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ABSTRACT 

The research in this PhD thesis is motivated by the importance of precise microflow 

control in transforming various laboratory-based chemical and clinical assays into 

portable centrifugal microfluidics based devices. The more specific aim is the 

development of inexpensive flow control and liquid routing techniques that can be used 

in sample preparative processes such as blood plasma separation, washing, metering, 

and analyte detection. Efficient and inexpensive flow control techniques based on new 

principles and operations are introduced and compared with state of the art industrial 

approaches. Unlike previously introduced techniques these novel flow control methods 

are not dependent on the direction of the disk rotation and do not require special surface 

treatments or external power sources. The hardware to enable these techniques is easy to 

implement and provides robust control of the flow in centrifugal microfluidic platforms.  

Prior to designing new capillary valves, a comprehensive investigation of the 

relationship between contact angles and capillary dimensions on the performance of 

passive capillary valves was carried out. The results reveal, for example, that square 

capillaries have lower capillary forces compared to rectangular capillaries. The results 

also show that -contrary to earlier theoretical predictions- the capillary force at burst 

valves dramatically drops when the contact angle decreases.   

For the first time, a new valving technique is introduced that exploits a geometrical 

effect on the surface tension to control and switch the flow direction. The valve is a 

frequency dependent device that is able to direct the flow to one direction (e.g., c.w.) at 

low frequencies and to the opposite direction (e.g., c.c.w.) at higher frequencies without 

using external power sources or applying surface treatments. The flow behavior of the 

new valve for distilled water as well as for liquids with different properties was 

investigated experimentally and numerically. The results show that the new valve is 
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able to control the flow direction on a spinning microfluidic platform for liquids of 

widely varying properties.  

Another novel microvalve is presented that allows for the efficient routing of 

samples, switching and controlling the flow direction on centrifugal microfluidic 

platforms. The distinctive feature that makes this approach different from other types of 

passive capillary valves is the robust control of liquid movement, which is achieved by 

employing two adjustable sequential burst valves i.e., a primary and a secondary burst 

valve. The performance of this novel configuration was experimentally tested, the flow 

behavior was numerically studied using the VOF method and a theoretical model for 

their burst frequency was presented. 

For the first time, the role of the effective moment of inertia of the liquid in 

centrifugal microfluidics – that can be used for pushing the liquid towards specific 

lateral or/and radial directions – was theoretically, experimentally and numerically 

investigated. The experiment results confirmed that utilizing the effective moment of 

inertia of the liquid i.e., as a result of a sudden reduction of the rotational speed (~45 

Hz/s), propels the entire liquid volume from a chamber adjacent to the disc’s periphery 

to a chamber close to the disc center.  

 

 Univ
ers

ity
 of

 M
ala

ya



vi 

ABSTRAK 

Kajian dalam tesis PhD ini adalah didorong oleh kepentingan kawalan microflow 

yang tepat dalam transformasi pelbagai ujikaji kimia makmal kepada peranti berasaskan 

microfluidics empar mudah alih. Tujuan yang lebih khusus ialah pembangunan kawalan 

aliran murah dan teknik laluan cecair yang boleh digunakan dalam proses persiapan 

sampel seperti pemisahan plasma darah, pembasuhan, pemeteran dan pengesanan analit. 

Teknik kawalan aliran yang cekap dan murah berasaskan prinsip dan operasi baru 

diperkenalkan dan dibandingkan dengan keadaan seni pendekatan perindustrian. Tidak 

seperti teknik diperkenalkan sebelum ini, kaedah kawalan aliran novel ini tidak 

bergantung kepada arah putaran cakera dan tidak memerlukan rawatan permukaan khas 

atau sumber kuasa luaran. Perkakas yang diperlukan untuk membolehkan teknik-teknik 

ini mudah untuk dilaksanakan dan menyediakan kawalan aliran yang mantap dalam 

platform microfluidic empar. 

Sebelum mereka bentuk injap kapilari baru, siasatan menyeluruh mengenai kaitan di 

antara sudut hubungan dan dimensi kapilari kepada prestasi injap kapilari pasif telah 

dijalankan. Keputusan menunjukkan bahawa kapilari segi empat mempunyai daya 

rerambut yang lebih rendah berbanding dengan kapilari segi empat tepat. Keputusan 

juga menunjukkan bahawa berbanding dengan teori sebelum ini daya rerambut pada 

injap pecah jatuh mendadak apabila sudut kenalan berkurangan. 

Buat pertama kalinya, satu teknik injap baru diperkenalkan dengan mengeksploitasi 

kesan geometri pada ketegangan permukaan untuk mengawal dan menukar arah aliran. 

Injap ini adalah alat yang bergantung kepada kekerapan dan mampu mengarahkan aliran 

ke satu arah (contohnya, cw) pada frekuensi rendah dan ke arah bertentangan 

(contohnya, CCW) pada frekuensi yang lebih tinggi tanpa menggunakan sumber kuasa 

luaran atau menggunakan rawatan permukaan. Kelakuan aliran injap baru bagi air 
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suling dan juga untuk cecair dengan ciri-ciri yang berbeza telah disiasat secara 

eksperimen dan juga secara perangkaan. Keputusan menunjukkan bahawa injap yang 

baru ini mampu untuk mengawal arah aliran dalam platform microfluidic berputar 

secara meluas untuk cecair-cecair yang mempunyai sifat berbeza. 

Satu lagi microvalve baru yang dibentangkan untuk membolehkan penghalaan 

sampel yang cekap, penukaran dan mengawal arah aliran pada platform microfluidic 

empar. Ciri-ciri yang tersendiri injap tersebut yang membuat pendekatan ini berbeza 

daripada injap jenis kapilari pasif yang lain adalah kawalan cecair pergerakan yang 

mantap, yang dicapai dengan menggunakan dua injap pecah boleh-laras yang berurutan 

iaitu, injap pecah yang pertama dan kedua. Prestasi konfigurasi baru ini telah diuji 

secara eksperimen manakala kelakuan aliran dikaji secara berangka menggunakan 

kaedah VOF dan model teori bagi kekerapan pecah mereka telah dibentangkan. 

Buat pertama kalinya, peranan momen inersia cecair dalam microfluidics empar yang 

boleh digunakan untuk menolak cecair ke arah tertentu arah sisi atau / dan jejarian telah 

disiasat secara teori, uji kaji dan berangka. Keputusan eksperimen mengesahkan bahawa 

menggunakan momen inersia berkesan ini, iaitu cecair, akibat daripada pengurangan 

secara tiba-tiba kelajuan putaran (~45 Hz/s), menggerakkan isipadu cecair keseluruhan 

dari ruang yang bersebelahan dengan pinggir cakera ke ruang berhampiran dengan pusat 

cakera. 

bersebelahan dengan pinggir cakera ke ruang berhampiran dengan pusat cakera. 
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Ff : Friction force  

Fcen  : Centrifugal force  

Fco  : Coriolis force  

FEu  : Euler force  

G : Asymmetric distance 

I : Moment of Inertia 

m : Mass 

  : Viscosity 

ρ  : Density 

n : Normal vector 

Q : First moment of Inertia 

  : Mean radial position 

r1  : Radial position close to the center 

V : Shear force 

α : Angular acceleration 

β : Expansion angle 

γ : Surface tension 

μs : Friction coefficient 

σ : Normal stress 

τ  : Shear Stress 

θ,φ : Contact angle 

ω : Angular velocity 
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CHAPTER 1: INTRODUCTION  

1.1 Research background 

Conventional clinical diagnostic tasks and many chemical processes usually consist 

of a series of sequenced procedures carried out by skillful operators until the final 

analytical results are obtained (Lee et al., 2001b; Madou et al., 2006; Madou et al., 

2001; Zoval & Madou, 2004). These processes are time consuming and highly 

dependent on the skills of trained and experienced operators. Alternatively, Lab-on-a-

Chip (LOC) devices are attracting more attention as possible platforms for automating 

complex clinical and chemical processes with comparable cost. They provide portable 

desktop form factor, reduced time-to-results, reduced amount of sample needed and 

increased possibility of multiplexing (simultaneous run of multiple test from the same 

sample) as compared to standard lab assays (Godino et al., 2013; Lee et al., 2009; Lee et 

al., 2011; Lee et al., 2013).  

Today, many steps of chemical and clinical assays such as sample preparation (Li et 

al., 2014; Nan et al., 2014; Reboud et al., 2012), amplification/detection of nucleic acid 

targets (Jenison et al., 2014; Ma et al., 2014) and hybridization steps as well as 

integrated sample-to-answer procedures are developed on LOC devices (Ritzi-Lehnert 

et al., 2011; Schumacher et al., 2012). Centrifugal microfluidic devices (LabDisc) are 

realization of LOC concept on spinning platforms (typically in a geometric shape of a 

disc) that contain chambers for samples, reagents and waste connected by a network of 

fabricated microchannels. Centrifugal microfluidic platforms do not affect the important 

physicochemical properties of fluids such as pH or ionic strength and therefore they are 

attractive candidates for applications of various chemical/clinical procedures such as 

blood plasma separation, disease screening, drug testing, cellular and chemical analysis, 

etc. (Auroux et al., 2002; Madou et al., 2006; Oh & Ahn, 2006; Reyes et al., 2002). In 

centrifugal microfluidics, assays are mainly carried out in a sequence of microfluidics 
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operations e.g., metering, aliquoting, etc., starting from the center side of the disc and 

progressing radially outward due to unidirectional nature of the flow in centrifugal 

microfluidics (i.e., in the direction of centrifugal force).  

The ability to employ multi-directional flow on centrifugal microfluidics allows for 

better use of disc’s real estate and increases flexibility of fluidic operations. The flow 

manipulation and multidirectional propelling of the flow are imperative tasks for 

complex operational sequences on the centrifugal microfluidic platforms (such as 

sample preparation such as fractionation and DNA extraction, reagent mixing, volume 

definition, etc.) (Brenner, 2005; Jinlong et al., 2008; Kim et al., 2008; Kong & Salin, 

2011; Lin, 2010; Steigert et al., 2005). To date, several passive and active techniques 

(i.e., need external power sources) have been introduced in order to develop 

multidirectional flow on the centrifugal microfluidics such as Coriolis force, siphoning, 

thermo pneumatic pumping and “centrifugo-dynamic inward pumping (Abi-Samra et 

al., 2011a; Brenner et al., 2005; Kim et al., 2008; Madou et al., 2006; Zehnle et al., 

2012). An active flow switch method employing a periodic air supply in order to change 

the flow direction has been proposed by Kong et al. (2011). Although this method is 

able to change the flow without changing the spinning direction of the disc, portability 

reduction and the increase in the system cost, making it less desirable especially for 

clinical applications. In a different approach, Lin et al. (2010) has introduced a passive 

micro structure that evenly distributes the liquid at the T-junctions which can be used in 

the centrifugal ELISA chips. Given the limitations of the existing flow switching 

methods, and due to the diversity of clinical and chemical assays there is a clear need 

for development of new valving techniques. This study introduces novel techniques, 

which provide more control on the flow in centrifugal microfluidics that allows for the 

efficient use of the disc real estate and more sophisticated microfluidic operations on 

centrifugal microfluidics.  
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1.2 Problem Statement 

Naturally, the liquid flow in centrifugal microfluidics is in the direction of the 

centrifugal force at relatively lower rotational speeds and in the direction of Coriolis 

force at relatively higher rotational velocities. The unidirectionality of flow on 

centrifugal microfluidics is a major obstacle in the design and development of complex 

clinical and chemical processes which are often comprised of series of consecutive 

microfluidic unit operations such as mixing, metering and separation (Haeberle et al., 

2012). Propelling liquid in the directions opposite to the centrifugal and Coriolis forces 

allows for the efficient use of the disc space and conducting more microfluidic unit 

operations on the disc (Madou et al., 2006). To date, several techniques have been 

developed for propelling liquids towards the disc center e.g., applying surface 

treatments (Handique et al., 1997), pneumatic and thermo-pneumatic techniques (Abi-

Samra et al., 2011a; Gorkin III et al., 2012) or against Coriolis force e.g., reversing the 

disc rotation and supplying periodic air pressure (Brenner et al., 2003; Kong & Salin, 

2011). However, there is a need for new techniques due to the variety of clinical assays 

and chemical operations and also due to the shortages and disadvantages of many 

existing techniques. For example, applying surface treatment, using periodic air 

pressure supply or thermo-pneumatic techniques are not robust and reproducible 

techniques and/or impose additional cost to LOC devices.  

1.3 Research aims and objectives 

This study focuses on the flow control and liquid routing on the spinning platforms 

and aims to introduce new methods for liquid routing and flow control on centrifugal 

microfluidic devices. 
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1.3.1 Research aims 

This study aims to introduce novel methods to control flow and route liquids on 

spinning microfluidic platforms without employing external power source or applying 

surface treatments. With this regard, the effect of contact angle and microchannel 

dimensions in centrifugal microfluidics on the performance of the capillary valves are 

studied in order to provide a holistic insight of the flow pattern which assists in the 

design and development of novel flow control devices.  

1.3.2 Research objectives 

The objectives of this study are as follow: 

1. To investigate the flow pattern in capillary channels (different dimensions) of 

various contact angles on centrifugal microfluidic platforms experimentally and 

numerically.  

2. To develop novel passive valving techniques for centrifugal microfluidic systems 

to switch and to switch back the flow direction at capillary T-junctions.  

1.4 Scope 

This study is delimited to the numerical simulation of hydrophilic and super 

hydrophilic capillary channels for a wide range of contact angles due to the limitation in 

fabrication and the unjustified cost of experimentally testing of a wide ranges of 

materials with different contact angles. It focuses on the passive flow manipulation 

techniques due to their simplicity and their high chance of commercialization and 

integration into various LOC devices. The study will emphasis on the passive methods 

to switch the flow direction because of its importance in flow preparation on many LOC 

devices and also due to very limited numbers of currently available flow switch 

methods. The novel flow switch techniques that will be presented in this study will be 
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only tested for liquids which are widely used in biomedical and biochemical 

applications. The reproducibility and the functionality of these valves will be 

experimentally tested by repeating the experiments under various operational 

conditions. The mechanism of valves will be theoretically discussed and the fluid 

motion in these valves will be numerically explained.  

1.5 Thesis Outline   

This thesis begins with the Introduction chapter that overviews the most important 

and the state-of-art flow manipulation techniques and highlights the research gaps. It 

continues with the Methodology chapter that include the numerical and experimental 

setup that will be used for conducting the simulations and experiments. Chapter 4, 5 and 

6 present the results of a comprehensive study on functionality of the hydrophilic and 

super hydrophilic different capillary valves, a novel flow switch and the improvement 

of the presented novel flow switch technique, respectively. In Chapter 7, the preliminary 

results of the effect of moment of inertia and the surface heterogeneity on the fluid flow 

will be presented. The last chapter includes the conclusions of the thesis and the 

suggestion for future study.  
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CHAPTER 2: LITERATURE REVIEW 

This section introduces the background and the state-of-the-art of centrifugal 

microfluidic platforms and indicates the current trends in development of different 

liquid handling techniques to perform various microfluidic unit operations. It provides 

an overview of several integrated centrifugal microfluidic platforms with particular 

emphasis on the methods of controlling and manipulating flow. It includes the effect of 

advances in micro technology on performing clinical assays and chemical operations, 

fabrication methods, the description of the components of microfluidic platforms 

specifically centrifugal microfluidics and describes the relevant forces and parameters 

involved. It also reviews most of the studies on the flow control and manipulation on 

centrifugal microfluidics. 

2.1 Microfluidic platforms  

Micro technology has assisted researchers to develop brand new products that can 

replace their counterparts at remarkably smaller sizes and higher efficiencies. In the 

academic research especially in the field of clinical and biomedical the influence of 

micro technologies has been increasing during the past years. The emerge of 

microfluidics dates back to when efforts have been made for dispensing Nano liter 

liquids to be used later in ink-jet technology (Haeberle et al., 2012). The miniaturization 

of the gas chromatograph system on a silicon wafer, for the first time has realized the 

transportation of fluids through sub millimeter cross section channels (Terry et al., 

1979). Afterwards the liquid propulsion and transport in sub millimeter and micro 

channels have been studied by several researchers in various fields (Duffy et al., 1999; 

Madou & Kellogg, 1998; Manz et al., 1990). The specific aspects of flow in micro 

channels such as high surface-to-volume ratio allows for the employment of surface 

related phenomena such as capillarity, fast thermal response and so on. These features 
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have been used to enhance many of the analytical procedures in clinical and chemical 

assays e.g., by reducing the size of the samples, more accurate control on the samples 

and reducing the reactions time. Based on such advantages of microfluidics Manz et al. 

(1990) have proposed the concept of miniaturized total chemical analysis systems 

(TAS) which is now known better as micro-TAS or laboratories on a chip (LOC) as 

proposed by Harrison et al. (1992). A lab on a chip is a microfluidic device that 

integrates clinical or chemical operations on a single chip of millimeter or centimeter 

size. 

2.2 Materials and Fabrication  

2.2.1 Materials  

The most common materials used in fabricating microfluidic systems are silicon, 

glass and polymers that are used in bio medical or biological microelectromechanical 

systems (BioMEMS). The advantages and disadvantages of the abovementioned 

materials are briefly reviewed in this section. 

2.2.1.1 Silicon 

The fabrication methods of silicon materials such as lithography and etching have 

been extensively developed since the last four decades (Madou, 2002). Silicon made 

LOCs can withstand high temperature and have high thermal conductivity, which makes 

them suitable for high temperature sterilization applications and polymerase chain 

reaction (PCR) where heat transfer is an important factor. The low transparency is one 

of the disadvantages of silicon, which creates problems for optical-based detection 

methods. The silicon raw material is expensive and requires series of preparation steps 

such as cleaning, coating and so on, which extends the fabrication time and increases 

the cost. In addition, proteins, DNA and biomolecules tend to stick and adsorb on the 

surface of silicon based microfluidic devices because of the hydrophobic property of the 
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material. The fabrication of micro channels with high aspect ratios (the ratio of the 

height to width) and intricate cross sections is challenging due to the isotropicity 

property of the silicon.  

2.2.1.2 Glass 

Glass is a biocompatible material that can endure high temperature. Its high thermal 

conductivity and electric insulation have made glass-based microfluidics suitable for 

applications, which are based on heat transfer (e.g., PCR) and those require high electric 

field (electroosmosis). In comparison with silicon, glass is a highly transparent material 

with no light absorbance, which makes it a perfect material for visualization of liquid 

movements and optical-based detection methods. However, it is fragile and has low 

impact strength and the fabrication of glass-based microfluidics has the similar 

problems and limitation to silicon-based microfluidics.  

2.2.1.3 Polymers 

In comparison with the abovementioned materials, the raw material of polymers is 

significantly cheaper and they can be easily processed by many different production 

techniques such as molding, machining and so on. Different polymers can be produced 

with a variety of physical properties, which make them suitable for a wide range of 

chemical and biomedical applications. They are electric insulator and transparent which 

makes them suitable materials for electrophoresis applications and optical detections. 

However, polymer based microfluidics may not be used for applications that require 

heat transfer or high temperature due to their low thermal conductivity and lower 

resistance to high temperature. At high temperatures, polymer-based microfluidics are 

instable and prone to deformation. Polymers are transparent (which is important in 

detection processes), biocompatible, electric insulator and have less thermal 

conductivity (~0.1W/mK) in comparison with silicon and glass (more than 1 W/mK). In 
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general, polymers compared to other materials are less expensive and can be fabricated 

cost effectively with various fabrication methods, which makes them the preferable 

material in most microfluidics devices. 

2.2.2 Fabrication 

For prototyping where the surface quality of several micrometers is satisfactory CNC 

machining can be used to fabricate microfluidic platforms. When dimensions that are 

more precise are needed, laser ablation can be used in fabrication of polymer-based 

materials. In the later method, the laser energy is used to cut out different geometries 

with the precisions of few hundred nanometers in the x-y directions and 0.1μm in the 

depth direction (Pethig et al., 1998; Schwarz et al., 1998). The mass production of glass 

and silicon based microfluidics is usually based on different types of lithography 

techniques such as electro-projection lithography, X-ray lithography and so on, while 

hot embossing and injection molding are the typical mass production method for 

polymer-based microfluidics. Figure 2.1 shows an example of the process of a 

moulding-based technology used for fabrication of polymer-based centrifugal 

microfluidics.  

Several research groups have described different molding and casting techniques that 

are cost-effective to replicate microfluidic platforms made from 

polymethylmethacrylate (PMMA) and polydimethylsiloxane (PDMS) (Duffy et al., 

1999; Lee et al., 2001a; Madou et al., 2001). The advantage and disadvantages of 

various fabrication methods of microfluidic platforms in general and centrifugal 

microfluidics in particular are critically reviewed and discussed by Focke et al. (2010). 

Figure 2.1 shows the process of formation of a centrifugal microfluidic foil. Figure 2.1 

(a) shows that PMMA master is milled, cast with PDMS mould and cured at 80°C. 

Figure 2.1 (b) shows that after a post curing at 200°C (in order to obtain the desired tool 
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condition) the PDMS is placed in a hot embossing machine and evacuated after curing 

at 190°C. Figures 2.1 (c) to (e) show clamping of the foil in vacuum machine, 

pressurizing the foil through gradually injection nitrogen from the top and creating a 

pressure difference and demoulding PDMS after cooling. In addition, various types of 

microvalves for the specific use in microfluidic platforms can be designed and 

fabricated with different fabrication techniques for plastic materials (Feng & Chou, 

2011; Glière & Delattre, 2006; Jeon et al., 2002; Koch et al., 1997; Madou et al., 2001).  

 

 

Figure 2.1: Process of the formation of a centrifugal microfluidic foil (Focke et 

al., 2010). 

2.3 Centrifugal microfluidics 

The centrifugal microfluidic platform is one of the various types of lab-on-a-chip 

devices that often has a CD-like shape, which it is mounted on a rotating system and 

exploits the centrifugal force for propelling liquids. Centrifugal microfluidics, also 

called lab-on-a-disc, is an attractive option for various biomedical and chemical 
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applications such as blood plasma separation, disease screening, and drug testing, 

cellular, etc. They require minimal external instrumentation to propel and manipulate 

fluids and its fabrication is a well-established art. The approach of using centrifugal 

force in processing liquid samples for biomedical applications dates back to the late 

1960s where centrifugal analyzers were used to process and mix samples and reagents 

in the microliter volumetric range (Anderson, 1969; Burtis et al., 1972). The 

advancement in micro technology and micro fabrication has assisted in the emergence 

of a modern generation of centrifugal platforms, where the length scale less than few 

hundred micrometers enables parallel processing of a large magnitude of microfluidic 

unit operations on a disc (Duffy et al., 1999; Ekstrand et al., 2000; Madou & Kellogg, 

1998; Madou et al., 2001). With this regard, centrifugal microfluidics platforms 

(LabDiscs) are a branch of LOC devices that minimize the external power sources used 

to propel liquid samples by realization of the microfluidic unit operations on a spinning 

platform often in the shape of a disc. The reagents/samples are dispensed into the inlet 

chambers and are propelled by the centrifugal force to travel radially towards the disc 

periphery. Today various fluid handling operations including sample lysis, 

homogenization (Leung & Ren, 2013; Ren & Leung, 2013), metering (Bouchard et al., 

2010), volume definition and valving (Hwang et al., 2011; Kazarine & Salin, 2014; 

Ouyang et al., 2013) have been developed on centrifugal microfluidic platforms. 

Therefore, the technology is considered mature enough for applications such as disease 

screening, drug testing and polymerase chain reaction (Aguirre et al., 2014; Brogger et 

al., 2012; Lee et al., 2013; Marchalot et al., 2014; Strohmeier et al., 2014; Ymbern et al., 

2014). The integration of various microfluidic unit operations such as mixing, 

separating and detecting into centrifugal microfluidics, results in automation of many 

intensive manual operations. For instance, He et al. (2009) have presented a low-cost 

fully automated centrifugal based ELISA that is able to carry out multiple operations 
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with high precision in parallel. Centrifugal microfluidic platforms are particularly 

important in the integration of clinical process such as ELISA and polymerase chain 

reaction (PCR) (Aguirre et al., 2014; Amasia et al., 2012; Focke et al., 2010; He et al., 

2009; Lee et al., 2009). Figure 2.2 shows an injection-molded centrifugal microfluidics 

that is able to integrate the process of the clinical assays such as ELISA. A centrifugal 

microfluidic platform is mounted on a spinning motor and it is comprised of a network 

of microchannels, vessels and microvalves and sometimes micropumps. These elements 

on the platforms are to carry out the basic as well as complex parallel microfluidic unit 

operations, which are required in clinical and chemical assays. The basic microfluidic 

unit operations are liquid transport, metering, flow switch, separation and valving 

(Gorkin et al., 2010; Haeberle et al., 2012). Liquid transport towards the rim of the disc 

can be scaled over a wide range of flow rates by considering the hydraulic resistance of 

the microchannels and spinning frequency of the disc. The metering is a preparative task 

on centrifugal microfluidics that is used when a defined volume of sample needed to be 

separated from the whole part. Figure 2.3 shows a typical metering technique where a) 

an undefined volume of liquid is dispensed into the inlet when discs is set to rotate, b) 

once the metering chamber is filled the rest of the liquid is cutoff, c) the centrifugal 

force overcomes the capillary valve and the liquid passes through the valve.  

The flow switch is required in many preparative protocols where different solutions 

e.g., wash, sample, etc. have to be directed to the waste or a receiving chamber after 

passing a common stationary phase (Beebe et al., 2002; Gorkin et al., 2010; Lai et al., 

2004; Oh & Ahn, 2006). Figure 2.4 shows a flow switching technique on centrifugal 

microfluidic platforms based on Coriolis force. The liquid streams into the left reservoir 

following the direction of rotation (Figure 2.4 (a)) and switching the direction of 

rotation renders liquid to stream into the other reservoir (Figure 2.4 (b)). Valving and 

pumping operations are reviewed in more details in the next section due to their 
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importance, which facilitate the implementation of several complex processes on 

centrifugal microfluidics. 

 

Figure 2.2: An injection-molded LabDisc used for ELISA (He et al., 2009). 

 

Figure 2.3: A metering microstructure based on capillary valving (Steigert et 

al., 2005). 

 

Figure 2.4: Switching the flow direction by Coriolis force, (Brenner et al., 2005). 
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2.3.1 Theory of Centrifugal Microfluidics 

2.3.1.1 Centrifugal and Coriolis forces 

Navier-Stokes equation is used to describe the fluid dynamics on the centrifugal 

microfluidic platforms. The Eulerian form of Navier-Stokes equation for 

incompressible, Newtonian fluids is (Ducrée et al., 2007): 

       [1] 

where, ρ, u and µ are the density, velocity and the viscosity of the fluid. In a non-inertial 

reference frame rotating at constant spinning frequency, the material derivation of liquid 

velocity on the right hand side of Eq. 1 is written as: 

        [2] 

Substitution of Eq. 2 into Eq. 1, we can write: 

    [3] 

Which contains two pseudo forces (see Figure 2.5), the Centrifugal force (density): 

         [4] 

And Coriolis force (density): 

         [5]                 

The average centrifugal force (density) acting on the liquid plug, depends on its radial 

position and can be calculated by integrating the centrifugal force over the radial length 

of the liquid:   
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      [6] 

 

Figure 2.5: Partial top view of a liquid plug in a channel on a disc of radius r 

spinning at ω, the length of the plug is characterized by its boundaries r2 and r1. 

Where, l is the radial length of the liquid and is the mean radial position of the liquid. 

In order to calculate Coriolis force, the maximum radial velocity is obtained by writing 

Navier-Stokes equation in the plane parallel to the disc surface. Typically, the 

gravitational force is significantly smaller than other forces on spinning disc and thus 

can be ignored. We also assume fluid of constant density and since the walls are 

impermeable, liquid is confined to flow in z-direction and there exist no changes of the 

velocity except in the direction of flow: 

       [7] 

Considering that the flow is fully developed, the velocity of the fluid in the direction of 

the flow is constant: 

      [8] 

Due to no-slip at the wall, vz=0 at x=0 and x= w: 
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         [9] 

The maximum velocity is at x=0.5w and it is equal to: 

         [10] 

Where, w is the microchannel width. At this point Coriolis force can be obtained by 

equation 5.   

2.3.1.2 Capillary pressure 

The capillary pressure has been investigated in several theoretical, experimental and 

numerical studies (Chen et al., 2008; Cho et al., 2004; Duffy et al., 1999; Man et al., 

1998). It is a function of the microchannel width, height and surface properties and can 

be derived from thermodynamics in terms of interfacial free energy (Whitesides, 2006): 

UT=Aslσsl + Asaσsa + Alaσla
        [11] 

Where, Asl, Asa and Ala are solid-liquid, solid–air and liquid–air interface, σsa, σsa, σsa are 

their corresponding surface tension forces. The surface tension forces per unit length are 

function of the contact angle and given by Young-Laplace equation (Frederick, 1964): 

σsa= σsl + σla cosθc         [12] 

After using Young-Laplace equation and subtracting the constant sum of the solid-

liquid and solid-air interfaces the total energy will be (Chen et al., 2008):  

      [12a]
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Uo is a constant energy since the sum of the solid–liquid and solid–air interfaces 

remains constant. The pressure acting on the liquid plug can be obtained from the 

changes of the interfacial energy of the system with respect to the changes in the liquid 

volume and can be calculated as: 

       [13] 

The capillary barrier pressure changes as the liquid volume changes and can be 

categorized and calculated in three main regimes which are when the liquid is pinned in 

the microchannel, when it is pinned at a sudden change in the surface properties and at 

the point when the centrifugal pressure is equal to capillary pressure. Figure 2.6 shows 

stages of meniscus advancement in a rectangular capillary; stage 1 is when xc<L, stage 2 

is defined when xc=L and stage 3 is when the meniscus is bulged and xc>L. The 

parameters w, θc, and β are the width of the capillary, the contact angle and the capillary 

expansion angle. However, it is at the latest regime that we require to calculate the 

capillary pressure barrier on the centrifugal microfluidics. The capillary barrier pressure 

at this regime is called capillary burst pressure and for a rectangular microchannel it has 

been given by references (Chen et al., 2008; Leu & Chang, 2004a):  

       [14] 

Where, w, h and β are the microchannel width, height and the angle of the expansion of 

the microchannel. 
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Figure 2.6: Schematic of the meniscus development in rectangular capillary, 

Chen et al. (2008). 

2.3.2 Flow type 

The capillary number  is used to define the flow type in microfluidics; when 

Ca<<1 the surface tension effect is the predominant force and the flow is called surface 

tension dominant flow. The flow in most LOC devices including centrifugal 

microfluidics is the surface tension dominant flow with a low Re number i.e., typically 

below or on the order of 1 and Ca<<1. In the surface tension dominant flow, the effect 

of viscous forces consisting of flow viscosity, the flow path length and the fluid 

viscosity is insignificant in comparison with the effect of capillary force (Fulcher et al.; 

Shravanthi et al., 2005; Wang et al., 2014; Wang & Dimitrakopoulos, 2012). This type 

of fluid movement allows for applying the most significant operation on centrifugal 

microfluidics, which is called capillary valving. 

2.3.3 Microvalves and Micropumps 

In the past two decades a large number of studies have been focused on developing 

new microfluidic valving mechanisms for liquid transport, flow control, mixing etc. 

(Grumann et al., 2005; Haeberle et al., 2012; Madou & Kellogg, 1998; Oh & Ahn, 

2006; Shoji & Esashi, 1994). Microvalves are the main components of LabDisc that are 
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used to control and manipulate flow on the spinning platforms. Their applications such 

as flow regulations, switching and sealing of fluids are vital in performing clinical and 

chemical processes on centrifugal platforms. They are mainly classified into passive i.e., 

do not need external power sources and active valves, which require external power 

sources to actuate. This section briefly overviews the most important microvalves as 

well as the latest introduced valves and their mechanisms and applications in centrifugal 

microfluidics. It reviews different types of the passive valves (consist of mechanical and 

non-mechanical) as well as various types of active valves and their advantages and 

disadvantages.   

2.3.3.1 Passive techniques 

Passive valves are the most popular valves on centrifugal microfluidics (i.e., due to 

the ease of fabrication) and can be categorized into mechanical and non-mechanical 

valves. The simplest non-mechanical passive valves are capillary valves, which are 

based on the interaction between the capillary and the centrifugal forces. Capillary 

valves are based on a pressure barrier that develops when cross-section or surface 

properties of the capillary changes abruptly (Duffy et al., 1999; Leu & Chang, 2004a; 

Man et al., 1998). The fundamental theory, design and fabrication of capillary valves 

have been reported in a study conducted by Man et al. (1998) as well as in other studies 

(Johnson et al., 2001; Madou & Kellogg, 1998; Madou et al., 2001).  Figure 2.7 shows a 

schematic of various possible types of capillary valves. Capillary valves are constructed 

in three different methods, which are: a) by a sudden expansion/contraction of a 

hydrophilic/hydrophobic channel, b) by generating hydrophobic patches on hydrophilic 

channels and c) by constructing siphoning structure. The first two types of capillary 

valves are normally closed valves that block the liquid flow i.e., induced by the 

centrifugal force. Increasing the spinning frequency generates a larger centrifugal force, 
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which ultimately overcomes the capillary barrier pressure of the valve (Cho et al., 2004; 

Erickson et al., 2002; Man et al., 1998; Zeng et al., 2000a; Zeng et al., 2000b). The 

spinning frequency that generates a centrifugal force equal to or greater than the 

capillary pressure barrier is called burst frequency of the capillary valve. Burst 

frequency of the capillary valves varies within a wide range of spinning frequencies that 

allows for sequential implementation of various clinical/chemical processes (Madou et 

al., 2006). The hydraulic resistance and the surface properties of the channel together 

with the position of the valve relative to the disc center determine the burst frequency of 

a capillary valve (Cho et al., 2004; Erickson et al., 2002; Leu & Chang, 2004a; Man et 

al., 1998; van Remoortere & Joos, 1991; Zeng et al., 2000a; Zeng et al., 2000b). The 

theory and principles of the capillary valving have been studied by Cho et al. (2007a) 

focusing more on the relation between the contact angle of the liquid on different 

surfaces. The hydraulic resistance of the capillaries and the effect of capillary 

dimensions on the burst frequency of the capillary valve for a constant contact angle 

was experimentally and theoretically studied by Chen et al. (2008). Their study shows 

that for a given contact angle the height of the capillary has a greater effect on the 

performance of the valve in comparison with its width. Figure 2.8 shows the effect of 

aspect ratio (ratio of capillary height to capillary width) on the burst frequency for 

constant capillary width of 300μm and 400μm. The effect of capillary expansion angle β 

on the burst frequency of capillary valves is shown in Figure 2.9.  

In addition, the effect of the surface topologies on wetting behavior and on the fluid 

flow has been studied by Kunert et al. (2008). Capillary valves are reported to be used 

in order to form sequential valves, perform flow switch as well as mixing different 

liquids (Noroozi et al., 2011; Soroori et al., 2013; Steigert et al., 2005). For instance, an 

inlet and an outlet chamber connected by a hydrophilic channel was used to produce a 

reciprocating flow that is used in mixing different liquids (Noroozi et al., 2011). The 
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technique employs the centrifugal pressure to push the liquid towards the rim of the disc 

and uses the capillary action when the disc is at rest to draw the liquid back to the 

center. Capillary valves can also be designed to be actuated at the centrifugal pressures 

lower than their burst pressure by introduction a secondary liquid flow that make 

contact with the other liquid at the capillary junctions (Melin et al., 2004). The 

mechanism of their technique is shown in Figure 2.10 where at (i, ii) liquid 1 flows 

towards the junction and stops, (iii) liquid 2 flows towards the junction and make 

contact with liquid 1at the junction (vi) liquid 1 and 2 proceed to fill the outlet 

The effects of pseudo-forces such as Euler and Coriolis forces on the flow behavior 

and their applications in the spinning platforms have been also studied. As one of the 

significant examples, the effect of Coriolis force on the liquid transporting by the 

microchannels was employed to control the flow direction when a micro channel meets 

an outlet chamber (Brenner et al., 2005; Brenner et al., 2003; Ducrée et al., 2004). At 

sufficiently high spinning frequencies (i.e., when Coriolis force is much greater than the 

centrifugal force) the liquid completely flow in the direction of Coriolis force and the 

flow direction is reversed by reversing the direction of the disc rotation. A liquid can 

also be routed first into one branching channel and then into a different branching 

channel when asymmetrical channels and chambers are used. When the liquid is filling 

a first chamber the liquid rises to a level that prevents the connection of the air in the 

branching channel with the vent hole and the fluid in the main channel will be routed to 

a second reservoir (Kim et al., 2008). Capillary valves have been used in order to 

produce equal flow rates in two outlet destinations branched out from a main capillary 

channel (Lin, 2010). The equal flow rate allows for duplicating the identical fluidic 

operations, which can reduce the sample consumption and the cost of the assay.  
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Figure 2.7: A schematic of different types of capillary valves, a) Sudden 

expansion of microchannel, b) Hydrophobic patch generated by surface treatment 

methods, c) Siphoning. 

 

Figure 2.8: The effect of aspect ratio on the burst frequency of capillary valves 

for σla=0.072 N/m, θ= 68°. The solid and the dashed lines are theoretically obtained 

values for capillary width of 300μm and 400μm, respectively (Chen et al., 2008). 

 

The use of hydrophobic patches (hydrophobic capillary valves) is traced back to the 

study by Handique et al. (1997) and McNeely et al. (1999) where specific hydrophobic 

regions were defined on specific locations in a LOC device (by restriction in a 
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hydrophobic channel or applying surface treatments) to create and control the 

movements of liquids. Although, hydrophobic capillaries on centrifugal microfluidics 

require especial surface treatments which can make them less attractive compared to the 

other types of capillaries, Ouyang et al. (2013) have recently introduced a low-cost 

method hydrophobic capillary valve. They have used the laser printer lithography to 

pattern hydrophobic patches on a polyester films and shown that the value of the contact 

angle can be adjusted by the intensity of the toner as well as its color. 

The siphoning technique, which has been employed in many applications such as 

separation, sedimentation etc., is consisted of an inlet chamber and an outlet connected 

together by a hydrophilic channel (Ducrée et al., 2007; Gorkin et al., 2012; Siegrist et 

al., 2010b). The hydrophilic channel allows for a positive capillary pressure, which is 

able to draw liquid towards the desired direction that is often towards the center of the 

disc. The specific structure of siphon allows for complete drainage of the liquid in a 

vessel located far from the disc center towards the chamber closer to the disc center at 

low spinning frequencies (see Figure 2.11). Figure 2.11 (a) shows equalizing of the 

liquid level in the inlet chamber and the hydrophilic channel at high spinning frequency. 

Figure 2.11 (b) shows the stopping of the disc and rising of the liquid in the hydrophilic 

channel.  Figures 2.11 (c), (d) show spinning of the disc when the retracting meniscus 

reaches the crest point of the hydrophilic channel and drainage of the inlet chamber. 

However, most of the polymeric materials used to construct microfluidic platforms are 

hydrophobic in nature that challenges employment of the siphoning technique. A 

method that uses the pressure difference between the advancing and retracting liquid 

(which is created during liquid transport from the inlet to the outlet chamber) in the 

capillary has been introduced which improve siphoning for the use in a hydrophobic 

platform (Gorkin et al., 2012). 
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Figure 2.9: The effect of expansion angle on the burst pressure in terms of the 

liquid volume for a square channel (w=h=300μm) and σla =0.072 N/m and θ= 68° 

(Chen et al., 2008). 

 

Figure 2.10: Liquid trigger valve (Melin et al., 2004). 
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Figure 2.11: Sequences of siphoning on a LabDisc, (Ducrée et al., 2007). 

Furthermore, mechanical passive valves are based on the reciprocal displacement of 

mechanical moving parts such as elastic membranes, flaps, spherical balls, and other 

mobile structures (Ansgar et al., 2001; Guo-Hua & Eun Sok, 2004; Hwang et al., 2011; 

Leslie et al., 2009; Mohan et al., 2011; Tingrui et al., 2005; Yamahata et al., 2005; 

Zengerle et al., 1995). Hwang et al. (2011) have recently integrated thin elastomeric 

films into a disc that enables more accurate control over the flow rate of the liquid 

passing through the valve in comparison with the conventional capillary valves. The 

elastomeric film is designed to provide a weak blockage against the flow and deflect in 

response to the increase in the centrifugal pressure. Gorkin et al. (2012) have 

constructed an intermediate compression chamber that acts like a barrier between a 

dissolvable films and the liquid in order to improve the valve actuation and widen the 

operational range of this type of valves. However, passive valves typically benefit from 

their cost-efficiency, ease of fabrication and have allowed for conducting several 

biomedical assays due to the variety of chemical and clinical procedures employing 

external power sources to develop more sophisticated type of valves are inventible 

(Haeberle et al., 2012).  
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2.3.3.2 Active techniques 

Active valves employ various types of external power sources such as heat, magnetic 

field, and pneumatics (Madou et al., 2006). The incentives for using external power 

sources are to enhance the capability, durability and precision of valves and to 

efficiently use the disc’s real estate, which is limited due to the unidrectionality of the 

flow on centrifugal microfluidic platforms. In regard with the improvement on 

performance of capillary valves, waxing and ice valving techniques are introduced (Abi-

Samra et al., 2011b; Amasia et al., 2012; Garcia-Cordero et al., 2009; Lin & Jing, 

2004). These types of valves are normally closed and frequency independent valves 

which are activated (melted) by external heat sources such as air-guns and laser beams. 

The difference in the melting points of various types of waxes allows for sequencing 

different process on the disc. Abi-Samra et al. (2011b) have used paraffin waxes 

actuating by infrared radiation in order to store and release samples. The ice valving 

technique is based on freezing a section of liquid in the microchannel to block the flow 

(Lin & Jing, 2004). The first utilization of the technique in an integrated centrifugal 

microfluidics was demonstrated by Amasia et al. (2012) to reduce the evaporation rate 

in polymerase chain reaction (PCR). Recently, several active techniques such as 

pneumatic and thermo-pneumatic methods have been presented in order to push liquid 

against the centrifugal force (from the disc rim to the disc center) or against Coriolis 

force on centrifugal microfluidics (Haeberle et al., 2012). The concept of utilization of 

compressed air in a chamber to propel the fluids dated back to a study by Handique et 

al. (2001). They demonstrated that 10 
º
C heating the air trapped in a chamber of 100nL 

size can produce the pressure equal to 7.5 kN/m
2

 and the rate of pumping can be 

controlled by the rate of heating. The utilization and the analytical model of thermal 

expansion of the air in centrifugal microfluidics has been presented by Abi-Samra et al. 

(2011a). However, the existence of the centrifugal force allows for compressing the air 
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in an sealed chamber and use the stored pneumatic energy to pump liquids from a radial 

outward position to a radial inward position (Zehnle et al., 2012).  

Figure 2.12 shows the sequential schematic of pumping liquid towards the disc 

center based on the interaction between centrifugal force and the pneumatic energy 

stored in the compression chamber. Figures 2.12 (a), (b) show that liquid is dispensed 

into the chamber and disc is rotated at high rotational frequency and fills the 

compression chamber. Figures 2.12 (c), (e) show the balance between the centrifugal 

pressure and the stored pneumatic pressure, fast reduction of the disc spinning 

frequency and the expansion of the compressed air which propel the liquid mainly 

through the outlet channel and the termination of the pumping process. In a different 

approach Kong et al. (2011) has introduced a technique to push liquid towards to disc 

center or against Coriolis force by applying external periodic air supply. In their 

method, an external air supplier is required to blow the air at the specific locations on a 

rotating disc and propel the liquid (see Figure 2.13). 

 

Figure 2.12: The schematic of Centrifugo-pneumatic pumping. (Gorkin III et 

al., 2012). 
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Figure 2.13: The schematic of using external source to apply periodic air and 

control the flow direction on the spinning disc (Kong & Salin, 2011). 

2.4 Computational fluid dynamics studies 

The fluid flow on centrifugal microfluidics has been numerically investigated by 

several research groups (Brenner et al., 2005; Brenner et al., 2003; Ducrée et al., 2006; 

Ducrée et al., 2007; Glière & Delattre, 2006; Grumann et al., 2005; Jens et al., 2007; 

Leung & Ren, 2013; Meijer et al., 2009; Siegrist et al., 2010a; Zeng et al., 2000b). Most 

of these studies have employed volume of fluid (VOF) method (Hirt & Nichols, 1981) 

to study the effect of the capillary pressure, and Coriolis force on the flow behavior and 

mixing progress in rotating platforms. In order to simulate the flow on a rotating 

microstructure, the most significant parameter that has to be taken into account is the 

changes of the contact angle, which varies due to the transient nature of liquid flow. The 

VOF method considers the effect of contact angle changes on the flow that enables a 

precise prediction for most of capillary flow problems. Several comparisons between 

the numerical models developed based on the static and those based on the dynamic 

contact angle has been carried out by different research groups such as Ashish et al. 

(2009) and Mitra et al. (2009). The interaction between the centrifugal force and the 

capillary pressure barriers, which is a criterion to design the sequential microfluidic 

processes, has been numerically studied since the last two decades. One of the first 
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numerical studies on the nature of the capillary action in centrifugal platforms was 

carried out by Zeng et al. (2000b) who derived a model describing the pressure barrier 

development occurring in capillary valves. Their model, which was needed in the design 

and construction of capillary valves, was later improved by many other researchers to 

obtain more accurate results of capillary pressure barrier and predict the flow behavior 

(Ducrée et al., 2007; He et al., 2009; Jens et al., 2007; Zeng et al., 2000b). The effect of 

surface roughness which in an inventible disadvantage of microfluidics fabrication 

methods such CNC machining on the flow behavior has been studied by Kunert et al. 

(2008). 

The Coriolis force induces a lateral deflection on the flow, which can be used in 

mixing, and flow direction control on the spinning discs. The effect of Coriolis force on 

the flow direction when the fluid reaches a T-junction and its applications on mixing 

different liquids have been investigated by using VOF method (Brenner et al., 2005; 

Ducrée et al., 2006). Figure 2.14 shows the effect of Coriolis force on two separate 

liquids, blue and red that can be used in mixing liquids. The liquids are separated under 

the influence of Coriolis force in a straight radial channel of 100x100μm cross-section, and 

2.1cm length. 

 

Figure 2.14 Reversing the position of the red and blue liquids at 50 rad/s 

(Ducrée et al., 2006). 
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Figure 2.15: Mixing of red and blue colors in a zigzag micro (Ren & Leung, 

2013). 

  

Figure 2.16: Filling process A) the circle shape micro chamber B) the oval 

shaped micro chamber (Chen et al., 2006). 

The effect of Coriolis in mixing fluid in microchannels with various geometrical 

structures has also attracted attention in the last decade (Ducrée et al., 2006; Leung & 

Ren, 2013; Meijer et al., 2009; Ren & Leung, 2013). For example, Figure 2.15 shows a 

zig-zag channel on a centrifugal microfluidic platform when the disc spins at 31.4 rad/s and 

Re=127. The investigated cross-sectional plane, the viewing direction, the direction of 

centrifugal and cross-flow acceleration the direction of are shown by red line, black arrow, red 

dot dash line arrow; red dash line arrow. Insets (a) to (e) indicate the cross-sectional planes 
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(Ren & Leung, 2013). The liquid in a zigzag micro channel is under the influence of 

consistent changing of the direction of Coriolis force that expedites the mixing process. 

In addition to above parameters, the uniform filling of micro chambers on the 

centrifugal microfluidics where the liquid-gas interface and surface tension forces vary 

consistently is an important parameter in design and construction of microfluidic 

networks e.g., in microfluidic PCR. The filing of various shapes of oval micro chambers 

by different micro channel sizes has been analyzed by Chen et al. (2006). They have 

studied the effects of the width of the feeding channels, the Reynolds number, Weber 

number and contact angles on the flow characteristics. Figure 2.16 shows the sequential 

filing filling process for a circle and an oval shape micro chamber studied by Chen et al. 

(2006). A critical comparison between different numerical approaches used to 

investigate the filling process of micro chambers in centrifugal microfluidics shows that 

the numerical results have good agreement with the experimental results in both static 

and dynamic modeling (Siegrist et al., 2010a).  

2.5 Summary and research gap 

The background of LOC devices and the theory of the centrifugal microfluidics have 

been reviewed. The main components of a centrifugal microfluidic platform 

(microvalves and micropumps) and the common operation units such as flow switch, 

siphoning metering and so on have been thoroughly reviewed. The review shows that 

capillary valves are the most common valves in many centrifugal microfluidic devices. 

It implies that there are extensive theoretical, experimental and numerical studies on 

describing the performance of capillary valves for hydrophobic materials. The 

theoretical models developed to predict the performance of the capillary valves have 

been mostly experimentally validated for a narrow range of materials which have the 
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contact angles of >70° and the performance of capillary valves for hydrophilic materials 

(<90°) has not been comprehensively studied.  

This review implies that there are less numbers of passive techniques in comparison 

to active methods for propelling liquid against the centrifugal and particularly Coriolis 

forces. The existing passive and active techniques to propel liquid against the Coriolis 

force are very limited. The latest passive techniques are based on trapping air inside a 

secondary chamber and use the hydro resistance to direct liquid to the opposite direction 

which have their own drawbacks such as high sensitivity and reducing the disc real 

estate. The newest active technique is based on gusting periodic air pressure on 

designated vent hole which significantly imposes additional costs to the whole system 

and disturbs the portability of the centrifugal microfluidics. In general, both existing 

passive and active techniques have not been able to alleviate fluids flow against Coriolis 

force which is a necessary microfluidic unit operation of many preparative protocols in 

clinical and biochemical tasks. Therefore, in next chapters the methodology of this 

study in order to develop novel techniques to switch the flow against the Coriolis force 

will be presented and the novel methods will be experimentally tested for various liquid 

properties. The mechanism of the novel flow switch techniques will be theoretically 

studied and numerically discussed.  
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CHAPTER 3: EXPERIMENTAL SETUP AND COMPUTATIONAL FLUID 

DYNAMICS METHODS  

In this chapter, the method used for the fabrication of centrifugal microfluidics, the 

experimental setup employed to carry out various tests and the CFD method used to 

investigate the flow pattern and burst frequency of capillary valves is described.  

3.1 Disc designs 

Autodesk computer aided drawing software was used to create different disc’s 

designs contacting various microfluidic features such as capillary valves, vessels and air 

holes. In general, several designs have been created and tested prior to final design. The 

final design then was used to fabricate several discs in order to test the repeatability and 

the durability of the designs. 

3.2 Fabrication 

The two methods of laser and CNC machining that were used to fabricate PMMA 

centrifugal microfluidics are described in this section. In both methods the PMMA discs 

are fabricated layer by layer according to a given design and bounded by using pressure 

sensitive adhesive (PSA) layers.  

3.2.1 PMMA fabrication 

3.2.1.1 Laser cutting 

A short mode laser machine which provides a pulse length of normally greater than 

10 ns, is used to cut PMMA substrate. The most important parameters that require 

attention in laser cutting are: the wavelength, the depth and the minimum diameter of 

the concentrated laser beam (spot size), the average intensity of the laser beam and the 

pulse length. A rapid and complete laser ablation requires the deposition of high energy 

in a small volume, which is possible by selecting a wavelength with the minimum 
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absorption depth. The ablation process at short wavelength (~200 nm) is mainly due to 

the absorption of a highly energetic photon by the material that can cause a fast ablation 

of the material. At wavelengths longer than 300 nm, the energy of the absorbed photon 

is not enough to break the absorption and a more number of photons must be 

considered.  

The precision of the ablation region is highly dependent on the spot size of the laser 

beam, the smaller the spot size the more precise the surface. The control of the spot size 

relies on several factors however; the smallest possible spot size is usually about half of 

the wavelength used. The size of ablation region may differ from the desire size and 

sloped sidewalls can be formed if the spot size is not in the right range. In the ideal 

condition (lens is perfect) for more precise fabrication the spot size can be calculated 

based on the wavelength, the focal and diameter of the beam at the concentrating lens 

(Madou, 2002). The laser focus depth needs to be taken into account when the surface 

of the work piece is not precisely flat, for such surfaces a focus depth auto ranging 

device is to be used.  

Finally, laser pulse length is the most important parameter in micro fabrication 

especially in long pulse laser ablation regime. The heat created in the process diffuses 

away in the duration that can be lower or greater than the laser pulse duration. The 

quality of the product and the machining efficiency will be reduced if the heat diffusion 

time is larger than the duration of the laser pulse. The heat diffusion will cause small 

globes remaining on the surface after the machining which are difficult or impossible to 

remove without damaging the work piece. The heat diffusion longer than the laser pulse 

can melt the surface around the removed material, which reduces the accuracy of the 

machining. Figure 3.1 shows various possible defects caused by undesirably long laser 

pulse. 
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Figure 3.1: Different defects caused by long laser pulse (Madou, 2002). 

3.2.1.2 CNC machining 

In mechanical machining, mechanical energy from a cutting tool is applied for 

drilling, engraving and milling materials. The material is mechanically removed when 

the stress exerting from the cutting tool overcomes the material strength and therefore 

the dimensional precision is depending on the ratio of the stress applied and the residual 

stress to the yield stress. In addition, deformation of the work piece and cutting tool, 

improper fixture or tool selection and inaccuracies of machine tools are important 

parameters that affect accuracy of the products. The centrifugal microfluidic platforms 

for this research were mainly fabricated using a Computer Numerical Control (CNC) 

machine i.e., model VISION 2525, by Vision Engraving and Routing Systems, USA 

(Figure 3.2). The machine is capable of performing various applications such as drilling, 

contouring, routing, milling and engraving. The computer-aided designs of centrifugal 

microfluidic platform are imported into a software package released by “Vision 

Engraving and Routing Systems Incorporation”, which provide a flexible interaction 

between the user and the machine. The centrifugal microfluidics are often fabricated in 

three and five PMMA layers dependent on the complexity of the design and their 

applications. In the three layers designs all the microstructures including capillaries, 

Different defects caused by long laser pulse 

Ejected Molten Material, Surface 

ripples, 

Micro Cracks, Surface debris, 

etc. 
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inlet and outlet chambers and especially designed valves are cut out on a PMMA. That 

PMMA layer is next sandwiched by two other PMMA and PSA layers which one 

covers the cut out from the top side (often containing air holes) and the other covers the 

cut outs from the bottom. For more complicated designs, where the microstructures on 

one PMMA layer are connected to microstructures on the other layers the number of 

PMMA layers increases to five or more layers. Note that, both five layers and three 

layers designs can be made with less number of PMMA layers by engraving 

microstructures instead of cutting them out. In the engraving technique, the 

microstructures (mostly vessels) are carved out from the PMMA layer with a depth 

lower than the thickness of the PMMA layer, which enables the elimination of the layer 

that is used to cover the microstructures in the cut out method. However, the engraving 

is more time consuming and the surface of engraved micro structures are of lesser 

quality than those cut out. The quality of the product adds more parameters (e.g., 

surface roughness) into the liquid flow investigation and also affects the quality of the 

video recorded by the camera of the testing setup.      

 

Figure 3.2: An image of CNC router/engraver machine used to fabricate 

centrifugal microfluidics.  
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3.2.2 Pressure sensitive adhesive (PSA) cutting 

The designs conforming to those used in fabrication of a PMMA layer are drawn by 

a computer aid design software such as Autodesk and imported (with proper format) to 

CorelDraw software. The conforming centrifugal microfluidic designs are cut on PSA 

sheets by a cutter plotter machine (FLEXcon, USA). The PSA is supplied in the form of 

three layer sheets comprised of two non-sticking plastic layers and a PSA layer 

sandwiched between the two plastic layers. Figure 3.3 shows the cutter plotter machine 

used to cut out the microstructures on the PSA layer.  

 

Figure 3.3: The cutter plotter used to fabricate PSA layers. 

3.2.3 Assembly   

The PMMA discs fabricated by CNC machine are bounded to each other using PSA 

layers. The PSA layer is separated from the non-sticking plastics and carefully laid on 

the PMMA discs containing the conforming microstructures. A custom-made disc 

holder has been made in order to facilitate bounding PMMA discs, which enables 

precise conformity between the microstructure on different PMMA layers and 

microstructures on the PSA layers. The same procedures are repeated until all PMMA 

layers are bounded together by PSA layers. The centrifugal microfluidic platform is 
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next placed in a custom-made screw press and is pressurized and the disc fabrication 

process is accomplished.  

3.3 Testing setup  

The investigation of flow behavior and testing the performance and efficiency of 

different microfluidic valving techniques are carried out on a custom made experimental 

setup. The experimental setup is comprised of a sophisticated spinning system, which 

allows for spinning the disc up to 7000rpm. The spinning system allows for acceleration 

and deceleration of the disc as well as periodic and programmed increment in spinning 

velocity based on previously defined values. The spinning system is connected to a 

personal computer and controlled by the user-friendly interactive software. The user is 

able to control the disc spinning speed and program the speed for sequential operations 

through the software. A high-speed camera is placed on top of the disc holder and the 

position of the camera is adjusted according to the experiments requirements. The 

camera is able to capture the flow movement in the defined microstructures as per disc 

revolution. Figure 3.4 shows the experimental setup comprised of a high-speed camera 

and a spinning system.  

 

Figure 3.4: The spinning system and the high-speed camera. 
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3.4 Computational fluid dynamics (CFD) method  

3.4.1 Fundamental of numerical methods 

Today, numerical methods such as CFD are used more and more due to rapid 

growing computer technologies, which solve mathematic problems faster and more 

reliable. The governing equations for a fluid are derived based on the fundamental laws 

of mechanics, which are the conservation of mass, the conservation of momentum and 

conservation of energy equation. These equations form a set of coupled, nonlinear 

partial differential equations, which are difficult to be solved analytically for most of 

engineering problems. Nevertheless, it is possible to find approximate computer-based 

solutions to the governing equations in order to solve engineering problems. 

Computational fluid dynamics (CFD) uses the numerical methods and algorithms to 

analyze fluidic problems. In general, the aim of CFD methods is to simplify and replace 

continues domain problems to discrete domains by using grids. The difference between 

the numerical and analytical method can be shown by comparing continues pressure and 

discrete pressure in one-dimensional domain. The pressure in an analytical model is: 

p = p(x)                          0 < x < 1        

and for a discrete domain is:  

pi = p(xi)                    i = 1, 2, . . ., N 

In a CFD solution, the relevant flow variables are directly solved only at the grid 

points and the other location values will be defined by interpolation of the values at the 

grid points. Therefore, defining the initial and boundary conditions are significant 

requirements to numerically solve fluid mechanic problems. The governing partial 

differential equations and boundary conditions in exact solution are defined in terms of 

the continuous variables such as pressure, velocity and so on. In a discrete domain, 
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these parameters can be approximated in terms of the discrete variables. The discrete 

system is a large set of coupled, algebraic equations in terms of discrete variables. 

Setting up the discrete system and solving it involves a large number of repetitive 

calculations and ANSYS-Fluent is one of the useful computational fluid mechanic 

software for analyzing fluid flows. There are two methods of discretization, which are 

finite-difference and finite-volume method. The finite-volume method is used by the 

most CFD software such as ANSYS-Fluent. In this method, the integral form of the 

conservation equations will be applied to the control volume, which is defined by a cell, 

and the discrete equations of the cell are obtained. Software such as ANSYS-Fluent 

conserve each cell to find solutions and variable values of the flow are solved at center 

of cells and the solutions at other locations are obtained by interpolation. 

3.4.2 Volume of fluid (VOF) method 

The volume of fluid (VOF) method from the commercial ANSYS-Fluent CFD 

package, version 13.1 is used to investigate the flow pattern and to predict the burst 

frequency in centrifugal microfluidic platforms. This method is computationally 

inexpensive and provides reliable results for liquid gas interaction problems (ANSYS-

FLUENT, 2011; Hirt & Nichols, 1981; Tseng et al., 2002). In the VOF algorithm, the 

dynamic contact angle is automatically calculated as part of the solution via finite 

volume method from the basic equilibrium of forces in the numerical method (Brackbill 

et al., 1992; Hirt & Nichols, 1981). The contact angle is the angle formed between the 

moving liquid interface and the solid interface at three-phase contact line (Blake, 2006; 

van Remoortere & Joos, 1991), The VOF algorithm computes the macroscopic effect of 

surface tension by tracking the contact line and does not impose a constant contact angle 

at the surface. In other words, the predefined contact angle is continuously changing 

based on the velocity and the direction of the contact line (Rosengarten et al., 2006). 

However, since the contact line tracked in the VOF algorithm is based on the 
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macroscopic level of interaction between the three-phase, it is necessary to ensure the 

viability of the algorithm in the simulation of capillary flows. Saha et al. (Ashish & 

Mitra, 2009) have used the VOF method to investigate the fluid flow in capillary 

channel made of PDMS using both the static and the dynamic contact angles. The latter 

was calculated using eight different types of theoretical models from literature e.g., 

Blake, Bracke, Newman and Shikhmurzaev (Grader, 1986; Popescu et al., 2008) and 

incorporated into Fluent via a User Defined Function (UDF). However, no significant 

difference was found in results due to the use of the two types of contact angles. The 

study was carried out for contact angles of 0°, 36° and 72° and various surface tensions 

and viscosities. Therefore, the physics occurring in the Nano-scale level at the three-

phase contact line can be addressed quite well in the VOF method (Brackbill et al., 

1992; Hirt & Nichols, 1981; Rosengarten et al., 2006). Note that, the cases studied in 

Saha et al. (Ashish & Mitra, 2009) are spontaneous wetting cases. Forced wetting 

problems e.g., flow in centrifugal microfluidic platforms have the same underlying 

mechanisms and are described in an equivalent way to a spontaneous wetting problem 

since they are basically instances of moving contact lines (Ashish & Mitra, 2009; 

Shikhmurzaev, 1997). 

3.4.3 Governing equations 

In the VOF method, the position of the interface between the fluids of interest is 

tracked in a fixed Eulerian mesh domain. A single set of Navier-Stokes equations is 

solved for the computational domain and the volume fraction of each fluid is tracked by 

using an additional transport equation. The volume fraction (a) in each cell in the 

computational domain is between 0 and 1. For control volume, the sum of the volume 

fraction of all phases is set to unity. Therefore, any given cell represents either a mixture 

of phases (0<a<1) or a pure phase (a=1) flow. The continuity and momentum equations 
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for laminar, incompressible, Newtonian, and isothermal flow employed in the current 

study are as follows (Feng et al., 2003): 

          [15] 

      [16] 

where, V, P, t, Fv, ρ and μ are the velocity of the mixture, pressure, time, volumetric 

forces, density and viscosity, respectively. The continuity equation of a multiphase 

immiscible flow in Fluent is solved solely for the secondary phase qth, which has the 

following form (ANSYS-FLUENT, 2011): 

      [17] 

where,  is the mass transfer from phase p to phase q and  is the mass transfer 

in the reverse direction. The primary-phase volume fraction is computed using the 

following constraint: 

          [18] 

The average values of variables and properties of the mixture are defined based on 

the volume fraction of each phase at a given location (ANSYS-FLUENT, 2011). For 

instance, the average values of density and viscosity of the mixture in a computational 

cell are (ANSYS-FLUENT, 2011):  

         [19] 

         [20] 
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The continuous surface force model (CFS) is used to reformulate surface tension into 

an equivalent body force (Brackbill et al., 1992). For a two-phase system, the 

volumetric force due to surface tension at the interface between phases 1 and 2 is given 

as:  

         [21] 

where, ρ is the volume-averaged density computed using Eq. 5, ρ1, ρ2 are the density 

of phase 1 and 2, respectively. According to the CSF model, the surface curvature k is 

computed from local gradients in the surface normal to the interface, which is given as:  

        [22] 

where n=A is the normal vector. Wall adhesion is included in the model through 

the contact angle: 

         [23] 

where  is the unit vector normal to the surface, , ,  represents the 

unit vector normal and tangent to the wall, respectively.  

 

 

 

 

1 2

2
v

k a
F



 






1
ˆ. .

n
k n n

n n
   

  
    

n̂ = n̂
w
cosq + t̂

w
sinq

n̂ ˆ
n

n
n


w

n̂
w

t̂ tn̂

Univ
ers

ity
 of

 M
ala

ya



44 

CHAPTER 4: INVESTIGATION OF THE PERFORMANCE OF 

HYDROPHILIC AND SUPER HYDROPHILIC CAPILLARY VALVES 

4.1 Introduction 

Today, in spite of the development of various types of passive and active techniques, 

capillary valves are still the most common valves in the centrifugal microfluidics and 

this is due to their simplicity and ease of fabrication. Flow in capillary valves is 

controlled by the interaction between the centrifugal and the capillary forces. When a 

capillary meets abrupt changes in its geometry a pressure barrier is built and the fluid 

advancement in the capillary is stopped. In the centrifugal microfluidic platforms, the 

pressure required to overcome this pressure barrier is provided by the centrifugal force. 

The maximum centrifugal force needed to over come this pressure barrier is referred to 

as the burst pressure and the corresponding disc rotational speed is called the burst 

frequency. The burst frequency is the main parameter for designing of capillary valves 

as well as for flow sequencing and flow control in centrifugal microfluidics. A number 

of theoretical models to calculate the burst pressure in a centrifugal microfluidic 

platform have been presented and reviewed in chapter two (Chen et al., 2008; Cho et al., 

2007b; He et al., 2009; Kim et al., 2002; Man et al., 1998; Zeng et al., 2000b). For 

example, the effects of capillary dimension, expansion angle and capillary shapes on 

burst frequencies in hydrophobic microstructures have been thoroughly studied and 

several theoretical models to predict the burst frequency have been presented (Chen et 

al., 2008; Cho et al., 2007b). The burst frequency in super hydrophobic capillaries has 

also been investigated and a theoretical model that considered the capillary dimension 

and expansion angle has been developed (He et al., 2009). In general, these theoretical 

models have been experimentally validated for limited contact angles, usually one 

contact angle. Therefore, employing these equations universally for predicting the burst 

frequency for capillaries of different range of contact angles may not be applicable. In 
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particular, flow behaviors in super hydrophilic, less hydrophilic capillaries have not 

been studied, and using these equations to predict burst frequency in such capillaries 

cannot be recommended specially when they have not been compared with 

experimental or numerical results.  

In this chapter the effect of capillary dimension and the effect of contact angle on the 

burst frequency of super hydrophilic and less hydrophilic capillaries and the flow 

behavior in the centrifugal microfluidics are investigated numerically and 

experimentally. Herein, the super hydrophilic and less hydrophilic capillaries are 

referred to as the cases where the contact angle between the surface of the capillary and 

di-water is 20º<θ<60º and 60º<θ<90º, respectively. The results obtained from this 

investigation provide a holistic insight into the performance of capillary valves and 

assist in their design and fabrication on the centrifugal microfluidic devices made from 

super hydrophilic and less hydrophilic materials. In this experimental and numerical 

investigation, the capillary dimensions of various capillary structures are varied from 

150 mm to 450 mm to study the effect of dimensions and the contact angle on the burst 

frequency. The volume of fluid method within version 13.1 of commercial code of 

ANSYS-Fluent is used for solving the governing fluid mechanics equations. In order to 

validate the implementation of the numerical model our experimental data and existing 

experimental data in the literature are compared to the present computed data. Some of 

the results of this investigation have been published (Kazemzadeh et al., 2013). 

This section begins with the governing equations, geometries and boundary 

conditions taken into account in simulation of the fluid flow in super hydrophilic/less 

hydrophilic centrifugal microfluidics. It continues with presenting the results of the 

effect of capillary dimensions and contact angles on super hydrophilic and less 

hydrophilic centrifugal microfluidics.  
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4.2 Boundary conditions and Numerical method 

Two common types of microstructures, named Geo. 1 and Geo. 2 are used to study 

the effect of contact angles and capillary dimensions on burst frequency (see Figure 4.1 

(a)). Geo. 1 features square chambers and Geo. 2 features circular chambers. In both 

structures, a capillary channel is located between the two chambers and fluid flows from 

the left chamber to the right one. The left chamber (close to the CD center) is referred to 

as the entry chamber and the right one as the outlet chamber. The distance of the 

capillary valve from the center of the rotation (r2), this is also the center of the disk, for 

Geo. 1 and Geo. 2 is 31.5 mm and 43.57 mm, respectively. The surface tension of water 

is set at 0.072 N/m. These parameters in addition to the value of advancing and 

equilibrium contact angles are the same as those used in the experiments carried out by 

Chen et al. (2008) and He et al. (2009) and will be used for validation of our numerical 

data. The contact angle at solid walls has been specified according to the cases listed in 

Table 1. The computational domains of Geo. 1 and Geo. 2 are set to rotate clockwise 

using a single rotational frame (SRF) (ANSYS-FLUENT, 2011) in order to propel the 

fluid from the left chamber to the right chamber through the capillary channel. The 

rotational speed starts from a low frequency, i.e. 25rpm and it is gradually increased at 

intervals of 50rpm. All the solid boundaries of the domain are treated as walls with zero 

slip velocity. A zero pressure gradient is assumed from fluid entrance on the left to fluid 

exit on the right. The left chamber is filled with a sufficient volume of water such that 

the water consistently occupies the capillary channel until it bursts and fills some 

volume in the right chamber. In order to reduce the computational time simulations 

begin when half of the capillary is filled with the water. In addition, we have 

investigated a case where left chamber is filled with water allowing it to flow from the 

left chamber into the capillary channel before bursting to the right chamber. However, 
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our numerical data show that there is no difference in the results between the above two 

types of initial conditions. 

The Pressure Implicit Split Operators (PISO) method, which uses the splitting of 

operations in the solution of the discretized momentum and pressure equations is used 

for coupling of pressure and velocity (Issa, 1986). The convection terms are spatially 

discretized using a second order upwind discretization method, which is an advanced 

finite difference scheme fully accounting for surface tension and wall adhesion forces. 

The body-force-weighted interpolation scheme is used in order to take into account the 

explicit body forces (e.g., Coriolis, centrifugal, etc.). Zonal discretization with a 

compressive slope limiter was set in order to have a sharper interface. An under-

relaxation factor of 0.25 is used in the calculation of the pressure, density, body forces, 

and momentum and volume fraction. This factor reduces the rate of solution changes 

during the iteration to stabilize the convergence behavior of the momentum and 

continuity equations. The equations were solved using the unsteady model in Fluent 

with a time step of 1x10
-5

 s to 5x10
-5

 s for various cases of the current study. A 

convergence criterion of 1x10
-6

 was used to specify the relative error between two 

successive iterations was specified.      

4.3 Mesh 

The mesh used was based on quad grids with an element size of 0.01mm. Grids in 

the area of the waterfront and the edges adjacent to expansion areas i.e., at the water 

outlet to the right chamber were refined to smaller element size of 0.005mm. Mesh 

dependency tests were carried out for each case and the meshes eventually used were 

justified by the quality of the results. For instance, increasing the original mesh by 

100% to obtain finer grids does not give any significant difference for the burst 

frequency (<1.3%). The quality of the grids used for Geo. 1 and Geo. 2 at the outlet of 
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the right chamber is shown in Figure 4.1 (b). The total number of cells in Geo. 1 and 

Geo. 2 is 437,980 and 314,852, respectively.  

4.4 Simulation Cases   

Forty-four simulation cases were created from Geo. 1 and Geo. 2 by varying the ratio 

of height/width (aspect ratio) and the contact angle (θº). The range of these parameters, 

as listed in Table 4.1, represents a large sample of centrifugal microfluidic platforms 

scenarios. Simulation cases 1-4, 11, 32 and 37-44 are used to validate the 

implementation of the VOF method. These cases coincide with the experimental 

investigations from Chen et al. (2008), He et al. (2009) and Gliere et al. (2006) and 

consist of various contact angles and capillary dimensions. Cases 5-10 are used to study 

the effect of the height and width dimensions of the capillary channel on the burst 

frequency. Here one of the dimensions is varied from 180μm to 450μm while the other 

dimension and the contact angle are kept constant at 300μm and 68°, respectively. 

Cases 11-36 are used to study the effect of varying contact angles (from 20º to 90º) on 

the burst frequency using Geo. 1 and Geo 2.  

 

Figure 4.1: Top view of Geo. 1 and Geo. 2 used in the simulations b) 

Computational mesh adjacent to the outlet of capillary channel of Geo 1 and Geo 

2. 
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Figure 4.2: Experimental setup: controlling computer system connected to a 

high-speed camera and a digital rpm meter. 

Table 4.1: Details of simulations, r1, r2 are kept the same as those used in Chen 

et al. (2008) 

Num. Aspect ratios θº Geo. Remarks 

Cases h/w                      

1-4 

 

68 1 

These cases are used for 

validation and are the same to that 

used in Chen et al. (2008).  

5-10 

 

68 1 

These cases are used to study the 

effect of: capillary dimensions on 

burst frequency and h/w is the 

inverse of that used in Chen et al. 

(2008). 
 

11-18 

,19-26 

 

20:10:80 

and 93 

2 
These cases are used to study the 

effect of θ on burst frequency, 

where: h/w=157/426 and 

h/w=426/157 is the same to and the 

inverse of that used in He et al. 

(2009) respectively. 

27-31 

,32-36 

 45:10:85 1 

 

4.5 Experimental set up   

The rectangular microstructures were fabricated using a Computer Numerical 

Control (CNC) machine (model VISION 2525, by Vision Engraving and Routing 

Systems, USA). The micro structures were engraved on compact disc-like platforms 

layer made of a 2mm thick Polymethyl methacrylate (PMMA) and bonded by Pressure 

Sensitive Adhesive (PSA) material (by FLEXcon, USA) to a 2mm PMMA layer with 
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venting holes cut through. A cutter plotter (model PUMA II, by GCC, Taiwan) was 

used to cut the microfluidic design in the PSA layers corresponding to the design of the 

PMMA layer. A custom-made system consists of a digital disk Spin Test System, laser 

sensor and a high-speed camera was used to perform the experiments (see Figure 4.2).  

4.6 Results and discussion  

4.6.1 Validation   

Several experimental studies (Chen et al., 2008; Glière & Delattre, 2006; He et al., 

2009) have been used in order to validate our numerical results of various contact 

angles; i.e., surfaces with the contact angles less than 40°, between 40° and 60° and 

from 60° to 90° which are referred to as super hydrophilic, hydrophilic and less 

hydrophilic surfaces, respectively. At first the experimental data from Chen et al. (2008) 

and He et al. (2009) is used to validate our numerical results for less hydrophilic cases 

i.e. contact angle 68º, 70º and 93º. Chen et al. (2008) used rectangular microfluidic 

structures with an expansion angle of 90º which were fabricated of PMMA 

(polymethylmethacrylate) material using CNC machine. The fluid used in the test was 

DI-water containing a small amount of red ink. On the other hand, He et al. (2009) used 

PMMA circular based microstructures, which were manufactured using a microinjection 

moulding technique. The CYTOP-coated polyaniline nanofibers were used to increase 

the contact angle of PMMA to 93º. The fluid used in the test was DI-water containing 

red food dye. The sizes and locations of the microstructures used in our numerical 

model for validation are set to be equal to that used in the experiment investigations, 

which are listed in Table 4.2. In Table for, Fb)exp, Fb)theo Fb)num, denote the experimental, 

theoretical and numerical burst frequencies, respectively. For the same contact angles 

i.e., 68, 70°, 93° and water, as the test liquid, our results are in good agreement with the 

measurements reported in Chen et al. (2008) and He et al. (2009).   
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In the second step, the burst pressure measurements for rectangular microstructures 

by Glière et al. (2006) are used to further validate our numerical results for the 

hydrophilic and the super hydrophilic cases. In that study, silicon wafer microstructures 

were fabricated using a single deep etching process (Cho et al., 2004) and sealed with a 

PDMS substrate. DI-water with a surface tension of 0.072 N/m and a biological buffer 

solution with a surface tension of 0.03 N/m were used in the test. The contact angle of 

DI-water on the silicon wafer and PDMS are 60° and 80° and that of the biological 

buffer is 35° and 75°, respectively. Figure 4.3 shows a comparison between our 

numerical results and the numerical and measured data from Glière et al. (2006). The 

numerical results are in good agreement with measured and simulation data reported in 

Glière et al. (2006) especially for DI-water (Figure 4.3 (a)). The large deviation between 

our numerical data and experimental data of Glière et al. (2006) for biological buffer 

(Figure 4.3 (b)) may be due to an alteration of the surface tension in the experiment 

which causes the increase of burst pressure in comparison with the numerical results. 

This deviation can also be observed in the numerical data reported by Glière et al. 

(2006). In fact, in the experiment, during the expansion of a meniscus the surfactant 

concentration reduces to a value lower than the equilibrium concentration, which causes 

the increase in surface tension value. In addition, during the relaxation time of the 

surface tension and surfactant the actual surface tension of the buffer is larger than the 

equilibrium surface tension. However, the surface concentration value gradually 

increases back to its equilibrium value (Danov et al., 2002; Glière & Delattre, 2006). 

4.6.2 Flow sequence in a super hydrophilic capillary 

The difference of flow motion in a hydrophilic and a super hydrophilic capillary is 

illustrated in Figure 4.4. Before the fluid reaches the valve point, i.e., at t=0.1s and 

earlier, the meniscus in both capillary has a concave shape due to the hydrophilicity of 

capillary surfaces. For a hydrophilic capillary with an assumed contact angle of θ =60º 
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as shown in Figure 4.4 (a), at t=1.3s due to the capillary pressure barrier, the fluid stops 

at the very end of the capillary and the meniscus shape is gradually changed into a 

convex shape. As the rotational speed increases to 275rpm, the centrifugal pressure 

overcomes the pressure barrier (t=1.35s) and the fluid bursts into the right chamber. It 

flows at the top of the chamber against the clockwise rotational direction probably due 

to the inertial force and the start of Coriolis effect. After t=1.5s, the fluid consistently 

flows towards the top the chamber. These observations are confirmed in the 

experimental studies of Cho et al. (2007b) and Man et al. (1998). A small portion of 

liquid, due to symmetrical advancement of the liquid at lower spinning speeds, may 

remain on the surface of the T-junction which will eventually flow toward the rest of the 

liquid in case of increasing the spinning speed. 

The fluid motion in a super hydrophilic capillary with an assumed contact angle of θ 

=20º (Case 11) is shown in Figure 4.4 (b). At this low a contact angle, on contrary to 

Figure 4.4 (a) fluid does not completely stop at the capillary valve. While the meniscus 

retains its concave shape, the fluid flows on sidewalls and continuously leaks into the 

expanded volume (right chamber) at very low burst frequencies (<150rpm). The fluid 

flows symmetrically at the top and bottom side walls of the circular chamber, and cause 

the change of the meniscus shape, as shown at t=0.2s to t=1s. Differences seen between 

hydrophilic and super hydrophilic capillaries are due to the significant influence of the 

adhesive wall force in the case of a low contact angle, which eases the flow over 

expansion surfaces at a very low rotational speed. Moreover, the Coriolis force is 

dependent on the angular velocity (eq. 13) therefore, operating at a low rotational speed 

results in inadequate Coriolis force to effect on the direction of the flow advancement in 

circular chamber.  

Fco=2mω ν            [24] 
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Similar flow motion to Figure 4.4 (b) is also observed for the rectangular structure 

under the same model set up (the results are not presented here).  

The fact that on contrary to the theoretical studies, the numerical data shows the fluid 

leakage at the low contact angles can be due to several reasons. The theoretical 

expressions from Chen et al. (2008) and He et al. (2009) have been verified 

experimentally for a particular operational parameters e.g., specific geometry of the 

capillary expansion and specific contact angles i.e., 68°, 70°, 93°. In addition, the 

theoretical models do not explicitly include the effect of wall adhesion that has a 

significant influence on fluid interfaces at a low contact angle. However, in the VOF 

method, the wall adhesion effect is fully considered in the governing equations (see Eq. 

23). 

Table 4.2: Comparison between the numerical and experimental burst 

frequencies with dimensions and positions of the capillary valves on the disk. 

 

4.6.3 Effect of dimensions of the capillary channel 

Figure 4.5 shows the computed burst frequency against the aspect ratio (AR) for 

Cases 5-10 where with a constant height of 300μm, the capillary width is varied from 

180μm to 450μm. These results are compared with the burst frequencies calculated by 

the theoretical model developed by Chen et al. (2008). In addition, the influence of 

capillary height on burst frequencies calculated from the same theoretical model is 

plotted in Figure 4.6. The results show that for a constant height (300μm), burst 

Case ȓ  σla θº width depth Fb) Num Fb)Theo Fb) Exp Erro

r 

Exp. 

no. (mm) (N/m)  (μm) (μm) (rpm) (rpm) (rpm) (%) Ref. 

1 29.25 0.072 68 300 180 

 

250-300 318 284 3.17 (Chen et al., 2008) 

2 29.25 0.072 68 300 300 350-400 430 390 3.85 (Chen et al., 2008) 

3 29.25 0.072 68 300 400 375-425 465 418 4.31 (Chen et al., 2008) 

4 29.25 0.072 68 300 450 425-475 476 439 2.50 (Chen et al., 2008) 

16 41.51 0.072 70 426 157 225-275 426 216-270 2.89 (He et al., 2009) 

18 41.51 0.072 93 426 157 300-350 331 302-352 0.66 (He et al., 2009) 
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frequencies increase as the capillary width decreases. It shows similar trend to 

experiments by Chen et al. (2008) where the capillary height varied and width kept 

constant (300μm). Therefore, lower burst frequencies are always expected for wide 

capillaries (w>h) compared to narrow capillaries (h>w). 

 

Figure 4.3: Comparison between the present study and experimental and 

numerical data from Gliere et al. (2006), a) for DI-water (surface tension of 0.072 

N/m) and b) biological buffer (surface tension of 0.03 N/m). 
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Figure 4.4: Sequences of the fluid motion in a, a) hydrophilic and b) super 

hydrophilic capillary. 

This probably is because of the microfluidics structures used in the present study and 

that of the theoretical models. In such structures, alteration in capillary height and its 

width do not have the identical effect on the burst frequency. In the width direction, the 

capillary is bounded by solid walls while in its height direction it is not; that results in 

greater influence of the height on the burst frequencies compared to capillary width (see 

Figure 4.3). For a large difference between the capillary height and its width (h/w from 

0.06 to 0.33) the burst frequency is highly susceptible to capillary height. For instance, 

with an increase in capillary height from 10μm to 100μm the burst frequency increases 

from 250rpm to 1200rpm. On the contrary, when there is a small difference between the 

height and width of the capillary (1<h/w<3) a large increase in height (300μm to 

900μm) only increases the burst frequency from 430rpm to 525rpm. Note that, the 

theoretical expressions have been tested merely for conventional capillary dimensions. 

A possible reason for the contrary trend can be rather large dimension of the capillaries, 

which is not commonly used in centrifugal microfluidic platforms. The computed 

results show the minima burst frequencies for square capillaries (AR=1). The minimum 

burst frequency in square capillaries can be seen in Figure 4.5 where at aspect ratio of 1, 

our numerical value of the burst frequency is 375rpm. However, these minima are not 
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predicted by previous theoretical models, they are predicted well in the theoretical 

model we have developed (Thio et al., 2013). The lower burst frequency of the square 

capillaries compared to the rectangular capillaries can be seen in our experimental 

results listed in Table 4.3. This drop in the burst frequency is due to the unique 

geometrical aspect of the square microchannels where unlike the rectangular channels 

the meniscus in both width and height of the capillary experiences a symmetrical 

advancement which accelerate the burst. The experiments were carried out for a 

constant capillary width of 400μm and depth of 200μm, 300μm, 400μm and 500μm to 

further investigate the burst frequency in square and rectangular capillaries.  

 

Figure 4.5: Burst frequency of the CFD model and Equation from Chen et al 

(2008) versus aspect ratio for Cases 5-10. Univ
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Figure 4.6: The distribution of the burst frequencies using Equation from Chen 

et al. (2008) versus different capillary height  where the capillary width is kept 

constant of 300μm for a contact of 70. 

Table 4.3 shows that the burst frequency lowers in square capillaries in comparison 

with the rectangular ones. The numerical predictions are presented in the range of 50 

rpms due to the gradual increment (interval of 50 rpm) in simulations. These minima 

can be probably due to the specific symmetrical shape of the capillary that reduces the 

difference between the liquid-air interfaces on both the horizontal and vertical directions 

of the capillary. In the same manner, the equal distribution of the centrifugal force on 

the same directions may cause the minima burst frequencies. Therefore, the meniscus 

will be exposed to a uniform tension that can cause an early burst. 

Table 4.3: A comparison between burst frequencies of square and rectangular 

capillary valves 

 

 

 

Capillary ȓ  σla θº width depth Exp. Num. 

section (mm) (N/m)  (μm) (μm) burst (rpm) burst (rpm) 

Rectangular 45 0.072 77 400 200 

 

350-370 350-400 

Rectangular 45 0.072 77 400 300 

 

300-320 300-350 

Square 45 0.072 77 400 400 230-260 200-250 

Rectangular 45 0.072 77 400 500 290-310 300-350 

Univ
ers

ity
 of

 M
ala

ya



58 

4.6.4 Effect of contact angles on burst frequency 

Figure 4.7, Figure 4.8 show the effect of the contact angles on burst frequencies of 

wide capillaries (w>h) and narrow capillaries, respectively. Figure 4.7 contains 

numerically computed results for Cases 11-18 where the height to width ratio of the 

capillaries is 157/426. Experimental results from He et al. (2009) for θ=70º and θ=93º 

and the theoretical models are included for comparison with the numerical results. The 

computed results are in excellent agreement with those of experimental from He et al. 

(2009). They show two lowest burst frequencies which occur at θ=20° (<150rpm) and 

at θ=70° (240 rpm). For super hydrophilic centrifugal microfluidic platforms (θ<40°), a 

decreasing trend of burst frequency with the decreasing of the contact angle can be 

expected due the increase of the wall adhesion effect. With a strong adhesion wall force, 

the fluid leaks even at a small centrifugal force as shown in Figure 4.4. For contact 

angles between 40° and 90°, first the burst frequency decreases with increasing contact 

angle until the minimum burst frequency of 240rpm, which occurs at 70° contact angle. 

This is quite interesting and we regard this minimum point as an optimum contact angle 

for the channel’s dimensions, i.e., aspect ratio (h/w) of this case. For a different aspect 

ratio, the minimum burst frequency occurs at a different contact angle. Following the 

minimum point, the burst frequency only slightly increases with the increase of the 

contact angle, i.e., from about 250rpm to about 325rpm. The highest burst frequency 

occurs at the contact angle of 40° (about 450 rpm). 

For super hydrophilic centrifugal microfluidic platforms (<40°) numerical results 

and Eq. 10 both show the increase of burst frequencies with the increase of the contact 

angle which is in contradiction to burst Equation from Chen et al (2008). Despite of the 

high burst frequencies predicted by theoretical model our numerical results show that 

fluid flows over the capillary expansion walls before it actually bursts.  In fact, the fluid 

leaks into the desired chamber before applying adequate centrifugal pressure that causes 
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the change of the meniscus shape in hydrophilic centrifugal microfluidic platforms 

(Figure 4.4). At the contact angle 70º the significant drop of the burst frequency 

predicted by theoretical models is on contrary to the experiments from He et al. (2009) 

(~200rpm difference). This exaggeration in predicting the burst frequency can be 

expected for other configurations of capillaries especially when the theoretical models 

calculate an extremely low burst frequency. 

 

Figure 4.7: Burst frequency from the CFD model, Equation from Zeng et al. 

(2000b) and Equation from Chen et al. (2008)  versus contact angles for Cases 11-

18. Experiment results from He et al. (2009) is also given. 

 

Figure 4.8: Burst frequencies from the CFD model, Equations from Zeng et al. 

(2000b) and Chen et al. (2008) versus contact angles for Cases 19-26. 
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Figure 4.9: The distribution of the burst frequencies from the CFD model and 

Equation from Chen et al. (2008) with respect to different aspect ratios and contact 

angles for Cases 27-42. 

 

Figure 4.8 shows the effect of the contact angles on burst frequencies for narrow 

capillaries (h>w). The height/width ratio is 426/157, which is the opposite of that used 

in Cases 11-18 (i.e., 157/426). In general, for narrow capillaries (h>w) the numerical 

results show the increase of burst frequency with the increase of the contact angle. On 

contrary to wide capillaries (h<w), both the numerical and the theoretical models have 

the similar trends. 

Figure 4.9 shows the distribution of the computed burst frequencies for different 

capillary dimensions versus the contact angles (Cases 27-36). Herein, Geo. 1 has been 

used instead of Geo. 2 (used in Figure 4.7) to extend our discussion about the minima 

burst frequencies. Similar to Figure 4.7 computed results show a minimum burst 

frequency, which changes with the capillary dimensions. Although theoretical models 

almost successfully predict such minima, the values calculate by these models can be 

extremely different from those of experiments. These values are considered too small 

for burst frequencies in any centrifugal microfluidic platforms. The burst frequency of 
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most of the cases in the literature is above 250rpm with very limited cases below 

250rpm (Chen et al., 2008; Cho et al., 2007c; Ducrée et al., 2007; Duffy et al., 1999; 

Glière & Delattre, 2006; Haeberle et al., 2006; He et al., 2009; Jia et al., 2006; Madou et 

al., 2001; Yan et al., 2008). 

4.7 Summary 

Flow in passive capillary valves in centrifugal microfluidic platforms for a wide 

range of hydrophilic and super hydrophilic contact angles has been studied using the 

VOF model within the commercial CFD code of ANSYS Fluent. Our experimental data 

in addition to experiment results from Chen et al. (2008), He et al. (2009) and Gliere et 

al. (2006) were used for validation and computed results were compared with existing 

theoretical models. The results obtained from this investigation completes the previous 

studies on the effect of contact angle and the aspect ratio on the burst frequency of 

provides holistic view into The findings of the current study can be summarized as: 

 In common capillary dimensions (>100μm) for the cases of a low contact angle 

especially less than 20º, the capillary valve is unable to retain the fluid from 

leaking and it loses its function.  

 The computed results suggest that the theoretical models cannot be used for 

super hydrophilic materials since they are unable to predict the fluid leakage. 

While they predict that high pressure is required for pushing the fluid over 

capillary valves, the computed results show that fluid flows consistently over the 

capillary valve into the next chamber at low pressures.   

 In general, computed results show that burst frequencies of wide capillaries 

(w>h) are always lower than those of narrow capillaries (w<h). Theoretical 

models predict similar to our computed results for wide and narrow capillaries. 
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 The computed results for narrow capillaries (w<h) show a consistent increase of 

burst frequencies with the increase of the contact angle. However, for wide 

capillaries (w>h) the computed results predict three divisions of burst 

frequencies. First, as the contact angle increases, the burst frequency increases to 

a peak where it starts decreasing at a low burst frequency. After a low burst 

frequency, it slightly increases with the increase of the contact angle.  

 The results show that burst frequencies of square capillaries are lower than those 

of rectangular shapes. However, the theoretical models used for comparison are 

not able to predict pressure drops in square capillaries. 
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CHAPTER 5: DESIGN OF GATING VALVE, A MICROVALVE TO SWITCH 

THE FLOW DIRECTION 

5.1 Introduction 

At this point, the understanding obtained from the investigation of the performance 

of different capillary valves are used for devising a new passive valve that provides 

more control on the liquid movement in centrifugal microfluidic platforms. Flow in 

centrifugal microfluidics is intrinsically unidirectional issuing from the disc center 

towards its edge, while at T-junctions it is also intended to flow in the direction of the 

Coriolis force. The ability to employ multi-directional flow on centrifugal microfluidics 

allows for better use of disc’s real estate and increases flexibility of fluidic operations. 

The switching of flow direction on spinning microfluidic platforms i.e., usually based 

on Coriolis force enables more sophisticated and flexible assay sequences such as 

mixing, metering, sample preparation and manipulation of high quality DNA and so on. 

Thus far flow-switching techniques on centrifugal microfluidic platforms have been 

accomplished by changing the spinning direction or by exploiting external power 

sources e.g., pneumatic or thermo-pneumatic pressure (Brenner et al., 2005; Brenner et 

al., 2003; Ducrée et al., 2004; Kim et al., 2008; Kong & Salin, 2011).  

In this chapter a gating microstructure is presented that controls the flow direction in 

centrifugal microfluidics without the need of changing the direction of the disc rotation, 

applying surface treatments or employing external sources. The device is a frequency 

dependent valve that is able to direct the flow to one direction (e.g., c.w.) at low 

frequency and to the opposite direction (e.g., c.c.w.) at higher frequencies. At low 

frequencies, the liquid follows a micro path as a consequence of the specific gating 

microstructure and at higher frequencies liquid follows in the direction of the Coriolis 

force. The flow behavior of the novel valve for di-water as well as for other liquids with 

different properties has been investigated experimentally and numerically. The results 
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show that the new valve is able to control the flow direction on spinning microfluidic 

platforms for liquids of the wide range of properties. Some of the results of the 

introduction and characterization of this novel valve have been published in the 

esteemed technical peer-reviewed journal of Sensors and Actuators Part B: Chemical 

(Kazemzadeh et al., 2014).    

5.2 Concept 

Unlike Coriolis force, the geometrical structure of microvalve has not been reported 

as a method to control the flow direction on spinning microfluidic platforms. Here a 

new concept of gating valves is demonstrated that exploits special geometrical 

structures of the valve at T-shape junctions. A GV is a flow control means that exploits 

both geometrical effect and Coriolis force simultaneously to determine flow direction 

on a spinning platform. At low rotational frequencies, the liquid flow is gated into the 

opposite direction of the Coriolis force while it flows in direction of the Coriolis force at 

higher frequencies.  Figure 5.1 compares the geometrical structure of a GV (b) and a 

conventional valve (a) at T-shape junctions. As compared to a conventional valve, GV 

allows controlling the interaction between the capillary force and the centrifugal force at 

the fluid/gas interface. GV is fabricated by creating an asymmetrical outlet chamber 

which produces an offset between the posterior and anterior expansion walls as 

presented in Figure 5.1 (b) and Figure 5.1 (c). The GV mechanism is investigated by 

studying the effect of gating parameter G on flow behavior. The capability of the valve 

to stop and control the flow direction and the effect of G on burst frequency of the 

valves are discussed in the Results section below. 

5.3 Experimental set up  

The CD-like microfluidics with the new valve design was fabricated using a 

Computer Numerical Control (CNC) machine (model VISION 2525, by Vision 

Engraving and Routing Systems, USA). The microstructures were milled on a 4mm 
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thick Polymethylmethacrylate (PMMA) layer. To create a microfluidic disc, this plastic 

layer is bonded by Pressure Sensitive Adhesive (PSA) layer (by FLEXcon, USA) to 

another 2mm thick PMMA layer that contains venting holes. A cutter plotter (model 

PUMA II, by GCC, Taiwan) is used to cut the CD-like microfluidic design in the PSA 

layers corresponding to the design of the PMMA layer. A custom-made system 

consisting of a digital disc spin test system, laser sensor and a high-speed camera is used 

to perform the experiments.  

 

Figure 5.1: A sketch of (a) a conventional capillary valve (b) a Gating valve and 

(c) isometric view of GV. 

5.4 Characterization  

The flow switch was experimentally tested by fabricating a number of GVs with G 

varying from 10μm to 300μm by a step increase of 10μm. In order to enhance the visual 

observation of the flow direction, the outlet chamber was divided by a V-shape wall as 

shown in Figure 5.2. The figure shows CD-like microfluidic containing both the 

conventional and GVs with the capillary width and height of 400μm and 250μm, 

respectively. The figure shows a step-by-step experiment conducted to characterize the 

valve by comparing liquid motion in a conventional (Figures 5.2 (a) to (d)) valve and in 
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a GV (Figures 5.2 (e), (f)). The source chambers of the conventional and gated 

microfluidic systems are primary loaded with the blue and red dyed di waters, 

respectively. Thereafter the platform is spun (Figure 5.2 (a)) and the rotational 

frequency is gradually increased until the fluid bursts (at 250rpm) and flows radially 

outward on the posterior wall (Figure 5.2 (b)). Here the liquid is gated into direction of 

the disc rotation and fills the left side of the outlet chamber (Figures 5.2 (c), (d)). In the 

conventional system, the meniscus is prior to burst when the rotational frequency is 

increased to 300rpm (Figure 5.2 (e)). Figure 5.2 (f) shows that the meniscus is slightly 

influenced by the Coriolis effect that is due to a small increase in rotational frequency 

(to 330rpm). The sudden increase of the rotational frequency to 450rpm causes the flow 

bends in the direction opposite to that of disc rotation. Figure 5.2 (g) shows that the 

liquid continuously fills the right side of the outlet chamber. The same procedure has 

been repeated to define the optimal sizes of G. In order to test the valve performance in 

different operational conditions the experiments were conducted for various liquids 

consisted of different solutions of di water and ethanol, 0.9% sodium chloride solution 

and carboxymethylcellulose sodium 0.5% with boric acid, calcium, magnesium and 

potassium chloride, purified water, sodium borate and sodium chloride. The water-

ethanol mixtures were prepared by mixing di water and ethanol to a total volume of 100 

µL in a clean beaker. The volumetric concentration of ethanol was increased from 5% to 

45% in 10% increments. The physicochemical properties of the water-ethanol mixture 

can be found in reference (Khattab et al., 2012; Leu & Chang, 2004b). Further 

experiments are conducted to investigate the valving mechanism for specific substances 

such as Bovine Albumin Solution (BSA) and washing solution used in biological assays 

(e.g., ELISA). The experiments are carried out several times for each liquid to 

investigate the consistency of the valving mechanism. The effect of adsorption of 

proteins and other substances existing in the biological solutions on serial switching is 
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investigated by consecutively loading the biological solutions into the same 

microstructure (consisting capillaries, GV and inlet and outlet chamber). In addition, the 

ability of GV for changing flow direction was numerically simulated for a biological 

buffer containing 0.1% Triton X-100 surfactant. The mechanical and chemical 

properties of the biological buffer can be found in reference (Glière & Delattre, 2006). 

 

Figure 5.2: Partial top view of the liquid motion in a clockwise rotating disc a) 

conventional valve b) GV for capillary width of 400μm and G=400μm. 

5.5 Numerical analysis  

None of the existing theoretical models e.g., Chen et al. (2008), Lu et al. (2007) are 

formulated to address asymmetrical expansion of capillaries. Thus, in order to 

investigate the effect of G on the flow behavior different simulation cases were carried 

out using the volume of fluid (VOF) method within the commercial ANSYS-Fluent 

CFD package, version 13.1 (see appendix for more details). Details of the simulation 
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cases such as capillary dimensions, contact angles are listed in Table 5.1. In general, a 

uniform quad grid, which is further, refined at the edges adjacent to expansion areas, is 

used throughout the domains. The grid dependency tests conducted show that the 

increase of the original mesh to obtain finer grids does not give any significant 

difference in the results (<1.3%). The grids used for the capillary channel and the right 

chamber are shown in Figure 5.3. The computational domain is set to rotate clockwise 

with the starting rotational frequency of 50rpm increasing gradually at intervals of 

50rpm. All the solid boundaries of the domains are treated as walls with zero slip 

velocities. The Pressure Implicit Split Operators (PISO) method which uses the splitting 

of operations in the solution of discretized momentum and pressure equations is used 

for the coupling of pressure and velocity (Issa, 1986). The body-force-weighted 

interpolation scheme is used in the calculation of the explicit body forces at cell faces 

(e.g., Coriolis, centrifugal, etc.). The equations were solved using the unsteady solver in 

Fluent with a time step of 0.00005s. The scaled residuals of 1x10
-6

 are set as the 

convergence criteria for the continuity and other governing equations.  

Table 5.1: Details of the simulation cases, where, ȓ , θ, σla are distance from 

the disc center, contact angle and surface tension of the liquid, respectively. 

 

 

 

 

 

Figure 5.3: Computational mesh adjacent to the outlet of capillary channel. 

ȓ  θ width height G σla 

(mm) (º) (μm) (μm) (μm) (N/m) 

45 68, 77 

100, 150 

200:100:400 

200 

10:10:50 

80:30:250 

0.072, 
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5.6 Results  

5.6.1 Validation 

The simulation results are validated by comparing burst frequencies and flow 

behavior in GV and the conventional valves with our experimental observations. A 

comparison of the numerical and our experimental burst frequencies is listed in Table 

5.2. The table shows that numerical burst frequencies and experimental data are in a 

good agreement. We have also compared the numerical results for the conventional 

valves with a theoretical expression from Chen et al. (2008). The comparison between 

the numerical results and the theoretical model is plotted in Figure 5.4 that shows that 

shows an excellent agreement between the numerical and theoretically calculated burst 

frequencies. Further, we have validated the CFD model in our previous study on the 

flow behavior in super hydrophilic capillaries using our pervious experimental 

investigations and the theoretical expression and experimental data from different 

studies (Chen et al., 2008; Glière & Delattre, 2006; He et al., 2009). The details of 

the validation can be found in Tables 1 and 2 and Figure 4.3 in the previous chapter. 

 

Figure 5.4: Comparison between numerical data and theoretical expression 

from Chen et al. (2008).  

Univ
ers

ity
 of

 M
ala

ya



70 

 

Figure 5.5: Sequences of the liquid motion and meniscus propagation in a a) 

conventional and b) GV (G=50μm).  

 

Table 5.2: Comparison between the numerical and experimental burst 

frequencies of the conventional capillary valves and GVs on the disc. 

 

ȓ  σla θ width height G Exp. burst Num. burst 

(mm) (N/m) (º) (μm) (μm) (μm) rpm rpm 

45 0.072 77 400 200 0 350-370 350-400 

45 0.072 77 400 200 100 280-320 300-325 

45 0.072 77 400 200 200 240-260 225-275 
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Figure 5.6: The distribution of burst frequencies for different capillary heights 

and various Gs between 0 and 50μm. 

 

Figure 5.7: The distribution of burst frequencies for different capillary heights 

and various and Gs between 50 and 250μm, for a constant capillary height 

(200μm) and contact angle (68º). 

5.6.2 Fluid motion 

The numerical simulations demonstrate that GV successfully changes the flow 

direction of di water and biological buffer for various capillary dimensions. It shows 

that the liquid flows along the posterior wall and bursts in the direction of disc rotation 

at a lower rotational frequency. The liquid flows in the direction opposite to that of disc 

rotation with the sudden increase of rotational frequency. The minimum rotational 

frequency that changes the direction of the liquid flow is dependent on the G value such 
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that a longer G increases the required rotational frequency for switching flow direction. 

On average, an increase of 150-400rpm is required to change the flow direction in GVs 

with G values approaching half of the capillary width. 

The gating effect on flow behavior was numerically simulated for a wide range of 

capillary width of 100µm to 400µm. The liquid motion in all capillaries is similar to the 

experimental observation shown in Figure 5.2. Figure 5.5 illustrates the top view of 

liquid motion in GV and a conventional capillary valve of 100μm wide. In the figure the 

red color demonstrates the water and blue the air, the density of the color shows the 

volume fraction of each phase. As the centrifugal pressure overcomes the capillary 

pressure barrier, the liquid begins to burst into the outlet chamber. Thereafter, the liquid 

flow in conventional valve is different than that in GV. Figure 5.5 (a) shows that in the 

conventional valves liquid flow is advancing equally and by increasing the rotational 

frequency it is inclined into opposite direction of the rotational frequency under the 

influence of Coriolis force. The liquid bursts into the left side of the outlet chamber 

when rotational frequency is increased to 1050rpm. Further details of the liquid motion 

in the conventional valves can be found in in the pervious chapter. Figure 5.5 (b) shows 

that in GV the liquid is gated in the direction of rotational frequency due to slanted 

shape of the meniscus (see the inset in Figure 5.5 (b)). The advancing gated liquid 

eventually draws entire liquid from the inlet chamber to the outlet chamber in the 

direction of the rotational frequency. Note that, at t=0.1s and earlier the meniscus has a 

concave shape due to the hydrophilic surface of the microchannel in both conventional 

and GVs; at t=0.3s the point where the advancing liquid meniscus is trapped at the very 

end of the capillary channel due to the capillary pressure barrier; after the valve bursts 

the liquid motion in GV is different than in the conventional valve. 

The liquid bursts into the right side of the outlet chamber when the rotational 

frequency is 775 rpm (~26% less than the conventional valve). The effect of G on the 
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burst frequency is discussed in below. The numerical study was repeated for various 

capillary dimensions and different fluids and the results show a similar fluid motion. 

For negligible value of G compared to capillary width (i.e., 20μm vs 350μm) however, 

the liquid motion in a GV is more alike the conventional valves. The meniscus shape for 

minor Gs is slightly inclined to the posterior expansion wall but the inclination is not 

enough for gating the liquid. In order to accomplish gating, G must be large enough to 

cause the meniscus to burst at the posterior expansion wall. The experimental and 

numerical data show that the critical value of G that enables liquid gating is when gating 

parameter approaches half of the hydraulic diameter of the capillaries.   

5.6.3 Burst frequency in GVs 

Introducing the gating ratio i.e., α that is the ratio of G to the hydraulic diameter Dh 

assists in comprehending the flow behavior in GVs. Burst frequencies of 0<α<0.37 that 

represents Gs less than 50μm for the capillary width of 100μm to 400μm are studied 

with a constant capillary depth of 200μm. Figure 5.6 shows that Gate Valving decreases 

the burst frequency, especially in narrow capillaries e.g., capillary width 100 and 150μm 

where a small gating ratio, e.g., α=0.11 is reducing the burst frequency up to 200rpm. 

For such gating ratio the burst frequency is decreased from 1275rpm to 1125rpm and 

from 1075rpm to 875rpm for capillary width of 100μm and 150μm, respectively. The 

difference in burst frequencies between the conventional and GVs of such capillaries 

increases with the decrease of the gating ratio α. The maximum difference between 

burst frequencies in the conventional and gated capillaries for the capillary width of 

100μm is about 350rpm at G of 50μm. Note that the geometrical structure and the 

effective aspect ratio of the capillary valve change at the expansion (see the width w and 

effective width weff of the capillary in Figure 5.1 (c)) as a result of change in G. Also, 

there will be a gradient between the advancing contact angles on the posterior and the 

anterior wall which increases with the increase of G. The effect of capillary dimensions 
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(aspect ratio), the contact angle, and the expansion angle on the burst frequency of the 

capillary valves has been studied extensively (Chen et al., 2008; Glière & Delattre, 

2006; Leu & Chang, 2004a; Li et al., 2010). The meniscus curvature in GVs is similar 

to that of heterogeneous capillaries studied by Lu et al.  (2007). In that study differences 

in the surface properties of capillary walls caused deviations in advancing contact 

angles on the bottom and on the top of the capillary walls while such difference in the 

gating valves is due to asymmetric expansion of the capillaries. Employing the 

expression proposed by Lu et al. (2007) that takes into account the effect of different 

advancing contact angles facilitates a realistic prediction of the burst frequencies in 

GVs. Utilization of the effective capillary width is suggested especially for larger Gs. 

The results show that as the width of capillary increases, the sensitivity of the burst 

frequency to G decreases. For instance, for a 400μm wide capillary, the difference 

between burst frequencies of GV with the gating ratio of 0.11 and the conventional 

valve is less than 50rpm. Such a difference for a 200μm wide capillary is about 80rpm. 

The larger effect of G on capillaries of the smaller hydraulic diameter (narrower 

capillaries) is due to the larger difference between the advancing contact angles on the 

posterior and the anterior walls (see Figures 5.1 (a), (b)). In comparison with wider 

capillaries, there is a significant difference between the advancing contact angle on the 

posterior wall and the advancing contact angle on the anterior wall in narrow capillaries 

as a result of a small value of G. Scaling considerations, such as the fact that for small 

capillaries a larger fraction of fluid is in contact with channel walls, can also play a role. 

Figure 5.7 illustrates the effect of larger G (0<α<1.5) on burst frequency and the flow 

behavior in capillaries with hydraulic diameter of 130μm to 270μm. For all capillaries, 

burst frequency consistently decreases as the gating ratio increases, except when G has 

almost half of the value of capillary width i.e., 0.37<α<0.57 for capillaries studied. The 

results show a minimum burst frequency when the gating ratio approaches half of the 
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capillary hydraulic diameter. For instance, the burst frequency drops from 950rpm to 

650rpm for capillary width of 200μm at G~100μm and from 1275rpm to 950rpm at 

G~50μm for a capillary width of 200μm. Next to a sudden increase of the burst 

frequencies at 0.37<α<0.57, a stable burst frequency is seen for all capillaries. The 

sudden increase is due to the effect of aspect ratio (height/width of capillaries) of the 

capillary on burst frequencies (Chen et al., 2008; Kazemzadeh et al., 2013). The 

reduction in burst frequency seen in Figure 5.7 is similar to our experimental 

observations of capillaries with different aspect ratios and those found in references 

(Chen et al., 2008; Li et al., 2010). The figure shows that the sensitivity of burst 

frequency to the aspect ratio is reduced with the increase of aspect ratio, which is in 

agreement with observations by other researchers (Chen et al., 2008; Cho et al., 

2007a; Li et al., 2010).  

5.6.4 Flow switch 

In the previously introduced technique of Coriolis flow switching on rotational 

platforms, the liquid stream flows radially outward as it reaches T-shape junction for 

discs spinning at low rotational frequencies (Brenner et al., 2005; Haeberle et al., 

2006). As the rotational frequency is increased, the flow rate is increased as well and 

the Coriolis force becomes large enough to affect the flow direction at the T-junction. 

Brenner et al. (2003) have shown that by changing the direction of the disc rotation 

(e.g., c.w to c.c.w) it is possible to direct liquid to the either side of a T-shape junction. 

To avoid stopping the platform a more recent technique proposed by Kong & Salin 

(2011) employs compressed air to switch the flow direction. However, the technique 

has enabled switching the flow at low of rotational frequencies and without changing 

the direction of disc rotation it may introduce more cost and complexity and causes 

contamination to the system. We suggest using GVs to direct the liquid flow, after the 

valve bursts, against the typical liquid flow direction prompted by the Coriolis force. 
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GV is enable to direct entire liquid in the direction opposite to that of Coriolis force at 

low rotational velocities and in the direction of Coriolis force at high rotational 

velocities. In comparison with the previously introduced methods, GV successfully 

directs entire liquid in the desired direction without the need to change the direction of 

disc rotation or employment of external power sources.  

Figure 5.8 shows partial top view of the liquid motion on clockwise rotating disc 

consisted of capillaries of width 200μm (connects the blue dyed chamber to the main 

channel), 400μm (connects the red dyed chamber to the main channel) and 700μm 

(connects the distributions chamber to outlets). In order to explicitly show the 

performance of the new valve a microfluidic network consisted of two inlet chambers 

and capillaries, which connect the inlet and the destination chambers to the distribution 

chamber, are designed and fabricated. The red (primary) and the blue (secondary) dyed 

di water are filled into the primary and secondary inlet chambers. The capillaries have 

different dimensions in order to further increase the difference between the burst 

frequencies of the red and the blue dyed liquids. The smaller capillary has the width of 

200µm and the height of 100µm, whereas the larger capillary has the width of 400µm 

and the height of 300µm. Figure 5.8 (a) shows that the primary liquid stops at the 

anterior expansion wall due to the capillary pressure barrier while the secondary liquid 

is still pinned at the capillary due to the difference in radial position of two inlet 

chambers and the capillary dimensions and the air trapped. The rotational frequency is 

gradually increased in order to overcome the pressure barrier and direct the primary 

liquid toward the desired direction. The red dyed liquid bursts at approximately 310rpm 

and gated into the direction of the disc rotation (Figures 5.8 (b), (c)). The spinning speed 

is gradually increased further until the entire liquid is displaced to the destination 

chamber. Thereafter, the rotational frequency is increased to 1300rpm and the Coriolis 

force overcomes the effect of geometrical structure of GV and the flow reverts to move 
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against the disc rotation (i.e. in the direction of the Coriolis force). Figure 5.8 (d) shows 

that the secondary liquid travels to the destination chamber at 1300rpm. Figures 5.8 (e), 

(f) show that the entire liquid is transferred into the destination chamber. The liquid 

retention ability of GVs similarly to conventional capillary valves depends on the valve 

geometry, surface properties and surface energy of the liquids. The liquids mentioned in 

the methodology section (such as BSA blocking buffer, washing solution, and di water-

ethanol mixture) are employed to investigate the variation in liquid properties and as 

well as effects of protein adsorption on the valving mechanism. Protein adsorption onto 

PMMA reduces the hydrophobicity of the capillary valves which can cause failure of 

capillary valves (He et al., 2009). Table 5.3 lists the burst and switching frequencies of 

different liquids when GV is operated in the regime when the listed fluids are dispensed 

sequentially. The results demonstrate that the burst frequencies of di water-ethanol 

mixture are increased with the decrease of volumetric percentage of ethanol. The 

reduction of the burst frequency is due to the decrease in surface energy of the mixture. 

The burst frequencies of mixtures of di water-ethanol vary from 250 to 120rpm for 

volumetric ethanol concentration of 5% to 45% while the increase of rotational speed to 

450rpm reverses the flow direction. The repeated experiments yielded a small variation 

in switching frequencies – around 20rpm. When the blocking buffer BSA is used, the 

adsorption of the proteins from the solution onto the plastic surface reduces subsequent 

burst frequency of the valve. For example, for a 400µm wide capillary valve, the initial 

burst frequency for blocking BSA buffer is about 230rpm and for the sequentially 

released washing solution it is about 270rpm. Repetition of the experiments (up to six 

times) in the same capillary evidences the reduction of the burst frequencies of the 

blocking buffer and washing solution to 170rpm and 210rpm, respectively. 

Note that only the burst frequency of the primary liquid is dependent on G. The 

switching frequency (i.e., burst frequency of the secondary liquid) remains essentially 
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unchanged since the vent holes of the secondary inlet chamber are sealed. Sealing the 

vent holes of the secondary inlet leads to the retention of the secondary liquid until the 

complete exit of the primary liquid. The burst frequency of the secondary liquid 

(switching frequency) is thus independent from the capillary properties and the 

secondary liquid will be able to travel only when all of the liquid leaves the GV and the 

air trapped between the secondary chamber and outlet is removed. 

Table 5.3: Burst and switching frequencies of different liquids before and after 

protein adsorption. 

*B.P.A, A.P.A: before and after protein adsorption 

For the centrifugal microfluidic platforms containing capillary valves that are 

affected by the adsorption of the proteins onto to the plastic substrate, it is advisable to 

use fish-bone valves or implement surface treatments designed to create a super 

hydrophobic valve surfaces where the contact angle is less affected by the protein 

adsorption as evidenced by published studies (He et al., 2009; Lu et al., 2007). In 

complex biological assays routing a discrete liquid volume to designated 

channels/chambers is a common task e.g., in preparative protocols where different 

solutions e.g., wash, sample, etc. have to be directed to the waste or a receiving chamber 

after passing a common stationary phase (Beebe et al., 2002; Gorkin et al., 2010; Oh & 

Ahn, 2006). In the centrifugal microfluidics the proposed flow switch technique allows 

for switching the flow direction instantaneously form the direction of disc rotation to the 

opposite by the abrupt increase of the rotational speed. It can be employed to separate 

different substances existing in a common chamber (i.e., previously disintegrated such 

as RBC from plasma) to a particular destination channel/chamber. In addition, it has the 

Liquid ȓ 1 ȓ 2 σla W1 W2 H Burst (rpm) Switch (rpm) 

  (mm) (N/m) (μm) (μm) (μm) B.P.A, A.P.A B.P.A, A.P.A 

di water-ethanol 

(5%-45%) 

45 28 0.072 

0.028 

200 400 200 120-250, 

80-220 

390-450, 

370-450 

0.9% sodium chloride 45 28 …… 200 400 200 260-230 450-430 

Blocking buffer 45 28 …… 200 400 200 230, 170 880, 850 

Washing solution 45 28 …… 200 400 200 250, 210 870, 850 
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potential to be employed for mixing large macroscopic volume of liquids by splitting 

and recombining the liquids. 

 

Figure 5.8: Switching the flow direction by increasing the rotational speed. 

5.7 Summary 

Gating valve as a powerful means to control flow direction at the T-junction has been 

introduced to control and manipulate flow in microfluidic systems. In comparison with 

the previously introduced techniques of flow, switching Gate Valve enables switching 

the flow direction without employing external power sources, applying surface 

treatments or changing the direction of disc rotation. It directs entire liquid in the 

direction opposite to that of Coriolis force at low rotational velocities and in the 
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direction of Coriolis force at high rotational velocities. It allows for multiplexed and 

more sophisticated assays on the centrifugal microfluidic platforms without interrupting 

other operations. The effect of gating parameter on flow behavior and burst frequency in 

the CD-like microfluidics has been studied experimentally and numerically. The results 

show that GV changes the flow direction when the gating parameter G is approximately 

half of the capillary width (0.4-0.5 width). The results show that as the gating parameter 

approaches to half of the channel width the burst frequency rapidly decreases however 

the rate of decrement decrease significantly for the gating parameter values greater than 

half of the capillary width.  
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CHAPTER 6: DESIGN OF GUIDED ROUTING VALVE, A MICROVALVE 

FOR FLOW SWITCH AND ROUTING 

6.1 Introduction 

The flow switch has been a really tough problem for centrifugal microfluidics. The 

centrifugal microfluidics often encounter switching of the liquid flow between two or 

more pathways in order to separately direct them to different chambers e.g., where a 

specimen such as DNA, protein and or antigen has to be discharged into a clean buffer 

solution. In general, the centrifugal and the fictitious Coriolis force have been often 

used to determine the flow direction in microchannels and at T-junctions. Several 

methods have been introduced for propelling liquid against both the centrifugal force 

(Abi-Samra et al., 2011a; Aeinehvand et al., 2014; Kinahan et al., 2014; Madou et al., 

2006; Siegrist et al., 2010b; Soroori et al., 2013) and the Coriolis force (Brenner et al., 

2003; Kazemzadeh et al., 2014; Kim et al., 2008; Kong & Salin, 2011). The Coriolis 

force determines the movement of a liquid when it reaches a T-junction i.e., a point 

where a channel splits into two channels. By exploiting the Coriolis force (Brenner et 

al., 2003), fluid at a T-junction can be switched to flow in either one of the channels or 

through both exit channels simultaneously (at low rotational frequencies). The flow 

switch in this method is based on the direction of the Coriolis force at high rotational 

frequencies that is dependent on the direction of the disc rotation; the reversal of the 

direction of rotation is needed to change the flow direction at T-junctions. A liquid can 

also be routed first into one branching channel and then into a different branching 

channel when asymmetrical channels and chamber geometries are used. When the liquid 

filling a first chamber rises to a level that prevents the connection of the air in the 

branching channel with the vent hole in the first reservoir, the fluid in the main channel 

will be routed to a second reservoir (Kim et al., 2008). Because the flow switch is based 

on the air trapped in the system, it is incapable of switching the flow direction between 
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exit channels more than once. More recently, an active flow switch method employing a 

periodically activated air supply was proposed to allow changing the flow direction 

without altering the direction of disc rotation (Kong & Salin, 2011). In the previous 

chapter, an attempt has been made into solving this problem. We showed that by 

performing small geometrical changes in the structure of capillary valves we could 

devise a novel asymmetric valve. The asymmetric valve, named gate valve, showed for 

the first time, that geometrical changes allow for switching the flow direction by 

altering the disc rotational frequency virtually without occupying any space on the 

valuable disc’s real estate. However, the valve can be less suitable when a continuous 

switching of the flow direction is required. 

In this chapter we describe a novel frequency depended approach to route liquids and 

control the flow direction on a spinning disc that employs a robust guiding 

microstructure. It allows for routing sample and reagents to designated reservoirs at a 

given flow rate, to a given flow direction and subsequently to a selection of receiving 

reservoirs. With this routing method, we will be able to switch the flow direction 

instantaneously from the direction along the disc rotation to the opposite direction by 

immediate increasing of the rotational speed and switch the liquid flow back to its 

previous direction by reduction of the spinning speed. In addition, this novel method, by 

performing some enhancements, has a high potential to be used for sorting particles and 

cells in the micro channels or in the reservoirs on the centrifugal microfluidic platforms. 

The distinctive feature that makes this approach different from other types of passive 

capillary valves is the robust control of liquid movement by employing two adjustable 

sequential burst valves called a primary valve and a secondary burst valve. In this 

chapter flow routing by the proposed technique will be studied theoretically and 

experimentally, and the flow behavior will be numerically investigated. The 

performance of the novel valve will be experimentally demonstrated for a wide range of 
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capillary sizes and for liquids with different properties. The results of the introduction 

and characterization of this novel valve have been published in the esteemed technical 

peer-reviewed journal of RSC advances (Kazemzadeh et al., 2015). 

6.2 Concept    

Capillary valves on a LabDisc prevent liquid from flowing as long as the rotational 

speed (rpm) is below an rpm corresponding to a critical burst frequency, above that 

critical rpm the flow rate and direction is based on the magnitude of the centrifugal and 

Coriolis forces. In order to improve the control over flow direction on a LabDisc we 

introduce a new technique that does not require changing the spinning direction of the 

platform, applying surface treatments and/or employing external forces. This new 

passive flow control technique we call guided routing (GR) relies on a two stage valve 

comprised of (i) an auxiliary inlet which is a recess that overlaps the capillary and the 

chamber it feeds into and (ii) a bent auxiliary outlet which is an extension of the 

auxiliary inlet recess leading into the chamber as seen in Figure 6.1. The first capillary 

valve that advancing fluid encounters is located at the junction of the capillary and the 

recessed auxiliary inlet and that valve will burst when the rotational frequency of the 

disc exceeds a primary burst frequency (ωp). The second capillary valve is formed at the 

junction of the recessed auxiliary outlet and the chamber and it will burst when the 

rotational speed of the disc exceeds a secondary burst frequency (ωs). By adjusting the 

spinning frequency of the disc after the primary burst frequency has been breached one 

can control the direction of the secondary burst that occurs when liquid flows into the 

chamber through the auxiliary outlet. When ωp is smaller than ωs the fluid meniscus 

remains pinned at the auxiliary inlet/chamber interface while the fluid can advance in 

the auxiliary outlet and be guided by the bend of that outlet. When ωp is larger than ωs 

or when the angular velocity exceeds both ωp and ωs the fluid will not stop at the 

auxiliary inlet/chamber interface and will flow into the chamber. The materials selection 
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and geometries of the chamber and channels of the described fluidic network determine 

the relative relationship between the primary and the secondary burst frequencies. 

Figure 6.1 illustrates the mechanism of GR in controlling the direction of flow in 

centrifugal microfluidic platforms. The flow behavior in GR capillaries with different 

geometries corresponding to a wide range of rotational frequencies is investigated and 

discussed in the Results section below. In a GR valve the liquid flow is controlled by 

confining the liquid stream temporarily into a specifically designed guided routing (GR) 

structure which is comprised of two sections: an (i) auxiliary inlet and (ii) auxiliary 

outlet; In panel a) and b) (Top view and Side view) we show a traditional capillary 

valve on a centrifugal microfluidic platform that, in panel a) rotates clockwise with a 

spinning speed (ω) below its burst frequency (ωp) and the liquid is pinned at the 

interface, in panel b) as the platform rotates at a spinning speed above the burst 

frequency (where the Coriolis force is the predominant force), the liquid flows towards 

the Coriolis force. Panel c) to e) illustrate what happens in the case of a GR valve again 

with the platform rotating clockwise. In panel c) the spinning speed is below the 

primary frequency (ω<ωp) and the liquid is pinned at the auxiliary inlet; in panel d) the 

platform rotates at a spinning speed above the secondary burst frequency and below or 

equal to the primary burst frequency and the liquid is guided by the auxiliary outlet and 

in panel e) the liquid is routed towards the direction of the Coriolis force in two manner: 

a) spinning the platform with a speed above the primary burst frequency if ωp is larger 

or equal to the ωs , b) spinning the platform with a speed above the secondary burst 

frequency if ωs is larger or equal to the ωs.  

6.3 Fabrication and Experimental setup    

The centrifugal microfluidic platforms with the GR valves were fabricated using a 

Computer Numerical Control (CNC) machine i.e., model VISION 2525, by Vision 

Engraving and Routing Systems, USA. 
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Figure 6.1: A sketch of 3D view, top and side views of a conventional capillary 

and a GR valve. Fabrication and Experimental setup.  

Microstructures were milled in three 2mm thick Polymethyl methacrylate (PMMA) 

layers that were bonded together with two 0.056mm thick Pressure Sensitive Adhesive 

(PSA) layers (by FLEXcon, USA). Figure 6.3 shows an exploded view of the thus 

assembled five-layer CD-like device used in the current study. The first substrate 

containing vent holes is bonded to the middle substrate, which contains microchannels, 

inlet and outlet chambers. The guided routing valves are milled on the lowest layer and 

bonded to the middle substrate layer. The microstructures formed in the PSA layers 

conforming to the designs in the PMMA layer are cut by a cutter plotter i.e., model 

PUMA II, by GCC, Taiwan.  
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Figure 6.2: The custom-made experimental setup. 

 

 

Figure 6.3: An exploded view of the disc assembly, Guided routing valves (GR) 

are located on layer fourth and fifth of the assembled disc.   

6.4 Theory  

Apart from the use of hydrophobic patches, liquid routing in most passive techniques 

depends on the direction of the disc rotation and the ratio of the centrifugal to the 
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Coriolis force. In addition to these parameters, Kazemzadeh et al. (2014) have shown 

the effect of an asymmetric expansion of a capillary channel on the liquid flow direction 

and on the performance of the capillary valves. The present technique relies on a 

balance between the centrifugal and Coriolis forces and the distinctive capillary 

pressures at the GR valve. The valving technique benefits from two adjustable 

sequential bursts; a primary and secondary burst occurring at the auxiliary inlet and the 

auxiliary outlet, respectively. The body forces applied to fluidic elements on a rotating 

reference frame include the sum of total pressure and viscous forces (see Figure 6.4). 

For a non-inertial, incompressible system the Navier-Stokes equations are (Acheson, 

1990): 

               [24-

a] 

            [24-b] 

Where ρ, ax, z, µ, and vx, z are density, acceleration in the x and z directions, viscosity 

and velocity in the x and z directions, respectively. The forces per unit volume in x and 

z direction are due to the vector product of Coriolis and centrifugal accelerations, 

respectively. The centrifugal force per unit volume is given as: 

    [25] 

Where ω is the spinning frequency of the disc, r1 and r2 are the inner and outer radial 

position of a liquid plug, and  is the mean radial position of the liquid, respectively. 

The primary burst frequency of a GR valve, similar to the burst frequency of a regular 
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capillary valve, can be obtained from the Young-Laplace equation. However, the 

specific geometry of a GR valve features two contact angles (θ1 on the bottom surface 

and θ2 on the top surface of the valve structure) that change dynamically as a function of 

the length of the auxiliary inlet and the centrifugal pressure (see Figure 6.4 (a)). In order 

to cause the liquid to flow in the auxiliary inlet before it reaches the expansion, the 

advancing contact angle of the bulged meniscus θ2 must be higher than θ1- 90º. The 

optimum value of θ2 is when the length of the auxiliary inlet λi is equal to the channel 

height which is when θ2=θ1+90º. In these circumstances, the liquid will flow into the 

auxiliary inlet instead of flowing along the top surface of it and will avoid the 

unfavorable valve burst which occurs when the liquid continues to flow along the top 

surface of the auxiliary outlet (when θ2> θ1- 90º). Figure 6.5 demonstrates that when 

λi=h the primary burst pressure can be predicted based on the cross-sectional height of 

the GR valve (ρ): 

        [26] 

Where, σla, θ, β, w and he are liquid surface tension, the contact angle, the channel width 

and the expansion angle and effective height of the channel (see Figure 6.5 (a)). It can 

be gleaned from Figure 6.5 (b) that the secondary burst in a GR valve occurs when the 

liquid is released from the recessed area of the auxiliary outlet and can be calculated 

from equations presented earlier in other studies (Chen et al., 2008; Cho et al., 2007a). 

In order to determine the flow direction based on the spinning frequency of the disk the 

maximum radial velocity is required to determine the dominant force acting on the 

liquid at the GR junction. The maximum radial velocity is solved by writing the Navier-

Stokes equation in the plane parallel to the disc surface. Typically, the gravitational 

force is significantly smaller than other forces on a spinning disc and thus can be 

ignored. We also assume fluid of constant density and since the walls are impermeable, 
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the liquid is confined to flow in the z direction and there are no changes of the fluid 

velocity except in the direction of the flow: 

       [27] 

Now, considering that the flow is fully developed, the velocity of the fluid in the 

direction of the flow is constant: 

     [28] 

Due to no-slip at the wall, vz=0 at x=0 and x= w: 

         [29] 

The maximum velocity is at x=0.5w and it is equal to: 

          [30] 

The ratio of Coriolis to centrifugal force is then given by: 

          [31] 

The liquid flows in the direction of the Coriolis force if  (Brenner et al., 

2003), therefore increasing the spinning frequency to meet that condition makes it 

possible for the liquid to flow in the direction of the Coriolis force without having to 

reverse the spinning direction of the disc. In addition, the Euler force FEu=ραr assists 

in instantaneous switching of the flow direction from the direction of the auxiliary outlet 

to the opposite direction when . 
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Figure 6.4: Partial view of a disc spinning at ω containing GR valve of the 

auxiliary inlet and outlet length of λi and λo respectively, a liquid plug exposed to 

radial centrifugal and transversal Coriolis force.  

 

Figure 6.5: The burst frequencies of GR valve a) primary burst occurring at the 

auxiliary inlet when λi is equal to the microchannel height, b) secondary burst at 

the auxiliary outlet. 

6.5 Numerical analysis 

The volume of fluid (VOF) method from the commercial ANSYS-Fluent CFD 

package, version 13.1 was used to simulate the flow behavior within the fluidic network 

under study. The details of the method and formulations of the numerical analysis are 

given in the previous chapter. Briefly, the computational domain was set to rotate 

clockwise with an initial rotational frequency of 50rpm, which was increased in steps of 

50rpm. Zero fluid velocity is set at all the walls of the microstructures (in accordance 
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with the no-slip boundary condition). In order to consider the effects of surface tension, 

centrifugal and Coriolis forces the body-force-weighted interpolation scheme was used 

in the numerical calculation. The scaled residuals were set at 1x10
-6

 as the convergence 

criteria for the continuity and other governing equations. The area adjacent to the GR 

was simulated using a uniform quad grid and the accuracy of the simulation results was 

evaluated by comparing the numerical with our experimental data and theoretical 

analyses.  

6.6 Results 

6.6.1 Flow behavior  

Capillary valves are typically fabricated by either a one or two-dimensional expansion 

in microchannels due to their ease of fabrication (see Figure 6.6). The difference 

between the commonly used capillaries (two-dimensional) and GR valves is that in 

common capillaries, the meniscus is pinned in the plane perpendicular to the disc 

surface holding its convex shape at the expansion point and the meniscus expands on 

the surfaces of the outlet chambers (for more details on conventional capillaries refer to 

(Cho et al., 2007a). In a GR valve, on the other hand the meniscus expands in the 

perpendicular plane and simultaneously advances in the parallel plane retaining its 

convex shape. In comparison with a conventional capillary valve, a GR valve generates 

an either slightly weaker or a slightly stronger blockage to the flow depending on the 

capillary width (i.e., due to the effect of channel aspect ratio on the burst pressure 

studied in references (Chen et al., 2008; He et al., 2009)). However this difference can 

often be neglected in designing of sequential operations since the interval between the 

burst frequencies in sequential processes on a LabDisc is kept at about 200rpm to avoid 

unwanted release of samples/reagents (He et al., 2009).  

Figure 6.7Figure 6.7 shows the sequential movement of the liquid adjacent to a GR 

valve for a capillary of 200x200µm and GR with the auxiliary inlet and outlet of 200µm 
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and the outlet chamber where the rotational frequency is gradually increased to the burst 

frequency of the valve. The meniscus experiences a two-dimensional motion due to the 

geometrical condition of the capillary The maximum distance that the meniscus is able 

to expand in the radial direction (xm) before the valve bursts into the auxiliary inlet is 

proportional to the height of the capillary, and the radial length that the meniscus can 

expand before reaching the outlet chamber is proportional to the groove height and the 

capillary height. Figure 6.7 (a) shows that as the rotational frequency is gradually 

increased and liquid reaches the GR expansion the meniscus continues its radial 

advancement along the capillary with its initial convex shape however, the meniscus 

expands in the perpendicular direction to the disc surface. Figure 6.7 (b) shows the 

occurrence of first bursting in GR valve and Figure 6.7 (c) shows that while the liquid 

meniscus is pinned at the top surface of GR valve, the meniscus continues its expansion 

from the bottom surface and flows into the auxiliary inlet and later into the auxiliary 

outlet. At this point a fluctuating movement of the meniscus is observed and the portion 

of meniscus previously advanced is pulled back due to the advancement of the portion 

of meniscus previously pinned (Figures 6.7 (c), (d)). By increasing the rotational speed, 

the liquid will flow in the groove (Figures (e), (f)). 

 

Figure 6.6: Three dimension view of the possible methods of fabricating 

capillary valves. 
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Figure 6.7: Numerically obtained sequential images of meniscus advancement in 

response to increasing the rotational frequency. 

The mechanism of GR valve is characterized by investigating experimentally and 

numerically the influence of λi and λo on the burst frequency, when employing different 

liquids (where λi and λo are the length of the auxiliary inlet and the auxiliary outlet 

respectively, see Figure 6.4). The optimum length of the auxiliary inlet (λi) and the 

auxiliary outlet (λo) is defined by constructing several GRs with different λi and λo. The 

minimum λi and λo are equal to h/2 and are increased in a step size of 0.1mm. The effect 

of surface tension and protein absorbance on the GR valve operation is investigated by 

conducting several experiments using different liquids such as di-water, a mixture of 

ethanol-water and with bovine serum albumin (BSA). A comparison between burst 

frequencies of di-water and BSA in normal capillaries and capillaries equipped with GR 

is compiled in Table 6.1. The table shows the effect that λi and λo have on the burst 

frequency of GR valves with cross sections of 200x200µm and 400x400µm. The burst 

frequency reduces dramatically when xc>h which can be explained by the manner in 

which the meniscus advances. As long as xc ≠ h the meniscus advances along the top 

surface until it is pinned at the incline where a higher centrifugal pressure is required to 

continue the advance of the liquid front. The increase in the length of the groove (xc>h) 
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facilitates a smooth advancement of the liquid meniscus on the top surface until θ1 

reaches the value of 180º and the GR valve bursts. At xm≈h, the meniscus is pinned at 

the top surface with the contact angle θ2 much lower than the angle required for 

bursting, while at the bottom the contact angle θ1 is at the threshold to burst.  

6.6.2 Guided Routing applications  

6.6.2.1 Flow switch  

In many types of microfluidic functions such as separation and many other 

preparative protocols, separated samples, washing and elution buffers are required to be 

directed to the waste or other receiving chambers. Several techniques (e.g., Coriolis 

based strategies or hydrophobic patches) have been pursued for routing of a sequence of 

distinct volumes to designated vessels as a common task in preparative protocols or 

more specific assignments on intricate assays in LabDisc systems (Ouyang et al., 2013; 

Strohmeier et al., 2014). As a demonstration for one of the many possible applications, 

different microchannels equipped with GR valves were fabricated in order to control the 

flow direction on a spinning microfluidic disc that contains inlet and outlet chambers 

connected via a fluidic network of microchannels. The GR flow switching experiments 

are conducted for various sizes of microchannels, GR dimensions, and types of liquids. 

The height and the length of GRs vary from 0.5h to 2h where h is the height of the 

capillary. The width of the grooves is kept identical to the width of the corresponding 

capillary microchannel on the same disc. Black dyed di-water is dispensed into the inlet 

chamber of a GR capillary and the experiment commences by spinning the disc and 

gradually increasing the angular velocity in 10rpm increments until the capillary valve 

bursts. Figure 6.8 shows the partial top view of sequential movement of liquids in a 

capillary of w=h=400µm without and with a GR valve of λi=λo=400µm (these terms are 

explained in Figure 6.1). Figures 6.8 (a), (b) show the sequences of liquid movement 

before the first and second burst frequencies of a GR valve. The gradual increase of the 
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spinning frequency up to ~170 rpm causes the liquid to flow in the direction of the 

auxiliary outlet (Figures 6.8 (c), (d)). The abrupt increment in the spinning frequency (to 

370rpm) causes the liquid to detour from the tip of the route channel toward the 

direction of the Coriolis forces (Figures 6.8 (e), (f)). At any moment after the abrupt 

increase in spinning frequency, a reduction of the spinning frequency to its previous 

value will cause the liquid to flow along the auxiliary outlet and toward its previous 

direction (the supporting video can be seen in the supplementary section). For the 

current capillary dimension and =39mm the flow is switched to the direction of 

Coriolis at ~350rpm and in the direction of the auxiliary outlet at ~170rpm. The 

performance of the GR valve under continuous operation was investigated for several 

liquids with different physicochemical properties and the results show that the GR valve 

successfully guided all those liquids. The effect of protein adsorption on the PMMA 

surfaces, which occurs in most of the clinical assays where biological substances are 

used, was investigated by conducting the experiments using Bovine Albumin Solution 

(BSA). The consecutive loading and emptying of the same microstructure up to 5 times 

with 10 minutes interval between each experiment shows up to 50-60rpm reduction of 

the initial burst frequency. Note that the switching frequency is independent of the burst 

frequency of the capillary valve since the GR controls the fluid flow after bursting. The 

experimental observations presented in Table 6.2 confirm that the optimum length of 

the auxiliary inlet is when λi=h and that for λi>h, the GR valve is unable to take control 

of the flow. It can be understood from the data presented in the table that a minimum 

value of the auxiliary outlet is equal to the height of the channel however a λo>h will 

guarantee a consistent control on the liquid flow in the direction of the auxiliary outlet.  
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Table 6.1: The effect of GR on the burst frequency for different liquids for 

ř=39mm 

* The numerical rotational speed increased in steps of 50rpm, ** Values after conducting several 

experiments. 

 

 

Figure 6.8: switch and switching back the flow direction in centrifugal 

microfluidics. 

Substance 
Width = 

Height (µm) 
λi  

(mm) 

λ2 

(mm) 

Fb)Num.  

(rpm)* 

Fb)Exp.  

(~ rpm)** 

  0 0 450-500 480 

  0.2 0.1, 0.2, 0.3 450-500 450-460 

 200 0.3 0.2, 0.3, 0.4 300-350 340 

Di-Water      

  0 0 150-200 190 

 400 0.4 0.3, 0.4, 0.5 150-200 160-170 

  0.6 0.5, 0.6, 0.7 100-150 120-130  

  0 0 400-450 410-420 

  0.2 0.1, 0.2, 0.3 350-400 380 

 200 0.3 0.2, 0.3, 0.4 250-300 300  

BSA      

  0 0 150-200 140-150 

 400 0.4 0.4, 0.5, 0.6 100-150 110 

  0.6 0.5, 0.6, 0.7 100-150 100 
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Table 6.2: The response of flow to the auxiliary inlet and outlet dimensions and 

experimental flow switch frequencies.  

Microchannel 

height (µm) 
λi (µm) λo (µm) 

Frequency 

(rpm) 

C

C.W. 

 

Frequency 

(rpm) 
C.C.W. 

200 

>200  <200 ≲420 
x

* 
>700 

√ 

~200 ≥200 ≲460 
√

** 
√ 

400 
>400 <400 ≲150 x 

>370 
√ 

~400 ≥400 ≲170 √ √ 

700 
>700 <700 ≲110 x 

>350 
√ 

~700 ≥700 ≲140 √ √ 

* x: failure to guide the liquid, ** √: Success in guiding liquid. 

6.6.2.2 Fluid distribution  

As a demonstration of another application of GR valving, we describe the function of 

a GR valve for dividing a liquid flow into several side streams with a given flow rate 

after the burst without applying surface treatments or employing external power 

sources. The capability of a GR valve in flow control and distribution of the liquid is 

investigated by conducting a simple experiment where the auxiliary inlet of a GR valve 

is connected to several outlet branches with the same dimensions engraved in the outlet 

chamber. Figure 6.9 shows a microfluidic structure consisting of an inlet and an outlet 

chamber connected by a GR capillary. The inlet chamber is loaded with red died di-

water and the experiment commences by spinning the disc until the GR valve bursts.  

As it is gleaned from Figure 6.9 as a consequence of using a GR, after the secondary 

burst of the valve the liquid flows into the designated paths. This capability of a GR 

valve can be employed to regulate and distribute liquids with different flow rates to 

different directions. Figure 6.10 shows the free body diagram of a GR with two branch 

channels splitting at a junction. At the point where the main channel meets two branch 

channels the overall propelling force can be written as components of the centrifugal 

and Coriolis forces in the direction of the branching outlet channels (as indicated in 

Figure 6.10): 
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        [32] 

Where FZ1 and FZ2 are total propelling forces in the direction of each outlet branch. The 

splitting of the incoming fluid between two outlet branches of equal hydraulic diameters 

is regulated by the ratio of the forces: 

          [33] 

The flow will be equally divided into two outlet branches when k=1. The equal 

division of the liquid into two streams can be used to reduce the consumption of 

samples by duplicating the detection chambers for example in the CD-like-ELISA chips 

(Lin, 2010). Substituting Equation 29 in Equation 30, the difference between angles of 

two outlet branches is:  

         [34] 

Where θ1 and θ2 are the separation angle against the direction and in the direction of 

Coriolis force. In addition, as the flow in most of the microfluidic platforms is laminar, 

the branch channel dimensions can be employed to manipulate the flow resistance and 

regulate the flow distribution to each branch (Takagi et al., 2005). The Poiseuille law 

can be rewritten in terms of the flow rate (Q=A.V) (Bird et al., 2007): 

         [35] 

Where L, Dh, A, V and R are the branch channel length, the hydraulic diameter, the 

cross sectional area of the channel, the velocity and the resistance to flow, respectively: 

          [36] 

1

2

1 1

2 2

z co

z co

F F Cos F Sin

F F Cos F Sin





 

 

 

 

1

2

z

z

F
k

F





2
12 tan ( )

4

w




 

2.

32

hD A P
Q P

L R


  

2

32

.h

L
R

D A




Univ
ers

ity
 of

 M
ala

ya



99 

Thus, for a fluid of uniform viscosity and channels of given dimensions, the flow rate 

for the splitting branches can be calculated. In order for the parabolic velocity profile to 

develop completely within the branching channels, the length of the auxiliary outlet λo 

(see Figure 6.1) has to be greater than entrance length (le) of (Bird et al., 2007):   

        [37] 

The accuracy of Eq. 10 in predicting the flow rate in branch channels have been 

evaluated by carrying out several simulations according to the angles predicted based on 

Eq. 34. Figure 6.11 shows the velocity distribution in branch channels of a 200x200µm 

GR spinning at rotational frequency of (i) 500, (ii) 1000 and (iii) 1500rpm and θ1=40º. 

Branch channels (a, b) are bifurcated evenly and are simulated according the angle 

calculated from Eq. 10. The figure shows that using the suggested separation angles 

(calculated by Eq. 33) enhances the accuracy of the uniform distribution of liquid for 

branch channels up to 99.5, 97.4 and 94% for the rotational frequency of 500, 1000 and 

1500rpm respectively. The small difference between the velocities of branch channels at 

high rotational speed may be possibly reduced by small geometrical changes at the point 

where branches are separated from the main channel. Equation 34 can be also used to 

define different velocity rates at each branch channel by integrating it with flow 

resistance equation.  

 

Figure 6.9: A partial view of a rotating disc indicate showing the distribution of 

the liquid by using GR valve.  

0.035 Reo e hl D  
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Figure 6.10: Free body diagram of a GR with two branch channels splitting at a 

junction. 

 

Figure 6.11: Numerically obtained velocity magnitudes in branch channels. 

6.7 Summary 

This Chapter introduced a novel technique called guided routing (GR) to control and 

manipulate the flow after capillary valve bursting on a centrifugal microfluidic disc. The 

introduced method is capable of determining the direction of the flow in T-junctions as 

well as guiding the liquid into several branches. The experimental results show that GR 

is able to continuously switch the flow to one direction i.e., in the direction of disc 
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rotation at low rotational speeds and instantaneously change it to the opposite direction 

by an abrupt increase of the rotational speed. Also the capability of the valve to equally 

distribute the flow into two branches has been theoretically and numerically presented. 

This valving technique is applicable to clinical and chemical operations where 

switching the flow direction or equal and non-equal dividing the liquid is required.  
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CHAPTER 7: THE EFFECT OF MOMENT OF INERTIA AND 

HETEROGENEITY  

7.1 Introduction  

In this chapter, for the first time two novel methods for controlling the flow direction 

on centrifugal microfluidics are introduced. It includes the concepts, methods and 

preliminary numerical and experimental results. 

7.2 Moment of inertia in centrifugal microfluidics 

In many biomedical, chemical and clinical applications, samples and reagents often 

experience sequential and complicated processes, including preparative microfluidics 

procedures, mixing and separation and complete with detection or the ultimate chemical 

reactions. These processes can occupy a large space on the centrifugal discs that 

increases the costs and limits parallel processing of assays. In order to efficiently use the 

disc real estate and facilitate parallel processing, several active and passive techniques 

have been introduced by researchers, which are able to push liquids radially inward such 

as siphoning, pneumatic and thermo-pneumatic pumping. Most of these techniques such 

as pneumatic pumping, siphoning, etc. have specific operational frequency range or 

require additional instruments and external power sources. In addition, the diversity of 

chemical and biomedical applications motivates researchers to develop new techniques 

to manipulate fluids in lab-on-a-disc devices. In this chapter for the first time, the role of 

the effective angular moment of inertia of the liquid in centrifugal microfluidics is 

investigated theoretically and experimentally. The effective angular moment of inertia 

of the liquid inside a chamber on a rotating disc can be used for pushing the liquid 

towards specific lateral or/and radial directions by suddenly pausing or reducing the 

rotational velocity of the disc.  
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7.2.1 Concept    

Figure 7.1 shows a top view of the design, which illustrates how the inertia and Euler 

forces can be employed in centrifugal microfluidics in order to drive liquid towards the 

disc center. The design is comprised of an inlet chamber, which is connected by a V-

shape microchannel to an outlet chamber. The inlet chamber and the outlet chamber 

(which can be located at any position on the disc) are located at the periphery of the 

disc. Figure 7.1 (a) shows a partial top view of a disc rotating clockwise at a spinning 

frequency below the burst frequency of the capillary valve. The increase of the spinning 

speed causes the liquid to pass the capillary valve and move slightly towards the disc 

center. It will stop in the V-shape micro channel because of the balance between the 

centrifugal force exerting on the volume of the liquid in the inlet chamber and the 

centrifugal force acting on the volume of the liquid in the micro channel (Figure 7.1 

(b)). Further increment of the spinning speed does not propel the liquid towards the disc 

center, but it will increase the potential energy stored in the liquid. At such 

circumstances, stopping the rotating disc will release the stored energy in the liquid and 

the liquid will propel towards the disc center. The distance that liquid is able to flow 

towards the disc center depends on the spinning speed of the disc at the time exactly 

before the abrupt reduction of the rotational speed, the higher the speed the longer the 

distance. It also depends on the deceleration rate of the rotating disc; with a higher the 

deceleration the liquid will flow a longer distance. Figures 7.1 (c), (d) show that the 

liquid flow in the V-shape micro channel and reaches the entrance of the outlet chamber 

where additional pressure is needed to overcome the capillary valve. At this point, by 

rotating the disc and increasing the spinning speed to a special frequency, the 

centrifugal ad Coriolis forces acting on the liquid in the inlet chamber provides adequate 

pressure to breach the capillary valve and liquid fills the outlet chamber (Figures 7.1 (e), 
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(f)). Note that in order to enhance the flow manipulation, a siphoning like mechanism 

can be designed for the proposed method.  

 

Figure 7.1: A partial top view of the liquid flow. 

7.2.2 Theory    

The on-board storage and on-demand release of samples or reagents in centrifugal 

microfluidics can increase the efficiency of these devices and improve their portability. 

Pre-stored samples on the disc are ready to use and can be propelled to the test 

chambers by using different liquid handling techniques. Because of the unidirectional 

nature of the flow in centrifugal microfluidics, storing samples or reagents in the 

chambers, which are located closer to the disc rim assists in the efficient use of the disc 

real estate. The liquid, stored in a container located on a place close to the disc 
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periphery is propelled to an inlet chamber, which is close to disc center where it can 

participate in different biomedical or chemical tasks. The stored samples can be driven 

back to the disc center by using some passive techniques and different active pumping 

techniques such as thermo pneumatic pumps (Abi-Samra et al., 2011a). The present 

method introduces a passive technique that employs the energy stored in the liquid, the 

Euler and Coriolis forces to propel liquids towards the disc center. The Navier-Stokes 

equation can be written for a non-inertial, incompressible system (see Eq. 24). The 

forces per unit volume in a two-dimensional plane for a disc rotating with a constant 

spinning speed are the vector product of Coriolis and centrifugal accelerations, 

respectively (see Eq. 25). The Coriolis force acting on the liquid is calculated by solving 

the Navier-Stokes equations in the plane parallel to the disc surface. Assuming a fluid of 

constant density and the impermeable walls and ignoring the gravitational force, which 

is significantly smaller than other forces on a spinning disc, the Coriolis force is: 

Fco=2ρrωru         [38] 

When the disc abruptly stops i.e., which requires a large rate of deceleration (α) the 

Euler force is acting on the liquid. The Euler force can be written as: 

           [39] 

Where, ρ, α and  are density of the liquid, angular deceleration and mean radial 

position of the liquid, respectively. The minimum force required for propelling the 

liquid towards the disc center is:  

Feu+Fco=ΔPcap
         [40] 

In the hydrophobic microchannels, aqueous liquids do not flow spontaneously in the 

microchannel due to the existence of the negative capillary pressure. This capillary 

pressure has been extensively studied and for a rectangular capillary is (McNeely et al., 

1999): 

EuF r 

r
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        [41] 

Where, w and h are the capillary width and height respectively. The minimum force 

required to push the liquid back towards the disc center have to be greater than this 

negative capillary pressure.  

7.2.3 Fabrication method and experiments 

The fabrication method of the disc is similar to the technique used in the previous 

chapters. Briefly, the microstructures are fabricated on layers of PMMA and PSA using 

a CNC machine and cuter plotter, respectively (see fabrication in chapter 6). The design 

of centrifugal microfluidic platform is composed of three PMMA layers and two PSA 

layer. The PSA layers are sandwiched between the PMMA layers and the platform is 

formed. In general, most of the centrifugal microfluidics are fabricated from at least two 

different materials e.g., PMMA and PSA layers that are used to bound different layers 

of the disc together.  

The experimental setup used to carry out the experiments is the same as that used in 

Chapter 6. Briefly, it consists of a CNC machine, a high-speed camera and a custom-

made disc rotating system. Figure 7.2 shows the disc at rest state before and after the 

experiment. The disc is rotated up to 3500 rpm and its rotational velocity suddenly 

decreased to zero with a high deceleration rate of ~45 Hz. s
-1

. Figure 7.2 (a) shows that 

the black dyed di-water is initially dispensed into two chambers one close to the disc 

center and the other close to the disc periphery in order to investigate the effect of the 

radius on the Euler and inertial forces. The disc is begun to rotate with a gradual 

increment in the rotational velocity until it reaches to spinning speed equal to 3500 rpm 

(the figure is not presented). Figure 7.2 (b) shows the liquid displacement after the 

sudden deceleration when the disc is at rest. As it can be grasped from the figure 

depending on the direction of rotation the liquid can flow towards the disc center via 

1 1
2 ( )cap Cos

w h
P   
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one of which V-shape microchannels (microchannel 1, 2). First the disc rotated 

clockwise direction and stops with a high deceleration rate and as a result the liquid will 

flow towards the disc center through microchannel 2 and stops in the crest of V-shape 

of microchannel. Repeating the experiment will cause the liquid to fill the other outlet 

chamber located close to the disc periphery. It can be grasped that when the disc rotates 

in the opposite direction and it suddenly stops the liquid begins to flow towards the disc 

center via microchannel 1. 

 

Figure 7.2: Propelling liquid towards the disc center using Euler and inertial 

forces. 

7.2.4 Preliminary results 

The experiment results confirmed that utilizing the effective moment of inertia of the 

liquid i.e., as a result of a sudden reduction of the rotational speed (~45 Hz/s), propels 

the entire liquid volume from a chamber adjacent to the disc’s periphery to a chamber 

close to the disc center. The experiment was carried out for chambers connected with 

square hydrophobic capillaries (400x400µm) and disc rotational velocities of ~58 Hz. 

This technique can be used to propel the samples/reagents stored in the liquid storage 

devices on the disc peripheral towards the disc center.   
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7.3 Effect of surface heterogeneity on the liquid flow 

A centrifugal microfluidic platform is usually a heterogeneous product since it is 

often fabricated by bounding layers of different materials e.g., PMMA and PSA that 

have different surface properties and contact angles. Herein, the effect of surface 

heterogeneity of micro channels and micro chambers on the flow pattern in stationary 

and rotating microfluidic platforms is investigated. In order to simulate the effect of 

surface heterogeneity on the flow pattern it is assumed that the different micro chambers 

and micro channels have different surface properties and contact angles. The contact 

angle of the bottom surface of the micro chambers/channels is assumed to be different 

(contact 80°-130°) from that of the other surfaces (70°). The results reveal that building 

microstructures with a careful selection of materials allows for equal bifurcation of a 

liquid samples inside a micro chamber or a micro channel. The bifurcation occurs as a 

spontaneous response of the liquid to the surface properties of its container. In addition, 

the effect of geometry of the micro chambers and the ratio of the liquid volume to the 

micro chamber volume on bifurcation of liquid is simulated. This technique can be used 

in micro mixing by split and recombination of the liquid in consecutive micro chambers 

and also for liquid distribution when equal volume of liquids needs to be delivered to 

different destinations. 

7.3.1 Concept    

The instantaneous response of a liquid on solid surfaces is based on the wettability of 

the surface. The liquid tends to spread and flow spontaneously on a hydrophilic surface 

whereas the spontaneous response of the same liquid on a hydrophobic surface is to 

contract and minimize its free energy by taking bubble-like form. This phenomenon can 

be utilized to separate liquid in a chamber and distribute the separated volume of liquids 

into different destination chamber. In order to separate liquid, it is required to design 

and fabricate micro chambers of different materials with relatively large difference 
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between their contact angles. A careful arrangement of the heterogeneous surfaces 

forming a micro chamber will cause two opposite responses of the liquid to hydrophilic 

and hydrophobic surfaces, which can lead to a complete separation of the liquid into 

two even parts.   

7.3.2 Numerical method and simulation cases 

The numerical method used to simulate the effect of heterogeneity on the flow 

pattern is the same to that used to simulate the effect of contact angles on the flow 

behavior (see section 3.4.2). Briefly, the volume of fluid method (VOF) from ANSYS-

Fluent software has been used to investigate the flow pattern. Structural mesh was used 

and the mesh sensitivity study was carried out to reduce the effect of meshing error in 

predicting the flow behavior.  

The dimensional effects and the effects of micro chamber shape on the flow pattern 

in the heterogeneous micro chambers are simulated. Table 7.1 lists the simulation cases 

used to investigate the flow pattern in different shape of micro chamber with different 

dimensions. The volume of the liquid and the ratio of the liquid volume to the volume 

of the micro chamber in the different cases are kept constant. The contact angles of the 

bottom surface of the micro chamber is considered to be 70° and is increased to 130° 

with the step size of 10°; the contact angles of the other surfaces are kept constant value 

of 70. The table lists the total number of different simulation cases studied and it 

contains three different micro chamber cases, which are the most common micro 

chamber shapes namely, rectangular, trapezoid and circular.  
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Table 7.1: Simulation cases used to study the effect of heterogeneity on the flow 

pattern. 

Case HxWxL θt,sº θbº Micro chamber 

1- 35 
5x6x0.5 

70 
70-

130 
Rectangular 

10x6x0.5 

36- 71 
13x7x0.5

13x7x1 
70 

70-

130 
Trapezoid 

72- 103 
R5.7x0.5 70 70- 

Circular 
R5.7x1 70 130 

7.3.3 Flow behavior  

Figure 7.3 shows a step-by-step flow movement in a rectangular micro chamber of 

5x6x0.5mm in the rest condition at different times. The top and side surfaces of the 

micro chamber are hydrophobic with contact angle of 120 and the bottom surface is 

hydrophilic with contact angle of 70. The micro chamber is partially filled with water 

with surface tension of 0.073 N/m. The response of the liquid to the hydrophobic 

surfaces causes spontaneous liquid flow from the surfaces with higher contact angles 

towards the surfaces of lower contact angle. Figures 7.3 (b), (c) show the decrease of the 

liquid-solid interface between the liquid and the top surface and the increase of the 

interface between the liquid and the bottom surface. Figures 7.3 (d), (e) show the 

process of formation and development of scattered wet areas on the top surface. The 

scattered wet areas on the top surface join due to the intermolecular and surface tension 

forces and a larger dry area on the top surface of the micro chamber is formed (see 

Figures 7.3 (f), (g)). The process of development of the new dry areas on the top surface 

of the micro chamber varies depending on the ratio of the liquid volume to the micro 

chamber volume (see Figures 7.3 (h), (i)). Following the development of new wet areas 

on the top surface the scattered wet areas are recombined and form a larger continuous 

dry area (see Figures 7.3 (j, (k)). The fluid continues its movement until it reaches its 

balance where the liquid is separated into two even parts as shown in Figures 7.3 (l), 

(o).  
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Figure 7.3: Top view of a heterogeneous micro chamber, θ=70˚ and β=120˚  

Figure 7.4 shows a step-by-step fluid response to heterogeneous surfaces in a 

trapezoid micro chamber of 13x7x2mm in the rest condition at different times. The top 

and side surfaces of the micro chamber are hydrophobic with contact angle of 130 and 

the bottom surface is hydrophilic with contact angle of 70. The liquid is initially 

dispensed into the micro chamber and the simulation starts (the liquid cannot be seen in 

Figure 7.4 (a), because it is spread on the bottom surface). The liquid starts to flow from 

the hydrophobic surface towards the hydrophilic surfaces. It reaches the top surface of 

the micro chamber from its corners due to the larger surface liquid interface at the 

corners (see Figure 7.4 (b)). The liquid continues its movement and spreads on the top 

surface of the micro chamber, which creates a larger wet area (Figures 7.4 (c), (d)). The 

development of wet areas on the top surface is corresponding to the development of dry 

area on the bottom surface (the hydrophobic surface) that cannot be seen in the figure. 

Figure 7.4 (e) shows that the wet areas on the top surface gradually combine and create 

a large continuous wet area on the top surface. However, due to the special shape of the 

micro chamber the liquid gradually splits from the larger base of the trapezoid and stays 

continues on the smaller base (Figures 7.4 (f), (g)). Unlike the rectangular shape the 
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liquid separation only occurs on the bottom surface (not shown) and on the top surface 

it is partially separated as shown in the Figure 7.4 (h). 

 

Figure 7.4: Top view of a trapezoid heterogeneous micro chamber. 

7.4 Summary 

For the first time the effect of moment of inertia of the liquids in the rotating 

microfluidic platforms on the liquid flow control and manipulation was investigated 

experimentally and theoretically. The preliminary results show that the moment of 

inertia of the liquid can be used to efficiently propel liquids towards any lateral or radial 

direction. For instance, it was shown that abruptly pausing or reducing the spinning 

speed of a rotating disc can transfer the entire liquid inside a chamber close to the disk 

rim to a chamber near the disc center.  

In addition, the effect of surface heterogeneity of the micro channels and micro 

chambers on the flow pattern in stationary and rotating systems were investigated. The 

preliminary results revealed that a careful selection of materials for building multi-layer 

microstructures can be used in micro mixing or in even bifurcation of liquids.     
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CHAPTER 8: CONCLUSIONS 

The research in this PhD thesis is motivated by the importance of precise microflow 

control in transforming various laboratory-based chemical and clinical assays into 

portable centrifugal microfluidics based devices. Efficient and inexpensive flow control 

techniques based on new principles and operations are introduced and compared with 

state of the art industrial approaches. Unlike previously introduced techniques our novel 

flow control methods are not dependent on the direction of the disk rotation and do not 

require special surface treatments or external power sources. The hardware to enable 

these techniques is easy to implement and provides robust control of the flow in 

centrifugal microfluidic platforms.  

In order to be able to develop inexpensive novel flow control microstructures, a 

comprehensive investigation of the relationship between contact angles and capillary 

dimensions on the performance of passive capillary valves has been carried out. The 

effects of different contact angles (20° to 90°) and capillary dimensions (100μm to 

700μm) on the burst frequency of capillary valves were investigated numerically and 

experimentally. As a result, a holistic insight into the performance of a wide range of 

capillary valves made from different materials from super hydrophilic to hydrophobic 

was acquired. The output of this research can be summarized as follows: 

The results show that the existing theoretical models for predicting the burst 

frequency in capillary valves cannot be used for super hydrophilic materials since they 

are unable to predict the fluid leakage. While they predict that, a high pressure is 

required for pushing the fluid over super hydrophilic capillary valves, our computed 

results show that fluid flows consistently over such capillary valves into the next outlet 

at low pressures. The results also show that, generally burst frequencies of square 

capillaries are lower than those of rectangular shapes.  
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For the first time, a new valving technique named gate valve is introduced that 

exploits a geometrical effect on the surface tension to control and switch the flow 

direction in centrifugal microfluidics. The new valve is a frequency dependent device 

that is able to direct the flow to one direction (e.g., c.w.) at low frequencies and to the 

opposite direction (e.g., c.c.w.) at higher frequencies without using external power 

sources or applying surface treatments. At low frequencies, the liquid follows a path 

dictated by the specific gating microstructure and at higher frequencies; liquid follows 

the direction of the Coriolis force. The flow behavior of the new valve for distilled 

water as well as for liquids with different properties was investigated experimentally 

and numerically. The results show that the new valve is able to control the flow 

direction on a spinning microfluidic platform for liquids of widely varying properties. In 

comparison with the previously introduced techniques of flow, switching gate valve 

enables switching the flow direction without employing external power sources, 

applying surface treatments or changing the direction of disc rotation. It directs entire 

liquid in the direction opposite to that of Coriolis force at low rotational velocities and 

in the direction of Coriolis force at high rotational velocities. Gate valve by introducing 

minimal complexity and minimal occupation of the disc’s real estate allows for 

implementing larger number of multiplexed and more sophisticated assays on the 

centrifugal microfluidic platforms without interrupting other operations. 

Another novel microvalve is presented that allows for the efficient routing of 

samples and controlling the flow direction on centrifugal microfluidic platforms. The 

distinctive feature that makes this approach different from other types of passive 

capillary valves is the robust control of liquid movement, which is achieved by 

employing two adjustable sequential burst valves i.e., a primary and a secondary burst 

valve. This valve configuration can be used to route samples and reagents at given flow 

rates to selected receiving reservoirs, determined by the spinning frequency of the disc. 
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It is capable of guiding the liquid into several outlet branches as well as determining the 

direction of the flow in T-junctions. The technique also allows for switching the flow 

direction instantaneously from the direction along the disc rotation and to the opposite 

direction by immediate increasing of the rotational speed and switches the liquid flow 

back to its previous direction by reduction of the spinning speed. The performance of 

this novel valve configuration was experimentally tested, the flow behavior was 

numerically studied using the VOF method and a theoretical model for their burst 

frequency was presented. In addition, the capability of the valve to equally distribute the 

flow into two branches has been discussed theoretically and numerically. This valving 

technique is applicable to clinical and chemical operations where switching the flow 

direction or equal and non-equal liquid distribution is required. Example of these 

operations are switching of the liquid flow between two or more pathways in order to 

separately direct them to different chambers e.g., where a specimen such as DNA, 

protein and or antigen has to be discharged into a clean buffer solution. 

For the first time, the role of the effective moment of inertia of the liquid in 

centrifugal microfluidics was investigated. The effective moment of inertia of the liquid 

inside a chamber on a rotating disc can be used for pushing the liquid towards specific 

lateral or/and radial directions by suddenly pausing or reducing the rotational velocity of 

the disc. The experiment results confirmed that utilizing the effective moment of inertia 

of the liquid i.e., as a result of a sudden reduction of the rotational speed (~45 Hz/s), 

propels the entire liquid volume from a chamber adjacent to the disc’s periphery to a 

chamber close to the disc center. The experiment was carried out for chambers 

connected with square hydrophobic capillaries (400x400µm) and disc rotational 

velocities of ~58 Hz. This technique can be used to propel the samples/reagents stored 

in vessels on the disc periphery towards chambers in lateral directions or the disc center.  
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The effect of surface heterogeneity of micro channels and micro chambers on the 

flow pattern in stationary and rotating microfluidic platforms was investigated 

numerically. In order to simulate the effect of surface heterogeneity on the flow pattern 

it was assumed that the different micro chambers and micro channels have different 

surface properties and contact angles. The contact angle of the bottom surface of the 

micro chambers/channels was assumed to be different (80°-130°) from that of the other 

surfaces (70°). The results reveal that building microstructures with a careful selection 

of materials allows for equal bifurcation of a liquid samples inside a micro chamber or a 

micro channel. The bifurcation occurs as a spontaneous response of the liquid to the 

surface properties of its container. In addition, the effect of geometry of the micro 

chambers and the ratio of the liquid volume to the micro chamber volume on the 

bifurcation of liquid was simulated. This technique can be used in micro mixing by split 

and recombination of the liquid in consecutive micro chambers and also for liquid 

distribution when equal volume of liquids needs to be delivered to different 

destinations. 

8.1 Suggestions for future study 

The preliminary results of the effect of moment of inertia on the fluid flow have been 

presented in Chapter 7. These results implied that the moment of inertia can be used as 

an inexpensive passive pumping technique in the centrifugal microfluidics. The effect of 

the moment of inertia required to be profoundly analyzed using theoretical and 

numerical methods to characterize the mechanism of the micropumps which can be 

developed based on the effect of the moment of inertia.  

As well, the simulation results of the effect of the surface heterogeneity in the vessels 

on centrifugal microfluidics presented in the last chapter showed that using smart 

combination of different contact angles when fabricating these vessels can be used for 
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mixing or separating purposes. Further simulations to observe the effect of the surface 

heterogeneity in microchannels is recommended to investigate the effect of different 

contact angles on the fluid motion in heterogeneous microchannels. These simulations 

need to be experimentally verified to validate the results obtained.  
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