be smaller than a set of 

thresholds (Steiner et al., 2007).  

The main challenge in the one time for all data condensation is the 

availability of memory buffer to load the whole data set at once. With no prior 

knowledge about a very large database, the issue of how many prototypes should be 

chosen in the one time condensation to preserve the original model structure seems 

unclear. 
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Incremental Condensation 

 In contrast to the one time condensation that is done a step independent of the 

clustering algorithm, incremental condensation is done closely related to the current 

fit of the mixture model. For data mining applications, when the data size is larger 

than the available memory space, incremental data condensation according to the 

available memory buffer and incorporating the compressed information into the 

current model fit is one of the solutions for this problem. The incremental 

condensation procedure maintains only the prototype system in the memory and 

purges the data points to free some memory for filling new data points to the 

memory buffer, and this makes it scalable to very large data sets. On top of that, it is 

closely related to the current fit of the clustering model and thus provides usable 

model at any time. Related works are shown in scalable k-means (Bradley et al., 

1998a) and scalable EM (Bradley et al., 1998b, 2000) algorithms. The two scalable 

algorithms operate over a single scan of the data and condense the data to retain only 

the summarized information in the memory buffer, and the data points are purged. 

The freed memory allows subsequent scans of additional data. Both scalable k-

means and scalable EM algorithm are similar except: 1) the model parameters are 

initialized based on k-means and Gaussian mixture model respectively, and 2) the 

current model parameters are updated through extended k-means and extended EM 

(ExEM) respectively. In the two aforementioned algorithms, the data points are 

scanned once and divided into three sets: 1) a discard set, DS (data points which 

membership are certain), 2) a compressed set, CS (data points which are know to 

belong together), and 3) a retained set, RS (data points which membership are 

uncertain). Compressions are carried out for the data points in the discard set and 

compressed set. In primary compression, the DSs are identified by thresholding the 

Mahalanobis radius near the mean of clusters of the in-memory model and then they 
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are condensed and summarized within the radius. The prototype of a DS is a triple of 

summarized information (SUM, SUMSQ, N), where SUM and SUMSQ are the linear 

sum and the sum of square of the data points in the discard set respectively, and N is 

the number of data points in the discard set. In secondary compression, k-means is 

used to determine the CS or the dense and tight subclusters that are not compressed 

in primary phase, and the type of prototype same as primary compression is formed. 

These resulting subclusters from the CS are merged with each other and existing 

clusters using hierarchical agglomerative clustering. The current model update is 

done over the singleton data points from RS and the previous model parameters 

using extended k-means and extended EM respectively for scalable k-means and 

scalable EM algorithms. Subsequent refinement of model update is then based on the 

summarized information from both primary and secondary compressions. The notion 

of one scan and incremental data condensation enable the algorithms to speed up the 

clustering process and scale to very large database. However, scalable k-means and 

scalable EM face two main challenges: 1) missing out small clusters due to the 

incrementally drawn samples which are not representative, and 2) the number of 

clusters is assumed known and unchanged when new data is incorporated into the 

current model, which in actual fact may be erroneous. Furthermore, primary 

compression near the mean of the clusters using Mahalononis radius may overlook 

any possible nested clusters. Steiner et al. (2007) pointed out that the high degree of 

data compression into a known number of mixture components in scalable EM limits 

promising result only to well separated mixture components. Apart from that, ExEM 

is derived in a heuristic way and it is not easy to ascertain its convergence (Jin et al., 

2005). This thesis proposes a new algorithm to overcome the problems in the 

scalable EM. 
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2.2.2.2  Condensation Methods 

 As data condensation is to identify and cluster data points in dense region 

and then represents them by summarized information, it can be undertaken by any 

clustering procedure. The popular k-means clustering algorithm has been considered 

widely for data condensation in view of its simplicity to apply and its summarized 

information can be accommodated in most of the clustering methods. However, 

using k-means for data condensation, for instances, BIRCH, scalable k-means, 

scalable EM, EMACF and sufficient EM algorithms may destroy the original model 

structure if the clusters are not homogeneous and spherically shaped, and not 

reasonably well separated. Ordonez and Omiecinski (2002) suggested a model-based 

clustering algorithm, FREM (Fast and Robust EM), using EM algorithm itself to 

condense data points according to a desired number of components. FREM 

condenses data points from the same mixture component during the E-step and 

represents them by the prototypes similar to scalable EM, i.e. (SUM, SUMSQ, N). In 

the M-step, these prototypes are used to update the mixture parameters in order to 

avoid repeated scans over the data points. Apparently, FREM speeds up the 

computation of the M-step but overall the algorithm is still considered slow for large 

data clustering because the computational time spent in M-step depends only on the 

number of groups in the mixture models (Ng et al., 2003). Tantrum, Murua and 

Stuetzle (2002) employed hierarchical model-based clustering method for data 

condensation in their adaptation of fractionation hierarchical clustering (Cutting, 

Karger, Pedersen, & Tukey, 1992) to hierarchical model-based fractionation and 

refractionation algorithm. The basic idea of model-based fractionation is to split the 

data set into fractions, and then compresses each fraction into a fixed number of 

clusters using hierarchical model-based clustering method. These resulting clusters 
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are termed as meta-observations which are characterized by the similar prototypes as 

sufficient EM, i.e. triples of sufficient statistics ),,( nSx . Refractionation is applied 

to further splitting the fractions. Then, the final meta-observations from all the 

fractions are clustered. Using model-based clustering to compress data may help to 

preserve the clusters structure better. However, splitting the meta-observations again 

and again may cause more and more loss of information. 

 Data condensation speed up large data clustering, but it has the weakness of 

not letting the wrongly grouped data points to migrate once condensation is 

performed and causing loss of information. However, by prudent consideration of 

the choice of data condensation method, the loss of information can be minimized. 

Steiner et al. (2007) suggested an acceptable loss of information is granted by 

compact prototypes, and condensing data according to the observed structure of the 

data can generate these compact prototypes. This thesis uses Gaussian-based mixture 

model to condense data as it has the advantage to model clusters of different shapes, 

volumes and orientation, furthermore most of the data can be approximated to 

Gaussian distribution (McLachalan & Basford, 1988; Banfield et al., 1993; Celeux & 

Govert, 1995; Dasgupta & Raftery, 1998), thus, the resulting prototype should be 

more compact than the prototypes generated by other data condensation methods. 

 

2.2.2.3 Prototypes of Condensed Data 

From a practical point of view, the types of prototype of the condensed data 

should be as simple as possible to reduce memory storage. For instance, a duplet 

prototype needs less storage than a triple prototype. However, the sufficiency of the 

prototype should be also taken into account. Thus, prototype that is able to represent 

and characterize the original structure of the condensed data, and need less memory 
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storage is desirable. Prototype characterized by triple sufficient statistics has been 

widely used because it can be accommodated in most of the clustering methods. This 

thesis chooses to represent the prototypes of the condensed continuous data and 

mixed data using triple and quadruple of maximum likelihood estimates (MLEs) of 

the mixture models used to condense the data respectively. The resulting MLEs are 

used to update the model parameters through the proposed bi-mixture models, and 

can be used in the proposed model selection criterion to determine change in clusters 

structure. 

 

2.3 Change in Clusters Structure 
The development of clustering algorithms for data mining is now 

concentrating on the ability of incorporation of new data from sequential scans into 

the trained model. The main advantage of this property is that it enables the 

algorithms to handle data sets that are too huge to be loaded into the memory buffer 

to be processed as a whole. Furthermore, with the expansion of the Internet, data 

arrives at explosive rate continuously from open stream. It is important to 

incorporate new data to keep the trained model up to date so that it would never lose 

potentially valuable information. However, the main challenge in incorporation of 

new data into the trained model is to consider the probable change in clusters 

structure between the sequential scans.  

To maintain a reliable model in clustering open data stream, Lee, Cheung, 

and Kao (1998) proposed a dynamic sampling technique to detect if sufficient 

change has occurred in the structure of a data set, then the trained model is re-

estimated using the full set of available data. However, like most of the existing 

algorithms, the retraining of the learned model using the data set at hand together 
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with the newly added data complicates the situation as the large data set has grown 

even larger, and it is a waste of resources because the information from the previous 

model is not being used to build the new model. Within the framework for mining 

open data stream proposed by Domingos and Hulten (2003) which takes the change 

in clusters structure into consideration, massive stream version of k-means clustering 

(Domingos & Hulten, 2001), and EM algorithm for mixture of Gaussian (Domingos 

& Hulten, 2002) have been designed and implemented. The basic concept of the 

algorithms is to train model from finite data in finite time that is essentially 

equivalent to the one which would be obtained from infinite data. The relative loss 

between the finite data and infinite data models is bounded as a function of the 

number of data points used at each learning step of the finite data, and the number of 

these data points is minimized subject to target limits on the loss. The algorithm 

assumes that the data points are independent and identically distributed. However, 

many data stream evolves over time.  

 Some sequential clustering algorithms have been proposed for clustering 

large data with the consideration of change in clusters structure. Hartigan (1975) 

proposed single pass sequential algorithm where a sample is first trained and the 

remaining data points are classified one by one in the trained model. If the distances 

of a data point to all existing clusters exceed a fixed threshold, the data point will be 

placed in a new cluster. Kaufman et al. (1990) highlighted several shortcomings of 

this method: 1) the number of clusters found is not certain, 2) the first few clusters 

are usually much larger than the later ones since they get first chance when each 

object is allocated, 3) the results are dependent on the input order of objects. A 

model-based version of the similar multistage mechanism, which updates change of 

clusters structure using a modified likelihood ratio test statistic, is shown in Maitra 
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(2001) with application in software metrics and tomography. Although it manages to 

incorporate the data incrementally added to update the clusters structure and recover 

new clusters, it also suffers from the problem of identifying too many clusters due to 

the assumption of common covariance, a requirement of the modified likelihood 

ratio test. Furthermore, clustering the remaining data one by one is considered too 

slow. This thesis develops a scalable and exhaustive algorithm for clustering data 

sets that is too huge to be all loaded in the memory buffer in a spirit similar to the 

multistage algorithm of Maitra (2001) but using different method to test new 

clusters. 

 

2.4 Estimating the Number of Clusters for Condensed Data 
In most of the clustering algorithms, the number of clusters is assumed 

known. However, in practice the number of clusters in a given data is always not 

known in advance. Assessing the number of clusters is an important but very 

difficult task especially when the data set is not being processed as a whole. In finite 

mixture model, the number of components of the mixture model corresponds to the 

number of clusters. A straightforward approach is to use likelihood ratio test to 

formulate the number of mixture components in terms of a test on the smallest 

number of components in the mixture model compatible with the data. However, this 

test statistic does not have the usual asymptotic null distribution of chi-square in 

mixture models (Wolfe, 1971). McLachlan (1987) proposed to use bootstrapping 

approach to assess the null distribution of the likelihood ratio test statistic. An 

alternative approach is to use an approximation to twice the log Bayes factor called 

Bayesian Information Criterion (BIC) to determine the number of clusters from the 

model that maximized the likelihood. Other approaches exist for choosing the 
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number of components based on model likelihood. Banfield et al. (1993) proposed 

the approximate weight of evidence (AWE) as an alternative to BIC. However, 

Fraley et al. (2002) had shown that AWE performs consistently worse than BIC, and 

not comparable between models with different restriction level. Instead of BIC and 

AWE, alternative approaches have been used to estimate the integrated likelihood 

(Cheeseman & Stutz, 1995; Evans, Alder & DeSilva, 2003). 

There is still very limited work done on developing alternative methods to estimate 

the number of clusters in condensed data. Most of the clustering algorithms designed 

for condensed data assumed the number of clusters is known. Steiner et al (2007) 

proposed a variant of BIC, which takes sufficient likelihood as an approximation of 

the likelihood of the original data. Unfortunately, even when the additional 

conditions for the termination for sufficient EM, i.e. the sums of absolute changes in 

the mixture parameters respectively must be smaller than a set of thresholds, are 

held, the values for the variant of BIC for a range of number of clusters, G, can be in 

an irregular trend, and the number of clusters for the condensed data is determined 

based on the minimum value for the given range of G. It chooses incorrect model if 

the given range of G does not consist of the true number of clusters. Based on the 

study of Wolfe (1971) that the degree of freedom of the likelihood ratio test would 

be approximated by twice the difference in the number of parameters, Chou and 

Reichl (1999) developed a penalized BIC with weight of penalty equal to 2 for 

model compression criterion for decision tree state tying. Their experimental results 

found that the penalized BIC can be used as a more effective model compressing 

method compared to BIC which leads to overgrown tree.  
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2.5 Mixed Variables Model-based Clustering 
Since the inception of incorporating finite mixture model in clustering, it has 

received great interest from the statistics community and turns out to be one of the 

most successful applications. The application of finite mixture model in clustering 

depends on the types of data  (i.e. nominal, ordinal or numerical) or the types of 

variables (i.e. categorical or continuous). Wolfe (1967, 1970) first suggested to using 

normal mixture model for clustering continuous variables. The model is described 

fully by McLachlan (1982), and McLachlan and Basford (1998). For binary data 

clustering, Lazarsfeld and Henry (1968) introduced a mixture of Bernoulli densities 

which is also known as the traditional latent class model. The latent class model was 

then extended to nominal variables (Goodman 1974a, 1974b) and ordinal data 

(Clogg, 1988; Heinen, 1996). However, these mixture models have the limitation of 

not being able to cluster mixed data (or mixed variables data), and the drawback is 

critical because in real life applications, clustering always confronts with mixed data. 

It is common to transform the mixed variable to either only categorical or continuous 

variable, and then applies clustering method according to the obtained type of 

variable. Apparently, which ever way of such transformation, loss of information 

occurs. 

To consider both categorical and continuous variables in clustering, Everitt 

(1988) proposed the underlying variable mixture model in which the categorical 

variables are assumed to have arisen through threshold of unobservable continuous 

variables, and the observed continuous variables are assumed to be jointly 

multivariate Gaussian.  In practice, the method is limited to one or two categorical 

variables (Everitt and Merette, 1990). For q categorical variables, it requires q-

dimensional integration at each iteration of the EM algorithm, and therefore 

computationally intractable for large q. As an alternative, Lawrence and Krzanowski 
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(1996) proposed a finite mixture model for mixed-mode data which assumes the 

cluster conditional densities conform to the conditional Gaussian model for mixed 

variable. In contrast to the threshold approach considered by Everitt (1988), the 

conditional Gaussian model does not impose any orders of the categories in each 

categorical variable and any structure on the conditional means. There are few 

assumptions in the conditional Gaussian model: 1) the number of clusters is known, 

2) the distribution of the continuous variables is conditioned by the location, and (3) 

the covariance matrix is the same throughout all locations and clusters. The 

drawback of the conditional Gaussian model is that its great flexibility leads to 

multiple distinct equally likely solutions of the likelihood equations (Willse & Boik, 

1999). Willse et al. (1999) proposed to impose restrictions on the conditional means 

of the continuous variables to solve the non-identifiability problem in the conditional 

Gaussian model. A modified location model (MLM) is proposed by Franco, Crossa, 

Villasenor, Taba, and Eberhart (1998) to tackle the problems of empty cells arising 

in the conditional Gaussian model. The MLM assumes: 1) the mean vectors of 

continuous variable do not depend on the multinomial cell, but on the clusters. The 

MLM uses the information from the full cells to compute an estimator of the mean 

and variance of each cluster that are weighed by the number of observations in the 

cells, 2) independence between the continuous variables and the collapsed 

categorical variable, 3) heterogeneity or homogeneity covariance matrices across 

clusters. 

A variant of the conditional Gaussian model had been shown in the works by 

Jorgenson and Hunt (1996) and Hunt and Jorgenson (1999), where a general class of 

mixture models to include data having mixed categorical and continuous variables 

was proposed. The model is a joint generalization of both latent class models and 
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mixtures of multivariate normal distribution. By assuming local independence, they 

suggested to partitioning an observed vector of variables where the variables within 

partition cell are independent of the variables in the complementary partition cell. In 

the study of normalized Gaussian expert network, Ng and McLachlan (2008) 

adopted the conditional Gaussian model by considering some dependence between 

the categorical and continuous variables.  

The mixture models for clustering mixed data mentioned above are confined 

to small data sets. To the best of the author’s knowledge, there is no mixture model 

clustering algorithm developed for very large mixed data sets. In this thesis a 

mixture model for mixed data clustering is proposed, and it is used for compressing 

mixed data into summarized information in a quadruplet of MLE of the sufficient 

statistics, mixture proportion and proportions of observations from a location 

conditional on a cluster. The proposed model is then incorporated into a scalable 

framework to develop a scalable clustering algorithm for mixed data. 
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3  

Determining the Number of Components in Bi-mixture model 
 

 

This chapter extends the idea of partial classification to the problem of updating a 

trained mixture model on the basis of unclassified data that is drawn from or outside 

the underlying population.  The first part of this chapter proposes a model selection 

criterion, modified Bayes factor (MBF), for determining change in clusters structure 

between two Gaussian mixture models. The second part proposes a distribution, bi-

Gaussian mixture model, for the incorporation of the model fitted on the unclassified 

data into the trained model. Simulations are carried out to compare the results 

obtained using the proposed bi-Gaussian mixture model and the Gaussian mixture 

model fitted on the combination of the training and unclassified data. The proposed 

bi-mixture model will be applied in the next chapter to develop a scalable clustering 

algorithm which allows incorporation of incremental compressed information into 

the in-memory model with the flexibility of changing the clusters structure and 

number of clusters. 

 

3.1 Semi Supervised Learning and Partial Classification 

The challenge in classical supervised learning is to construct classification rule base 

on labelled data that can be then applied to classify unlabelled data accurately. One 

of the solutions to this problem is to incorporate unlabelled or unclassified data to 

improve classification accuracy. The use of unlabelled data in this case is often 

referred to semi-supervised learning, and there has been plenty of works showing 
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improvement in classification accuracy, for instance, in mixture model classification 

(Ganesalingam & McLachlan, 1978; O’Neill, 1978; McLachlan & Ganesalingam, 

1982; Nigam, McCallum, Thrun & Mitchell, 2000; and Dean, Murphy & Downey, 

2004), and mixture model regression (Liang, Mukherjee & West, 2007). However, 

Cozman and Cohen (2002), and Cozman, Cohen and Cirelo (2003) pointed out that 

the contribution of unlabelled data in reducing classification error actually depends 

on whether the trained model is correct for the unlabelled model. If the trained model 

is correct, both labelled and unlabelled data contribute to reduction in classification 

error by reducing variance under maximum likelihood estimation. On the other hand, 

when the trained model is incorrect for the unlabelled data, incorporation of 

unlabelled data leads to an increase in classification error. To remedy the dip in 

performance due to the problem where the mixture components are not in precise 

correspondence with the class labels for the unlabelled data, Nigam et al. (2000) 

suggested using EM-λ to reduce the weight of the unlabelled data. However, this has 

defeated the purpose of incorporating unlabeled data for more accurate classification 

rule. In image processing, Shanshahani and Langrebe (1994) also speculated that 

degradation of classification accuracy by incorporating unlabelled data is due to 

deviations from modelling assumptions such as the existence of data points from 

unknown classes and outliers in the unlabelled data. They suggested that unlabelled 

data should only be used if the trained model produces poor classification accuracy.  

In a similar flavour of semi-supervised learning, McLachlan and Basford (1988) and 

McLachlan (1992) considered the context of partial classification where the 

discriminant rule of mixture model is updated using unclassified data. The mixture 

model is fitted on the basic of the classified training data xj = (x1, ...,xn), and the 

unclassified data xj = (xn+1, ...,xn+m) via EM algorithm. The log-likelihood of the 
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parameters formed from both classified training data and unclassified data is given 

by 
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The update of the parameters depends on the sampling scheme for the n classified 

data. Under mixture sampling scheme, assume there are nk observations xjk (j = 

1,…,nk) known to come from the k-th cluster, the MLE of parameters satisfy 
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for k = 1,…,g. The posterior probability that xj belongs to the k-th cluster is given by 
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In the case where the classified data provides no information on the mixing 

proportions, the following equation for the iπ̂  
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should be used in conjunction with (3.2b – 3.2c). 
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 The assumption in the partial classification is that the unclassified data points 

are with respect to at least one of the clusters from the mixture model of the 

classified data. However, if there is change of cluster structures between the period 

when sampling of classified and unclassified data are made, the unclassified data 

may be from a mixture of clusters that are different from the mixture model of the 

classified data. McLachlan (1992) pointed out that this problem needs to be 

addressed differently. 

This thesis extends the above partial classification to the problem of updating 

a trained mixture model on the basis of unclassified data that has been drawn from or 

outside the underlying population. The unclassified data is first fitted into a 

separated mixture model itself. A model selection criterion is proposed to determine 

whether the unclassified data has the same distribution as the model trained by the 

classified data, and then the trained model is updated to the proposed bi-mixture 

model. The update of parameters in the proposed bi-mixture model involves only the 

MLEs of the two mixture models fitted from classified training data and unclassified 

data respectively. In this chapter, the classified training data and unclassified data are 

fitted into Gaussian mixture models, and therefore the bi-mixture model is the 

specific case of the bi-Gaussian mixture model. 

 

3.2 Detecting Change in Clusters Structure: A Modified Bayes Factor 

Let the classified training data of size nc, ),...,( 1 cnj xxx = , be known to 

come from a gc-component Gaussian mixture models, Mc, and the unclassified data 

of size nu, ),...,( 1 unj xxx = , be fitted into a gu-component Gaussian mixture models, 

Mu. To incorporate Mu into Mc, the first concern is to determine whether the clusters 
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from Mu are in respect to the clusters from Mc. Under the bi-mixture model 

framework, a model selection criterion is proposed to determine whether the cluster 

structures have changed between the time the classified training data and the 

unclassified data are drawn. The change of clusters structure is detected by checking 

the representativeness (or distinctiveness) of the clusters identified in model Mc. 

Each cluster from Mu is compared to all the clusters from Mc, but at each time a 

cluster from Mc and a cluster from Mu are paired for comparison. If a cluster form Mu 

is found to come from an identified cluster from Mc, it implies that the structure of 

the particular cluster from Mc is not changed between the time when sampling of 

classified and unclassified data are made, and therefore the parameters of the 

respective cluster from Mc are updated on the basis of the MLEs of the cluster from 

Mu. Otherwise, the clusters structure of Mc is considered changed, and the MLEs of 

the cluster from Mu are added to model Mc as a new mixture component. The 

proposed model selection criterion is developed based on the MLEs of the mixture 

components. For this purpose, both models Mc and Mu are first decomposed into the 

respective mixture components and each component is represented by its MLEs as 

shown as below. 

 

Approximated MLEs for Mixture Components 

A fitted mixture model consists of the MLE set for the model. To obtain the 

MLEs of each of the mixture component, an approximation is considered as follows.  

Let the g-component mixture model fitted from the observations data x = (x1, ..., xn) 

has the clusters data of cluster sizes n)( 1 knk k
,...,xx k where k = 1,… , g. The 

maximum complete data log-likelihood is decomposed by grouping the terms 

according to clusters can be rewritten as 
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The assignment of observations to the mixture components is done according to 

equation (1.11), and equation (3.4) can be simplified as 
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where  is the approximated maximum log-likelihood for the k-th 

cluster. 

)|ˆ(log knk k
L xθ

Therefore, instead of estimating the MLEs for the k-th cluster, , from 

maximizing the log-likelihood function of the k-th cluster using its data points,  

can be approximately estimated from the decomposition of the maximum complete 

log-likelihood function of the whole set of observation data. Let the MLE of the 

parameter set for M

kθ̂

kθ̂

c be { }
cc gg θθππ ˆ,...,ˆ,ˆ,...,ˆˆ

11=Ψ , where , and the MLE 

of the parameter set for M

)ˆ,ˆ(ˆ
ckckk Σ= µθ

u be { }
uu gg ααλλ ˆ,...,ˆ,ˆ,...,ˆˆ

11=Θ , where . 

Consider  is decomposed according to equation (3.5) into , 

where the cluster size for cluster k from model M

)ˆ,ˆ(ˆ ukukk Σ= µα

Ψ̂ ),ˆ,ˆ(ˆ
ckckckck nΣ=Ψ µ

c is given by ckck nn π̂= , and k = 1, 

…, gc. Similarly,  is decomposed into , where the cluster size 

for cluster k from model M

Θ̂ ),ˆ,ˆ(ˆ
ukukukuk nΣ=Θ µ

u is given by , and k = 1, …, gukuk nn λ̂= u.  
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Concentrated Log-likelihood Function 

Given a set of observations x = (x1, ..., xn) from a multivariate normal 

distribution, N((µ, ∑), the likelihood has the form 

  ( ) (∏
=

−−−

⎭
⎬
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⎩
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⎧ −Σ−Σ=Σ

n
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12
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2
2
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Let the maximum likelihood estimator of µµ ˆ=  and Σ=Σ ˆ , the maximum log-

likelihood is 
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Therefore, for each component or cluster represented by its MLEs, the log-

likelihood function for the cluster can be simplified to its concentrated log-likelihood 

function as (3.6).  

 

Modified Bayes Factor (MBF) 

Each of the clusters from Mu is compared to every cluster in Mc to determine 

whether it should be merged to one of the existing clusters or considered as a new 

cluster. This notion actually implies the choice between the models with the number 

of clusters k = 1 and k = 2 for each cluster i from Mu, where i = 1,…, gu, when 

compared to all the clusters in Mc. 

 M1: k = 1, i.e. pair of clusters ~ ,  )ˆ,ˆ( mmN Σµ

M2: k = 2, i.e. cluster i ~ , cluster j ~ ,  )ˆ,ˆ( uiuiN Σµ )ˆ,ˆ( cjcjN Σµ

 48



for j = 1,…,gc, where  are the MLEs of the merged clusters (see equations 

(3.15a – c)). 

)ˆ,ˆ( mm Σµ

This thesis chooses the Bayesian approach based on Bayes factor for the 

above pair wise models comparison as it has advantages over the alternative 

frequentist hypothesis testing in the general context of model comparison. The Bayes 

factor (Jeffreys, 1935; 1961) is a methodology for quantifying evidence in favour of 

one hypothesis H1 over another H2. The subject has been reviewed in detailed by 

Kass & Raftery (1995). For a data set x, let the prior probabilities of the hypotheses 

be given by p(H1) and p(H2) respectively. From Bayes theorem, the posterior 

probabilities for the hypotheses are given by 

  
∑
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The posterior odd can be simplified to 
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which is the Bayes factor, B12. Thus, Bayes factor is given by the ratio of the 

posterior odds to its prior odds in favour of H1 over H2. 

In both cases where the two hypotheses are: 1) single distribution with no 

free parameters, and 2) there are unknown parameters under either or both 

hypotheses, the Bayes factors are given by (3.8) which is the likelihood ratio. 

However, in the latter case, the densities  for i = 1, 2, are obtained by 

integrating (not maximizing) over the parameter space given by 

)|( iHp x

 ,   (3.9) ∫= iiiiii dHHpHp θθπθ )|(),|()|( xx
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where θi  is the parameter under Hi, )|( ii Hθπ  is the prior density of the parameter, 

and ),|( ii Hp θx  is the probability density of x given θi , or the likelihood function 

of θi . 

In practice, the marginal probability of the data, also termed as marginal 

likelihood or integrated likelihood, obtained from (3.9) is often difficult to compute. 

Schwarz (1978) proposed to penalize the log-likelihood to approximate the 

integrated likelihood, resulting in an approximation to the log Bayes factor also 

known as the Schwarz criterion and is given by 

 nmmLL log)(
2
1)|ˆ()|ˆ( 2121 −−−= xxSC θθ ,  (3.10) 

where  is the MLE under Hiθ̂ i, mi is the dimension of θi , for i = 1, 2. 

One of the variants of the Schwarz criterion is the well known Bayes Information 

Criterion (BIC) where BIC = 2SC. In model selection framework, the BIC is used to 

compare each probable model H1 to the constantly unchanged hypothetical model 

H2. Thus, the BIC reduces to (2.12). 

In Bayesian applications, pair wise models comparison is always based on 

the Bayes factor. Smith and Spiegelhalter (1980) had extended the Bayes factor for a 

standard comparison of nested hypotheses in the general linear model in the p-

dimensional multivariate normal case with the following approximation: 

  –2 log Br, r+1 = λ  – 
⎭
⎬
⎫

⎩
⎨
⎧ + + )](log[

2
3

1,rrnρ δr, r+1,   (3.11) 

where λ is the likelihood ratio test statistic, δr,r+1 is the degree of freedom in the 

asymptotic chi-square distribution of λ, nr,r+1 is the number of observations in the 

merged cluster, and ρ(nr,r+1) is the rate of “shrinkage” of the prior covariance matrix 

which can be approximated to nr,r+1 when nr,r+1 is large. Unfortunately, the regularity 
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conditions do not hold for λ to have its usual asymptotic null distribution of chi-

squared with the degree of freedom δr,r+1 in the clustering context. Based on a small 

scale simulation study of multivariate normal component densities with common 

covariance matrix for the number of clusters k = 1 versus k = 2, Wolfe (1971) 

suggested an approximation of 2δr,r+1 to get around the problem. However, 

McLachlan (1987) showed that Wolfe’s approximation can be misleading for 

heteroscedastic normal component distributions if the outcome of the test is rigidly 

interpreted from the too small estimated p-value. This leads to the selection of more 

complicated model and overestimation of the number of clusters. Using the 

conclusion from Everitt (1981) that Wolfe’s approximation performs well for δr,r+1 

between the values of 1 and 5, Banfield et al. (1993) developed the approximate 

weight of evidence (AWE) for the estimation of the number of clusters, which 

avoids problem based on significance testing. However, Fraley et al. (2002) had 

shown that AWE performs consistently worse than BIC, and not comparable 

between models with different restriction level. 

  In this thesis, the decision on whether the cluster structure has been changed 

for each of the cluster pairs is related to the choice between the models with the 

number of clusters k = 1 and k = 2. Therefore, this thesis adopts a special case of the 

extended Bayes factor from equation (3.11) where r = 1 with Wolf’s approximation. 

It further assumes that the merged cluster size is large for massive data clustering to 

approximate the Bayes factor as follows 

–2 log Br, r+1 = λ  – 
⎭
⎬
⎫

⎩
⎨
⎧ + + )log(

2
3

1,rrn 2δr, r+1.   (3.12)  

For the case where the choice is between the models with the number of 

clusters k = g and k = g + 1 where g>1, the term λ considers only the likelihood of 
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the clusters involved in the merger as the likelihoods for the clusters that are not 

involved in the merger cancel out in the likelihood ratio. Thus, it is sufficient for the 

proposed model selection criterion to consider only the pair of clusters being 

hypothesized in the merger. Let the maximum log-likelihood for the pair of clusters 

be log Li and log Lj respectively, and the maximum log likelihood for the cluster 

resulting from the merger of the pair of clusters be log Lm. Therefore, the term λ can 

be written as 

  λ = 2(log Li + log Lj – log Lm),    (3.13) 

where log Li, log Lj and log Lm can be obtained by substituting the respective MLEs 

in equation (3.6). Substituting equation (3.13) in (3.12), the extended Bayes factor 

will now become the proposed modified Bayes factor (MBF) given by 

 –2 log Br, r+1 

=
⎭
⎬
⎫

⎩
⎨
⎧ +⎟

⎠
⎞

⎜
⎝
⎛ +

+−Σ+Σ−Σ− )log(
2
3

2
)1(2ˆlogˆlogˆlog 2211 mmmjjii ndddnnn  (3.14) 

The MBF suggests the choice of models based on the change in log-

likelihood as a result of merging the pair of clusters. From (3.6), it can be seen that 

the smaller the generalize variance |  the larger is the log-likelihood. Therefore, 

for each cluster from M

ˆ| Σ

u, if the MBFs are positive when paired with all the clusters 

from Mc, the merged clusters give bigger generalize variances and smaller log-

likelihoods (more negative) than the pairs of clusters. This suggests that all the pairs 

of clusters should not be merged. In other words, the clusters structure in Mc has 

been changed, and the cluster from Mu is a new cluster to be added to the trained 

model. Otherwise, the cluster from Mu should be merged with the pair of clusters 

from Mc that give negative value of MBF.  
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3.3 Properties of MBF 

The proposed model selection criterion of MBF has the following properties: 

• It is used for pair of clusters 

• It does not need a specific threshold for merging clusters. As cluster analysis is 

an exploratory data analysis, the information required to choose an appropriate 

threshold is often not available, resulting in arbitrary assumptions about 

similarity  

• It merges a pair of clusters only if the merged cluster produces higher 

maximum log-likelihood. This is different from the traditional agglomerative 

method where the nearest neighbour clusters are automatically merged merely 

because they are relatively nearer compared to other clusters 

• It can be used to detect change of clusters structure over time 

• It uses MLEs of a pair of clusters to determine whether they are identical. 

Therefore, it is suitable to be used for condensed data that is characterised by 

the MLEs of the dense region 

The ability of MBF to detect change in clusters structure between two samples is 

useful for clustering data sets that require sequential scans. Furthermore, it can be 

used as an alternative criterion for determining the number of clusters in the 

incrementally condensed data. The application of the proposed model selection 

criterion MBF will be discussed further in the next chapter. 

 

3.4 Bi-Gaussian Mixture Model 

Bringing all the defined notions together, the bi-Gaussian mixture model can 

be derived as follows. 

Let MBF suggests that in Mu the k-th cluster of size nuk where k = 1, …gr, (gr 

≤ gc) are clusters that come from the clusters already identified in model Mc, whereas 

the k-th cluster of size nuk where k = gr+1, …, gu, are new clusters that have not been 
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identified so far in model Mc. The updates of MLE of the parameters for the trained 

Gaussian mixture model, Mc, on the basis of the clusters from Mu into a bi-Gaussian 

mixture model depend on the decision from MBF. 

Firstly, consider the case when the MBF suggests to merging the cluster from 

Mu with a cluster in Mc. In the framework of bi-Gaussian mixture model, the MLEs 

of the merged k-th cluster  are estimated approximately 

through one-step sufficient EM (Steiner & Hudec, 2007) using MLEs of the pair of 

clusters involved in merging,  and , as 

follows 
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The complete maximum log-likelihood function of model Mc is updated by the pairs 

of merged clusters from Mu and it is given by 
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where  is the total number of data points in all the clusters from M∑
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come from the already identified clusters. (3.16) can be simplified to  
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If the cluster from the model Mc is not being selected to merge with any cluster from 

Mu, the MLE of sufficient statistics of the cluster remain but the mixture proportion 

kπ̂  is updated to  

uc

ck
k nn

n
+

=
π

π
ˆ

ˆ * ,       (3.18) 

and the MLEs of the cluster become =)ˆ,ˆ( kk τω  . )ˆ,ˆ( *
kk πθ

Secondly, for the clusters from Mu that have not been identified in Mc, the 

log-likelihood is given by the linear combination of each component 
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Combining the maximum log-likelihood functions (3.17) and (3.19) has to 

adjust the mixture proportion of the updated existing clusters, which is given by 
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λ
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ˆ .  

Finally, the approximated density function for the bi-Gaussian mixture model 

that takes account of the change in clusters structure between the classified and 

unclassified data will become 
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3.5 Experimental Result  

In this section, two sets of synthetic data are presented to assess the 

effectiveness of updating trained model using unclassified data based on the 

proposed bi-Gaussian mixture model. The criterion used to assess the accuracy of the 

estimated model parameters is the classification accuracy. Three experiments were 

designed for this purpose. First, the generated data were divided into classified and 

unclassified data according to different ratios using separate sampling scheme so that 

the mixture proportions in both sets of data are not known. In this case, the 

parameters of the true model are the population parameters. Second, the generated 

data were used as classified data, and the unclassified data were generated from the 

same population parameters as the classified data except that the mixture proportions 

and data sizes were varying. The effect of the size of unclassified data was also 

studied. Lastly, the experiment was designed to study how well the proposed model 

selection criterion manages to identify the change in clusters structure and how 

accurate the model can update new cluster through bi-Gaussian mixture. For this 

case, new cluster that is not identical to any clusters in the classified data was added 

to the unclassified data, and the mixture proportions of the unclassified data were 

different from the classified data. 

The results are compared to the model obtained using the combination of 

classified training data and unclassified data fitted by the Gaussian mixture model.  
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3.5.1 Simulation Study 1 

A data set consists of 1000 data points was generated from the mixtures of 

four-component bivariate normal distribution considered by Figueiredo and Jain 

(2002). The data by Figueiredo (2002) is considered here because it is challenging in 

fitting the Gaussian mixture model for clusters in the mixtures which are overlapping 

and share a common mean but different covariance matrices. The parameters are 

given as follows. Cluster 1 and 2 are overlapping, and two of the four components 

share a common mean but different covariance matrices.  

3.0321 === πππ , 1.04 =π ; )4,4(21 −−== µµ , )2,2(3 =µ , )6,1(4 −−=µ , and 
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Table 3.1. Classification accuracy and log-likelihood for bi-Gaussian mixture model and Gaussian 
mixture model in simulation study 1. The bi-Gaussian mixture model fitted on data that divided into 
classified and unclassified data according to different ratio. The Gaussian mixture model fitted on the 
combined data. 

Trained model updated by unclassified data  Model from combined data Ratio 

nc : nu
k Classification 

accuracy (%) 
Log-likelihood  k Classification 

accuracy (%) 
Log-

likelihood 
1:1 4 87.30 -4624.44  4 88.10 -4612.26 
4:1 4 87.40 -4619.89  4 88.10 -4612.26 

 

Table 3.2. Results for models obtained from bi-Gaussian mixture model and Gaussian mixture model 
in simulation study 1. Unclassified data in the bi-Gaussian mixture model are generated from 
different mixture proportions and with new cluster added. The Gaussian mixture model fitted on the 
combined data. 

Unclassified data Trained model updated by 
unclassified data 

 Model from combined data 

Mixture proportions 
(λ1, λ2, λ3, λ4) 

nu k Classification 
accuracy (%) 

Log-
likelihood 

 k Classification 
accuracy (%) 

Log-
likelihood

(0.3,0.3,0.3,0.1) 1000 4 86.10 -9484.86  4 86.50 -9500.32 
(0.3,0.3,0.3,0.1) 200 4 87.25 -5645.062  4 87.75 -5659.33 
(0.25,0.25,0.25,0.25) 1000 4 88.30 -8921.83  4 88.55 -8915.41 
(0.25,0.25,0.25,0.25) 200 4 87.25 -5514.49  4 87.92 -5540.12 
(0.4,0.2,0.25,0.15) 1000 4 87.17 -5560.65  4 87.91 -5611.12 
(0.4,0.2,0.25,0.15) 200 4 87.75 -9144.05  4 88.15 -9109.58 
         
(0.25,0.25,0.25,0.10) 
+ new cluster  

200 5 86.53 -7406.80  5 87.13 -7419.90 
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The results for classification accuracy and log-likelihood for models obtained 

using the bi-Gaussian mixture model, and the Gaussian mixture model fitted on the 

combined data are shown in Table 3.1 and Table 3.2. It can be seen that the 

classification accuracies of the trained models updated by unclassified data using bi-

Gaussian mixture model are virtually similar to the Gaussian mixture models fitted 

on the combination of the two sets of data. The log-likelihood obtained from the bi-

Gaussian mixture model is very close to the Gaussian mixture model fitted on the 

combined data. In Table 3.1, even though the classified data and unclassified data 

are sampled using separate sampling scheme where there is no prior information 

about the mixture proportions, the bi-Gaussian mixture model successfully estimated 

the parameters regardless of the ratios of classified data to unclassified data. Figure 

3.2 shows one of the examples where nc: nu = 4:1. Although the MLE of the 

covariances in the model fitted by the unclassified data deviate from the ones 

obtained by classified data, the MLE of covariances in the final model obtained 

using the bi-Gaussian mixture model is close to the true model. 

From Table 3.2, it can be seen that the mixture proportions and size of the 

unclassified data do not play a significant role in the update of trained model through 

the bi-Gaussian mixture model. When a new cluster with parameters: 5uµ = (2,2), 

= (0.5,0.25,0.25,0.5), and 5uΣ 5λ = 0.15 was added to the unclassified data, the 

proposed model selection criterion managed to detect it. The recovery and 

incorporation of the new cluster to the trained model through the bi-Gaussian 

mixture model gives very close results in terms of classification accuracy and log-

likelihood as the model obtained using the combined data fitted by the Gaussian 

mixture model. Figure 3.3(a) shows the new cluster is recovered in the model fitted 

using the unclassified data, and Figure 3.3(b) shows the MLEs of model parameters 
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estimated by the bi-Gaussian mixture model and the Gaussian mixture model fitted 

on the combined data to be very close. 
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(a) (b) 
Figure 3.1. True clusters structure (scatter plot) and the MLE of means and covariances for the model 
fitted by: a) classified data (‘o’, blue dotted line), unclassified data (‘x’, red dashed line), and bi-
Gaussian mixture model (‘+’, black solid line,), and b) bi-Gaussian mixture model (‘+’, black solid 
line), combined data (‘x’, green dashed line), and true model (‘o’, red solid line). (Note: ellipsoids 
visualized by 90% normal tolerance). 
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Figure 3.2. True clusters structure (scatter plot) and the MLE of means and covariances for the model 
fitted by: a) classified data (‘o’, blue dotted line), unclassified data (‘x’, red dashed line), and bi-
Gaussian mixture model (‘+’, black solid line), and b) bi-Gaussian mixture model (‘+’, black solid 
line), and combined data (‘x’, green dashed line). (Note: ellipsoids visualized by 90% normal 
tolerance). 
 

 

3.5.2 Simulation Study 2 

A data of size 1500 was generated from a seven-component five-dimensional 

normal mixture. In the mixture distribution, component one and two, and also 
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component three and four, share common mean respectively but have different 

covariances. The parameters are as follows. 

π1 = π2 = π4 = π6 = 0.15, π3 = 0.175, π5 = 0.125, π7 = 0.1, 

µ1 = µ2 = (0,0,0,0,0), µ3 = µ4 = (4,4,4,4,4), µ5 = (4,4,4,4, –4), µ6 = (4, –4, –4,4,4),  

µ7 = (–4,4,4, –4, 4), and ∑1 = ∑3 = ∑5 = ∑6 = ∑7 = I5, ∑2 = ∑4 = 4I5.  

Table 3.3. Table. Classification accuracy and log-likelihood for bi-Gaussian mixture model and 
Gaussian mixture model in simulation study 2. The bi-Gaussian mixture model fitted on data that 
divided into classified and unclassified data according to different ratio. The Gaussian mixture model 
fitted on the combined data. 

Trained model updated by unclassified data  Model from combined data Ratio 
nu : nu

k Classification 
accuracy (%) 

Log-likelihood  k Classification 
accuracy (%) 

Log-
likelihood 

1:1 7 90.10 -30369.32  7 89.77 -30370.85 
3:1 7 89.30 -30275.29  7 89.77 -30370.85 

 

Table 3.4. Results for models obtained from bi-Gaussian mixture model and Gaussian mixture model 
in simulation study 2. Unclassified data in the bi-Gaussian mixture model are generated from 
different mixture proportions and with new cluster added. The Gaussian mixture model fitted on the 
combined data. 

Unclassified data Trained model updated by 
unclassified data 

 Model from combined 
data 

Mixture proportions 
  (λ1, λ2, λ3, λ4, λ5, λ6, λ7) 

nu k c.a* 
(%) 

Log-likelihood  k c.a* 
(%) 

Log-
likelihood 

(0.15,0.15,0.175,0.15,0.125,0.15,0.1) 1500 7 89.83 -30286.85  7 90.04 -30279.63 
(0.15,0.15,0.175,0.15,0.125,0.15,0.1) 500 7 89.49 -20116.31  7 90.01 20168.51 
(1/7,1/7,1/7,1/7,1/7,1/7,1/7) 1500 7 90.59 -30134.17  7 90.72 -3012837 
(1/7,1/7,1/7,1/7,1/7,1/7,1/7) 500 7 89.43 -20063.91  7 89.88 -20101.08 
(0.2,0.2,0.1,0.2,0.1,0.1,0.1) 1500 7 89.03 -30837.71  7 89.17 -30829.22 
(0.2,0.2,0.1,0.2,0.1,0.1,0.1) 500 7 89.74 -19195.84  7 89.79 -20331.74 
         
(0.15,0.15,0.175,0.15,0.125,0.15,0) + 
new cluster 

500 8 88.29 -20580.91  8 88.96 -20617.69 

*Note: c.a = classification accuracy 

 

The results for classification accuracy and log-likelihood for model obtained 

through the bi-Gaussian mixture model and the Gaussian mixture model on the 

simulated data are shown in Table 3.3 and Table 3.4. Basically, the results support 

the finding in simulation 1. An interesting result is shown in Table 3.3 where nc: nu = 

1:1. It shows that the classification accuracy for the model obtained by the bi-

Gaussian mixture model is slightly higher than the Gaussian mixture model fitted on 
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the combined data. This implies that the classification accuracy for the model 

obtained by the bi-Gaussian mixture model is not definitely lower than the Gaussian 

mixture model fitted on the combined data.  

The proposed model selection criterion also works well in the higher 

dimensional data. The model selection criterion correctly suggested that there is 

change in clusters structure when a new cluster generated by the parameters: π8 = 

(2,2,2,2,2), ∑8 = I, λ8 = 0.1, was added to the unclassified data. Furthermore, the 

classification accuracy of the bi-Gaussian mixture model, which considered change 

in clusters structure, is very close to the Gaussian mixture model fitted on the 

combined data. 

 

3.6 Conclusion 

With the development of the proposed model selection criterion MBF in this 

thesis, the unclassified data can be determined whether it comes from the same 

distribution as the classified data, before it is being incorporated to update the trained 

model. The main advantage of using the framework of bi-Gaussian mixture model to 

update the trained model is that it allows the addition of new clusters. With this 

breakthrough, clustering data sets that do not fit in the memory or from open data 

stream can be done incrementally without missing out any important clusters. The 

framework is applied to develop a scalable clustering algorithm for incrementally 

compressed data and will be discussed in the next chapter. 
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4  

Scalable Clustering Algorithm for Very Large Data 
 

 

This chapter applies the bi-Gaussian mixture model developed in the previous 

chapter with some modifications in model update to propose a new scalable 

clustering algorithm for very large data sets that do not fit into the computer memory 

buffer. The clustering algorithm is known as incremental compression into flexible 

number of clusters (FlexClust). It is evaluated using simulated and real data. The 

results are compared to a few existing clustering algorithms. 

 

4.1 Incremental Compression Into Flexible Number of Clusters (FlexClust) 

Mixture model clustering and its extensions are usually confined to data sets that can 

be processed as a whole. However, this is not practical when the data size is larger 

than the memory buffer of the computer.  

This thesis proposes an algorithm known as FlexClust which compresses data 

incrementally according to the available memory buffer using the Gaussian mixture 

model and incorporates the compressed information into the current model with the 

ability to detect small clusters. The proposed clustering algorithm can accommodate 

a data set of any size, and it has the flexibility of allowing changes in the clusters 

structure and the number of clusters by means of a modified Bayes factor (MBF). 

As the critical issue in data compression is to avoid loss of information, FlexClust 

employs mixture modelling for data compression which has the advantages of 

describing clusters with a variety of shapes, detecting overlapping clusters, and 
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automatically determining the number of clusters that best fit the compressed data. 

Furthermore, the summarized information in the form of maximum likelihood 

estimates (MLEs) of the mixture model can then be used in a proposed model 

selection criterion to determine the representativeness of the existing clusters and to 

detect changes in clusters structure due to the incrementally added data. Finally, to 

enhance the possibility of the inclusion of small clusters, the ideas from Maitra 

(2001) and Fayyad et al. (1996) is adapted to propose a scan through and select 

procedure. In Maitra (2001), the weight of the small clusters is increased 

progressively in an incremental sampling scheme to avoid missing out on the small 

clusters at each stage. Fayyad et al. (1996) introduced the iterated sampling where 

data points do not fit well are accumulated in another sample for further 

investigation. 

 

4.2 The FlexClust Clustering Algorithm 

The idea of the proposed algorithm is to iterate over random samples of the 

database and incorporate information computed from the current sample with 

information computed over previous samples while operating within a limited 

memory buffer.  

The algorithm of FlexClust is summarized as follow: 

1 Select data points from relatively small clusters using a scan through and 

select procedure: i) draw a random sample from the whole data set, D, that is 

stored in the hard disk space of the computer, and cluster it using k-means. 

Any resulting clusters with the proportions less than a threshold ε (say 0.01) 

are considered small clusters, ii) let the set of data points from these small 

clusters be Q, iii) repeat steps (i) and (ii) for a few times until there is no 

probable new small clusters found in step (i).  
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2 Replicate set Q for q times and then add a random sample from the data set 

which size can be fitted into the computer buffer memory.  Let the data 

points in the buffer memory be the initial sample S1. 

3 Compression of S1: Fit S1 with a Gaussian mixture model, and let this be 

denoted by )0(M  which will be retained in the memory and S1 will be purged. 
)0(M  is the initial model under consideration. 

4 Select a random sample, S2, where S2∈D\S1 and independent of S1. Repeat 

Step 3 to get model M1.   

5 For a given cluster from model M1, find the nearest cluster in model )0(M  

(see Section 4.3 for details). 

6 Determine whether to merge the clusters or to add new cluster to the current 

model )0(M  using the modified Bayes factor criterion. Update the current 

model )0(M  to )1(M  (see Section 4.3 for details). 

7 If the decision is to merge the nearest neighbour pair, refinement is carried 

out. Find the cluster from )1(M  that is closest to the merged cluster, and 

apply the MBF criterion to determine whether the merged cluster should be 

further merged with the existing closest cluster. Update the current model 
)1(M  to )2(M  (see Section 4.3 for details). Otherwise, go to the next step. 

8 Repeat Steps 5 – 7 for all the clusters from M1, and finish the updates for 

model under consideration using the compressed information from a new 

sample to obtain the model at iteration t. 

9 Let the model at iteration t obtained from Step 8 be the model under 

consideration. Repeat Steps 4 – 8 in the coming iterations to include 

remaining samples in the storage. 

 

The FlexClust algorithm is summarized in Figure 4.1. The basic insight is to 

identify clusters of data points which can be effectively summarized by their MLEs. 

Instead of revisiting these records, updates of model are performed over their MLEs. 

After each buffer refill and compression, the mixture model parameters at that point 

of time are updated over the MLEs of the new sample and the MLEs of the in-

memory mixture model parameters. Clearly with the incremental sampling and 
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flexible number of clusters framework, any additional data from the database can be 

easily accommodated to update the current model and provide the most up-to-date 

usable model at any point of time.  

The scan through and select procedure in Step 1 partitions the data to detect 

any probable very small clusters or clusters which are small relative to other clusters. 

Step 1 is replicated q times to increase the chance to detect small clusters. For image 

data sets, the scan through and select procedure can be carried out by drawing 

samples in blocks to increase the changes of detecting any probable small clusters.  

 

 

 

 

 

 

Figure 4.1. The overview of FlexClust. 
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indicates the process is carried out once only

4.3 Components of the FlexClust Architecture 

4.3.1 Incremental Sampling and Compression 

In FlexClust data compression is achieved by replacing observation points at 

dense regions by their MLEs of the parameters of the fitted Gaussian mixture model. 

Suppose S1 = { } is a d-dimensional initial sample of size n
1

,,, 21 nx...xx 1, 

which consists of a random sample drawn from a massive data set D together with 

the replicate set of probable small clusters data points detected from the scan through 

and select method, fills the memory buffer, is fitted into a g1-component Gaussian 
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mixture model using the complete log-likelihood function in (1.7). The observation 

points from the initial sample are compressed to a prototype system consisting of the 

MLEs of the parameter set, and then purged from the buffer to free some memory 

spaces, retaining only the prototype system. The initial model under consideration is 

the g1-component Gaussian mixture model. Select an independent random sample, 

S2, of size n2, where S2 ⊂ D \ S1. Repeat the steps of fitting Gaussian mixture model, 

data compression, and purging of observation points. The memory buffer at this 

point of time contains a prototype system for the model under consideration and also 

a prototype system from the new sample S2.  

Let the MLEs of the parameter set for the t-th sample be 

, where  is the vector consists of the MLE of 

mean, 

)ˆ,...,ˆ,ˆ,...,ˆ(Ψ̂ 11 tt tgtgtt ππθθ= )ˆ,ˆ(ˆ
tktktk Σ= µθ

tkµ̂ , and full covariance matrix, , and tkΣ̂ tkπ̂  is the MLE of mixture 

proportion, for the k-th cluster from the t-th sample, where t = 1,2, k = 1, …, gt. The 

MLEs of each individual cluster are estimated approximately from the 

decomposition of the mixture model components. Thus, for the t-th sample,  is 

decomposed into its mixture components  for t = 1,2, k = 1, …, g

tΨ̂

),ˆ,ˆ(ˆ
tktktktk nΣ=Ψ µ t, 

where ttktk nn π̂=  is the k-th cluster size. 

 

4.3.2 Model Update 

Nearest Neighbour Pairs 

In order to minimize computational efforts, and based on the rationale that 

the nearest neighbour clusters are most probably identical, the model updates start 

with finding the nearest neighbour pairs of clusters. However, if the examination of 

the MLE of means within the same compression finds that there are clusters which 
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probably share common means, multiple nearest neighbours have to be considered 

instead of single nearest neighbour. For each of the clusters from sample S2, its 

nearest neighbour cluster from sample S1 is determined by the shortest Euclidean 

distance between the MLE of means of the two clusters given by  

  dm = min ∑ =
−d

p
p
k

p
k1

)(
2

)(
1 ˆˆ µµ ,     (4.1) 

for 1k, k = 1, …, g1, and for 2k, k = 1, …, g2. 

 

Add Cluster or Merge Clusters and Refinement 

The challenge of incremental compression into flexible number of clusters 

can be viewed as a problem of changing the number of clusters of the current model 

due to the addition of new clusters from the incremental compressed data. The 

proposed modified Bayes factor (MBF) from section 3.2 is used as a model selection 

criterion to choose the appropriate number of clusters from the combination of two 

sets of compressed data.   

 (a) Possibility 1 (b) Possibility 2 (c) Possibility 3 

Illustration     

Sign of 
MBF 

positive negative negative, and negative in 
refinement 

Description T1 is a new cluster. 
 
 

T1 is identical to an 
existing cluster. 

T1 merges the 1st and 2nd existing 
clusters and reduces the existing 
number of clusters by 1.  
 

Number of 
clusters  

k = G +1  k = G  k = G – 1 
 

2nd 1st

3rd 5th 

T1
Merged 
cluster from 
nearest 
neighbour 
pair 

1st 2nd 1st 2nd

3rd T1 5th 5thT1
3rd 

4th 4th 4th 

Figure 4.2. Three possibilities when a cluster T1 is compared to the existing 5 clusters: a) add a new 
cluster, b) merge with an existing cluster, and c) merge two existing clusters. 
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When a cluster, from the later compressed data, is added to the current model 

with G clusters, the number of clusters is assumed to change as follows: (1) G+1, (2) 

G, and (3) G-1. For illustration purpose, consider a current model with G=5 as 

shown in Figure 4.2. Let cluster T1 be a cluster from the later compressed data. In 

Figure 4.2(a), T1 is a new cluster to be added to the current model. On the other 

hand, in Figure 4.2(b), T1 is a cluster identical to an existing cluster, and the two 

clusters can be merged. In case Figure 4.2(c), T1 first merges with one of the existing 

clusters, and then the resulting merged cluster merges with another existing cluster. 

The closest existing cluster to the merged cluster is determined based on the shortest 

Euclidean distance between the MLE of means of the two clusters.  

 

Parameters Update 

The model updates are carried out incrementally on the prototypes of the 

nearest neighbour pairs based on the proposed MBF model selection criterion. If 

MBF suggests to merge the nearest neighbour pair, the parameters of the mixture 

model under consideration will be updated over the cluster merged to the nearest 

existing cluster. Let , k = 1,…,g),ˆ,ˆ(ˆ),ˆ,ˆ( 1111111 kkkka nn Σ=Ψ∈Σ µµ 1, and 

, k = 1,…,g),ˆ,ˆ(ˆ),ˆ,ˆ( 2222222 kkkka nn Σ=Ψ∈Σ µµ 2, be the decomposed prototypes of the 

nearest neighbour pair, and  be the MLE of sufficient statistics and the 

cluster size of the merged cluster. The parameters of the existing model are updated 

using weighted MLEs as follow: 

),ˆ,ˆ( mamm nΣµ

1 The compressed prototype for the merged cluster is estimated from 

nma = n1a + n2a,      (4.2a) 
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2 The mixture proportions of the existing model become 

a
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m nn
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21
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+
+

=π , for the component involved in merging;    (4.4d) 

a

k
k nn

n

21

1*

+
=π ,   for the other components.      (4.5e) 

 

The model under consideration is now updated to 
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On the other hand, if the MBF suggests a new cluster, the mixture 

proportions of the current mixture model will be updated and a new mixture 

component is added based on the assumption that the new cluster is independent of 

the existing clusters. The mixture proportions of the model are updated as follow: 

a

a
a nn

n

21

2*
2 +

=π ,  for the newly added cluster;   (4.7a) 

a

k
k nn

n

21

1*

+
=π , for the other existing components. (4.7b) 

 

The model under consideration is now given by 
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4.3.3 Model at a Certain Iteration 

The model at iteration t is built on the current model at iteration t-1 updated 

by a random sample drawn at iteration t. In each of the iteration for model update, 

the MLEs of the Gaussian mixture model under consideration are updated using the 

MLEs of the Gaussian mixture model fitted by the random sample drawn at iteration 

t. The model updates are performed incrementally over each nearest neighbour pair 

of clusters as discussed in section 4.3.2. When new random sample is being filled in 

the buffer memory at iteration t+1, the model at iteration t will be treated as the 

model under consideration that is to be updated by the prototypes of the newly 

included sample. Hence, the proposed FlexClust clustering algorithm is not only 

scalable because it works within limit of memory by drawing samples incrementally 

and compressing the data, but it also has the advantage of clustering open data 

stream as the algorithm provides usable model at any time. 

 

4.4 Properties of FlexClust Algorithm 

The proposed FlexClust clustering algorithm has the following properties. 

• Scalability: FlexClust is scalable in terms of 1) data size - Incremental 

compression procedure maintains only the prototype system in the memory and 

purges the data points to free some memory for filling new data points to the 

memory buffer, and this makes it scalable to very large data sets, and 2) 

memory – workable within limited memory even though the data size is too 

huge to be loaded at once. 

• Exhaustiveness: All the data points are incrementally included in the 

clustering process and none goes unused. 

• Recovery of clusters: The proposed MBF recovers clusters that have been 

missed out in the initial sample but found in the samples drawn later.  

• Applicability to open data stream: FlexClust is potentially useful to cluster 

open data stream where the clusters structure might have changed over time. It 

 70



provides up to date usable model by incorporating new arrived data into the 

current model without recomputing all the previous data. 

• No pre-determination of number of prototypes: FlexClust employs mixture 

modelling for data compression which has the advantage of automatically 

determining the number of clusters that best fit the compressed data.  

 

4.5 Experimental Evaluation 

Benchmark Comparison  

 The performance of the proposed FlexClust is compared to four clustering 

algorithms for large data set: sufficient EM (Steiner et al., 2007), SPSS TwoStep 

(SPSS Inc., 2003), model from sample (strategy III) (Wehrens et al., 2004), and 

CLARA (Kaufman et al., 1990).  

 Sufficient EM (Steiner et al., 2007) is a two-step procedure where the 

observation points are first compressed and then clustered. In contrast to the 

proposed FlexClust, sufficient EM compresses the data set all at once. Sufficient EM 

employs k-means algorithm to compress all the observation points and represents 

them by the prototypes characterized by sufficient statistics, i.e. means and 

covariances, and the number of observations in the condensed data set. The 

clustering step is carried out by Gaussian mixture model where the parameters are 

estimated from a variant type of EM algorithm.   

SPSS TwoStep clustering algorithm (SPSS Inc., 2003) is a two-step 

procedure which compresses the observation points into prototypes in the first step, 

and then clusters the resulting prototypes in the second step. It employs data 

compression procedure similar to the BIRCH algorithm, where data are condensed 

into cluster features (CF) and summarized into an incremental built CF tree. The 

cluster feature is characterized by a triple of summarized information which 
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comprises the number of data points in the subcluster, the linear sum and the square 

sum of the data points. In the second step, the resulting prototypes (or leaf nodes) are 

clustered using an agglomerative hierarchical clustering method, where only the 

variance of the compressed data will be considered.  

Model from sample (strategy III) (Wehrens et al., 2004) applies a basic 

model-based clustering to a sample of the data, and then extends several tentative 

best models from the sample via EM to the whole data in more iterations to 

eventually select the best model from the tentative best models.  

CLARA (Kaufman et al., 1990) trains a model from a random sample and 

then performs discriminant analysis to classify the rest of the data. The procedure 

makes it different from the other sampling-based algorithms in that it repeats the 

draw of random sample for a few times to find a set of mediods that gives the best 

clustering result with the smallest average distance.  

The sufficient EM and SPSS TwoStep are chosen for comparison because 

this thesis intends to compare the following few aspects: 1) the performance of 

different compression procedures – the incremental compression from FlexClust 

versus the one time compression from sufficient EM and the incremental one time 

compression from SPSS TwoStep, 2) the effectiveness of different compression 

methods – the mixture model compression from FlexClust versus the k-means from 

sufficient EM and SPSS TwoStep, and 3) the performance of the model selection 

criterion – the MBF from FlexClust versus the variant of BIC from sufficient EM.  

The model from sample (strategy III) and CLARA are chosen in this thesis to 

compare the aspect of sample representativeness for different sampling schemes – 

the incremental sampling with the flexibility of clusters recovery from FlexClust 
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versus sampling the best sample from few samples from CLARA and select the best 

model from few models trained from a sample from strategy III. 

 Several criteria are used to assess the aforementioned clustering algorithms. 

One aspect is the accuracy of the clustering result in terms of classification accuracy 

and estimate of parameters, and the correct number of clusters. Another aspect is the 

stability of the clustering algorithm over the effects of initial sample, sample size, 

compression method and compression rate. 

 

Design of Analysis  

FlexClust starts by drawing random sample of observations from the data for 

compression. To investigate the effect of sample size, two different sample sizes 

were compared. Each sample size was performed 10 times with different initial 

random sample, so that the conclusions do not depend on the particular sample 

drawn and the size of the sample being drawn. The incremental compressed samples 

maintain at a constant size throughout the compression process. To reduce 

computational load in testing out FlexClust algorithm, the sample sizes considered 

were relatively smaller than the memory buffer size. 

For sufficient EM, the influence of the compression degree on the resulting 

cluster structure is taken into consideration by setting two different numbers of 

prototypes. For each prototype system, 10 experiments were carried out by different 

starting solution for the k-means compression step to study the stability of the 

compression method. Due to irregular trend in the variant of BIC, a range contains 

the actual number of clusters was considered for each set of simulated data. The 

number of clusters was determined from the minimum value of the variant of BIC in 

the given range. The iteration of EM algorithm was limited to a maximum number of 

3000 steps. It stopped even though the log-likelihood function is not converged.    
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In SPSS TwoStep clustering algorithm, the size of CF-tree for comparable 

setting with the sample size in FlexClust was considered. The depth and level of the 

CF-tree was set as such that the number of prototypes roughly corresponded to the 

sample size in FlexClust. For example, the CF-tree was set at a depth of three levels 

with a maximum of eight branches at each node, 83-tree, such that the number of 

prototypes was restricted to 512 prototypes to correspond to the sample size of 500 

in FlexClust. The observation data was randomly sorted to generate 3 replications to 

cater the possible dependency of CF-tree on the input order of the observation data.  

For comparison purpose, the initial sample sizes in strategy III were set equal 

to FlexClust. Similar to FlexClust, 10 experiments were performed in strategy III for 

two different sample sizes respectively. Strategy III selected 5 tentative best models 

based on the training set with consideration for the 10 model parameterizations 

available in MCLUST (see Table 2.1), and ran at most 100 EM steps to classify the 

whole data set. The best model was selected from these five.  

Since CLARA algorithm applies PAM (partition around medoids) on the best 

selected sample and gives the best clustering as the output, only 1 run was 

conducted. The quality of CLARA clustering algorithm is measured based on the 

average silhouette width. 

 

Software 

All experiments in this thesis, unless specified, were performed in the 

statistical programming environment R (Ihaka and Gentlemen, 1996) version 2.4.1. 

Strategy III and FlexClust used the MCLUST package (Fraley and Raftery, 1999) 

version 3.0-0 which considers ten parameterizations of the cluster covariance 

matrices (see Table 2.1). SPSS TwoStep was carried out in SPSS 12.0.1 for 

Windows. 
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4.5.1 Simulation Study 1 

The simulated data set consists of 15,000 data points generated from a seven-

component two-dimensional Gaussian mixture distribution. The clusters are of 

different sizes and shapes and some are overlapped as graphically shown in Figure 

4.3. Special attention is paid to the relatively small nested cluster 6. For this set of 

simulated data, the sample sizes considered in FlexClust and strategy III are 500 and 

1000, and the numbers of prototypes considered in sufficient EM are 500 and 800. 

The range of number of clusters considered for sufficient EM is from 2 to 12. 

The parameters for the data set are as follows: 

(µ1, ∑1, n1) = ((-10,38), (1.5,-1,-1,20), 2000),  
(µ2, ∑2, n2) = ((-6,35), (20,0,0,1), 4000), 
(µ3, ∑3, n3) = ((7,30), (6,0.5,0.5,3), 3500), 
(µ4, ∑4, n4) = ((30,60), (3,0,0,33), 1000), 
(µ5, ∑5, n5) = ((-25,35), (8,-0.1,-0.1,1), 2000), 
(µ6, ∑6, n6) = ((-29,34), (0.5,0,0,0.5), 1000), 
(µ7, ∑7, n7) = ((-50,50), (0.5,3,3,20), 1500). 

 
Results for the number of clusters obtained by FlexClust, sufficient EM, 

SPSS TwoStep, strategy III and CLARA on the simulated data are shown in Table 

4.1. It can be seen that FlexClust outperforms the rest of the algorithms in terms of 

the chances of obtaining the model that has the correct number of clusters and 

accurate estimate of parameters. In 10 simulation experiments, FlexClust with the 

sample size of 500 (i.e. FlexClust [500]) and 1000 (i.e. FlexClust [1000]) are 100% 

and 50% respectively successful in identifying the correct model, compared to only 

30% and 20% respectively for sufficient EM with the number of prototypes 500 (i.e. 

sufficient EM [500]) and 800 (i.e. sufficient EM [800]). SPSS TwoStep, strategy III 

and CLARA fail completely in choosing the correct model. SPSS TwoSTep and 

CLARA underestimate the actual number of clusters whereas strategy III tends to 

overestimate the actual number of clusters. Both strategy III with the sample size of 

500 (i.e. strategy III [500]) and 1000 (i.e. strategy III [1000]) most frequently select 

 75



models with 10 clusters. This result is consistent with the finding from Wehrens et 

al. (2004) that strategy III invariably leads to model with more clusters or are more 

complex than strategy whereby EM is performed on the whole data set for only the 

best model from the sample.  

Table 4.1. Number of clusters and percentages of getting the correct clusters obtained using sufficient 
EM, SPSS TwoStep, strategy III, CLARA and FlexClust algorithm on the simulated data. (Numbers 
in the brackets indicate the number of prototypes for sufficient EM algorithm, and the sample size for 
Strategy III and the proposed FlexClust algorithm).  

Algorithm Number of clusters  % of getting all the 
correct clusters 

 (Frequency)  
Sufficient EM (Steiner et al., 2007) [500] 7*(3), 8(6), 9(1) 30% 
Sufficient EM (Steiner et al., 2007) [800] 7*(2), 7(2), 8(3), 9(3) 20% 
SPSS TwoStep (SPSS Inc., 2003) 5(3) 0% 
Strategy III (Wehrens et al., 2004) [500] 6(2), 9(2), 10(5), 11(1) 0% 
Strategy III (Wehrens et al., 2004) [1000] 6(1), 8(1), 9(3), 10(4), 11(1) 0% 
CLARA (Kaufman et al., 1990) 5(1) 0% 
   
Proposed FlexClust [500] 7*(10) 100% 
Proposed FlexClust [1000] 7*(5), 8(5) 50% 

Note: * indicates the correct 7 clusters. s.d. = standard deviation. 

 

In terms of the recovery of the small and nested cluster 6, the MBF criterion 

in FlexClust performs better than the variant of BIC in sufficient EM and the BIC in 

strategy III. The small cluster 6 nested in cluster 5 is not identified in most of the 

initial samples in FlexClust, however it is recovered in the later samples and the 

proposed MBF criterion suggests correctly that it is a new cluster that has not been 

identified in the samples before. Figure 4.4 illustrates how the FlexClust algorithm 

recovered the small nested cluster from incremental compression of samples data in 

one of the experiments form FlexClust [500]. Figure 4.4 (a) shows the compressed 

means and covariances of the initial sample of size 500. Apparently, cluster 6 is not 

found at this stage. In the third sample, cluster 6 is identified as depicted in Figure 

4.4 (b), and the MBF criterion suggests that it is a new cluster. For FlexClust [500], 

from Figures 4.4 (b) to 4.4 (c), we find that no new cluster is found, and the 

 76



estimates of parameters are getting very close to the true values except for cluster 5. 

Fifty and thirty percent of the cases in sufficient EM [500] and sufficient EM [800] 

respectively miss out the nested clusters 6 and identify superfluous components or 

even identical clusters, for example, see Figure 4.5. The performance of sufficient 

EM very much depends on how well the one time compression by k-means preserves 

the structure of the clusters. However, for overlapping and nested clusters, k-means 

gives different compression results from different starting seeds and this causes 

inconsistency in the final models obtained by sufficient EM. For strategy III, 40% 

and 20% of the experiments in strategy III [500] and strategy III [1000] respectively 

fail to recover the nested cluster 6 and identify superfluous sparse clusters as shown 

in Figure 4.6.  
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Figure 4.3. True clusters structure (scatterplot of 10% of the total data points) for the data simulated 
from a seven-component multivariate normal mixture, which has different shape, volume and 
orientation. (Note: ‘+’ represent means, and covariances are visualized by 90% normal tolerance 
ellipsoids). 
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  (a)    (b)    (c) 
Figure 4.4.True clusters structure (scatterplot of 10% of the total data points) and the MLE of the true 
model means and covariances (‘x’, red dotted line) compared to the current model (‘+’, black solid 
line) fitted from incremental compression after: a) initial sample, b) 3 samples, and c) the final 
sample, in one of the experiments of FlexClust [500]. (Note: covariances are visualized by 90% 
normal tolerance ellipsoids). 
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   (a)     (b) 
Figure 4.5. True clusters structure (scatterplot of 10% of the total data points), and the MLE of means 
and covariances obtained using: a) sufficient EM [500]-misses out cluster 6 but identifies superfluous 
clusters at cluster 1 and 2, and b) sufficient EM [800]-misses out cluster 6 but identifies 2 identical 
cluster 4. (Refer Figure 4.3 for note.) 
 

-40 -20 0 20

30
40

50
60

x1

x2

-40 -20 0 20

30
40

50
60

x1

x2

 
   (a)     (b) 

Figure 4.6. True clusters structure (scatterplot of 10% of the total data points), and the MLE of means 
and covariances obtained using: a) strategy III [500], and b) strategy III [1000]. Both miss out cluster 
6 but identify superfluous clusters with k=10. (Refer Figure 4.3 for note.) 
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Table 4.2. Misclassification rate obtained using sufficient EM, SPSS TwoStep, strategy III, CLARA 
and FlexClust algorithm on the simulated data. (Refer Figure 4.3 for note.) 

Algorithm Misclassification rate (%)  
 mean s.d. 

Sufficient EM (Steiner et al., 2007) [500] 9.32 3.50 
Sufficient EM (Steiner et al., 2007) [800] 6.53 2.19 
SPSS TwoStep (SPSS Inc., 2003) 20.79 0.02 
Strategy III (Wehrens et al., 2004) [500] 9.28 2.70 
Strategy III (Wehrens et al., 2004) [1000] 11.15 3.13 
CLARA (Kaufman et al., 1990) 22.59 - 
   
Proposed FlexClust [500] 10.77 0.02 
Proposed FlexClust [1000] 9.82 0.97 

 

 The misclassification rates of simulation study 1 are shown Table 4.2. The 

misclassification rate of FlexClust are slightly higher than the sufficient EM and 

strategy III [500] for small sample sizes, but slightly lower than the strategy III 

[1000] and much lower than the SPSS TwoStep and CLARA. However, the 

incremental compression through mixture model in FlexClust preserves the structure 

better compared to the other algorithms. The estimation of model parameters and 

classification structures on the simulated data for all the five methods are depicted in 

Figures 4.7 – 4.10.  FlexClust [500] classified the data correctly for all the clusters 

except there is no assignment to cluster 6. FlexClust [500] failed to find the global 

maximum likelihood estimator particularly for the nested clusters in the algorithm of 

incremental compression using mixture model and incorporates into the update of 

the current model. However, when the sample size increases, the MLE of parameters 

approaches the true values and there is increase in the classification accuracy of 

FlexClust [1000]. The estimate of parameter means and covariances of the final 

model on the simulated data for the selected experiments from FlexClust are 

depicted in Figure 4.7. Thirty and fifty percent of the experiments in sufficient EM 

[500] and sufficient [800] respectively did not find the global maximum likelihood 

estimators. The numbers of clusters in the final models of these cases are greater 

than 7, but the conditional probabilities mapped the observations into the correct 7 
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clusters, and left some clusters empty, for example see Figure 4.8. Strategy III also 

suffers from the problem of finding the global maximum likelihood estimators. The 

maximized a posterior (MAP) in the strategy III do not assign any data points to few 

of the clusters, and some clusters are sparse, for example see Figure 4.9. For SPSS 

TwoStep and CLARA, the classification accuracies are respectively 10% and 

11.82% lower than FlexClust [500]. SPSS TwoStep employs k-means for 

compression does not preserve the clusters structure well as shown in Figure 4.10 

(a). The repeated sampling in CLARA does not draw representative sample to 

classify the remaining data and obtains clusters structure that cannot distinguish 

overlapping structure as shown in Figure 4.10 (b). 

The FlexClust algorithm especially FlexClust [500] performs consistently in 

obtaining the final model, which implies that the effect of initial sample is very 

minimal. Like other sampling-based algorithm, sample size does affect the 

performance of FlexClust. The complexity in terms of number of clusters of the final 

model obtained by FlexClust is observed to increase with the sample size. More 

clusters are used to describe the sample especially at the overlapping area between 

the elongated cluster 1 and cluster 2 when the sample size is increased. At a fixed 

compression rate and sample size respectively, sufficient EM and strategy III show 

higher variability of the number of clusters and clusters structure in the final models. 

For sufficient EM, the classification accuracy declines at a higher rate of 

compression. The effect of sample size is not obvious in strategy III. 

 

 80



-40 -20 0 20

30
40

50
60

x1

x2

-40 -20 0 20

30
40

50
60

x1

x2

 
  (a)     (b) 

Figure 4.7. True clusters structure (scatterplot of 10% of the total data points), and the MLE of means 
and covariances obtained using: (a) FlexClust [500] (k = 7*), (b) FlexClust [1000] (k = 7*). (Refer 
Figure 4.3 for note.) 
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   (a)     (b) 
Figure 4.8. True clusters structure (scatterplot of 10% of the total data points), and the MLE of means 
and covariances obtained using: a) sufficient EM [500], and b) sufficient [800]. Non global maximum 
likelihood estimators and no assignment to some of the clusters. (Refer Figure 4.3 for note.) 
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   (a)     (b) 
Figure 4.9. True clusters structure (scatterplot of 10% of the total data points), and the MLE of means 
and covariances obtained using: a) strategy III [500], and b) strategy III [1000]. Non global maximum 
likelihood estimators. No assignment to one of the 10 clusters and some clusters are sparse. (Refer 
Figure 4.3 for note.) 
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   (a)    (b) 
Figure 4.10. Classification structure obtained using: a) SPSS TwoStep (k = 5), and b) CLARA (k = 5). 
Plots use 10% of the total observations.  

 

  

4.5.2 Simulation Study 2 

A sample of size 20,000 was generated from a three-component thirteen-

dimensional normal mixture. The population parameters are obtained by fitting the 

wine data set from the UCI machine learning repository (Asuncion & Newman, 

2007) into a mixture of three-component VVI (see section 2.1) model. The wine data 

set is concerned with the chemical quantities of 13 constituents found in each of the 

three types of wines grown in the same region in Italy. It has “well behaved” class 

structures. The mixture proportions of the data are  

=1π  0.3178592, =2π 0.2868950, and =3π 0.3952458. 

The component means are given as follows 

=1µ  (13.7717075, 1.9638926, 2.4404059, 16.8608302, 106.0323937, 2.8509812, 2.9991609, 
0.2862978, 1.9027869, 5.5925554, 1.0646513, 3.1570950, 1130.2923859), 

 
=2µ  (13.1261529, 3.2768523, 2.4212224, 21.3087811, 99.0211310, 1.6750952, 0.8154962, 

0.4509664, 1.1562232, 7.2203250, 0.6954193, 1.6927530, 627.2638145), 
 

=3µ  (12.289382, 1.953201, 2.267386, 20.296714, 95.205399, 2.298128, 2.130312, 0.357933, 
1.655592, 3.058779, 1.061436, 2.840084, 525.396082). 

 

The component covariance matrices are all diagonal and given by 
=Σ1 diag(0.2007727, 0.4026683, 0.04164438, 5.420391, 107.5776, 0.1149230, 0.1554843, 

0.004382626, 0.1732011, 1.466652, 0.01298471, 0.1289701, 44988.93), 
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=Σ2 diag(0.2762789, 1.218337, 0.03638959, 5.255569, 115.1763, 0.1256041, 0.1004483, 
0.01492667, 0.1658363, 5.472534, 0.01495655, 0.07154705, 14307.66), 

 
=Σ3 diag(0.3006426, 1.031226, 0.1130606, 11.27366, 290.3114, 0.2743027, 0.4760694, 

0.01423743, 0.3449565, 0.7489613, 0.04024906, 0.2082159, 25260.28). 

 

The sample sizes considered for FlexClust and the strategy III are 250 and 500. The 

numbers of prototypes for the sufficient EM are set at 500 and 1000. The range of 

number of clusters considered for the sufficient EM is between 2 to 10. 

Table 4.3. Misclassification rate and numbers of clusters using sufficient EM, SPSS TwoStep, 
strategy III, CLARA, and FlexClust on the data generated from wine data set. See caption of Table 
4.1. 

Method  Number of clusters  Misclassification rate (%) 
  mean sd min max  mean sd 

Sufficient EM (Steiner et al., 2007) [500]  3.5 1.51 2 6  59.32 2.64 
Sufficient EM (Steiner et al., 2007) [1000]  2.8 0.79 2 4  42.73 6.57 
SPSS TwoStep (SPSS Inc., 2003)  3 0 3 3  0.26 0.005 

Strategy III (Wehrens et al., 2004) [250]  4.1 0.57 3 5  1.17 2.47 
Strategy III (Wehrens et al., 2004) [500]  4.9 0.32 4 5  3.07 3.80 
CLARA (Kaufman et al., 1990)  2 - - -  32.43 - 
         
Proposed FlexClust [250]  3 0 3 3  0.15 0.0046 

Proposed FlexClust [500]  3 0 3 3  0.15 0.0025  
         

 

Results of the five methods on the simulated data from the wine data set are 

shown in Table 4.2. The proposed FlexClust identifies the final model with correct 

number of clusters for 10 out 10 different initial samples of the sizes 250 and 500 

respectively. In fact, all the initial samples of sizes 250 and 500 manage to identity 

the embedded 3 clusters, and throughout the incremental compression of samples, 

there is no new cluster being added. All the 3 clustering solutions from SPSS 

TwoStep identify the correct number of clusters and show consistent 

misclassification rate. This is not surprising as it is mainly due to the population 

covariance matrices which are all diagonal. FlexClust has the lowest 

misclassification rate among all the methods. The misclassification rate for SPSS 

TwoStep is 0.11% lower than FlexClust. Strategy III identifies the correct number of 
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clusters only once when the sample size is 250 and not when the sample size is 

increased to 500. The misclassification rate in strategy III [250] and strategy [500] 

are 1.02% and 2.92% respectively higher than FlexClust with the equal sample sizes. 

The misclassification rates for sufficient EM[500] and sufficient EM[1000] are 

59.32% and 43.72% respectively. These are far higher than the rest of the methods 

for the simulated high dimensional data. Thirty percent of the experiments in 

sufficient EM [500] and forty percent of the sufficient EM [1000] choose the model 

with 3 clusters, but the MLE of model parameters do not converge to the global 

maximal. The average misclassification rate accuracies for these three-component 

models are up to 60.34% and 40.31% respectively for the sufficient EM [500] and 

sufficient EM [1000]. CLARA chooses a model with underestimated number of 

clusters and the misclassification rate is 32.43%.  

 

4.5.3 Simulation Study 3 

In simulation study 3, a sample consisting of 10,000 simulated points was 

generated from a three-component four-dimensional normal mixture model. The 

population parameters are from the well known iris data available at UCI machine 

learning repository (Asuncion & Newman, 2007) website. Two of the three classes 

(Versicolor, Virginica, and Setosa) in the iris data are overlapping. The component 

means of the best fitted three-component model are  

 =1µ  (5.006, 3.428, 1.462, 0.246),  =2µ  (5.914879, 2.777504, 4.203758, 1.298819),  
=3µ  (6.546670, 2.949495, 5.481901, 1.985322), 

 
and the component covariance matrices are 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=Σ

010693650.0005819438.001001168.001158793.0
005819438.0018176976.012098300.001919601.0
01001168.012098300.015497824.010940214.0
01158793.001919601.010940214.013322911.0

1 , 
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⎟
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⎟
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⎜
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⎝

⎛

=Σ

03335458.004947014.003435134.004331622.0
04947014.016601076.007370230.014679059.0
03435134.007370230.008020281.007613421.0
04331622.014679059.007613421.022561867.0

2 , 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=Σ

08671670.008724485.006141314.006547643.0
08724485.036451484.008918583.033465810.0
06141314.008918583.0116022293.010788462.0
06547643.033465810.010788462.042946303.0

3 , 

 
The mixing proportions are  

=1π  0.3333333, =2π 0.3003844, and =3π 0.3662823. 

In this simulation study, the sample sizes considered for FlexClust and the strategy 

III are 200 and 500. For the sufficient EM, the numbers of prototypes considered are 

200 and 500, and the range of number of clusters considered is from 2 to 10. 

Table 4.4. Misclassification rate and numbers of clusters using sufficient EM, SPSS TwoStep, 
strategy III, CLARA, and FlexClust on the data generated from iris data set. See caption of Table 4.1. 

Method  Number of clusters  Misclassification rate (%) 
  mean sd min max  mean sd 

Sufficient EM (Steiner et al., 2007) [200]  3 0 3 3  2.04 0.03 
Sufficient EM (Steiner et al., 2007) [500]  3 0 3 3  2.00 0.04 
SPSS TwoStep (SPSS Inc., 2003)  2 0 2 2  30.00 0 
Strategy III (Wehrens et al., 2004) [200]  3.8 0.42 3 4  4.62 5.70 
Strategy III (Wehrens et al., 2004) [500]  4.5 0.07 3 5  6.85 5.59 
CLARA (Kaufman et al., 1990)  2 - - -  30.01 - 
         
Proposed FlexClust [200]  3 0 3 3  1.91 0.15 
Proposed FlexClust [500]  3 0 3 3  1.83 5.8x10– 3

         
 

Results of the five compared methods on the simulation study 3 are 

summarized in Table 4.3. The proposed FlexClust and the sufficient EM identify 

model with the correct number of clusters in all the experiments. However, the 

misclassification rate of the proposed FlexClust is lower than the sufficient EM by 

0.13% and 0.17% respectively when the sample sizes or number of prototypes are 

200 and 500. This implies that the parameters estimated in FlexClust are closer to 

the true value compared to sufficient EM when both methods select the correct 

number of clusters. For strategy III, only 20% and 10% of the experiments from 
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strategy III [200] and strategy [500] respectively identify the correct number of 

clusters. The misclassification rates in strategy III are higher than FlexClust by 

2.71% and 5.02% respectively for sample sizes 200 and 500. CLARA and SPSS 

TwoStep give clustering solution with only 2 clusters. It shows that the two methods 

could not recover the overlapping cluster structure of the data set.  

 

4.6 Application to Real Data 

The performance of the proposed FlexClust is compared to sufficient EM and 

strategy III algorithm in the study of two sets of real data. The first data set is the St 

Paulia data which has 81,472 pixels. It is an RGB image with 268 columns and 304 

rows. The data set is available at www.cac.science.ru.nl/people/ 

rwehrens/publications.html. The RGB image is shown in Figure 4.11. Identifying the 

small yellow flowers is of particular interest in this study. The second data set is the 

Forest CoverType data. It describes forest cover type from cartographic variables (no 

remotely sensed data), which were derived from data originally obtained from US 

Geological Survey (USGS) and US Forest Service (USFS) data. The data has 

581,012 data items and available at UCI machine learning repository (Asuncion & 

Newman, 2007). Five quantitative attributes as used in Jin et al. (2004) are 

considered in this thesis. The sample sizes considered in FlexClust and the strategy 

III are 1000 and 2000, and the numbers of prototypes considered in sufficient EM 

are 1000 and 2000. The range of number of clusters considered for sufficient EM is 

from 2 to 35 for the St Paulia data and from 2 to 14 for the Forest CoverType data. 

For St Paulia data, the performances of the three algorithms are assessed visually, 

whereas for the Forest CoverType data, the performances are assessed by comparing 

the average log-likelihood of the obtained Gaussian mixture. For each setting of the 
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strategy III and FlexClust algorithms, 10 experiments were carried out for different 

initial samples. For each prototype system in the sufficient EM, 10 replications were 

carried out by considering different starting solution for the k-means compression. 

 

Results for St Paulia Data 
Results for sufficient EM, strategy III and the proposed FlexClust algorithms 

on the St Paulia image data are summarized in Table 4.4. FlexClust is more stable 

than sufficient EM in choosing the final model. The scan through and select 

procedure in FlexClust drew samples in blocks of size 2000 and identified a set of 

120 data points from the small clusters with proportion less than 0.01. Most of the 

points in this set were the pixels for the yellow flowers. For sufficient EM, some of 

the experiments obtained clusters with mixture proportions as low as 1x10–71 – 1x10–

5. It implies that FlexClust overcomes the problem of missing out on small clusters 

in the incremental compression procedure and performs as good as the one time 

compression where data set is compressed as a whole. Examples for the 

segmentation results from each algorithm are shown in Figure 4.12. The 

segmentations from both the FlexClust and the sufficient EM algorithms reveal the 

yellow flowers in all the experiments. The pixels of the yellow flowers are from 

small clusters but they do not overlapped with other clusters and are not nested in 

any clusters, therefore, k-means works reasonably well to identify them as clusters 

either in the scan through and select procedure or the compression step at sufficient 

EM. All the experiments from the strategy III missed out on the small clusters of 

yellow flowers.  
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Figure 4.11.  RGB image of the St Paulia data set 

 

  (a)    (b)    (c) 

         

 (d)    (e) 

       

      (f)    (g) 

Figure 4.12. Ground true image on St Paulia RGB image data in (a). Segmentation results on the 
image data obtained by: b) FlexClust [1000] (k = 24), c) FlexClust [2000] (k = 34), d) sufficient EM 
[1000], (k = 26), e) sufficient EM [2000] (k = 27), f) strategy III [1000] ((k = 11), and g) strategy III 
[2000] (k = 10). 
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Table 4.5. Number of clusters obtained using the sufficient EM, strategy III and FlexClust on the St 
Paulia data. See caption of Table 4.1. 

Algorithm Number of clusters, k 
 mean sd min max 

Sufficient EM (Steiner et al., 2007) [1000] 27 2.3 24 31 
Sufficient EM (Steiner et al., 2007) [2000] 27.2 5.5 20 35 
Strategy III (Wehrens et al., 2004) [1000] 9.7 1.2 8 11 
Strategy III (Wehrens et al., 2004) [2000] 9.6 1.5 7 13 
     
Proposed FlexClust [1000] 25.1 1.5 23 27 
Proposed FlexClust [2000] 34.3 3.3 30 38 
     

 

 

Results for Forest CoverType Data 

The average log-likelihood values of FlexClust, sufficient EM and strategy 

III are –786,687, -809,407 and –853,212 respectively (note: 21,000,000 was added 

to all the log-likelihood values for legibility). Thus, FlexClust generates slightly 

more accurate Gaussian Mixture than both sufficient EM and strategy III.  

 

 

4.7 Very Large Simulated Data  

A data of size 2 million was generated from a seven-component five-

dimensional normal mixture. In the mixture distribution, component one and two, 

and also component three and four, share common mean but have different 

covariances. The parameters are  

π1 = π2 = π4 = π6 = 0.15, π3 = 0.175, π5 = 0.125, π7 = 0.1, 

µ1 = µ2 = (0,0,0,0,0), µ3 = µ4 = (4,4,4,4,4), µ5 = (4,4,4,4, –4), µ6 = (4, –4, –4,4,4),  

µ7 = (–4,4,4, –4, 4), and ∑1 = ∑3 = ∑5 = ∑6 = ∑7 = I5, ∑2 = ∑4 = 4I5.  

The whole data set is too large to be loaded into the memory buffer. It gives 

two implications: 1) the pre-clustering compression step as in the sufficient EM and 

SPSS TwoStage could not be carried out, and 2) for the strategy III and CLARA, the 
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samples drawn from the portion of data set that loaded into the memory buffer are 

not representative enough and might miss out on important clusters.  

For FlexClust, the incremental compression procedure works scalable to the 

data size. FlexClust [1000] and FlexClust [2000] identify the number of clusters 

correctly and the classification accuracies are 90.33% and 90.22% respectively.  

 

4.8 Discussion and Conclusion 

The proposed novel FlexClust clustering algorithm has been tested over 

simulated data and real life data. Compared to the sufficient EM, SPSS TwoStep, 

sample from model (strategy III), and CLARA, the results obtained from FlexClust 

are promising.  

In terms of compression-based clustering algorithms, FlexClust shows two 

main advantages over the sufficient EM and SPSS TwoStep algorithms. Firstly, 

FlexClust reduces the loss of information. This is mainly due to a more effective 

prototype system in representing the compressed data, and a more efficient model for 

the incorporation of incrementally compressed data. FlexClust incorporates the 

incrementally compressed information by mixture model into the current model has 

given estimate of model parameters that are close to the true values. The 

compression method by Gaussian mixture model and representation of the 

summarized information using the prototype of MLEs of mixture model preserves 

the clusters structure well.  On the contrary, the one time compression in sufficient 

EM without the guideline on the sufficient number of prototypes very much depends 

on the compression quality by k-means. Table 4.6 shows the misclassification rates 

for one-time compression and incremental compression for data sets with 

dimensions of 2, 4, and 13 as in simulation study 1, 2 and 3. For the two Gaussian 
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mixture models, the mean misclassification rate of sufficient EM is 50.88% higher 

than FlexClust in the 13-dimensional data as shown in Figure 4.13. This is mainly 

caused by the inefficiency of k-means for high dimensional data. For overlapped and 

nested clusters, k-means gives different compression results from different starting 

seeds and this causes inconsistency in the final models obtained by sufficient EM. 

Most of the time, sufficient EM converges poorly and selects a less parsimonious 

model with some empty clusters as the best model. SPSS TwoStep characterizes the 

dispersion of the compression data by its variance instead of the full covariance has 

worsened the loss of information due to compression. Secondly, FlexClust is 

scalable to any data size.  In the case of the data set size larger than the memory 

buffer, the one time compression procedure in sufficient EM and SPSS TwoStep is 

not applicable whereas the incremental compression procedure in FlexClust 

performs satisfactorily even for data with small clusters or overlapping clusters.   

Table 4.6. Misclassification rates for one-time compression and incremental compression methods for 
data sets with different dimensions. 

Algorithm Two-dimensional Four-dimensional  Thirteen-dimensional
 Misclassification 

rate (%) 
Misclassification 

rate (%) 
 Misclassification rate

(%) 
 mean s.d. mean s.d.  mean s.d. 

One-time compression:        
Sufficient EM (Steiner et al., 2007) [s1] 9.32 3.50 2.04 0.03  59.32 2.64 
Sufficient EM (Steiner et al., 2007) [s2] 6.53 2.19 2.00 0.04  42.73 6.57 
SPSS TwoStep (SPSS Inc., 2003) 20.79 0.02 30.00 0  0.26 0.005 

        
Incremental compression:        
Proposed FlexClust [s3] 10.77 0.02 1.91 0.15  0.15 0.0046 

Proposed FlexClust [s4] 9.82 0.97 1.83 5.8x10– 3  0.15 0.0025  
Note:  s1=500, s2=800,  s1=s3 =200,   s1=500, s2=1000, 

 s3=500, s4=1000.  s2=s4=500.  s3=250, s4=500. 
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Figure 4.13. Difference of mean misclassification rates between FlexClust and sufficient EM. 

 

In terms of sampling-based clustering algorithms, FlexClust outperforms the 

strategy III and CLARA algorithms by obtaining models that produce lower 

misclassification rates for data sets with different dimensions from simulation study 

1, 2 and 3 as shown in Table 4.7.  The scheme of incremental random sampling in 

FlexClust overcomes the ill sample problem faced in the sampling schemes of 

strategy III and CLARA. FlexClust is insensitive to initial sample being drawn and 

shows more consistent and accurate results in determining the number of clusters at a 

fixed sample size. The problem of ill sample is not obvious in the algorithm as 

samples are drawn incremental with the flexibility of recovering clusters that have 

been missed out before. Furthermore, the scan through and select procedure helps to 

identify data points from probable small clusters. However, the sample size does 

affect the results of FlexClust. Although CLARA is proposed to improve the 

sampling-based clustering method by drawing few samples, it is inefficient to select 

the best sample that consists of medoids close to the population medoids. Strategy III 

trains few tentative best models from a sample does not help to select the model with 

the correct number of clusters. Most of the time, the strategy converges to bad local 
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minima and selects a less parsimonious model with some empty clusters as the best 

model. For the two Gaussian mixture models considered, that is FlexClust and 

strategy III, Figure 4.14 shows that the mean misclassification rate of FlexClust is 

0.08-3.87% lower than strategy III.  

Table 4.7. Misclassification rates for incremental sampling and random sampling for data sets with 
different dimensions. 

Algorithm Two-dimensional Four-dimensional  Thirteen-
dimensional 

 Misclassification 
rate (%) 

Misclassification 
rate (%) 

 Misclassification 
rate (%) 

 mean s.d. mean s.d.  mean s.d. 
Random sampling        
Strategy III (Wehrens et al., 2004) [s1] 9.28 2.70 4.62 5.70  1.17 2.47 
Strategy III (Wehrens et al., 2004) [s2] 11.15 3.13 6.85 5.59  3.07 3.80 
CLARA (Kaufman et al., 1990) 22.59 - 30.01 -  32.43 - 
        
Incremental sampling        
Proposed FlexClust [s3] 10.77 0.02 1.91 0.15  0.15 0.0046 

Proposed FlexClust [s4] 9.82 0.97 1.83 5.8x10– 3  0.15 0.0025  
Note:  s1=s3=500,   s1=s3 =200,   s1=s3=250, 

 s2=s4=1000.  s2=s4=500.  s2=s4=500. 
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Figure 4.14. Difference of mean misclassification rates between FlexClust and strategy III. 

 

Determining the number of clusters in data is a difficult problem. In dealing 

with large data clustering, this problem becomes even more challenging. The 

proposed FlexClust clustering algorithm provides an alternative solution with also 

taking the memory size into consideration. On top of that, FlexClust is potentially 
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useful to cluster open data stream where the clusters structure might have changed 

over time. It provides up to date usable model by incorporating new arrived data into 

the current model without recomputing all the previous data. This issue will be 

addressed elsewhere. On the contrary, the variant of BIC in sufficient EM always 

suggests less parsimonious models. The values for the variant of BIC for a range of 

number of clusters, G, can be in an irregular trend, and the number of clusters for the 

condensed data is determined based on the minimum value for the given range of G. 

It chooses incorrect model if the given G does not consist of the true number of 

clusters. Figure 4.15 shows the percentages of experiments that are able to identify 

the correct number of clusters and correct clusters in simulation 1, 2 and 3. FlexClust 

outperforms the rest of the methods in all the data sets. On average, FlexClust 

identifies the correct clusters or correct number of clusters 38.33%, 58.33%, 85% 

and 92% of times better than sufficient EM, SPSS TwoStep, strategy III and 

CLARA respectively. 
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Figure 4.15. Percentages of experiments that are able to identify the correct number of clusters and 
correct clusters. 

  

The execution time of FlexClust, sufficient EM and strategy III for the 

synthetic and real data sets are shown in Figure 4.16. The execution time of 
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sufficient EM increases from 146.92 to 3338.66 s when the number of clusters of the 

data sets increases from 3 to 35 as plotted in Figure 4.16(a). The execution time of 

FlexClust increases from 100.27 to 7528.89 s when data size increases from 15,000 

to 581,012 as shown in Figure 4.16(b). FlexClust runs 5.07 times faster than 

sufficient EM in St Paulia data with the highest number of clusters, but 5.67 times 

slower than sufficient EM in Forest CoverType data with the largest data size. 

Strategy III takes the lowest execution time in all sets of data. It runs 1.2 times and 

13.82 times faster than FlexClust in the St Paulia and Forest CoverType data 

respectively. 
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Figure 4.16. Performance of average execution time according to (a) number of clusters, (b) data size. 
 

Direct application of mixture model clustering to large data sets is often 

constrained by three main resources: data size, memory and time. Extensions of the 

clustering method to large data sets are usually confined to large data sets that can be 

processed as a whole. However, this is not practical in data mining applications. 

Incremental data compression according to the available memory buffer and 

incorporating the compressed information into the current model fit is a solution to 

this problem. However, this approach faces two challenges. Firstly, the behaviour of 
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the incremental scheme can be viewed as a generalized version of a sampling based 

scheme, and therefore it suffers from the same shortcomings as other sampling 

schemes such as non representative sample and missing out on small clusters. 

Secondly, data compression causes loss of information from the ineffective resulting 

prototype system. FlexClust algorithm is proposed to address the problems. Results 

on the simulated and real data support that the proposed FlexClust algorithm is 

scalable to very large data sets and at the same time overcomes the problems of loss 

of information due to partition of data and data compression. 
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5  

Scalable Mixture Model Clustering Algorithm for Mixed Data 
 

 

This chapter consists of two main parts. First, a parametric model for mixed 

variables is developed and its performance is compared to some existing mixture 

models for mixed data such as the conditional Gaussian model, restricted location 

mixture model and modified location model. The developed model is then 

incorporated in the scalable algorithm proposed in Chapter 4 to introduce a scalable 

clustering algorithm for mixed data. 

 

5.1 Conditional Gaussian Model  
 

When observations are made on both categorical and continuous variables, 

the data are said to be mixed-mode or mixed. The assumption of Gaussian mixture 

model in Chapter 1 for this kind of data is not realistic. Lawrence and Krazanowski 

(1996) proposed a finite mixture model for the problem of mixed-mode data 

classification, which has been termed as the conditional Gaussian distribution, or 

location model. It specifies the joint distribution of mixed-mode data as the product 

of the marginal distribution of the categorical variables and the conditional 

distribution of the continuous variables given the values of categorical variables. It is 

assumed that the continuous variables have a different multivariate normal 

distribution for each possible setting of categorical variable values, while the 

categorical variables have an arbitrary marginal multinomial distribution. Given a 

data set measure on the i-th observation of n units, = ( , ), be the mixed iy iu ix
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variables of q categorical variables, = ( ), and p continuous variables, 

= ( ). Suppose that the j-th categorical variable has c

iu qii uu ,,1 …

ix pii xx ,,1 … j categories, the q 

categorical variables can be uniquely transformed to a single multinomial random 

variable W with m cells,  (s = 1, …, m), where  is the number of 

distinct combination (location) of the q categorical variables. The associations 

among the original q categorical variables are then converted into relationship 

among the resulting multinomial cell probabilities. The given data according to the 

cell of  in which the observation occupies is then denoted by = 

sw ∏ =
=

q
j jcm

1

sw x

),,,,,,,,,( 1221111 21
′′′′′′′

mmnmnn xxxxxx ………… , where  is a p x 1 vector of continuous 

variables for the i-th out of the observation at location s (s = 1, …, m; 

). The conditional Gaussian model assumes that given the multinomial 

cell  where the observation is placed, the distribution of the continuous variables 

is multivariate normal, , and that the probability of an observation in 

the multinomial cell  is p

six

sn

∑ =
=

m
s s nn

1

sw

),(~ sssi ΣµNx

sw s (s = 1, …, m). In the mixture separation application, 

Lawrence and Krzanowski (1996) assumed that each observation is drawn from a 

mixture of g subpopulations with unknown proportions kα  (k = 1, …, g; 

). The p.d.f. of each observation  is given by  ∑ =
=

g
k k1

1α six

   (5.1) ∑
=

==
g

k
skskssikskssi wWΣµpwf

1
, )|;();,( xΘx φα

where )|;( , skskssi wWΣµ =xφ  is the conditional p.d.f. of multivariate normal for the 

vector  given that it is placed in cell , and  is the probability of an 

observation in cell of the multinomial variable in subpopulation k (s = 1, …, m; k 

= 1, …, g).  

six sw ksp

sw
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In deriving the distance between populations of mixed data for discriminant 

analysis using the above model, Krazanowski (1993) pointed out that the large 

number of parameters contained in the conditional Gaussian model causes estimation 

problems in many practical situations. To make satisfactory progress, Lawrence and 

Krazanowski (1996) adopted the idea from the homogeneous conditional Gaussian 

model in graphical modelling to constrain all the dispersion matrices to be equal, that 

is, to set  equal to skΣ Σ  for all k and s. Actually, the homogeneous conditional 

Gaussian model was originated by Olkin and Tate (1961) as the location model for 

discriminant analysis of mixed data. Thus, the conditional Gaussian model for 

mixture separation by Lawrence and Krzanowski (1996) is sometime termed as the 

location model.  

Structurally the log-likelihood of the conditional Gaussian model is the same 

as the one for Gaussian mixture model for continuous variables in equation (1.5). 

Indeed, the similarity of structure can be emphasized by viewing the log-likelihood 

as a mixture of g x m normal clusters having the hierarchical structure of g clusters 

and m subclusters within each of these clusters. Then the log-likelihood of the 

mixture can be written  

  (5.2) ∑∑∑
= = =

=++=
g

k

m

s

n

i
skssikskksi

s

wWΣµhpzL
1 1 1

)}|,;(ln{ln)( xΘ α

The EM algorithm from section 1.1.1 can be applied to this log-likelihood; it just has 

an extra summation over the cells, , and extra parameters, . The estimates 

obtained are 

sw ksp
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One of the most fundamental problems for the conditional Gaussian model is 

non-identifiability. It arises from the indeterminacy of cluster label at each location. 

In the conditional Gaussian model, locations of the clusters are known and labeled, 

but cluster labels within the locations are unknown. For the case of m locations and g 

clusters, if the cluster labels at the first location are not permuted to avoid obtaining 

redundant parameters sets, and only the cluster labels in the remaining m-1 locations 

are permuted, there are (g!)m-1 ways of assigning the cluster labels. These different 

labeling offer different views of cluster structure of the data, but provide the same 

likelihood. Lawrence and Krzanowski (1996) always choose the labeling that yielded 

the fewest misclassifications. However, this causes excessive shrinkage of parameter 

estimates. Willse and Boik (1999) suggested that perhaps the best solution for the 

problem is to carry out separate cluster analysis within each location, and then expert 

knowledge is used to assign group labels within locations. They modified the 

conditional Gaussian model by imposing restrictions on the conditional means of the 

continuous variables in order to obtained identifiable finite mixture models. The 

identifiability restriction in the restricted conditional Gaussian model or identifiable 

location mixture model proposed by Willse and Boik (1999) considered an additive 

model to include the differences in the conditional means across locations. However, 

the choice of an identifiability restriction itself is a problem to be solved. Celeux, 
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Hurn and Robert (2000) demonstrated that different restrictions may generate 

markedly different results. Stephens (2000) showed that many choices of 

identifiability restriction do not completely remove the non-identifiability problem. 

This thesis proposes an alternative to solve the problem. 

The conditional Gaussian model as originally proposed by Lawrence and 

Krzanowski (1996) assumes that all the m x g cells formed from the combination of 

m values of the multinomial variable and the g clusters always contain observations. 

However, in practical applications, it is very likely that some of the cells may be 

empty, and consequently the estimation of cell means and covariances are not 

allowed. The problem of empty cells is more pronounced when a high number of 

categorical variables and clusters are involved, but the sample size is not sufficiently 

large (Franco, Crossa, Villasenor, Taba, and Eberhart, 1998). In the classification of 

genetic resources, Franco et al. (1998) proposed the modified location model which 

allows some of the m x g cells to remain empty. The modifications are that the 

means and covariances of the continuous variables depend only on the k-th cluster, 

instead of on the specific ks-th cell. The model assumes that the mean vectors and 

the covariance matrices are equal for all the multinomial cells within each cluster. 

Therefore the p.d.f  becomes 

   ∑
=

=
g

k
kksikskssi Σµpwf

1
, );();,( xΘx φα

In term of parameters estimation, Franco et al. (1998) incorporated the technique 

suggested by Ward (1963) in the modified location model (MLM) and proposed a 

two-stage strategy, Ward-MLM, as an alternative to the different random starting 

points used by Lawrence and Krzanowski (1996). The basic notion of Ward-MLM is 

that the initial groups formed by the Ward method based on the objective function to 
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minimize the sum of square within groups are used as the starting values for the EM 

algorithm as in equations (5.3a – e). The MLEs of kα  and for the modified 

location model are same as the conditional Gaussian model. However, the estimate 

of the cluster mean is the weighted MLEs of the conditional Gaussian model means, 

ksp

ksµ̂ , given by 
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and the estimate of the homogeneous covariance becomes 
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The probability of membership for each observation belonging to the k-th cluster is 

estimated as 
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Franco, Crossa, Taba, and Eberhart (2002) modified the modified location model by 

assuming heterogeneity of covariance matrices across clusters. The MLE of the 

covariance matrix of the k-th cluster is  
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The assignment of the observations to the k-th cluster assuming heterogeneity of 

covariances is done based on maximized a posterior probability given by 
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 This thesis proposes a mixture model for mixed data which is termed as the 

Gaussian location model (GLM) to solve the problems of indeterminacy of cluster 

label at each location and allow some of the m x g cells to remain empty. In the 
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GLM, a joint probability distribution of the mixed variables is proposed. The details 

of the model will be discussed in the next section.  

 

5.2 Gaussian Location Model (GLM) 

The Gaussian location model adopts the justification from the modified 

location model that the maximization process searches for homogeneous groups 

around the cluster mean and not around the cell mean helps to solve the empty cells 

problem. The proposed Gaussian location model introduces a joint probability 

distribution for mixed variables that produces a likelihood function in which each 

observation is compared with the cluster mean not with the cell mean, and at the 

same time obtains identifiable estimates of the model parameters. The proposed joint 

probability distribution for mixed variables is expressed as the conditional 

distribution of the categorical variables given the continuous variables, times the 

marginal distribution of the continuous variable. Actually, the idea of this form of 

joint probability distribution has been briefly raised by Cox (1972). He suggested 

that the joint distribution of a mixture of binary and continuous variables could be 

written as a logistic conditional distribution of the binary variables for given values 

of the continuous variables, times a marginal multivariate normal distribution for the 

continuous variables. However, this idea appears not to have been pursued any 

further in the analysis of mixed data sets. This thesis adopts Cox’s idea of joint 

probability distribution for mixed variables and incorporates it in the mixture model 

for mixed data. 

 The proposed marginal distribution of the joint distribution is fitted from the 

Gaussian mixture distribution of the continuous variables, and the conditional 

distribution of the categorical variables is a multinomial distribution of the collapsed 
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categorical variables given the Gaussian mixture distribution of the continuous 

variables. The resulting means and covariances from each cluster are equal for all the 

multinomial cells within the cluster. There are two main advantages of such a joint 

distribution: 1) like in the modified location model, the means and covariances of the 

continuous variables depend only on the cluster, and do not depend on the 

multinomial cell in which they appear, thus the assignment of observations into 

empty cells is allowed, and 2) in the finite mixture model for continuous variables, 

permutation of cluster labels corresponding to a simple relabeling of indexes, and the 

representation of different cluster labels are considered equivalent, thus the issue of 

identifiability is only up to relabeling of indexes and does not concern the cluster 

structure as in the conditional Gaussian model. 

Let = ( , ), be the mixed variables of q categorical variables, = 

( ), and p continuous variables, = ( ), measured on the i-th 

observation of n units of a data set. Suppose that the q categorical variables as in the 

conditional Gaussian model can be uniquely transformed to a single multinomial 

random variable W with m cells,  (s = 1, …, m), where  is the 

number of distinct combination (location) of the q categorical variables. The data set 

is first clustered using only the continuous variables by fitting a G-component 

Gaussian mixture model on it as described in section 1.1.1. The clustering 

framework of Banfield et al. (1993), which allows features of cluster such as 

orientation, size and shape to vary across clusters, is applied here. The MLE of the 

model parameters, 
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kπ̂ , kµ̂ , , and  (k = 1,…, G) are obtained using EM 
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the i-th out of the observation in cluster k (k = 1,…, G; ). The 

location of the observation is assumed multinomial distributed, given the observation 

is from cluster k. The probability of an observation in cluster k (k = 1, …, G) falls in 

cell  (s = 1, …, m) of the multinomial variable is 

kn ∑ =
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k k nn
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      (5.6) 

where 1=sλ  if , and ski ww ∈ 0=sλ  if ski ww ∉ . 

The p.d.f. of each mixed data observation in the proposed mixture model is given by  
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 In the Gaussian location model, the preliminary model fitting using only 

continuous variables provides the initial cluster structure and the determination of 

the number of clusters in the data, but overall, the information contained in both the 

continuous and categorical variables are used to assign the membership of the 

observations.  

The estimations of the conditional Gaussian model and modified location 

model assume that the number of clusters is known. However, in practice, it is often 

unknown. The proposed Gaussian location model for mixed data has the advantage 

over the aforementioned models that the number of clusters can be estimated using 

well established model selection criteria like BIC. 
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5.3 Simulation for GLM 

The performance of the proposed Gaussian location model is compared to the 

conditional Gaussian model (Lawrence & Krazanowski, 1996), the restricted 

location mixture model (Willse & Biok, 1999), and the modified location model 

(Franco et al., 2002).  

Simulation studies 1 and 2 intend to examine the issue of identifiability of the 

proposed model, the conditional Gaussian model and restricted location mixture 

model by comparing the misclassification rates. For the restricted location mixture 

model, only the parallel structure in the conditional mean which assumes that the 

difference between conditional means for any two clusters is the same at all 

locations, was studied as it is more comparable with the proposed model. The 

simulated data in both of the simulations assume that the multinomial variable W is 

associated with the continuous variables. The generated data assumes homogeneity 

of covariances across clusters.  

In simulation study 3, the evaluation focused on the ability of the proposed 

model compared to the modified location model in recovering the clusters structure 

in the presence of empty cells in the data set by clustering observations around the 

cluster means instead of the cell means. The modified location model considered in 

this simulation study is the Ward-MLM strategy which assumes that the covariance 

matrices are heterogeneous as in Franco et al. (2002). The simulated data assumes 

independence of the multinomial variable and the vector of continuous variables.  

 

5.3.1 Simulation Study 1 
The simulation examples of Lawrence and Krzanowski (1996) and Willse 

and Biok (1999) were used to compare the performance of the proposed mixture 
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model for mixed data. Lawrence and Krzanowski (1996) conducted a simulation 

study to evaluate the ability of the location model to recover group structure and to 

classify observations. For each replication 20 observations were generated from each 

of two 4-variate normal populations, one with mean (0,0,1,1) and the other with 

mean (0,0,6,6), and the populations have common covariance matrix 

  . 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=Σ

3111
1211
1121
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The first two variables for each observation were dichotomised by thresholding at 0. 

Let the generated value of the p-th continuous variable be , if < 0, then a 

binary value = 0 is set, and if ≥ 0, = 1, for p = 1, 2, in both populations. 

The whole process was replicated 50 times. Willse and Biok (1999) repeated the 

simulated data 50 times for the restricted location mixture model. In their simulation 

study, the EM algorithm was applied with randomly selected initial values and with 

initial values determined by applying k-means to the continuous variables. Both of 

the simulations by Lawrence et al. (1996) and Willse et al. (1999) assumed that the 

number of clusters was known where g = 2. This thesis also conducted 50 

replications of the above simulated data for the proposed model, and used BIC to 

choose the number of clusters. 

px px

py px py

Table 5.1. Misclassification rates for simulation study 1 using location model, restricted location 
model and the proposed Gaussian location model. 

Method Misclassification (%) 
 mean s.e. 

Conditional Gaussian model (Lawrence et al., 1996) 31.4 1.95 
Restricted location mixture model (Willse et al., 1999) 4.5 See text 
   
Proposed GLM 2.98 0.49 
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Table 5.2. Average estimates and standard errors of the parameters means and covariances for the two 
continuous variables for simulation study 1 using location model, restricted location model, and the 
proposed Gaussian location model. 

Method  Mean vectors Covariance matrix 
  Average estimate s.e. Average estimate s.e. 

Conditional Gaussian 
model (Lawrence et al., 
1996) 

 (2.52, 2.52), (4.47,4.47)  ≈ 0.1 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
320.2883.0

883.0753.1
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
119.0173.0

173.0185.0
 

Restricted location 
mixture model (Willse 
et al., 1999) 

 (1.00, 0.98), (5.96, 5.96)  ≈ 0.10 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
86.208.1

08.114.2
 
≈ 0.05 for all 
entries 

      
Proposed model   (0.86, 0.91), (6.08, 6.11) ≈ 0.06 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
349.2420.0

420.0979.1
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
077.0081.0

081.0084.0
 

      
 

The misclassification rates for the simulated data are compared in Table 5.1. 

For the proposed Gaussian location model, 7 out of 50 replications of the simulated 

data did not choose the number of clusters to be 2. These replications were omitted 

in the report. For the restricted location mixture model, one of the simulated data set 

contains no observations from one of the location, and it was not taken in account in 

the summary statistics in Table 5.1. It can be seen that the proposed model 

performed better than the others and, in particular, it is far better than the conditional 

Gaussian model. Two of the replications in the proposed model contained empty 

cell. However they did not affect the estimation of parameters, and the replications 

give an average of 1.25% misclassification rate. According to Willse et al. (1999), 

the true model for this set of data is the underlying variable mixture model of Everitt 

(1988) which assumes that the binary variables are obtained by dichotomising 

underlying normal variables, and the misclassification rate estimated by the 

underlying variable mixture model is 1.1%. It shows that the misclassification rate of 

the proposed model is closer to true model as compared to other models. In Willse et 

al. (1999), the standard error of the misclassification rate was not reported, however 

from other statistics for the misclassification rate: median 2.5%, minimum 0%, 
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maximum 22.5%, it shows that the restricted location mixture model has high 

variability in term of classification accuracy. 

 The average estimates of the parameters are shown in Table 5.2. The two 

population mean vectors for the continuous variables are (1,1) and (6,6). The 

conditional Gaussian model shows shrinkage of means towards the centre of both 

variates. Both restricted location mixture model and the proposed model recovered 

the parameters of means well. The true covariance matrix according to Everitt’s 

(1988) model as cited in Willse et al. (1999) is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
5.25.0
5.05.1

. 

It can be seen that the average estimate of covariance in the proposed model is the 

closest to the true value.  

Even when there is some degree of dependency between the continuous 

variables and the multinomial variable obtained from the dichotomised variables, the 

proposed model performed well. 

 

5.3.2 Simulation Study 2 
A simulated data consists of less well separated groups studied by Willse et 

al. (1999) was used to compare the performance of the proposed model and the 

restricted location mixture model. The common covariance matrix of the 

populations, and the threshold to dichotomize the first two variables are same as 

simulation study 1. The two populations in simulation study 2 have closer means, 

one with mean (1,0,5,5) and another one with mean (0,1,2,2). For each replication, 

100 observations were generated for each of the two populations.  
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The misclassification rates for simulation study 2 for the two models are 

shown in Table 5.3. For the proposed model, BIC did not suggest the correct number 

of clusters for 38 out of 50 replications. However, in the replications where the 

numbers of clusters were correctly determined, the proposed model outperformed the 

restricted location mixture model in term of classification accuracy. The respective 

average misclassification rate is 13.72% which is much lower than 21.45% for the 

restricted location mixture model as reported in Willse et al. (1999). Furthermore, 

from the other statistics of the misclassification rate in Willse et al. (1999) like 

median 18.75%, minimum 8.0%, and maximum 41%, the restricted location mixture 

model showed much broader variation between its classification rate than the one 

obtained by the proposed model. However, the obtained misclassification rate by the 

proposed model is still a bit higher that the true misclassification rate under Everitt’s 

(1988) model which is only 7.2%. 

Table 5.3. Misclassification rate for simulation study 2 using restricted location model and the 
proposed Gaussian location model. 

Method Misclassification (%) 
 mean s.e. 

Restricted location mixture model (Willse et al., 1999) 21.45 See text 
   
Proposed model  13.46 0.82 
   

 

5.3.3 Simulation Study 3 
In simulation study 3, a simulated data from Franco et al. (2002) was used to 

compare the performance of the proposed model and the modified location model 

(MLM). Franco et al. (2002) generated four multivariate normal clusters with 

heterogeneous covariance matrices using the population parameters from Taba, Diaz, 

Franco and Crossa (1998) for two continuous variables: days to silk, V1, and plant 

height, V2, given as in Table 5.4, where kpµ  and  are the means and variances 2
kpσ
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respectively associated with the k-th cluster of size  for variable p (p = 1, 2), kn 12kσ  

is the covariance between the bivariate. Assignment of the number of observations 

for each level of the multinomial variable, W, i.e.1, 2 and 3 is according to the 

distribution in Table 5.4. It can be seen that the cells in level 3 of cluster 1 and 4 and 

level 1 of cluster 2 and 3 are empty.  Franco et al. (2002) run the simulated data for 

once. Fifty replications were carried out for the proposed model.  

Table 5.4. The means, covariances of two continuous variables, number of observations for each level 
of the multinomial variables, for four groups from Franco et al. (2002). 

Levels of W k 
1kµ  2kµ  2

1kσ  2
2kσ  12kσ  

1 2 3 kn  

1 60 190  10 350 35  20 5 0 25 
2 70 180  22 270 30  0 5 20 25 
3 85 225  32 400 4  0 5 20 25 
4 100 240  10 350 58  20 5 0 25 

  
Table 5.5. Means, variances, covariances, and number of observations for each level of the 
multinomial variable for four clusters in simulation study 3 obtained using the modified location 
model and the proposed model. 

Levels of W Method k 
1ˆ kµ  2ˆ kµ  2

1ˆ kσ  2
2ˆ kσ  12ˆ kσ   

1 2 3 kn  

1 59.8 188.1  7.5 423.4 39.95  20 5 0 25 
2 79.1 219.0  106.8 923.0 290.42  0 10 0 10 
3 76.8 196.3  70.9 784.7 185.87  0 0 40 40 

Modified 
location model 
(Franco et al., 
2002) 4 99.8 238.1  7.5 305.3 46.85  20 5 0 25 
             

1 61.1 193.5  9.6 310.7 23.23  20 5 0 25 
2 72.1 188.9  41.4 270.4 42.13  0 7 24 31 
3 86.8 226.5  29.1 272.1 -0.73  0 3 15 18 

Proposed 
model#

4 100.0 240.4  9.6 340.2 56.05  20 5 1 26 
             

Note #: The estimates of parameters are average estimates of the replications. The distribution of 
observations according to levels of W is based on one of a replication that shows misclassification rate 
of 8% (mode). 
 

Table 5.5 presents the characteristics of the cluster structure obtained using 

the modified location model and the proposed model for simulation study 3. The 

average estimates of parameters in the proposed model are much closer to the 

population parameters compared to the modified location model. The average 

misclassified rate of the proposed model is 11.13% with standard error 2.5. This is 

lower than the misclassified rate of 20% for the modified location model as reported 
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in Franco et al. (2002). From Table 5.5, it can be seen that the proposed model also 

recovered the clusters structure better according to the level of the multinomial 

variable in the presence of empty cells. The modified location model successfully 

recovered the observations points in cluster 1 and 4 even when the clusters structure 

in terms of means and covariances deviate from the true values. However, all the 5 

observations from level 2 of cluster 2 were misclassified in level 2 of cluster 3, and 

all the 20 observations from level 3 of cluster 2 were misclassified in level 3 of 

cluster 3. The modified location model is likely to produce more empty cells.  

 

5.4 Scalable Clustering Algorithm for Mixed Data 

Existing mixture models that can handle mixed types of attributes are not 

efficient when clustering large data sets. In this thesis, a scalable clustering 

algorithm based on mixture model that can handle very large mixed data sets, 

FlexClustMix, is proposed. FlexClustMix adapts the algorithm from FlexClust 

which has been explained in detail in Chapter 4. There are two main modifications 

with respect to: 1) the data compression method and the resulting prototype system, 

and 2) updating of parameters.  

In FlexClustMix, the observation points from the random sample of mixed 

data in the memory buffer are fitted by the proposed Gaussian location model as 

described in section 5.2. The identified dense regions are compressed according to 

the continuous variables space and represented by a prototype system consists of 

MLEs of the Gaussian location model 

)ˆ,...,ˆ,...,ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ(ˆ
1111111 gmgmggg ppppΣΣ= µµααΨ . (5.8) 

The prototype system from (5.8) is decomposed to its mixture components 
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),ˆ,ˆ,ˆ(ˆ
kkskkk npΣ=Ψ µ ,   k = 1, …, g; s = 1, …, m    

where nn kk α̂=  is the k-th cluster size. 

The compressed clusters in Gaussian location model are assumed to be the 

same as the clusters in Gaussian mixture model. Thus, in FlexClustMix, the 

identification of the nearest neighbour cluster and the determination of merge of 

nearest neighbour pair are done in the same way as FlexClust.  

 Model updates for FlexClustMix are carried out incrementally based on the 

suggestion from the MBF criteria. The update of parameters kµ̂ ,  are similar 

to the FlexClust algorithm as described in section 4.3.2.3. For the parameter , 

consider  and  which are the parameters of the nearest neighbour pair, and 

 is the corresponding parameter of the merged cluster. If the MBF suggests 

merging of the nearest neighbour pair, the parameter of the probability of an 

observation in cluster k (k = 1, …, G) falls in cell  (s = 1, …, m) of the 

multinomial variable in the current model becomes 

kΣ̂ kn

ksp̂

sp1ˆ sp2ˆ

Msp̂

sw

  
21

2211 ˆˆˆ
nn

npnpp ss
Ms +

+
= ,  for s = 1, …, m. 

On the other hand, if the MBF criterion suggests adding a new cluster,  is the 

corresponding parameter for the new cluster. 

sp2ˆ

 

5.5 Simulation for FlexClustMix 

In this section, the effectiveness of the compression method and model 

updates using the proposed Gaussian location model in FlexClustMix was first 

evaluated using a small scale data. Consider the number of compressed samples is 

only two and the incorporation of the later compressed information into the current 
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model was carried out once. The basic idea is similar to the bi-Gaussian mixture 

model in Chapter 3. Thus the resulting model is called the bi-Gaussian location 

model, since the Gaussian location model is used for data compression instead of 

Gaussian mixture model. The performance of the proposed scalable FlexClustMix 

algorithm is then tested on large simulated data.  

 

Simulation for Bi-Gaussian Location Model 

The simulated data in Lawrence et al. (1996) is revisited to assess the 

effectiveness of the Gaussian location model in preserving the clusters structure 

during data compression, and the accuracy of parameters update of the current model 

through the bi-Gaussian location model. Three experiments were designed to assess 

the accuracy of the estimates of parameters. For each experiment, 50 replications are 

considered. First, the simulated data were generated twice the original size, and 

divided into two samples: sample 1, S1, and sample 2, S2, according to different 

sample size ratios using separate sampling scheme so that the mixture proportions in 

both samples are not known. Secondly, the simulated data in Lawrence et al. (1996) 

is used as sample 1, and the data for sample 2 are generated from the same 

parameters of means and covariances as in sample 1 but the mixture proportions and 

sample sizes are different. Lastly, the experiment studied the ability of the proposed 

model selection criterion, MBF, in identifying the change of clusters structure, and 

the accuracy of the update of new cluster in the current model through the bi-

Gaussian location model. For this purpose, sample 2 is added with a new cluster 

consists of 35 observations points generated from a 4-variate normal population 

mean (0,0,3,3) and have common covariance matrix as the other two clusters in 

sample 2, and the first two variables for each observation were dichotomised by 

thresholding at 0 according to Lawrence et al. (1996). The performance of the bi-
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Gaussian location model is compared to the Gaussian location model obtained using 

the combined data of sample 1 and sample 2.  

Table 5.6. Average estimates of means and covariances and misclassification for the bi-Gaussian 
location model and the Gaussian location model on the simulated data. The bi-Gaussian location 
model fitted on the simulated data that divided into two samples according to different ratios. The 
Gaussian location model fitted on the combined data. 

Bi-Gaussian location model from 2 samples Gaussian location model from combined data
Ratio 
S1: S2

Mean vectors Covariance 
matrix 

m.r. (%) Mean vectors Covariance 
matrix 

m.r. (%) 

1:1 (0.98, 0.96), 
(6.07, 6.00) 
s.e. = 0.05 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
817.2721.0

721.0844.1

s.e. = 0.09 

2.58 
s.e. = 0.3 

(1.04, 0.98), 
(6.07, 6.04) 
s.e. = 0.04 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
833.2966.0

966.0914.1
 

s.e. = 0.06  

2.69 
s.e. = 0.3 

3:5 (1.03, 0.97), 
(6.06, 6.00) 
s.e.=0.06 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
677.2510.0

510.0782.1

s.e. = 0.10 

1.85 
s.e. = 0.3 

(1.04, 0.98), 
(6.07, 6.04) 
s.e. = 0.04 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
833.2966.0

966.0914.1
 

s.e. = 0.06  

2.69 
s.e. = 0.3 

5:3 (0.99, 0.96), 
(6.04, 6.06) 
s.e. = 0.05 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
851.2737.0

737.0774.1

s.e. = 0.09  

2.45 
s.e. = 0.4 

(1.04, 0.98), 
(6.07, 6.04) 
s.e. = 0.04 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
833.2966.0

966.0914.1
 

s.e. = 0.06  

2.69 
s.e. = 0.3 

       
Note: Si = sample i, i = 1, 2; m.r. = misclassification rate 

Table 5.7. Average estimates of means and covariances and misclassification for the bi-Gaussian 
location model and the Gaussian location model on the simulated data. Data for sample 2 in the bi-
Gaussian location model are generated from different mixture proportions and with new cluster 
added. The Gaussian location model fitted on the combined data. 

 Sample 2 Bi-Gaussian location model from 2 
samples 

Gaussian location model from 
combined data 

Mixture 
proportions 

(λ1, λ2) 

size Mean 
vectors 

Covariance 
matrix 

m.r. (%) Mean 
vectors 

Covariance 
matrix 

m.r. (%)

(0.5,0.5) 40  (0.98, 0.95), 
(6.02, 5.97) 
s.e. = 0.05 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
589.2551.0

551.0982.1
 

s.e. = 0.09 

2.86 
s.e. = 0.3 

(0.98, 0.95), 
(6.02, 5.98) 
s.e. = 0.05 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
572.2666.0

666.0990.1
 

s.e. = 0.09  

2.95 
s.e. = 0.3

(1/3,2/3) 60  (0.93, 1.01), 
(6.04, 6.03) 
s.e.= 0.04 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
801.2750.0

750.0958.1
 

s.e. = 0.07 

2.74 
s.e. = 0.2 

(0.92, 1.00), 
(6.04, 6.02) 
s.e.= 0.04 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
825.2892.0

892.0908.1
 

s.e. = 0.06 

3.11 
s.e. = 0.4

(0.25,0.4)+ 
new cluster 

100  (0.94, 0.95), 
(6.00, 6.01), 
(3.03, 10.02) 
s.e. = 0.04 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
734.2751.0

751.0001.2
 

s.e. = 0.07 
For new cluster: 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
927.2932.0

932.0995.1

s.e. = 0.06 

3.69 
s.e. = 0.3 

(0.94, 0.97), 
(5.93, 6.11),
(3.09, 9.94) 
s.e. = 0.11 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
871.2889.0

889.0920.1
 

s.e. = 0.04 

3.73 
s.e. = 0.3

         
Note: m.r. = misclassification rate 
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The results for misclassification rate and average estimate of parameters for 

models obtained through the bi-Gaussian location model and Gaussian location 

model on the simulated data are shown in Table 5.6 and Table 5.7. Overall, the 

model obtained by compressing sample data using the Gaussian location model and 

updating the model based on bi-Gaussian location model shows parameter estimates 

that are very close to the model fitted on the combined data using the Gaussian 

location model. For the misclassification rates, the models obtained from the bi-

Gaussian location model according to different sample sizes ratios are 2.5%, 1.85% 

and 2.45%, which are slightly lower than the one obtained by the Gaussian location 

model, i.e. 2.69%. 

From Table 5.6, it can be seen that even under separated sampling scheme, 

the estimates of parameters from the bi-Gaussian mixture model can be recovered 

close to the true population parameters values as given in simulation study 1 in 

section 5.3.1, regardless of the sample sizes ratios of sample 1 to sample 2.  

Table 5.7 shows that the mixture proportions and size of sample 2 do not 

significantly affect the update of current Gaussian location model fitted on the basis 

of sample 1. The obtained estimates of parameters are very close to the ones 

obtained by fitting the combined data of sample 1 and sample 2. The differences of 

the misclassification rates are between the range of 0.09 (=2.95-2.86) and 0.37 

(=3.11-2.74). Out of 50 replications, there is 1 replication with an empty cell in 

sample 1, and 2 replications with empty cells in sample 2.  The presence of empty 

cells do not matter in the earlier compressed data or the later compressed data did not 

affect the estimates of parameters through the bi-Gaussian location model in these 3 

replications and give an average of 2.1% misclassification rate. Figure 5.1 shows one 

of these examples. In Figure 5.1 (a) the 3D plot of sample 1 shows that the cell at 
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level 3 of multinomial variable W for the cluster represented by red dots is empty. 

Compression around the cluster means as shown in Figure 5.1 (b) represents the 

prototype system conditional on the distribution of the continuous variables. When 

the compressed sample 2 was used to update the current model around the cluster 

means as shown in Figure 5.1 (d), all the cells conditional on the continuous 

variables were updated regardless it was empty or not, without affecting the existing 

number of clusters. 
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(c)       (d) 

Figure 5.1. Plot of the simulated data for (a) sample 1 in 3D using the mixed data, (b) sample 1 using 
the continuous variables, (c) combined data of sample 1 and 2 in 3D using the mixed data, and (d) 
combined data of sample 1 and 2 using the continuous variables. (Red dot and black star are two 
clusters of sample 1; green circle and blue triangle are two clusters of sample 2). 
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When sample 2 with a new cluster was compressed and used to update the 

current Gaussian location model, the model selection model MBF, managed to 

detect the change in clusters structure. Furthermore, the estimate of parameters 

obtained from the update of current model through the bi-Gaussian location model is 

a good approximation to the model fitted on the combined data using Gaussian 

location model as shown in Table 5.7. The misclassification rates for both of the 

model are 3.69% and 3.73% respectively.   

 

Simulated Large Data 

The data set generated using the means and covariance matrix of five 

continuous variables (Days to anthesis (V1), days to silk (V2), plant height (V3), ear 

height (V4), and grain moisture (V5)) from a maize evaluation trial from USA (Taba, 

Diaz, Franco, Crossa and Eberhart, 1999) considered by Franco and Crossa (2002) 

was applied in this section to generate a large data set consists of 1 million data 

points. The data set assumes a high degree of overlap on the multinomial variable, 

and also all the continuous variables with indistinct boundaries. The covariance 

matrix, S, and the corresponding correlation matrix, R, of the real data are given by 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−
−
−

−−−−

=

52
127
158
14
13

127
1849

158
2255

14
402

13
371

22553019479439
402479112102
37143910295

S , .  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−
−
−

−−−−

=

1
41.0
40.0
18.0
19.0

41.0
1

40.0
95.0

18.0
88.0

19.0
89.0

95.0182.082.0
88.082.0199.0
89.082.099.01

R

In Franco and Crossa (2002), the values (m – 2s), (m + 2s), (m + 6s), (m + 10s), and 

(m + 14s), where m is the overall observed means and s is the standard deviation 

vector from the five variables, were assigned as the simulated cluster means, 

allowing a distance of 4s between means of neighbour clusters on each variable. 

Two of the continuous variables, V2 and V4, were used to generate two categorical 
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variables. From the correlation matrix, it is known that there is high correlation 

between V2 and V1, and between V4 and V3 respectively. The first categorical variable 

is a binary variable that takes value 0 if V2 ≤ 2V , where 2V  is the mean of V2, and 

takes value of 1 if V2 > 2V . The second categorical variable is a multi-state variable 

discretized from V4. It takes values 1, 2, 3 and 4 for values of V4 within (P0, P0.25), 

(P0.25, P0.5), (P0.5, P0.75), (P0.75, P1) respectively, where Pp is the p-th percentile of V4. 

In this simulation, the sample size considered for filling in the memory buffer for the 

FlexClustMix algorithm is 1,000, and the value of m was set at (0,0,0,0,0). Only one 

replicate was simulated for this set of data. 

 The proposed FlexClustMix algorithm estimated the number of clusters 

correctly, and recovered the clusters structure very well with misclassification rate 

0.015%. Result of this simulation shows that FlexClustMix is not only able to handle 

large data set, it is also robust under strong dependence between variable W and the 

continuous variable, and even overlap on the continuous and categorical variables. 

 

5.6 Conclusion  

The present conditional Gaussian model and the derivations of it suffer from 

estimation problem when applied in many practical situations because of the large 

number of parameters the models contain. This also causes the limitation of using 

model-based method for clustering very large set of mixed data. This thesis first 

proposes a modified mixture model for clustering mixed data, Gaussian location 

model, to reduce the number of parameters involved in parameters estimate during 

the EM algorithm, and at the same time solves problem of non-identifiability and 

empty cells as shown in simulation study 1, 2 and 3. This thesis also develops a 
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scalable mixture model clustering algorithm for mixed data, FlexClustMix, based on 

the successes of the proposed Gaussian location model and the FlexClust algorithm. 

The algorithm was tested over dependent categorical and continuous variables, and 

change of clusters structure, through the proposed bi-Gaussian location model. The 

results obtained in term of accuracies of parameters estimation and recovery of 

clusters structure are highly encouraging. It is also remarkable to notice that the 

FlexClustMix algorithm able to handle very large mixed data efficiently and 

effectively as demonstrated in the simulation result.  

 

 

 120



6  

Conclusion and Future Work 
 

 

 In this chapter, the contributions of the thesis are summarized. Then, the 

possible application of the proposed clustering algorithms is discussed. Finally, the 

limitations of the proposed clustering algorithm are discussed and some possible 

future directions to further enhance the work of this thesis are given. 

 

6.1 Contributions 

This thesis focuses on developing mixture model clustering algorithms for 

very large data sets that do not fit into the computer memory buffer. Two algorithms, 

FlexClust and FlexClustMix are proposed respectively for numerical data and mixed 

data. The basic notion of these two algorithms is to compress data incrementally 

according to the available memory buffer using the appropriate mixture model 

according to the type of data, and incorporating the compressed information into the 

current model with the flexibility of allowing changes in the clusters structure and 

the number of clusters. 

Few new frameworks and models have been proposed to support the two 

algorithms mentioned above. First, a new semi-supervise learning framework for 

mixture model is proposed in Chapter 3. It considers updating trained Gaussian 

mixture model on the basis of unclassified data to have been drawn from or outside 

the underlying population. A model selection criterion, MBF, is proposed to 

determine whether the unclassified data has the same distribution as the model 
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trained by the classified data for discovering new clusters. The update of trained 

model is carried out based on the proposed bi-Gaussian mixture model where only 

the MLEs of the parameters from the trained Gaussian mixture model and the 

Gaussian mixture model fitted on the unclassified data are involved. The results are 

compared to the Gaussian mixture model fitted on the combined data of training and 

unclassified data. It shows that both models give very close estimates of parameters 

and classification accuracies. This implies that the bi-Gaussian mixture model which 

updates current mixture model directly using summary statistics works effectively. 

 FlexClust extends the framework of bi-Gaussian mixture model to cluster 

very large set of continuous data in Chapter 4. The algorithm adapts the incremental 

compression procedure which maintains only the summarized information in the 

memory and purges the data points to free some memory for filling new data points 

to the memory buffer, and this makes it scalable to very large datasets. The 

incremental compression procedure is closely related to the current fit of the 

clustering model and provides usable model at any time. The performance of 

FlexClust is compared to some sampling-based algorithms such as Strategy III and 

CLARA, and compression-based algorithms such as sufficient EM and SPSS 

TwoStep as shown in Table 6.1. The results show that FlexClust outperforms these 

algorithms. The problems of non-representative sample and missing out of small 

clusters in the sampling-based algorithms, and the problem of scalability in the one 

time compression-based algorithms are overcame in FlexClust. Furthermore, the 

proposed FlexClust employs mixture modelling for data compression has reduced 

the loss of information caused by ineffective prototype system, and has obtained 

more consistent and accurate estimate of model parameters. 
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Table 6.1. Comparison of results for the proposed FlexClust and the other compression-based and 
sampling-based methods.   

Algorithm  Data 
set 

Size Number 
of 

clusters

Dimension Mean 
misclassification 

(%) 

Identify 
correct 

clusters (%) 

Other 
assessment of 
performance 

Execution time 

FlexClust compare to one-time compression methods:    
Sufficient EM  1 15,000 7 2 2.37% higher 50% better - 1.4 times slower
 2 10,000 3 4 0.15% lower Same - 3.7 times slower
 3 20,000 3 13 50.88% lower 65% better - 1.6 times faster 
 4 87,472 - 3 - - Image equally 

good 
5.7 times slower

 5 581,012 - 5 - - Loglikelihood 
22,720 higher 

5.1 times faster 

         
SPSS TwoStep  1 15,000 7 2 10.50% lower 75% better - - 
 2 10,000 3 4 28.13% lower 100% better - - 
 3 20,000 3 13 0.11% lower Same - - 
 4 87,472 - 3 - - - - 
 5 581,012 - 5 - - - - 
         
         
FlexClust compare to random sampling methods:    
Strategy III  1 15,000 7 2 0.08% higher 75% better - 14.3 times slower
 2 10,000 3 4 3.87% lower 85% better - 22.5 times slower
 3 20,000 3 13 1.97% lower 95% better - 3.9 times slower
 4 87,472 - 3 - - Recover 

small clusters 
13.2 times slower

 5 581,012 - 5 - - Loglikelihood 
66,250 higher 

1.2 times slower

         
         
CLARA  1 15,000 7 2 12.30% lower 75% better - - 
 2 10,000 3 4 28.14% lower 100% better - - 
 3 20,000 3 13 32.28% lower 100% better - - 
 4 87,472 - 3 - - - - 
 5 581,012 - 5 - - - - 
         

 

 A parametric model for clustering mixed data, the Gaussian location model, 

is proposed in Chapter 5. The main advantages of the Gaussian location model are 

that it reduces the number of parameters involved in parameters estimate during the 

EM algorithm, and at the same time solves the problem of non-identifiability and 

empty cells which suffered in the conditional Gaussian model and its derivations. 

Simulation results as shown in Table 6.2 show that the Gaussian location model 

superior to the conditional Gaussian model, restricted location mixture model and 

modified location model by sufficiently reducing the loss of clustering accuracy.  
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Table 6.2. Comparison of results for the proposed Gaussian location model and other parametric 
models for clustering mixed data. 

Model  Data 
set 

Size Number of 
clusters 

Dimension 
of 

continuous 
variables  

Level of 
multinomial 

Mean 
misclassification 

(%) 

Recovery 
of empty 
cells (%) 

Gaussian location model compare to:     
Conditional Gaussian model 1 40 2 well 

separated 
2 4 28.42% lower - 

        
Restricted location model 1 40 2 well 

separated 
2 4 1.52% lower - 

 2 200 2 less well 
separated 

2 4 8.00% lower - 

        
Modified location model 3  4 with 4 

empty cells
2 3 9.07% lower 36% better

        
 

By adapting the framework of bi-Gaussian mixture model, a similar model, 

bi-Gaussian location model, is proposed to update the current model using a later 

compressed mixed data sample. The parameter estimates and classification accuracy 

of the bi-Gaussian location model are very close to the model fitted on the combined 

data using the Gaussian location model. 

 FlexClustMix incorporates the proposed Gaussian location model into the 

FlexClust algorithm to develop a scalable clustering algorithm for very large set of 

mixed data. Simulation result shows that the FlexClustMix algorithm is able to 

handle very large mixed data efficiently and effectively even under strong 

dependence between the multinomial variable and the continuous variables, and even 

overlap on the continuous and categorical variables. 

As the proposed algorithms apply data compression for scalability, the 

challenge of avoiding loss of information becomes another focus of this thesis. This 

thesis proposes to use mixture models to tackle the problem of loss of information. 

The results on the simulated and real data show that working on summary statistics 

of subclusters compressed by mixture models preserves the cluster structure better 

compared to the other methods. 
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6.2 Application 

Although the scalable clustering algorithms presented in this thesis are 

studied in the context of data size that does not fit in the memory buffer, they can 

also be used for clustering open data stream. In a streaming environment, the original 

data is discarded and only the summary is kept and the goal is to produce high 

quality summary of the data. Aggarwal, Wang and Yu (2003) and Barbara (2002) 

had set two main requirements for effective and efficient clustering of stream: 1) one 

pass over the data during on-line where the data points must be read in an 

incremental fashion and discarded in favour of summary, and 2) maintain compact 

and representative summary of the data during off-line. For open stream, the 

understanding of the underlying clustering structure of the data at different time may 

be required from this summary, and this structure may change as more data is 

processed. The proposed FlexClust and FlexClustMix algorithms satisfy the above 

requirements and therefore can be applied for clustering open stream. 

 

6.3 Limitation and Future work 

The data sets considered in this thesis are free from noise. The proposed 

scalable Gaussian mixture based clustering algorithms are not robust to noisy data. 

Peel and MacLachlan (2000) found that if a set of G-component normal mixture data 

in the presence of uniform background noise is fitted by a Gaussian mixture, the 

model selection criteria such as BIC and AIC, and bootstrapping of –2logλ attempt 

to model the background noise with an additional component. However, the estimate 

of model parameters is affected by the presence of noise. The contributions in this 

thesis can be improved along the way to establish robust scalable clustering 

algorithm. 
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One way to handle the presence of noise or atypical observations when fitting 

Gaussian mixture model is to include an additional component to describe the noise. 

Fraley and Raftery (1998) modeled the noise component as a constant-rate Poison 

process. The initial noise estimate is obtained using methods for denoising which 

includes Voronoi method (Allard & Fraley, 1997) and nearest neighbour method 

(Byers & Raftery, 1998). However, this method is sensitive to the value of the 

hypervolume of the data region. Another way of modelling the noise component is 

by using the uniform distribution. However, this model cannot work well in the 

situation when the noise is not uniform.  

For future work, the initial idea of this thesis is to use mixture of t 

distributions to develop robust scalable clustering algorithm. The t distribution has a 

wider tail than the Gaussian distribution, and it is usually adopted alternatively as a 

standard choice for robustness. The mixture of t distributions provides a framework 

to assess the robustness of inclusion of atypical observations in the fitting of mixture 

model through the estimation of the degree of freedom of the t components p.d.f. 

 The data sets used in this thesis are of reasonable dimension. However, 

applications in data mining often lead to very high dimensional data. Clustering such 

data is challenging. Many recently developed clustering algorithms have attempted 

to address either handling data sets with very large number of observations or very 

high dimension. Successful scalable clustering algorithms must avoid the curse of 

dimensionality and at the same time overcome the scalability problems associated 

with very large data. The knowledge to scale up model-based clustering algorithm 

for high dimensional data sets is an area of interest for future research.  
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