
1

CHAPTER 1: INTRODUCTION

Distillation column is one of the most important components in a separation system.

Separation process between mixtures occurs inside the distillation column and it produces

two types of products, which are the top and bottom products. Most of the time, the top

product will be the main product of the separation and the bottom product will undergo

another separation for another desired product. However, some of the fore mentioned

products will be recycled back into the column as reflux. This is where the distillation

process in distillation column gets complicated (Seader & Header, 2006).

It is difficult to maintain the stability in the process and the quality of the product as

it is correlated. The process in distillation column proves to be complicated and difficult

to handle as it is complex and highly un-predictive in nature (Seader & Header, 2006).

It is a challenge to maintain the stability and desired quality that meets the customers’

requirements. Distillation column is a well-known unit operation in industry. Through

the 20th century, distillations are widely used for separating liquid mixtures of chemical

compounds. Approximately two thirds of the energy for distillation is consumed by

petroleum refinery. Distillation is favorable for separating crude oil into petroleum

fractions, light hydrocarbon and aromatic chemicals (Seader & Header, 2006).

Separation of other chemical compounds, often in the presence of water, is a

common practice in the chemical industry. The success of a distillation column as a

method of separation is due to its operational flexibility. For a distillation column,

proper control strategies are selected through appropriate implementation. This is very

important because the controller has significant effect on product quality, production

rate, and energy usage. In a distillation process, controlling a column is challenging

since it involves nonlinearities, dual compositions control and disturbances. In refining

industries, the product quality of a debutaniser column is always important and the main
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focus of its operation is namely to produce the Liquefied Petroleum Gas (LPG) and light

naphtha (Gupta et al., 2009), (Hori & Skogestad, 2007)

The debutaniser column is operated at one of Malaysia’s crude oil refinery. The

refinery produces almost 49 000 barrels of Malaysian light, sweet crude oil on a daily

basis. After a recent addition of a Condensate Spiller Unit, the plant produces 74 300

barrels of naphtha condensate per day. This product is used as the main feed stream in

the aromatics plant. The plant receives its feedstock mainly from Bintulu and

Terengganu and it contains low amount of sulphur. The main focus of this research is to

predict the product quality which involves the composition and temperature of the

Debutaniser column in the Crude Distillation Unit (CDU) of the Kerteh Refinery. To

achieve high purity product, an extensive study is conducted to maximize the product

(n-butane and i-butane).

The debutaniser column is a type of fractional distillation column that is used to

separate butane from natural gas, especially during the refining process which is usually

controlled by manipulating the reflux and re-boiler flow rates of the column to ensure

the desired purity of the products. Most of the complexity of the process of controlling

the column comes from the unique characteristics of the column itself, including its

complex dynamics, high nonlinearity and interaction between the control loops (Gupta,

Ray & Samanta, 2009).

1.1 Problem statement and motivation

Petroleum industry is one of the most prolific and dynamic industries of modern

civilization. Because of the highly competitive market and stringent environmental

laws, strict quality control of refinery products is a must. The Crude distillation unit

(CDU) is one of the systems through which the entire crude entering a refinery is to be

processed. Thus close monitoring and control of CDU product properties will help in
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controlling the properties of the refinery products. It is often sufficient to characterize

refinery products in terms of certain properties such as Reid Vapor Pressure for volatile

products, Flash Point for light distillate, Pour Point for heavy distillate and etc.

Continuous control of the unit demands that these properties should be measured on-line

so that it can be effectively controlled through a feedback mechanism.

The debutaniser column of the PETRONAS Penapisan Terengganu Sdn Bhd

(PPTSB) produces LPG (liquefied petroleum gas) as the top stream and light naphtha as

the bottom stream. The controlled outputs, which are the critical product quality to be

measured, are the concentration of the top and the bottom stream. Currently, few

methods are governed in determining these product qualities in PPTSB. The laboratory

sample of both top and bottom products are taken. Sample is taken to the laboratory and

product quality has to be determined experimentally using the appropriate ASTM

Method. LPG composition is measured based on ASTM D2163 for composition test.

The composition measured is Propane, i-Butane, n-Butane, i-Pentane and n-Pentane

they are measured by using gas chromatography.

PPTSB uses Inferential Calculation to measure Debutaniser Overhead percentage of

C4 (n-butane). It is generated using simple linear regression method by comparing the

actual %C4 result versus Process Data (can be obtained from PI system). Calculation

description for %C4 is given below;

bPCTaC  *% 4 (1)

Where;

PCT = Pressure compensated temperature of top temperature (Different calculation to

measure composition in Debutaniser Column based on Temperature and Pressure)

a = Gain coefficient between the PCT and %C4 lab result

b = bias (Updated based on lab result)
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However, from the industrial perspective, the problem with the existing old method

is that, laboratory measurement procedures are slow, tedious and time consuming.

Therefore, inferential model using linear regression usually encounters colinearity

problem, which adversely affects long-term prediction performance since the outputs of

the debutaniser column usually depend on the feed composition which also cannot be

determined online. In addition its variation significantly affects the output values. Thus,

alternative method has to be used to generate a better model.

The purpose of this research is to develop NN based models in predicting the critical

product qualities i.e. composition and temperature prediction and to control top and

bottom temperatures of the debutaniser column of the PPTSB. Neural Network is

expected to be able to generate a better model for the prediction of the product qualities

and the hybrid neural network model is expected to improve the prediction of the

composition and temperature of the column. Neural network forward and inverse

models are able to simulate the dynamic response of the column to estimate

composition and to control temperature which can be used as a neural network

controller.

The challenges for the soft sensors which are;

 The integration, coupled with unceasing electronic miniaturization, will make it

possible to produce extremely inexpensive sensing devices

 The automatic adaptations to changes in environment and requirements

 The coordination applications are better realized using localized algorithms
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There are some work based soft sensors that have a number of advantages which are;

 They are cheaper compared to hardware sensors

 They work in parallel with hardware sensors, giving important information for

fault diagnosis

 They can be easily be implemented on existing hardware that are available in the

industry and can easily be used for tuning PID controller when system

parameters changes

 They can estimate real time data, overcoming the delays introduced by slow

hardware sensors

In this application, available process information given by engineers is used to select

the important input variables and it requires a huge amount of existing working data, to

be collected in the refinery over a period of five years. The set of data is used to tune the

parameters of a Nonlinear Autoregressive network with exogenous inputs (NARX)

structure implemented using appropriate lagged inputs to the process model. This

ensures that the developed process model is dynamic in nature and not in the steady

state of the process. NN based modeling is a useful strategy, It is used in a number of

industrial applications, when real-time estimation of plant variables is required for

monitoring and control purposes and on-line sensors may give variable measurements

with small delays (Fortuna, Graziania & Xibilia, 2005) This is often applied to the

petrochemical plants. The importance of equation based models is that it is robust in

nature and it could relate the relationship between input and output predictions and

hence it is can be easily applied as a soft sensor. Furthermore it is MIMO (Multi input

multi output) based model that can predict the composition and temperature through the

use of a single vector equation.

This work indicates that neural network can be applied as a controller to better

understanding the oil refinery industry. In this work, we have carried out an advanced
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control strategies and hybrid modelling to predict the composition and temperature for a

real plant debutaniser column in the refinery industry. The non-linear controllers for the

distillation column can be developed. NN offer an alternative approach to model non-

linear process and result in a controller that overcomes the issues of on-line

computation. The data obtained are collected from the actual plant. Some of the data

that is not available are obtained using simulation.

1.2 Objectives

The main focus of this research is to achieve a control strategy that can help to

maximize the product output at the Debutaniser column. The desired output is n-butane

and i-butane. The objectives of the current work are as follows;

1. Data generation (using open loop, closed loop and extract from close loop)

and validation for a real debutaniser columnso as to develop a neural network

process model using black box for the column.

2. To develop a neural network process model using equation based for the

column to predict the composition and temperature.

3. To develop an equation based hybrid model NN of 1 hidden layer to conrol

temperature and estimate composition of a debutaniser column.

4. To implement an advanced process control for the column to control

temperature and to estimate composition using equation based models.

Since there are delays for composition prediction, soft sensors are proposed to

overcome this delay for the column.
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1.3 Scope of work

The scopes of work for this research are as follows:

1. The steady state and dynamic simulation for the debutaniser column are

developed.

2. The process variable for controller settings based on actual plant data and

simulation are analyzed.

3. The performance of models generated by NN and current methods using

black box model are used in predicting critical product quality for debutaniser

column. The selected component composition in the top and bottom products,

top and bottom temperatures using equation based neural network model are

compared.

4. The composition and temperature for the column using hybrid neural network

equation based are estimated using the combination of the residual prediction

and the first principle model.

5. The advanced process control for the column using equation based is

developed.

The scope of study is mostly on the development of the neural network model,

hybrid prediction and advanced process control performance of the column. MATLAB

version 2006 is used for obtaining the neural network model, hybrid model and

advanced control. SIMCA-P is used for principal component analysis and partial least

square analysis to analyze the variables surrounding the column. Both of the software

are used throughout the development of the study.
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1.4 Novelties

The novelties of the work are;

1. Neural network architecture which is used to train the network for the

composition and temperature is implemented by means of an equation based

method. The equation-based method is used to replace the black box model

neural network architecture.

2. The equation based neural network forward model is used to predict the

debutaniser composition and temperature. The residual neural network model

is used to develop the hybrid model for the column by predicting the

composition and temperature.

3. The forward model for the temperature is used to develop the inverse model

to be applied as a controller. On the other hand the forward model for the

composition is used as neural network estimator. The debutaniser column is a

MIMO based controller.

1.5 Dissertation Organization

This thesis has been organized into chapters as listed below:-

(a) Chapter 1 introduces the work objective and dissertation organization.

(b) Chapter 2 presents the literature review and highlights the important

concept of artificial neural network and its application including the

theory of principal component analysis and partial least square analysis.

(c) Chapter 3 outlines the plant description and case study for the column,

data generation for open and closed loop, data pre-treatment using PCA

and PLS.
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(d) Chapter 4 discusses the simulation work process model for composition

and temperature applying equation based neural network for the column.

(e) Chapter 5 focuses on the implementation of hybrid model based

monitoring strategies for composition and temperature.

(f) Chapter 6 highlights the findings and results for advanced process

control using direct inverse control and internal model control using

network and neural network equation based in terms of set point changes

and disturbances applied for the column.

(g) Chapter 7 is a derivation of the conclusion and recommendations for

future work.

(h) Further sections ouline the references and appendices used in the

dissertation.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

In this chapter, the background of neural network and its architecture are outlined.

NN model is similar to the newborn human where it needs to be developed, trained, and

taught in order to perform a specific task. The methods in which data are trained are

highlighted in the next section. It shows the procedure to obtain reliable neural network

models. A number of researchers have worked on neural network application, principal

component analysis and partial least square analysis (Liu et al., 2009),(Zamprogna et

al., 2005), (Chen et al., 1998), (Kano et al.,2000), (Zamprogna et al.,2004), (Fortuna et

al., 2005), (Singh et al., 2007), (Zilochan & Bawazir, 2001), (Prasad & Wayne

Bequette,2003) . Literature is cited, highlighted and indicated the possible neural

networks application for process system engineering which leads to control strategies

and the development of hybrid models.

2.2 Neural network introduction

An ANN, usually called NN, is a mathematical model or computational model that

is inspired by the structure and functional aspects of biological neural networks

(Bertsekas & Tsitsiklis, 1996). A neural network consists of an interconnected group

of artificial neurons, and it processes information using a connection approach

to computation. In most cases an ANN is an adaptive system that changes its structure

based on external or internal information that flows through the network during the

learning phase. Modern neural networks are non-linear statistical data modeling tools.

They are usually used to model complex relationships between inputs and outputs or

to find patterns in data. The original inspiration for the term ANN consists of centre

nervous systems and their neurons, axons, dendrites, and synapses, which constitute the
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processing elements of biological neural networks investigated by neuroscience. In an

ANN, simple artificial nodes, which are called neurons are connected together to form a

network of nodes mimicking the biological neural networks.

There are several ways to inspire from the brain, in which there is no single formal

definition of what an artificial neural network is. Generally, it involves a network of

simple processing elements that exhibit complex global behavior determined by

connections between processing elements and elemental parameters. While an artificial

neural network does not have to be adaptive, its practical use comes with algorithms

designed to alter the weights of the connections in the network to produce the desired

signal flow (Bertsekas & Tsitsiklis, 1996). These networks are similar to the biological

neural networks in the sense that functions are performed collectively and parallelled by

the units, without clear delineation of subtasks to which various units are assigned.

Currently, the term ANN tends to refer mostly to neural network models employed

in statistics and artificial intelligence.

2.3 Types of artificial neural network

The types of neural network are sectioned into various categories based on the

structure of the network including their connections and arrangements. The overall

behavior of the network is determined by adjusting the connection weights to achieve

the desired output based on its learning algorithm. There are various types of neural

network that can be used. However since this work involves dynamic processes, the

suitable neural networks that can be used are the feed forward, recurrent and NARX

type model (Demuth et al., 2007)
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2.3.1 Feed forward network

The feed forward network consists of more than one hidden layer. Multiple layers of

neurons using non-linear transfer function will allow the network to recognize non-

linear relationship between the outputs and inputs. The input layer is the first layer,

while the second layer is the hidden layer and the output layer is the third layer. The

layer is consisting of weights and biases. The weights could be adjusted to achieve the

target values using appropriate training algorithms (Demuth et al.,, 2007).

2.3.2 NARX network

The nonlinear autoregressive network with exogenous inputs is a recurrent dynamic

network. The feedback connections will enclose the layers of the network. The NARX

model consists of feed forward neural network. There are various examples for the

NARX network. It can be used as a predictor. It will predict the next value of the inputs.

The use of the network can be applied for an important application to model the

nonlinear dynamic system (Demuth et al., 2007). The output of the NARX network is to

be an estimate of the output of nonlinear dynamic system. The output is fed back to the

input of the feed forward neural network. The true output is available during training

and it can also create a series of parallel architecture in which the true output is used

instead of feeding back the estimated output.

2.4 Learning paradigms learning task

There is one major learning paradigm, each corresponding to a particular abstract

learning task which is used in this work that is supervised learning.
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2.4.1 Supervised learning

In supervised learning, we are given a set of example pairs x and y and the aim is to

find a function y=f(x) in the allowed class of functions that matches the examples. In

other words, we need to infer the mapping implied by the data; the cost function is

related to the mismatch between our mapping and the data and it implicitly contains

prior knowledge about the problem domain. A commonly used cost is the mean-squared

error, which tries to minimize the average squared error between the network's output,

f(x), and the target value y over all the example pairs. When one tries to minimize this

cost using gradient descent for the class of neural networks called multilayer

perceptions, one obtains the common and well-known back propagation algorithm for

training neural networks. Tasks that fall within the paradigm of supervised learning

are pattern recognition (also known as classification) and regression (also known as

function approximation). The supervised learning paradigm is also applicable to

sequential data. This can be thought of as learning in the form of a function that

provides continuous feedback on the quality of solutions obtained.

2.4.2 Learning algorithms

Training a neural network model refers to selecting one model from the set of

allowed models that minimizes the cost criterion. There are numerous algorithms

available for training neural network models (Demuth et al, 2007). Most of them can be

viewed as a straightforward application of optimization theory and statistical estimation.

Most of the algorithms used in training artificial neural networks employ some form

of gradient descent. This is done by simply taking the derivative of the cost function

with respect to the network parameters and then changing those parameters in

a gradient-related direction. The supervised learning in a feed forward multilayer

perceptron (MLP) is normally used is the back-propagation method. Given two sets of
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data, that is input/output pair, the MLP can have its weights adjusted by the back-

propagation algorithm to develop a specific nonlinear mapping. The MLP with fixed

weights after the training process can provide an association task for prediction. During

the training phase of the MLP, the weights are adjusted to minimize the disparity

between the actual and desired outputs of the MLP.

2.4.3 Levenberg-Marquardt method

The purpose of using the Levenberg-Marquardt (LM) algorithm method is to train

the neural network in the NARX network. The LM is designed for second order training

speed without the Hessian matrix to be computed. The performance function consists of

sum of square as similar to feed forward training. The Hessian matrix can be derived as

HTHG  (2.1)

The gradient can be derived as

eHI T (2.2)

where H is the Jacobian matrix that consists of first derivatives of the network error

with respect to biases and weights values and e is the network error. The Jacobian

matrix can be defined as a standard back-propagation technique.

The LM algorithm uses almost similar to the Hessian matrix as

eHFHHxx TT
kk

1
1 ][ 

   (2.3)
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When  is zero, the equation simplifies to Newton’s method. When  is large, the

equation will become gradient descent. So the target is to shift the Newton method as

fast as possible. When there is a reduction in the the performance function the  is

decreased and it increases when the performance function increases. The effect of the

performance function is reduced at each iteraction of the algorithm (Demuth et al,

2007). This LM algorithm method is used in this work.

2.5 Neural network design

The greatest advantage of ANN is its ability to be used as an arbitrary function

approximation mechanism that learns from observed data (Demuth et al., 2007).

However, its usage is not very straightforward. A relatively good understanding of the

underlying theory is required which includes the following;

 Choice of model: This will depend on the data representation and the application.

Complex models tend to lead to problems with learning.

 Learning algorithm: There is numerous trade-offs between learning algorithms.

Almost any algorithm will work well with the correct parameters for training on a

particular fixed data set. However selecting and tuning an algorithm for training on

unseen data requires a significant amount of experimentation.

 Robustness: The right selection of cost function and learning algorithm ensure the

robustness of the resulting ANN.

With the correct implementation, ANN can be used naturally in online learning and

large data set applications.
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2.5.1 Procedure for obtaining the neural network models

The neural network is complex and it is a crucial and major concern to the system

developer. To design the neural network architecture is important and the networks are

allowed to learn the data set using appropriate training data set. The detail procedures to

obtain a suitable neural network model are outlined below:

1. The data set are partitioned into three categories. The first category is

training all the data set. The second category is training and validation. The

third category is training, validation and testing.

2. Selecting suitable input and output for the neural network. The inputs can be

large data sets that are used in training to predict the output of the network.

3. Selection of suitable neural network architecture. There are several neural

network architecture available such as feed forward, recurrent network and

radial basis function network. The proposed neural network is the NARX

series parallel.

4. Initialize the weights and biases value for training the network.

5. Train the neural network with suitable training algorithm. The selected

algorithm is the LM method. The objective is to reduce the error between the

observed and predicted value. The training will eventually stop until the

training parameter goal is reached.

6. Validate the trained neural network with validation data set. Testing the

trained neural network with testing data set.

7. If the validation and testing are not satisfactory, it indicates that the neural

network is not properly trained and it requires more training. This is because

there is insufficient number of neurons in the hidden layer and improper use

of transfer function.
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8. To reconfigure the neural network architecture by increasing or decreasing

the number of hidden nodes and layer.

The procedure is summarized in Figure 2.1

Figure 2.1. General procedure in obtaining the suitable neural network model

Data for training and
validation are arranged in Excel

interface with MATLAB

Choose suitable input/output
to the network

Choose dynamic
neural network

architecture

Initialize of weight and
biased value

Train the neural network
with early stopping

training algorithm until
training parameter goal

has been met

Validate the trained
neural network

With validation data set

Validation
Sufficient ?

Final neural network architecture

Re-evaluate the neural network
architecture by changing the

hidden layer and transfer
function

Yes

No
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2.6 Data pretreatment

These data that are available from the actual plant are large and therefore need to be

screened by performing principal component analysis (PCA) and partial least square

(PLS), where the important variables for the column are obtained and used for

monitoring the composition. For each of the step test, PCA is used to determine the

important variables surrounding the column. Once we have determined the process

variables, the important variables affecting the composition are further analyzed using

PLS analysis. The data that have been screened are used to develop the neural network

model in order to predict the temperature and composition.

2.6.1 Principal component analysis (PCA)

Principal component analysis (PCA) is one of the most valuable results from applied

linear algebra. PCA is used abundantly in all forms of analysis because it is a simple,

non-parametric method of extracting relevant information from confusing data sets.

With minimal effort, PCA provides a roadmap to reduce a complex data set to a lower

dimension (Eriksson et al., 2006). This is to reveal the sometimes hidden, simplified

dynamics that often underlie it. The objective of principal component analysis is to

compute the most meaningful basis for the data set. The new basis will filter out the

noise and reveal hidden dynamics. Determining this fact allows one to discern which

dynamics are important and which are just redundant. Let X and Z are nm matrices

relate by a linear transformation T

ZTX  (2.4)

where X is the original recorded data set and Z is a re-representation of that data set.
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Figure 2.2: Notation used in PCA as extracted from (Eriksson et al.,

2006).

The observations (columns) in Figure 2.2 can be analytical samples, chemical

compounds or reactions, process time points of a continuous process, and so on. The

variables (rows) can be of spectral origins, or be measurements from the sensors and

instruments in a process (temperatures, flows, pressures, etc.). Equation 2.4 represents a

change of basis and the row vector },...,{ 1 mttT  can be interpreted as a new set of

basis vectors for representing the columns of X. In this transformation, the rows of T

will become the principal components of X. PCA assumes that all basis vectors {t1, …,

tm} are orthonormal (i.e. ijji tt  ). In linear algebra, PCA assumes T is an

orthonormal matrix. Secondly PCA assumes the directions with the largest variances as

the most important.

The true benefit of the orthonormality assumption is that it makes the solution

amenable to linear algebra (Eriksson et al., 2006). There exists linear algebra

decomposition techniques, which can provide efficient, explicit algebraic solutions

namely, eigenvectors of covariance matrix (and the more general singular value

decomposition) of covariance matrix. Referring to the previous section, the main

characteristic of eigenvectors is that all the eigenvectors of a matrix are orthogonal to

each other regardless of the number of variables. The second assumption determines the

importance of each principal direction. The variances associated with each direction, ti
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quantify the direction of each principal. Hence, we can rank-order each basis vector, ti

according to the corresponding variances.

By the variance assumption, PCA first selects a normalized direction in m-

dimensional space in which the variance in X is maximized and it is called as t1. Again

it finds another direction along which the direction is maximized. However, because of

the orthonormality condition, it restricts its search to all directions perpendicular to all

previous selected directions. This can continue until m directions are selected. The

resulting ordered set of t’s are the principal components (Eriksson et al., 2006).

Performing PCA is quite simple in practice; the following are the steps to perform PCA:

1. Organize a data set as a nm matrix, where m is the number of variables

(dimensions) and n is the number of trials (observations).

2. Subtract the mean for each measurement type (pre-treatment of data).

3. Calculate the eigenvectors of the covariance matrix. This will give the principal

components vector T.

Figure 2.3 gives the geometric illustration of a PCA model with two principal

components, t1 and t2 in 3 dimensional spaces. The principal component loadings

uncover how the PC-model plane is inserted in the variable space. The loadings are used

for interpreting the meaning of the scores (Eriksson et al., 2006).
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Figure 2.3: A geometric illustration of a PCA model with two principal components t1

and t2.

In Figure 2.3, it can be observed that the direction of the first principal component,

t1, in relation to the original variables is given by the cosine of the angles α1, α2 and α3.

These values indicate how the contribution of the original variables x1, x2, and x3 is to t1,

and it is represented by a vector },,{ 3211 p .Vectors p1 and p2 (for principal

components t1 and t2 respectively) are called principal component loadings or loading

vectors. The loading vectors define the orientation of the principal component plane

with respect to the original X-variables. The loadings unravel the magnitude (large or

small correlation) and the manner (positive or negative correlation) in which the

measured variables X contribute to the principal components ti.



22

2.6.2 Partial least square (PLS)

PLS is defined as a regression technique for modeling purposes between the input

and output variables. It can be used as a building block to detect the regularities of the

data in the model under study. It is a method to relate two matrices, X and Y to each

other (Eriksson et al., 2006). PLS stands for projections to latent structure by means of

partial least squares. It has the ability to analyze data in both X and Y coordinates. The

precision of PLS improves by having a large number of X variables that provides more

information about the observations. It is a useful regression technique for modeling and

can deal with complicated and approximate relationship. It can also be used to check the

validity of the model from theory.

It often applies to process modeling. The method used for PLS is to relate two data

matrices, for an example variable X as the input and Y is the output. A PLS model will

try to find the multidimensional direction in the X space that explains the maximum

multidimensional variance direction in the Y space. PLS regression is particularly suited

when the matrix of predictors has more variables than observations, and when there is

multicollinearity among X values. By contrast, the standard regression will fail in these

cases. A linear multivariate model is used to relate between input variable and output

variable to each other. PLS has the ability to analyze large data, noisy, collinear and

incomplete variable in both input and output. The precision of a PLS model improves

with increasing the number of input variables. Large numbers of variables that are

analyzed provide better information on the observation (Eriksson et al., 2006). PLS

regression is a statistical method that are used for principal component regression;

instead of finding hyperplanes of minimum variance between the response and

independent variables, it finds a regression model by projecting the predicted variables

and the observed variables to a new space. It is used to find the fundamental relations

between two matrices, latent variable approach to modeling the covariance structures in
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these two spaces. The PLS algorithm is employed in PLS path modeling, a method of

modeling a network of latent variables which cannot be determined without

experimental or quasi-experimental methods. This technique is a form of structural

equation modeling, distinguished from the classical method by being component-based

rather than covariance-based.

In PLS, a set of components is determined that performs simultaneously

decomposition of X and Y with the constraint that these components explain as much as

possible of the covariance between X and Y. It is followed by a regression step where

the decomposition of X is used to predict Y. Hence, the first PLS component is a line in

Y space, through the average point, such that the lines approximate the data well, and

the projections (t1 and u1) are well correlated. The projected co-ordinates in the two

space (u1 and t1 in Y and X) are correlated in the inner relation ui1=ti1+hi (hi is a

residual). The lines in X space are orthogonal whereas lines in Y space are not

orthogonal. The reason reason being the main objective is to find the maximum

correlation between X and Y.

Prediction via PLS model: The output (or dependent) variables are predicted using the

multivariate regression formula as:

^
1

^

)( XQWPXWTQY TTT   (2.5)

where
^

1)(  TT QWPW is the correlation/regression coefficient between the input and

output variables. It may also be noted that,

1. columns of matrix T contain the latent vectors t

2. weights W are the regression coefficient of columns of X on u
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3. P is the loadings for matrix X. The loading vector p is the regression

coefficient of columns X onto t. The loading vector p is only computed at the

convergence of latent vector t and used to calculate the residuals at each

stage

Correlation coefficient and dimension reduction in the PLS model is expressed as a

set of X-score vectors, Y score vectors, X-weight and Y weight vectors, as a set of PLS

model dimensions. One of the analysis tools available using PLS is the coefficient plot.

In the coefficient plot, the sizes and the signs of the coefficient relating to centered and

scaled variables indicate the influence of each input variable term. The statistical

significant of each coefficient is indicated as 95% confidence intervals.

Figure 2.4: The X variables are defined as factors and Y variables are called responses

(Eriksson et al., 2006).

2.6.3 Literature review for principal component and partial least square

analysis for distillation column

PCA describes a remarkably simple approach to multivariate analysis based on

projection methods. The projection approach can be adapted to a variety of data

analytical objectives such as summarizing and visualizing a data set, multivariate

classification and discriminate analysis and, finding quantitative relationship among the

variables. Projection methods can be made robust to outliers, deal with non-linear
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relationship and adapt to drift in multivariate process data. Dynamic PCA considers the

dynamic process by introducing time lagged variables into the inferential models (Liu et

al., 2009). The dynamic methods are suitable for processes with long time delays and

varying throughputs on process variables. Secondary variables are sensitive to primary

variables when implementing inferential estimator in achieving the column optimum

performance (Zamprogna et al, 2005). As there are many possible locations of the

temperature sensors for a column, the selection of the secondary variables as inputs

becomes difficult. PCA properties are measured by extracting a matrix and using input

variable for the online implementation (Chen et al, 1998). Many approaches have been

studied to build a secondary variable model from readily available measurements such

as tray temperatures to replace the quality measurements. A secondary variable

approach has been studied for use when quality measurements are not available.

Partial Least Square (PLS) is an extension of PCA, which is used to connect

information of variables (Eriksson et al., 2006). In order to understand and interpret the

acquired regression model, PLS provides model parameters with other diagnostic tools

where by increasing the number of X variables, it can improve the precision of a PLS.

In the literature there exists some modelling work of a debutaniser column using PLS.

For example, dynamic partial least square regression is used for inferential model for

composition prediction in a multicomponent distillation column (Kano et al, 2000). Past

sampling times measurements are used as input variables to interpret the dynamic

process. PLS is also used to predict the composition profile in a simulated batch

distillation column (Zamprogna et al., 2004). The inputs are temperature measurements

and the output is the composition in the distillate and bottom streams. The estimator

performance is evaluated based on the pre-processing of the calibration and validation

data sets, number of measurements used as sensor inputs, presence of noise in the input

measurements, and use of lagged measurements. A simple augmentation of the
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conventional PLS regression approach is proposed, which is based on the development

and sequential use of multiple regression models. In this work, PCA is used to analyze

all the variables surrounding the column. PLS analyses are performed to decide the

variables that are related to composition.

The debutaniser column is an important unit operation in the petroleum refining

industries. The objective of this work is to perform principal component analysis (PCA)

of the debutaniser column and to study correlation between the variables, to detect

critical and moderate outliers, to identify the importance of the variables and loading of

variables surrounding the column. The results prove the proposed approach is important

for optimum configuration of the column (M Ramli, Hussain & Mohamed Jan, 2011).

2.6.4 Literature review for modeling for distillation column especially

debutaniser column

A nonlinear adaptive state estimator/observer (ASE/ASO) is developed based on a

simple observer model structure that mainly consists of only two component balance

equations around the condenser-cum-reflux drum and the re-boiler-cum-column base

(Jan et al., 2009). In this approach, vapor flow rate of component

n-pentane (heavy key) leaving top tray, liquid flow rate of component n-butane (light

key) leaving bottom tray and distribution coefficient of component nC4 in the re-boiler

are considered as extra states with no dynamics. Despite process/model mismatch, the

proposed state observer estimates the required states of a simulated debutaniser column

precisely. Mainly because of the design simplicity, negligible computational effort and

fast convergence, the observer is recommended for online implementation (Jan et a;.,

2009). In the subsequent part, the globally linearizing control (GLC) structure, which

consists of a nonlinear transformer (input–output linearizing state feedback), a linear

external controller and an adaptive state observer, has been synthesized. The hybrid

GLC–ASO control algorithm provides promising performance compared to the
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proportional integral (PI) controller that has been thoroughly investigated on the

complex refinery debutaniser column. For example, dual temperature control method is

achieved by combining the middle and top temperature change to control the state

switch of the total reflux and withdrawal during the operation (Peng et al., 2007)..

The steady state and dynamic process can be characterized for product variability

prediction. These characteristics are used to generate a linear dynamic tray-to-tray

model for a distillation column (Enagandula & Riggs, 2006). In order to derive low-

order dynamic models from detailed models of staged processes, compartmental and

aggregated modelling is used.

The debutaniser column is an important unit operation in the petroleum refining

industries. The debutaniser column used in this study consists of 35 trays valve type

with a partial condenser, and with column diameter and the column length of 1.3 m and

23.95 m respectively. The objective of this work is to study the dynamic behavior of the

debutaniser column using HYSYS and to study different types of control strategy

applications for the debutaniser column. A comparison of process variables for

controller setting based on PID has been made. Set point changes and Internal Model

Control (IMC) tuning method is also presented in this paper with acceptable result (M

Ramli & Hussain, 2009).

2.6.5 Literature review using neural network for distillation column

NN have the ability to learn from their environment and to adapt to it in an

interactive manner similar to their biological counterparts. Indeed this is an exciting

prospect of the vast possibilities that exist for performing certain functions with ANN

can emulate the comparable biological function. Applications of neural network include

prediction and forecasting, associative memory, functional approximation, clustering,

data compression, speech recognition, nonlinear system modelling, nonlinear control
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and solution of differential equation. In this respect, ANN offers a powerful tool to

model non-linear processes and be utilized as an efficient soft sensor. ANN has the

ability to learn a relationship between the outputs and the inputs for a system. To

develop a process using ANN, it requires suitable network architecture and appropriate

data training (Singh et al., 2005). The neural network architecture makes use of many

hidden layers for the column and the inputs only consider temperature surrounding the

column.

To improve product quality in a debutaniser column, soft sensor design has been

used by Fortuna and co-workers (Fortuna et al., 2005). The dynamic neural model that

has been implemented used three steps predictions to evaluate its top product

concentration. The output from the first dynamic network are fed to input of the second

dynamic network and the output from the second dynamic network are fed to the third

dynamic network to obtain the desired product. The approach uses appropriate lagged

values inputs including composition to the neural network. Real time estimation of plant

variables and the composition are used for monitoring purposes and the number of

neurons in the hidden layer for the neural network is determined by trial and error

method.

The LM algorithm for neural network training has been used because it is suitable

for binary as well as multi-component mixture (Singh et al., 2007). The LM algorithm is

more suitable compared to Steepest Descent Back Propagation (SDBP) algorithm in

both cases and give more accurate and sensitive results. The LM approach has worked

efficiently in complex chemical plants, having hundreds of parameters. ANN has also

been applied in a crude fractionation section (Zilochan & Bawazir, 2001). Back

propagation algorithm is used on real time data and the output of the neural network

prediction is the naphtha temperature and not the composition prediction.
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A nonlinear state space model has been proposed by (Prasad and Wayne Bequette,

2003). Singular value decomposition (SVD) is used to remove redundant nodes and

model reduction. The network is trained in order to provide empirical state space model

for the system. Partial least square regression (PLSR) together with ANN with back

propagation (BP) algorithm also been proposed by Xuefeng,( 2010). The neural network

architecture consists of an input layer, a single hidden layer and an output layer. The

number of neurons in the hidden layer are considered large for ANN. The neural

networks were trained to extract the quantitative information from the training samples

using BP.

Neural network techniques have been increasingly used for a wide variety of

applications where statistical method has been traditionally employed. Neural network

is able to give better prediction of important parameters and be applied to a wide range

of problems. The paper presents the prediction of composition in debutaniser column

using neural network. The main objective of the work is to identify the important

variables for debutaniser column using principal component analysis (PCA), projection

to latent structure (PLS) analysis and to implement artificial neural network approach

for the prediction of product quality on debutaniser column. A comparison between

neural network and PLS is also presented for better prediction of the composition for the

column. It shows that neural network gives lower Root Mean Square Error (RMSE)

value than PLS (Mohd Ramli et al., 2010).

A decision system has been developed for optimizing the energy efficiency of a

petrochemical plant (Monedero et al., 2012). The system has been developed after a

data mining process of the parameters registered in the past. The designed system

carries out an optimization process of the energy efficiency of the plant based on a

combined algorithm that uses the energy efficiency of the operation points occurred in

the past and, on the other hand, a module of two neural networks to obtain new
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interpolated operation points. The work includes a previous discriminant analysis of the

variables of the plant in order to select the parameters most important in the plant and to

study the behavior of the energy efficiency index. This study also helps to ensure an

optimal training of the neural networks.

Debutaniser column is an important unit operation in petroleum refining industries.

The design of online composition prediction by using neural network will help improve

product quality monitoring in an oil refinery industry by predicting the top and bottom

compositions of n-butane simultaneously and accurately for the column. The single

dynamic neural network model can be designed and used to overcome the delay

introduced by lab sampling and can be also suitable for monitoring purposes. The

objective of this work is to investigate and implement an artificial neural network

(ANN) for composition prediction of the top and bottom product of a distillation

column simultaneously. The major contribution of the current work is to develop these

composition predictions of n-butane by using equation based neural network (NN)

models. The composition predictions using this method are compared with partial least

square (PLS) and regression analysis (RA) methods to show its superiority over these

other conventional methods. Based on statistical analysis, the results indicate that neural

network equation, which is more robust in nature, predicts better than the PLS equation

and RA equation based methods (Mohamed Ramli et al., 2014).

2.6.6 Literature review using hybrid modeling for chemical processes

Hybrid models are useful for synthesis and design of separation processes because

they indicate how a specified separation can be achieved. The same hybrid model is

applicable even though different distillation operations may be necessary to achieve the

specified separation. Use of the hybrid modelling approach may result in improved
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computational efficiency compared to the single model because it can provide better

initialization and flexibility in terms of modelling options.

The uses of artificial intelligence on the scaling of pilot plant fluid catalytic cracking

are proposed by Bollas (et al., 2003). The work is focused in order to improve the

accuracy of the pilot plant by determining the optimum hybrid model. The hybrid model

developed is compared with the plant model to a pure neural network model.

Simulations for modelling a batch reactor using hybrid neural network rate function

(NNRF) are proposed by Chang (et al.,, 2007). The mechanistic equation for state

variable is incorporated into the NNRF model to form hybrid neural network rate

function model. The performance of the model is successful in operating the reactor

system.

A framework of modeling and simulation of particulate solid based on fundamental

associate with neural network have been presented by Cubillos(et al., 1996). The hybrid

model consists of dynamic behavior direct flow and batch fluidized dryer using mass

and energy balance. The models are evaluated by comparing simulation and

experimental data (Guo et al., 1997). The hybrid neural network approach performs

better than the neural network prediction. Goal gasification models incorporating a first

principle model with neural network parameter estimator have been developed.

The hybrid neural network is trained using experimental data for two coals and the

process modeling gives good performance (Horn, 2001). The overall reactivity of the

char has been identified using neural network. The model consists of temperature and

gasification time. The nonlinear and complex dynamic batch polymerization by neural

network is used for training. The input and output linearization are designed to improve

performance of the batch polymerization. Data based model dynamic equation using

neural network offers reduction in cost.
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An algorithm to decompose the hybrid model into subsets of model equation has

been solved by Khars & Marquardt,(2008). The algorithm is solved using data

reconciliation, nonlinear equation solving, parameter estimation and neural network

training. A simultaneous identification approach is used to correct the estimate of the

incremental approach. The case study of the identification of a steady state model of an

ethylene glycol production process has been used. The first principle models derived

from dynamic mass, energy and momentum balance have been developed. Neural

network presented by black box model is used when the process is an unknown part of

the first principle model (Madar et al., 2005). The identification and application of the

hybrid models are presented by using hybrid model consisting of sensitivity algorithm

approach. The total frameworks are based on temperature control of continuous stirred

tank reactor where neural network have been used to model the heat released for an

exothermic chemical reaction.

A multilayer neural network to model the simultaneously mass transfer and chemical

reaction in the liquid-liquid reacting system has been proposed by Molga and

Cherbanski (1999). The intrinsic reaction kinetics and diffusive mass transfer are

obtained by using neural network where the input-output signals are analyzed. The data

used for training are taken from the experimental work using reaction calorimeter. The

hybrid, first principle neural network model has been defined to describe batch and semi

batch stirred tank reactor. The net topology and the range of data used for training the

network are based on accuracy and quality knowledge has been studied.

A dynamic bioreactor system model has also been proposed that combine the first

principal model and artificial neural network (Oliverira, 2004). The reactor system

using a set of mass balance equations and the cell population is represented using

mixture of neural network and mechanistic approach. The bounded input and output are
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derived from dynamic hybrid model. The equations are derived using analytical

calculation of the Jacobian matrix.

A fixed bed reactor has been modelled which includes combining mass and energy

balance with artificial neural network (Qi et al., 1999). The reactors are carried out by

using benzene oxidation to maleic anhydride as a reaction for performance of the hybrid

models. The hybrid model predicts well by having simple structure and easier for real

time requirements and online optimization. The deterministic and stochastic modeling

has the better understanding for membrane dynamics (Sen et al., 2011). The effect of

dial filtration is used to investigate the effects on the membrane. The model is

developed by knowledge based hybrid neural network. The network is trained using LM

algorithm. A hybrid model combines mechanistic elements with neural network are

used as a basic for generalised online estimation technique (Wilson & Zorzetto, 1997).

The balance equation is used to model and define the mechanistic element while the

neural network is applied to model the nonlinear relationship. The Kalman filter

algorithm is modified to accommodate the hybrid model with stochastic process and

noise to handle neural network error. The application of this approach is demonstrated

in a simulation case study pilot plant scale for three tanks in series. A hybrid neural

network for differential catalytic hydrogenation reactor has also been proposed by

Zahedi and et al (2005). The hybrid model consists of a mechanistic model and neural

model. The mechanistic model consists of heat transfer; mass transfer and pressure drop

equations and calculates the effluent temperature of the reactor by having the outlet

mole fractions from the output of the neural network model. The model has successfully

been tested with the experimental data. The model is able to respond very fast compared

to traditional model for carbon dioxide reduction.

A new technique for nonlinear system, which is based on hybrid neural modelling, is

proposed. The hybrid model consists of a combination of residual composition and
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residual temperature with first principle in the mass and energy balance. For the neural

network training, gradient descent with momentum weight and bias learning function

are used. The performance function employed is mean square error. The inputs to the

neural network are manipulated variable reflux flow rate, manipulated variable re-boiler

flow rate, top and bottom temperatures, top and bottom compositions n-butane. Results

show that hybrid neural network performs better than the neural network predictions to

estimate composition and temperature for the debutaniser column (Mohamed Ramli et

al., 2012).

2.6.7 Literature review for control of distillation column

Several alternative column configurations have been developed, in order to control

temperature of the column. The internal heat integration concept has been applied on a

commercial refinery debutaniser column for the separation of an eight-component

hydrocarbon mixture (Jana, 2010). The thermodynamic feasibility of this process has

been identified. An economically interesting partially heat integrated debutaniser

column (HIDBC) configuration is explored. A sensitivity test has been conducted to

select the compression ratio required to meet the product specification. This study deals

with the parametric analysis to investigate the effect of important parameters on product

purity and energy consumption. An economic comparison between the conventional

debutaniser and the proposed thermally coupled debutaniser scheme is also performed.

It proposes a control algorithm that considers the control of the most sensitive tray

temperatures. The singular-value decomposition (SVD) method is used for selecting the

sensitive trays.

The binary distillation columns are controlled by using a nonlinear aggregated model

with the objective of deriving computationally efficient models for real-time control and

optimization applications. The resulting DAE models are converted into ODE models,
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which are the key step to increase the simulation speed (Linhart & Skogestad, 2009).

The performances of several full and reduced distillation models, with and without

base-layer controllers, are compared using different numerical integrators. It is

concluded that the reduced ODE models are able to decrease the simulation time

(Linhart & Skogestad, 2009).

Adaptive feedback linearization controller for high purity binary distillation column

having uncertain parameters and input saturation has been designed by

Biswas et al.(2009). The controller is used to control the top and bottom compositions

of a binary distillation column. Both structured and unstructured uncertainty is present.

An adaptive control strategy is used for estimating uncertain parameters in the process

model. Process input saturation could lead to nonlinearity to the process and become

uncontrollable. A cascade reduced order nonlinear adaptive controller is designed and

implemented for the column.

Performance comparison of evolutionary algorithms (EAs) such as real coded

genetic algorithm (RGA), modified particle swarm optimization (MPSO), covariance

matrix adapted evolutionary strategy (CMAES) and differential evolution (DE) on

optimal design of multivariable PID controller design have been proposed

(Iruthayarajan & Baskar,2009). Decoupled multivariable PI and PID controller structure

for binary distillation column plant having 2 inputs and 2 outputs are considered. EAs

simulations are carried with minimization of Integral Absolute Error (IAE) using two

types of stopping criteria, which are the maximum number of functional evaluations and

tolerance of PID parameters using IAE. The performances for the column are compared

using various EAs, statistical measures like mean, standard deviation and computation

time are considered.

An analytical design for a proportional-integral derivative (PID) controller cascaded

with a first order lead/lag filter is used for first order unstable processes with time delay
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(Shamsuzzoha & Lee,2008). The internal model control (IMC) criterion, the design

algorithm which has a single tuning parameter is used to adjust the performance and

robustness of the controller. In order to diminish the overshoot in the servo response, a

setpoint filter is used. In the simulation, the controllers are tuned to maintain the same

degree of robustness by measuring the maximum sensitivity. The robustness of the

controller is investigated by applying a perturbation uncertainty in all parameters

simultaneously to obtain the worst case model mismatch, and the proposed method

shows more robustness against process parameter uncertainty.

A control scheme is derived for an ideal heat integrated distillation column in which

a temperature difference between two stages is designated as the controlled variable to

overcome the side-effect of continuous pressure variations in the rectifying section

(Huang et al., 2007). The proposed temperature control scheme can remain a stable

operation around the nominal steady state with improved dynamic performance and

tolerable steady state discrepancies in comparison with the direct composition control

scheme. Temperature control scheme is found to be robust to the selection of

temperature measurements. Multivariable generic model control (MGMC) structure has

been proposed by Karacan and co-workers to control of the packed distillation column

(Karacan et al., 2007). Top and bottom product temperatures of the packed distillation

column are selected as the controlled variables and reflux ratio and re-boiler heat duty

as manipulated variables, respectively. Feed mole fraction and feed temperature are

selected as disturbances variables. Two types of black box models, which are linear and

non-linear model are used for generic model control for the control of packed

distillation. Non-linear model for MGMC has better performance over linear model.

A nonlinear adaptive control strategy is proposed by Murlidhar & Jana,( 2007) for a

multicomponent batch distillation column. The hybrid control scheme consists of a

generic model controller (GMC) and a nonlinear adaptive state estimator (ASE). An
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adaptive observer is designed to estimate the partially known parameters based on the

measured compositions in the presence of process and predictor mismatch. The open-

loop dynamic behavior of the developed ASE estimator is investigated under

initialization error, disturbance, and uncertain parameters. A simulation-based

comparative study has been conducted between the derived nonlinear GMC–ASE

control algorithm and a gain-scheduled proportional integral (GSPI) law in terms of

constant composition control. The adaptive control scheme is shown to perform better

as it is due to the exponential error convergence capability of the ASE estimator in

addition to the performance of the GMC controller.

The performance of input–output linearizing (IOL) controllers is affected because of

the constraints on input and output variables (Biswas et al., 2007). This problem could

be addressed by augmenting IOL controllers with quadratic dynamic matrix controller

(QDMC). However, this can lead to a constraint-mapping problem for coupled MIMO

systems distillation column. A multi-objective optimization problem needs to be solved

to map the constraints on inputs. A suitable transformation technique is proposed to

convert multi-objective optimization to a single one. The controller is less

computationally intensive and easy to apply. The controller (IOL-QDMC) with

nonlinear observer is implemented on a binary distillation column for dual composition

control. The performance is evaluated using a quadratic dynamic matrix controller

(QDMC) and input–output linearization with PI controller (IOL-PI).

An application of linear controller design with convex optimization to a binary

distillation column by its limits of performance is proposed by Khaisongkram &

Banjerdpongchai,(2006). Disturbances of distillation process are determined as input

signals with bounded magnitudes and rates of change. Performance measures of top and

bottom control loops are defined as the maximum deviation magnitudes of top and

bottom compositions, respectively. The convex optimization and the ellipsoid algorithm
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are applied to design linear controllers and determine the best optimum performance of

the closed-loop system. A series of convex optimization problems are efficiently solved

to give a trade-off curve representing limits of performance between the top and bottom

compositions. The trade-off curve provides a practical design specification that cannot

be achieved for the distillation column control with dynamic controller configuration.

To confirm this, a computer simulation using nonlinear dynamical model of the

distillation column is used. Closed-loop responses of optimal linear controller are

consistent with the trade-off curve and yields better performance than a conventional

decentralized PI controller.

The design of a model-based globally linearizing control (GLC) structure for a

distillation process within the differential geometric framework has been proposed by

Jana et al, (2005). The model of a non-ideal binary distillation column, where the

characteristics are nonlinear in nature and interactive, is used as a real process. The

classical GLC law consists of a transformer input-output linearizing state feedback, a

nonlinear state observer, and an external PI controller. The tray temperature based short-

cut observer has been used as a state estimator within the control structure, in which all

tray temperatures were considered to be measured.

A single input single output (SISO) controller was used for a distillation column

(Chawankul et al, 2005). A First Order Plus Dead Time (FOPDT) model is to represent

the process model where the dynamic parameters are estimated as functions of process

design variables. A robust internal model control (IMC) controller is designed based on

a nominal linear model assuming model error to account for process nonlinearity. The

optimum column design and the closed loop time constant which result in the lowest

objective function cost are determined. Nonlinear long range predictive control was

applied to a pilot packed distillation column (Karacan, 2003). The use of polynomial

nonlinear autoregressive integrated moving average with external input (NARIMAX)
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model related with top product temperature and reflux ratio for nonlinear control is

emphasized. A dynamic model is based on first chemical engineering principles

formulated for a packed distillation column. The actual column response to step changes

in the feed mole fraction and temperature agree well with the dynamic model

predictions. Recursive Gauss_/Newton prediction error algorithm is used to determine

NARIMAX model parameters. This algorithm can be used efficiently for this model and

a transfer function model relating the manipulated variable (reflux ratio) to the

controlled variable (top product temperature) is obtained. The role of data prefiltering

prior to model parameter estimation is examined to overcome the parameter bias

problem caused by disturbances. Non-linear long range predictive control algorithm is

successfully applied in controlling the packed distillation column.

A nonlinear profile position observer using tray temperature instead of tray

compositions is proposed by Shin et al.,(2000). Composition measurement has been one

of the major difficulties associated with the composition control of distillation columns

because the on-line analyzers still suffer from large measurement delays, high

investment/maintenance costs and low reliability. One of the common alternatives to the

analyzers is to use the secondary measurement such as tray temperatures which is able

to infer the tray compositions. The advanced control of a side-stream distillation

column removing benzene from a reformed gasoline stream has also been proposed by

Bettoni et al.,(2000). A multivariable control strategy based on two SISO schemes, each

controlling the benzene concentration in an outlet stream has been developed. Each

SISO loop using a cascade type and consists of a secondary loop devoted to control tray

temperature and a primary inferential controller of the benzene composition based on a

short-cut physical model. The decoupling between the two single loops is obtained by

keeping the internal reflux between the side-stream tray and the bottom tray constant.
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A linearizing feedback adaptive control structure which leads to a high quality

regulation of the output error in the presence of uncertainties and external disturbances

has been developed by Gonzalez and et al for distillation column (Gonzale et al., 1999).

The controller consists of three elements: a nominal input-output linearizing

compensator, a state observer and an uncertainty estimator, which provides the adaptive

part of the control structure. The feedback controller, based on the disturbance observer,

compensates for external disturbances and plant uncertainties. A preliminary study of

the robustness analysis of pilot-scale distillation column has been developed by

Nooraii et al., (1997). Using a combination of plant data and non-linear simulations,

both a nominal column model and an associated model uncertainty are identified. This

important information is used to carry out a complete analysis of robust stability and

performance for the case where a Ziegler-Nichols tuned for a multiloop control scheme

is employed. To perform robustness analysis of the control, both structured and highly

structured uncertainty characterization approaches are used.

The desired behavior of the control system for both set-point changes and

disturbances in the feed flow rate and the feed composition can be specified for a

distillation column (Haggblom, 1996). Both types of specifications can be handled

because the disturbances can be inferred from the behavior of the inventory control

system. The control system is realized as a combined internal model and inferential

control (CIMIC) system. A disturbance rejecting and decoupling (DRD) control

structure is obtained. The performance of the control system is demonstrated

experimentally on a pilot-scale distillation column. An online identification technique

where a process is identified in terms of pseudo impulse response coefficients and

subsequently used to update convolution type models to accommodate process-model

mismatch (Maiti & Saraf, 1995). Dynamic matrix control has been applied adaptively to

control the top product composition of a distillation column for both servo and
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regulatory problems. The algorithm automatically detects a large step-like disturbance

requiring fresh identification of the process and subsequently adapts the controller to the

new model. Simulation studies using an analytical dynamic full order model of a

distillation column demonstrated the usefulness of the adaptation scheme.

Elementary nonlinear decoupling (END) is a model based control algorithm

intended to decouple and linearize a nonlinear multivariable process in order to achieve

better control than can be obtained by conventional decentralized linear feedback

control (Balchen & Sandrib, 1995). The application of END to the composition control

of a theoretical binary distillation column illustrates that the quality achievable is very

high. The control of both product purities of a binary distillation column has been

proposed by Trotta & Barolo,(1995). Reflux and boilup flow rates are the manipulated

variables, and the corresponding control laws are derived within the Globally

Linearizing Control framework. Reduced order models of the column are developed that

allow the controller synthesis to be carried out easily. Simulation results indicate that

the proposed control strategy performs better than the conventional PI control strategy.

Using a high-purity distillation column, model identification and control issues are

addressed by Sriniwas et al (1995). The structure of the identified models is that of the

polynomial type nonlinear autoregressive models with exogenous inputs (NARX). It is

concentrated on linear models (one-time scale and two-time scale models), and is aimed

at identifying the inherent nonlinearities. Comparisons are drawn between the identified

models based on statistical criteria (AIC) and other validation tests. Simulation results

are provided to demonstrate the closed-loop performance of the nonlinear ARX models

in the control of the distillation.

In practice, most practical systems considered are nonlinear and multivariable in

character. It is of certainty that the control theory for nonlinear multivariable systems

will find immediate and wide applications. For multivariable nonlinear systems, the
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control problem is very complicated which is due to the couplings among various inputs

and outputs. It becomes in general very difficult to deal with when there exist uncertain

parameters and unknown nonlinear functions in the input coupling matrix. It is due to

these difficulties, it is noticed that in comparison with the feedback control design for

SISO (single input single output) nonlinear systems in the control literature, there are

relatively fewer results available for the broader class of multivariable nonlinear

systems.

A robust stability analysis for a harmonic balance for multivariable non-linear plant

has been applied to a neural network controller under generic Lur’e configuration

(Fernandez et al., 2010). The neural network controller will be used to describe

sinusoidal input while the linearized model has been derived to represent the nonlinear

plant dynamics. The proposed work are applied to a multivariable binary distillation

column under feedback neurocontrol which illustrate the use of robustness approach to

predict the absence of limit cycles subject to restriction of describing function. The use

of adaptive neural network for composition prediction starting from secondary variable

measurements which are used to control both the composition and inventory for a

continuous ethanol water nonlinear pilot plant distillation column has been proposed by

Fernandez et al, (2012). A principal component analysis based algorithm has been

applied to select the input vector for the soft sensor. The proposed control scheme offers

high speed of response change as it is due to set point changes and stationary error for

composition and inventory control.

A multiple input and multiple output has been presented under partial least square

framework for a multi-loop nonlinear model control strategy for a distillation column

(Hu et al., 2012). The proposed work has been developed using an ARX-neural network

cascaded structure incorporated into PLS inner model. An optimization is provided to

identify the set parameter of the ARX-NN PLS in order to minimize the plant model
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mismatch. The approach has been used to demonstrate the control effectiveness because

of the tracking and disturbance rejection. Neural network has been applied to handle

with nonlinear dynamics of the hydrolyzer (Lim et al., 2010). A mathematical model

has been used to simulate the dynamic response of the temperatures when the controller

is applied into the system. The two control strategies are implemented which are the

direct inverse control and internal model controller. The control strategies are evaluated

which are due to setpoint tracking and disturbances. IMC is found to perform better for

temperature control during setpoint and disturbance tests. It offers better response as it

is much stable than conventional controllers and perform better than DIC controller.

The optimal temperature is used to study the temperature profile as setpoint in the

control study. A neural network model based on extended Kalman observer is used to

estimate the state of the nonlinear process as not all states are accessible

(Deng et al., 2009). The neural internal model control can be used for open loop

unstable process with its closed loop stability which is derived analytically. The

application of the work shows the effectiveness for suppressing nonlinear coupling and

disturbances and the feasibility for the control nonlinear discrete time state space

processes.

Neural networks for gain prediction within nonlinear, multivariable and constraint

has been developed by Dutta & Rhinerhart., (1999). This strategy is implemented on a

lab-scale, non ideal, and methanol-water distillation column for servo, regulatory and

constrained control. Experimental results also demonstrate a Generic Model Controller

using a neural network as the steady-state model inverse that is developed earlier.A

study has been conducted for these two neural network model-based controllers with

other advanced controllers which are nonlinear process-model based control; model

predictive control using dynamic matrix control and an advanced classical control. A

control system using a neural net is applied for product composition control of a
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distillation plant (Stenanovic, 1996). The neural network controller design is based on

the process inverse dynamic modeling. Once the inverse dynamic model is available

then it can be used for control. The back propagation algorithm of the Generalized Delta

Rule is used to train the network minimizing the sum of squares of the residual. The

algorithm is applied to dynamic nonlinear relationship between product composition

and reflux flow rate.

Neural network models are used for steady state inverse of a process which is then

coupled with a simple reference system synthesis to generate a multivariable controller

(Ramchandran & Rhinehart, 1995) The control strategy is applied to dynamic

simulations of two methanol-water distillation columns that express distinctly different

behavior from each other (one simulates a lab column, while the second simulates an

industrial-scale high-purity column). A steady-state process simulation package is used

to generate all the neural network training data. An efficient training algorithm based on

a nonlinear least-squares technique is used to train the networks. The neural network

model based controllers show better performance for both set-points and disturbances,

and performed better than conventional feedback proportional-integral (PI) controllers.

Neural network gives better performance than the conventional control loop and

inferential control by developing a model based on neural control for single composition

(Baratti & Corti, 1997). The strategy is used to compensate the upsets in the operating

pressure, feed flow rate, and feed composition. To keep the content of the key

component in the distillate stream, the performance of the neural network has to be

precise.

In this study, column information is obtained from the actual industry. There is a huge

amount of data set collected from the oil refinery industry over a period of 4 years.

Hence an adequate multivariate characterization is necessary as a first step for the data
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to be analyzed and expressed in a comprehensible way as will be shown in the next

chapter. Literature review has been conducted to screen the methodology for the

research and to highlight the novelties and the contributions for this work.
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CHAPTER 3: PLANT DESCRIPTION AND CASE STUDY OF THE

DEBUTANISER COLUMN

3.1 Introduction

A debutaniser column in PPTSB is a distillation column that produces Liquefied

Petroleum Gas (LPG) as the main product. The quality of the LPG is the main concern by

PPTSB, one of the national oil refineries. However, the PPTSB’s debutaniser column is a

challenging process as it deals with non-linearity, is highly multivariable process, and

involves a great deal of interaction between the variables. It has lags in many of the control

system, all of which makes it a difficult system to be modeled by linear techniques. To

control the quality will also be as challenging since the process will be affecting the quality.

3.2 Plant description

The crude oil processing plant as seen in Figure 3.1 consists of a refinery process,

condensate fractionation and reforming aromatics section. The feedstocks of the

refinery process are mainly crude oil while the products are petroleum products,

liquefied petroleum gas, naphtha and low sulphur waxy residue. The refinery has two

main process units, which are Catalytic Reforming Unit (CRU) and Crude Distillation

Unit (CDU). The Crude Oil Terminal provides the feedstock and the crude oil is

preheated using heat exchangers within the range of 190oC – 210oC. It is then further

heated in a furnace to 340oC – 342oC before being routed to the CDU. The crude oil is

separated into a number of fractions, which are heavy Straight Run Naphtha as overhead

vapor, untreated kerosene, straight run kerosene and straight run diesel. From the crude

tower, there are 3 sides cut streams, which are drawn to a stripper column and the

stripper consists of a kerosene stripper, naphtha stripper and diesel stripper.
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From the CDU, the pretreated feed Heavy Straight Run Naphtha (HSRN) is mixed

with hydrogen from the reformer and is heated up to the reaction temperature using a

heater and fed into the pretreated catalytic reactor. The reactions involved are

denitrification and desulphurization, which will protect the reformer catalyst from

poisoning. The product from the reactor is transferred to the pretreated stripper while

the feed to the reforming unit is the bottom product of the stripper and the feed to the

reformers reactors is the treated naphtha, which is heated to the reaction temperature.

Effluent from the reactor is collected in a reformer separator where it is cooled. Some

portion of the gas, which is separated is recycled to the reactor feed stream while the

other is transferred to an absorber. In the absorber, at the raw naphtha feed, hydrogen

gas is purged and recycled to the pretreated heater. The feed into the LPG absorber is

liquid phase where it is drawn off and the liquid fraction is pumped into a stabilizer.

Before being sent to storage, reformate is withdrawn from the stabilizer bottom for

cooling. From the stabilizer reflux drum, overhead vapor from the stabilizer are cooled,

condensed and recovered. The raw LPG of the refinery LPG recovery unit consists of

fraction of the liquid stabilizer.

Debutaniser column is the main column for producing the main product, which is the

liquefied petroleum gas. The column is also important as feedstock is transformed to

petroleum products, naphtha and low sulphur wax residue. The debutaniser column is

located at the CDU section depicted top left in Figure 3.1. The unit is used to recover

light gases and LPG from the overhead distillate before producing light naphtha. The

light gases mainly C2 are used to refine fuel gas and mixed with LPG. The feed to the

debutaniser column which has 35 valve trays is from the Deethanizer bottom product.

The debutaniser condenser condenses the overhead vapor and the debutaniser overhead

pressure control valves with two split ranges controls the overhead system. The reflux

from the top of the debutaniser consists of the collected condensed hydrocarbon while
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re-boiler section is used to strip lighter hydrocarbon. There are four manipulated

variables for the column which are the feed flow rate, reflux flow rate, bottom product

flow rate and re-boiler flow rate. The feed flow rate controls the feed to the column, the

debutaniser re-boiler control valve controls the re-boiler temperature while the

debutaniser bottom flow rate controller controls the bottom product level. The

debutaniser reflux control valve controls the top temperature of the column. Table 3.1

outlines the column specification while Table 3.2 describes in detail all the variables

surrounding the column. The measured variables are the Feed flow, Pressure 1

(Debutaniser receiver overhead pressure), Flow 2 (LPG flow to storage), Flow 1 (Light

Naphtha flow to storage), Level 2 (Debutaniser condenser level), Level 1 (Debutaniser

level) and Temp 5 (Re-boiler outlet temperature to column). The top and bottom

compositions of the column are currently measured using laboratory sampling by gas

chromatography. Figure 3.2 shows the column configuration for the debutaniser

column. Based on Figure 3.2, the variables used for control are the top and bottom

temperatures for the column. So therefore there are no cascade loops.

Table 3.1: Debutaniser column specification

No Parameter Value

1 Number of tray of the column 35

2 Feed tray - stage number 23

3 Type of tray used Valve

4 Column diameter 1.3 meter

5 Column height 23.95 meter

6 Condenser type Partial

7 Feed mass flow rate 44106 kghr-1

8 Feed temperature 113 0C

9 Feed pressure 823.8 kPa

10 Overhead vapor mass flow rate 11286 kghr-1

11 Liquid mass flow rate 32820 kghr-1

12 Condenser pressure 823.8 kPa

13 Re-boiler pressure 853.2 kPa



49

Table 3.2: Tag name description of the column

No Tag Description Units
1 Temp 1 Debutaniser top temperature oC
2 Temp 2 Debutaniser bottom

temperature

oC

3 Temp 3 Debutaniser receiver bottom
temperature

oC

4 Temp 4 Light Naphtha temperature
after condenser E 3

oC

5 Temp 5 Re-boiler outlet temperature
to column

oC

6 Temp 6 Debutaniser feed
temperature

oC

7 Flow 1 Light Naphtha flow to
storage

m3/hr

8 Flow 2 LPG flow to storage m3/hr
9 Pressure 1 Debutaniser receiver

overhead pressure
kPa

Figure 3.1: Flow chart for the refinery process

i-butane

n-butane
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Figure 3.2: Debutaniser column configuration

3.3 Data generation: open loop, closed loop, extract from close loop

High purity of composition in a distillation column requires a large number of stages

which are to be monitored for correct operation of the column. By nature, the process

industries are dynamic and process plants rarely run at a steady state condition. For the

debutaniser column, proper control techniques are selected and implementing them is

very important. This is because the controller will affect the product quality, production

rate, and energy usage (Gupta et al, 2009). Control of the debutaniser column is very

challenging as it is due to the inherent nonlinearity, composition control and the effect

as a result of disturbances.

The process model characterizes the dominant features of the process dynamics. The

real process may differ from the process model which is characterized as parametric

mismatch and structure mismatch. The term parametric mismatch is where the structure

of the process model is the same as the true process, but with different parameters.

Secondly, the term structure mismatch, where the structure of the process model differs

from the true process (Karacan et al., 2007). A dynamic simulation for debutaniser
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column is performed using a plant process simulator, HYSYS. The controller settings

based on actual and simulation are analyzed. It will be used to check the overall

performance of the column as well as to improve the quality of the product and

maximize profitability.

There are three sets of important data that are used. There are open loop data which

is obtained from industry based on the step test of overhead pressure, reboiler and reflux

flow rates. The second set of data is the closed loop data obtained from industries which

are used to extract from closed loop to open loop. The third set of data is the simulated

data obtained in HYSYS and it is validated with the closed loop data in order to check

the accuracy. These data are used for data generation. The data need to be screened

because the available are available are large.

Data generation is an important step to identify the responses of all the variables

surrounding the column to obtain the neural network model. Some of the variables in

the open loop conditions surrounding the column in the real plant are not available.

Conventionally most online open loop responses from the plant surrounding the column

such as reboiler flow rate, reflux flow rate, overhead pressure flow rate, feed

temperature, top temperature and bottoms temperature can be retrieved. Hence plant

process simulators are used to obtain the unavailable open loop data sets from the plant

and therefore dynamic simulation using ASPEN of the debutaniser column has been

performed to obtain Temp 5, Pressure 1 and top and bottom composition of the column,

variables that are not available online. The Process Flow Diagram (PFD) and Piping and

Instrumentation diagram (P&ID) are used as a guide to perform the simulation where

the information on each flow and heat stream involved in the simulation is used in the

worksheet.

The type of data that is available from the real plant consists of open loop, closed

loop and extract from close loop. The overhead pressure flow rate, reflux flow rate and
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reboiler flow rate are measured. The numbers of data used are 301. The control cycle

is measured in 1 minute interval with similar interval for the process data.

3.4 Steady state and dynamic state

HYSYS is used to design a steady-state modeling for the debutaniser column before

the transition of the steady-state to the dynamic state. Within HYSYS, steady state

simulations can be cast easily into dynamic simulations by specifying additional

engineering details, including pressure/flow relationships and equipment dimensions.

The dynamic mode is selected and converted once the steady state model has been

developed. The HYSYS consists of simulation platform. The basic platform is used to

select the chemical components that are involved in the simulation, as well as the

thermodynamic property suitable for the components.

The simulation environment consists of the worksheet and PFD. The worksheet

contains the information on every flow and heat stream involved in the simulation.

Some of these streams require input in HYSYS, which are dependent on the degree of

freedom that will be able to calculate the output streams. The necessary information

such as feed conditions, feed compositions, reflux ratio, condenser pressure, reboiler

pressure and etc. have to be provided for the chosen unit operation in order to be able to

design the unit automatically.

Figure 3.2a Simulation flow chart

Data collection for the column

Problem Identification

Develop a steady state modeling

Develop a dynamic modeling with the controllers

Comparison of process variables for each controller
based on actual and simulation
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Compositions in the feed in mass fraction including components in the feed are given in

Table 3.3.

Table 3.3: Composition at the feed

Composition
Mole
Fraction

Propane 0.120
i-Butane 0.167
n-Butane 0.215
i-Pentane 0.086
n-Pentane 0.115
Heavy residue 0.296

Table 3.4: Properties of the compounds (Yaws, 1999)

Component
Boiling
Temp at
STP (0C)

Critical
P (kPa)

Critical T
(0C)

Critical
Volume
(m3/kgmol)

Molecular
Weight

Viscosity
500C
(cSt)

TVP
(kPa)

Propane -42 4249 96.8 0.202 44.09 0.73 1000
i-Butane -12 3648 135.1 0.262 58.12 1.38 373

n-Butane -0.35 3797 152.1 0.254 58.12 1.32 258

i-Pentane 28 3381 187.4 0.305 72.15 2.98 98

n-Pentane 36 3369 196.6 0.312 72.15 2.07 73.3

Comparison between the close loop responses in simulation to the actual plant

performance from the laboratory sample is conducted to evaluate the deviation between

the simulated and actual compositions. This step is taken in order to ensure that the

simulation data generated to predict the data not available online closely resemble the

actual online industrial data. Furthermore the top and bottom compositions of n-butane

including top and bottom temperatures in terms of close loop online data are available

for the column. These close loop compositions are obtained from the laboratory sample

(gas chromatographs) while the temperatures are obtained from plant data. The time

interval to obtain the compositions data 1 minute sampling. These closed loop data are

also used to generate further open loop data in addition to the existing open loop data in

order to extract more data for use with the model identification step using neural

networks. To extract the data in closed loop is when the error of the process variable is
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determined, and then the output change of the manipulated variable is calculated. After

this the output of the process variable is obtained using the values of the controller

setting and hence the data can be extracted to obtain the open loop. Table 3.5 shows the

set point and controller settings for Flow 1 and Temp 5. It also shows the PID values

and set point for the variables under control (closed loop response) for the debutaniser

column. The number of data used is 301.

Table 3.5: Controller setting and set point
Controlled
Variable

Manipulated
Variable

Kc Ti Td Set point Action

Temp 5 Reboiler flow rate 0.4 80 20 135.7 oC Reverse
Flow 1 Light naptha flow

rate
0.5 30 0 24.64 m3/hr Reverse

Flow 2 LPG flow rate 0.5 12 0 7.55 m3/hr Reverse
Level 1 1 660 0 60% Reverse
Level 2 0.4 550 0 65% Reverse

Pressure 1 Split range control 2 42 0 784.42 kPa Reverse
Temp 1 Reflux flow 0.285 50 0 24 m3/hr Direct

Feed flow Feed flow rate 0.357 25 0 35.9 m3/hr Reverse

Based on the controller setting outline in Table 3.5, the error for each of the process

variable can be obtained and incorporated in equation 3.3 to determine the controller

output which is the MV. The PID equation is used to determine the controller output

(manipulated variable) derived from reference (Seborg et al., 2003) as given below;









 

t

D
i

c
dt

tde
teteKMV

0

)(
)(

1
)( 


(3.3)

The tuning parameter is used to determine the process gain, Kp (Dwyer, 2003) as shown
below;

cp KK 3 (3.4)

By using Equation 3.4, then the output of the process variable can be obtained.
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Equations 3.3 and 3.4 are used to extract the close loop data to determine the process

variable Temp 5 and manipulated variable of the reboiler and reflux respectively which

are MV2 and MV3. The manipulated variable reboiler flow rate can be obtained from

Temp 5 which is applied to regulate the particular process variable. Equation 3.4 has

been used to determine the process gain from the controller gain, Kc. Process variable

for Flow 1, reflux flow and Temp 5 can be determined when the process gain, Kp and

the change of the manipulated variable, MV are calculated. Figure 3.2b shows the

procedure to extract the close loop data. There are three types of data which comprises

actual open loop, data extracted from the close loop and the simulation data.

The purpose to perform the extract from close loop is to obtain the open loop data

under close and to compare it with the actual open loop data. The detail procedure to

extract close loop are outlined below:

1. First is to determine the error for the particular controller. The equation used

is yre  . r is the set point for specific controller and y is the process

variable close loop

2. Determine the values for controller gain Kc, integral Ti and derivative Td

outlined in Table 3.5.

3. Calculate the controller output change of the manipulated variable, MV

based on equation 3.3

4. Determine the process gain Kp based on equation.3.4

5. Calculate the change of the process variable, PV and then add with the

average process variable

6. Obtain the open loop data from closed loop.
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To obtain the change of the MV from DCS is difficult as the operation in the industry

is under close loop response. So therefore it is crucial to calculate the MV using PID

equation and from there the process variable can be obtanied.

Figure 3.2b Flow chart to extract close loop to obtain open loop data

3.5 Open loop response

There are 3 step tests that are performed for the column which are the step test for the

overhead pressure, reflux flow rate and reboiler flow rate. The flow rate is the

manipulated variables. To generate the input-output data for the neural network training,

various step changes are applied to the inputs to obtain the corresponding outputs. The

inputs for the system in this case is the overhead pressure flow rate, reboiler flow rate

and reflux flow rate. To obtain the fluctuation of the process the variables surrounding

the column by generating step test. The step test is by 5 hour run because it based on

actual plant normal operation under open loop response.

Determine the error
e= set point – measurement process

Calculate the controller output
change of the manipulated variable,

MV

Calculate change of the process
variable, PV

Determine Kc, Ti and Td

Obtain open loop
data
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3.5.1 Step test for overhead pressure

Figures 3.3 to 3.15 show all the step tests of the overhead pressure. The overhead

pressure flow rate is the LPG flow. In order to generate the input-output data for the

neural network training, various step changes are applied to the inputs to obtain the

corresponding outputs in which the inputs for this system is the overhead pressure flow

rate. The step tests of the overhead pressure flow rate which is the manipulated variable

are generated by using multi amplitude rectangular pulse. The step test is important to

observe the effect and the fluctuations of the process variable when performing changes

to the overhead pressure flow rate. However for Temp (see Figure 3.3-3.8) and Pressure

1 (see Figure 3.9), fluctuations are observed and its trend is similar to the step test as

performed previously. The number of data used is 301.
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Step test Temp 5
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3.5.2 Step test for reflux flow rate

Figures 3.16 to 3.28 show all the step tests of the reflux flow rate data sets. To

generate the input-output data for the neural network training, various step changes are

applied to the inputs to obtain the corresponding outputs. The inputs for the system in

this case are the reflux flow rate. The step test of the reflux flow rate which is the

manipulated variable is generated by using multi amplitude rectangular pulse. The step

test is important to observe the effect and the fluctuations of the process variable when

performing changes to the reflux flow rate. However for Temp (see Figure 3.10-3.15)

and Pressure 1 (see Figure 3.16), fluctuations are observed and its trend is similar to the

step test was performed previously. The number of data used is 301.
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Step test Temp 1
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Figure 3.16 receiver overhead pressure
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3.5.3 Step test for reboiler flow rate

Figures 3.29 to 3.41 show all the step tests of the reboiler flow rate data sets. In order

to generate the input-output data for the neural network training, various step changes

are applied to the inputs to obtain the corresponding outputs in which the inputs for this

system is the reboiler flow rate. The step test of the reboiler flow rate which is the

manipulated variable is generated by using multi amplitude rectangular pulse. The step

test is important to observe the effect and the fluctuations of the process variable when

performing changes to the reboiler flow rate. However for Temp (see Figure 3.17-3.22),

and Pressure 1 (see Figure 3.23), fluctuations are observed and its trend is similar to the

step test as performed previously. The number of data used is 541.
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Step test Temp 5
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Figure 3.23 receiver overhead pressure

3.5.4 Close loop response

The purpose to perform the close loop is to validate between the simulation and

actual plant for variables under control surrounding the column. It indicates that there is

a small deviation between the online and simulation data. This implies that the

simulation and close loop data agree well with each other including the variables that

are not available from the open loop response for the plant. Once the close loop has

been verified, then the open loop response for variable that is not available from plant

can be obtained. The same step size for the manipulated variable for reboiler and reflux

from plant are performed as inputs to obtain the fluctuation of the process variable as

outputs in the simulation. Figure 3.24 represents the process variables for outlet

temperature controller settings based on simulation, actual plant and different set point

values. The response of PV5 is the set point made at 135.3 0C reaches the settling time

faster than PID, plant and other set point. PV5 exhibits more stable response with small
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oscillation and fluctuates within its set point. Meanwhile, PID shows rapid oscillation

and it deviates largely compared to actual plant data which is due to process model

mismatch for the column. The temperature profile is affected by the changes of the

composition. The deviation of the temperature will effect the fluctuation of the

composition. The number of data used is 18000.

Temp 5 : Reboiler outlet temperature to column
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Figure 3.24 Process variables of Temp 5 for controller settings based on PID, plant and
different set point

Figure 3.25 represents the process variables for light naphtha flow controller settings

based on PID, actual plant and different set point values. The response of PID, PV3 and

PV4 is the change of set point made at 19.3 and 20 m3/hr exhibit stable response as the

flow rate fluctuates very small. PV4 reaches the settling time faster than PID, plant and

other set point. PV4 exhibits more stable response with small oscillation and fluctuates

within its set point. Meanwhile, PV2 shows rapid oscillation. The changes of set point

have been performed to see the effect of the fluctuation of the level to be controlled and

how much is deviated between the actual plant data. By changing the set point of the

process is unfavorable for the column although it gives better response; it can upset the

performance of the column. The number of data used is 5800.
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Flow 1 : Light naphtha flow to storage
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Figure 3.25 Process variables of Flow 1 for controller settings based on PID, plant and
different set point

Figure 3.26 represents the process variables for LPG flow controller settings based

on PID, actual plant and different set point values. The response of PID, PV3 and PV4

is the change of set point made at 8.5 and 9 m3/hr exhibit stable response as the flow

rate fluctuates at a very small rate. PID reaches the settling time faster than plant and

other set point. PID exhibits more stable response with small oscillation and fluctuates

within its set point. Meanwhile, PV2 shows rapid oscillation. It can be concluded that

the simulation data resemble closely with the actual plant data and match the process

model of the column for Flow 1. The number of data used is 5800

Flow 2 : LPG flow to storage
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Figure 3.26 Process variables of Flow 2 for controller settings based on PID, plant and
different set point
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Figure 3.27 represents the process variables for receiver overhead pressure controller

settings based on PID, actual plant and different set point values. The response of PID

and PV4 (the change of set point made at 815 kPa) exhibit unstable response as the

pressure fluctuates are small. Actual plant exhibits more stable response with small

oscillation and fluctuates within its set point. Meanwhile, PV4 shows rapid oscillation.

The simulation data deviate large compared to actual plant due to process model

mismatch. The pressure profile is affected by the changes of the composition. The

deviation of the compositions with respect to actual and simulation will effect the

fluctuation of the pressure. The number of data used is 18000.

Pressure 1 : Debutanizer receiver overhead pressure
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Figure 3.27 Process variables of Pressure 1 for controller settings based on PID, plant
and different set point

3.5.5 Validate online and simulation composition in close loop

Once simulation composition and actual composition close loop data agree well with

each other the online and simulated close loop response of the composition at the top

and bottom of the column is also established to obtain the unmeasured data. Comparison

between the close loop responses in simulation to the actual plant from laboratory

sample is performed to evaluate the deviation between the simulated and actual

composition, to ascertain that the simulation data available closely resemble the actual

online industrial data. The composition of interest is the n-butane and i-butane. Figures
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3.28 and 3.29 represent the composition at the top and bottom of n-butane. The

calculated Root Mean Square Error (RMSE) for top composition is 0.10 and bottom

composition is 0.008184 respectively. It indicates that there is small deviation between

the online and simulation data. The interval of composition analysis is under 1 minute

sampling.
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Figure 3.28 Top composition n-butane Figure 3.29 Bottom composition n-butane

Figures 3.30 and 3.31 represent the composition at the top and bottom of i-butane.

The calculated Root Mean Square Error (RMSE) for top composition is 0.027199 and

bottom composition is 0.016554 respectively. It indicates that there is small deviation

between the online and simulation data. This implies that the simulation and close loop

data agree well with each other. The number of data used is 12100.
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Figure 3.30 Top composition i-butane Figure 3.31 Bottom composition i-butane
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This is important to show that the simulation and close loop data agree well with

each other including the variables that are not available from the open loop response for

the plant. Once the close loop has been verified, then the open loop response for

variable that is not available from plant can be obtained. The same step size for the

manipulated variable for overhead pressure, reboiler and reflux from plant are

performed as inputs to obtain the fluctuation of the process variable as outputs in the

simulation. For each of the step test are performed individually in the simulation

environment to obtain the process variables. All the process variables that are performed

in the simulation are under automatic close loop control. The measured data that are

used in the simulation is Temp 5, Pressure 1, Flow 1 and Flow 2. From the simulation

performed using HYSYS, the simulation and actual data are compared.

3.5.6 Extract from close loop data

Figures 3.32 and 3.33 show the fluctuations of the two process variables that are in

close loop response compared to the extracted closed loop. The fluctuations of the

variables show a large variation between under control which is the close loop and not

under control which is the extract close loop. Pressure 1 and Temp 5 is controlled using

PI. The move of the manipulated variable (MV) for Temp 5 is larger than Pressure 1.

This is because Temp 5 has small error (0.00025) with respect to time. Pressure 1 has a

large error because the variation between the fluctuations of the process variable and its

set point is large compared to Temp 5. The controller setting for the plant will affect the

error to bring the process variables close to its set point.
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Temp 5: Reboiler outlet temperature to column
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Pressure 1: Debutanizer receiver overhead pressure
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Figure 3.32 Temperature 5 Figure 3.33 Pressure 1

Figures 3.34 and 3.35 show the fluctuations of the two process variables that are in

close loop response compared to the extracted closed loop. The fluctuations of the

variables show a large variation between under control which is the close loop and not

under control which is the extract close loop. Debutaniser feed and reflux flow rate is

controlled using PI. The move of the manipulated variable (MV) for reflux flow rate is

larger than debutaniser feed. This is because reflux flow has small error with respect to

time. Debutaniser feed has a large error because the variation between the fluctuations

of the process variable and its set point is large compared to reflux flow. The controller

setting for the plant will affect the error to bring the process variables close to its set

point.
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Figure 3.34 Debutaniser feed Figure 3.35 Debutaniser reflux flow

Figures 3.36-3.39 show the fluctuations of the four manipulated variables that are

extracted from closed loop. The overhead pressure flow rate shows small fluctuations

compared to the rest of the fluctuations. The fluctuations of the manipulated variable are
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important to see the response under close loop and how it deviate with the actual open

loop step response for the overhead pressure, reboiler and reflux flow rate. The number

of data used is 650.
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Figure 3.38 Manipulated variable Figure 3.39 Manipulated variable
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3.6 Data pretreatment using principal component analysis and partial least

square

Multivariate data are measured accurately on observations and variables. Hence an

adequate multivariate characterization is a necessary first step. Using a multivariate data

set, the data must be analyzed so that the information in the data is expressed in a

comprehensible way. PCA and PLS analysis are used prior to utilizing neural network
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to determine the important variables to be analyzed for composition prediction as this is

crucial since there is a large number of variables surrounding the column. The PCA and

PLS analyses will also determine the inputs to the neural network. The projection

approach can be adapted to a variety of data analytical objectives such as summarizing

and visualizing a data set, multivariate classification and discriminant analysis and

finding quantitative relationship among the variables. Projection methods can be made

robust to outliers, deal with non-linear relationship and adapt to drift in multivariate

process data.

Methods used are PCA for projecting X down onto a few latent variables. SIMCA-P

is used for classification. The latent variables models are different in objectives and

formulation from traditional multivariate models with independent variables.

Megavariate analysis models data in terms of multiple latent variables to give results

that are multivariate. The projection method is useful for analysis and modeling

complicated data. These methods are increasingly used in a wide range of industrial

application. The method used is to provide a practical approach to multivariate data

analysis. The method approach here is how extensive information contained in

multivariate data can be expressed in terms of plots and lists of parameters resulting

from a multivariate analysis. Figure 3.40 shows the model window to perform PCA.

The simulation data in Excel could be imported to SIMCA-P environment. There are 2

important variables which are the primary variable and observation. Once the work set

has been developed, the PCA model has to be fitted. The important analyses are

component contribution plot, and variable important plot. The number of data used is

301.
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Figure 3.40. Model window for PCA in SIMCA-P environment

Table 3.6 shows the 23 variables involved in the PCA analysis

Table 3.6: Important variables for PCA model
Variable Symbol Description
Temp 1 a Debutaniser top temperature
Temp 2 b Debutaniser bottom

temperature
Temp 3 c Debutaniser receiver bottom

temperature
Temp 4 d Light Naphtha temperature

after condenser E121
Temp 5 e Reboiler outlet temperature to

column
Temp 6 f Debutaniser feed temperature
Level 1 g Debutaniser level
Level 2 h Debutaniser condenser level
Level 3 i Debutaniser level indicator
Level 4 j Condenser level indicator
Flow 1 k Light Naphtha flow to storage
Flow 2 l LPG flow to storage
Pressure 1 m Debutaniser receiver

overhead pressure
n_top Top composition propaneComponent 1
n_bot Bottom composition propane
o_top Top composition i-butaneComponent 2
o_bot Bottom composition i-butane
p_top Top composition n-butaneComponent 3
p_bot Bottom composition n-butane
q_top Top composition i-pentaneComponent 4
q_bot Bottom composition i-

pentane
r_top Top composition n-pentaneComponent 5
r_bot Bottom composition n-

pentane
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3.6.1 PCA and PLS analysis

PCA is used to analyze all variables surrounding the column outlined in Table 3.6. If

a correlation exists between the variables, small number of principal components will

summarize a majority of the variation in X. To analyze the changes in the original data

space, changes occurring within the principal components should be used. From the

PCA, the important variables surrounding the column are determined. PLS is used to

relate the important variables from PCA with respect to the top and bottom composition

of n-butane and i-butane. PLS regression is a method that generalizes and combines

features from principal component analysis and multiple regressions.

It is normally useful to predict a set of dependent variables (Y) from a large set of

independent variables or predictors (X). The data set which obtained from open loop

online and simulation are combined together. SIMCA-P is used to perform PCA and

PLS analysis for the debutanizer column. There are 2 important variables, which are the

primary and observation variables. The primary variable consists of 23 variables

surrounding the column while the observation variables are the top and bottom n-butane

compositions. The observation variable is the number of observations established once

the worksheet has been developed. Then PCA model is fitted to these data.

From the PCA, variables which are not important are excluded while the important

variables are analyzed again with respect to the top and bottom composition n-butane

and i-butane using PLS. For PCA, component contribution plot are used to analyze all

the important variables surrounding the column. For PLS analysis, variable important

plot are used to determine variables which are important with respect to the n-butane

and i-butane composition. From the PCA and PLS analyses, component contribution

plot and variable important plot are used to identify the variables that are important to

be selected the right inputs for neural network.
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Step test for overhead pressure

Component contribution plot shows all of the important components of the step test

overhead pressure flow rate for the top liquefied petroleum gas product and bottom light

naphtha product. The variables are outlined in Table 3.6. The values of R2 (variation

explained) and Q2 (variation predicted according to cross validation) are also shown for

each variable. The R2 indicate the fraction of the Sum of Squares (SS) of all the X’s

variables explained by the current component. Q2 indicate the fraction of the X’s

variables that can be predicted by a component.

Q2 is computed as:











SS

PRESS
Q 12 (3.5)

The prediction error sum of squares (PRESS) is the sum of the squared difference

between the observed and predicted values computed as:

 
i m

imim YYPRESS
^

2)( (3.6)

The variables with high values of R2 have large loading values for the selected

component. The Q2 values indicate the reliability of these R2 and loading values. The

component is considered less important if all of the variables have low values of R2 and

Q2 in a component. This is applicable to variables a, b, d, g, h, i, j and k as depicted in

Figure 3.41. The highest value of R2 and Q2 for variable e is 0.12 and 0.31 respectively.

From the plot, it could be concluded that variables c, l, e, f and m have high values for

R2 and Q2 indicating that these components are important for composition prediction

with respect to the overhead pressure flow rate. Large R2 value indicates that fraction



73

sum of square is high and large Q2 value indicates that the sum of square and prediction

of sum of square is small.

Figure 3.41 Component contribution plot overhead pressure flow rate

Figure 3.54 PLS i-butane Figure 3.55 PLS n-butane

Figure 3.42 PLS i-butane Figure 3.43 PLS n-butane

From Figure 3.42 and 3.43, the output variable of the PLS analysis is the i-butane

and n-butane composition. The input variables are the variable Temp 3, Temp 5, Temp

6, Pressure 1 and Flow 2. All of the variables for level have been excluded from the

analysis, since level will not affect the fluctuations in the top and bottom composition.

The principal component shows the important variable to be analyzed. From the figure

importance of variables is determined by having the y axis value which is the Variable
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Important Plot (VIP) more than 0.5. If the value of the bar chart for the particular

variable is less than 0.5, the variable is not important and it could be excluded from the

analysis i.e. l and m.

Step test for reboiler flow rate

Component contribution plot shows all of the important components of the step

test reboiler flow rate for the top liquefied petroleum gas product and bottom light

naphtha product. The variables are outlined in Table 3.6. The values of R2 (variation

explained) and Q2 (variation predicted according to cross validation) are also shown for

each variable. The variables with high values of R2 have large loading values for

the selected component. The Q2 values indicate the reliability of these R2 and loading

values. The component is considered less important if all of the variables have low

values of R2 and Q2 in a component. This is applicable to variables c, d, f, g, h, i, j, l

and m as depicted in Figure 3.44. The highest value of R2 and Q2 for variable b is 0.48

and 0.44 respectively. From the plot, it could be concluded that variables a, b, e and k

have high values for R2 and Q2 indicating that these components are important for

composition prediction with respect to the reboiler flow rate.

Figure 3.44 Component contribution plot reboiler flow rate
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Figure 3.45 PLS i-butane Figure 3.46 PLS n-butane

From Figure 3.45 and 3.46, the output variable of the PLS analysis is the i-butane and

n-butane composition and the input variables is the variable Temp 1, Temp 2, Temp 5

and Flow 1. All of the variables for level have been excluded from the analysis, since

level will not affect the fluctuations the top and bottom composition of n-butane. The

variables which are not important shown in figure, the variables are k and b.

Step test for reflux flow rate

Component contribution plot shows all of the important components of the step

test reflux flow rate for the top liquefied petroleum gas product and bottom light

naphtha product. The variables are outlined in Table 3.6. The values of R2 (variation

explained) and Q2 (variation predicted according to cross validation) are also shown for

each variable. The variables with high values of R2 have large loading values for

the selected component. The Q2 values indicate the reliability of these R2 and loading

values. The component is considered less important if all of the variables have low

values of R2 and Q2 in a component. This is applicable to variables are c, d, f, g, h, i, j

and k as depicted in Figure 3.47. The highest value of R2 and Q2 for variable e is 0.1

and 0.28 respectively. From the plot, it could be concluded that variables b, e, n_top,

o_top and q_top have high values for R2 and Q2 indicating that these components are

important for composition prediction with respect to the reflux flow rate.
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Figure 3.47 Component contribution plot reflux flow rate

Figure 3.48 PLS i-butane Figure 3.49 PLS n-butane

From Figure 3.48 and 3.49 the output variable of the PLS analysis is the i-butane and

n-butane composition and the input variables is the variable Temp 1, Temp 5, Temp 2,

Pressure 1 and Flow 2. All of the variables for level have been excluded from the

analysis, since level will not affect the fluctuations the top and bottom composition of

n-butane. The variable is not important and it could be excluded from the analysis i.e. l,

m and b. Table 3.7 shows the important variables involve prediction of i-butane

combined for overhead pressure, reboiler and reflux flow rate data set. The number of

data used is 301.
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Table 3.7 Data pretreatment after PCA and PLS for i-butane
Variable Symbol Description
MV1 mv1 Manipulated overhead pressure

flow rate
MV2 mv2 Manipulated reboiler flow rate
MV3 mv3 Manipulated reflux flow rate
Temp1 a Debutaniser top temperature
Temp 3 c Debutaniser receiver bottom

temp
Temp 5 e Reboiler outlet temperature to

column
Temp 6 f Debutaniser feed temp
Component
2

o_top Top composition i-butane

o_bot Bottom composition i- butane
o_top+1 Future predictions top

composition i- butane
o_bot+1 Future predictions bottom

composition i- butane

Since there a number of variable outlined in Table 3.7, the variables is further reduced

by analyzing the variables again using PCA and PLS

Figure 3.50 Component contribution i-butane Figure 3.51 PLS i-butane

The purpose to perform the component contribution plot is to determine again the

variables that are important for composition prediction i-butane. It could be concluded

that mv1, a, c and f is not important and the variables could be excluded. After

performing PCA, the important variables are analyzed again using PLS. The important

variables based on Variable Important Plot (VIP) are namely variable mv2, mv3 and e.
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Table 3.8 shows the important variables involve prediction n-butane combined for

overhead pressure, reboiler and reflux flow rate data set. The number of data used is

301.

Table 3.8 Data pretreatment after PCA and PLS n-butane
Variable Symbol Description
MV1 mv1 Manipulated overhead

pressure flow rate
MV2 mv2 Manipulated reboiler flow rate
MV3 mv3 Manipulated reflux flow rate
Temp1 a Debutanieer top temperature
Temp 3 c Debutaniser receiver bottom

temp
Temp 5 e Reboiler outlet temperature to

column
Temp 6 f Debutaniser feed temp
Component 3 p_top Top composition n-butane

p_bot Bottom composition n- butane
p_top+1 Future predictions top

composition n- butane
p_bot+1 Future predictions bottom

composition n- butane

Since there are a number of variables outlined in Table 3.8, the variables are further

reduced by analyzing the variables again using PCA and PLS

Figure 3.52 Component contribution n-butane Figure 3.53 PLS n-butane

From the component contribution plot it could be concluded that mv1, a, c and e is

not important and the variables could be excluded. After performing PCA, the important
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variables are analyzed again using PLS. The important variables based on Variable

Important Plot (VIP) are namely variables mv2, mv3, and f.

Table 3.9 Important variables for neural network prediction of n-butane

Variable Symbol Description
MV2 mv2 (k) Manipulated reboiler flow rate

mv2 (k-1) Lag MV2
MV3 mv3 (k) Manipulated reflux flow rate

mv3 (k-1) Lag MV3
Temp 6 f (k) Debutaniser feed temp

f (k-1) Lag Temp 6
Component 3 p_top (k) Top composition n-butane

p_top (k-1) Lag composition top
p_bot (k) Bottom composition n- butane

p_bot (k-1) Lag composition bottom
p_top (k+1) Future predictions n- butane top
p_bot (k+1) Future predictions n- butane

bottom

Table 3.10 Important variables for neural network prediction of i-butane
Variable Symbol Description
MV2 mv2 (k) Manipulated reboiler flow rate

mv2 (k-1) Lag MV2
MV3 mv3 (k) Manipulated reflux flow rate

mv3 (k-1) Lag MV3
Temp 5 e (k) Reboiler outlet temperature to

column
e (k-1) Lag Temp 5

Component 2 o_top (k) Top composition i-butane
o_top (k-1) Lag composition top
o_bot (k) Bottom composition i- butane

o_bot (k-1) Lag composition bottom
o_top (k+1) Future predictions i- butane top
o_bot (k+1) Future predictions i- butane bottom

The summary of this chapter are concluded these data that are available from actual

plant are large and therefore need to be screened by performing PCA and PLS, where

the important variables for the column are obtained and are used for monitoring the

composition of n-butane and i-butane. For each of the step test, PCA is used to

determine the important variables surrounding the column. Once we have determined

the important process variables, the important variables affecting the composition of
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n-butane and i-butane is further analyzed using PLS analysis. The important variables

that have been determined by PCA and PLS are used as inputs to the neural network

prediction to determine the process model for the column. The important variables for

neural network prediction are outlined in Tables 3.9 and 3.10. The time interval for

control and time interval for composition is 301 minutes. The interval for (k) and (k+1)

is determined that gives the best results with least lag time. This is also based on

references from various literatures on dynamic modeling using neural network based

models for non-linear chemical process. The time at t(k) and t(k+1) are arrange

accordingly in the data set before the it is used in the prediction by neural network.

Step test that are analyse previously consist of Temp 6 and Temp 5 that are used as

the inputs variables to predict the composition for n-butane and i-butane. It is also used

to predict the top (Temp 1) and bottom temperature (Temp 2).
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CHAPTER 4: NEURAL NETWORK PROCESS MODEL FOR COMPOSITION

AND TEMPERATURE

4.1 Introduction

The design of neural network for process modeling has often been done in an

unorganized fashion. It is important to create a neural network structure by optimizing

the weights and biases value to be capable of interpret it in model forms. Thus it is

possible to create efficient neural network model which can be understood in physical

terms. In our case the network is based on linear transfer functions which are identified

with a technique by using equation based method. The architecture of the neural

network utilizes trial and error techniques to determine the number of hidden nodes.

Finally, the network structure, weights and biases values are the parameters to devoped

the equation for the process model of the neural network.

4.2 Methodology for modeling

The utility of artificial neural network models lies in the fact that they can be used to

infer a function from observations. This is particularly useful in applications where the

complexity of the data or task makes the design of such a function by hand impractical.

The online composition at the top and bottom of the column in the refinery is currently

measured using normal laboratory sampling. This is tedious and the results could not be

obtained immediately therefore neural network are used as a benchmark because it is

able to predict the composition faster with more accuracy and precision and could also

handle non-linearities in the process variable surrounding the column as proposed in this

study.

Open loop response of the reboiler and reflux data, which include the compositions,

are used to develop the dynamic neural network architecture. The selected input
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variables to the network including the composition are time delayed while the outputs

are the future predictions of composition. The type of dynamic network used for

training, validation and testing the data set are Nonlinear Autoregressive Network with

Exogenous (NARX) inputs with series-parallel architecture. The training algorithm used

is the Levenberg-Marquardt method is because using dynamic network. Early stopping

criteria are implemented to train the network while the performance function used is the

mean square error.

These data sets are partitioned into three sets, which are the training, validation and

test set. In the network, the number of layers used is 3 with only 1 hidden layer. The

number of hidden layer is determined using statistical analysis and it is described in

section 4.3. The transfer function to train the network is purelin (linear) for the entire

layer and the networks are trained to predict simultaneously the top and bottom

composition. Prior to implementing the neural network, the data are arranged by

combining the open loop response from the simulation and online data. The data set are

then trained until the network reaches its epoch and meet its performance criteria. The

data set are also validated and tested after the network is trained. Since the extracted

close loop data are available, the data are replaced as inputs to the neural network in the

validation and test set by maintaining the actual architecture that are trained for the open

loop response. The raw process data generated are scaled down between 0.05 to 0.95

using the following equation:-

  value
valuevalue

valuevalueactual
valuescaled min05.095.0

minmax

min













 (4.1)

Hence the actual value is then given by,

   
 

value
valuevaluevaluevaluescaled

valueactual min
05.095.0

minmaxmin





 (4.2)
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4.3 Model adequacy test for neural network to determine the hidden layer

Prior to implementing the neural network methodology, the data are arranged

accordingly by combining the open loop response from simulation and plant data. The

performances need to be measured for its accuracy by determination of the comparison

prediction using the Root Mean Square Error method. (RMSE) given by;

RMSE =
N

xx predictedmeasured
2)(  (4.3)

Correct Directional Change (CDC) measures the capacity of a model to accurately

predict the subsequent actual change of a predicted variable. The formula of CDC is

defined as:


N

i

iD
N

CDC
100

(4.4)

where formula of Di is defined as:

iii yyD 

Di is equal to 1 if the product ii yy  is greater than zero. Di is equal to zero if the

product ii yy  is negative.

The best known information criteria are the Akaike information criterion (AIC) and

Bayesian information criteria (BIC) which is given below:

2 2K
AIC MSE

T
  (4.5)

2log( ) 2N K
BIC MSE

T


  (4.6)

The Akaike information criteria related to the square of the residual to the number of

free model parameters was to weigh the error of the model against the number of
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parameters whereby the model with low value of the information criteria gave the best

performance. The BIC is similar to the AIC except that it is motivated by the Bayesian

model selection principles.

The coefficient of determination is defined as:

 2
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(4.7)

Mean Absolute Percentage Error (MAPE) is the measure of accuracy in a fitted time

series value given as:
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MAPE (4.8)

Pearson Correlation Coefficient (Cp), measures the goodness of the regression fit (the

closer the value to one indicate higher accuracy) as given below:
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The number of neurons in the hidden layer is determined from a range of 8 to 40.

Using the statistical analysis described above, with the following the deviation between

actual and composition prediction by neural network are determined. The following set

of criteria; low RMSE, CDC approaching 100, small AIC and BIC, R2 approaching 1,

low MAPE and CP approaching 1. Equations 4.3 – 4.9 are obtained from reference

(Ramli, 2008), (Wan et al, 2011), (Sharma et al., 2004). Based on the set criteria, the

best neural network architecture is determined. The hidden nodes are selected by trial

and error method. The neural network is trained with an initial guess of the hidden

nodes at 8 and the number of hidden nodes is increased by a factor of 2 till the hidden
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nodes achieve a value of 40. The RMSE is then monitored and the one with the lowest

RMSE value is selected for determining the final number of the hidden nodes.

The difference between the proposed method that it consists of the long equation that

contains the input weights and biases values. It could be easily simplified in equation

based as the transfer function is linear. The conventional linear least square method is

by analyzing the relationship between the inputs and the outputs variables.

4.4 Neural network prediction of n-butane composition (MIMO model)

Table 4.1 shows the important variables in the neural network where the data set are

combined from the manipulated variable reboiler flow rate and reflux flow rate for

n-butane after performing the PCA and PLS analysis.

Table 4.1 Important variables for neural network prediction

Inputs
Variable Symbol Description
MV2 mv2 (k) Manipulated reboiler flow rate

mv2 (k-1) Lag MV2
MV3 mv3 (k) Manipulated reflux flow rate

mv3 (k-1) Lag MV3
Temp 6 f (k) Debutaniser feed temp

f (k-1) Lag Temp 6
Component 3 p_top (k) Top composition n-butane

p_top (k-1) Lag composition top
p_bot (k) Bottom composition n- butane

p_bot (k-1) Lag composition bottom
Outputs

p_top (k+1) Future predictions n- butane top
p_bot (k+1) Future predictions n- butane

bottom

The inputs for the neural network are from mv2 (k) to p_bot (k-1). The outputs are the

variable p_top (k+1) and p_bot (k+1), making the neural network as a MIMO based

model. The control cycle is 1 minute sampling and the time interval between p_top(k)

and p_top(k+1) is by 1 minute ahead prediction.
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Figure 4.1 Neural network architecture for n-butane

Figure 4.1 shows the neural network architecture of the n-butane composition

prediction

Table 4.2. Neural network architecture
Parameters Description
Network NARX series parallel network

(newnarxsp)
Category With

partitioning
divided into 2

with
partitioning
divided into 3

Training function TRAINLM TRAINLM

Adaptation learning function LEARNGDM LEARNGDM

Performance function MSE MSE

Epochs 1000 1000

Goal 1e-6 1e-6

Number of layers 2 2

Layer 1: Number of Neuron
Transfer function

10

PURELIN

34

PURELIN
Layer 2: Number of Neuron
Transfer function

2

PURELIN

2

PURELIN
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4.4.1 with partition into 3

RMSE profile of n-butane training
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Figure 4.2 Profile of the RMSE of n-butane training
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Figure 4.3 Profile of the RMSE of n-butane validation
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Figure 4.4 Profile of the RMSE of n-butane testing
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Figure 4.5 Actual and simulated n-butane Figure 4.6 Actual and simulated n-butane

top composition training bottom composition training

Figure 4.7 Actual and simulated n-butane Figure 4.8 Actual and simulated n-butane

top composition validation bottom composition validation
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Figure 4.9 Actual and simulated n-butane Figure 4.10 Actual and simulated n-butane

top composition testing bottom composition testing
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The data are partitioned according to the training; validation and test set as shown in

Figure 4.17. Figure 4.2 to Figure 4.4 shows the RMSE profile with the change in the

number of hidden nodes in the hidden layer. Figure 4.5 to Figure 4.16 show the top and

bottom composition prediction of n-butane for training, validation and testing. The

amount of data that are partitioned according to training is 65%, for validation is 18%

and test is 17%. From the result, it could be concluded that the RMSE deviation

between the open loop and the extract open loop is 5  10-8 for the bottom validation

data set and 4  10-7 for the top validation. The CDC value for bottom and top

composition training, validation and testing are similar. The CDC value for bottom

training, bottom validation and bottom testing calculated to be 100. The high CDC

value indicate Di is equal to 1 based on the prediction is larger than Di which is zero.

The CDC value for top training, top validation and top testing calculated to be 30.96,

17.3 and 16.32 respectively. The CDC value is small. This is because Di which is zero is

larger than Di is equal to 1 and the subsequent actual change of the predicted variable is

small. The regression value of R for top and bottom validation and test set is 1. Thus the

prediction between the actual and simulated is similar. For the AIC and BIC, low value

is preferred as it indicates better prediction. The AIC and BIC values for open loop for

top composition validation are 572 and 564 respectively. The AIC and BIC values for

open loop for bottom composition validation are 357 and 349 respectively. The AIC and

BIC values for open loop for top composition testing are 479 and 471 respectively. The

AIC and BIC values for open loop for bottom composition testing are 345 and 337

respectively. For the AIC and BIC, low value is preferred as it indicates better

prediction. This is also applied to training data set. Cp value is close to 1. The Cp value

for validation and test set for bottom and top are calculated to be 1. The MAPE

deviation between the open loop and the extract open loop is 1.02  10-4 for the bottom

validation data set and 2.63  10-4 for the top validation. The MAPE values for top and
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bottom composition validation open loop are 8.8  10-3 and 3.3  10-3 respectively. The

MAPE values for top and bottom composition testing open loop are 8.9  10-3 and 3.2 

10-3 respectively. The MAPE values are smaller compared to extract from close loop.

The open loop performs better prediction than the extract open loop as the RMSE for

bottom and top composition is smaller. Table 4.3 shows the statistical analysis of n-

butane with partition compared to the extract close loop. From the analysis it can be

concluded that the optimum number of neurons in the hidden layer for the neural

network is 34. The prediction error increaseas as number of hidden nodes increase is

because to obtain the optimum nodes is by evaluating RMSE between the actual and

predicted values.

Table 4.3 Statistical analysis for n-butane composition prediction

Parameter Open loop Extract
rmse_bottom_training 1.75E-06 1.75E-06
rmse_top_training 1.1E-05 1.1E-05
CDC_bottom_training 100 100
CDC_top_training 30.96 30.96
R_bottom_training 1 1
R_top_training 1 1
AIC_bottom_training 1245.61 1245.61
AIC_top_training 1545.78 1545.78
BIC_bottom_training 1232.46 1232.46
BIC_top_training 1532.63 1532.63
MAPE_bottom_training 0.007321 0.007321
MAPE_top_training 0.008065 0.008065
Cp_bottom_training 1 1
Cp_top_training 1 1
rmse_bottom_validation 1.75E-06 1.8E-06
rmse_top_validation 1.1E-05 1.14E-05
CDC_bottom_validation 100 100
CDC_top_validation 17.30 17.30
R_bottom_validation 1 1
R_top_validation 1 1
AIC_bottom_validation 357.77 357.77
AIC_top_validation 572.13 572.13
BIC_bottom_validation 349.89 349.89
BIC_top_validation 564.25 564.25
MAPE_bottom_validation 0.0033 0.0034
MAPE_top_validation 0.0088 0.0091
Cp_bottom_validation 1 1
Cp_top_validation 1 1



93

rmse_bottom_testing 1.72E-06 1.79E-06
rmse_top_testing 1.09E-05 1.13E-05
CDC_bottom_testing 100 100
CDC_top_testing 16.32 16.32
R_bottom_testing 1 1
R_top_testing 1 1
AIC_bottom_testing 344.94 344.94
AIC_top_testing 479.409 479.408
BIC_bottom_testing 337.29 337.29
BIC_top_testing 471.761 471.76
MAPE_bottom_testing 0.00323 0.003357
MAPE_top_testing 0.0089 0.0092
Cp_bottom_testing 1 1
Cp_top_testing 1 1

4.4.2 Validate based on close loop data for n-butane

Figure 4.18 to Figure 4.29 shows the top and bottom composition prediction of

n-butane for train, validation and testing. From the results, they indicate that the RMSE

is low at 7.71  10-7 for the bottom validation data set and 5.58  10-7 for the top

validation data set, and the CDC is high for the top and bottom composition for

validation at 98.21. The high CDC value indicate Di is equal to 1 based on the

prediction is larger than Di which is zero. The regression value of R is 1, thus the

prediction between the actual and simulated is similar. Low AIC and BIC are preferred

as it indicates better prediction. The AIC and BIC values for open loop for top

composition validation are 517 and 506 respectively. The AIC and BIC values for open

loop for bottom composition validation are 816 and 805 respectively. Cp value is close

to 1. The MAPE values for top and bottom composition validation open loop are 3.23 

10-5 and -1.1  10-5 respectively. It also indicate that the RMSE is low at 1.37  10-6 for

the bottom testing data set and 9.94  10-7 for the top testing data set, and the CDC is

high for the top and bottom composition for testing at 98.18. The regression value of R

is 1, thus the prediction between the actual and simulated is similar. Low AIC and BIC

are preferred as it indicates better prediction. The AIC and BIC values for open loop for

top composition testing are 471 and 460 respectively. The AIC and BIC values for open
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loop for bottom composition testing are 765 and 754 respectively. Cp value is close to 1

and the MAPE should be close to 0. The MAPE values for top and bottom composition

testing open loop are 4.5  10-4 and -1.3  10-3 respectively Table 4.4 shows the

statistical analysis for the n-butane online implementation

Figure 4.18 Actual and simulated n-butane Figure 4.19 Actual and simulated n-butane

top composition training bottom composition training

Figure 4.20 Actual and simulated n-butane Figure 4.21 Actual and simulated n-butane

top composition validation bottom composition validation
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Figure 4.22 Actual and simulated n-butane Figure 4.23 Actual and simulated n-butane

top composition testing bottom composition testing
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Table 4.4 Statistical analysis for online n-butane composition prediction
Parameter Online
rmse_bottom_training 8.05E-07
rmse_top_training 5.83E-07
CDC_bottom_training 98.79
CDC_top_training 98.79
R_bottom_training 1
R_top_training 1
AIC_bottom_training 3239.61
AIC_top_training 2137.29
BIC_bottom_training 3223.48
BIC_top_training 2121.16
MAPE_bottom_training 0.00
MAPE_top_training 0.000285
Cp_bottom_training 1
Cp_top_training 1
rmse_bottom_validation 7.71E-07
rmse_top_validation 5.58E-07
CDC_bottom_validation 98.21
CDC_top_validation 98.21
R_bottom_validation 1
R_top_validation 1
AIC_bottom_validation 816.26
AIC_top_validation 517.54
BIC_bottom_validation 805.35
BIC_top_validation 506.63
MAPE_bottom_validation 0.00
MAPE_top_validation 3.23E-05
Cp_bottom_validation 1
Cp_top_validation 1
rmse_bottom_testing 1.37E-06
rmse_top_testing 9.94E-07
CDC_bottom_testing 98.18
CDC_top_testing 98.18
R_bottom_testing 1
R_top_testing 1
AIC_bottom_testing 765.01
AIC_top_testing 471.58
BIC_bottom_testing 754.17
BIC_top_testing 460.74
MAPE_bottom_testing 0.00
MAPE_top_testing 0.00045
Cp_bottom_testing 1
Cp_top_testing 1
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Artificial Neural Network (ANN) is a popular and reliable tool when dealing with

problems involving prediction of variables in engineering problems at the present age

(Fortuna et al., 2005). It comprises a great number of interconnected neurons ANN that

consists of a series of layers with a number of nodes. Every node receives a signal from

the network link. The signal is added together before being applied to a specific transfer

function to produce the output. The signal from the output will be sent to other node

until it reaches the network output. Nodes called neuron are the basic processors of

neural network. Each connection between two nodes with a real value is called weight

and the values of the weights are obtained by training a set of input and output

correlations. The weights are adapted by the learning rule and it has long-term memory

for the network.

However the main argument against the widespread use of the neural network is that

it is a black box model and can only be represented by the NN structure and cannot be

represented by algorithmic equations which are cumbersome in nature. In this work, it

can be shown that by the appropriate use of activation functions and with proper

pruning of the weights, an equation based neural network model can be obtained to be

used in the prediction for the column compositions.

The general equation for the output from the neural network can be given as (for a 3

layer network)

   321,1,2,3 bbbpIWfLWfLWfy iiiiii  (4.10)
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iIW ,1 input weight at layer 1 (input layer) b1= bias values at layer 1

iLW ,2 layer weight at layer 2 (hidden layer) b2= bias values at layer 2

iLW ,3 layer weight at layer 3 (output layer) b3 = bias values at layer 3

p = vector inputs to the neural network y = vector outputs from the

neural network

if = activation function at layer i

This equation based neural network model is more robust and stable as compared to the

black box model, frequently used by researchers and practitioners and will be the

highlight of our research work.

PLS regression is a method that generalizes and combines features from principal

component analysis and multiple regressions. This is very useful in data analyses, which

are collinear and have incomplete variables. The precision of PLS model is a function of

the number of input variables. This is often useful in predicting a set of dependent

variables (Y) from a large set of independent variables or predictors (X). PLS has been

proven reliable in process monitoring and optimization prediction. PLS interpretation

could indicate matrix vector multiplication to a set of bivariate regression. It provides

the connection between two operations in algebra matrix and statistics. PLS has the

ability to provide the foundation of a multivariable system. It could also demonstrate

projection models as long as there is a similarity between the variables (Eriksson et al,

2006).

Based on PLS, the general regression equation (Eriksson et al, 2006) is given as

FCXWyY  **1 (4.11)
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where y*1 are the variable averages, CW * are the loading weights and F is the residual

in Y.

The disadvantages of PLS with further increase in the size of the data sets is that we will

start to see inadequacies in the multivariate methods, both in their efficiency and

interpretability. PLS coefficients are of interest because it could be simplified when

there are several components in the model. The disadvantages of the coefficients for the

PLS equation is that information regarding the correlation structure among the response

is unknown.

Multivariate regression is the conventional method used to obtain the relationship

between the input variables, X and the output variable, Y. It is assumed that the

regression analysis is multivariate normal distribution for the entire set of variables and

uniform error variance exists across the X variable. The residuals namely have a linear

relationship with the predicted variables and the variance of the residuals is the same for

all the predicted scores. Regression analysis provides an equation that predicts raw data

on the predicted output Y variable from the X variables. The Y can be predicted as a

function of X by using an equation in the following form given as,

nXnbXboXobaY  ...11' (4.12)

where Y’ is the predicted variable on the Y variable, a is the slope represents the

predicted change in Y for a one unit increase in Xo. The slope for each individual

predictor is calculated for all other predictors. Then the equation in terms of X with

respect to Y’ could be obtained (Warner, 2008). The performance of regression analysis

methods in practice depends on the form of the data generating process, and how it

relates to the regression approach being used. Since the true form of the data-generating

process is generally not known, regression analysis often depends to some extent on
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making assumptions about this process. These assumptions are sometimes testable if a

large amount of data is available. Regression models for prediction are often useful even

when the assumptions are moderately violated, although they may not perform

optimally. However, the disadvantage in many applications of these regression methods

is that it could give misleading results when causality exists on the observation data.

4.5 Model data generation

The manipulated variables are reboiler and reflux flow rate. Once the data set are

available, the data set are partitioned in 2 sets and 3 sets which are training and

validation, other set training, validation and testing. The percentages of the partition are

65% for training and 35% for validation. For the other set, the percentages of the

partition are 65% for training, 18% for validation and 17% for testing.

4.5.1 Neural network, Partial least square (PLS) and Regression Analysis

(RA) data sets

One of the objectives of this work is to develop composition predictions online

using neural network, partial least square and regression analysis. The composition at

the top and bottom for the column in the refinery currently is measured using normal

laboratory sampling. Therefore neural network, PLS and RA are used as alternate online

methods to predict the composition as they are expected to produce more robust, stable

and precise results.

Open loop responses of the reboiler and reflux data set, which include the

composition, are used to develop the dynamic neural network architecture. The selected

input variables to the network are time delayed including the composition since the

models are dynamic in nature and the outputs are the future predictions of composition.

The type of dynamic network used for the data set training, training algorithm, adaption

learning function, performance function, the data set that are partition, the network
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training, the transfer function used is similar as outlined in the previous section. The

networks are trained and validated, trained, validated and tested to simultaneously

predict the top and bottom composition for the column. The architecture consists of 3

layers which are the input, hidden and output layer. The weights and biases value used

in the neural network equation are obtained after training and validation of the neural

network. Analysis of variance (ANOVA) for NN is analyzed by using the Statistical

Toolbox in MATLAB. From MATLAB, the analysis of variance (ANOVA) using F

statistics are produced. The two ‘mean square’ between groups and within group

estimates of the population variance are obtained where the F test statistics is the ratio

of the two mean squares.

Table 4.13 shows the important variables involved for the neural network where the

open loop responses of the reboiler flow rate and reflux flow rate data set are obtained

from plant and simulation. The simulated data is the composition and the rest of the

variables are obtained from actual plant data.

Multivariate data are measured based on observations and variables and the data

generated for PLS is similar to the data generated in NN. The data used for PLS analysis

are performed using multivariate software called SIMCA-P. There are 2 important

variables classified which are the primary variable and the observation variable. The

primary variable consists of 23 variables surrounding the column and the observation

variables are the top and bottom composition. Once the work set has been developed,

the PLS model will be fitted with the Partial Least Square equation and it involves the

loading weight and residual in terms of the composition of n-butane and average value

of the composition of n-butane.

The data generated for Regression Analysis (RA) is also similar to the data

generated for NN and PLS. The data for regression are analyzed using the data analysis

tool in Excel. The important element of the RA modeling is the range of inputs and
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outputs of the data analyzed where the confidence level is set at 95%. Once all the

required inputs and outputs are fed to the regression analysis, it will calculate the

predicted output, the equation for RA and residual analysis. The regression is based on

multivariate linear equation and these input variables are generally shown in equation 3

in terms of the X variable. The combined data consisting of the plant and simulation

data are then used to develop the neural network model, represented by the equations as

will be shown in the next section. Similar data sets are also used to generate the PLS

and regression models for comparison with the neural network predictions for the top

and bottom compositions.

4.5.2 Neural network n-butane equation based model

As mentioned in the previous section, the final configuration of the neural network

model obtained from the training and validation exercise is given to be of a 10-10-2

network. By applying the general equation (4.10) for this network with the linear

activation function, we get the following equation for the top and bottom composition

prediction of n-butane where y1 refers to top composition and y2 refers to the bottom

composition (Mohamed Ramli etc, 2014) ;

  211,111,2

2

1 bbpIWfLW
y

y
y 








 (4.13)

where the values of the matrix LW2,1 , IW1,1 , b1 and b2are given in the appendix

1,1IW input weight at layer 1 (input layer) b1 = biases value at layer 1

1,2LW layer weight at layer 2 (hidden layer) b2 = biases value at layer 2
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p is the inputs to the neural network and for this case study is given by the vector

 Tbotbottoptop kpkpkpkpkfkfkmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2  (4.14)

These weights and biases are obtained from the optimum neural network model after

validation. On applying the values of the respective weights and biases for the validated

model neural network model for equation (4.13) and with further pruning of the values,

we get the following equation to represent the neural network model for the

composition prediction as in equation below i.e.;

Training, validation and testing




















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










50.2

77.1

24.012.072.102.223.031.179.074.058.007.0

96.027.019.00047.085.0004.022.053.064.014.0
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These equations are obtained by simplifying the general equation (4.13) by

considering only the hidden layer with inputs weight 1,1IW and the output layer with the

layer weight 1,2LW . Initially the matrix input 1,1IW is multiplied with the input vector, p

and added to biases value b1. The activation function of f1 is determined as unity, the

resulting matrix is then multiplied to layer weight 2, 1,2LW and added biases value at

layer 2, b2. By pruning out the small resulting values, the equation is then simplified to

the version in Equation 4.15. This equation is a multi input multi output equation based

representation of the neural network model for composition prediction of the

debutaniser column. This equation is robust in nature and can be easily used as an

online estimation for composition in the column, without having to resort to use of

complex structure of the neural network, normally difficult to use in an online

measurement system.
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4.5.3 PLS analysis

After validation, the equation of PLS for prediction of n-butane at top composition is

given as























































































































































































0.00032-

.

.

0049.0

018.0

0042.0

0021.0

0010.0

00035.0

0567.7

00043.0

00076.0

0011.0

0017.0

00065.0

00071.0

0034.0

83.0

68.0

017.0

068.0

11.0

067.0

062.0

061.0

075.0

074.0

)1(_

)(_

)1(_

)(_

)1(

)(

)1(3

)(3

)1(2

)(2

1335.0
,1

e

kbotp

kbotp

ktopp

ktopp

kf

kf

kmv

kmv

kmv

kmv

Y
PLS

(4.16)

and the equation of PLS for predictions of n-butane at the bottom composition is given

as;
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(4.17)

The F residual for PLS equation consists of 301 data points for top and bottom

composition.

4.5.4 Regression analysis

For the regression model, the equations for the top and bottom prediction n-butane

are described below;

0.078-1)-(k0.010p_bot-(k)p_bot0.00271)-(kp_top0.051-

(k)p_top1.0151)-(kf0.0019(k)0.0011f-1)-(kmv30.00061-

(k)mv30.000491)-(kmv20.00078-)(20.0008
,1





 kmvY
RA

(4.18)

0.271)-(kp_bot0.059-(k)0.81p_bot1)-p_top(k0.23-

(k)p_top0.301)-(kf0.006-(k)0.0041f1)-(kmv30.0016

(k)mv30.0020-1)-(kmv20.0018-)(20.0019
,2





 kmvY
RA

(4.19)
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4.5.5 Analysis of variance (ANOVA) n-butane

Top composition

From Table 4.5, the adjusted R2 is smaller than R2 value. This is because the

number of cases is relatively small and the number of predictor variables is relatively

large. There are a total of 301 samples data observations. The sum of square regression

is calculated to be 0.0906 and the total sum of square is calculated to be 0.0917. The

multiple R is calculated based on the square root of ratio between these 2 values. The

multiple R is proportional to the total variance in the actual and predicted value. The

standard error shows the ratio between the standard deviation to the square root of

number of observations. The degree of freedom (df) is the variation between the sample

size and number of groups with confidence level 95%.

The sum of square (SS) consists of regression, residual and total. It is explained by

the difference between each group mean and the overall mean. The value of mean

squares (MS) are obtained from the ratio of the sum of the square (SS) to the degree of

freedom (df). The F value is obtained from the ratio of MS of regression to MS of

residual. From the ANOVA outlined in Table 4.5, the F value obtained is 2562. It

indicate that the between estimate groups is more than 2562 times the within group

estimate. The F value is very small. In addition the calculated population means are not

constant and the F value is bigger than 1.83. Therefore the hypothesis analysis may not

be rejected. The standard deviation (s) may also be determined from the MS of residual.

The s value is 1.88  10-3. The analysis is used to determine the hypothesis between

the actual and predicted value of n-butane composition.
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Bottom composition

Table 4.6 also shows that the adjusted R2 is smaller than the R2 value. This is

because the number of cases is relatively small and the number of predictor variables is

relatively large. There are a total of 301 samples data observations. The multiple R is

defined and based on the square root of ratio regression sum of square to total sum of

square. The multiple R is proportional to the total variance in the actual and predicted

value. The standard error shows the ratio between the standard deviation to the square

root of number of observations. The confidence level is 95%. From the ANOVA

outlined in Table 4.6, the F value is 127. It indicates that the between groups estimate is

more than 127 times the within group estimate. The significance F value is relatively

very small. Different population mean are recorded. The F value is larger than 1.83.

Therefore the hypothesis analysis may not be rejected. The standard deviation s could

also be determined from the MS of the residual. The s value is 6.05  10-3. The analysis

is used to determine the hypothesis between the actual and predicted value of n-butane

composition.

Table 4.5. ANOVA of the n-butane top composition

Regression Statistics
Multiple R 0.99
R Square 1.00
Adjusted R
Square 0.98
Standard Error 0.0018
Observations 301

ANOVA
df SS MS F Significance F

Regression 10 0.0906 0.0090 2562 2.34E-276
Residual 290 0.0010 3.53E-06
Total 300 0.0917
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Table 4.6. ANOVA of n-butane bottom composition

Regression Statistics
Multiple R 0.95
R Square 1.00
Adjusted R
Square 0.93
Standard Error 0.0060
Observations 301

ANOVA
df SS MS F Significance F

Regression 10 0.0467 0.0046 127 5.73E-100
Residual 290 0.0106 3.66E-05
Total 300 0.0573

4.5.6. Comparison NN, PLS and RA

Figure 4.30, shows the observed versus predicted values of the top composition of

n-butane from NN equation. It is apparent that all the points fall close to the 45 degree

line. The calculated RMSE for the NN equation is 6.6  10-7. The R2 of the regression

line indicates the goodness of fit. The value of the R2 is 1. Figure 4.31, shows the

composition line plot of the actual and neural network equation for n-butane top

composition.
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Table 4.7 the variables involved in the PLS analysis, regression analysis and neural
network n-butane

Inputs
Variable Symbol Description
MV2 mv2 (k) Manipulated reboiler flow rate

mv2 (k-1) Lag MV2
MV3 mv3 (k) Manipulated reflux flow rate

mv3 (k-1) Lag MV3
Temp 6 f (k) Debutaniser feed temp

f (k-1) Lag Temp 6
Component 3 p_top (k) Top composition n-butane

p_top (k-1) Lag composition top
p_bot (k) Bottom composition n- butane

p_bot (k-1) Lag composition bottom
Outputs

p_top
(k+1)

Future predictions n- butane top

p_bot
(k+1)

Future predictions n- butane
bottom

NN equation top composition n-butane
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Figure 4.30 Prediction versus actual value neural network equation top composition

n-butane
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Neural network prediction top composition n-butane
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Figure 4.31 Prediction and actual value for top composition n-butane line plot

Figure 4.32, shows the observed versus predicted values of the bottom composition of

n-butane from NN equation. It is apparent that all the points fall close to the 45 degree

line. The calculated RMSE for the NN equation is 3.88  10-7. The R2 of the regression

line indicates the goodness of fit. The value of the R2 is 1. Figure 4.33, shows the

composition line plot of the actual and neural network equation for n-butane bottom

composition. The CDC value for top composition is calculated to be at 26.33 and for

bottom composition is calculated to be 100 where the high CDC value indicates better

prediction. The regression value of R for top and bottom composition is 1. Thus the

prediction between the actual and simulated is similar. For the AIC and BIC, low value

is preferred as it indicates better prediction. For the AIC and BIC top composition, low

value is preferred and calculated to be 2572 and 2555 respectively. Cp value is close to

1. The Cp value for bottom and top composition are calculated to be 1 and the MAPE

close to 0. The MAPE for top and bottom are calculated to be -0.0005 and -0.00132.
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NN equation bottom composition n-butane
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Figure 4.32 Prediction versus actual value neural network equation bottom composition

n-butane
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Figure 4.33 Prediction and actual value for bottom composition n-butane line plot

Figure 4.34, shows the observed versus predicted values of the top composition of

n-butane from PLS equation. It is apparent that all the points fall close to the 45 degree

line. The calculated RMSE for the PLS equation is 0.002004. The R2 of the regression

line indicates the goodness of fit. The value of the R2 is 0.9851. Scattered data points
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around the regression line are an indication of poor prediction. Figure 4.35, shows the

composition line plot of the actual and PLS equation n-butane top composition.
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Figure 4.34. Prediction versus actual value PLS equation top composition n-butane

PLS prediction top composition n-butane

0

0.05

0.1

0.15

0.2

0.25

0 50 100 150 200 250 300

Time (min)

C
o

m
p

o
s
iti

o
n

(m
o

le
fr

a
c
tio

n
)

Actual PLS eq

Figure 4.35 Prediction and actual value for top composition n-butane line plot

Figure 4.36, shows the observed versus predicted values of the bottom composition

of n-butane from PLS equation. The calculated RMSE for the PLS equation is

0.005989. The R2 of the regression line indicates the goodness of fit. The value of the

R2 is 0.8117. Scattered data points around the regression line are an indication of poor
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prediction by PLS equation. Figure 4.37, shows the composition line plot of the actual

and PLS equation n-butane bottom composition. The CDC value for top composition is

calculated to 17.66 and for bottom composition is calculated to be 56.66. The CDC

value calculated compared to neural network, indicates that NN would be able to predict

the composition of n-butane better than PLS. The regression value of R for top and

bottom composition is 0.99 and 0.9 respectively. Thus the prediction between the actual

and simulated is almost similar but the prediction by NN is much better than PLS. For

the AIC and BIC, low value is preferred as it indicates better prediction. For the AIC

and BIC for top composition, low value is preferred and calculated to be 2573 and 2558

respectively. For the AIC and BIC for bottom composition, low value is preferred and

calculated to be 2073 and 2059. Cp value is close to 1. The Cp value for bottom and top

composition are calculated to 0.9 and 0.99 respectively and the MAPE should be close

to 0. The MAPE for top and bottom are calculated to be -0.034 and -0/97. Based on this

analysis the prediction by NN performs better than PLS.
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Figure 4.36 Prediction versus actual value PLS equation bottom position n-butane
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PLS prediction bottom composition n-butane
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Figure 4.37. Prediction and actual value for bottom composition n-butane line plot

Figure 4.38, shows the observed versus predicted values of the n-butane top

composition using regression analysis equation. A good model is identified by having

all data points fall close to the 45 degree line. The calculated RMSE for the regression

equation is 0.002128. The R2 of the regression line indicates the goodness of fit. The

value of the R2 is 0.9888. Figure 4.39 shows the composition line plot of the actual and

RA equation of the n-butane top composition.
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Figure 4.38. Prediction versus actual value RA equation top composition n-butane
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Regression prediction top composition n-butane
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Figure 4.39. Prediction and actual value for top composition n-butane line plot

Figure 4.40, shows the observed versus predicted values of the n-butane bottom

composition using regression analysis equation. The points are scattered as shown in the

figure by RA equation. This indicates poor prediction by RA equation. The calculated

RMSE for the normal regression equation is 0.006433. The R2 of the regression line

indicates the goodness of Fit. The value of the R2 is 0.8148. Figure 4.41, shows the

composition line plot of the actual and RA equation n-butane bottom composition. The

CDC value for top composition is calculated to 17.33 and for bottom composition is

calculated to be 56.66. The CDC value calculated compared to neural network, indicates

that NN would be able to predict the composition of n-butane is better than RA. The

regression value of R for top and bottom composition is 0.99 and 0.89 respectively.

Thus the prediction between the actual and simulated is almost similar but the

prediction by NN is much better than RA. For the AIC and BIC, low value is preferred

as it indicates better prediction. For the AIC and BIC for top composition, low value is

preferred and calculated to be 2580 and 2560 respectively. For the AIC and BIC for

bottom composition, low value is preferred and calculated to be 2074 and 2058. Cp



117

value is close to 1. The Cp value for bottom and top composition are calculated to 0.89

and 0.99 respectively and the MAPE should be close to 0. The MAPE for top and

bottom are calculated to be 0.058 and -2.67. Based on this analysis the prediction by

NN performs better than RA.

RA equation bottom composition n-butane

R2 = 0.8148

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Actual composition (mole fraction)

P
re

d
ic

te
d

c
o

m
p

o
s

iti
o

n
(m

o
le

fr
a

c
tio

n
)

Figure 4.40. Prediction versus actual value RA equation bottom composition n-butane

Regression prediction bottom composition n-butane
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Figure 4.41. Prediction and actual value for bottom composition n-butane line plot
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Table 4.8. n-butane statistical analysis of NN equation, PLS equation and RA equation

Parameter NN eq PLS eq RA eq
rmse_bottom 3.88E-07 0.0059 0.0064
rmse_top 6.6E-07 0.0020 0.0021
CDC_bottom 100 56.66 56.66
CDC_top 26.33 17.66 17.33
R_bottom 1 0.90 0.89
R_top 1 0.999 0.993
AIC_bottom -1957.26 -2073.63 -2074.26
AIC_top -2572.72 -2573.78 -2580.29
BIC_bottom -1942.43 -2059.8 -2058.44
BIC_top -2555.89 -2558.96 -2560.46
MAPE_bottom -0.0013 0.97 -2.67
MAPE_top -0.0005 0.034 0.058
Cp_bottom 1 0.90 0.89
Cp_top 1 0.999 0.992

4.5.7 Residual analysis

Figure 4.42 and Figure 4.43 shows the residual of the neural network equation, PLS

equation and normal regression equation for top and bottom composition n-butane

respectively. From the plot, the residual of the neural network equation is small

compared to PLS equation and NR equation. This shows that neural network is able to

predict the top and bottom composition n-butane with high accuracy and small error

compared to PLS and RA. Residual analysis is very important to evaluate the deviation

between actual and prediction for NN, PLS and RA.
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Residual analysis top composition equation NN, PLS and NR
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Figure 4.42. Residual analysis for neural network equation, PLS equation and regression

analysis equation top composition n-butane

Residual analysis bottom composition equation NN, PLS and NR
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Figure 4.43. Residual analysis for neural network equation, PLS equation and regression

analysis equation bottom composition n-butane

The method used to prediction of i-butane is similar as the above and are shown in the

appendices.
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4.6 Neural network design

The main objective of this work is to develop temperature prediction online using

neural network. The temperature at the top and bottom respectively for the column in

the refinery is currently measured based on step test. Neural network is used as a

benchmark because it is able to predict the temperature with more accuracy and

precision. Neural network could also handle non-linearities in the process variable

surrounding the column. Neural network comprises a great number of interconnected

neurons in a series of layers with a number of nodes. The nodes are the basic processors

of neural network. Each connection between two nodes with a real value is called

weight.

Open loop response of the overhead pressure, reboiler and reflux data which includes

the top and bottom temperature are used to develop the dynamic neural network

architecture. The selected input variables to the network including the temperature are

time delayed while the outputs are the future predictions of temperature. The type of

dynamic network used for training, validation and testing the data set, the training

algorithm, early stopping criteria to train the network, the adaptation learning function,

and the performance function is similar outlined in the previous section.

The networks are trained to predict simultaneously the top and bottom temperature.

Prior to implementing the neural network, the data are arranged by combining the open

loop response from the simulation and plant data. The data set are then trained until the

network reaches its epoch and meet its performance criteria. The data set are also

validated and tested as the network is trained.
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4.6.1 Neural network top and bottom temperature (MIMO model)

Table 4.8 shows the important variables in the neural network where the data set are

combined from the manipulated variable overhead pressure, reboiler flow rate and

reflux flow rate for top and bottom temperature..

Table 4.9 Important variables for neural network prediction

Inputs
Variable Symbol Description
MV1 mv1 (k) Manipulated overhead pressure

mv1(k-1) Lag MV1
MV2 mv2 (k) Manipulated reboiler

flow rate
mv2 (k-1) Lag MV2

MV3 mv3 (k) Manipulated reflux
flow rate

mv3 (k-1) Lag MV3
Temp 6 f (k) Debutaniser feed temp

f (k-1) Lag Temp 6
Temperature T_top (k) Top temp

T_top (k-1) Lag top temp
T_bot (k) Bottom temp

T_bot (k-1) Lag bottom temp
Outputs

T_top (k+1) Future predictions top temp
T_bot (k+1) Future predictions bottom temp

The inputs for the neural network are from mv1 (k) to T_bot (k-1). The outputs are the

variable T_top (k+1) and T_bot (k+1).

Figure 4.44 Neural network architecture for top and bottom temperatures
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Figure 4.44 shows the neural network architecture of the n-butane composition

prediction

Table 4.10. Neural network architecture
Parameters Description
Network NARX series parallel network

(newnarxsp)
Category With

partitioning
divided into 2

with
partitioning
divided into 3

Training function TRAINLM TRAINLM

Adaptation learning function LEARNGDM LEARNGDM

Performance function MSE MSE

Epochs 1000 1000

Goal 1e-6 1e-6

Number of layers 2 2

Layer 1: Number of Neuron
Transfer function

12

PURELIN

12

PURELIN
Layer 2: Number of Neuron
Transfer function

2

PURELIN

2

PURELIN

4.6.2 With partition into 3

RMSE profile for top and bottom temperature training
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Figure 4.45 Profile of the RMSE training
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RMSE profile for top and bottom temperature validation
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Figure 4.46 Profile of the RMSE validation

RMSE profile for top and bottom temperature testing
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Figure 4.47 Profile of the RMSE testing

Figure 4.48 Actual and simulated Figure 4.49 Actual and simulated

top temperature training bottom temperature training
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Figure 4.50 Actual and simulated Figure 4.51 Actual and simulated

top temperature validation bottom temperature validation

Figure 4.52 Actual and simulated Figure 4.53 Actual and simulated

top temperature testing bottom temperature testing
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Figure 4.54 Actual and simulated Figure 4.55 Actual and simulated

top composition line plot training bottom composition line plot training



125

0 5 10 15 20 25 30 35 40 45 50
58.2

58.4

58.6

58.8

59

59.2

59.4

59.6

59.8

60

Time

T
o

p
te

m
p

e
ra

tu
re

(d
e

g
C

):
V

a
lid

a
ti

o
n

Actual and Simulated plot for Top temperature:Validation

Actual

Simulated

0 5 10 15 20 25 30 35 40 45 50
138.4

138.6

138.8

139

139.2

139.4

139.6

139.8

140

Time

B
o

tt
o

m
te

m
p

e
ra

tu
re

(d
e

g
C

):
V

a
lid

a
ti

o
n

Actual and Simulated plot for bottom temperature:Validation

Actual

Simulated

Figure 4.56 Actual and simulated Figure 4.57 Actual and simulated

top temperature line plot validation bottom temperature line plot validation
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Figure 4.58 Actual and simulated Figure 4.59 Actual and simulated

top temperature line plot testing bottom temperature line plot testing

Figures 4.45 to 4.47 show the profile with the change in the hidden nodes in the

hidden layer. Figures 4.48 to 4.59 show the top and bottom temperature prediction for

training, validation and testing. The amount of data that are partitioned according to

training is 65%, for validation is 18% and for testing is 17%. From the result, it can be

concluded that the analysis are similar to previous section. Table 4.11 shows the

statistical analysis with partition. From the analysis it can be concluded that the

optimum number of neurons in the hidden layer for the neural network is 12
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Table 4.11 Statistical analysis for temperature with 3 partitions
Parameter Open loop
rmse_bottom_training 1.99E-06
rmse_top_training 8.74E-06
CDC_bottom_training 79.69
CDC_top_training 79.18
R_bottom_training 1
R_top_training 1
AIC_bottom_training 30.77
AIC_top_training 135.57
BIC_bottom_training 43.92
BIC_top_training 148.72
MAPE_bottom_training 1.10E-06
MAPE_top_training -8.67E-06
Cp_bottom_training 1.00E+00
Cp_top_training 1
rmse_bottom_validation 0.0014
rmse_top_validation 0.0084
CDC_bottom_validation 76.47
CDC_top_validation 78.43
R_bottom_validation 0.99
R_top_validation 0.99
AIC_bottom_validation 5.07
AIC_top_validation 32.83
BIC_bottom_validation 12.88
BIC_top_validation 40.64
MAPE_bottom_validation 0.00066
MAPE_top_validation -0.0089
Cp_bottom_validation 0.99
Cp_top_validation 0.99
rmse_bottom_testing 0.0029
rmse_top_testing 0.016
CDC_bottom_testing 82
CDC_top_testing 94
R_bottom_testing 0.99
R_top_testing 0.99
AIC_bottom_testing 21.07
AIC_top_testing 19.59
BIC_bottom_testing 28.80
BIC_top_testing 27.32
MAPE_bottom_testing -0.00047
MAPE_top_testing 0.0063
Cp_bottom_testing 0.99
Cp_top_testing 0.99
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4.7 Neural network, PLS and RA modeling temperature prediction

The objective of this work is to develop temperature prediction online using neural

network, partial least square and regression analysis. The temperature at the top and

bottom for the column is available from the open loop response (step test) for overhead

pressure flow rate, reflux flow rate and reboiler flow rate. Therefore neural network,

PLS and RA are used as a benchmark to predict the temperature as they are expected to

produce more accurate and precise results.

Open loop response of the overhead pressure, reboiler and reflux data set, which

include the temperature are used to develop the dynamic neural network architecture.

The selected input variables to the network are time delayed including the temperature.

The outputs are the future predictions of the temperature. The purpose of having lags to

the inputs of neural network is to establish a dynamic network. Statistical analysis are

also performed for comparison between PLS and RA.

4.7.1 Neural network equation based

The final configuration of the neural network model obtained from the training and

validation exercise is given to be of a 12-12-2 network. By applying the general

equation (4.10) for this network with the linear activation function, we get the similar

equation outlined in the previous section for the top and bottom temperature prediction

where y1 refers to top temperature and y2 refers to the bottom temperature.

p is the inputs to the neural network and for this case study is given by the vector

 Tbotbottoptop kTkTkTkTkfkfkmvkmvkmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2)1(1)(1  (4.20)
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The equation below represents the matrix for temperature prediction for training,

validation and testing data set;
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4.7.2 PLS model

After validation, the equation of PLS for prediction top temperature is given as
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and the equation of PLS for predictions bottom temperature is given as,
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The F residual for PLS equation consists of 301 data points for top and bottom

temperature

4.7.3 Regression model

For the regression model, the equations for the top and bottom temperature prediction

are described below;
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4.7.4 Analysis of variance (ANOVA) results for neural network model

Top temperature

From Table 4.12, the adjusted R2 is smaller than R2 value. The discussion analysis is

similar in the previous section 4.5.5 and this is the results shown below.

Bottom temperature

Table 4.13 also show that the adjusted R2 is smaller than the R2 value.

Table 4.12. ANOVA of the n-butane top temperature

Regression Statistics
Multiple R 0.98
R Square 1.00
Adjusted R
Square 0.97
Standard Error 0.094
Observations 301

ANOVA
df SS MS F Significance F

Regression 12 126.33 10.52 1170.25 2.30E-236
Residual 288 2.59 0.0089
Total 300 128.92

Table 4.13. ANOVA of n-butane bottom temperature

Regression Statistics
Multiple R 0.98
R Square 1.00
Adjusted R
Square 0.96
Standard Error 0.087
Observations 301

ANOVA
df SS MS F Significance F

Regression 12 66.06 5.50 725.90 2.73E-207
Residual 288 2.18 0.00758
Total 300 68.24
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4.7.5. Comparison NN, PLS and RA

Table 4.14. The variables involved in the PLS analysis, regression analysis and neural
network

Inputs
Variable Symbol Description
MV1 mv1 (k) Manipulated overhead pressure

mv1 (k-1) Lag MV1
MV2 mv2 (k) Manipulated reboiler flow rate

mv2 (k-1) Lag MV2
MV3 mv3 (k) Manipulated reflux flow rate

mv3 (k-1) Lag MV3
Temp 6 f (k) Debutaniser feed temp

f (k-1) Lag Temp 6
Component 3 T_top (k) Top temperature

T_top (k-1) Lag top temperature
T_bot (k) Bottom temperature

T_bot (k-1) Lag bottom temperature
Outputs

T_top (k+1) Future predictions top
T_bot (k+1) Future predictions bottom

Figure 4.60, shows the observed versus predicted values of the top temperature for

NN equation. Figure 4.61, shows the composition line plot of the actual and neural

network equation for top temperature.
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Figure 4.60 Prediction versus actual value neural network equation top temperature
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Neural network prediction top temperature n-butane
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Figure 4.61. Prediction and actual value for top temperature line plot

Figure 4.62, shows the observed versus predicted values of the bottom temperature

for NN equation. Figure 4.63, shows the temperature line plot of the actual and neural

network equation for bottom temperature.

NN equation temperature composition n-butane
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Figure 4.62. Prediction versus actual value neural network equation bottom temperature



133

Neural network prediction bottom temperature n-butane
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Figure 4.63 Prediction and actual value for bottom temperature line plot

Figure 4.64, shows the observed versus predicted values of the top temperature of

n-butane from PLS equation. Figure 4.65, shows the temperature line plot of the actual

and PLS equation n-butane top temperature.

PLS equation top temperature n-butane
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Figure 4.64. Prediction versus actual value PLS equation top temperature
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PLS prediction top temperature n-butane
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Figure 4.65. Prediction and actual value for top temperature line plot

Figure 4.66, shows the observed versus predicted values of the bottom temperature for

PLS equation. Figure 4.67, shows the temperature line plot of the actual and PLS

equation temperature

PLS equation temperature composition n-butane
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Figure 4.66 Prediction versus actual value PLS equation bottom temperature
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PLS prediction bottom temperature n-butane
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Figure 4.67. Prediction and actual value for bottom temperature line plot

Figure 4.68, shows the observed versus predicted values of the top temperature using

regression analysis equation. Figure 4.69 shows the composition line plot of the actual

and RA equation for the top temperature.

RA equation top temperature n-butane
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Figure.4.68 Prediction versus actual value RA equation top temperature
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Regression prediction top temperature n-butane
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Figure 4.69 Prediction and actual value for top temperature line plot

Figure 4.70 shows the observed versus predicted values of the bottom temperature using

regression analysis equation. Figure 4.71, shows the composition line plot of the actual

and RA equation n-butane bottom temperature.

RA equation bottom temperature n-butane
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Figure 4.70. Prediction versus actual value RA equation bottom temperature
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Regression prediction bottom temperature n-butane
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Figure 4.71. Prediction and actual value for bottom temperature line plot

Table 4.15. Statistical analysis of NN equation, PLS equation and RA equation
Parameter NN eq PLS eq RA eq
rmse_bottom 4.74E-07 0.13 0.101
rmse_top 4.28E-08 0.14 0.12
CDC_bottom 79.66 59 59.66
CDC_top 81.66 58.66 56.66
R_bottom 1 0.95 0.97
R_top 1 0.97 0.98
AIC_bottom 63.12 107.09 63.23
AIC_top 293.16 309.72 297.88
BIC_bottom 77.95 121.91 78.063
BIC_top 307.99 324.54 312.71
MAPE_bottom -3.4E-07 8.65E-06 -4.6E-05
MAPE_top 7.28E-08 -2.8E-06 -0.00763
Cp_bottom 1 0.95 0.97
Cp_top 1 0.97 0.98

4.7.6 Residual analysis

Figure 4.72 and Figure 4.73 shows the residual of the neural network equation, PLS

equation and normal regression equation for top and bottom temperature respectively.
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Residual analysis top temperature equation NN, PLS and RA n-butane
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Figure 4.72. Residual analysis for neural network equation, PLS equation and regression

analysis equation top temperature

Residual analysis bottom temperature equation NN, PLS and RA n-butane
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Figure 4.73. Residual analysis for neural network equation, PLS equation and regression

analysis equation bottom temperature
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The prediction of the composition and temperature at the top and bottom of a

debutaniser column using the equation based neural network model which is then

compared to other methods such as PLS and regression analysis. All of the results give

optimum results in predicting the compositions and temperature but it can be concluded

that NN equation gives the best prediction compared to other models based on the

RMSE value.
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CHAPTER 5: HYBRID NEURAL NETWORK TO ESTIMATE COMPOSITION
AND TEMPERATURE FOR THE DEBUTANISER COLUMN

5.1 Introduction

Nonlinear system for process control is a challenging topic at present stage. In the

past, neural network and hybrid neural networks were interesting research areas for

modeling of nonlinear system. The main contribution of this thesis is in the use of

online closed loop and open loop data for training neural network. Hybrid model, the

top and bottom composition prediction by first order principle are added together with

residual composition predicted using neural network. The second hybrid model also

consists of first principle model in terms of energy balance stage by stage for the

column. The top and bottom temperature by first order principle are also added together

with the residual temperature predicted using neural network. The neural network

prediction for residual composition and residual temperature where the inputs were

trained, validate and test to obtain the optimum number of neuron in the hidden layer.

This research also involves a single dynamic neural network model with lagged inputs

to predict the top and bottom composition and temperature simultaneously. Reliable

operation and control of such a column normally depends on its ability to measure

composition and temperature in an online and accurate fashion. The normal method of

utilizing hardware sensors is normally expensive, tedious and non-robust in nature

especially for composition measurement which is highly expensive and difficult to

handle and operate in an offline manner. This makes it slow in its operation and highly

instable when used for online control purposes. A suitable alternative is to utilize soft

sensors and one method which is becoming popular is through the use of neural network

models. However since these neural network models rely heavily on available data, the

use of a combination of first principle model with neural network in a hybrid form is a
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more practical approach that is being increasingly applied at the present moment, some

of which are given in the next few paragraphs.

The various work presented so far on the use of neural network based hybrid model

involves the use of black box model neural network. This is non-versatile and non-

robust in nature as well as being difficult to see the correlation between the inputs and

outputs to the system. In this work, which has its main novelty and contribution, we

have prepared using an equation based neural network model in hybrid with the first

principle model for the column. The neural network is MIMO (Multi input and multi

output) in nature, where it is used to predict the residual composition and temperature

of the top and bottom prediction for the column. The residuals are then added to the first

principle model in a hybrid fashion, to predict the actual composition and temperature

of the top and bottom for the column. The other contribution of this work is that it

utilizes a mixture of online close loop and open loop data and for these data available

online and simulation data for those not available online by training the neural network

models

5.2 Hybrid model construction

There are 2 types of configuration reported for the hybrid neural network in the

literature. There are the series and parallel approaches as seen in Figure 5.1 (Ng &

Hussain, 2004). The series approach forces the output from the neural network to be

consistent while the parallel approach allows the model to assist the network. The

parallel approach is used to estimate the residual of the variable by means of a

simplified model, which is the approach we are using in this work.
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Figure 5.1 Two approaches used in HNN with FPM

5.3 Hybrid simulation of the distillation column

Different combinations could be developed for hybrid models but in order to build

them, the detailed knowledge of the process is essential. A conventional method and

approach involves applying a first basis, which is established upon the first principles

model, while the neural network is used to calculate the unknown parameters (Ng &

Hussain, 2004). Our study utilizes the parallel approach, which combines the first

principle model with the residual (the difference between model and actual estimation).

One of the NN model involves residual composition predictions where the inputs are the

manipulated variables that include the reboiler flow rate, reflux flow rate, temperature,

as well as the residual top and bottoms composition of n-butane while the outputs are

the prediction of the residual top and bottom composition of n-butane while the other

NN model is for residual temperature predictions which involve inputs such as the

manipulated variables, overhead pressure, reboiler flow rate, reflux flow rate,

temperature, residual top and bottoms temperature whereas the outputs are the

prediction of the residual top and bottom temperature. The NN model receives these
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input variables and predicts the output residual compositions and temperatures

accordingly. The outputs results are then combined together with the first principles

model to estimate the top and bottoms composition of n-butane as well as the top and

bottoms temperature of the column. However in this study, which is one highly novel

feature of the work, the neural network predictions utilise an equation based model

instead of merely a black box system as in many other applications.

5.4 Mathematical modelling of the distillation column

The dynamic model for the column in terms of mass and energy balances need is first

developed. The model is based upon first principles for simulating the column

performance.

To simplify the system, the following assumptions were made in this study

(Stephanopoulos, 1984):

1. Vapour holdup on each tray was negligible.

2. The molar heat of vaporization of n-butane and i-butane components is equal.

3. The relative volatility was constant throughout the column.

4. The tray efficiency is kept at close to 100%.

The momentum balance for each tray are neglected and it is assumed that the molar

flow rate of the liquid leaving each tray is related to the liquid hold up of the tray using

the Francis weir formula.

The execution of dynamic simulation was achieved by first simulating the steady state

simulation. After that the simulation are turned into the dynamic mode. Then all the

controllers are added to the simulation by using dynamic assistant available in HYSYS.

The simulations are run from manual mode to automatic mode when the process reaches

is set point. The feed composition are measured intermittently by off-line by inputs to
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the simulation. To perform the control under dynamic simulation the offline

measurement are used

The important step is to develop the dynamic equation of the debutaniser column in

terms of the basic mass and energy balance given below:

Mass balance (2 component system i-butane and n-butane)

Feed tray

fyfVfxfLfyfVfxfLfcfF
dt

fxfMd
 1111

)(
(5.1)

Top tray

nynVnxnLnynVDxrF
dt

nxnMd
 11

)(
(5.2)

Bottoms tray

111122
)11(

yVxLbVyxL
dt

xMd
 (5.3)

i th tray

iyiVixiLiyiVixiL
dt

ixiMd
 11111

)(
(5.4)

Reflux drum

DxDFRFnynV
dt

DxRDMd
)(

)(
 (5.5)

Column base

BXBFBVyxL
dt

BxBMd
 11

)(
(5.6)
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Antoine equation (Alphaz et al, 2002)

p
p

x

p

p
y

TT

inin
in

,,
,  (5.7)

F is the feed molar flow rate (kmol/hr), L is the liquid molar flow rate (kmol/hr) and

V is the vapour molar flow rate (kmol/hr). h is the liquid molar enthalpy (kJ/kmol), H is

the vapour molar enthalpy (kJ/kmol) and Q is the heat contribution (kJ/hr). All the

values in the variables shown in the equations (5.1) to (5.7) are extracted from the

process simulator, HYSYS. The specific heat for the energy balance is calculated for

every stage. The equation is constructed in a SIMULINK environment in MATLAB.

The dynamic mass balance is used to determine the composition of n-butane for every

stage in the column. The dynamic energy balance is used to determine the temperature

in every stage of the column, which has a total of 35 stages

The vapor pressure, P as a function of temperature;

2
1010 loglog ETDTTC

T
BAP  (5.8)

where P = vapor pressure, kPa , A, B,C, D and E = coefficients for chemical

compound, T = temperature (K) where P = vapor pressure, kPa , A, B,C, D and E =

coefficients for chemical compound n-butane, T = temperature (K). A is 27, B is -

1904.9, C is -7.18, D is -6.68  10-11 and E is 4.2  10-6. The coefficients for i-butane,

A is 31.25, B is -1953, C is -8.8, D is 8.92  10-11 and E is 5.75  10-6.

The vapor pressures are used to calculate the top composition n-butane in equation

5.8, where T is the top temperature and the saturated vapor for all the components could

be calculated. Equation 5.7 is used to determine the vapor mole fraction of n-butane at

the top. The purpose of using a hybrid model for the column is because the first
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principles model cannot predict the actual top and bottoms composition and temperature

accurately since many of the parameters in this model are empirical in nature and

deviate from the actual values, where the neural network is used to estimate this

deviation.

V is the vapor molar flow rate, FR molar reflux flow rate, FD is the distillate molar

flow rate, MRD is the liquid hold up at the reflux drum. L1 is the liquid flow rate at the

column base, V is the vapor molar flow rate, FB is the bottom product flow rate, MB is

the liquid hold up at the column base. The first principle model is defined as a simple

linear model around a certain operating point. Simple linear first principles model to

represent the nonlinear dynamics of the distillation column. The FPM model used in the

current work is a simplified model that is used in the HYSYS simulation. In other

words, the first principle model that has been used is a very crude approximation of the

system, and hence, it is not able to predict both the composition and temperature. The

results are expected. This is why hybrid prediction is necessary.

The model obtained for the mass balance for the column is obtained by substituting

the constants values for vapor molar flow rate, liquid molar flow rate, reflux molar flow

rate and distillate molar flow rate as shown below;

The equation n-butane for reflux drum, equation 5.5;

xD
D

RD y
dt

dx
M 71.072.1 35  (5.9a)

The equation n-butane column base equation 5.6;

BB
dt

dxB xyxM B 8281168 1 
(5.9b)

The equation i-butane for reflux drum, equation 5.5;

xD
D

RD y
dt

dx
M 51.068.1 35  (5.9c)
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The equation i-butane column base equation 5.6;

BB
dt

dxB xyxM B 7582160 1  (5.9d)

The model obtained for the mass balance is calculated stage by stage by integration

using equations 5.1 to 5.6. By using equations 5.5 and 5.7, top composition could be

obtained. Once the mole fraction of n-butane (xD) is obtained at the distillate, then

equation 5.7 is used to determine the mole fraction of vapour (yD). Equation 5.6 is used

to determine the mole fraction of n-butane (xB) at the bottom. Equations 5.9a and 5.9b

are used to solve the dynamic equations of the column. First the calculation starts from

the top tray of the column and the calculation is then continued from tray to tray until it

reaches the bottom tray by maintaining the feed tray composition. Variable y35 is

solved using the iteration method. The vapor molar flow rate and the liquid molar flow

rate used in Equations 5.9a and 5.9b are obtained from the model created in HYSYS

simulation.

The model obtained for the energy balance for the column also by substituting the

constants values for vapor molar flow rate, liquid molar flow rate and contribution due

to heat are shown below;

Energy balance (Elgue et al., 2004)]

mCp

QTCpLTCpVTCpLTCpV

dt

dT kkkkkkkkkkkkk 
  111111

(5.9e)

where h=LCpT is the liquid molar enthalpy (kJ/kmol), H = VCpT is the molar enthalpy

of vapour (kJ/kmol) and Q is the contribution due to heat (kJ/hr) for each stage. The
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dynamic equation of the debutaniser column in terms of the basic energy balance is

shown in equation 5.9e. The specific heat for the energy balance is calculated for every

stage. The temperature of each stage is calculated by integration equation 5.9e. Once the

composition is calculated by using iteration method stage to stage calculation, the

temperature at each stage could also be calculated using iteration method. Once the top

temperature could be obtained, then vapour pressure at the top of the column using

equation 5.8 could be calculated.

The model obtained for the energy balance for the column is shown below;

10354129
3534

35  TT
dt

dT
(5.9f)

258638
1

1  T
dt

dT

(5.9g)

The model obtained for the energy balance are calculated stage by stage by integration

using equation 5.9e by knowing the enthalpy equation is calculated to be h = mCp T .

5.5 Hybrid neural network (HNN) approach

In this system, the model of the debutaniser column is obtained in section 5.4 is used

to produce the given composition of n-butane at the top and bottom of the column. The

difference between the actual plant values and the predicted values that is given by the

neural network model where the residual model is used as the predicted output for

training and validating the neural network model. The training data for the neural

network is generated from open loop response functions and the amount of data

collected is about 3612 for a sampling time of 541 minutes running time. This

modelling is also applied in predicting the top and bottom temperatures. In this scenario,

three data sets are prepared which are defined as the training, validation and testing data
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sets. These data sets are obtained from combining the simulation and actual open loop

data.

The neural network model is used in the hybrid modelling scenario for predicting the

residual composition and residual temperature using a forward modelling approach.

The residual composition is the difference between the first principle model

composition and the actual composition and the residual temperature is the difference

between the first principles model temperature and the actual temperature. The outputs

from this neural network are added to the mass and energy balance equations which are

obtained from the process model to predict the composition and temperature of the

column. For the network training it is important to ensure that the prediction of residual

match the actual residual compositions.

The residue of real value is obtained from the online data for composition and

temperature. The Fist Principle Model (FPM) is obtained from simulation. The residual

is obtained from the deviation between real value and FPM. This also applies for the

temperature prediction. The neural network training procedure is very important to

determine the accuracy of hybrid modelling in predicting the online composition and

temperature accurately and the details of the training approach can bee seen in section

5.6.

5.6 Neural network hybrid modeling

The current practice in the industry is to measure the composition at the top and

bottom of the column by GC sampling method which is tedious and may delay the

determination of results (Fortuna et al., 2005). However neural network model can be

used as an alternate because it is able to predict the composition faster and with more

accuracy. In addition it can also precisely handle non-linearities in the process variable

surrounding the column as proposed in this study. The hybrid model combining neural

network with first principles model is a versatile method to execute, which can also be
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validated online efficiently. There are two types of hybrid networks developed in this

work namely 1) Hybrid model applied for composition prediction and 2) Hybrid model

employed for temperature prediction. The input variables to the network include the

present composition of n-butane, are lagged values 1 while the output of the network is

the future predictions for the composition of n-butane. The purpose for the delayed

variable is to develop the dynamic model for the column and to reduce the complexity

of the model. This is similar for other networks used to predict the future variation of

the top and bottoms temperature respectively. Nonlinear Autoregressive Network with

Exogenous inputs (NARX) are employed for training, validation and testing the data set.

The training algorithm used is the Levenberg-Marquardt method. Early stopping criteria

are implemented to train the network while the performance functions used are outlined

in section 4.3.

Tables 4.11 and 4.16 shows the important variables in the neural network for the

residual composition n-butane, i-butane and Table 4.38 shows the important variables

used in the neural network for residual temperature predictions. The inputs for the

neural network residual composition are from mv2 (k) to p_bot (k-1) while the outputs

from the system are variables p_top (k+1) and p_bot (k+1). The inputs for the neural

network residual temperature are from mv1 (k) to T_bot (k-1) while the outputs are

T_top (k+1) and T_bot (k+1). Figure 4 shows the general procedure in developing the

neural network architecture. In the optimum network, the number of layers used is 3

with only 1 hidden layer and the number of hidden nodes is determined using statistical

analysis described in section 4.3. The number of inputs to the network is 10 and the

outputs are 2 (residual composition of top and bottoms) for composition prediction

while the number of inputs to the network is 12 while the outputs are 2 for temperature

prediction (residual top and bottom temperature). The transfer function to train the

network is purelin (linear) for the entire layer and the networks are trained to
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simultaneously predict the top and bottoms residual composition of n-butane and

residual top and bottoms temperature of the column.

Prior to implementing the neural network, the data is arranged by combining the open

loop response from the simulation and online data. The data set are partitioned

according to training which is 65% of the total data, 18% for validation and 17% for

testing. The data set is then trained until the network meets its performance criteria. The

data set is also validated and tested after the network is trained. After obtaining the

neural network structure, and applying the general equation (4.10) for the network,

corresponding to the linear activation function, the following equation for the top and

bottom residual composition prediction of n-butane is obtained where y1 refers to the

top residual composition and y2 refers to the bottom residual composition for a 1

hidden layer network;
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(5.10a)

Where;

1,1IW Input weight at layer 1 (input layer) b1 = biased value at layer 1

1,2LW Layer weight at layer 2 (hidden layer) b2 = biased value at layer 2

The following equation for the top and bottom residual temperature prediction is

obtained where y3 refers to the top residual temperature and y4 refers to the bottom

residual temperature for a 1 hidden layer network;
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(5.11b)

Where;

1,1IW Input weight at layer 1 (input layer) b1 = biased value at layer 1

1,2LW Layer weight at layer 2 (hidden layer) b2 = biased value at layer 2

These values can be seen in the Appendix.

n-butane

In this case, p are the inputs to the neural network residual composition given by the

vector

 Tbotbottoptop kpkpkpkpkfkfkmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2 

Where 1p are the inputs to the neural network residual temperature and for this case

study is given by the vector

 Tbotbottoptop kTkTkTkTkfkfkmvkmvkmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2)1(1)(1 

After pruning the neural network structure (simplifying the weights and biases values)

the equation above can further be simplified to give the residual composition equation

below;
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(5.12)



153

The same approach can be applied to the network for predicting the residual

temperature as shown below;
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i-butane

In this case, p are the inputs to the neural network residual composition given by the

vector

 Tbotbottoptop kokokokokekekmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2 

After pruning the neural network structure (simplifying the weights and biases values)

the equation above can further be simplified to give the residual composition equation

below;
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(5.14)

For n-butane, the number of neurons obtained in the hidden layer for the prediction

residual composition is 34 while the residual temperature is 12 for n-butane. The

number of neuron is determined by evaluating the RMSE values outlined in model

adequacy test in section 4.3. The low RMSE values indicate better prediction for the

column. The neural network architecture is obtained by running the m-file programming

in MATLAB by using the GENSIM(NET) command. This GENSIM command tends to

generate the architecture in the SIMULINK environment. From there the hybrid neural

network is constructed in SIMULINK environment as shown in Figure 5.2. The neural
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network equation for residual composition and residual temperature is developed by

extracting the input weights and biases value from the network. Then the equations are

constructed in SIMULINK. The hybrid model for composition is obtained by adding the

equation 6.1 with the first principle model in terms of the equation used for mass

balance of the column to determine the top and bottoms composition. The equations 5.5

and 5.6 respectively are the equations for the mass balance conducted for the top and

bottom composition. The hybrid model for the temperature is obtained by adding

equation 5.12 with first principles model using an energy balance for the column at the

top and bottom temperature. The top and bottoms temperature for the column is by

integration equation 5.8 to obtain the top and bottoms temperature.

n-butane

The equation below is the combination of first principle model composition and the

residual top and bottom composition
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(5.15)

y1 and y2 are the outputs for the neural network hybrid prediction model for top and

bottom composition. y35 is the vapor mole fraction at stage 35, xD is the liquid mole

fraction at distillate, yB is the vapor mole fraction at the bottoms, x1 is the liquid mole

fraction at stage 1 and xB is the liquid mole fraction at bottoms. The important equation

to generate the equation 5.15 by integrating equation 5.5 and 5.6
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The equation below is the combination of first principle model temperature and the

residual top and bottom temperature
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y3 and y4 are the outputs for the neural network hybrid prediction for top and bottom

temperatures. Cp34 and Cp35 are the specific heats of n-butane at stages 34 and stage 35

respectively, while T35, T34 and T1 are the temperature at stages 35, 34 and 1

respectively.

i-butane

The equation below is the combination of first principle model composition and the

residual top and bottom composition
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(5.17)

y1 and y2 are the outputs for the neural network hybrid prediction for top and bottoms

composition. y35 is the vapor mole fraction at stage 35, xD is the liquid mole fraction at

distillate, yB is the vapor mole fraction at the bottoms, x1 is the liquid mole fraction at

stage 1 and xB is the liquid mole fraction at bottoms.
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Figure 5.2 Hybrid model for the composition n-butane and temperature

5.7 Residual neural network n-butane

Table 5.1 shows the important variables in the neural network where the data set are

combined from the manipulated variable reboiler flow rate and reflux flow rate for

n-butane.

Table 5.1 Important variables for neural network prediction

Inputs
Variable Symbol Description
MV2 mv2 (k) Manipulated reboiler flow rate

mv2 (k-1) Lag MV2
MV3 mv3 (k) Manipulated reflux flow rate

mv3 (k-1) Lag MV3
Temp 6 f (k) Debutaniser feed temp

f (k-1) Lag Temp 6
Component 3 p_top (k) Top residual composition n-butane

p_top (k-1) Lag residual composition top
p_bot (k) Bottom residual composition n- butane

p_bot (k-1) Lag residual composition bottom
Outputs

p_top (k+1) Future predictions n- butane top residual
p_bot (k+1) Future predictions n- butane bottom residual

The inputs for the neural network are from mv2 (k) to p_bot (k-1). The outputs are the

variable p_top (k+1) and p_bot (k+1).



157

Figure 5.3 Neural network architecture for residual composition prediction of n-butane

Figure 5.3 shows the neural network architecture of the n-butane residual composition

prediction

Table 5.2 Neural network architecture
Parameters Description
Network NARX series parallel network

(newnarxsp)
Category With

partitioning
divided into 2

with
partitioning
divided into 3

Training function TRAINLM TRAINLM

Adaptation learning function LEARNGDM LEARNGDM

Performance function MSE MSE

Epochs 1000 1000

Goal 1e-6 1e-6

Number of layers 2 2

Layer 1: Number of Neuron
Transfer function

38

PURELIN

38

PURELIN
Layer 2: Number of Neuron
Transfer function

2

PURELIN

2

PURELIN

mv2(k)

mv2(k-1)

mv3(k)

mv3(k-1)

f(k)

f(k-1)

p_top

p_top(k-1)

p_bot

p_bot(k-1)

p_top(k+1)

p_bot(k+1)

p_top(k)

p_bot(k)

mv2(k)

mv2(k-1)

mv3(k)

mv3(k-1)

f(k)

f(k-1)

p_top

p_top(k-1)

p_bot

p_bot(k-1)

p_top(k+1)

p_bot(k+1)

p_top(k)

p_bot(k)
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5.7.1 With partition into 3

RMSE profile of n-butane training
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Figure 5.4 Profile of the RMSE of n-butane training

RMSE profile of n-butane validation
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Figure 5.5 Profile of the RMSE of n-butane validation

RMSE profile of n-butane testing
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Figure 5.6 Profile of the RMSE of n-butane testing
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Figure 5.7 Actual and simulated n-butane Figure 5.8 Actual and simulated n-butane

top residual composition training bottom residual composition training

Figure 5.9 Actual and simulated n-butane Figure 5.10 Actual and simulated n-butane

top residual composition validation bottom residual composition validation

Figure 5.11Actual and simulated n-butane Figure 5.12 Actual and simulated n-butane

top residual composition testing bottom residual composition testing
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Figure 5.13 Actual and simulated n-butane Figure 5.14 Actual and simulated n-butane
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Figure 5.15 Actual and simulated n-butane Figure 5.16 Actual and simulated n-butane

top residual composition line plot bottom residual composition line plot

validation validation



161

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time

T
o
p

re
s
id

u
a
l
(m

o
le

fr
a
c
ti
o
n
):

T
e
s
ti
n
g

Actual and Simulated plot for Top residual n-butane:Testing

Actual

Simulated

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

10

15

20
x 10

-3

Time

B
o
tt

o
m

re
s
id

u
a
l
(m

o
le

fr
a
c
ti
o
n
):

T
e
s
ti
n
g

Actual and Simulated plot for bottom residual n-butane:Testing

Actual

Simulated

Figure 5.17 Actual and simulated n-butane Figure 5.18 Actual and simulated n-butane
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Figures 5.4 to 5.6 show the profile with the change in the number of hidden nodes in the

hidden layer. Figures 5.7 to 5.18 show the top and bottom residual composition

prediction of n-butane for training, validation and testing.

5.8 Residual top and bottom temperature neural network

Table 5.3 shows the important variables in the neural network where the data set are

combined from the manipulated variable overhead pressure, reboiler flow rate and

reflux flow rate.
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Table 5.3 Important variables for neural network prediction

Inputs
Variable Symbol Description
MV1 mv1 (k) Manipulated overhead pressure

mv1(k-1) Lag MV1
MV2 mv2 (k) Manipulated reboiler

flow rate
mv2 (k-1) Lag MV2

MV3 mv3 (k) Manipulated reflux
flow rate

mv3 (k-1) Lag MV3
Temp 6 f (k) Debutaniser feed temp

f (k-1) Lag Temp 6
Temperature T_top (k) Top residual temp

T_top (k-1) Lag top residual temperature
T_bot (k) Bottom residual temperature

T_bot (k-1) Lag bottom residual temperature
Outputs

T_top (k+1) Future predictions top residual temperature
T_bot (k+1) Future predictions bottom residual temperature

The inputs for the neural network are from mv1 (k) to T_bot (k-1). The outputs are the

variable T_top (k+1) and T_bot (k+1).

Figure 5.19 Neural network architecture for residual top and bottom temperatures
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Table 5.4 Neural network architecture
Parameters Description
Network NARX series parallel network

(newnarxsp)
Category With

partitioning
divided into 2

with
partitioning
divided into 3

Training function TRAINLM TRAINLM

Adaptation learning function LEARNGDM LEARNGDM

Performance function MSE MSE

Epochs 1000 1000

Goal 1e-6 1e-6

Number of layers 3 3

Layer 1: Number of Neuron
Transfer function

12

PURELIN

12

PURELIN
Layer 2: Number of Neuron
Transfer function

2

PURELIN

2

PURELIN

5.8.1 With partition into 3

RMSE profile for top and bottom temperature training
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Figure 5.20 Profile of the RMSE training



164

RMSE profile for top and bottom temperature validation
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Figure 5.21 Profile of the RMSE validation

RMSE profile for top and bottom temperature testing
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Figure 5.22 Profile of the RMSE testing

Figure 5.23 Actual and simulated Figure 5.24 Actual and simulated

top residual temperature training bottom residual temperature training
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Figure 5.25 Actual and simulated Figure 5.26 Actual and simulated

top residual temperature validation bottom residual temperature validation

Figure 5.27 Actual and simulated Figure 5.28 Actual and simulated

top residual temperature testing bottom residual temperature testing
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Figure 5.31 Actual and simulated Figure 5.32 Actual and simulated

top residual temperature line plot validation bottom residual temperature line plot

validation
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Figure 5.33 Actual and simulated Figure 5.34 Actual and simulated

top residual temperature line plot testing bottom residual temperature line plot

testing

Figures 5.20-5.22 shows the profile with the change in the number of hidden nodes in

the hidden layer. Figures 5.23 to 5.34 show the top and bottom residual temperature

prediction of n-butane for training, validation and testing

5.9 Hybrid modeling of n-butane

Figure 5.35-5.36 show the top and bottom composition prediction by first principle

model. Figure 5.37-5.38 show the top and bottom temperature prediction by first

principle model. From the fluctuations, we could see that the first principle model show

large deviation compare to actual online composition.
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Top composition n-butane first order principle
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Figure 5.35 Top composition n-butane first principle model

Bottom composition n-butane first order principle
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Figure 5.36 Bottom composition n-butane first principle model
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Figure 5.37 Top temperature first principle model
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Figure 5.38 Bottom temperature first principle model

Figures 5.39-5.40 show the fluctuation of the actual composition response compared

to the hybrid model and neural network. The calculated top and bottoms RMSE for the

hybrid equation is 3.65  10-9 and 7.24  10-9 respectively. The calculated top and

bottom RMSE for the neural network is 4.4  10-2 and 0.98 10-2. The calculated top

and bottom RMSE for hybrid prediction is 3.92  10-9and 7.93 10-9 respectively. This

indicates that the deviation between actual and predicted top and bottom composition is

very small. The prediction results are in good agreement with the actual data as the
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regression value of R2 is close to 1. This confirm that hybrid neural network gives the

best for top and bottom composition prediction than the rest.

Hybrid equation gives the best result for top and bottoms composition prediction

than the rest. Based on the MAPE values the best prediction is the hybrid equation

modeling because the values are close to 0. The MAPE values for top and bottom

composition are 1.86 10-6 and 6.35  10-6 respectively. When having a perfect fit,

MAPE is zero. Table 5.1 shows the statistical analysis for composition prediction

of n-butane.

Hybird, neural network and actual n-butane
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Figure 5.39 Hybrid model, neural network and actual top composition n-butane

Hybird, neural network and actual n-butane
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Figure 5.40 Hybrid model, neural network and actual bottom composition n-butane
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Table 5.5 Statistical analysis for composition prediction of n-butane.

Black box model

Hybrid eq Hybrid NN
rmse_bottom 7.24E-09 7.93E-09 0.0098
rmse_top 3.65E-09 3.92E-09 0.044
R_bottom 1 0.99 0.78
R_top 1 0.99 0.79
MAPE_bottom 6.35E-06 1.49E-05 11.19
MAPE_top 1.86E-06 -3.2E-06 19.05

Figures 5.41 and 5.42 show the fluctuation of the actual temperature response

compared to hybrid model and neural network. The calculated top and bottoms RMSE

for the hybrid equation is 2.86  10-3 and 5.25  10-5 respectively. The calculated top

and bottom RMSE for neural network is 4.4  10-2 and 0.98  10-2. The calculated top

and bottom RMSE for the hybrid prediction is 1.32  10-2 and 5.2 10-4 respectively.

The prediction results are in good agreement with the actual data as the regression value

of R is close to 1. Hybrid equation gives the best result for top and bottom temperature

prediction than the rest is because the R value is 1. Hybrid equation gives the best for

top and bottom composition prediction than the rest. Based on the MAPE values the

best prediction is the hybrid equation because the values are close to 0. The MAPE

values for top and bottom temperature are -4.17 10-4 and 3.07  10-5 respectively.

When having a perfect fit, MAPE is zero. This shows that the hybrid network perform

well than the rest of the predictions for composition and temperature prediction. Table

5.2 shows the statistical analysis for temperature prediction. This shows that hybrid

neural network is the optimum composition and temperature prediction with high

accuracy and small error compared to the rest of the prediction.
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Figure 5.41 Hybrid model, neural network and actual top temperature

Bottom temperature n-butane
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Figure 5.42 Hybrid model, neural network and actual bottom temperature

Table 5.6 Statistical analysis for temperature prediction.

Black box model

Hybrid eq Hybrid NN
rmse_bottom 5.25E-05 5.20E-04 1.782703
rmse_top 2.86E-03 1.32E-02 0.044306
R_bottom 0.99 0.99 0.33
R_top 0.99 0.99 0.99
MAPE_bottom 3.07E-05 1.01E-04 -0.51
MAPE_top -4.17E-04 -1.37E-03 -0.063

0 50 100 150 200

Top temperature

Bottom temperature
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From the results it may be concluded that the prediction by NN using the neural

network conventional approach is based on black box model would not be able to

predict the composition and temperature compared to the hybrid equation. The

prediction using residual composition and the residual temperature equation is robust in

nature by pruning the input weights and biases in order to obtain a relationship between

the inputs of the network by relating them to the outputs prediction. The hybrid model is

used to minimize the deviation between the first principles model and the actual

composition. By training the residual composition, the hybrid model is able to predict

the actual composition accurately and gives decent prediction with comparison to the

other counterparts. The hybrid equation is robust in nature compared to the rest of the

prediction because we determine the equation required which consists of first principles

model and residual composition and temperature.

In order to determine the robustness, process parameter need to be evaluated. One of

the methods that could be used is to introduce the measurement error as one of the

inputs to the neural network and maintain the other variables. Then hybrid model for the

composition and temperature are simulated again in order to see its performance. The

measurement error is introduced to a variable while the other variables are maintained.

The variable that is tested for robustness analysis is the variable Temp 6 by introducing

some 5% measurement error and observes the performance of the hybrid prediction.

Table 5.4 shows the statistical analysis for robustness analysis for Temp 6.

Then variable p_top(k) and p_top (k-1) are introduced with some 5%

measurement error and to observe the performance of the hybrid prediction. The process

parameter could also be change by adjusting the feed composition in the first principle

model and perform the hybrid simulation. From the analysis above, the hybrid

prediction show similar fluctuation although there are some process parameter where

evaluated. So therefore the hybrid prediction is robust in nature.
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Table 5.7 Statistical analysis for robustness analysis variable Temp 6

Parameter Composition Temperature
rmse_bottom 118E-10 2E-05
rmse_top 6.4E-10 4.6E-04
R_bottom 1 1
R_top 1 1
MAPE_bottom 1.3E-07 5.3E-06
MAPE_top 2.1E-07 6.5E-05

The hybrid neural network equation performs better in comparison to the rest of the

neural network prediction methodologies as evidenced by the error values which are

smaller with respect to the other prediction procedures. This work could be developed

for online prediction, monitoring and control of composition and temperature of the

column. Based on the hybrid model, the effect of key operation conditions is analyzed

and some useful guiding rules are obtained. Because the predicting performance of the

hybrid equation neural network depends on the quality and range of the sample data, the

performance of the hybrid model also depends on the quality and range of the sample

data. The other advantage of the hybrid equation is that we could determine the

relationship between the inputs and outputs for these predictions and could be easily

applied for model based control strategies in the future.
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CHAPTER 6: ADVANCED PROCESS CONTROL

6.1 Introduction

Controlling two compositions requires more complex instrumentation. The top and

bottom composition loops interact and dynamic stability problems can arise. Holding

heat input or reflux constant simplifies the control system and avoid interaction

problem. Composition control of the column requires an on-line measurement

performance variable directly related to composition. The common measurement is

temperature. However, temperature-composition relationship is influenced by column

pressure control (Alpbaz et al., 2002). If temperature is used as a control variable, the

sensing element is usually not placed directly in the product stream. Often, product

streams are relatively pure so that boiling point is relatively insensitive to small changes

in concentration. The steady state column temperature profile should be investigated

instead the sensing element should be located several trays away from the end, at a point

where the gradient is larger (L Smith, 1979). At this point, a fixed change in product

composition causes a larger temperature change. Controlling the temperature gives tight

control on product composition despite wide variations in other factors such as internal

reflux ratio (L Smith, 1979). The variables that need to be controlled are the top and

bottom temperatures and the variables that need to be estimated is top and bottom

compositions. Application of composition control to both ends of a debutaniser column

has been considered with generally little success. The difficulty results because two

individual control loops interact. The top loop controls the heavy key in the overhead

stream and the bottom loop controls the light key in the bottom stream. Some

disturbances cause the light key concentration in the bottom stream to increase. The

lower loop acts to reduce the concentration by adding heat. This action lowers the light

key concentration sends more heavy key up the column. If both loops are tuned tightly,
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the column becomes unstable, and the system can be stable by detuning one loop.

Processes with only one output being controlled by a single manipulated variable are

classified as single input single output (SISO) system. Many processes do not conform

to such a simple control configuration. In the process industries, any unit operation

cannot do so with only a single loop. In fact each unit operation requires control over at

least two variables, product rate and product quality. Systems with more than one

control loop are known as multi input multi output (MIMO) or multivariable control

system. There will therefore be a composition control loop and temperature control

loop. Minimization of energy usage is possible if the compositions of both the top and

bottom product streams are controlled to their design values, dual composition control.

A common scheme is to use reflux flow to control top product composition while the

heat input is used to control bottoms product composition. Loop interaction may also

arise as a consequence of process design, typically the use of recycle streams for heat

recovery purposes. Changes in the feed temperature will in turn influence bottom

product composition. It is clear that interaction exists between the composition and pre

heat control loops. The simple approach in dealing with loop interactions is by the

design of multivariable control strategies. This is to eliminate interactions between

control loops. The research that has been done on advanced process control from

previous researchers is outlined in the previous chapter under literature review. The

outline in the thesis for this chapter is the multivariable controller used consists of

neural network equation based for the forward model and inverse model. The

multivariable control system is to control the top and bottom temperature and estimating

the top and bottom composition. The use of the neural network based controller

compared to conventional PID controllers is because all the process variables

surrounding the debutaniser column are non-linear in nature and PID could not handle

non-linearities. As shown in Figure 3.2, the column configuration exist interaction loops
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to maintain the top and bottom compositions and to control the top and bottom

temperatures.

6.2 Neural network based control strategies

There are 2 types of control strategies for neural networks to be implemented for the

inverse model based control schemes. The two different ways are the Direct Inverse

Control (DIC) and the Internal Model Control (IMC) methods. These methods are

described briefly as shown in Figure 6.1 and Figure 6.2.

Figure 6.1 Control loop of neural network based Direct Inverse Model Control (DIC)
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Figure 6.2 Control loop of neural network based Internal Model Controller (IMC)

6.2.1. Direct Inverse Control (DIC) method

This strategy consists of the process control which is placed in series with neural

network inverse models that act as the controllers. In this scheme, the outputs predict

the desired current system input, while the desired set-point acts as the desired output

which is fed to the network together with the past plant inputs. In this case, the

appropriate control parameter for the desired target will be predicted based on its input.

Neural networks acting as the controller has to learn to supply at its input. As shown in

Figure 6.1, the inverse model is then utilized in the control strategy by cascading it with

the controlled system or plant. This method depends on the accuracy of the inverse

model. The controlled variables are the top and bottom temperature and the manipulated

variables are the reflux and reboiler flow rate for the DIC method.

Neural network
Inverse model Plant

Neural network
estimator

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+ Neural network
Inverse model

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+

-

Tset_top

Tset_bot

T_top(k+1)

T_bot(k+1)

T_nn(k)

C_bot(k+1)

Z-1Z-1

mv2(k)

mv3(k)

Neural network
Inverse model

Neural network
estimator

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+ Neural network
Inverse model

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1Z-1Z-1Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+

-

T_nn(k)

C_top(k+1)

Z-1Z-1

mv3(k)

Neural network
Inverse model Plant

Neural network
estimator

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+ Neural network
Inverse model

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1Z-1Z-1Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+

-

Tset_top

Tset_bot

T_top(k+1)

T_bot(k+1)

T_nn(k)

C_bot(k+1)

Z-1Z-1

mv2(k)

mv3(k)

Neural network
Inverse model

Neural network
estimator

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+ Neural network
Inverse model

Z-1

Neural network
Forward model

Z-1

Z-1

Z-1

Z-1

Z-1Z-1Z-1Z-1

Z-1 Z-1 Z-1 Z-1

+
-

+

-

T_nn(k)

C_top(k+1)

Z-1Z-1

mv3(k)



179

6.2.2. Internal Model Control (IMC) method

Neural network based IMC method incorporate both inverse and forward model in

the control scheme. The dynamic of the process is the forward model which it

represents is placed in parallel with the system. This is to cater for plant or mismatches

of the model during implementation (Mujtaba et al., 2006). On the other hand, the

inverse model will act as a controller. In this scheme, the error between the neural

network forward model and plant output is then subtracted from the set- point before

being fed into the inverse model, as seen in Figure 6.2. With the mismatch detection

feature, the internal model based controller can be used to drive the controlled

parameter to the desired set-point even when noise and disturbances are present in the

system. The optimum performance for controller performance is the IMC method. The

error produced by the process model could be minimized and compensated by the error

produced by the neural network forward process model (Mujtaba et al., 2006). The

controlled and manipulated variables used in the IMC method are similar to the DIC

method.

6.2.3. Neural networks models

Before applying the inverse model neural network control strategies for the

debutaniser column, it is crucial to discuss the development and configuration of the

forward and inverse models. Using neural network architecture and equation based

neural network are important fundamentals to these model based control strategies as

necessary.

6.2.3.1. Forward models

The procedure of training a neural network in which to represent the forward

dynamics of a column is by predicting the outputs using the required inputs. This is
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called forward modeling and the model obtained from this method is referred to as the

forward models. The most straightforward and popular approach is to augment the

network inputs data signals in real number forms, from the model or system being

identified (Ng & Hussain,2004). Other fundamental state variables can also be fed into

the network and considered as part of the inputs. In this method, the network is fed with

the present input, past inputs as well as the past outputs to predict the necessary output.

The neural network is placed in parallel with the model or system. The error between

the network output and system output which are the prediction error is used as the

training signal for the neural network. The forward models that have been mentioned

previously are used to determine the inverse model. The forward model which is

inversed to get the inverse model is then changed to the equation based. The equation

based method has been used to replace the black box model neural network for IMC and

DIC method. The inverse models as controllers are used in the IMC and DIC methods.

The composition forward models are used as a neural network estimator to predict the

top and bottom compositions.

The forward model for temperature is as follows;

In this case, p are the inputs to the neural network temperature given by the vector

 Tbotbottoptop kTkTkTkTkfkfkmvkmvkmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2)1(1)(1 

After pruning the neural network structure (simplifying the weights and biases values)

the equation above can be further simplified to give the equation below;
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y (6.1)

T1 and T2 is the output neural network top and bottom temperature prediction.
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6.2.3.2. Neural network estimator

The forward model for neural network for composition is similar as the neural

network estimator composition n-butane used for control system IMC method extracted

from chapter 4 are as follows;

In this case, p are the inputs to the neural network composition given by the vector

 Tbotbottoptop kpkpkpkpkfkfkmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2 

After pruning the neural network structure (simplifying the weights and biases values)

the equation above can further be simplified to give the composition equation below;
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The forward model for composition i-butane is as follows;

In this case, p are the inputs to the neural network composition given by the vector

 Tbotbottoptop kokokokokekekmvkmvkmvkmv )1()()1()()1()()1(3)(3)1(2)(2 

After pruning the neural network structure (simplifying the weights and biases values)

the equation above can further be simplified to give the composition equation below;
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(6.3)

y1 and y2 is the output neural network top and bottom composition predictions.
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6.2.3.3. Inverse models

Inverse models are basically the neural net structure representing the inverse of the

system dynamics at the completion of training. The methods for inverse models are

achieved by switching the inputs with the required outputs. The important manipulated

variable that is used for switching the inputs of the neural net is the manipulated

variable reboiler and reflux. The outputs predicted which are the future predictions of

top and bottom temperatures are switched with the manipulated variables. The sequence

of the inputs of the network needs to be maintained. The training procedure in this case

is called inversed modeling and y(k+1) corresponds to the required reference signal or

set-point. The final network representation of the inverse is given below;

)]1(),(),1(),(),1([)( 1   kukukykykyfku ppp (6.4)

where, f -1 represents the inverse map of the forward model

In this case for the inverse model is to predict the reboiler and reflux flow rate. The

prediction of the control output, mv2(k) and mv3 (k) is performed for a one-step ahead

prediction, inconformity with that of the forward model and the application of a one-

step ahead control action in the control strategies involving the neural network based

strategies.

The training and validation data set generated for the networks are similar to that used

for forward modeling but with different input and output configuration.

The inverse model for temperature is as follows;

In this case, p are the inputs to the neural network inverse temperature given by the

vector
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 Tbotbotbottoptoptop kTkTkTkTkTkTkfkfkmvkmvkmvkmv )1()()1()1()()1()1()()1(3)1(2)1(1)(1 

After pruning the neural network structure (simplifying the weights and biases values)

the equation above can further be simplified to give the inverse temperature equation

below
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mv2(k) and mv3(k) is the manipulated variable reflux and reboiler flow rate respectively.

The equation is implemented in SIMULINK in MATLAB by having the system with

more than one control loop which are multi-input and multi-output (MIMO) or

multivariable control. Figure 6.2a shows the forward and inverse model to control

temperature.

Figure 6.2a Forward and inverse models to control temperature
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6.3 Neural network development

The control strategies used in this work are DIC and IMC method. In order to

develop and analyze the controller performance for the debutaniser column, there are

two criteria for advanced process control which are the set point changes and

disturbances changes applied to the column. The set point changes is the step increases

for the temperature and the disturbances changes is by introducing a disturbance of the

column feed temperature. To perform the control performance for the compositions

using a neural network estimator.

6.3.1 Set point changes

First the top temperature is increased from 30 to 58oC. The bottom temperature is

increased from 60 to 137oC. The starting point for the top temperature is 30 oC and for

bottom temperature is 60oC. This is because the starting point temperature mentioned

here is based on the experience of the engineers to maintain and control that particular

temperature. There are 3 types of control strategies implemented for the control

strategies which are the IMC, DIC and PID controller. It can be seen that IMC and DIC

show similar trends with small error, no overshoot, and fast settling time and straight

goes to the set point. The settling time for top and bottom temperatures fluctuation is at

200 minutes. The IMC and DIC method gives the least fluctuations for step up tracking

of the set point. The fluctuations during step up for the conventional PID controller give

unacceptable results because it exhibits very large overshoot and small decay ratio. The

settling time for PID also is larger compared to the IMC and DIC methods. The PID

controller also produces offset when set point changes have been made. This applies to

the top and bottom temperatures respectively. Table 6.1 shows the performance of the

controller to control the top and bottom temperature. The results indicate that IMC
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equation gives the optimum performance as the IAE, ISE values and ITAE values is the

smallest compared to the result of the controller. Figures 6.5 and 6.6 show the

fluctuation of the manipulated variables to control temperature. The neural network

would be able to predict the manipulated variable for reboiler and reflux accurately

compared to PID controller. Therefore the performance of neural network is better. The

fluctuations of the manipulated variable for the reboiler and reflux are very important to

see how the controller calculates the error for a control system. The fluctuations for

reboiler and reflux flow rate for temperature based on PID show similar trends as time

progresses. The units for the calculated IA, ISE and ITAE are dimensionless.

Table 6.1 PID tuning

Parameter Kc Ti Td

Top temperature 0.71 1.41 20
Bottom temperature 1.76 3.25 15
Top composition 137.32 3.26 10
Bottom compositon 87.36 3.26 5

Table 6.2 Controller performance during set point changes

IMC eq DIC eq PID
IAE top 830.76 912.78 1219.70
IAE bottom 3809 4289 4666

IMC eq DIC eq PID
ISE top 2.10E+04 2.23E+04 2.69E+04
ISE bottom 1.21E+05 2.67E+05 3.06E+05

IMC eq DIC eq PID
ITAE top 4.25E+04 4.48E+04 1.44E+05
ITAE bottom 1.92E+05 2.16E+05 4.45E+05
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Figure 6.3 Set point top temperature
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Figure 6.4 Set point bottom temperature
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Figure 6.5 Manipulated variable temperature neural network
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6.3.2 Disturbances test

Figures 6.7 and 6.8 show the fluctuations for the top and bottom temperatures due to

disturbances. The disturbances introduced to the debutaniser column are the feed

temperature. Similar trends are observed for DIC and IMC methods for the top and

bottom temperatures because of disturbances. The neural network control performs well

compared to PID controller because there is no overshoot, fast settling time and small

error. The PID controller gives unacceptable results as they perform with high

overshoot, some offset and large error. This also applies to the top and bottom

temperatures. Table 6.2 shows the performance of the controller to control the top and

bottom temperatures. Results indicate that IMC equation gives the optimum

performance as the values of IAE, ISE and ITAE are the smallest compared to other

controller. Figures 6.9 and 6.10 show the fluctuation of the manipulated variable to

control temperature. The neural network would be able to predict the manipulated

variable for reboiler and reflux accurately compared to PID controller. Therefore the

performance of neural network is better. The fluctuation of the manipulated variable for

the reboiler and reflux flow rate is very important in order to see how the controller

calculates the error for a given control system. The fluctuations for reboiler and reflux

flow rate for temperature based on PID shows similar trends as time progresses.

Table 6.3 Controller performance during disturbance changes

IMC eq DIC eq PID
IAE top 817.21 836.95 1736.30
IAE bottom 2811.80 2876.00 7891.20

IMC eq DIC eq PID
ISE top 6.02E+03 6.63E+03 3.37E+04
ISE bottom 1.14E+05 1.23E+05 1.75E+06
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IMC eq DIC eq PID
ITAE top 7.78E+04 7.90E+04 1.78E+05
ITAE bottom 1.28E+05 1.30E+05 4.64E+05
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Figure 6.7 Disturbances top temperature
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Figure 6.8 Disturbances bottom temperature
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Manipulated variable temperature nn disturbances
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Figure 6.9 Manipulated variable temperature neural network disturbances
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Figure 6.10 Manipulated variable temperature PID disturbances
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n-butane

6.3.3 Neural network estimator

The neural network estimator used in the IMC and DIC method is to monitor and

estimate the top and bottom composition. Figures 6.11and 6.12 show the fluctuations

for the top and bottom compositions which are due to set point changes. For the top

composition for neural network controller for IMC and DIC methods, it could be

concluded that the IMC trend shows optimum result compared to DIC. This is because

the settling time to settle to the required set point for the composition is faster. Both

IMC and DIC method are superior comparison to the conventional PID controller. This

is because the error is small with no overshoot. The results for PID controller are

unacceptable because of large overshoot, large error and longer settling time. For the

bottom composition fluctuations, the IMC and DIC methods show similar trends. Both

methods show better fluctuations compared to PID controller. Figure 6.13 shows the

fluctuation of the manipulated variable for composition.
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Figure 6.11 Neural network estimator for the top composition
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Bottom composition
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Figure 6.12 Neural network estimator for the bottom composition
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Figure 6.13 Manipulated variable compositions for PID

Figures 6.14 and 6.15 show the fluctuations for the top and bottom compositions due

to disturbances. For the top composition for neural network controller for IMC and DIC

methods, it could be concluded that the IMC trend shows similar results to the DIC

method. The settling time for the required set point for the composition is similar. Both

IMC and DIC methods are superior in comparison to the conventional PID controller.
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This is because the error is small with no overshoot. The results for PID controller are

unacceptable that are due to large overshoot, large error and longer time to settle. For

the bottom composition fluctuations, the IMC and DIC methods show similar trends.

Both methods shows better fluctuations compared to PID controller. Figure 6.16 shows

the fluctuation of the manipulated variable for composition PID which is due to

disturbances.
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Figure 6.14 Top composition disturbances
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Figure 6.15 Bottom composition disturbances
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Manipulated variable composition PID disturbances
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Figure 6.16 Manipulated variable compositions PID due to disturbances

6.3.4 Neural network steady state error

Figures 6.17 and 6.18 show the fluctuations of the stedy state error for the

neural network for the column. It could be observed that the steady state error is

small compared to the PID controller and less fluctuations.
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Figure 6.17 Steady state error top temperature
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Steady state error bottom temperature
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Figure 6.17 Steady state error bottom temperature

Established control system design techniques rely on the availability of non-linear

system models. This is to ensure that the resulting control scheme is closely matched to

the dynamics of the process. The multivariable system must therefore first be modeled

using set of differential equations to describe their behavior to an assumed structure of

the process, black box modeling. However, for the control system design purposes, the

input output model obtained using equation based method approach is often robust,

adequate and can be used for control of multivariable processes such as the debutaniser

column system.

The difference in computing time using these different approaches are shown in Table

6.4 where the NN model takes less than 5 seconds to compute which more faster than

the PLS (45 seconds) and RA method (1 minute). Hence it is suitable for online

measurement since the industrial method takes more than 1 day to analyse and compute.

Table 6.4. Computing time

NN eq PLS eq RA eg
Computing time 5 second 45 second 1 minute
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CHAPTER 7: SUMMARY AND MAJOR CONTRIBUTION

7.1 Introduction

This chapter presents the summary and conclusion of the research work carried out

in this thesis. The contribution of this work is also presented to highlight the findings

and results from this study. Finally, recommendations for possible future work

extension are suggested for further improvement in designing debutaniser column and

extended to other types of advanced non-linear control methods.

7.2 Summary of work

1. A neural network model is able to model the top and bottom composition as well

as temperature prediction of a debutaniser column. The model makes use of online

closed loop data, open loop data and simulation data making it robust and highly

suitable for online application. PCA and PLS analyses have also been found to

facilitate the correct and right inputs of the variables for the column since a large

number of industrial data are available. The neural network prediction of n-butane

and i-butane gives high accuracy and small error between the prediction and

actual composition and actual temperature. This ensures that neural network could

also be used as an inferential estimator for composition estimation online. From

the statistical analysis for the top and bottom composition of n-butane and

i-butane it indicates that RMSE is smaller for the extract from the closed loop

compared to the open loop response. Therefore the extract from the closed loop

tends to perform better than the open loop response.

2. An equation based neural network model can be used to estimate and predict the

top and bottom compositions of n-butane and i-butane of a debutaniser column
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satisfactorily. The collected data is then compared to other methods such as PLS

and regression analysis. All of the results are able to give optimum results in

predicting the compositions and temperature. However based on the RMSE

values, it could be concluded that NN equation seems to give the best prediction

compared to other models. This is especially true for nonlinear system, where

linear controllers are not able to perform satisfactorily.

3. A satisfactory hybrid prediction model of a debutaniser column using

equation-based model has been developed. The results are compared to the hybrid

neural network black box model and conventional neural network black box

models. The hybrid neural network equation seems to perform better in

comparison to the rest of the neural network prediction methodologies. This is

based on the estimated error values which are smaller with respect to the other

prediction procedures. This work could be developed for online prediction,

monitoring and control of composition and temperature of the column. Based on

the hybrid model, the effect of key operation conditions is analyzed and some

useful guiding rules are established. The performance prediction of the hybrid

equation neural network is a function of the quality and range of the sample data.

Thus performance of the hybrid model will also depend on the quality and range

of the sample data. The other advantage of the hybrid equation is it allows the user

to determine the relationship between the inputs and outputs for these predictions

and could be easily applied for model based control strategies in the future.

4. A new model has successfully been developed and used to simulate the dynamic

responses of compositions and temperature when the controllers were applied into

the system. The control strategies namely, internal model controller (IMC) and
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Direct Inverse Control (DIC) are implemented in simulation within the control

system. The forward model and inverse model are used to develop the control

strategies for temperature fluctuations. Neural network estimator is used to predict

the composition fluctuations. The entire models developed for the controller are

used based on equation based method. The controllers were on the ability to track

set-point changes and disturbances test changes in the system. Based on the result,

IMC equation was found to perform better than the conventional controllers

7.3 Major contribution of this work

In general, this work has contributed in various aspects to the implementation of

neural network based process controllers in debutaniser column control. Among the

significant contributions that can be outlined for this work include the following:-

1. Online and simulation data are used for modeling the debutanizer column. Data

generation is an important step to identify the responses of all the variables

surrounding the column to obtain the neural network model. A mixture of online

close loop and open loop data for those data available online and simulation data

for those not available online, for training the neural network models.

2. In many practical control problems, typically a number of variables are controlled

and are manipulated. Therefore the neural network model that is developed in this

work is based on Multi input and multi output (MIMO) process. The MIMO

process is more complex than the Single input single output (SISO) because

process interaction occurs between controlled and manipulated variables.
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3. The prediction of the composition and temperature at the top and bottom of a

debutaniser column are achieved using the equation based neural network model.

This proposed equation based NN model is useful for online composition and

temperature prediction since it is robust and versatile and can be easily applied as

a soft sensor for the distillation column.

4. The hybrid model which includes neural network prediction where the model is

presented using equation based method. The neural network is used to predict the

residual composition and temperature of the top and bottom prediction for the

column simultaneously. The residual is the difference between the actual and

simulated values. The residuals are then added to the first principle model in a

hybrid fashion, to predict the actual composition and temperature of the top and

bottom for the column.

5. The development of inverse and forward model based neural network control

strategies to control top and bottom temperature. The compositions are estimated

using forward model neural network estimator. The control strategies that are used

in simulation for the neural network model are based on equation based model.
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATION

8.1 Conclusions

1. PCA is multuvraiate projection method designed to extract and display

systematic variation in data. Prior to PCA, data are pretreated in order to

transform the data into analysis. PLS is regression extension of PCA which is

used to relate the input and output variables. PLS provides model parameter

which are useful for the regression model. The SIMCA-P environment is

powertool tool to address PCA and PLS for the debutaniser column.

2. The proposed equation based NN model is useful for online composition

prediction since it is robust and versatile and can be easily applied as a soft

sensor for the distillation column. It could also easily be further applied as an

inverse controller in the equation form especially for nonlinear system, where

linear controllers are not able to perform successfully. This proposed model

based NN method is also easier to visualize and apply for various applications as

compared to the black box neural network structure which is cumbersome and

non-portable in nature. 3. By extracting the matrix input weight and biases is

another way to represent the neural network black box model. All NN models,

used by other researchers are black box models. Putting the weights and biases

in the equation based could be easily utilized because we could determine the

relationship between the input and output predictions. Extracting the weights and

biases from the neural network are just another way to represent NN equation

based model.
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3. The proposed hybrid equation model is also useful for online composition and

temperature prediction since it is versatile with fast computing time and easily be

applied as a soft sensor for the debutaniser column. It could predict both the top

and bottom compositions as well as temperatures through the use of a single

vector equation.

4. The resulting control strategy performance depends on the accuracy of the model.

In the process industries, where there is a high degree of uncertainty about process

behavior, the black box modeling approach is often employed. However, for the

control system design purposes, the input output model obtained using equation

based method approach..

8.2 Recommendations and future work

Possible proposed future work is as follows:-

1. Other advanced control strategies such as fuzzy logic, sliding mode control, self

tuning PID and auto tuning PID can be implemented to control different various

processes. Further research should also focus on the study of different schemes of

advanced control strategies which are available.

2. System identification using neural network control strategies can be further

developed by using graphical user interface. This method would enhance the

communication with online processes through available communication. User will

be able to select the inputs and outputs to the process controller directly. The GUI

will carry out the modelling for the inverse and forward model incorporated in the

control strategies. It will assign the optimum neural network structure to be used

for the models and come out with a process controller. The product will be
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integrated with online data acquisition and data processing where it can be able to

analyze and plot the results.

3. The forward model that are used for hybrid prediction for the debutaniser column

to predict composition and temperature could be used as an inverse model so that

it could then be implemented as a controller in the IMC and DIC control

strategies.

4. Optimization of the debutaniser column is important. Modification in process

design and operating procedure could be implemented to reduce costs and meet

constraints with an emphasis on improving efficiency and profitability.

Optimization of the column using mathematical programming could be carried

out. The process model of the column comprises the equality constraints.

Emphasis on how to formulate optimization appropriately helps engineers and

scientists understand the difficult phase of the process.
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