ABSTRACT

Congenital hypothyroidism (CH) is a public health concern affecting 1 / 3000 -4000 newborn babies. In reference to this, thyroid peroxidase (TPO) abnormality, typically inherited as autosomal recessive traits was found to be one of the causes of dyshormonogenetic CH. Our group had previously identified a homozygous c.1159G>A mutation in exon 8 of the TPO gene of CHP41. In this study, the TPO gene of CHP41's family members was screened for the c.1159G>A mutation and the results showed that all family members carried the same mutation either in homozygous or heterozygous forms. In addition, another 20 unrelated cases of dyshormonogenetic CH were also included in this study. DNA sequence analysis of the TPO gene in these 20 unrelated patients revealed the presence of five TPO mutations: three were novel (c.670_672del in exon 7, c.1186C>T in exon 8 and c.1502T>G in exon 9) while another two had been previously reported (c.2268dup in exon 13 and c.2647C>T in exon 16). Moreover, 12 polymorphisms including two that are novel (c.1-192C>A in a GC box and c.180-6C>A at 6 bp upstream of exon 4), were also found in the 21 unrelated patients. This study shows that only individuals associated with either homozygous or compound heterozygous form of TPO mutation were affected with dyshormonogenetic CH whereas family members of patients with one mutant allele remained asymptomatic. In silico functional analyses indicated that all of the six mutations affected normal activity of TPO protein. Furthermore, the novel c.180-6C>A polymorphism is predicted to reduce the intrinsic strength of the natural splice site of exon 4 which could lead to an activation of other potential splice sites. Meanwhile, it is also believed that the novel c.1-192C>A polymorphism in the GC box might alter the expression levels of TPO gene in an individual. Further investigation on patients with c.2268dup mutation through biochemical and gene expression analyses confirmed the devastating effects of the mutation. A novel TPO mRNA transcript which was believed to be associated with nonsense-associated altered splicing (NAS) mechanism was detected in patients associated with the c.2268dup mutation. In addition, lower expression of TPO protein was also detected in thyroid tissues with lesions compared to those of normal areas in the same patients with c.2268dup. In conclusion, mutations in the *TPO* gene are an underlying genetic cause of CH with dyshormonogenesis in the current cohort of patients.

ABSTRAK

Masalah hipotiroidisme kongenital (CH) merupakan penyakit kesihatan global yang menjejaskan kesihatan bayi yang baru lahir pada kadar 1 / 3000 - 4000. Ketidaknormalan gen thyroid peroxidase (TPO) yang diwarisi secara resesif autosomal telah didapati sebagai salah satu punca masalah CH yang diakibatkan oleh kelenjar tiroid yang tidak berfungsi atau berfungsi sebahagian sahaja. Kajian terdahulu yang telah kami jalankan telah mengenal pasti sejenis mutasi pada ekson 8 di gen TPO yang dikenali sebagai c.1159G>A pada pesakit CHP41. Dalam kajian ini, penyaringan mutasi gen yang sama telah dijalankan terhadap ahli keluarga CHP41 dan hasil kajian menunjukkan bahawa semua ahli keluarga membawa mutasi yang sama, sama ada dalam bentuk homozigus atau heterozigus. Di samping itu, kajian ini juga meneruskan usaha untuk mengenal pasti mutasi-mutasi gen TPO yang menyebabkan masalah CH di kalangan pesakit-pesakit lain yang mempunyai kelenjar tiroid. Analisis terhadap turutan DNA di gen TPO daripada 20 orang pesakit yang berasingan menunjukkan kewujudan lima jenis mutasi, di mana tiga jenis mutasi (c.670 672del di ekson 7, c.1186C>T di ekson 8 and c.1502T>G di ekson 9) adalah penemuan terbaru (novel) manakala dua jenis mutasi lagi (c.2268dup di ekson 13 and c.2647C>T di ekson 16) telah dilaporkan. Selain itu, 12 polimorfisme yang lain termasuk dua polimorfisme novel (c.1-192C>A di kotak GC dan c.180-6C>A yang terletak di tempat 6 bp sebelum ekson 4) juga ditemui dalam kajian ini. Kajian ini menunjukkan bahawa hanya individu yang dikaitkan dengan mutasi TPO dalam bentuk homozigus atau heterozigus ganda (compound heterozygous) mempunyai masalah CH manakala ahli keluarga mereka yang membawa satu alel mutan kekal asimptomatik. Analisis in silico menunjukkan bahawa semua enam mutasi menjejaskan aktiviti mRNA ataupun protein TPO. Tambahan pula, penemuan polimorfisme c.180-6C>A diramalkan akan menurunkan kadar kekuatan intrinsik bagi tapak pemotongan (splice site) yang semulajadi pada ekson 4 dan akan mengakibatkan pengaktifan tapak pemotongan lain yang lebih berpotensi. Seterusnya, polimorfisme c.1-192C>A yang terletak di kotak GC juga dipercayai akan mempengaruhi tahap ekspresi gen *TPO*. Kajian selanjutnya terhadap mutasi c.2268dup melalui analisis biokimia dan ekspresi gen telah membuktikan kesan buruk daripada mutasi tersebut dan mendedahkan sesuatu spesies mRNA TPO novel yang dipercayai dikaitkan dengan mekanisme NAS. Selain itu, analisis terhadap kadar ekspesi protein TPO daripada pesakit-pesakit yang mempunyai mutasi c.2268dup menunjukan kadar ekspesi yang lebih rendah di kawasan tisu yang tidak normal berbanding dengan tisu yang diambil dari kawasan yang normal. Kesimpulannya, kajian ini menunjukkan bahawa mutasi dalam gen *TPO* merupakan sesuatu punca masalah CH di kalangan pesakit yang mempunyai kelenjar tiroid.

ACKNOWLEDGEMENTS

My deep gratitude goes first to Assoc. Prof. Dr. Sarni Mat Junit, who had expectedly guided me and gave the advice, support and tremendously encouragements throughout my postgraduate education. Dr. Sarni's mentoring and encouragements have been especially valuable, and her early insights contributed to the success of this project.

Heartfelt thanks to Prof. Dr. Fatimah Harun from the Department of Paediatrics, University of Malaya Medical Centre for providing the patient's blood samples and clinical consultation. Her unwavering enthusiasm for congenital hypothyroidism study kept me constantly engaged with my research, and her personal generosity helped made my time in University of Malaya. I would also like to thank Dr. Muhammad Yazid Bin Jalaludin from Department of Paediatrics for his assistance in collecting the blood samples and with the clinical data. His kindness and an inspirational style also help in sustaining a positive atmosphere in which to do research.

I am very grateful to all members of the Molecular Biology Laboratory and Lipid and Nutrition Laboratory especially Yasmin, Ursula, Christina, Chor Yin, Nani, Kong and other members from the Department of Molecular Medicine for their help and time. Also, I would like to thank Dr. Rozana and Choon Han from the Department of Pharmacy for their superb technical assistance in designing three dimensional model of TPO protein. I would also like to express my gratitude to the university of Malaya for granting me with the UM Fellowship Award. Last but not least, I wish to extend my heartfelt gratitude to my parents for their love, patience and unconditional supports. Without them, I would not have gone this far in life.

TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	vii
CONTENTS	ix
LIST OF FIGURES	xviii
LIST OF TABLES	xxvi
ABBREVIATIONS	XXX
LIST OF APPENDICES	xxxvi

CHAPTER 1: INTRODUCTION

1.1	Background	2
1.2	Objectives of the study	4

CHAPTER 2: LITERATURE REVIEW

2.1	Thyroid gland	6
2.2	Thyroid hormones	6
2.3	Hypothyroidism	7
2.4	Neonatal transient hypothyroidism	9
2.5	Permanent congenital hypothyroidism	11
2.6	Biochemical screening and clinical diagnosis of CH	11
2.7	Treatment of CH	12
2.8	Thyroid dyshormonogenesis	13
2.9	Iodide organification defects	14
2.10	Goitre	14

2.11	Thyroid nodules	15
2.12	Follicular adenoma	16
2.13	Thyroid peroxidase (TPO) gene	17
2.14	Thyroid peroxidase enzyme	19
2.15	TPO gene mutations and polymorphisms	21
2.16	Expression of TPO, TG, TSH-R and NIS in thyroid nodules	25

CHAPTER 3: MATERIALS AND METHODS

3.1	Mater	ials	28
	3.1.1	Chemicals and reagents	28
	3.1.2	Kits	31
	3.1.3	Primers	32
	3.1.4	Antibodies	32
	3.1.5	Apparatus and instruments	32
3.2	Metho	ods	35
	3.2.1	Study design	35
	3.2.2	Subjects for the TPO mutational screening	36
		3.2.2.1 CHP41 and his family members	40
		3.2.2.2 CHP33 and her family members	40
		3.2.2.3 CHP49 and her family members	42
		3.2.2.4 CHP51 and his family members	45
		3.2.2.5 CHP53 and her family members	45
		3.2.2.6 CHP55 and her family members	47
		3.2.2.7 CHP58 and his family members	50
		3.2.2.8 CHP59 and his family members	50
	3.2.3	Blood sampling and genomic DNA extraction	53

3.2.4	Determination of the yield and quality of the	54
	extracted genomic DNA	
3.2.5	Mutational analysis of the TPO gene	54
	3.2.5.1 Polymerase chain reaction (PCR)	55
	3.2.5.2 Agarose gel electrophoresis	60
	3.2.5.3 Purification of the PCR product	61
	3.2.5.3.1 Purification of the PCR product by	61
	QIAquick® PCR Purification Kit	
	(Qiagen, Germany)	
	3.2.5.3.2 Purification of the PCR product by	62
	MinElute® Gel Extraction Kit	
	(Qiagen, Germany)	
	3.2.5.4 Analysis of the purified PCR product	63
	3.2.5.5 DNA sequencing of the PCR product	63
3.2.6	Designing new primer pairs	63
3.2.7	Assessing the significance of nucleotide sequence	64
	alterations in the TPO gene on protein functions	
	using computational methods	
	3.2.7.1 Assessing the potential impact of <i>TPO</i>	64
	sequence alterations on splicing activity	
	using HSF algorithm	
	3.2.7.2 Multiple amino acid sequence alignment	65
	3.2.7.3 SIFT and PolyPhen-2	65
	3.2.7.4 PSIPRED	65
	3.2.7.5 Tertiary structure prediction	66

	3.2.7.6 The search for transcription factors: TATA	66
	box, CAAT box, GC box in upstream	
	region of the TPO gene	
3.2.8	TPO mRNA transcript analysis and TPO protein	67
	enzymatic analysis in CHP33 (III-2) and her	
	affected sister (III-1) with c.2268dup (p.Glu757X)	
	mutation	
	3.2.8.1 Total cellular RNA isolation	67
	3.2.8.2 Elimination of genomic DNA from RNA	68
	samples by DNase I treatment	
	3.2.8.3 Determination of the yield, quality and	69
	integrity of tcRNA	
	3.2.8.4 Reverse transcription of tcRNA to cDNA	69
	3.2.8.5 Confirmation of the <i>in silico</i> HSF analysis	70
	result of the mutation c2268dup mutation	
	3.2.8.6 Genetic analysis of the upstream region of	70
	exon 13 of the TPO gene in CHP33	
	3.2.8.7 Microsomal proteins isolation	72
	3.2.8.8 Bradford protein assay	72
	3.2.8.9 SDS-PAGE and Western blot	73
	3.2.8.9.1 Gel apparatus assembly for	73
	SDS-PAGE	
	3.2.8.9.2 Preparation of polyacrylamide gel	73
	(PAGE)	
	3.2.8.9.3 Sample preparation for SDS-PAGE	74
	3.2.8.9.4 Electrophoresis	75

	3.2.8.9.5 Staining of proteins in gels with	75
	Coomassie stain	
	3.2.8.9.6 Electrophoretic transfer of proteins	76
	from polyacrylamide gels to	
	nitrocellulose sheets	
	3.2.8.9.7 Immunodetection	76
	3.2.8.10 Guaiacol oxidation assay	77
3.2.9	Quantification for expression of TPO in thyroid	78
	tissue of CHP33 (III-2) and her sister (III-1)	
	3.2.9.1 Relative quantification of TPO proteins on	78
	Western Blots	
	3.2.9.2 Relative quantification of TPO mRNA	78
	expression level on real time PCR	
	3.2.9.2.1 Elimination of false positive	79
	results in RT-PCR	
	3.2.9.2.2 Primer efficiency validation test	79
	3.2.9.2.3 Quantitative real time polymerase	81
	chain reaction (qrt-PCR)	
	3.2.10 Gene expression analysis of other thyroid	83
	hormone-related genes	

CHAPTER 4: RESULTS

4.1	Screening for <i>TPO</i> gene alterations in unrelated patients	86
	with dyshormonogenetic CH and their family members	
	4.1.1 DNA isolation and quantification	86
	4.1.2 PCR optimisation	87

4.1.3	Detection of TPO gene mutations in	87
	unrelated patients with dyshormonogenetic CH	
4.1.4	Detection of TPO gene polymorphisms in	98
	unrelated patients with dyshormonogenetic CH	
4.1.5	Detection of TPO gene mutation in family	133
	members of CHP41, CHP33, CHP53, CHP58 and	
	CHP59	
	4.1.5.1 Detection of the c.1159G>A (p.Gly387Arg)	133
	mutation in family members of CHP41	
	(index patient, II-4)	
	4.1.5.2 Detection of the c.2268dup (p.Glu757X)	138
	mutation analysis in family members of	
	CHP33 (index patient, III-2)	
	4.1.5.3 Detection of the c.1502T>G (p.Val501Gly)	138
	mutation in family members of CHP53	
	(index patient, II-1)	
	4.1.5.4 Detection of the c.670_672del (p.Asp224del)	145
	and c.2268dup (p.Glu757X) mutations in	
	family members of CHP58	
	(index patient, II-1)	
	4.1.5.5 Detection of the c.2268dup (p.Glu757X)	145
	mutation in family members of CHP59	
	(index patient, III-2)	
In silie	co analysis to predict the functional impact of the	152
nucleo	tide sequence alteration(s) in the TPO gene	

4.2

4.2.1	Analysis of the c.670_672del (p.Asp224del)	152
	mutation	
4.2.2	Analysis of the c.1159G>A (p.Gly387Arg) mutation	156
4.2.3	Analysis of the c.1186C>T (p.Arg396Cys) mutation	173
4.2.4	Analysis of the c.1502T>G (p.Val501Gly) mutation	189
4.2.5	Analysis of the c.2268dup (p.Glu757X) mutation	197
4.2.6	Analysis of the c.2647C>T (p.Pro883Ser) mutation	205
4.2.7	Analysis of the novel c.1-982C>A	218
	(GC box-like region, GCGCGG>GCGCAG)	
	polymorphism	
4.2.8	Analysis of the novel c.180-6C>A polymorphism	218
The ef	fects of the c.2268dup (p.Glu757X) mutation in	223
exon 1	3 on the TPO pre-mRNA splicing activity, protein	
enzym	natic activity, the expression of TPO	
gene/p	protein and other thyroid hormone-related genes	
4.3.1	Analysis of TPO transcripts in thyroid tissues of	223
	patients with c.2268dup (p.Glu757X) mutation	
	4.3.1.1 Isolation and assessment of the integrity of	223
	tcRNA	
	4.3.1.2 Detection and identification of a novel	225
	alternative splicing-derived TPO mRNA	
	variant in CHP33 (index patient, III-2)	
	and her sister (III-1) associated with the	
	c.2268dup (p.Glu757X) mutation	
4.3.2	Biochemical analysis of the p.Glu757X mutant	239
	4.3.2.1 Protein assay	239

4.3

	4.3.2.2 SDS-PAGE and Western blot	239
	4.3.2.3 Peroxidase activity of p.Glu757X mutant	242
4.3.3	Quantification of TPO mRNA and protein in CHP33	242
	(III-2) and her sister (III-1)	
	4.3.3.1 Western Blot	242
	4.3.3.2 Quantification of TPO and other thyroid	245
	hormone-related genes	
	4.3.3.2.1 TPO gene expression differences	248
	between the normal and lesion	
	areas of thyroid tissue of CHP33	
	(III-2) and her sister (III-1)	
	4.3.3.2.2 The TPO gene expression	249
	differences between CHP33's	
	sister (III-1) and CHP33 (III-2)	
	4.3.3.2.3 Quantification of TPO mRNA	249
	variants	
	4.3.3.2.4 Tg, TSH-R, NIS genes expression	254
	difference between normal and	
	lesion areas of thyroid tissue of	
	CHP33 (III-2) and her sister (III-1)	

CHAPTER 5: DISCUSSION

5.0	Discussion	261
5.0	Discussion	26

CHAPTER 6: CONCLUSION, LIMITATIONS AND

SUGGESTIONS FOR FUTURE RESEARCH

6.1	Conclusion	279
6.2	Limitations and suggestions for future research	280

REFERENCES

282

LIST OF FIGURES

2.1	Schematic diagram of a follicular cell, illustrating the steps	8
	involved in thyroid hormone synthesis	
2.2	Human TPO mRNA transcripts	18
2.3	Schematic diagram of the structure of human TPO	20
2.4	A schematic diagram showing inactivating mutations	22
	reported in the coding region of the human TPO gene	
4.1	An agarose gel electrophoresis of PCR products of exons 1	88
	to 6 of the TPO gene after purification	
4.2	An agarose gel electrophoresis of PCR products of exons 7	89
	to 12 of the TPO gene after purification	
4.3	An agarose gel electrophoresis of PCR products of exons 13	90
	to 17 of the TPO gene after purification	
4.4	Electropherograms showing a c.670_672del mutation in	92
	exon 7 of the TPO gene	
4.5	Electropherograms showing a c.1186C>T mutation in exon	93
	8 of the TPO gene	
4.6	Electropherograms showing a c.1502T>G mutation in exon	94
	9 of the TPO gene	
4.7	Electropherograms showing a c.2268dup mutation in exon	95
	13 of the TPO gene	
4.8	Electropherograms showing a c.2647C>T mutation in exon	97
	16 of the TPO gene	
4.9	Electropherograms showing a c.1-982G>A polymorphism	99
	in GC box-like region (GCGCGG) of the TPO gene	

4.10	Electropherograms showing a c.180-6C>A polymorphism	101
	at 6 bp upstream of exon 4 of the TPO gene	
4.11	The frequency of alleles G (c.1-982G) and A (c.1-982A) of	102
	the TPO gene in 30 normal individuals	
4.12	The frequency of alleles C (c.180-6C) and A (c.180-6A) of	103
	the TPO gene in 30 normal individuals	
4.13	Electropherograms showing a c 1-937A>G polymorphism	104
	in 5'UTR region of the TPO gene	
4.14	Electropherograms showing a c.12C>G polymorphism in	108
	exon 2 of the TPO gene	
4.15	Electropherograms showing a c.769G>T polymorphism in	110
	exon 7 of the TPO gene	
4.16	Electropherograms showing a c.1117G>T polymorphism in	112
	exon 8 of the TPO gene	
4.17	Electropherograms showing a c.1193G>C polymorphism in	116
	exon 8 of the TPO gene	
4.18	Electropherograms showing a c.1728G>A polymorphism in	120
	exon 10 of the TPO gene	
4.19	Electropherograms showing a c.1998C>T polymorphism in	121
	exon 11 of the TPO gene	
4.20	Electropherograms showing a c.2145C>T polymorphism in	123
	exon 12 of the TPO gene	
4.21	Electropherograms showing a c.2173A>C polymorphism in	125
	exon 12 of the TPO gene	
4.22	Electropherograms showing a c.2540T>C polymorphism in	127
	exon 15 of the TPO gene	

4.23	A summary of TPO gene alterations found in all unrelated	130
	patients with dyshormonogenetic CH in this study	
4.24	Electropherograms showing a TPO gene c.1159G>A	134
	mutation in CHP41 and his family members	
4.25	A family pedigree of CHP41 demonstrates the inheritance	137
	mode of the c.1159G>C mutation	
4.26	Electropherograms showing a TPO gene c.2268dup	139
	mutation in family members of CHP33	
4.27	A family pedigree of CHP33 demonstrates the inheritance	141
	mode of the c.2268dup mutation	
4.28	Electropherograms showing a TPO gene c.1502T>G	142
	mutation in family members of CHP53	
4.29	A family pedigree of CHP53 demonstrates the inheritance	144
	mode of the c.1502G>T mutation	
4.30	Electropherograms showing a TPO gene c.670_672del	146
	mutation in CHP58's father (I-1)	
4.31	Electropherograms showing a TPO gene c.2268dup	147
	mutation in CHP58's mother (I-2)	
4.32	A family pedigree of CHP58 demonstrates the inheritance	148
	mode of the c.670_672del and c.2268dup mutations	
4.33	Electropherograms showing a TPO gene c.2268dup	149
	mutation in family members of CHP59	
4.34	A family pedigree of CHP59 demonstrates the inheritance	151
	mode of the c.2268dup mutation	
4.35	Homology model of the wild-type human TPO using sheep	153
	lactoperoxidase as a template (PDB_2IKC)	

4.36	Multiple sequence alignment of amino acids in human TPO	157
	with different animal species (p.Asp224del)	
4.37	The predicted secondary structures of amino acid sequence	158
	of the (a) wild type and the (b) mutant (p.Asp224del)	
4.38	Computer generated models illustrating the comparison	159
	between wild type and mutant p.Asp224del TPO proteins	
4.39	Multiple sequence alignment of amino acids in human TPO	169
	with different animal species (p.Gly387Arg)	
4.40	Analysis of p.Gly387Arg nucleotide transition by	170
	PolyPhen-2	
4.41	Analysis of p.Gly387Arg nucleotide transition using SIFT	171
4.42	The predicted secondary structures of amino acid sequence	172
	of the (a) wild type and the (b) mutant (p.Gly387Arg)	
4.43	Computer generated models illustrating the comparison	174
	between wild type and mutant p.Gly387Arg TPO proteins	
4.44	Multiple sequence alignment of amino acids in human	181
	TPO with different animal species (p.Arg396Cys)	
4.45	Analysis of p.Arg396Cys nucleotide transition by	182
	PolyPhen-2	
4.46	Analysis of p.Arg396Cys nucleotide transition using SIFT	183
4.47	The predicted secondary structures of amino acid sequence	184
	of the (a) wild type and the (b) mutant (p.Arg396Cys)	
4.48	Computer generated models illustrating the comparison	185
	between wild type and mutant p.Arg396Cys TPO proteins	
4.49	Multiple sequence alignment of amino acids in human	194
	TPO with different animal species (p.Val501Gly)	

4.50	Analysis of p.Val501Gly nucleotide transversion by	195
	PolyPhen-2	
4.51	Analysis of p.Val501Gly nucleotide transversion using	196
	SIFT	
4.52	The predicted secondary structures of amino acid sequence	198
	of the (a) wild type and the (b) mutant (p.Val501Gly)	
4.53	Computer generated models illustrating the comparison	199
	between wild type and mutant p.Val501Gly TPO proteins	
4.54	A schematic diagram showing the comparison between the	208
	3-D models of wild type and c.2268dup (p.Glu757X)	
	mutant proteins	
4.55	Multiple sequence alignment of amino acids in human	213
	TPO with different animal species (p.Pro883Ser)	
4.56	Analysis of p.Pro883Ser nucleotide transition by	214
	PolyPhen-2	
4.57	Analysis of p.Pro883Ser nucleotide transition by SIFT	215
4.58	A schematic diagram showing the location of the	216
	TPO transmembrane (Ser-853 to Thr-868) and intracellular	
	(Val-869 to Leu-933) domains	
4.59	The predicted secondary structures of amino acid sequence	217
	of the (a) wild type and the (b) mutant (p.Pro883Ser)	
4.60	Comparison between the 3-D homology models of wild	219
	type and mutant p.Pro883Ser TPO proteins	
4.61	A schematic diagram presentation of the potential GC box	220
	binding site in upstream region (-200 to -1 bp) of	
	transcription start of the TPO gene, identified by TFBIND	

4.62	Gel electrophoresis of DNase I-treated tcRNA samples	224
	showing two discrete rRNA bands representing the	
	28S rRNA and 18S rRNA	
4.63a	An agarose gel electrophoresis showing the PCR products	226
	of exons 2 to 13 that include the pre-mRNA splice	
	junctions	
4.63b	An agarose gel electrophoresis showing the PCR products	227
	of exons 7 to 9 and exons 13 to 17 that include the	
	pre-mRNA splice junctions	
4.64a	An agarose gel electrophoresis showing the PCR products	228
	of exons 12 to 13 that include the pre-mRNA splice	
	junction	
4.64b	An agarose gel electrophoresis showing the PCR products	229
	of exons 12 to 13 that include the pre-mRNA splice	
	junction	
4.65a	Electropherogram profile of the expected PCR product	230
	with the size of 300 bp obtained from the amplification	
	spanning from TPO exon 12 and end at exon 13 of CHP33	
4.65b	Electropherogram profile of the unknown PCR product	231
	with the size of approximately 350 bp showing the	
	detection of a novel alternative splicing-derived TPO	
	mRNA variant with additional length of 34 bp originated	
	from intron 12 in CHP33	
4.66	An agarose gel electrophoresis showing the PCR product	232
	for wild type and unknown TPO transcripts	

4.67	An electropherogram showing identification of a novel	233
	alternative splicing-derived TPO mRNA variant	
4.68	A schematic diagram showing the consequences of the	235
	c.2268dup mutation on the production of TPO mRNA	
	transcripts and mediated the subsequent synthesis of the	
	TPO polypeptide	
4.69	Analysis of p.Asp740Valfs* amino acid substitution by	237
	PolyPhen-2	
4.70	Electropherogram profile of the PCR product showing	238
	c.2216-112 at intron 12 to exon 13 of the TPO gene of	
	CHP33	
4.71	A SDS-PAGE of microsomal fraction extracts and a	240
	positive control	
4.72	Western blot analysis was performed with protein	241
	extracted from microsomal fraction of thyroid tissues	
4.73	Guaiacol oxidation assay of p.Glu757X TPO mutant	243
4.74	Western blot analysis: Comparison of TPO protein	244
	expression in CHP33 (III-2) and her sister (III-1)	
4.75	An agarose gel electrophoresis of PCR products of	246
	RT-PCR sensitivity test	
4.76	Real time PCR analysis: Comparison of the TPO gene	250
	expression level between the normal and lesion areas of	
	thyroid tissue of CHP33 (III-1)	

4.77	Real time PCR analysis: Comparison of the TPO gene	251
	expression level between the normal and lesion areas of	
	thyroid tissue of CHP33's sister (III-1)	
4.78	Real time PCR analysis: Comparison of the TPO gene	252
	expression between CHP33 (III-2) and her sister (III-1)	
4.79	Real time PCR analysis: The sum (%) of examined	255
	TPO variants in normal and lesion areas of thyroid tissue	
	of CHP33 (III-2)	
4.80	Real time PCR analysis: The sum (%) of examined	256
	TPO variants in normal and lesion areas of thyroid tissue	
	of CHP33's sister (III-1)	
4.81	Real time PCR analysis: Comparison of TG, TSH-R and	258
	NIS genes expression between normal and lesion areas of	
	thyroid tissue of CHP33 (III-2)	
4.82	Real time PCR analysis: Comparison of TG, TSH-R and	259
	NIS genes expression between normal and lesion areas of	
	thyroid tissue of CHP33's sister (III-1)	

LIST OF TABLES

2.1	Clinical features of hypothyroidism	10
2.2	A summary of published TPO polymorphisms	23
3.1	Profile of patients with dyshormonogenetic CH showing	37
	the respective thyroid function and status at the time of	
	diagnosis	
3.2	Clinical profile of family members of CHP41 with	41
	dyshormonogenetic CH	
3.3	Clinical profile of family members of CHP33 with	43
	dyshormonogenetic CH	
3.4	Clinical profile of family members of CHP49 with	44
	dyshormonogenetic CH	
3.5	Clinical profile of family members of CHP51 with	46
	dyshormonogenetic CH	
3.6	Profile of family members of CHP53 with	48
	dyshormonogenetic CH	
3.7	Profile of family members of CHP55 with	49
	dyshormonogenetic CH	
3.8	Profile of family members of CHP58 with	51
	dyshormonogenetic CH	
3.9	Profile of family members of CHP59 with	52
	dyshormonogenetic CH	
3.10	Sequence of primers used for PCR amplification of exons 1	56
	to 17 of the TPO gene, size of PCR products and the	
	annealing temperature needed for each pair of primers	

3.11	Nucleotide sequence of PCR primers and the size of PCR	71
	products for mRNA transcript analysis of the TPO gene	
3.12	Sequence of PCR primers and size of PCR products in	80
	Section 3.2.9.2.1 and Section 3.2.9.2.3	
3.13	Sequence of the primers used in real time PCR	84
	amplification and size of PCR products as described by	
	Cristofaro et al. (2006) and Cianfarani et al. (2010)	
4.1	A summary of the disease-causing TPO gene mutations	131
	found in all unrelated patients with dyshormonogenetic CH	
4.2	A summary of the TPO gene polymorphisms found in 14	132
	unrelated patients with dyshormonogenetic CH	
4.3	The location and nucleotide sequence of splice sites found	154
	in exon 7 of the TPO gene	
4.4	ESE Finder matrices for SRp40, SC35, SF2/ASF and	155
	SRp55 proteins (c.670_672del)	
4.5	HSF ESE motif analysis for Tra2 and 9G8 proteins:	155
	Splicing enhancer motif of the c.670_672del mutation	
4.6	The location and nucleotide sequence of splice sites found	164
	in exon 8 of the TPO gene	
4.7	Splice site analysis of the c.1159G>A mutation using HSF	166
4.8	ESE Finder matrices for SRp40, SC35, SF2/ASF and	167
	SRp55 proteins (c.1159G>A)	
4.9	HSF ESE motif analysis for Tra2 and 9G8 proteins:	168
	Splicing enhancer motif of the c.1159G>A mutation	
4.10	Splice site analysis of the c.1186C>T mutation using HSF	178

4.11	ESE Finder matrices for SRp40, SC35, SF2/ASF and	179
	SRp55 proteins (c.1186C>T)	
4.12	The location and nucleotide sequence of splice sites found	190
	in exon 9 of the TPO gene	
4.13	Splice site analysis of the c.1502T>G mutation using HSF	191
4.14	ESE Finder matrices for SRp40, SC35, SF2/ASF and	192
	SRp55 proteins (c.1502T>G)	
4.15	HSF ESE motif analysis for Tra2 and 9G8 proteins:	193
	Splicing enhancer motif of the c.1502T>G mutation	
4.16	The location and nucleotide sequence of splice sites found	203
	in exon 13 of the TPO gene	
4.17	Splice site analysis of the c.2268dup mutation using HSF	204
4.18	ESE Finder matrices for SRp40, SC35, SF2/ASF and	206
	SRp55 proteins (c.2268dup)	
4.19	HSF ESE motif analysis for Tra2 and 9G8 proteins:	207
	Splicing enhancer motif of the c.2268dup mutation	
4.20	The location and nucleotide sequence of splice sites found	209
	in exon 16 of the TPO gene	
4.21	Splice site analysis of the c.2647C>T mutation using HSF	211
4.22	ESE Finder matrices for SRp40, SC35, SF2/ASF and	212
	SRp55 proteins (c.2647C>T)	
4.23	The location and nucleotide sequence of splice sites found	221
	in exon 4 of the TPO gene	
4.24	Splice site analysis of the c.180-6C>A (c.181-6C>A)	222
	polymorphism using HSF	

4.25 Comparison between the primer pair amplification
efficiency of the target genes: *thyroid peroxidase (TPO)*, *thyroglobulin (Tg), thyroid stimulating hormone receptor*(*TSH-R*), and *sodium iodide symporter (NIS)*, and
endogenous control: *tata box binding protein (TBP*)

ABBREVIATIONS

A (a)	adenine
Ala	alanine
APS	ammonium persulfate
Arg	arginine
Asn	asparagine
Asp	aspartic acid
bp	base pair
BSA	bovine serum albumin
Bis	N, N'-methylene-bis-acrylamide
C (c)	cytosine
C (cell)	calcitonin-producing parafollicular
C (product)	concentration
C (terminal)	carboxyl-terminus
СН	congenital hypothyroidism
СНР	congenital hypothyroidism patient
ССР	complement control protein
cDNA	complementary DNA
cm	centimeter
CO ₂	carbon dioxide
ddH ₂ O	double-distilled water
dl	deciliter
DMSO	dimethylsulfoxide
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleoside triphosphates

DTT	dithiothreitol
DUOX2	dual oxidase 2
EDTA	ethylenediaminetetraacetate
EGF	epidermal growth factor
ESE(s)	exonic splicing enhancer(s)
ESSs	exonic splicing suppressors
et al.	et alia (and others)
EtBr	ethidium bromide
FNAB	fine needle aspiration biopsy
FT ₄	free T ₄
G (g)	guanine
g	gram
g	gravity
Gln	glutamine
Glu	glutamic acid
Gly	glycine
h	hour(s)
H_2O_2	hydrogen peroxide
HCl	hydrochloride
His	histidine
HSF	Human Splicing Finder
hTG	human thyroglobulin
I-	iodide
\mathbf{I}^+	iodinium
ICH-GCP	International Conference on Harmonisation-Good Clinical
	Practice

Ile	isoleucine
IQ	intelligence quotient
\mathbf{K}^+	potassium ion
kbp	kilo base pair
KCl	potassium chloride
kDa	kiloDalton
K ₃ EDTA	ethylenediamine tetraacetate
kg	kilogram
L	litre
Leu	leucine
LPO	lactoperoxidase
L-T ₄	levothyroxine
L-T ₃	liothyronine
Lys	lysine
m	mili
М	molar
Met	methionine
МеОН	Methanol
U (u)	uracil
μ I U	microinternational units
μg	microgram
mg	milligram
MgCl ₂	magnesium chloride
min	minute(s)
ml	milliliter
μl	microlitre

mcg	microgram
mM	millimolar
MNG	multinodular goitre
МРО	myeloperoxidase
mRNA	messenger ribonucleic acid
N (terminal)	amino-terminus
Na ⁺	sodium ions
NaCl	sodium chloride
NaOH	sodium hydroxide
NAS	nonsense-associated altered splicing
NCBI	National Center for Biotechnology Information
NIS	sodium iodide symporter
NTH	Neonatal transient hypothyroidism
nmol	nanomolar
OD ₂₃₀	absorbance at 230 nm
OD ₂₆₀	absorbance at 260 nm
OD ₂₈₀	absorbance at 280 nm
OD ₄₇₀	absorbance at 470 nm
OD ₅₉₅	absorbance at 595 nm
PAGE	polyacrylamide gel
PAX-8	paired box gene 8
PBS	phosphate buffered saline
PCR	polymerase chain reaction
Phe	phenylalanine
PIOD	partial organification defect
pmol	picomole

Polyphen-2	Polymorphism Phenotyping-version 2
Pro	proline
ProQ	Protein Quality Predictor
PVDF	polyvinylidene fluoride
qRT-PCR	quantitative real time-polymerase chain reaction
RT-PCR	reverse transcription-polymerase chain reaction
SCN	solid cell nest
SDS	sodium dodecyl sulfate
SDS-PAGE	sodium dodecyl sulfate-polyacrylamide gel electrophoresis
sec	second(s)
Ser	serine
SIFT	Sorting Intolerant From Tolerant
SLC5A	solute carrier family 5
SNP	single nucleotide polymorphism
t	time
T (t)	thymine
T ₃	3, 5, 3'-triiodothyronine
T_4	3, 5, 3', 5'-tetraiodothyronine or thyoxine
Taq	Thermus aquaticus
TAE	tris-acetate-EDTA
TBP	tata box binding protein
tcRNA	total cellular RNA
TDH2A	thyroid dyshormonogenesis 2A
TEMED	tetramethylethylenediamine
TFT	thyroid function test
Tg	thyroglobulin

Thr	threonine
TIOD	total iodide organification defect
TNH	transient neonatal hypothyroidism
TPO	thyroid peroxidase
TRH	thyroid releasing hormone
Trp	tryptophan
TSH	thyroid stimulating hormone
TSHB	thyroid stimulating hormone, beta
TSHR	thyroid stimulating hormone receptor
TTF-1	thyroid transcription factor-1
TTF-2	thyroid transcription factor-2
Tyr	tyrosine
UMMC	University of Malaya Medical Central
UniProt	Universal Protein Resource
UV	ultraviolet
V	volt
Val	valine
v/v	volume over volume
w/v	weight over volume
3-D	three dimensional
⁹⁹ Tm	Technetium-99m
${\mathfrak C}$	degree centigrade
Δ	Delta

LIST OF APPENDICES

PAGE

А	List of	f publications in this study	299
В	List of posters presented in this study The published sequence of the:		300
С			301
	1)	Human thyroid peroxidase (TPO), transcript variant 1,	
		mRNA (NCBI Reference Sequence: NM_000547.5)	
	2)	Human thyroid peroxidase (TPO), isoform 1, protein	
		(Uniprot Reference Sequence: P07202-1)	
	3)	Human thyroid peroxidase (TPO), RefSeqGene on	
		chromosome 2 (NCBI Reference Sequence:	
		NG_011581.1, selected region from 4799 to 5949)	
	4)	Human thyroid peroxidase (TPO), RefSeqGene on	
		chromosome 2 (NCBI Reference Sequence:	
		NG_011581.1, selected region from 24969 to 25146)	
	5)	Human thyroid peroxidase (TPO), RefSeqGene on	
		chromosome 2 (NCBI Reference Sequence:	
		NG_011581.1, selected region from 87993 to 88308)	
D	Recipe	e for stock solutions and general use buffers	304
	1)	Preparation of 50 X Tris-acetate-EDTA (TAE)	
		buffer	
	2)	Preparation of 6 X Laemmli buffer	
	3)	Preparation of 10 X SDS-PAGE running buffer	
	4)	Preparation of Coomassie stain	
	5)	Preparation of 1 X Tris-glycine buffer	
Е	Exon-	exon boundary for all exons of the TPO variants	306

F	BSA standard curve 3		311
G	The expression level of TPO protein in:		
	1)	CHP33 (III-2)	
	2)	CHP33'sister (III-1)	
	3)	CHP33's sister (III-1) and CHP33 (III-2)	
		(comparison)	
Н	Multip	le sequence alignment of amino acids in human TPO	317
	with ra	at TPO	
Ι	Ethical committee approval letter 31		318
J	Patient consent form for clinical research 31		319