
SIERPINSKI TRIANGLE BASED DATA-CENTER NETWORK

ARCHITECTURE IN CLOUD COMPUTING

QI HAN

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

SIERPINSKI TRIANGLE BASED DATA-CENTER
NETWORK ARCHITECTURE IN CLOUD COMPUTING

QI HAN

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: QI Han

Registration/Matrix No.: WHA110031

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Sierpinski Triangle Based Data-Center Network Architecture in Cloud Computing

Field of Study: Cloud Computing

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name: Abdullah Gani
Designation: Professor

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

This thesis reports on the research to develop of a data center network (DCN) ar-

chitecture to solve the problem of network performance in cloud-oriented data centers.

Computational clouds are increasingly becoming popular for the provisioning of comput-

ing resources and service on demand basis. A DCN is an important component of data

centers that consists of a large number of hosted servers and switches connected with high

speed communication links. As a backbone in data centers, a DCN enables the deploy-

ment of resources centralization and on-demand access of the information and services

of data centers to users. In recent years, the scale of the DCN has constantly increased

with the widespread use of cloud-oriented services and applications configured over vir-

tual machines (VMs), and the unprecedented amount of data delivery in/between data

centers, whereas the traditional DCN tree-based architecture lacks aggregate bandwidth,

scalability and cost effectiveness for coping with the increasing demands of tenants in

accessing the services of cloud-oriented data centers. To solve this problem, the method

developed in this research is used to mitigate the aggregation throughput and improve

the network performance of DCN by using a novel DCN architecture. The proposed

method, called Sierpinski Triangle Based (STB) DCN architecture, is developed on the

basis of the well-know Sierpinski triangle fractal to mitigate throughput bottleneck in

aggregate layers as accumulated in tree-based structure. STB is a fault-tolerant architec-

ture which provides at least two parallel paths for each pair of servers. It also supports

various bandwidth-intensive applications by providing high network throughput for all-

to-all traffic. STB architecture was implemented in a real cloud data center environment

and evaluated in Network Simulator 2 (NS2) simulation. The performance of STB archi-

tecture is validated by comparing the results with the traditional tree-based, and DCell

DCN architectures. Theoretical analysis and implementation experiences verify that the

iii

Univ
ers

ity
of

Mala
ya

proportion of server to entire nodes in STB is same with DCell but higher than that of

tree-based architecture. The average shortest path length is restricted between 5.0 and

6.7, when node failure proportion remains between 0.02 and 0.2, shorter than DCell in

a 4-level architecture. The results of the experiment also show that the STB architecture

has higher throughout than both traditional tree-based and DCell architectures from the

scale of 12 to 363 servers with/without link failure happens. From the results of both sim-

ulation and experiment in actual devices, we speculate that STB still can achieve better

network performance in throughput, server utilization, average shortest path length than

DCell and tree-based architectures in real large-scale cloud-oriented DCN.

iv

Univ
ers

ity
 of

 M
ala

ya

ABSTRAK

Tesis ini melaporkan penyelidikan untuk membangunkan satu rangkaian pusat da-

ta (DCN) seni bina untuk menyelesaikan masalah prestasi rangkaian di pusat-pusat data

berorientasikan awan. Pengkomputeran awam semakin menjadi popular untuk penyedi-

aan sumber dan perkhidmatan secara permintaan. A DCN adalah satu komponen pen-

ting dalam pusat data yang terdiri daripada sebilangan besar tuan rumah pelayan dan

suis yang berkaitan dengan hubungan komunikasi kelajuan tinggi. Sebagai tulang bela-

kang di pusat-pusat data, DCN membolehkan penggunaan sumber pemusatan dan akses

atas permintaan maklumat dan perkhidmatan pusat data kepada pengguna. Dalam tahun-

tahun kebelakangan ini, skala DCN telah sentiasa meningkat dengan penggunaan meluas

perkhidmatan dan aplikasi berorientasikan awan yang dikonfigurasi dengan mesin maya

(VM), dan jumlah yang belum pernah terjadi sebelumnya penghantaran data dalam / anta-

ra pusat-pusat data, manakala DCN pokok- tradisional seni bina berasaskan tidak mempu-

nyai bandwidth agregat, berskala dan keberkesanan kos bagi menangani permintaan yang

semakin meningkat penyewa dalam mengakses perkhidmatan pusat data berorientasik-

an awan. Untuk menyelesaikan masalah ini, kaedah yang dibangunkan dalam kajian ini

adalah untuk mengurangkan throughput pengagregatan dan meningkatkan prestasi rang-

kaian dari DCN dengan menggunakan seni bina DCN novel. Kaedah yang dicadangkan,

yang dipanggil Sierpinski Triangle Based (STB) DCN seni bina, dibangunkan atas dasar

yang terkenal Sierpinski segitiga fraktal untuk mengurangkan kesesakan pemprosesan da-

lam lapisan agregat terkumpul dalam struktur berasaskan pokok. STB adalah seni bina

kesalahan-toleran yang menyediakan sekurang-kurangnya dua laluan selari untuk setiap

pasangan pelayan. Ia juga menyokong pelbagai aplikasi lebar jalur yang intensif dengan

menyediakan rangkaian pemprosesan tinggi untuk semua-untuk-semua lalu lintas. Seni

bina STB telah dilaksanakan dalam persekitaran pusat data awan sebenar dan dinilai da-

v

Univ
ers

ity
 of

 M
ala

ya

lam Network Simulator 2 (NS2) simulasi. Prestasi seni bina STB disahkan dengan mem-

bandingkan hasil dengan seni bina tradisional Tree-based dan DCell DCN. Analisis dan

pelaksanaan teori pengalaman mengesahkan bahawa kadar pelayan kepada seluruh nod

dalam STB adalah sama dengan DCell tetapi lebih tinggi daripada seni bina tree-based.

Purata panjang laluan terpendek adalah terhad antara 5.0 dan 6.7, apabila kegagalan nod

kadar tetap antara 0.02 dan 0.2, lebih pendek daripada DCell dalam seni bina 4-peringkat.

Keputusan eksperimen juga menunjukkan bahawa seni bina STB mempunyai tinggi di

seluruh daripada kedua-dua tree-based dan DCell seni bina tradisional dari skala 12-363

pelayan dengan / tanpa kegagalan link yang berlaku. Dari hasil kedua-dua simulasi dan

eksperimen dalam peranti sebenar, kami membuat spekulasi bahawa STB masih boleh

mencapai prestasi yang lebih baik dalam rangkaian pemprosesan, penggunaan pelayan,

purata panjang jalan singkat daripada DCell dan seni bina tree-based dalam skala besar

sebenar berorientasikan awan DCN.

vi

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENTS

Creating a Ph.D. thesis is not an individual experience; rather it takes place in a social

context and includes several persons. Immeasurable appreciation and deepest gratitude

for the help and support are extended to the following persons who in one way or another

have contributed in making this research possible.

To the supervisor, Professor Abdullah Gani, dean of the Faculty of Computer Sci-

ence and Information Technology (FCSIT), who has taken a particular interest in this re-

search and given constant guidance and encouragement, without which this work would

not have been possible. For his understanding, wisdom, patience, enthusiasm, and unwa-

vering support, a special debt of gratitude is due. Many thanks also go to Dr. Nor Badrul

Anuar Juma’at, Dr. Liew Chee Sun, and Dr. Por Lip Yee, whose kind advices and sug-

gestions have been of great value to the research. The members of the thesis examination

committee: Professor Xia Feng, Professor Abdul Hanan Abdullah, and Dr. Hamid Ab-

dulla Jallb, who generously gave their time to offer valuable comments toward improving

this work. Special thanks must go to them as well.

During the research, the constant association with the members of Center for Mobile

Cloud Computing Research (C4MCCR) has been most pleasurable. Without their help

and counsel, always generously and unstintingly given, the completion of this work would

have been immeasurably more difficult. Hereby, deepest gratitude go to Muhammad

Shiraz, Saied Abolfazli, Zohre Sanaei, Mehdi Sookhak, Ejaz Ahmed, Md Whaiduzzaman,

Anjum Naveed, as well as Suleman Khan, Ibrar Yaqoob, and Liu Jie Yao, good times

come and go, but the memories will last forever.

A heartfelt gratitude goes to the staffs of the main office in FCSIT, especially to Mr.

Muhamad Afiq, Mr. Mazrulhisham, Ms. Ilyana, and Ms. Lily, who kindly provided

various administrative supports to the author.

vii

Univ
ers

ity
 of

 M
ala

ya

The author wishes to express his sincere appreciation for the supplies and facili-

ties from the High Impact Research Grant funded by the Malaysian Ministry of Higher

Education under the University of Malaya (UM.C/HIR/MOHE/FCSIT/03).

In this special moment, the author also would like to express his deepest gratitude

to his beloved parents, Qi Weiping and Zou Guifen, whose love encouragement and sup-

ports both financially and mentally that made him possible to accomplish this under-

taking. Dedicated to the author’s parents-in-law, Zhu Liya and Wu Yunfu for patiently

extended all sorts of help and unfailing emotional support in recent years that provided

the foundation for this work.

This dissertation would not have been possible without Mrs. Qi Zhu Xiaomei, the

author’s wonderful wife and soulmate. All of her continuous love, selfless dedication,

unconditional support, greatest trust, timely encouragement, and endless patience during

the past few years are deeply appreciated. “You are not just my wife, you are also my

life.” More gratitude also goes to her for bringing Timmy, the greatest gift of life to the

family. Hope this baby boy would be proud of his daddy.

To them of above, the author would like to say “Because of your support, so I can

stand on the mountain; because of your company, so I will never feel alone; because of

your encouragement, so I can walk farther than I thought I could go.”

viii

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENTS

Abstract ... iii

Abstrak.. v

Acknowledgements... vii

Table of Contents .. ix

List of Figures... xiv

List of Tables... xvii

List of Symbols and Abbreviations... xviii

List of Appendices .. xx

CHAPTER 1: INTRODUCTION ..1

1.1 Background.. 1

1.2 Motivation.. 2

1.3 Statement of Problem... 3

1.4 Research Aim and Objectives .. 5

1.5 Research Questions.. 6

1.6 Scope of Work.. 6

1.7 Proposed Methodology .. 7

1.8 Research Contribution ... 8

1.9 Thesis Layout... 9

CHAPTER 2: DATA CENTER NETWORK ARCHITECTURE IN
CLOUD COMPUTING - LITERATURE REVIEW 11

2.1 Background.. 11

2.1.1 Cloud Computing .. 12
2.1.1.1 Infrastructure ... 12
2.1.1.2 Service Level ... 14
2.1.1.3 Technology Level .. 16

2.1.2 Data Center Network... 18

2.2 Review on Data Center Network Architectures... 20

ix

Univ
ers

ity
 of

 M
ala

ya

2.2.1 Taxonomy of Data Center Network Architecture 20

2.2.2 Review on Data Center Network Architectures Using Taxonomy.......... 22
2.2.2.1 Clos/Tree-Based .. 22
2.2.2.2 Valiant Load Balancing ... 29
2.2.2.3 Hierarchical Recursive .. 31
2.2.2.4 Optical/Wireless .. 38

2.3 Comparison of Data Center Network Architectures.. 40

2.4 Open Issues and Challenges for Cloud-Oriented Data Center Network
Architecture Design ... 44

2.4.1 Deployment Cost and Energy Consumption ... 44

2.4.2 Network Optimization... 45

2.4.3 The Novel Network Architecture Studies ... 45

2.4.4 Quality of Service in Upper Layer .. 46

2.4.5 Congestion Control.. 46

2.4.6 Load Balancing/Flow Scheduling ... 46

2.4.7 Compatibility... 47

2.4.8 Research and Improvement of DCN Protocol... 47

2.4.9 Automatic IP Address Assignment ... 48

2.4.10 Future Applications of Optical Switching and Wireless Transmission... 48

2.5 Conclusion ... 48

CHAPTER 3: PERFORMANCE ANALYSIS OF THE TREE-BASED
NETWORK ARCHITECTURE IN CLOUD-ORIENTED
DATA CENTER ..50

3.1 Analysis of Traditional Tree-Based Architecture .. 50

3.1.1 Topology.. 50

3.1.2 Bandwidth and Throughput Restriction .. 52

3.1.3 Network Scalability and Reliability .. 53

3.1.4 Resource Fragmentation.. 54

3.1.5 Cost.. 55

3.2 Benchmarking Experiments... 56

3.2.1 Throughput Analysis ... 56

x

Univ
ers

ity
 of

 M
ala

ya

3.2.2 Implementation.. 57
3.2.2.1 Test-bed ... 58
3.2.2.2 Results ... 59

3.3 Conclusion ... 61

CHAPTER 4: SIERPINSKI TRIANGLE BASED DATA CENTER
NETWORK ARCHITECTURE ...62

4.1 Sierpinski Triangle... 62

4.2 Sierpinski Architecture .. 63

4.2.1 Physical Structure.. 63
4.2.1.1 Initial Recursive Unit... 63
4.2.1.2 Recursive Rule... 65

4.2.2 Construction Method... 65

4.3 Node Identification and Routing schemes in STB Architecture.......................... 67

4.3.1 Node Identification Scheme .. 68

4.3.2 Routing scheme ... 69
4.3.2.1 Packet header... 69
4.3.2.2 Routing without failure.. 70
4.3.2.3 Fault-tolerant routing... 72

4.4 Topological Properties of STB Architecture.. 75

4.4.1 Network Size ... 75

4.4.2 Bisection Width ... 76

4.4.3 Network Diameter ... 77

4.5 Conclusion ... 78

CHAPTER 5: EVALUATION ..80

5.1 Test-Bed ... 80

5.2 Scenarios .. 82

5.2.1 Implementation.. 82
5.2.1.1 Testing File Generating ... 84
5.2.1.2 Hadoop MapReduce Deployment 86
5.2.1.3 Execution... 88

5.2.2 Simulation ... 91
5.2.2.1 STBRouting in NS2... 92
5.2.2.2 Simulation ... 93

xi

Univ
ers

ity
 of

 M
ala

ya

5.3 Data Collection and Performance Metrics... 96

5.3.1 Throughput .. 96
5.3.1.1 Implementation.. 96
5.3.1.2 Simulation ... 98

5.3.2 Number of Supported Servers ... 99

5.3.3 Average Shortest Path Length ... 100

5.4 Data Analysis Tool... 100

5.5 Conclusion ... 100

CHAPTER 6: RESULTS ANALYSIS AND DISCUSSION102

6.1 Throughput... 102

6.1.1 Experimentation Result Analysis .. 102

6.1.2 Simulation Result Analysis ... 104
6.1.2.1 Without Link Failure ... 104
6.1.2.2 With Link Failure .. 106
6.1.2.3 Disscussion.. 107

6.2 Rates of Server Utilization... 108

6.3 Average Shortest Path Length Analysis... 109

6.4 Scalability and Fault-Tolerance ... 112

6.5 Data Validation .. 113

6.6 Conclusion ... 114

CHAPTER 7: CONCLUSION ...115

7.1 Evaluation on Achievement of Objectives... 115

7.2 Contributions.. 117

7.3 Strength and Weakness .. 118

7.3.1 Strength ... 118

7.3.2 Weakness ... 119

7.4 Future Research Work.. 119

7.5 Conclusion ... 120

References... 122

xii

Univ
ers

ity
 of

 M
ala

ya

List of Publications and Papers Presented .. 128

Appendices.. 129

xiii

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

Figure 1.1: Thesis Orgnization.. 10

Figure 2.1: Overview of Cloud Computing .. 12

Figure 2.2: Common Infrastructure of Cloud Computing .. 13

Figure 2.3: Cloud Layering Concept .. 15

Figure 2.4: The Division of Cloud Computing in Technology 16

Figure 2.5: Taxonomy of Data Center Network Architectures 21

Figure 2.6: A sample of the tree hierarchical DCN architecture 23

Figure 2.7: 3-Stage Folded Clos Topology (Dally & Towles, 2004) 24

Figure 2.8: A sample topology of Fat-tree architecture(Al-Fares et al., 2008)........... 25

Figure 2.9: A sample of Elastic Tree Network architecture(Heller et al., 2010) 26

Figure 2.10: A sample topology of Elastic Tree DCN architecture(Heller et al., 2010) 27

Figure 2.11: A sample topology of Jellyfish architecture(Singla et al., 2012) 29

Figure 2.12: A sample topology of VL2 DCN Architecture(Greenberg et al., 2009) .. 30

Figure 2.13: A Sample Topology of Monsoon DCN Architecture(Greenberg,
Lahiri, et al., 2008) ... 31

Figure 2.14: A sample topology of CamCube architecture(Abu-Libdeh et al., 2010) . 32

Figure 2.15: A sample topology of DCell architecture(Guo et al., 2008)..................... 33

Figure 2.16: A sample topology of FiConn architecture with level 1(D. Li et al.,
2009)... 35

Figure 2.17: A sample topology of BCube architecture(Guo et al., 2009) 36

Figure 2.18: A sample topology of HFN architecture with n=3, m=4(Model et
al., 2009)... 37

Figure 2.19: A sample topology of OSA architecture(K. Chen et al., 2012)................ 38

Figure 2.20: A sample topology of WDCN architecture(Ranachandran et al., 2008).. 40

Figure 3.1: Three-layer Tree-based Structure ... 51

Figure 3.2: The maximum possible number of servers with 1:1
oversubscription ratio ... 54

xiv

Univ
ers

ity
 of

 M
ala

ya

Figure 3.3: The estimated cost vs. maximum possible number of hosts with
different oversubscription ratio... 56

Figure 3.4: Tree-based network topology ... 59

Figure 3.5: TCP throughput with different number of servers 60

Figure 3.6: Aggregated throughput with different number of servers 60

Figure 4.1: Structure of Sierpinski Triangle ... 63

Figure 4.2: Example ofSTB0(3)... 64

Figure 4.3: Example Topology ofSTB0(4), STB0(5) andSTB0(6)........................... 64

Figure 4.4: Example Topology ofSTB1(3) .. 66

Figure 4.5: Part Example Topology ofSTB2(3) ... 66

Figure 4.6: Example Topology ofSTB1(4) .. 67

Figure 4.7: Example of Node Identify .. 68

Figure 4.8: Node Identify inS1 ... 69

Figure 4.9: The STB packet header .. 70

Figure 4.10: Routing Selection inSTB2(3) .. 71

Figure 4.11: Routing Selection inSTB2(3) .. 73

Figure 5.1: A Simple test file of Word Count for MapReduce 83

Figure 5.2: A Simple test file of Word Count for MapReduce 84

Figure 5.3: The IP Addresses List in Sample File .. 85

Figure 5.4: Python Shell ... 85

Figure 5.5: Top Ten IP Addresses with Most Occur Times .. 86

Figure 5.6: Network Topology of STB ... 87

Figure 5.7: Adding IP Addresses of Slaves in Master Server..................................... 87

Figure 5.8: The Status of MapReduce Cluster.. 88

Figure 5.9: Creating WordCountqh Project .. 88

Figure 5.10: Uploading Sample File to HDFS.. 89

Figure 5.11: Execution of WordCountqh Project in STB Network 89

Figure 5.12: Network Topology.. 90

xv

Univ
ers

ity
 of

 M
ala

ya

Figure 5.13: Network Topology of DCell Architecture .. 91

Figure 5.14: Network Topology of Tree-based Architecture.. 92

Figure 5.15: Source Code of Packet Forwarding and Route Discovery 93

Figure 5.16: Source Code of Modified Trace File .. 94

Figure 5.17: Network Topology.. 95

Figure 5.18: Dashboard of Ntop ... 96

Figure 5.19: Aggregateion Throughput .. 97

Figure 5.20: Data Flow Recorded in Master Server ... 97

Figure 5.21: Data Flow Recorded in Master Server ... 98

Figure 6.1: Aggregated Throughput with 12 Servers.. 103

Figure 6.2: Aggregated Throughput with 24 Servers.. 103

Figure 6.3: Aggregated Throughput with 39 Servers and without link failure........... 105

Figure 6.4: Aggregated Throughput with 120 Servers and without link failure......... 105

Figure 6.5: Aggregated Throughput with 363 Servers and without link failure......... 106

Figure 6.6: Effect of Link Failures with Different Ratio on Average
Throughput with 39 Servers ... 106

Figure 6.7: Effect of Link Failures with Different Ratio on Average
Throughput with 120 Servers ... 107

Figure 6.8: Effect of Link Failures with Different Ratio on Average
Throughput with 363 Servers ... 108

Figure 6.9: Proportion of Server Utilization in STB and Tree-based Architectures... 110

Figure 6.10: whenk= 3, Average Shortest Path Length in 0−4levelswithout
server failure... 111

Figure 6.11: Server Failure and Average of Shortest Path Length inS4 STB Network 112

xvi

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLES

Table 2.1: A Comparison of Traditional DCN and Cloud-oriented DCN 19

Table 2.2: A comparison of the proposed DCN architectures 42

Table 6.1: the proportion of servers in STB and Tree-based architectures 109

Table 6.2: the average path length fromS0 server to the rest servers in different
levels of STB without node failure .. 110

xvii

Univ
ers

ity
 of

 M
ala

ya

LIST OF SYMBOLS AND ABBREVIATIONS

AMAC : Actual Media Access Control
ARP : Address Resolution Protocol
ASP : Application Service Provider
CaaS : Communication as a Service
CBR : Constant Bit Rate
CDC : Cloud-oriented Data Center
DBaaS : Database as a Service
DC : Data Center
DCN : Data Center Network
DHCP : Dynamic Host Configuration Protocol
DIP : Direct Internet Protocol
EBGP : External Border Gateway Protocol
EC2 : Elastic Compute Cloud
ECMP : Equal Cost Multi-Path
GAE : Google App Engine
GFS : Google File System
HDFS : Hadoop Distributed File System
HFN : Hyper Fat Tree Network
HUaaS : Human as a Service
IaaS : Infrastructure as a Service
LAN : Local Area Network
IDC : International Data Corporation
IGP : Interior Gateway Protocol
I/O : Input/Output
IT : Information Technology
LSR : Link State Routing
MaaS : Monitoring as A Service
MDC : Modular Data Center
MEMS : Micro Electro Mechanical Switch
NaaS : Network as a Service
NIC : Network Interface Card
NS2 : Network Simulator 2
O-E-O : Optics to Electrical To Optics
OS : Operation System
OSA : Optical Switching Architecture
OSM : Optical Switching Matrix
OSPF : Open Shortest Path First
PaaS : Platform as a Service
PM : Physical Machine
PMAC : Pseudo Media Access Control
PR : Physical Resources

xviii

Univ
ers

ity
 of

 M
ala

ya

xix

QoS : Quality of Service
RIP : Routing Information Protocol
RTO : Retransmission Time Out
SaaS : Software as a Service
SLA : Service Level Agreement
STB : Sierpinski Triangle Based
TCP : Transmission Control Protocol
ToR : Top of Rack
UDP : User Datagram Protocol
UI : User Interface
VIP : Virtual Internet Protocol
VLB : Variant Load Balancing
VM : Virtual Machine
VPN : Virtual Private Network
VR : Virtual Resources
WDCN : Wireless Data Center Network
WDM : Wavelength Division Multiplexing
WSS : Wavelength Selective Switch
WTU : Wireless Transmission Unit
XaaS : Everything as a Service

Univ
ers

ity
 of

 M
ala

ya

LIST OF APPENDICES

Appendix A: Python Source Code of Sample File Generation in Chapter 5............. 132

Appendix B: Python Script for Calculting the Word Count 133

Appendix C: Source Code for Deploying MapReduce on Servers 134

Appendix D: Source Code of AWK Script for Throughput....................................... 136

xx

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1

INTRODUCTION

1.1 Background

This thesis reports on a research, which was aimed at solving the problem of limited

throughput bottleneck in aggregate layers and lower server utilization in cloud computing

data center networks (DCNs).

Cloud computing is a network-based computing model that provides services, such

as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Ser-

vice (SaaS), on-demand (Armbrust et al., 2010). In 2006, Google proposed the 101 plan

which evenly introduced the concept of cloud (Baker, 2007). Contrasted by the tradi-

tional personal-centric local computing, cloud computing is internet-centric and provides

safe, reliable, fast, convenient, transparent high performance computing, mass data stor-

age, and other internet-based services to clients by data centers. Such computing model

emerged from Distributed Computing, Parallel Computing and Grid Computing. Mobile

Cloud Computing, as an extension of cloud computing, provides more suitable conditions

for mobile device users to fully enjoy the benefits and convenience of cloud computing

via wireless networks (Sanaei et al., 2014) (Shiraz et al., 2014).

Since the advent of mobile cloud computing, data volume has increased tremen-

dously on the Internet. The International Data Corporation (IDC) report announced that

the size of big-data generated in 2011 reached 1.8 Zettabyte (1.8 trillion GB) and the data

is expected to increase 50-fold in the next 10 years, which will reach 35.2ZB in 2020

(Gantz & Reinsel, 2012). The deployed data management and processing mechanisms in

Data Center Network (DCN) such as Google File System (GFS)(Ghemawat et al., 2003),

1

Univ
ers

ity
 of

 M
ala

ya

The Hadoop Distributed File System (HDFS)(Borthakur, 2007), BigTable(Chang et al.,

2008), Dryad(Isard et al., 2007), MapReduce (Dean & Ghemawat, 2008), are responsible

for managing and processing the massive data. For supporting such cloud services and

important applications (for example, scientific computations, financial analysis, massive

data processing and warehousing, as well as utility computing), Amazon, Google, Sales-

force.com and other corporations have established large data centers around the world

(Buyya et al., 2008).

1.2 Motivation

As a basic hardware infrastructure of data center and cloud computing, the DCN has

rapidly become a research focus issue in recent years. Data Center Network (DCN) is an

important component of data center that consists of a large number of hosted servers and

switches connected with high speed communication links. A DCN enables the deploy-

ment of centralized resources and on-demand access of the information and services of

data centers to users. The motivations for DCN establishment are as follows.

First of all, the scale of the DCN is constantly increasing with the widespread use

of cloud-oriented services. It is common for a cloud-oriented DC to contain hundreds to

thousands of servers in an economy of scale (Beloglazov et al., 2011). For supporting

such cloud services and important applications, Microsoft, for example, established a

707,000-square-foot DC building in Chicago, 2009 (Vahdat et al., 2010). There are 162

containers of 2,500 servers each with total 60 Megawatts of electricity in the building

which costs 500 million US dolors. Apple data center in Maiden was established in 2010

with 500,000-square-foot and costs 1 billion dollars(Tarantino, 2012). Thereby, a method

to effectively interconnect the number of exponentially increasing servers is desired.

Secondly, unprecedented amount of data delivery in/between data centers. As the

above mentioned systems and applications (such as GFS) are data and communication

2

Univ
ers

ity
 of

 M
ala

ya

intensive (a simple Web search request may need a cooperationamong more than 1,000

servers), the information exchanging among remote nodes and local servers to proceed

computation is increasing rapidly. Thereby, a great data traffic flow stress is taken to

the data center and the limited inter-node communication bandwidth among servers is

becoming serious bottleneck to DCN.

Thirdly, reasonable cost and elastic utilization according to the business require-

ments from Information Technology (IT) investment of enterprises for DCNs. The cost

of using enterprise-class network equipment is large (upwards of $12 million per month

for a 100,000 servers data center) and is not suitable to accommodate Internet-scale ser-

vices in data centers. To be profitable, data centers better use some lower cost network

equipment to achieve high utilization with agile end-to-end network capacity assignment

and un-fragmented server pools (Greenberg, Hamilton, et al., 2008).

In recent years, with the constantly increased scale of DCN, the traditional architec-

ture such as tree-based and Clos network, however, lacks aggregate bandwidth, scalabil-

ity, and faces the cost of coping with the increasing demands of tenants in accessing the

services of cloud-oriented data centers. Therefore, the design of a new DCN architecture

with the features of scalability, low cost, robustness, and energy conservation is required,

because the architectures have an impact on the overall properties of the DCN.

1.3 Statement of Problem

Currently, the widely used architecture in DCN is a typical multi-root tree architecture,

commonly composed by either two- or three-layer of switches (T. Wang et al., 2014). A

three-layers architecture has a core layer in the root, an aggregation layer in the middle

and an edge layer at the leaves of the tree. A two-layer architecture has only the core

and the edge layers. The tree-based structure is simple and can be easily deployed and

extended by increasing the rack of servers and switches. However, due to the architecture

3

Univ
ers

ity
 of

 M
ala

ya

is initially designed for relatively small or medium scale networks, the shortcomings that

deployed in large-scale cloud-oriented DCNs mainly focus on the following.

Throughput Restriction. Data flow between lower layer servers is transferred

through the upper layer, however the links between the lower and core layers are nor-

mally over subscribed by factors of 5:1 or more due to the equipment cost concerns,

which limits the communication among the servers in different branches of the tree, and

leads to congestion and computation hot-spots even if the network capacity is available

elsewhere (Greenberg et al., 2009).

Network Scalability. The tree-based hierarchical architecture, typically, can only

support up to 8,000 servers due to the restricted number of network ports (I/O interfaces)

and meeting the requirement of a fast failure recovery mechanism (Al-Fares et al., 2008).

Therefore, it is difficult to support the large numbers of servers in the cloud-oriented

data centers. Furthermore, each parent node normally has several child nodes in the tree-

based architecture. From the core to edge switches, a switch(parentnode) can affect tens

to thousands of the existing operational servers without redundancy because the switch

poses as the bandwidth bottlenecks due to the single-point-of-failure (Guo et al., 2008).

Low Rates of Resource Utilization.Redundancy is a common approach to improve

the reliability and availability of a network. In tree-based architecture, 1:1 equipment

redundancy is used on the network devices in upper layers. Because the IP assignment and

network topology is closely related in the architecture, it is inconvenient to reconfigure

the whole IP address for all devices in a scale-increasing network. Therefore, normally

a number of standby servers, bandwidth and IP resources are reserved to ensure the well

running of DCN. However, these resources only be provided when node or link failure

happens.

Price-Performance Ratio. The cost for building a cloud-oriented DCN greatly af-

fects architecture design decisions. As we discussed above, a tree-based architecture

4

Univ
ers

ity
 of

 M
ala

ya

supports a few thousand servers. To sustain the exponential increasing of servers, more

higher level are added, and more expensive advanced switches and network equipment

are used, which affects the price-performance ratio in DCN.

This research will address the problem of low performance of the traditional tree-

based DCN architecture from the perspectives of network throughput, scalability, rates of

resource utilization and price-performance ratio.

1.4 Research Aim and Objectives

The aim of this research is to develop a new cloud-oriented DCN architecture with the

features of higher network throughput, scalability, rates of server utilization and price-

performance ratio, more fault-tolerant routing, and lower average shortest path length in

DCN. The objectives of this research are as follows:

•To study the traditional tree-based network architecture and other existing architec-

tures for DCNs, in order to identify the gap of performance flaws in DCN.

•To conducting the recent investigations in routing mechanism research on DCNs.

•To design the Sierpinski Triangle Based (STB) architecture framework that can

(a) increase the throughput in upper layer of DCN,

(b) optimize the scalability of DCN,

(c) improve the rates of server utilization and price-performance ratio in DCN,

(d) reduce the average shortest path length in DCN,

(e) provide fault-tolerance routing in DCN without redundancy devices.

•To evaluate the performance of the proposed STB architecture via benchmarking on

simulation and real cloud experiment environment.

•To validate the results of performance evaluation using T-Test statistical examina-

tion.

5

Univ
ers

ity
 of

 M
ala

ya

1.5 Research Questions

The central question of this research is, how to improve the network performance of

cloud-oriented DCN from the perspectives of network throughput and scalability, rates

of server utilization and price-performance ratio, average shortest path length, as well as

fault-tolerance routing provision.

The following are subquestions:

1. What are the reasons for the traditional tree-based architecture lacks in the above

perspective matters?

2. What is the current state of cloud-oriented DCN architecture research?

3. What is a better design for cloud-oriented DCN architecture?

4. How can we evaluate the performance of the above selected parameters?

1.6 Scope of Work

In this research, the tree-based network architecture is selected as a benchmarking, and

also be used to evaluated the performance of throughput, network scalability , average

shortest path length, and fault tolerance routing in cloud-oriented DCN. Improvement

will be made to the above network performance of DCN by deploying a new STB ar-

chitecture. The tree-based architecture is chosen because of its simplicity, and be widely

used in most of current DCN, despite the fact that it has certain weaknesses such as the

uncertain aggregation layer throughput bottleneck in the data delivery process. The tree-

based architecture is not good for use in current cloud-oriented DCN Greenberg et al.

(2009).

DCell Guo et al. (2008) architecture is also selected in this research to make a per-

formance comparison to the tree-based and proposed STB architectures. The reason of

choosing DCell is the method of construction in DCN. Both STB and DCell are all recur-

sively defined architectures with similar features in network properties and performance

6

Univ
ers

ity
 of

 M
ala

ya

by deploying more interfaces and ports in network devices. Even though the DCell exists

some shortcomings such as lower level servers undertake more forwarding tasks, it has

been a milestone in the relevant research because of the novel thinking in design.

Because it is difficult to establish a real large-scale cloud-oriented data center, the

network scenarios of the model developed in this research, are started from a small-sale

cloud-oriented DCN with real devices, to medium-scale with virtual machines, and large-

scale simulation using Network Simulator 2(NS2). The Hadoop MapReduce model is

deployed in DCN to establish cloud computing environment. The performance analysis

in this research is using network analysis tools nTop and NS2. Some mathematical models

are also created to analyze the selected architectures from different parameters as well. In

this research, all the outputs are validated using Paired Two-Sample for Means t-test.

In a real cloud-oriented DCN, the network performance is affected by bandwidth,

power supply, energy consumption, memory capacity, CPU performance and so on. In

this research, tests are carried out to evaluate the network throughput and the other se-

lected parameters which are indicated in previous sections. The above mentioned affect

issues will be adopted a given set of values and not be discussed in this research.

1.7 Proposed Methodology

In this research, a new architecture for cloud-oriented DCN, called Sierpinski Triangle

Based (STB) architecture, is designed. For achieving this objectives, the methodology of

this research are as follows:

We study the latest research efforts to identify issues in the traditional tree-based

architecture and current cloud-oriented architectures for DCNs, determine the weaknesses

and shortcomings of the variable architectures. We review recent literature collected from

on-line scholarly databases like IEEE and ACM for instance, to identify the most critical

and hot-spot problem issues in related research.

7

Univ
ers

ity
 of

 M
ala

ya

The research problem is investigated by using theoretical analysis and implementa-

tion benchmarking in real DCN environment. The theoretical analysis is performed by

using mathematical model to validate the significance of the research problem.

We designed the Sierpinski Triangle Based (STB) architecture for cloud-oriented

DCNs to address the research problem and achieve the research objectives. The designed

architecture uses Sierpinski triangle fractal to mitigate throughput bottleneck in aggregate

layers and increase the rates of server utilization in DCNs. In addition, a STB routing

and node identification mechanism is designed for addressing the issue of lower resource

utilization in DCNs.

The designed architecture is evaluated in a real cloud data center environment and

simulated using Network Simulator 2 (NS2). We establish STB architecture in NS2, and

use MapReduce workloads to systematically measure the proposed routing and node iden-

tification mechanism to ensure the operation in a real cloud experiments. We also build

the designed architecture and benchmarking method in a real cloud DCN environment to

measure the MapReduce execution time and network throughput.

The evaluation is analyzed from the perspective of throughput, rates of server uti-

lization and the average shortest path length in DCN. The experimental results are vali-

dated by comparing with tree-based and DCell cloud-oriented architectures. The statisti-

cal model is validated using T-Test two-samples means validation examination.

1.8 Research Contribution

The major contributions from this research is as follows:

1. The research exposes the limitations of the traditional tree-based architecture

deployed in cloud-oriented DCN.

2. The research establishes a taxonomy to analyze the implications and critical as-

pects of current DCN architectures and making a comparison from the significant param-

8

Univ
ers

ity
 of

 M
ala

ya

eter metrics.

3. The research deals with the lower network performance of existing large-scale

cloud-oriented DCN by proposing the STB network architecture.

4. The research creates new knowledge in designing a network architecture for a

cloud-oriented DC in further research.

1.9 Thesis Layout

The thesis has a total of 7 chapters which are illustrated in Figure 1.1 for skimming and

brief understanding the content of the thesis. The remainder of this thesis is organized as

follows:

Chapter 2 presents the literature review from the state-of-the-art research and identi-

fies the open research problems in cloud-oriented DCNs. It starts with a quick overview

about cloud computing and DCNs, followed by highlighting the major requirements and

challenges of cloud-oriented DCN architecture design. This chapter also presents an

overview of existing architectures for DCNs according to taxonomy and the compari-

son of these architectures on the basis of significant parameters. Furthermore, the chapter

identifies the most significant problem to be addressed in this thesis.

For demonstrate the significance of the identified problem from theoretical analysis

and implementation experiences, we analyze the performance of the traditional tree-based

architecture in cloud environment in chapter 3. We use mathematical equations to identify

the rate of server utilization and cost, and implementation to demonstrate throughput of

the tree-based architecture in DCN.

Chapter 4 provides an overview of the Sierpinski Triangle Based architecture in

cloud-oriented DCN. It presents the physical components of the proposed architecture

and describe the building procedure of STB in detail. The properties, theoretical findings

and routing mechanism are presented as well.

9

Univ
ers

ity
 of

 M
ala

ya

Chapter 1: Introduction

To introduce the research

domain, issues, problem,

objectives and Methodology.

Chapter 3: Problem Analysis

To report the research problem

investigation and Verification.

Chapter 5: Evaluation

To experiment the proposed

architecture and explain the

procedure of data processing

and collection.

Chapter 7: Conclusion

To report the re-examination

of the research aims and

objectives, highlight the

contributions and significane

of the research, as well as

future research direction.

Chapter 2: Data Center

Network Architecture in

Cloud Computing

To clarify the significance of

this research and summary

the other related researches

on the same problem issue.

Chapter 4: Proposed

Framework

To explain the proposed

architecture to address the issue

and Modeling.

Chapter 6: Data Analysis &

Discussion

To report the results obtained

from experimenting and

discussion.

Figure 1.1: Thesis Orgnization

Chapter 5 reports on the implementation of experiment in real cloud computing en-

vironment and the simulation study of the research. It explains the test-bed design and

the configuration of the simulation, as well as the tools for data generation, processing,

and collection.

Chapter 6 gives a discussion of the experimental results of STB. It shows the effects

of the proposed architecture on the performance of DCN. The advantages and disadvan-

tages of STB are summarized by comparing it to the traditional tree-based and DCell

architectures. Performance of throughput, proportion of servers to switches, and average

shortest path length will also be discussed in this chapter.

Chapter 7 concludes the thesis by summarizing achievements of the objectives, and

highlights the benefits and the limitations of the proposed architecture. The contributions

of this research, including international scholarly publications are stated before finally

pointing out future directions of this research for enhancing this research further.

10

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 2

DATA CENTER NETWORK ARCHITECTURE IN CLOUD COMPUTING -
LITERATURE REVIEW

This chapter reviews relevant literature and research findings pertaining to cloud-oriented

data center network (DCN). For understanding more detailed knowledge of the subject

matter, this chapter reviews the state-of-the-art DCN architecture according to the the-

matic taxonomy, and gives a comparison of the selected architectures as well. Several

open research issues and challenges in cloud-oriented DCN architecture design are also

highlighted.

The remainder of this chapter is as follows. Section 2.1 presents the fundamental

concepts of cloud computing from the aspects of service level and technology level. An

overview of DCN is also introduced in this section. Section 2.2 presents taxonomy of the

DCN architectures and reviews current architectures on the basis of taxonomy. A compar-

ison of the introduced architectures is given according to selected significant parameters

in section 2.3. Section 2.4 summarizes the chapter with conclusive remarks.

2.1 Background

Over the past few years, advances in the field of network based computing and application

on demand have led to an explosive growth of application model such as cloud computing,

software as a service, community network, web store and so on. As a major application

model in the era of the Internet, cloud computing has become a significant research topic

in the communities of scientific and industrial since 2007.

11

Univ
ers

ity
 of

 M
ala

ya

2.1.1 Cloud Computing

Commonly, cloud computing is described as a range of services which are provided by

an Internet-based cluster system. Such cluster systems consist by a group of low-cost

servers or PCs, organizing the various resources of the computers according to some cer-

tain management strategy, and offering safe, reliable, fast, convenient and transparent

services such as data storage, accessing and computing to clients. The cloud computing

system is the development of parallel processing, distributed and grid computing on the

Internet, which provides various QoS guaranteed services such as hardware, infrastruc-

ture, platform, software and storage to different Internet applications and users. Figure

2.1 indicates an overview of cloud computing. The surrounding computers are users, the

“cloud” is resource and service of cloud computing, and several service providers are

shown as well.

Figure 2.1: Overview of Cloud Computing

2.1.1.1 Infrastructure

The idea of cloud computing is to fully utilize the existing computer and network tech-

nology to integrate computing resource, maximize resource sharing, thereby to solve the

12

Univ
ers

ity
 of

 M
ala

ya

issues of cloud management and large-scale computing. At present, there is no uniform

standard in cloud computing infrastructure. Each cloud computing service providers is

using their own cloud infrastructure. In this section, we introduce the infrastructure of

cloud computing from the following three aspects: 1. Basic architecture of cloud com-

puting; 2. Functions and services in different layer; 3. Describe cloud computing from

technical aspect.

The platform of cloud computing consists of a “CLOUD” with large-scale and multi-

functions. In cloud, mass scattered computing resources and services are connected

through the Internet, and allocated to users by virtualization. Therefore, a platform that

can provide large-scale computing and mass data storage is established. The following

figure 2.2 shows a common architecture of cloud computing.

Figure 2.2: Common Infrastructure of Cloud Computing

In figure 2.2, the “Client” is an access port for user using cloud, which provides

the interface for registration, login, request a service and so on. from web browser. The

13

Univ
ers

ity
 of

 M
ala

ya

operation is as simple as in local PC. In “Index of services”, users select or customize

their desire services, or unsubscribe the previous services through the “Client” access

interface. The main function of “management of deploy” are manage clients and services

deployment, which include user authentication, authorization and login, response service

request, allocation, as well as result output. Resource in cloud is monitored and measured

by “Resource Monitoring”, to ensure it can be allocated correctly. Server cluster includes

a group of managed virtual and physical servers to process mass applications, computing

process, and data storage as well.

2.1.1.2 Service Level

Cloud computing is emerging as viable services model, therefore Everything as a Service

(XaaS) (Rimal et al., 2009) is viewed as a significant trend. Such as, Software as a Service

(SaaS), Platform as a Service (PaaS), Hardware as a Service (HaaS), Infrastructure as a

Service (IaaS), Network as a Service (NaaS), Monitoring as a Service (MaaS), Database

as a Service (DBaaS), Communications as a Service (CaaS), Human as a Service (HuaaS)

and so on. See figure 2.3.

Infrastructure as a Service (IaaS)(Bhardwaj et al., 2010) is the delivery of computer

infrastructure as a service. Aside from the higher flexibility , a key benefit of IaaS is

the latest technology and usage-based payment scheme. In IaaS, provider offers virtual

resources (VR), physical resources (PR), storage, load balancers and local area network

(LAN) and/or virtual private network (VPN) to users. Users are responsible for setting up

operating system, installing own application software, patching and maintaining the oper-

ating system and application software. Amazon Elastic Compute Cloud (EC2) (Shankar,

2009) is a typical example in IaaS.

Platform as a Service (PaaS)(Beimborn et al., 2011) enables application developers

with a platform including all the systems and environments to run their software solu-

14

Univ
ers

ity
 of

 M
ala

ya

Software as a Service (SaaS)

Applications

Application Services

Human as a Service (HaaS)

Crowdsourcing

Platform as a Service (PaaS)

Integrated Development Environment

Runtime Environment

Infrastructure as a Service (IaaS)

Infrastructure Services

Runtime Services

Virtual Resource Set

Physical Resource Set

Figure 2.3: Cloud Layering Concept

tions in a cloud-based environment without having to buy costly hardware. Compared

with conventional application development, cloud providers offer programming and exe-

cution environment, operation system, programming language, database, web server and

vary available tools with quickly scale. Key examples are Google App Engine (GAE)

(Zahariev, 2009) and Microsoft Azure (Redkar & Guidici, 2011).

Software as a Service (SaaS)(Buxmann et al., 2008) is a multi-tenant platform and

commonly referred to as the Application Service Provider (ASP) model, which offers

application software, programming interfaces, elasticity, manages cloud infrastructure

and platform, and charges typically on a monthly or yearly basis. Examples of the key

providers are Microsoft windows live, Google Docs, Salesforce.com and so on.

Human as a Service (HuaaS)(W. Li & Svard, 2010) is an Extension of XaaS to non-

IT services. A group of humans can be used to perform tasks such as translation, design,

15

Univ
ers

ity
 of

 M
ala

ya

research, development and so on. Key examples for HuaaS are Amazon Mechanical Turk,

Microworkers, Wikipedia, YouTube and so on.

Currently, most of cloud services belong to IaaS and PaaS, only few providers such

as Amazon provides SaaS to users. However, the SaaS will be the predominate compo-

nent for users in short future because they can save the budget from IT maintenance and

pay more attention on their own business.

Though the various services be able to provide via cloud, we believe that the key

component of cloud-oriented service is ’computing’, the rests, such as storage, platform,

security, are all additional services based on cloud. From the perspective of technology,

the cloud computing actually is a kind of computing virtualization.

2.1.1.3 Technology Level

The division of service in cloud computing is from aspect of provided services. By con-

trast, the division of technology in cloud computing is according the character of cloud

and the property of system. Hence, cloud computing can be divided into 4 parts: physical

resource, virtualized resource, system management, and service interface (see figure 2.4).

Figure 2.4: The Division of Cloud Computing in Technology

Physical resource is the real resource includes hardware and other equipment. In

cloud computing, a group of low-cost PCs can be used in the infrastructure. Those com-

16

Univ
ers

ity
 of

 M
ala

ya

puting resource in real devices is integrated by networking technology, parallel and dis-

tributed system for providing higher processing capacity and mass data storage. Hence,

users in cloud computing do not need to purchase any high capacity devices but just nec-

essary to enjoy the benefits from cloud computing, which saves more costs.

The virtualized resource is not real but a virtualized physical resource pool by vir-

tualization software like Virtual Machine. At present, the virtualized resource includes

resource pools of computing, data storage, network, database and so on.

System management locates between provided services and server cluster, it is the

major management system in cloud computing. The management includes authentica-

tion and authorization of clients, user catalog and security management as well as image

establishment, deployment and so on.

Cloud computing makes a standard for provided services at the service interface,

such as Service Level Agreement (SLA). Service interface is used for user registration,

service searching and response user’s request. It is the interface between cloud platform

and clients.

For supporting the above mentioned cloud-oriented services and important appli-

cations (such as scientific computations, financial analysis, massive data processing and

warehousing, as well as utility computing), Microsoft, Amazon, Google, Salesforce.com

and other corporations have established large data centers around the world (Buyya et

al., 2008). Microsoft, for example, established a 707,000-square-foot DCN building in

Chicago, 2009 (Vahdat et al., 2010). There are 162 containers of 2,500 servers each with

total 60 Megawatts of electricity in the building which costs 500 million US dollars. Ap-

ple data center in Maiden is established in 2010 with 500,000-square-foot and costs 1

billion dollars (Tarantino, 2012).

At present, the main approach for resource utilization is that service providers vir-

tualize physical machines to multiple VMs (one-to-many), and integrate those VMs to a

17

Univ
ers

ity
 of

 M
ala

ya

resource pool via load balancing clusters (many-to-one). From the perspective of com-

puting, we believe that the cloud should be a ’Super Computer’ with thousands of cores,

which is virtualized by a range of physical machines. Users then utilize several cores on

demand.

2.1.2 Data Center Network

Data Center Network (DCN) is an important component of data centers that consists of a

large number of hosted servers and switches connected with high speed communication

links. A DCN enables the deployment of resources centralization and on-demand access

of the information and services of data centers to users.

Since the advent of cloud computing era, data volume has been increased tremen-

dously in the Internet. As cloud-oriented services and applications are data and commu-

nication intensive (a simple Web search request may need a cooperation among more than

1,000 servers), the information exchanging among remote nodes and local servers to pro-

ceed computation is increasing rapidly. Thereby, a great data traffic flow stress is taken

to the data center and the limited inter-node communication bandwidth among servers is

becoming serious bottleneck to DCN.

The motivations for building such cloud-oriented DCN are both economic and tech-

nical (Greenberg et al., 2009). Reasonable cost and elastic utilization according to the

business requirements are considered for Information Technology (IT) investment of en-

terprises for DCNs. A cloud computing provider offers a large pool of high performance

computing and storage resources that are shared among the end users. Users subscribe

to the cloud computing services and receive computing and storage resources allocated

on-demand from the pool. A number of enterprises still have concerns about the cloud

computing service models, such as the network part of data center has not seen much

commoditization and still uses enterprise-class networking equipment. The cost of us-

18

Univ
ers

ity
 of

 M
ala

ya

ing enterprise-class network equipment is large (upwards of$12 million per month for

a 100,000 server data center) and is not suitable to accommodate internet-scale services

in data centers. To be profitable, these data centers better use some lower-cost network

equipment to achieve high utilization with agile end-to-end network capacity assignment

and un-fragmented server pools (Greenberg, Hamilton, et al., 2008).

Table 2.1: A Comparison of Traditional DCN and Cloud-oriented DCN

Traditional DCN Cloud-oriented DCN

Servers and software belongs to users,
and infrastructure belogs to DCN provider All equipments belong to DCN provider

Multiple management tools Standardized management tools

Hosts a large number of relatively
small/medium-sized applications which
run on a dedicated hardware Runs a smaller number of very large applications

Limited fault-tolerance or graceful
degradation Needs fault-tolerance or graceful degradation

Mixed hardware environment Homogeneous hardware environment

Complex workloads for server installation Simple workloads for server installation

Cloud-oriented Data Centers (CDCs) offer shared computing resource model with

higher quality of service at the lower possible total cost of ownership. The main differ-

ence in CDC and traditional DC is “virtualization“ that allows for massive scalability,

virtualized resources, as well as on-demand utility computing. Table 2.1 shows the com-

parison of Traditional DCN and Cloud-oriented DCN in features. Looking at the table, it

becomes clear that the cloud-oriented DCN is simple to organize, operate, and it is more

scalable. In a traditional DCN, servers are fixed in hardware and additional budget (such

as hardware and the installation and maintenance) is required for upgrading and scaling

up to more applications and users. In cloud-oriented DCN, by contrast, multiple servers

are already in place. The virtualization is used to provide only the resources that a spe-

19

Univ
ers

ity
 of

 M
ala

ya

cific user demands, which gives cloud-oriented DCN a great scalability. In other words,

the “cost” of cloud-oriented DCN is lower as compared to the traditional DCN. Whereas,

the traditional DCN lacks of network bandwidth, scalability, and cost for coping with the

increasing demands of tenants in accessing the services of CDCs.

It is common for a CDC to contain hundreds to thousands of servers in an econ-

omy of scale (Beloglazov & Buyya, 2010). A fundamental question for the DCN is how

to effectively interconnect the number of exponentially increasing servers with a fault-

tolerance, high available and significant aggregate bandwidth. The architectural design of

DCN significantly affects its total performance. Therefore the design of a novel DCN ar-

chitecture with the characters of scalability, low cost, robustness, and energy conservation

is required.

2.2 Review on Data Center Network Architectures

In the recent years, the scale of the DCN is constantly increasing with the widespread use

of cloud-oriented services and the unprecedented amount of data delivery in/between data

centers. As the architectural design of DCN significantly affects its total performance, the

DCN architecture has rapidly become research focus issue. In recent years, many DCN

architecture related papers are published in the leading international journals in IEEE and

ACM such as IEEE Computing in Science and Engineering, IEEE/ACM Transactions

on Networking. Hence, it is necessary to take a review of the existing architectures for

further research.

2.2.1 Taxonomy of Data Center Network Architecture

Current DCN architectures are classified into Clos/Tree, Variant Load Balancing (VLB),

Hierarchical Recursive Architecture, and Optical/Wireless. Figure 2.5 shows the taxon-

omy of current DCN architectures.

The classification of the taxonomy is considered by the features of current DCN

20

Univ
ers

ity
 of

 M
ala

ya

DCN Architecture

Clos / Tree -

Based

Valiant Load

Balancing

Hierarchical

Recursive

Optical /

Wireless

Fat-tree

Elastic-Tree

Portland

Jellyfish

VL2

Monsoon

CamCube

DCell

FiConn

BCube & MDCube

Hyper-Fat-Tree

Network (HFN)

CloudCube

Optical Switching

(OSA)

Helios

c-Through

Wireless-DCN

(WDCN)

CayleyDC

Figure 2.5: Taxonomy of Data Center Network Architectures

architectures. The Clos/Tree is to achieve high performance and high resource utilization

by using commodity hardware in tree structure. VLB is distributes traffic across a set of

intermediate nodes and leverages the random distribution of traffic into equal cost multi

paths. The Hierarchical Recursive Architecture is proposed to avoid the existence of a

single point of failure as well as to increase the network capacity. The Optical/Wireless

architecture is established to include optical and/or wireless network.

In accordance with this taxonomy, each research trend with selected research per-

spective is introduced in the following sections. We note that although each research

relates to multiple perspectives listed in Figure 2.5, we categorized them by selecting a

key feature that shows the initial design motivations for each architecture.

21

Univ
ers

ity
 of

 M
ala

ya

2.2.2 Review on Data Center Network Architectures Using Taxonomy

This section reviews current DCN architectures on the basis of framework nature pre-

sented in figure 2.5. It also investigates the implications and critical features of the spe-

cific architectures.

2.2.2.1 Clos/Tree-Based

The Clos/Tree-Based related architectures are widely used in current DCN as the features

of simple deployment and easy extension by increasing the rack and related switches.

Tree-Based

The traditional data center network is typical multi-root tree architecture, commonly

composed by 3 layers switches (Infrastructure, 2007). In the architecture, the top layer as

a root is called core layer, middle layer is aggregation layer, and the bottom layer is named

as access layer. The higher layer devices own a higher performance and value. The core

layer typically is comprised of several routers with redundancies accessing the external

network in one side, implementing External Border Gateway Protocol (EBGP) or static

routing protocol, and accessing to the internal network in another side, implementing

Interior Gateway Protocol (IGP). The accessing layer switches commonly provides 1Gbps

and 10Gbps downlink and uplink interface, respectively. The aggregation layer switches

normally have 10Gbps interfaces and allow aggregating between access layer switches

and forwarding data. The traditional hierarchical tree architecture may look similar to

Figure 2.6.

In DCN, requests from the Internet are received by core layer router and forwarded

to load balancing server in aggregation layer. The load balancing servers maintain a

mapping table which includes Virtual IP address (VIP, for requests acceptance) and Direct

IP address (DIP, for requests processing). According to the table, load balancing server

forwards the Internet requests to application pool in accessing layer for processing.

22

Univ
ers

ity
 of

 M
ala

ya

...

...

Internet

Core Layer

Aggregation

 Layer

Accessing

 Layer

Top of Rack

Figure 2.6: A sample of the tree hierarchical DCN architecture

Some shortcomings exist in the traditional tree architecture (Infrastructure, 2007).

First of all, the bandwidth increases significantly near the root of the tree and deploying

high performance network device in required, which may increase the cost. Secondly,

network scale is severely limited by the switch port. Thirdly, the lower layer nodes will

lose connection with others once the upper layer switch failure happens. Last but not the

least, with the increasing of device processing capacity, there is not much doubt about

data center power consumption will increase as well. Hence, researchers start to design

alternative architectures for DCN.

Clos

Clos is an enhanced architecture on the basis of tree, and is widely used in many

enterprise-class data center nowadays (Dally & Towles, 2004). The mathematical theory

of clos was introduced by Charles Clos from bell labs in 1953 for creating a non-blocking,

multi-stage topology, which provides higher bandwidth than what a single switch is capa-

ble of supplying (Clos, 1953). A main feature of the architecture is multi-layers switching

wherein each switching unit connects to all units in the lower layer for reducing the num-

23

Univ
ers

ity
 of

 M
ala

ya

Spine Layer

Leaf Layer

Servers

6-port Switch

Figure 2.7: 3-Stage Folded Clos Topology (Dally & Towles, 2004)

ber of intersecting nodes since input and output streaming is increasing. Figure 2.7 shows

an example of a 3-stage folded clos architecture.

In clos, the Leaf Layer is responsible for advertising server subnets into the network

fabric. The Leaf layer determines oversubscription ratios, and thus the size of the Spine.

The Spine layer is responsible for interconnecting all Leafs. As the clos is using a similar

tree hierarchical data transmission mechanism, description is not necessary here. Though

the multi-layers switching in clos effectively reduces the stress of bandwidth restriction

in aggregation layer than the tree hierarchical, the same features and problems still exist

between the two architectures.

The above Tree and Clos architectures are initially designed for small or medium

scale networks. In the era of cloud computing, however, CDC is different from traditional

enterprise class data center as new requirements are desired for large-scale distributed

computing since the number of data center network device is growing rapidly. The prob-

lem of the widely used tree-based hierarchical architecture will be discussed in detail in

chapter 3.

Fat-tree

To resolve the problems of network bottleneck and upper layer single node failure,

Al-Fares introduced a Clos-based DCN architecture called Fat-tree (Al-Fares et al., 2008).

24

Univ
ers

ity
 of

 M
ala

ya

Similar with tree architecture, the switches in Fat-tree arealso categorized into 3

layers, core layer, aggregation layer, and edge layer. Figure2.8 shows a classic Fat-tree

architecture. In this architecture, a range of switches in a square are called Pod. In this

diagram, there are k=4 switches in each pod and half of them belong to edge switches

and half are aggregation switches. Similarly, aggregation switch uses each of k/2 ports

while connecting to edge and core switches. Therefore, the maximum number of server

in Fat-tree is K3/4, and 5K2/4 switches.

Figure 2.8: A sample topology of Fat-tree architecture(Al-Fares et al., 2008)

Fat-tree uses the 10.0.0.0/8 private range setting the interior DCN address and the

format for pod switch is 10.pod.switch.1. The pod indicates a pod number ([0, K-1])

switch which means the position of switch in pod ([0, k-1], from left to right and bottom

to top). The IP format for core switch is 10.k.j.i, where j and i show the coordinates of

switches between core switches and aggregation switches (start from top-left). The host

IP format is described as 10.pod.switch.id, where id means the host position in its own

subnet.

Fat-tree architecture improves the cost-effectiveness by deploying a large number

of low-cost switches with complex connections to replace the expensive and higher ad-

vanced switches in DCN. The equal number of links in different layers achieve non-

25

Univ
ers

ity
 of

 M
ala

ya

blocking communication among servers, which reduce the network bandwidth bottleneck.

However, the scale of Fat-tree architecture is restricted by the number of device port. For

example, a range of 48-port switches support maximum 27,648 servers only. Greenberg

from Microsoft research points out that the Fat-tree architecture is very sensitive about

the low-layer switch failure and it will impact the forwarding performance of DCN as

Fat-tree is still a tree-based structure (Greenberg, Lahiri, et al., 2008).

Elastic Tree

Due to the uncertainty of data traffic in DCN, Heller points out that providing full

bandwidth connection among all edge switches is not necessary. Hence, ElasticTree ar-

chitecture is proposed from the perspective of power saving based on the Fat-tree archi-

tecture (Heller et al., 2010). The main feature of ElasticTree is on-demand turn on or off

switches and connections.

Optimizer
 Routing

Traffic

Status

Power Control

Subset

Port/linecard/

 box on/off

DCN

 Flow

Routes

Figure 2.9: A sample of Elastic Tree Network architecture(Heller et al., 2010)

Elastic Tree consists of three logical modules, optimizer, routing, and power control.

As shown in Figure 2.9, the Optimizer responds to find the minimum power network sub-

net which satisfies current data flow conditions. Its input are network topology, data flow

matrix, power model for each switch and the desired fault-tolerance properties. The op-

timizer outputs a set of active components to power control and routing modules. Power

control module toggles the power states of ports, adapters, and entire switches. The rout-

26

Univ
ers

ity
 of

 M
ala

ya

ing module provides route to data flow.

Core Layer

Aggregation

 Layer

Edge Layer

Pod 0
 Pod 1
 Pod 2
 Pod 3

Figure 2.10: A sample topology of Elastic Tree DCN architecture(Heller et al., 2010)

ElasticTree is designed for power saving in DCN, which effectively reduces the

maintaining cost for data center. However, due to the ElasticTree is deployed based on

Fat-tree, it still inherits the same problem. Figure 2.10 shows the architecture of Elastic-

Tree.

Portland

Based on the Fat-tree architecture, Mysore proposed a scalable and fault-tolerance

2-layer routing fabric (Niranjan Mysore et al., 2009). PortLand employs a fabric man-

ager and Pseudo MAC address (PMAC) to forwarding data packet, and MAC to PMAC

mapping to avoid modification in servers.

PortLand edge switches learn a unique pod number and a unique position number

in each pod. Location Discovery Protocol is employed to assign these values. For all

directly connected hosts, edge switches assign a 48-bit PMAC. The format of the PMAC

is pod.position.port.vmid, whereas pod (16 bits) indicates the pod number of the edge

switch, position (8 bits) reflects the switch position in the pod, port (8 bits) and vmid

(16 bits) describe the port number of the host connects to and multiple VMs on the same

physical machine (PM), respectively.

Whenever a source host desires to communicate with another, it searches the target

27

Univ
ers

ity
 of

 M
ala

ya

PMAC through the fabric manager. Once data packets research to the destination node,

the ingress switch modifies the PMAC to actual MAC (AMAC) of the target. Upon

completing VMs migration from one PM to another, the fabric manager maintains the

new PMAC to AMAC mapping and broadcasts to the previous PM which VMs located

before.

PortLand deployed a new routing mechanism in 2-layer based on the Fat-tree archi-

tecture, which supports a better fault-tolerance routing and forwarding, VMs migration,

as well as network scalability. However, modification of the existing switches is required

to meet the above features. In addition, as the fabric manager plays a major role in Port-

Land, the risk of single node failure still exist in this architecture.

Jellyfish

The architectures introduced before (Al-Fares et al., 2008)(Heller et al., 2010)(Ni-

ranjan Mysore et al., 2009) are the improvement of the tree hierarchical structure, and

some common disadvantages exist among all of them. For example, network scale is re-

stricted by the number of core routers, weakness in switch failure recovery, one-to-many

and many-to-many communications, as well as cloud computing. The DCN architecture

therefore trends to a flat structure to modify the network structure from 3 layers to 2 layers

or even 1 layer – Mesh structure, such as Jellyfish (Singla et al., 2012).

Jellyfish constructs a random graph topology at the ToR switch layer, and each ToR

switch i has number ofki ports, of which usingr i to connect to other ToR switches and

the remainingki – r i ports to servers. In the simplest case, each switch has same number

of ports and servers, thusk= ki , r = r i. WhenN is the number of ToR Switches, totalNkr

servers can be supported in DCN. Figure 2.11 shows a topology of Jellyfish architecture.

The authors in (Singla et al., 2012) point out that when the number of servers is less

than 900, Jellyfish supports more than 27% servers than Fat-tree, performance improves

with the network scale increasing. Jellyfish also has a shorter average path length and

28

Univ
ers

ity
 of

 M
ala

ya

Switch

.
.
.

.
.
.

Switch

.
.
.

Server

.
.
.

.
.
.

Server

Server Port

Random Graph Topology

Figure 2.11: A sample topology of Jellyfish architecture(Singla et al., 2012)

higher bandwidth capacity than Fat-tree, and a better performance in power saving. How-

ever, as Jellyfish is a random regular graph structure, the cabling layout issue is a big

challenge which limits the positions among the ToRs, and the implementing of optimal

routing is also a challenge as well.

2.2.2.2 Valiant Load Balancing

The Valiant load balancing(VLB) architecture was initially introduced by L. G. Valiant for

processor interconnection networks (Valiant, 1990), which is approved with capacity for

handling traffic variation. VLB can achieve a hotspot free fabric for DCN when random

traffic into multi paths.

VL2

VL2 is another tree-based architecture introduced by Greenberg in 2009 for resource

allocation dynamically in DCN (Greenberg et al., 2009). The difference with Fat-tree is

that VL2 connects all severs through a virtual 2-layer Ethernet, which is located in a

same LAN with servers. In this case, as shown in Figure2.12 all servers are assignable

to upper layer applications as no resource fragmentation happens. VL2 uses the Clos

29

Univ
ers

ity
 of

 M
ala

ya

topology to increase connections, and VLB mechanism to assign routing for load bal-

ancing. Moreover, VL2 implements Equal-Cost Multi-Path routing (ECMP) to forward

data over multiple optimal paths and resolve the problem of address redistribution in VMs

migration. Therefore, the VL2 is considered in the VLB category.

...

...

...

...

Internet

Intermediate

Switches

Aggregation

Switches

ToR Switches

Servers

Figure 2.12: A sample topology of VL2 DCN Architecture(Greenberg et al., 2009)

Since VL2 follows the traditional tree architecture in connection, it is widely used

for enhancing the existing DCN. However, its network reliability is not improved and still

has problems in scalability and single node failure.

Monsoon

The architecture of Monsoon (Greenberg, Lahiri, et al., 2008) is described in Figure

2.13, where over 100,000 servers are linked in a 2-layer network without over subscrip-

tion. The core border router and accessing router in layer 3 uses ECMP for multi-path

transmission, and VLB mechanism for load balancing like VL2.

Monsoon uses a MAC-in-MAC technology to create MAC layer tunnel, modifies the

traditional Address Resolution Protocol (ARP) to a user mode process, and allows a new

mac interface to forward encrypted Ethernet frames. These mechanisms and solutions,

30

Univ
ers

ity
 of

 M
ala

ya

Border Router
 Border Router

Access Router
 Access Router

Racks of Servers

Load Balancer
Load Balancer

...

...

...

...

Internet

Layer 3

Layer 2

Figure 2.13: A Sample Topology of Monsoon DCN Architecture(Greenberg, Lahiri, et
al., 2008)

however, are not compatible with the existing Ethernet architecture.

2.2.2.3 Hierarchical Recursive

Hierarchical recursive architecture is generally appropriate in order to avoid the bottle-

neck of single point failure and increase network capacity.

CamCube

CamCube is a non-switch architecture presented by Libdeh, which constructs net-

work with a 3D torus topology by each server directly and connects with two neighbor

servers in 3D directions (Abu-Libdeh et al., 2010). The topology of CamCube is shown

in Figure 2.14.

CamCube assigns an (x, y, z) coordinate to indicate the position for each server in

the topology, and provides functionality to send or receive packets to and from one-hop

neighbors. CamCube provides a platform for developers to create a more efficient routing

algorithm for API according to the requirement, which decreases the additional network

31

Univ
ers

ity
 of

 M
ala

ya

Y

X

(1,2,1)
 (1,2,2)

Z

Figure 2.14: A sample topology of CamCube architecture(Abu-Libdeh et al., 2010)

performance overhead and verified the efficiency of this design.

CamCube has a simple structure and connection, as well as a high link redundancy.

There is no bandwidth bottleneck in specific node as this is not a tree-based structure.

However, those servers act a role of switch to forward data, which consume part of the

server’s computing resources and reduce the computing efficiency of servers. In addition,

the number of network adapters installed in each server is limited (2 adapters for each

server commonly), which means the size of CamCube network is also limited.

As CamCube has a relatively long routing path in a torus (O*N1/3 hops), which

causes decrease of performance and increase of cost of DCN, Popa introduced a De

Bruijn-based DCN architectures in (Popa et al., 2010) that servers within a rack are la-

beled and connected as a De Bruijn graph structure. Those servers with same label but in

different racks are also connected as a De Bruijn structure. As the diameter of De Bruijn

is (log N), the result shows that it has a better routing performance and lower cost contrast

32

Univ
ers

ity
 of

 M
ala

ya

with CamCube structure.

The approach of using recursive structure in DCN architectures design is widely

achieved in DCell (Guo et al., 2008), FiConn (D. Li et al., 2009), BCube (Guo et al.,

2009), MDCube (H. Wu et al., 2009), and HFN (Ding et al., 2012), which reduces the

bottleneck in core layer routers, and provids multiple paths in pair of servers.

DCell

DCell (Guo et al., 2008) is a recursively defined network architecture shown in Fig-

ure 2.15.DCell0 is a basic unit to construct larger DCells, which consists of n servers and

a mini-switch. If there are m servers inDCellk network, theDCellk+1 is considered as a

compound graph structure consists of the number of m+1DCellk.

DCell

0

[0]

[0,0]
 [0,1]
 [0,2]
 [0,3]

DCell

0

[1]
[1,0]

[1,1]

[1,2]

[1,3]

DCell

0

[4]

[4,0]

[4,1]

[4,2]

[4,3]

DCell

0

[3]

[3,3]

[3,2]

[3,1]

[3,0]

DCell

0

[2]

[2,3]

[2,2]

[2,1]

[2,0]

Figure 2.15: A sample topology of DCell architecture(Guo et al., 2008)

DCell uses a distributed routing algorithm called DCellRouting for data forwarding.

According to the destination node and the relationship of server and virtual nodes, data

packet is forwarded to next hop automatically without routing table searching in server.

The mass redundancy links in DCell make a higher bandwidth than in tree-based structure

33

Univ
ers

ity
 of

 M
ala

ya

and have a better performance at one-to-all and all-to-all communication model in data-

intensive computing. The situation of server, link, and rack failure has been considered

in DCell design. Data packet can also be delivered to destination node through fault-

tolerance path when a failure is detected by server or switch. In addition, DCell uses local

reroute, local link-state, and jump-up mechanism to address the above failures. As the

routing algorithm in DCell network is running between layer 2 and layer 3, the exciting

TCP/IP protocol and based applications can be deployed in the structure seamlessly and

effectively.

One of shortcomings of DCell architecture is more interfaces and ports are desired

to extend network size. Furthermore, the lower levels servers undertake more forwarding

tasks and this load balancing is challenging issue to deal with in the future. Nevertheless,

the proposed DCell architecture indicates a novel thinking in DCN, which has been a

milestone in the relevant research.

FiConn

A common commercial server typically has two network adapters, one for data re-

ceiving and forwarding, and another one for redundancy. To reduce the additional over-

head caused by the mass redundancy links, Li introduced a modified DCell structure,

called FiConn in 2009 (D. Li et al., 2009). Similar with DCell, FiConn uses compound

graph creating its FiConn structure. In a 4 levels FiConn with 16 ports switch, the number

of servers can reach to 3,553,776. Figure 2.16 shows the 1 level FiConn architecture.

FiConn decreases the overhead of network establishing by decreasing some perfor-

mance. Contrast with DCell, the fully connections among virtual nodes in same level are

not required in FiConn, it only uses idle ports of servers and switches to connect with

other devices, which decreases the number of redundancy links and the network adaptors

on server. Therefore, multi network adaptors are no longer to be installed in server and

the number of port requirement for higher level switch is reduced, which means the cost

34

Univ
ers

ity
 of

 M
ala

ya

[0,0]
 [0,1]
 [0,2]
 [0,3]

[2,3]

[2,2]

[2,1]

[2,0]
 [1,3]

[1,2]

[1,1]

[1,0]

FiConn

0

[2]

FiConn

0

[1]

FiConn

0

[0]

Figure 2.16: A sample topology of FiConn architecture with level 1(D. Li et al., 2009)

for DCN establishment is decreased as well.

BCube and MDCube

In 2009, (Guo et al., 2009) proposed a hypercube related structure of data center

network, named as BCube and the structure is shown in Figure 2.17. Similar with the

recursive defined character of DCell structure,BCube0 is constructed byn servers con-

necting to ann− port switch, andBCube1 is constructed fromnBCube0 connecting ton

switches. More generically, aBCubek is constructed fromn BCubek−1 connecting tonk

n−port switches. Each host hask+1 parallel paths with different lengths. It is easy to see

that ak− level BCube structure,BCubek hasnk+1 servers andnk(k+1) mini-switches.

Each host has k+1 parallel paths in BCube but the lengths are different. BCube also

makes one-to-X speedup for data replication, and such speedup depends on the number

of network adapters.

One of the design goals for BCube is to establish shipping-containers DC called

Modular Data Center (MDC), but how to connect these data centers and create a larger

data center are the main goal for MDCube (H. Wu et al., 2009). MDCube is proposed as

an interconnection structure among shipping-containers by fiber to construct larger size

35

Univ
ers

ity
 of

 M
ala

ya

0

0
 1
 2
 n-1

...

0
BCube

k-1

Level k

1

0
 1
 2
 n-1

...

1
BCube

k-1

2

0
 1
 2
 n-1

...

2
BCube

k-1

n

k

-1

0
 1
 2
 n-1

...

n-1
BCube

k-1

Figure 2.17: A sample topology of BCube architecture(Guo et al., 2009)

of DCN. In MDCube, each BCube container is assumed as a virtual node, and connecting

with other node to create a HyperCube network structure.

In BCube, servers have multiple ports to support selectable routing, high fault-

tolerance and high throughput. Therefore, BCube has better performance in one-to-

many, and many-to-many communication and resolves load balancing issues in lower

lever servers. However, the number of switches in BCubek is k times than DCellk for

connecting a certain number of servers, and thereby, more cost in cabling layout and

others in construction than DCell.

Hyper-Fat-Tree Network (HFN)

To optimal DCN for some specific requirements are desired in cloud computing,

such as the following architectures HFN (Ding et al., 2012) and CloudCube (Model et al.,

2009) are proposed for MapReduce optimization.

HFN0(N,M) is the basic building block of the entire network topology, which consists

of n master servers,n×m worker servers, and number ofn “m-port” switches. Each

switch connectsm worker servers,n master servers andn “m-port” switches to create

two-vertex sets of the bipartite graph. More generically, the levelk+1 HFN, HFNk+1

consists ofn HFNk andn× k+1 “n-port” switches. If all theHFN0 are considered as

virtual servers, it is obviously that the basic architecture of HFN is from BCube. A sample

36

Univ
ers

ity
 of

 M
ala

ya

Switch

(1,0)

Master Server

Switch

Worker Server

HFN

0

(3,4)

Master Server

Switch

Worker Server

HFN

0

(3,4)

Master Server

Switch

Worker Server

HFN

0

(3,4)

Switch

(1,0)

Switch

(1,0)

Figure 2.18: A sample topology of HFN architecture with n=3, m=4(Model et al., 2009)

topology of HFN is shown in Figure 2.18.

In HFN, master servers control the entire procedure of MapReduce and receive ten-

ant’s requests. The server assigns a task to multiple master servers and further forward to

worker servers to execute under the master servers’ control. The worker server sends the

number of tasks to be performed to its master servers once the worker server completes

its job, and the masters may assign a new job according to the schedule. The experi-

ment shows that MapReduce has a better performance in HFN than the tree hierarchical

architecture.

CloudCube

As the basic structure of HFN is generated on the basis of BCube, a large number

of switches are required in network establishing. To resolve this problem, CloudCube

(Formu, 2009) is proposed based on the architectures of HFN and BCube, which owns

a same structure withHFN0(n,n) if considering theCloudCube0(n) as virtual servers. By

contrast, CloudCube interchanges the positions of switches and servers in BCube to cre-

ate aCloudCubek(m,CloudCube0(n)) architecture, wherem denotes the number of switches

connected byCloudCube0(n), and commonly,m= n. The number of potential server in

CloudCube is much more than HFN, which effectively reduces the cost and enhance the

scalability of DCN.

37

Univ
ers

ity
 of

 M
ala

ya

2.2.2.4 Optical/Wireless

The approach of using optical and wireless network in DCN is introduced in this section.

Optical Switching Architecture (OSA)

(K. Chen et al., 2012) believe that if the network is able to dynamically change its

topology and link bandwidth, then unprecedented flexible architecture can be supported in

DCN. Thereby, they introduced a novel Optical Switching Architecture for DCN called

OSA, that uses Optical Switching Matrix (OSM), Wavelength Selective switch (WSS)

and Wavelength Division Multiplexing (WDM). Figure 2.19 shows the OSA architecture.

Optical Switching Matrix (MEMS 320 Ports)

WSS

MUX

Coupler

DEMUX

R
e
c

e
i
v
i

n
g

Optical

mux/demus &

Switching

Components

Server Rack

T
o
R

S
w

i
t
c
h

e
s

Sending

 ...

Server Rack

 ...

Optical

mux/demus &

Switching

Components

Server Rack

 ...

...
...

Cir
.

Figure 2.19: A sample topology of OSA architecture(K. Chen etal., 2012)

Most OSM modules are bipartiteN×N matrix where any input port connects to

any one of output ports. Nowadays, the Micro-Electro-Mechanical Switch (MEMS) is

widely used in OSM to reconfigure a new input/output matching and connection within

10ms by mechanically adjusting a microscopic array of mirrors. The WSS is a 1×N

switch consisting of one common port and N wavelength ports for partition the set of

wavelengths coming through the common port among the N wavelength ports.

OSA employs shortest path routing scheme and hop-by-hop switching to ensure the

network wide connectivity in DCN. Each single hop converts the forwarding data in fiber

from optics to electrical signals and then back to optics (O-E-O) and switching at the

38

Univ
ers

ity
 of

 M
ala

ya

ToR. In addition, a central OSA manager responses for topology management, traffic and

routing estimation and configurations.

Helios (Farrington et al., 2011) and c-Through (G. Wang et al., 2010) are well-known

hybrid electrical-optical structures. In this hybrid model, each ToR connects to an elec-

trical and an optical network at same time. The electrical network is a 2 or 3 layers

hierarchical tree structure with a certain oversubscription ratio. In the optical network,

each ToR maintains a single optical connection to other ToRs, and this optical connection

is unrestricted capacity.

Optical switching has a better potential performance than node switching in data

transmission speed, flexible topology, power-saving and bits ratio in long distance for-

warding (Ikeda & Tsutsumi, 1995). Moreover, optical switching generates less heat to

reduce the maintenance cost in cooling and radiating. Therefore, optical switching in

DCN is an important research topic in DCN.

Wireless-DCN (WDCN)

Wireless technology can flexibly change network topology without re-cabling lay-

out, thereby, (Ranachandran et al., 2008) operate wireless technology into DCN in 2008.

Later on, (Kandula et al., 2009) describe the Flyways architecture to de-congest and re-

duce data forwarding time between ToR switches in DCN. However, the separated wire-

less network is hard to meet all the requirements about DCN such as scalability, capacity

and fault-tolerance. For example, the bandwidth of wireless network is commonly lim-

ited due to high traffic load and interference. (Cui et al., 2011) proposed hybrid Ether-

net/wireless architecture in DCN called WDCN.

To avoid excess antenna using and interference, (Cui et al., 2011) consider each ToR

as a wireless transmission unit (WTU) in WDCN that is shown in Figure 2.20. Using

60Hz wireless communication technology, (Shin et al., 2012) proposed a fully wireless

connection DCN, integrating switching fabric into server nodes to reduce the actual dis-

39

Univ
ers

ity
 of

 M
ala

ya

Figure 2.20: A sample topology of WDCN architecture(Ranachandran et al., 2008)

tance between ToRs and support fault-tolerance. They also replace the network interface

card (NIC) of a server to a Y-switch, and deploy these servers to circular structure racks.

The above approaches can easily establish communication channels between and interior

of racks, and create a mesh network structure. As this mesh network is a kind of Cayley

graphs (Alon & Roichman, 1994), thereby it also called Cayley Data Center (CayleyDC).

Deploying wireless connection makes the network topology flexible and decreases

the complex cabling layout. However, with a certain bandwidth, the forwarding distance

in wireless network is limited and more overhead is generated due to broadcasting.

2.3 Comparison of Data Center Network Architectures

This section presents a comparison and analysis of these architectures from the six cri-

teria: scale, bandwidth, fault tolerance, scalability, overhead, and cost of deployment.

Scale, fault tolerance, and scalability are important design concerns for the reason that

DCN consists of large amount and continuous increasing number of servers and network

equipment. The scale of cloud-oriented DCN is much bigger than that of traditional

40

Univ
ers

ity
 of

 M
ala

ya

DCN. For managing such number of devices, scheduling decentralized resources, as well

as supporting different range of cloud-based applications and services, the DCN architec-

ture with fault tolerance and scalability are highly desired.

In this section, scale refers to the number of servers that are supported by the existing

architecture. Fault-tolerance refers to whether the proposed architecture can effectively

deal with the problems of server, switch, and link failure. Scalability refers to whether the

selected architecture exists centralized nodes, single point of failure, and easy to expand

by deploying more devices. In this comparison, bandwidth indicates a proportion of ac-

tual bandwidth to maximum theoretical bandwidth between servers. Normally, a higher

oversubscription refers to less parallel paths (lower bandwidth) and vice versa. Overhead

and cost of deployment are also important facts in DCN design as reasonable cost ac-

cording to the business requirements are considered for IT investment. In this section,

overhead refers to the number of switches and links, as well as their cost. Cost of deploy-

ment refers to the workload of switch and server configuration, and the construction of

basic equipment.

Table 2.2 gives the comparison of the proposed DCN architectures from the above

aspects.

Network scale. Clos/Tree-based, VLB and Optical/wireless architectures connect

servers and switches to establish a simple and easy connecting hierarchical tree-based

topology. Servers take full part in data processing only. In Hierarchical Recursive archi-

tectures, by contrast, each server is installed with one or more extra network adapters to

establish flexible, complicated and specific network architecture. Servers not only pro-

cess data but also participate in data transmission. In DCell, for example, servers are

fully connected in identical layers that makes it more scalable than tree-based architec-

ture. The deployment, however, is a complicated mission for DCell as the significant

cabling layout. It is worth to mention that, the network scales of OSA and WDCN are

41

Univ
ers

ity
 of

 M
ala

ya

Table 2.2: A comparison of the proposed DCN architectures

Architectures Scale Bandwidth Fault-tolerance Scalability Overhead Cost of deployment

Tree hierarchical small low bad bad very high very high

Fat-tree medium medium medium medium high high

ElasticTree medium medium medium medium high very high

PortLand medium very high good medium high high

Jellyfish large very high good good medium high

VL2 large very high medium medium high high

Monsoon large very high medium medium high high

CamCube large high good good very high high

DCell large high good good high high

FiConn large high good good medium high

BCube small very high very good high high high

MDCube large high good good very high high

HFN small medium medium good low medium

CloudCube small medium medium good low medium

OSA small very high bad medium high medium

WDCN small very high good medium medium medium

smaller than others due to the higher deployment cost and limited wireless transmission

range in optical/wireless architectures.

Bandwidth: The initial goal of the proposed architectures design is to resolve the

bandwidth bottleneck in DCN. Therefore, no matter VLB, hierarchical recursive, opti-

cal/wireless, or even the improved tree-based (such as Fat-tree and Jellyfish) architectures,

all are higher in bandwidth as compared to the original clos/tree-based architectures. In

addition, optical switches are advanced at bandwidth, loss rate, as well as the ultra-higher

data forwarding speed by comparing with electrical switches.

42

Univ
ers

ity
 of

 M
ala

ya

Scalability: Clos/tree-based architectures expand the scale of DCN by adding a

number of ports and levels on switches. They presents the advantages of ease-of-wire

but is limited by poor scalability and fault-tolerance. The improved tree-based architec-

tures, such as Fat-tree and VL2 solve the problems by increasing the number of switches

in aggregation layer but the cabling layout become much more complex. By contrast,

hierarchical recursive architectures have a limited scale of network size as the number of

network adapters installed on a server is limited.

Overhead: Clos/tree-based and VLB architectures utilizes switch and router to for-

ward data, and server is only concerned with data processing and storage. For effectively

using lower level resources, those high level switches and routers are desired to have a

better data processing capacity and higher bandwidth. As servers participate data for-

warding in hierarchical recursive architectures, part of CPU and memory resources of

servers are consumed.

Cost of deployment: As hierarchical recursive architectures employ server to trans-

fer data, it has a lower cost than the tree-based architectures in the same cost/performance

conditions. In addition, the cost of hierarchical recursive deployment may reduce with

the development of CPU and network adapter technical, such as integrating a module in

CPU to process networking related task, or improving the autonomy process capacity of

network adaptor to forward data without CPU. By contrast, in optical/wireless and tree-

based architectures, higher cost is generated as additional fiber optic or electro-optical

transmitters/receiver, and high advanced routers and switches are required for supporting

higher network performance in DCN.

Existing DCN architectures are all fixed (K. Wu et al., 2012). They are advanced in

one or more network evaluation metrics but may not support sufficiently in others. It is

still difficult to decide which architecture will perform the best and whether it is suitable

in a specific DCN as features.

43

Univ
ers

ity
 of

 M
ala

ya

2.4 Open Issues and Challenges for Cloud-Oriented Data Center Network Archi-
tecture Design

In the recent years, the scale of the DCN is constantly increasing with the widespread use

of cloud-oriented services and the unprecedented amount of data delivery in/between data

centers, whereas the traditional DCN architecture lacks of aggregate bandwidth, scalabil-

ity, and cost for coping with the increasing demands of tenants in accessing the services

of cloud data centers. Therefore, the design of a novel DCN architecture with the features

of scalability, low cost, robustness, and energy conservation is required. With the analysis

of the existing variable DCN architecture designs, we identify the following open issues

and challenges that can be the subject of future cloud-oriented DCN architecture design.

2.4.1 Deployment Cost and Energy Consumption

Data center with different network architectures can accommodate different number of

servers and switches. When the number of servers in DCN reaches tens of thousands

or more higher, different network architectures result in a huge data center deployment

costs. For this reason, reducing the DCN deployment cost is seen by operators as a key

driver for reaching high cost/performance ratio and maximizing DCN profits.

In addition, the energy conservation is emerging as an increasingly important global

consensus issue which is pointed out as an amortized cost in (Greenberg, Hamilton, et

al., 2008). The energy cost reaches 15% of the total cost of a data center. Based on a

report submitted to Congress by the U.S. Environmental Protection Agency as part of the

Energy Star program, networking devices in data centers in the United States accounted

for 6.5 billion kWh/year in 2012 (USEPA, 2012). How to build green and low con-

sumption of data centers become a serious research issue. The consumers of energy in

data center include servers, networking equipments, power distribution and cooling facili-

ties. Most approaches (Beloglazov & Buyya, 2010)(Y. Chen et al., 2012)(Lee & Zomaya,

2012)(Boru et al., 2013) effort focus on making servers and cooling infrastructures more

44

Univ
ers

ity
 of

 M
ala

ya

energy efficient. In contrast, the energy consumed by networking equipments is rarely

considered, because networking equipments take up a relatively smaller proportion of

data center’s energy budget. As servers and cooling within data centers become more en-

ergy efficient, the percentage of data center power consumed by networking equipments

is expected to grow. Moreover, reliable power supply providing for a large-scale DCN

needs more budget.

2.4.2 Network Optimization

Bandwidth utilization and cabling complexity are becoming significant factors in the

novel network architecture design. For example the metric of bisection bandwidth is

widely used in DCN performance evaluation (Al-Fares et al., 2008)(Guo et al., 2008)(Guo

et al., 2009)(Katayama et al., 2011), and the throughput in aggregate layer measures the

sum of the aggregated data flows when network broadcast is conducted in tree-based

DCN architectures. In traditional DCN, the cabling layout is simple. In cloud-oriented

DCN, however, cabling is a critical issue as massive number of nodes that has an im-

pact on connecting efforts and maintenance. In addition, the issue of designing optimized

network structure for particular applications to increase its competitiveness in the era of

cloud computing is also yet to be explored.

2.4.3 The Novel Network Architecture Studies

Network architecture in distributed system has been studied extensively, and researchers

propose a number of network structures (Frécon & Stenius, 1998)(Tennenhouse & Wether-

all, 2002)(Foster et al., 2002)(Lian et al., 2002). In DCN, the deployment of the existing

mature network architectures need to be analyzed and validated, especially those in the

model of the server-centric (Guo et al., 2009). Novel network architectures for cloud-

oriented DCN are also expected in further research.

45

Univ
ers

ity
 of

 M
ala

ya

2.4.4 Quality of Service in Upper Layer

DCN architecture indicates the relation of connection between the servers in the data cen-

ter, which is the order of intermediate nodes links. The systems mentioned earlier such as

GFS and HDFS are achieved as the form of parallel and distributed through collaborative

communication between a large numbers of servers in DCN. The quality of implementing

these systems directly affects the quality of service to end user.

2.4.5 Congestion Control

Cloud-oriented DCNs adopt TCP and Ethernet as their layer-4 and layer-2 transmission

technologies. However, the broadcast nature of data transmissions in Ethernet causes sig-

nificant traffic congestion which makes the TCP retransmission mechanism unworkable,

especially when a large number of lost packets occurs.

TCP-Incast is an unique phenomenon observed in some cloud computing applica-

tions, such as MapReduce and cluster-based storage system (Y. Chen et al., 2009). For

instance, consider the example multiple servers simultaneously communicate with a sin-

gle client as a scenario, large number of packets are dropped as the switch buffer over-

flow. Then the application throughput decreases rapidly due to the packets loss and TCP

retransmission timeout (RTO). RTO may degrade application throughput up to 90%.

2.4.6 Load Balancing/Flow Scheduling

The purpose of load balancing in cloud-oriented DCN is to distribute workload to network

equipments fairly by routing traffic across multiple paths. As mentioned in Section 2.2,

the CDC architectures, such as Fat-tree (Al-Fares et al., 2008) and Clos (Dally & Towles,

2004) network, often use densely multi-path topologies to provide large bandwidth for

internal data exchange. In such networks, it is critical to employ effective load balancing

schemes for fairly utilizing network resources.

In private or traditional data centers, workload patterns are relatively predictable.

46

Univ
ers

ity
 of

 M
ala

ya

Typically, routing in such environment is based on the shortest path algorithms, for ex-

ample, open shortest path first (OSPF). The shortest path from one node to the other is

calculated in advance without considering load balancing over multiple paths, and all the

corresponding traffic are directed through this shortest path.

For cloud-oriented DCNs, several properties of cloud applications make the load

balancing highly complex than the traditional (Singh et al., 2008). Prefix-routing is insuf-

ficient since workload patterns in cloud-oriented DCN are priori unknown and variable

to the network designer. Enterprises prefer to run their applications on commodity hard-

wares, so the network can meet Quality of Service (QoS) without requiring software or

protocol changes. Cloud computing providers use virtualization technology to efficiently

multiplex customer’s applications and processes across physical machines. It is difficult

for customers to deal with inter-VM communication in traditional application manners.

2.4.7 Compatibility

In the actual deployment and upgrading of cloud-oriented DCN, purchasing devices with

different capacity in different batch time are often being considered for cost savings and

habits. Therefore, how to interconnect large-scale heterogeneous devices whereas en-

suring the new DCN and existing networks cooperate efficiently is a major issue to be

addressed.

2.4.8 Research and Improvement of DCN Protocol

The management of architecture of DCN are significantly different from the existing In-

ternet architecture. DCN’s management is often accomplished by an instance. Thus, its

global topology, data flow, failure and various log information can be obtained to assist

in protocol design and network architecture design. To propose novel protocols which is

suitable for a specific DCN architecture can improve the efficiency of execution.

47

Univ
ers

ity
 of

 M
ala

ya

2.4.9 Automatic IP Address Assignment

Information of location and network topology in PortLand and BCube is stored at the

server or switch which improves the performance of routing. Therefore, traditional pro-

tocols such as Dynamic Host Configuration Protocol (DHCP) (Droms, 1997) cannot be

deployed in this condition. In addition, An automatic IP address assignment mechanism

is required to reduce labor costs and the risk of configuration errors, due to the manually

configuring such a large number switches or servers is a time consuming and tedious task.

Therefore, proposing low-cost, high reliability and manageability automatic address con-

figuration methods regardless of known or unknown DCN architecture is a challenging

research perspective.

2.4.10 Future Applications of Optical Switching and Wireless Transmission

The hybrid structure of optical/electrical is superior to traditional electrical switching

architectures in term of cabling layout as well as the design complexity and energy con-

sumption. However, optical equipment is still relatively expensive and is not yet deployed

in DCN. Therefore, in addition to the architecture design, reducing the cost is also one of

the important research perspective. Even though the architecture of fully wireless layout

has minimum complexity, however designing reliable and high-performance multi-hop

network architecture is still a great challenge. In hybrid architecture of wireless/wired,

wireless technology can effectively alleviate the loading of hotspot, and efficient wireless

routing and demand traffic aware are the challenging research perspectives.

2.5 Conclusion

This chapter discusses the concept of cloud computing, presents a review on the recent

research findings and technologies of cloud computing and cloud-oriented DCN architec-

tures. Motivated by a better support for data intensive applications, how to optimize the

interconnection of CDC becomes a fundamental issue. It reviews the existing proposed

48

Univ
ers

ity
 of

 M
ala

ya

architectures by using thematic taxonomy and gives a brief comparison from different as-

pects, including network scale, bandwidth, scalability, overhead, and cost of deployment.

The open issues and challenges of the domain are also highlighted.

We believe that, as a backbone of data center, the architecture of DCN significantly

affects its total performance. Our investigation results show that the tree-based archi-

tecture lacks of scalability, network throughput, resource fragmentation, and cost for de-

ployment with the increasing demands of tenants in accessing the services of CDCs. Fur-

thermore, we also found that although using additional higher performance and advanced

network equipment can effectively improve the whole network performance in a short

time period, this approach will cause lower price-performance ratio and take additional

cost to service providers and finally shift the burden onto the consumers. However, we

only gave a simple comparison among the tree-based to the selected architectures from

the above perspectives in this chapter. We did not know that how the tree-based archi-

tecture lacks in those areas yet and what the performance is in CDCs. In next chapter,

we will discuss the properties and network performance of the tree-based architecture in

details by using experiments.

49

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 3

PERFORMANCE ANALYSIS OF THE TREE-BASED NETWORK
ARCHITECTURE IN CLOUD-ORIENTED DATA CENTER

This chapter presents the performance analysis of current widely used tree-based architec-

ture in DCN from the perspectives of bandwidth and throughput restriction, network scal-

ability and reliability, resource fragmentation, as well as cost for establishing. The aim of

this chapter is to investigate the behavior and performance of the tree-based architecture

under different workloads, benchmark the performance of the above mentioned issues,

and point out the problems of this architecture deploy in cloud-oriented DCN for further

verification. The network scalability and deploying cost are analyzed by using mathe-

matical calculations, and that of network throughput is implemented by benchmarking

experiment.

The chapter is organized into three sections. Section 3.1 discusses the analytical

analysis of the tree-based architecture in DCN. The benchmarking experiment is pre-

sented in section 3.2 and a conclusion is given in the last section.

3.1 Analysis of Traditional Tree-Based Architecture

We conducted an analysis to determine the current best practice and weakness for tree-

based architecture in DCNs.

3.1.1 Topology

The tree-based architecture is initially designed for small or medium scale networks. In

the era of cloud computing, however, cloud-oriented data center is different from that of

traditional enterprise-class because the new requirements (such as higher rate of server

utilization and throughput in aggregation, and better price-performance ratio) are desired

50

Univ
ers

ity
 of

 M
ala

ya

for large-scale distributed computing since the number of data center network device is

growing rapidly.

As we briefly introduced in Section 2.2.2.1, the tree-based architectures simulates a

hierarchical tree structure with a set of linked nodes (server and switch). This structure

is divided into three layers: Core layer, Aggregation layer, and Access (Edge) layer,

whereas the core layer in the root of the tree, the aggregation layer in the middle and

the access layer at the leaves of the tree. For increasing network scale, saving bandwidth,

and improving data forwarding rate in CDC, normally the deployment of any security or

optimize equipment in the aggregation layer is "omitted". However, a two layers network

only support between 5k to 8k hosts due to the limited port number in switch. This scale

is available for private cloud computing, but since we target to public (large-scale) cloud-

oriented DCN, where the number of host commonly reach to ten thousand and more, we

restrict our more attention to the three layer tree architecture in this thesis.

Core Layer

Aggregation Layer

Access Layer

....

....

....

Figure 3.1: Three-layer Tree-based Structure

As shown in Figure 3.1, a rack server (20-80 servers normally) is connected to a

Top-of-Rack switch (ToR), and establish an Ethernet by connecting with some End-of-

row switches to create the infrastructure of access layer. The switches in access layer

connect with that in aggregation layer for bandwidth binding and load balancing. At last,

those aggregation switches connect with core switch or router in core layer to provide

route for client accessing from the Internet. Typically, the switches at the access layer

51

Univ
ers

ity
 of

 M
ala

ya

have some number of GigE ports (48-256) downlinks and several10GigE uplinks to one

or more aggregation layer switches. Switches with 32-128 10GigE up/downlinks ports

commonly deployed in aggregation layer to aggregate traffic between the lower layer of

the topology.

The tree-based structure is simple and can be easily deployed and extended by in-

creasing the rack and related switches. However, there are still many problems in this

structure that are stated as follows.

3.1.2 Bandwidth and Throughput Restriction

The bandwidth requirement is more important at core layer comparing to the lower layers

as the oversubscription by a significant factor (Popa et al., 2010). The definition of the

term oversubscription is the ratio of the existing achievable aggregate bandwidth among

the end hosts to the total bisection bandwidth of a topology (Infrastructure, 2007). For

example in a 1Gbps for Ethernet bandwidth topology, a 1:1 oversubscription indicates

that all hosts be able to communicate with others at the full bandwidth of their network.

An oversubscription value of 1:4 means that only 25%(250 Mbps) of bandwidth is avail-

able for communications. In the tree-based architecture, the bandwidth is convergented

from lower to upper layers. That is, two hosts connect to a same physical switch may

communicate at full bandwidth, but once data transmission through multiple levels in the

tree, the available bandwidth and throughput may restricted. This is due to the bandwidth

in core layer is much less than the sum of that in aggregation and accessing layers. The

links between aggregation and core layers are normally oversubscription by factors of 1:5

or more due to the equipment cost concerns, which limits the communication among the

servers in different branches of the tree, and leads to congestion even the network capacity

is still available elsewhere (Greenberg et al., 2009).

Advanced switches are also required besides higher bandwidth and data forwarding

52

Univ
ers

ity
 of

 M
ala

ya

performance in the core layer. The core switch or router is still unable to meet the band-

width requirements from lower links when the throughput is higher. In this case, though

some idle servers exist in the access layer, they may still be assigned any task due to the

insufficient bandwidth. In addition, the MapReduce (Dean & Ghemawat, 2008) appli-

cation, for example, a Reduce worker needs to copy intermediate files from a range of

servers in its Reduce operation phase. Moreover, Virtual Machine (VM) migrating and

deployment of other bandwidth-intensive applications increase the data traffic in DCN

(almost reach to 80% of whole traffic), thus requesting for high network bandwidth and

throughput from DCN.

3.1.3 Network Scalability and Reliability

The treebased architecture does not scale well for two reasons. First, in tree-based hi-

erarchical architecture (Infrastructure, 2007), the maximum number of supported hosts

is limited by available port density and the requirement of fast failure recovery mecha-

nism. Therefore, it is difficult for the architectures to support the scale of large number of

servers in the data center for cloud computing. Second, typical single path routing along

trees means overall hosts communication is restricted by some "key" switches, an aggre-

gation or core switch failure may tear down thousands of servers and impact the whole

network performance reduced.

Figure 3.2 indicates the maximum possible number of servers that can be supported

by different port-number switches. We employ 10 GigE switch with 28, 32, 64 and 128

ports respectively, in the core and aggregation layers , 1 GigE switch with 48 ports in ac-

cess layer and assume a 1:1 oversubscription ratio in this calculation. As we can see from

the figure, one instance of the tree-based architecture employs 128-port switches capable

of providing full bandwidth to up 20,480 servers. Even deploying the most advanced

switch with 256 ports in aggregation layer become available to increase the scale of net-

53

Univ
ers

ity
 of

 M
ala

ya

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

28 32 64 128

N
um

be
r

of
 S

er
ve

r

Port Number of Switch

Figure 3.2: The maximum possible number of servers with 1:1 oversubscription ratio

work, it will definitely take a significant extra cost and impact the price-performance ratio

to service providers.

3.1.4 Resource Fragmentation

Restricted bandwidth limits the performance of data center for the reason that idle re-

sources cannot be effectively assigned to the place they are needed. The plentiful spare

resources capacity is often reserved by individual services or specific devices without

sharing for quick responding to nearby servers once network failure or demand request

happens. Moreover, the existing network scale in tree-based hierarchical DCN is IP ad-

dresses assigning and dividing servers by VLANs. Such IP address fragmentation limits

the utility of virtual machines (VMs) migration among servers (IP address has to be re-

configured with VM) and it is inconvenient to reconfigure the IP address for all devices

for rapidly growing network. Hence, normally a number of standby servers and IP re-

source have to be reserved for ensuring the well running of DCN in case of node or link

failure happens. In addition, redundancy is a common approach to improve the reliability

and availability of a system. The scheme of 1:1 equipment redundancy on the switches

54

Univ
ers

ity
 of

 M
ala

ya

in upper layers is widely used in current tree-based structure. However, to ensure the

performance of DCN when switch failure happens, a range of bandwidth is reserved for

the redundancy switches and routers.

3.1.5 Cost

The cost for building a large-scale network greatly affects topology design decisions.

As we introduced above, the oversubscription is typically deployed for decreasing the

total cost of network establishment. Once the oversubscription ratio changing happens

in the aggregation and core layers, the only way to enhance the network performance is

upgrading high capacity devices (Popa et al., 2010). However, for the reason of large price

difference between high-end devices and commonly employed switches and routers, the

upgrading cost can be very high. Here we give a cost comparison for different number

of hosts and oversubscription by using current practices. We assume that there are two

types of switches in the tree-based architecture. The first, used at the access layer, is a 48

ports GigE downlink and 4 ports 10 GigE uplinks switch. In higher layer, we select 128

ports 10 GigE switches. Both types of switches can directly connect to neighbor nodes

with a 1:1 oversubscription ratio which is fully bandwidth of their network interface. In

this comparison, we select Cisco WS-C3560G-48TS with 48 ports as access layer switch

which costs $1,500, and H3C S12518 switch with 128 port 10 GigE switches in the

aggregation and core layers. The prices of the two types of switch are collected from

Ebay.com. The cost of cabling is not considered in the calculations. Figure 3.3 indicates

the cost in millions of US dollars to the total number of hosts in different oversubscription

ratio.

As we can see from the figure, each line presents a target oversubscription ratio.

The reason of 2.5:1 (400 Mbps) and 8:1 (125 Mbps) factors are selected is that typical

oversubscription is designed from 2.5:1 to 8:1 at present (Infrastructure, 2007). The fig-

55

Univ
ers

ity
 of

 M
ala

ya

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0.64 1.28 2.56 5.12 10.24 20.48

E
st

im
at

ed
 C

os
t (

U
S

D
)

T
ho

us
an

ds

Number of Host (Thousands)

1:1
2.5:1

8:1

Figure 3.3: The estimated cost vs. maximum possible number ofhosts with different
oversubscription ratio

ure shows that with the increasing number of host in tree architecture, the expense of

deploying the high-end network devices is increased with significant rate under different

oversubscription ratio. For instance, supporting 20,480 and 640 hosts with full bandwidth

(1:1) among all hosts, the switching equipment costs to $1.4M and $84,000, respectively.

To support the bandwidth of 400 Mbps and 125 Mbps among 20480 hosts, the costs for

switches are $372,000 and $186,000, respectively.

3.2 Benchmarking Experiments

One simple experiments implemented in this section allows to benchmark the behavior

and throughput performance of the tree-based architectures under different workloads and

network conditions. The experiment is implemented by using real physical devices.

3.2.1 Throughput Analysis

The throughput measures the maximal sustainable rate at which a node can expect data to

transfer. Given a bandwidth of link, it is shared by multiple data flows transfer over this

link. The maximal throughput between any pair of servers is restricted to the bandwidth

56

Univ
ers

ity
 of

 M
ala

ya

and flows of the corresponding route. The formula of throughput calculating is:

τ =
∑n

i=1(Pi)×δ
∑n

i=1Di
(3.1)

(Bianchi, 1998)

whereτ is the throughput,Pi denotes theith received packet,δ is the size of the

packet in bits, andDi is the delay of packeti.

We assume that there are total number ofi packets transfer over a path between

source nodes to destination noded. The size of receiving data byd is δ × i, and the total

data packet delay is∑n
i=1Di . Thus, we can calculate the average throughput between two

server nodes according to the above equation. The aggregated throughput is the sum of

the average throughput, thus the sum of all data rates delivered among all terminals in a

network.

3.2.2 Implementation

As our research is focusing on cloud-oriented data center network, the MapReduce model

is selected in the implementation to measure the performance of different DCN architec-

tures. MapReduce (Dean & Ghemawat, 2008) is one of the most widely used data pro-

cessing mechanisms in cloud computing. It provides a programming and execution model

for processing and generating large data sets. The main purpose of using MapReduce in

the implementation is trying to close to the real situation. Because this model is success-

ful deployed in cloud computing by Google, Yahoo, Amazon and some other Internet

service providers, if our proposed STB model get a better throughput performance in a

small cloud DCN environment, this model may also improve throughput for large DCN

in the future.

57

Univ
ers

ity
 of

 M
ala

ya

3.2.2.1 Test-bed

For the implementation of our research, a test bed is built. It consists of twelve Dell Op-

tiplex GX520 desktops and one Lenovo Ideapad Z470 laptop as servers, whereas the one

desktop server acts as master and the rest eleven desktops act as workers, the laptop con-

nects to core switch to monitor the network performance. Each work server has an Intel

3.2GHz dual-core CPU, 4 GB DRAM, 80 GB hard disk, and Linux Ubuntu 11.10 32-bit

operating system. The laptop has a 2.3GHz CPU, 4GB RAM, 640GB hard disk with

Ubuntu 11.10-32 bit as well. These servers are interconnected by six Cisco WRT54GL

4-port switches and one Cisco Catalyst 2950 24-port switch to create the structure shown

in Fig 3.4, whereas the 4-port switches deployed in access and aggregation layers and the

24-port switch deployed in core layer. The bandwidth of server to switch is setting to

100 Mbps and that of switch to switch is setting to 1Gbps. Java with JDK version 1.7.0,

Hadoop MapReduce 1.2.1, VMware Workstation 9.0.2, Python 2.7, and Ntop 3.3.10 are

pre-installed in the physical servers. At the initial stage of the implementation, we use the

11-worker servers to complete the MapReduce task. In order to act a real DCN environ-

ment, in the following 3 stages, we deploy 2, 4 and 8 virtual machines (VMs) in each of

server, respectively. Therefore, the total number of workers in the architecture increases

from 12 to 24, 48 and 96, respectively, which is enough to act a real small DCN.

To show that the throughput performance of the tree-based network, we employ the

word count (Condie et al., 2010) as an example. Word count is a kind of MapReduce

applications used for enumerating the number of specific words repeated in a block of

text. In this implementation, we randomly generate 100 million ip addresses from the

range of “192.168.0.0” to “192.168.255.255” by python, to enumerate the top ten ip ad-

dresses repeated most often in the ip pool. The details of MapReduce deployment and

data collection are presented in chapter 5.

58

Univ
ers

ity
 of

 M
ala

ya

.0.8 .0.9 .0.10

.0.4

.0.11
.0.12
.0.13

.0.5

.0.2

.0.14
.0.15
.0.16

.0.6

.0.17
.0.18
.0.19

.0.7

.0.3

192.168.0.1

192.168.0.252

Figure 3.4: Tree-based network topology

3.2.2.2 Results

In this implementation, master server assign a 1.5GB text file to worker servers. Nor-

mally, the text file is splited to several blocks with 3 duplicates, and stored in different

mapping worker servers. Figure 3.5 illustrates the data forwarding throughput result of

the tree-based architecture, where the total number of servers varies from 12 to 96. We can

find that the throughput of architecture is slightly degraded when the number of servers

is increased. The average network throughput for 12 to 96 nodes was observed in a range

from 44.87Mbps to 8.38Mbps, respectively. With the number of server has increased, the

amount of network bandwidth available for per server is decreased, more and more data

delivery flows share 1 link. For ensuring the quality of service (QoS) and avoiding data

losing, the TCP transmission rate needs to be reduced. Therefore, more high-end network

devices are needed in order to acquire higher throughput performance.

Figure 3.6 plots the aggregated throughput of the tree-based architecture with differ-

ent number of servers. The throughput with 96 servers has the best performance which

completed at 144 seconds, and the transmission with 48, 24 and 12 servers completed

their tasks at 434, 616, and 934 seconds, respectively. We observed that, even the server

number of 96 are about 2 times than 48, but the aggregated throughput is less than 2 times

59

Univ
ers

ity
 of

 M
ala

ya

 0

 20

 40

 60

 80

 100

12 24 48 96

T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

Number of Servers

Figure 3.5: TCP throughput with different number of servers

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

G
bp

s)

Time (Seconds)

12 Servers
24 Servers
48 Servers
96 Servers

Figure 3.6: Aggregated throughput with different number of servers

(around 9.544 : 7.813 Gbps) due to the bandwidth and throughput restriction, which

affects the speed of data processing in the tree-based network. Therefore, simply in-

creasing the number of servers and network equipment cannot increase the throughput

performance as much as we desired in the tree-based DCN.

60

Univ
ers

ity
 of

 M
ala

ya

3.3 Conclusion

This chapter analytically and experimentally analyzed the problems in current widely

used tree-based architecture in cloud-oriented DCN. We analyzed the problem of the ar-

chitecture from the perspectives of bandwidth and throughput, network scalability and

reliability, resource fragmentation, as well as cost of deployment. Using series of cal-

culation we verify the limitations of the network architecture that only 20,000 around

servers can be supported even using the most advanced network devices, and costs $1.4M

for deploying such network devices in the tree-based architecture. We also using a bench-

marking experiment in real physical environment to validate our findings in throughput

performance. We benchmark the results of TCP and aggregated throughput by using

MapReduce model to analyze the impact with different number of servers in the tree-

based architecture.

Our benchmarking results advocates that network throughput performance is di-

rectly impacted by the number of servers in tree-based architecture, thus more number of

servers, lower TCP throughput. Moreover, with the restriction of bandwidth and the ex-

isting switching technology, simply increasing the number of servers cannot improve the

aggregated throughput as much as we thought, but also decrease the price-performance

ratio. Therefore, with the coming era of cloud computing and the scale of DCN is con-

stantly increasing, we desperately look for a novel DCN architecture with the features of

scalability, low cost, higher throughput and fault-tolerance routing without redundancy

devices, to replace the traditional, small/medium scale oriented tree-based architecture.

In next chapter, a novel architecture called Sierpinski Triangle Based (STB) architecture

will be introduced.

61

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 4

SIERPINSKI TRIANGLE BASED DATA CENTER NETWORK
ARCHITECTURE

This chapter presents the proposed network architecture in this research. Starting from

the sierpinski triangle, we present the physical structure and the construction method-

ology of the proposed architecture. Moreover, the routing mechanism of the proposed

architecture, which provides a fault-tolerant approaches to nodes is introduced in detail.

The topological properties of the architecture is also presented from the perspective of

network size, network diameter, and bisection width.

The remainder of this chapter is as follows. Section 4.1 covers the classic determin-

istic fractal, Sierpinski triangle (or Sierpinski gasket). Section 4.2 presents the physical

structure of Sierpinski Triangle Based (STB) and its building procedure. Section 4.3 de-

scribes the routing and node identification mechanism for STB. Section 4.4 points out the

distinctive topological properties of STB. The chapter is concluded in section 4.5.

4.1 Sierpinski Triangle

The well-known Sierpinski triangle (Sierpinski, 1916), shown in Figure 4.1, is constructed

using iterative approach. We assume that theSt is the Sierpinski triangle after t-time iter-

ation, and the construction is as follows: starting with an equilateral triangle andS0 is the

initial configuration witht = 0. In the first generationS1, we select the midpoint of the

three sides of the equilateral triangle and link them to construct four small triangles, and

then remove the central triangle. In the second generationS2, linking three midpoints of

sides in each small triangles in the same way as in first generation. And more generally,

we repeat the procedure for all new small triangles and get the classic deterministic frac-

tal, sierpinski triangleSt , whent = ∞. One of major properties of the sierpinski triangle

62

Univ
ers

ity
 of

 M
ala

ya

is unlimited number of triangles (St) in a limited area (S0), which can be used for network

infrastructure deployment.

S

0

S

1

S

2

S

3

Figure 4.1: Structure of Sierpinski Triangle

4.2 Sierpinski Architecture

One of the major research objectives is to increase the network scalability by deploying

more devices in DCN, whereas the property of unlimited number of triangles in sierpinski

triangle can be used to fulfill the architecture design. The physical structure of Sierpinski

Triangle Based (STB) architecture is introduced in terms of the initial recursive unit and

the recursive rule.

4.2.1 Physical Structure

STB architecture is recursively defined in order to be scalable and to meet the design

goals of a DCN. The initial recursive unit of STB is represented first and followed by the

rule of higher-level STB construction.

4.2.1.1 Initial Recursive Unit

The initial recursive unit, denoted asSTB0(K), is the basic building block of the whole

network topology, whereK denotes the number of servers in aSTB0. Each server with

63

Univ
ers

ity
 of

 M
ala

ya

multiple network adapters connects to one switch but none of servers connect to each

other directly. According to the diagramS0 in figure 4.1, we assume that each line is

a server and connecting to a switch located in the central of the triangle to establish a

structure ofSTB0(3). The vertical view ofSTB0(3) is shown in figure 4.2(a), where

K = 3 servers are defined by connectingn− port mini-switch. Then each line of the

equilateral triangle is selected as the position of servers inS0, and switch is added in the

central of the triangle, figure 4.2(b) shows the side view of the architecture.

Switch

Server

Switch

Server

(b)

(a)

Figure 4.2: Example ofSTB0(3)

The switch also can be connected by 4, 5, 6 or more servers to establishSTB0(4),

STB0(5), STB0(6) andSTB0(K), respectively, which are shown in figure 4.3.

Switch

Server

Switch

Server

Switch

Server

STB

0

(4)

STB

0

(5)

STB

0

(6)

Figure 4.3: Example Topology ofSTB0(4), STB0(5) andSTB0(6)

64

Univ
ers

ity
 of

 M
ala

ya

4.2.1.2 Recursive Rule

The recursive rule determines the interconnection mode of the recursive units. LetSTBn(K)

denotes a leveln recursive unit(n> 1), which employsSTB0(K) as the initial recursive

unit. A number of low-level units make up a high-level structure through interconnecting

the nodes in different level of structures. In this research, anSTBn(K) is constructed by

Kn +STBn−1 units, which are interconnected through theKn+1 servers at leveln. To

generateSTBn(K) structure, a number ofM initial recursive units are added between

switches in leveln to servers in leveln−1, and the restK −M units are added between

each pair of servers in leveln units. The pseudocode for constructing a STB network is

shown in Algorithm 1. An example ofSTBn(K) construction method will be introduced

in next section.

Algorithm 1 Pseudocode of STB Construction
/* construct Sierpinski Triangle Based architectureSTBn(K), K is the number of servers
in STB0, andn denotes the level of the structure. */
if(n== 0)
f or(inti = 0;i<k; j ++)
connect theith server to switch according to the position in Serpinski triangle;
establish virtual links between server;
end
else /* (n 6= 0), constructSTB1→∞ */
if(n= 1)
{
add Unit between servers;
connect mini-switch of new Unit to its neighbor servers inn= 0 level;
}
else while (n> 1)
{
add Units between the two vertexes of servers inn−1 level;
add Units between the mini-switch of(n−1) level and server of(n−2) level;
}

4.2.2 Construction Method

To generate a high-levelSTB, we need to construct the initial recursive unit and then

expand the unit to any higher-levelSTBrecursively. We propose the construction method

for anSTB0(3) and anSTBn(3) as examples and introduce as follows.

65

Univ
ers

ity
 of

 M
ala

ya

Based on the physical structure of anSTB0(3) in figure 4.2(a), we add new initial

units between each pair of servers to create theSTB1 structure. As shown in Figure 4.4,

the switches of the new initial units connects to their neighborSTB0 servers.

Switch

Server

Figure 4.4: Example Topology ofSTB1(3)

Then in the subsequent generations, a new initial recursive unit is added between one

pair of servers inSn−1, and two more units are added between the switch of(n−1)− level

and server of(n−2)− level. Figure 4.5 shows a part ofSTB2(3) architecture, and the

new adding units are circled.

Switch

Server

Figure 4.5: Part Example Topology ofSTB2(3)

The above STB architecture is defined whenK = 3 (3 servers connect to 1 switch in

66

Univ
ers

ity
 of

 M
ala

ya

the initial recursive unit). Similarly, according to the features of Sierpinski triangle, the

example topology ofSTB1(4) is shown in Figure 4.6.

Switch

Figure 4.6: Example Topology ofSTB1(4)

The advantages of this mechanism are that (a) the network structure is designed by

adding fixed module to achieve network expansion, (b) we are able to establish the(n+1)

level though then level structure is not fully constructed. In such situation, the structure

of lower levels can be modified without changing any links or nodes in(n+1) level.

4.3 Node Identification and Routing schemes in STB Architecture

The number of nodes in STB is increasing rapidly as exponential (Kn)growth. Traditional

routing schemes, such as global link-state routing (LSR) (Clausen et al., 2003) and open

shortest-path first (OSPF) (Pioro et al., 2002) routing are unsuitable using in STB since the

STB’s goal is to interconnect up to millions of servers. In this section, we first introduce

the node identification scheme in STB and then represent the STB routing to provide

fault-tolerant scheme for DCN.

67

Univ
ers

ity
 of

 M
ala

ya

4.3.1 Node Identification Scheme

In STB, we use a new node identification scheme to replace the traditional IP address

scheme in DCN. We assign each server a 2-tuple[L,D], whereasL is the level IDs andD

is the degree of node in the architecture. For switch assignment, we add a tuple “w” at the

end of the array as[L,D,w].

C
[0,300]
 A
 [0,60]

B
 [0,180]

S
 [0,0,w]

Figure 4.7: Example of Node Identify

As shown in Figure 4.7, the servers inSTB0(3) are assigned the address asA[0,60],

B[0,180], andC[0,300], and the switch is assigned asS[0,0,w]. The first value 0 indicates

that those servers locate at 0level of STB(3), and the second value shows the degree for

each node in the architecture. Assuming nodeS is the center of clock, such above degree

value is a relative value from 0◦ to 359◦ compare with the position of switch in clockwise

rotation starting from 12 o’clock. AsS is 0◦ in this architecture, we have server A is 60◦,

B is 180◦, and C is 300◦.

Node identification inSTB1(3) is shown as follows:D is a 1levelswitch and locates

betweenA andC, so its address isD[1,0,w]. Then the three servers inUnitD trisect the

range of degree between serverA andC, which is from 300◦−60◦. Hence we get the

addresses for those three servers areE[1,30], F[1,0], andG[1,330]. The rest addresses of

nodes are assigned in the same way, which is shown in Figure 4.8.

68

Univ
ers

ity
 of

 M
ala

ya

C
[0,300]
 A
 [0,60]

B
 [0,180]

S
 [0,0,w]

G
 [1,330] E
 [1,30]

D [1,0,w]

F
 [1,0]

O
 [1,270]

M
 [1,240]

N
 [1,210]

L
 [1,240,w]

K
 [1,120]
I
 [1,90]

J
 [1,150]

H
 [1,120,w]

Figure 4.8: Node Identify inS1

4.3.2 Routing scheme

The STB rouing serves as a network layer for STB-based DCN. It includes packet header

format and protocols.

4.3.2.1 Packet header

We use a 24-bit uid to identify a specific node in STB. As shown in figure 4.7, the level

number and degree value use the first 16 bits and the following 2 bits is used to identify

the nodes’ type. The rest 6-bit is reserved for further development. Figure 4.9 shows the

format of the packet header with size of 24 bytes. The design of the STB header borrows

from IP packet. We set a 32-bit inidenti f icationfield as same as that of IP packet is

because the bandwidth in DCN is very high. Using a long bit field can effectively reduce

the identification recycles in a very short period of time (Deering, 1998). Setting 4 in

Retryfield denotes the maximum number of local link error recovery allowed. Once a

packet losing happens, theretry count becomes 1 in the resending packet. If the retry

value reaches to 4 means the original link or destination node is failed. TheFlag field

denotes the type of received data packet. Commonly there are 4 types of packet can be

identified byFlag, which are ACK, PSH, SYN and FIN. The ACK is acknowledgment

69

Univ
ers

ity
 of

 M
ala

ya

reply that indicates the destination node has already received a packet. PSH flag, short for

Push, denotes that the receiving packet contains buffered data. When a node desires to

send data to destination node, a packet withSYNflag will be sent first for asking commu-

nication connection. TheFIN denotes the data transmission is over, and the connection

can be closed.

Version
 DHL
 Ptotocol Type
 Payload Length

Identification

Retry
 Flags
 TTL
 Header Checksum

Source Node Address

Destination Node Address

Reserved

4
 4
 8
 16

Figure 4.9: The STB packet header

We denote that each data packet in STB has its own ID, source node’s ID, and des-

tination node’s ID, and intermediate nodes add their IDs into the head of packet in data

forwarding. Once an intermediate node find its own ID in a data packet (means this packet

has been transferred by itself before), the packet is discarded to avoid looping.

4.3.2.2 Routing without failure

STB uses a simple and efficient single-path routing algorithm for unicast through the

recursive STB architecture. The routing algorithm is named asSTBRouting. In STB, each

node maintains a 2hopsrouting table including the address of its neighbors. Assuming

that a source nodesdesires to send data to a destination noded that are in the samenlevel

but different recursive units. When computing the path froms to d in a STBn, we first

calculate the intermediate link(s, i) and(i,d) that interconnects the two recursive units

through lower level. Routing is then divided into how to find the intermediate nodei

70

Univ
ers

ity
 of

 M
ala

ya

which directly interconnects the two recursive units and locates in the highest level. The

final path ofSTBRoutingis the combination of the two sub-paths,(s, i) and(i,d).

In routing selection, nodes first checks its routing table. Once the path ofd is

recorded in the table, means the two nodes are 2hopsneighbor nodes. Then the switch in

the same recursive unit is considered as nodei. So data packet can be transferred through

the path tod. If there is no routing information about thed in the table, nodes selects

data forwarding direction according to thedegree valueof d, and estimate path length

dependinglevel value. A fundamental rule of routing selection is that once a node has

more than one paths for data delivery, choosing the next hop whosedegree valueis closer

to that of noded. If the degreeabsolute values of the multiple paths are same, selecting

the path with smallestdegree valueto delivery.

C
[0,300]

A
 [0,60]

B
 [0,180]

G
 [1,330]

I
 [2,30,w]
H [1,0,w]

D
 [1,150]

M
 [1,120,w]

S [2,345]
E
 [2,0,w]

F
 [1,30]

J
 [2,90,w]

K [1,90]

Figure 4.10: Routing Selection inSTB2(3)

We take an example to introduce the proposed STBRouting for convenience. Fig-

ure 4.10 shows a part ofSTB2(3) structure. We assume that source nodeS wants to

send data to a destination nodeD. First of all, nodes checks the routing table, but no

71

Univ
ers

ity
 of

 M
ala

ya

routing information as the length of path is obviously more than two hops. In next step,

S[2,345] forwards data to switchE[2,0,w] according to the unique link, andE sends data

to F [1,30]. In this forwarding procedure,E actually has two options, serverF and server

G. Theabsolute degree valueof F to D is closer to that ofG to D which is 120, hence the

data packet is forwarded toF. Similarly, nodeF forwards data through nodeI is because

the absolute degree valueof I to D is 120, that is smaller than the value(150) of H to

D. In this way, the data is forwarded through,I [2,30,w], A[0,60], J[2,90,w], K[1,90],

M[1,120,w] and finally arrives to destination nodeD[1,150].

The pseudo code for path selection procedure without failure of STB is shown in

Algorithm 2.

Algorithm 2 Pseudocode for Path Selection without Link Failure
/* src is source node,dst is destination node,i is the degree value of node,Path(s,d)
indicates the path froms to d */
STB−rtable :: rt−lookup(addr−dst id) /*look up dst(id) in routing table */
i f (rt → rt−dst== id) /* if the dst id is in routing table */
append addr−dst to path(s,d);
goto send;

elsei f(|i−dst− i| ≤ 180) /* the forwarding path will not throughi = 0 node */
sendto(i−nextHop→ (i, i−dst));

else{
i f (i−dst> i){ /* i−dst∈ (180,360)& i−intermediate∈ (0,180)*/
send to(i−nextHop→ 0);
when(i == 0) received;
send to(i−nextHop→ i−dst);

}
else{
send to(i−nextHop→ 360);
when(i == 360/0) received;
send to(i−nextHop→ i−dst);

}

4.3.2.3 Fault-tolerant routing

Node and link failure are very common in large-scale DCNs. Because a link disconnec-

tion due to the physical problem of network cable few happens, we regard the link failure

as a failure of a pair of nodes. In this research, the proposed STBRouting approach fo-

72

Univ
ers

ity
 of

 M
ala

ya

cuses on the node failures to provide a distributed, fault-tolerant routing protocol for STB

networks without redundancy equipment.

As introduced above, each data packet sets a threshold inRetryfield for determining

link state. If a node does not respond with its state information within the threshold time,

it will be regarded as a failed node. BecauseSTB is a recursive structure, more than

1 parallel paths are provided between each pair of two nodes (will be proved in next

section). When the original link failed, the data forwarding node will select another path

according STBRouting selection scheme to transfer data. We take an example to explain

the proposed fault-tolerant routing scheme which is shown in figure 4.11.

C
[0,300]

A
 [0,60]

B
 [0,180]

G
 [1,330]

I
 [2,30,w]
H [1,0,w]

D
 [1,150]

M
 [1,120,w]

S [2,345]
E
 [2,0,w]

F
 [1,30]

J
 [2,90,w]

K [1,90]

S [0,0,w]

Figure 4.11: Routing Selection inSTB2(3)

NodeJ locates the routing path between source nodeS to destination nodeD, and

assuming that nodeJ failed during data transmission period. NodeA forwards data toJ

but no response. After 4 retry times, the STBRouting selection scheme is activated inA.

Based on theabsolute degree valueof neighbor nodes,A selects nodeSas its next hop

to transfer data. The data packet then is delivered throughS[0,0,w], B[0,180] to D. It is

73

Univ
ers

ity
 of

 M
ala

ya

worth to mention that, the link[A,S] is the only path afterJ failed in this case. In a real

network, however, the scheme ofabsolute degree valueand level should be executing

restrictively when node has more than 1 path options.

Each switch in anSTB(K) DCN connects a number ofK servers. A failed switch

may affect all the servers that connect to it. Fortunately, in STB, when a switch out of the

STB0 recursive unit failed, at most onlyK servers connecting to it might be unavailable.

If there are some higher level recursive units in the failure switch’s unit, then the number

of unavailable server might be 1 only. Let us see figure 4.11, when nodeJ goes wrong,

theK = 3 servers inJ’s recursive unit is unavailable. But if the recursive unit has higher

level units (such as in nodeH ’s unit), even though the switchH is failed, serverG andF

still can be connected through the parallel paths, and only 1 server is unavailable.

The pseudo code for fault-tolerant path selection procedure of STB is shown in Al-

gorithm 3.

Algorithm 3 Pseudocode for Path Selection with Link Failure
/* src is source node,dst is destination node,i is the degree value of node,Path(s,d)
indicates the path froms to d */
for i = 0; i ++ /*record retry times */
return;
if i < 4 /*local route recovery is successful*/
goto send;

else if
i == 4 /*local route recovery is failed, activate STBRouting selection*/
{
i f (|i−dst− i| ≤ 180) /* Compare the absolute degree value */
sendto(i−nextHop→ (i, i−dst));

else{
i f (i−dst> i){ /* i−dst∈ (180,360)& i−intermediate∈ (0,180)*/
send to(i−nextHop→ 0);
when(i == 0) received;
send to(i−nextHop→ i−dst);

}
else{
send to(i−nextHop→ 360);
when(i == 360/0) received;
send to(i−nextHop→ i−dst);

}
}

74

Univ
ers

ity
 of

 M
ala

ya

4.4 Topological Properties of STB Architecture

In this section, we analyze the topological properties of STB, including network size,

bisection width, and network diameter.

4.4.1 Network Size

The size of a DCN depends on the amount of servers it is able to accommodate. We

have discussed in chapter 3 that the network size is an important consideration in cloud-

oriented DCN architecture design. In STB architecture, we assume that there arek servers

in a 0level STB architectureSTB0(K), and the number of servers and mini-switches in

nlevelof STB is denoted asSVn andSWn, respectively. Taking the valuen≥ 0, we have:

THEOREM 1

SVn = k×SWn (4.1)

and

SWn = 1+
n

∑
i=1

ki (4.2)

and

SWn = SVn−1+1 (4.3)

PROOF

(1) AsSTB0 hask servers, thus the proportion of servers to switches is:SVn : SWn =

k : 1, similarly, the proportion in the recursive unit is also true. As the STB architecture

is constructed by adding multipleUnits based on previous level, so it is obvious that the

proportionSVn : SWn = k : 1.

(2) As the STB is a recursive architecture, Whenn = 0, we can easily getSW0 =

75

Univ
ers

ity
 of

 M
ala

ya

1 = k0; similarly, whenn = 1, SW1 = k+SW0 = k0+ k1, andSW2 = k+SW0+SW1 =

k0+ k1 + k2. Hence we can getSWn = k0+ k1+ k2+ ...+ kn−1 + kn, nε(0,∞), that is

SWn = 1+
n
∑

i=1
ki .

(3) From the equation (1) and (2), we getSVn−1 = k×SWn−1 = k(1+
n−1
∑

i=1
ki) =

k+k×
n−1
∑

i=1
ki = k+

n
∑

i=2
ki = 1+

n
∑

i=1
ki .

Theorem 1 shows that the number of servers and server proportion in a STB as the

level increases. A small level can lead to a large network size. Taking the value of n=6, we

calculate from equation (4.1), (4.2) and (4.3) that the number of servers in theSTB6(3),

STB6(4), STB6(5) andSTB6(6) are 3,279, 21,844, 97,655 and 335,922, respectively.

4.4.2 Bisection Width

The bisection width of a DCN is the minimal number of links can be removed to partition

a full DCN into two approximately equal-size sub-networks. A larger bisection width

denotes a higher network capacity.

THEOREM 2

The lower bound of bisection width of a STB network isSV
K×logn SV, (4.4)

where

SV= K× (1+
n

∑
i=1

ki) (4.5)

PROOF

According to the structure of STB andtheorem1, oneSTBn(K) is constructed by

1+
n
∑

i=1
ki switches. Each of the switches hasK links connecting to their own recursive

units, so the number of servers isK × (1+
n
∑

i=1
ki). Whenn > 1, oneSTBn(K) can be

76

Univ
ers

ity
 of

 M
ala

ya

divided into two equal parts by removingK2 links from each of the switches. Each part

consists ofK
2 × STBn−1(K). Based on the (Leighton, 1992), the lower bound of the

bisection width of anSTBn(K) is SV
K×lognSV, whereSV = K × (1+

n
∑

i=1
ki), denotes the

number of servers in STB.

4.4.3 Network Diameter

Network diameter denotes the maximum number of hops in the shortest path between

each pair of nodes. A shorter network diameter indicates a potential higher data exchange

rates.

THEOREM 3

The diameter of a STB network is at most (2n+1) (4.6)

PROOF

We assume that a source nodeSand a destination nodeD locates atM − level and

N− levelof STB architecture,SM andSN, respectively, where(M,N≤ n). The maximum

path forS to aS0 server isSM,SM−1,SM−2, ...,SM−n, ...,S1,S0. Similarly, the maximum

path forD to the a randomS0 server isSN,SN−1,SN−2, ...,SN−n, ...,S1,S0. As only 1 hop

between eachS0 server, so the maximum path length fromS to D is M +N+1. When

M = N = n, the maximum path length in STB is 2n+1.

Theorem 3 indicates that the network diameter inSn. Network diameter indicates the

number of nodes between source and destination nodes. That is also called the maximum

path length between pairs of nodes. Normally, network with a longer diameter means

slower routing convergence and lower network stability performance as long distance

transmission. Therefore, the diameter decreasing can effectively improve the speed and

quality of data transmission.

77

Univ
ers

ity
 of

 M
ala

ya

THEOREM 4

Each pair of two servers have2 parallel paths at least, and22n at most (4.7)

PROOF

As we break the virtual link(s) between servers of(n−1)− level and addCell to

constructn− level STB network, hence we have at least 2 parallel paths for each of two

servers. According to theTheorem2, the maximum path length from source nodeS to

destination nodeD is M+N+1, thus we have 2M parallel path betweenSandS0, and 2N

for D node. Therefore, when bothSandD locate in same levelM = N = n, we have the

number of most parallel paths for two nodes is 2M ·2N ·1= 22n.

The parallel paths are the links between pairs of servers, which is independent to

others. Those pair of two servers can be selected from any position, any levels in STB,

and no matter if they connected to the same switch or not.

According to the Theorem 1, it is easy to get the size of network has an exponential

growth and it may interconnect up to millions of nodes, some traditional global link-

state routing algorithms, such as OSPF, are no longer suitable in STB architecture. In

the following section, we use STB-3 as an example to propose the STB routing scheme

starting from node identify mechanism.

4.5 Conclusion

This chapter presents a new architecture, call Sierpinski Triangle Based (STB) for cloud-

oriented DCN. One of the distinctive features of the proposed STB architecture is that

STB is established on the basis of sierpinski triangle fractal, where higher level STBs are

built recursively from many lower lever STBs to provide scalable network. Moreover,

STB uses an angle-based node identify mechanism is introduced for replacing the IP-

78

Univ
ers

ity
 of

 M
ala

ya

based address allocation for supporting the size of DCN with exponential growth. Due

to the existing global link-state routing and OSPF schemes are unsuitable to be used in

millions of servers interconnecting networks, we proposed our STBRouting to provide a

fault-tolerant routing scheme without redundancy equipment.

The best application scenario for STB is large DCNs. The ultimate goal for DCN

research is to support all-to-all traffic patterns without throughput bottleneck in a scalable

and fault-tolerant network. In next chapter, we use experiment in real cloud environment

and simulations to evaluate the performance of STB and compare with the tree-based and

another recursive architecture, namely DCell.

79

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 5

EVALUATION

This chapter presents the experimentation and data gathering method for evaluating the

proposed STB architecture. It explains the tools used for implementation, data gener-

ation and the method used for processing data. The experimentation in our research is

divided into two components. First, we deploy Hadoop MapReduce model in the testing

cloud DCN to emulate a real cloud computing environment. This is used to evaluate the

throughput performance of STB with other selected architectures. Secondly, we use NS2

to simulate our proposed STBRouting in a large scale DCN environment to evaluate the

performance of fault-tolerant as well as throughput.

The remainder of this chapter is as follows. Section 5.1 presents the test-bed of this

implementation. Section 5.2 presents the experimental scenarios from implementation

and simulation. Section 5.3 presents the data collected in evaluating the selected perfor-

mance metrics and the conclusion is given in the last section.

5.1 Test-Bed

This research focuses on network performance in cloud-oriented DCN. As it is difficult

to deploy an actual large-scale data center infrastructure, the test-bed is established in

3 steps. First, we establish a small-scale private cloud environment for the real experi-

mentation in this research. Second, virtual machines (VMs) are deployed in these real

physical servers to establish a medium-scale DCN. At last, Network Simulator 2 (NS2) is

used to simulate a relative large-scale DCN. By doing this, if the performance of selected

network metric is better and better with the increasing number of servers in both real and

simulation testing situation, then we can deduce that our proposed network architecture

80

Univ
ers

ity
 of

 M
ala

ya

still can achieve the expected target in an actual large-scale DCN.

The small-scale network is established by using totally twelve desktops, one laptop

and seven switches. Selected server is a DELL OPTIPLEX GX520 desktop with In-

tel 3.2GHz dual-core CPU, 4GB RAM, and 80G hard disk. Each server also installs 3

Broadcom NetXtreme 57xx Gigabit network adapters. The operation system (OS) used

in servers is Ubuntu 11.10 32-bit. The laptop is Lenovo Ideapad Z470 with 2.3GHz CPU,

4GB RAM, 640GB hard disk, and Ubuntu 11.10 32-bit OS. The switches used in this ex-

perimentation are two different models. Six mini-switches are Cisco Linksys WRT54GL

Wireless-G broadband router with 4-port, and one Cisco Catalyst 2950 switch with 24-

port. The latest released software/firmware was loaded on all equipment. Java with JDK

version 1.7.0, Hadoop MapReduce 1.2.1, VMware Workstation 9.0.2, Python 2.7, and

Ntop 3.3.10 are pre-installed in the physical servers. The bandwidth of server to switch

is setting to 100 Mbps and that of switch to switch is setting to 1Gbps.

In order to test the performance of proposed STB architecture in medium-scale DCN,

VMware Workstation 8 (Ward, 2002) is installed in the servers to emulate multiple Virtual

Machines (VMs) acting servers in our test-bed. VM is a virtualized machine in physical

devices. Such VM has its own virtualized CPU, RAM, hard disk, network adaptor, as

well as OS and applications. The applications and hosts in the network are unable to

distinguish the VM that looks like a real host exists in the network. VMware Workstation

provides multiple virtual network establishing approaches that can be used to deploy the

proposed architectures in the test-bed. In this research, 2 VMs are created in each server

and each VM is assigned with 1GHz CPU, 1GB RAM, 10G hard disk. VM uses bridged

model connecting to its host with 100Mbps virtual network adapter. In this case, all VMs

act as real servers in the proposed DCN architecture.

Network Simulator 2 (NS2) (McCanne et al., 1997) is used to simulate the proposed

STBRouting mechanism and the relative large-scale DCN. NS2 is an object-oriented,

81

Univ
ers

ity
 of

 M
ala

ya

open source network simulation tool which offers many modules embedded in host and

supports routing protocols simulation for wired and wireless networks. NS2 runs on

Unix-based OS, but also can runs on Cygwin platform in Windows-based OS. In this

test-bed, NS2 with 2.33 version is selected.

Ubuntu Ntop is a open source network traffic tool running in linux-based OS, which

shows the current network usage in real time. It monitors and reports information con-

cerning the traffic generated by a list of hosts in network. A major benefits of using Ntop

is a webpage based management user interface (UI). We can use a web browser to manage

and navigate the throughput of each node to analyze the network performance.

In order to verify the data generated by the implementation and simulation, the t-Test

analysis tool was used. The T-Test is a statistical data analysis and hypothesis test tool. It

is used to test if the null hypothesis is true or not. In this research, the aim was to know

whether there is a significant difference among the throughput performance of STB and

other selected architectures. Thus, the Paired Two-Sample for Means T-Test is selected

to analyze the sample data generated from the test.

5.2 Scenarios

Two kinds of experimental scenarios, implementation and simulation, are carried out to

study the throughput of STB and selected architectures.

5.2.1 Implementation

MapReduce is one of the most widely used data processing models in cloud computing,

which provides a programming and execution model for processing and generating large

data sets using distributed computing mechanism. From the name of MapReduce we can

see that it can be divided into two operations, Map and Reduce. In Map operation, the

master node divides input value into smaller sub-values and distributes them to worker

nodes. In Reduce operation, the master node collects the results from all workers and

82

Univ
ers

ity
 of

 M
ala

ya

combines them in some way to form the output. In this research,we use the execution of

MapReduce to evaluate the throughput performance of the proposed STB architecture.

Word count is a typical example in MapReduce, which reads text files and counts

how often words occur. Taking a simple example in figure 5.1, we assume that a sample

text file including a list of words contents. After running the MapReduce word count

application, an output file with the contents of word and its occur times are generated

which shown in figure 5.2. From the figure we can see that the word “hadoop” and

“python” occur 5 and 4 times, respectively.

Figure 5.1: A Simple test file of Word Count for MapReduce

In this research, readers do not need to understand the procedure of word count run-

ning in detail, but have to know that an all-to-all session happens among servers during the

execution of MapReduce. The all-to-all session indicates that each source node forwards

data packet to all destination nodes like a broadcast within a DCN, which also shows

the essential part of cloud computing that is all servers (no idle one) participate in data

processing and forwarding. In this experiment, we execute the word count application in

83

Univ
ers

ity
 of

 M
ala

ya

Figure 5.2: A Simple test file of Word Count for MapReduce

a fixed number of servers but different network architectures to evaluate the throughput

performance of our proposed STB, tree-based, and another recursive DCell architectures.

5.2.1.1 Testing File Generating

As a major purpose of MapReduce is processing big data, we first, need a text file with

large size to be tested in this experiment. We use python to generate a text file including

a list of 100 million IP addresses as shown in figure 5.3. Each of the IP addresses is

“192.168.x.x”, and the last two bytes are selected from 0−255 randomly. The source

code of sample file generation is attached in appendix A.

From the python shell in figure 5.4 we can see that generating the 100 million IP

addresses needs about 15 minutes. The size of text file is about 1.5 GB. Before executing

the MapReduce word count application in the experiment, we first write a python script to

calculate the top ten IP addresses that have the most occur times in the list. It is worth to

mention that the result shown in figure 5.5 is not generated by MapReduce but python as a

benchmarking to check whether the MapReduce results in each architectures are correct.

84

Univ
ers

ity
 of

 M
ala

ya

Figure 5.3: The IP Addresses List in Sample File

Figure 5.4: Python Shell

85

Univ
ers

ity
 of

 M
ala

ya

Figure 5.5: Top Ten IP Addresses with Most Occur Times

The python script for calculating the word count is enclosed in appendix B.

5.2.1.2 Hadoop MapReduce Deployment

Since we already have a text file as sample, we need to establish a MapReduce cluster

based on our proposed STB network architecture. Figure 5.6 shows the topology of the

proposed STB in this experiment, we first select the server with IP address 192.168.0.2

as a master server and the rests 11 servers are slaves.

Then we add the IP addresses of slave servers in master node to establish our MapRe-

duce cluster. Figure 5.7 shows the commands on Master server for adding slaves’ IP ad-

dresses to the cluster. The command includes the IP address and role of each server, as

well as their hosts’ names. The configuration file for establishing the MapReduce Cluster

is attached in the appendix C.

We can access to the master server by using web browser to check the status of our

MapReduce cluster. From figure 5.8 we can see that the first ten slave servers and a cluster

86

Univ
ers

ity
 of

 M
ala

ya

192.168.0.2

192.168.0.4
 192.168.0.3

.0.6

.0.8

.0.7

.0.5

.0.14

.0.16

.0.15

.0.13

.0.10

.0.12

.0.11

.0.9

192.168.0.252

192.168.0.1

Figure 5.6: Network Topology of STB

Figure 5.7: Adding IP Addresses of Slaves in Master Server

with total twelve number of servers is established in our network. It is worth to mention

that as our physical server has multiple network adaptors that introduced in section 5.1,

we have already assigned the IP address for each adaptor in the same subnet and gateway

in our experimentation. However, we only use one IP address to identify a physical server

is for clear expression concern in this section.

After establishing the MapReduce cluster in the proposed STB network, we create a

new MapReduce project called “WordCountqh” in master server for uploading and testing

the previously generated text file. Figure 5.9 shows that the new “WordCountqh” Java

class is already successfully created in the master server.

87

Univ
ers

ity
 of

 M
ala

ya

Figure 5.8: The Status of MapReduce Cluster

Figure 5.9: Creating WordCountqh Project

We then upload the previous generated sample text file to the Hadoop distributed

file system (HDFS) in the master server. Figure 5.10 indicates that the sample file is

successful uploaded in the system.

5.2.1.3 Execution

We run the WordCountqh project in the MapReduce cluster based on our proposed STB

architecture. Figure 5.11 shows the execution procedure of word count application, which

indicates the related information such as how many data processing groups are generated,

how many input/output records happened. The execution time of this experiment is 117

88

Univ
ers

ity
 of

 M
ala

ya

Figure 5.10: Uploading Sample File to HDFS

seconds.

Figure 5.11: Execution of WordCountqh Project in STB Network

After running the word count application, we gather an output file named as “part-

r-0000”, which is shown in figure 5.12. It is worth to mention that the result of this

execution is same with the benchmark result collected by using python script in section

5.2.1(a).

Since the purpose of this experiment is focusing on throughput performance of the

89

Univ
ers

ity
 of

 M
ala

ya

Figure 5.12: Network Topology

STB network, we do not pay too much attention on the details of MapReduce processing

and the result. The DCN infrastructure from all twelve servers was deployed in accor-

dance with published specifications. However, the DCN scale with only twelve servers

is too “small”. For evaluating our proposed STB architecture in a “medium” scale DCN,

based on the previous network topologies, each server creates 2 virtual machines acting

servers to deploy a medium-scale DCN with 24-server. We did not create more than two

VMs in a physical server is because the extra VMs will impact the execution efficiency

of system in the server, which may bring an inaccurate results to the experiments.

Each VM in the network has a 1 GHz CPU, 1G ROM and 30G hard disk with Ubuntu

11.10 32-bit OS. VM uses bridged model connecting to its host with 100Mbps virtual

network adapter. In this case, all VMs act as real servers in the proposed STB network.

Then we re-execute the experiment as before to evaluate the throughput performance of

STB architecture in a 24-server medium network.

Until now, the experiments under the scenarios of 12 and 24 servers in STB net-

90

Univ
ers

ity
 of

 M
ala

ya

work architecture are already done. We used word count application in MapReduce to

generation data flow, and Ntop to monitor and analyze the throughput performance in

the experiment. The two selected architectures DCell and Tree-based for comparison are

also evaluated in the same way. The reason of selecting DCell to compare in the exper-

iment is that DCell is a hierarchical recursive structure. As we mentioned in chapter 2,

optical/wireless architecture normally needs more deploying cost for their high-advanced

network devices. VL2 and Monsoon are focusing on load balancing solutions. As a

typical architecture in the category of hierarchical recursive structure, DCell attracts a

lot of attentions from different research organizations in recent years (X. Wang et al.,

2013)(X. Wang et al., 2014)(Kumar et al., 2012).

The topologies of the two architectures are shown in figure 5.13 and 5.14. The

servers with IP addresses 192.168.0.5 and 192.168.0.8 are selected as master servers in

each of topology respectively.

.0.5

.0.6

.0.7

.0.16

.0.15

.0.14

.0.8

.0.9

.0.10

.0.13

.0.12

.0.11

.0.1
.0.2

.0.3

.0.4

192.168.0.252

Figure 5.13: Network Topology of DCell Architecture

5.2.2 Simulation

Due to the restriction of current number of physical servers, we are not able to evaluate

the performance of our proposed STB architecture in a real large-scale DCN. In addi-

91

Univ
ers

ity
 of

 M
ala

ya

.0.8 .0.9 .0.10

.0.4

.0.11
.0.12
.0.13

.0.5

.0.2

.0.14
.0.15
.0.16

.0.6

.0.17
.0.18
.0.19

.0.7

.0.3

192.168.0.1

192.168.0.252

Figure 5.14: Network Topology of Tree-based Architecture

tion, the existing network devices cannot be used to implement the proposed STBRout-

ing scheme. Therefore, we performed our simulation for evaluating network throughput

and angle-based fault-tolerant routing scheme performance in a large-scale network. In

this simulation, we use Network Simulator 2 to simulate the proposed STB, DCell and

tree-based network architectures.

5.2.2.1 STBRouting in NS2

For implementing our proposed STBRouting scheme, we add the angel-based node iden-

tification, and route discovery and recovery schemes in NS2. We first create a folder

named as stb includingstb.h, stb.cc, stb_pkt.h, stb_rtable.h, andstb_rtable.ccfive files

under ns2.33. The main roles of each files are defining timer and route agent, executing

timer, route agent and Tcl script, declaring routing protocol in NS2, declaring stb routing

table, and routing table execution. Data forwarding procedure of STBRouting is simi-

lar with that of Routing Information Protocol (RIP), the difference is route discovery in

STBRouting is based on angel and level of node in the structure. According to the route

discovery scheme of STB introduced in chapter 4, node check the angle and level val-

ues of potential next hops before data forwarding. Figure 5.15 shows the source code of

packet forwarding and route discovery procedure instb.cc file. We simply modified the

92

Univ
ers

ity
 of

 M
ala

ya

rttable.h file underrouting folder in NS2.33 by limited the neighbor hops to 2, used in

our STBRouting.

Figure 5.15: Source Code of Packet Forwarding and Route Discovery

We modified thenode.h file in NS2 by adding two columns to indicate the value of

angle and level for each node. The original node identification in NS2 is usingnumber

starting from 0. In STB, this column is used for indicate the role of node is server or

switch, by usingnull or 1. We also modified thetrace.ccandcmu− trace.ccfiles under

trace folder of NS2.33 to make our proposed STBRouting can be recognized by NS2

in final simulation. Figure 5.16 shows the modified source code intrace.cc andcmu−

trace.ccfiles.

5.2.2.2 Simulation

We evaluate our proposedSTB(3) architectures in three different scenarios from level-2

to level-4 in area of 1000m×1000m. We set the bandwidth between each pair of nodes

(no matter server or swtich) is duplex 1Gbpslink with 10mspropagation delay. Figure

93

Univ
ers

ity
 of

 M
ala

ya

Figure 5.16: Source Code of Modified Trace File

5.2 shows the values of parameters between two nodes, and the rest nodes and links in

the architectures have the same parameters as well. Each node uses aDropTail queue,

of which the maximum size is 10. AnUDP agent and aNULL agent are attached to

both of the nodes to establish UDP connections. Moreover, aconstant bit rate(CBR)

traffic generator is attached toUDP agents to generate 1Kbytepackets and 100Mbps

transmission rate. TheCbrgentool of NS2 are used to create the traffic overload. We

also use a random perturbation scheme in data forwarding process to simulate expected

node and link failure. In our proposed STB architecture, servers are used for not only

processing data but also forwarding as the extra installed network adaptors. However,

the data forwarding capacity of server is normally lower than that of switches. Since we

are focusing on the throughput performance of the proposed architecture in DCN, such

difference can be omitted. In this work, we assume that switches and servers can provide

same bandwidth and data forwarding capacity.

In the first scenario of the simulation, each server node ofSTB2(3) establishes an

UDP connection to each of remaining servers, and send 1GB data in each of UDP con-

94

Univ
ers

ity
 of

 M
ala

ya

nection. Total 1.482TB data will be forwarded on the 1482 connections. In next simula-

tions, we keep the total aggregated throughput as 1.482TB. Because the number of UDP

connections inSTB3(3) andSTB4(3) are 14,280 and 129,240,respectively, we set 100MB

and 10MB in each UDP connections in the scenarios ofSTB3(3) andSTB4(3), respec-

tively. There is no disk access in this simulation for separating network performance from

disk IO. We study the aggregate throughput of STB architecture and its fault-tolerant per-

formance with different link failure ratios from 0-20 %. This simulation is running on a

Dell Optiplex 990 desktop with Intel core i5-2500 3.3GHz CPU, 4GB Memory, 500GB

hard disk in Windows 7 professional OS. We repeat our simulation 30 times to obtain the

average results.

Figure 5.17: Network Topology

We first run the simulation in the scenario ofSTB2(3), that is 39 servers and 13

switches, without link failure. Then we set the link failure ratios from 2% to 20% to

see the aggregated throughput performance in the scenario. Similarly, we implement the

simulation in the scenarios ofSTB3(3) andSTB4(3) to see the throughput with different

link failure ratios.

In order to further compare the aggregated throughput of STB with that of DCell

95

Univ
ers

ity
 of

 M
ala

ya

and Tree-based when the three architectures hold the same number of servers, we run the

simulations as previous steps.

5.3 Data Collection and Performance Metrics

Three performance metrics are selected to evaluate the performance of proposed STB and

other architectures in this experiment.

5.3.1 Throughput

Throughput is always a major parameter in network evaluation, especially for data center

network. A higher throughput means a greater data transmission and faster information

exchanging. In this experiment, we evaluate throughput of the proposed STB architecture

by calculating the proportion of sending and receiving packets with a period of time in all

nodes.

5.3.1.1 Implementation

We use Ntop to monitor the network throughput during the execution of experimentation.

Figure 5.18 shows the dashboard of Ntop running on the laptop (192.168.0.252) indicat-

ing the throughput and traffic information of part of servers at the beginning stage the

implementation.

Figure 5.18: Dashboard of Ntop

At the end of this experiment, we use “Network Load Statistics” command to see

96

Univ
ers

ity
 of

 M
ala

ya

the last ten minutes aggregated throughput of the STB networkthat is shown in figure

5.19. The figure indicates us that the maximum and minimum aggregated throughput are

7.9Gbps and 449.1Mbps, respectively, and the Average value is 4.0Gbps. This diagram is

generated by Ntop automatically, and the result will be used for further comparison with

selected DCell and Tree-based architectures.

Figure 5.19: Aggregateion Throughput

Ntop supports saving the information of original data flow in the experiment with

different formats, such as text, Perl, PHP, and Python, for further analyzing by using

other tools. Figure 5.20 shows the information about data flow in master server with

Python format.

Figure 5.20: Data Flow Recorded in Master Server

97

Univ
ers

ity
 of

 M
ala

ya

5.3.1.2 Simulation

After the end of simulation in each scenario, a trace file is automatically generated by

NS2. This trace file is used to record the whole simulation process by indicating the

sending and receiving time of each data packet, source and destination nodes of transmis-

sion and so on. By analyzing the trace file, it is possible to obtain details of the simulation.

Figure 5.21 gives an example of trace file in our first simulation.

Figure 5.21: Data Flow Recorded in Master Server

The fist column indicates the status of packet, where+/−means the packetinto/out f rom

a queue,r/smeansreceive/sendby a node. The event occurred time stamps and locations

are recorded from the second to forth columns. The fifth to seventh columns shows the

traffic type, packet size and flag, respectively. The data flow ID is recorded in the eighth

column. The ninth and tenth columns indicate the information of source and destination

nodes using a.b format, where a is node ID and b is port number. The last two columns

shows the sequence number and ID of packet. Taking the first line in figure 5.21 as an

98

Univ
ers

ity
 of

 M
ala

ya

example, it shows that a packet withID = 0, data flowID = 2, sequence number is 0,

1000−bytelength in CBR traffic, is being send from source node(1,30) to destination

node(0,60). The packet is forwarded into the queue of an intermediate node(2,0,w) at

0.1secondsimulation time.

It is common for a trace file to be very large size and makes it inconvenient to read

it line-by-line. Therefore, AWK script file is developed to analysis and gather results in

NS2. In this simulation, the awk script is used to first calculate the total size of packet

during the period of source sendingstart_time to destination receivingendt ime. Then

the script changes byte to bit (1 byte = 8 bits) andbps to Mbps (1 Mbps = 1000000

bps)to output the final throughput result. Equation 5.1 shows the function of throughput

calculation and the awk script is attached in the appendix D.

AggregatedThroughput=
Sizeo f ReceivedPacket×8

(Endtime−StartTime)×1000000
(5.1)

(Bianchi, 1998)

5.3.2 Number of Supported Servers

Network scalability is a major issue in the consideration of DCN architecture design, es-

pecially for cloud-oriented DCNs. We always desire to deploy as many as possible servers

with limited number of network devices in a given network performance condition. A

main contribution of this research is to provide a large-scale architecture. The number of

server supported in the proposed STB architectures can be calculated by using Theorem

1 where we have provided in chapter 3. We also calculate the number of servers in DCell

and tree-based architectures to compare the server proportions in different networks.

99

Univ
ers

ity
 of

 M
ala

ya

5.3.3 Average Shortest Path Length

The average shortest path length means the average length between each pair of nodes

in the network. The length of two nodes is the minimal number of links from one node

reaching to another. Because NS2 uses Dijkstra shortest path algorithm by default to cal-

culate the optimal path between each pair of nodes, thus we use the Dijkstra’s algorithm

(Knuth, 1977) to calculate the average shortest path length in the simulation.

5.4 Data Analysis Tool

In order to verify the data generated by the experimentation and simulation, the T-Test

analysis tool was used. The T-Test is a statistical data analysis and hypothesis test tool

that used to test whether the null hypothesis is true or not. Three types of T-Test are

Two-Sample Assuming Equal Variances, Two-Sample Assuming Unequal Variances, and

Paired Two-Sample for Means. All of the different tests are used to take a two-sample

student’s t-test. The aim of using T-Test in this research is to know whether there is a

significant difference between the performance of throughput and average shortest path

length of DCN before and after using the proposed STB architecture. Because the main

results of the Paired Two-Sample for Means t-test show whether the means of two-sample

data before and after a process are equal or not. Therefore, we select the Paired Two-

Sample for Means t-test to analyze the sample data generated from the experimentation

and simulation.

5.5 Conclusion

This chapter presented the evaluation of proposed STB architecture and STBRouting

scheme. In order to efficiently and effectively evaluate the proposed architecture and

its routing scheme, we first tested our model in a small private cloud DCN in real ex-

perimentation from 12 to 24 servers. Then we evaluated STB in a simulation to test the

throughput performance and fault-tolerant routing scheme in large scale network. The

100

Univ
ers

ity
 of

 M
ala

ya

approaches of data collection in the experiment and simulation are also introduced in this

chapter. We selected aggregation throughput, number of supported servers, and average

shortest path length as performance metrics to evaluate and compare among STB, DCell

and tree-based architectures. The evaluation results and data analysis will be presented in

next chapter.

101

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 6

RESULTS ANALYSIS AND DISCUSSION

In this chapter, analysis is made on the results obtained from the experiment and simula-

tion. We present the results of the aggregated throughput, number of supported servers,

and the average shortest path length as performance metrics to evaluate the performance

of the proposed STB, and compare with DCell and Tree-based architectures. We also

present the statistical results of the T-Test to validate the data generated by the experimen-

tation and simulation. The chapter is organized as follows. Section 1 presents throughput

analysis from the experimentation to simulation results. The analysis of number of sup-

ported servers and average shortest path length are discussed in section 2 and 3. We

then explain the result of data validated by using T-Test in section 5, and the chapter is

concluded in section 6.

6.1 Throughput

Throughput is always a major parameter in network evaluation, especially for data center

network. A higher throughput means a greater data transmission and faster information

exchanging. In our experiment work, we evaluate aggregated throughput of the proposed

STB architecture by calculating the proportion of sending and receiving packets with a

period of time in all nodes.

6.1.1 Experimentation Result Analysis

Figure 6.1 plots the aggregate throughput of STB, DCell and that using the tree-based

architecture with 12 servers. At the beginning stage of simulation, STB has a higher

throughput than DCell and tree-based as it has more servers to participate in data forward-

ing. The transmission in tree-based completed at 146.7 seconds that spent more time than

102

Univ
ers

ity
 of

 M
ala

ya

that of STB and DCell, where are 82.5 and 83.809 seconds, respectively. STB and DCell

is about 2 times faster than tree with the maximum aggregate throughput is 7.945Gbps

and 7.657Gbps, respectively, but the tree-based architecture has 3.6Gbps only. The per-

formance of STB does not have much significant difference with DCell is because both of

the two are recursive architectures and have same number of 12 servers and 4 switches.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140 160

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

G
bp

s)

Time (Seconds)

Tree
DCell
STB

Figure 6.1: Aggregated Throughput with 12 Servers

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

G
bp

s)

Time (Seconds)

Tree
DCell
STB

Figure 6.2: Aggregated Throughput with 24 Servers

Figure 6.2 shows the aggregate throughput of the three architectures with 24 servers.

We can see that the values of aggregated throughput in the three architectures are all

103

Univ
ers

ity
 of

 M
ala

ya

increased with the number of server increasing. Throughput in all architectures decreases

over the time, however STB is slower because the multiple parallel links in it. In this

scenario, the word count task is completed by tree-based at 92.631 seconds. By contrast,

STB and DCell use 59.326 and 60.89 seconds to complete the task. Our proposed STB

architecture still has better throughput performance and execution speed than that of Tree-

based and DCell even the differences are still not too much with DCell architecture in 24

servers network.

6.1.2 Simulation Result Analysis

Since the performance of aggregated throughput in STB and DCell are almost same in

small-scale networks, we used simulation to evaluation the throughput performance in

the three architectures in large-scale networks. The analyzing is divided into two parts,

without and 2-20% link failure ratios.

6.1.2.1 Without Link Failure

Network without link failure provides a reliable environment to evaluate the theoretical

results of aggregated throughput in our simulation. Figure 6.3 indicates the aggregated

throughput with 39 servers and without link failure. As each server establishes 38 UDP

connections to the rest of server nodes, the total transmitted data is 1.482TB, which is

much more than that of running MapReduce application in our experimentation using

physical devices. Therefore, the tree-based network uses 1,520 seconds to complete data

forwarding. As we can see from the figure that, the different throughput performance

between STB and DCell is becoming clear, where the maximum througput in STB is

14.83Gbps and the task ends at 925.2 seconds by comparing with 13.87Gbps and 1049.7

seconds in DCell.

Figure 6.4 and 6.5 give the throughput performance with 120 and 363 servers in

the different architectures. With the increasing number of servers, the throughput perfor-

104

Univ
ers

ity
 of

 M
ala

ya

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

G
bp

s)

Time (Seconds)

Tree
DCell
STB

Figure 6.3: Aggregated Throughput with 39 Servers and without link failure

mance of STB is getting better and better than the other architectures. In the scenario of

STB3(3) for example, the maximum throughput value of STB is 23.987Gbps, and packets

exchanging completed in 538 seconds. By contrast,the maximum throughput for DCell

and tree-based network are observed from 23.51Gbps to 13.437Gbps. InSTB4(3) sce-

nario, the maximum throughput value of STB is reached to 46.55Gbps, which is almost 2

times than that ofSTB3(3) because the number of servers is increased from 120 to 363.

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600 700 800 900 1000

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

G
bp

s)

Time (Seconds)

Tree
DCell
STB

Figure 6.4: Aggregated Throughput with 120 Servers and without link failure

105

Univ
ers

ity
 of

 M
ala

ya

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600

A
gg

re
ga

te
d

T
hr

ou
gh

pu
t (

G
bp

s)

Time (Seconds)

Tree
DCell
STB

Figure 6.5: Aggregated Throughput with 363 Servers and without link failure

6.1.2.2 With Link Failure

We use a proportion of link failure approach to evaluate our proposed STBRouting scheme

by observe the average throughput performance with different link failure ratio.

 0

 5

 10

 15

 20

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

G
bp

s)

Link Failure Rates (%)

Tree
DCell
STB

Figure 6.6: Effect of Link Failures with Different Ratio on Average Throughput with 39
Servers

Figure 6.6 - 6.8 plot the comparison of average throughput of STB, DCell and Tree-

based architecture in 39, 120 and 363 servers with different link failure ratios. STB and

DCell achieve very high throughput, but that of STB degrades more rapidly because of

106

Univ
ers

ity
 of

 M
ala

ya

more server-to-switch connections. DCell uses more server than STB to forward packet

which impacts the transmission speed due to the forwarding capacity of server is lower

than switch. The tree-based network has the lowest performance as no redundancy de-

vices are deployed in our simulation. With the increasing number of servers, the influence

of throughput performance in STB is getting smaller and smaller by different link failure

ratio, but not too much in that of DCell. By contrast, the tree-based architecture is always

impacted by the link failure.

 0

 5

 10

 15

 20

 25

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

G
bp

s)

Link Failure Rates (%)

Tree
DCell
STB

Figure 6.7: Effect of Link Failures with Different Ratio on Average Throughput with 120
Servers

6.1.2.3 Disscussion

STB achieves higher aggregated throughput performance than DCell and tree-based net-

work architectures with the network scale increased. We observed that, at the beginning

of our experimentation and simulation, STB has a better performance than tree-based

network because server participates packet forwarding. Although more switches are de-

ployed in the tree-based architecture to support given number of servers, the network

throughput does not get improvement due to the bandwidth bottleneck in aggregation and

core layer of the network. STB and DCell are all recursive structure that use multiple

107

Univ
ers

ity
 of

 M
ala

ya

 0

 10

 20

 30

 40

 50

0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

G
bp

s)

Link Failure Rates (%)

Tree
DCell
STB

Figure 6.8: Effect of Link Failures with Different Ratio on Average Throughput with 363
Servers

small units to establish higher level structures. Therefore, the throughput performance

between STB and DCell is no too many differences in small-scale networks. However,

with the increasing number of servers, STB has higher aggregated and average through-

put than DCell as STB has more connections. The average throughput of DCell is more

stable than that of STB because the recursive unit in DCell connects to all other units

in same level, which means packet can also be forwarded among different units without

switch in same level. However, the approach using large number of servers to transfer

packet impacts data forwarding rate. A case may occur that a major part of server process

and forward data at the same time but some switches are idle.

6.2 Rates of Server Utilization

In this research, the rates of server utilization refers to a proportion of number of servers

to entire nodes in DCN. In a same DC deploying budget condition, we always desire as

little as possible network devices to support as many as servers. In other words, if two

architectures have same network performance, the one which owns less switches but more

servers, it has a better cost-performance ratio.

108

Univ
ers

ity
 of

 M
ala

ya

In this section, we use the proved theorem 1 in chapter 4 to calculate the number of

supported servers and switches in STB. Assuming the initial recursive unit is combined

by 1 switch connecting to k servers, we take the level value of n=6, and calculate the the

number of servers in theSTB6(3), STB6(4), STB6(5) andSTB6(6) are 3,279, 21,844,

97,655 and 335,922, respectively (see Table 6.2). For supporting such number of servers,

1,093, 5,461, 19,531, and 55,987 network devices are deployed in STB. By contrast, the

number of network devices in the tree-based architecture is 1,629, 7,285, 24,418, and

67,189, respectively. Similar with STB, it is worth to mention that, the DCell architec-

ture is a hierarchical recursive structure also, it has same performance with STB in the

proportion of server utilization, that isk
k+1).

Table 6.1: the proportion of servers in STB and Tree-based architectures

Architecture No.of Servers 3,279 21,844 97,655 335,922

STB No.of nodes 4,372 27,345 117,186 391,909
Proportion of Servers(%) 75 80 83.3 85.7

Tree−based No.of nodes 4,908 29,129 122,073 403,111
Proportion of Servers(%) 66.8 75 79.9 83.3

At the stage ofSTB6(3) to STB6(4) , 1 switch connects with servers from 3 to 4.

We can calculate that the proportion is increased from3
4 to 4

5. In this analogy, the value

of proportion will tend to 100 whenk → +∞. As compared to tree-based architecture,

more network devices are needed in aggregate and core layers to supporting such number

of servers, so the proportion is definitely lower than that of STB and DCell. Figure 6.9

indicates the proportion of server utilization between STB and tree-based architectures in

same number of servers.

6.3 Average Shortest Path Length Analysis

The average shortest path length means the average length between each pair of nodes

in the network. The length of two nodes is the minimal number of links from one node

109

Univ
ers

ity
 of

 M
ala

ya

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000 300000 350000

P
ro

po
rt

io
n

of
 S

er
ve

rs
 (

%
)

Number of Servers

STB
Tree-Based

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000 300000 350000

P
ro

po
rt

io
n

of
 S

er
ve

rs
 (

%
)

Number of Servers

STB
Tree-Based

Figure 6.9: Proportion of Server Utilization in STB and Tree-based Architectures

reaching to another. We use the Dijkstra’s algorithm (Knuth, 1977) to calculate the short-

est path length in the simulation. Firstly, we assume there is no node failure happens

in the network. Table 6.2 shows that the average path length from oneS0 server to the

rest servers in different levels of STB. TheSTBn(k) (k=3,4 and 5)indicate the number of

servers connecting one switch in the initialS0 level. We can see that the longest average

path lengths in the table is whenSTB4(3) in level 4, and the rest values are all no more

than 5 hops, which proves the Theorem 2 in section 4.3.

Table 6.2: the average path length fromS0 server to the rest servers in different levels of
STB without node failure

Level No. of SVs No. of SWs Sum. of SPL Avg. of SPL

STB2(3) 2 39 13 63 1.658
STB3(3) 3 120 40 405 3.4
STB4(3) 4 363 121 1812 5.005
STB2(4) 2 48 21 160 3.404
STB3(4) 3 340 85 1344 3.964
STB2(5) 2 155 31 325 3.11

Figure 6.10 shows the average of shortest path length and levels of STB in contrast

with DCell (whenk = 3 in those of two architectures). Whenn= 0, the 2 architectures

have only basic (lowest) level, thus we have value of 1 for average of shortest path length

110

Univ
ers

ity
 of

 M
ala

ya

as those servers are directly link to switch. With the level increase, the more servers are

able to be supported in each of architecture and the length of shortest path for each server

is increased as well. As we can see from the figure that, DCell has a faster growing with

the increasing of n, meanwhile STB is growing slower than it. At the beginning stage, the

average length of STB is same with DCell, however, whenn= 4, DCell almost have 2.5

times value than that of STB in this parameter. The reason of this condition happens is

due to the complicated recursive method in DCell.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4

A
ve

ra
ge

 S
ho

rt
es

t P
at

h
Le

ng
th

Level

DCell
STB

Figure 6.10: whenk = 3, Average Shortest Path Length in 0− 4levelswithout server
failure

Secondly, we evaluate the STB architecture in some servers failure happens situa-

tion. In this test, the proportion of server failure has been set in the beginning stage of

simulation. Figure 6.11 shows the relations between the proportion and average of short-

est path length in aS4 network. As we can see from the figure that, when the proportion

remains between 0.02-0.2, the average length has a limited wave range between 5.0-6.7.

STB has a better performance at average short path length comparing with DCell

when the rate of server failure increasing. As only one level of switches in DCell, almost

all of data flows are transferred by servers. STB has a shorter average length because

all data packets are forwarded by switch. In section 4.3 we have proved that STB has

111

Univ
ers

ity
 of

 M
ala

ya

 2

 4

 6

 8

 10

 12

 14

 16

 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

A
ve

ra
ge

 S
ho

rt
es

t P
at

h
Le

ng
th

Proportion of Failure Server in Network

DCell
STB

Figure 6.11: Server Failure and Average of Shortest Path Length in S4 STB Network

a multiple parallel links between each two servers, hence data packets can be delivered

through switch or server when a node failure happens in one link. Therefore the STB has

the best performance contrast with DCell architectures.

6.4 Scalability and Fault-Tolerance

In this section, the performance of scalability and fault-tolerance are proved by using

theoretical derivation.

The maximum possible number of servers that can be supported by using 128-port

switches is 20,000 around in the tree-based DCN. The main reason for the situation is the

number of supported hosts is limited by available port density and the requirement of fast

failure recovery mechanism in the three layer architecture. Both the above statements are

already proved in section 3.1.3.

By contrast, the scale of STB is unlimited because its recursively defined structure.

As we mentioned in section 4.2, the construction of higher level STB is typically by

adding a new initial recursive unit (1 mini switches with 3 servers in the case as an ex-

ample) between one pair of servers in current level. Hence, the number of supported

devices can be exponential increased with the level growing in STB. In theory, the num-

112

Univ
ers

ity
 of

 M
ala

ya

ber of devices supported in STB is unlimited. It is worth to mention that, according to the

equation 4.1-4.6 from theorem 1 to 4, the number of supported devices can be calculated

easily. Hence, the scalability of STB network can be easily controlled by increasing or

decreasing the number of connected server in the initial recursive unit.

The issue of fault-tolerance in STB actually, has already been proved in section 4.4.3.

The equation 4.7 in theorem 4 indicates that each pair of two servers have 2 parallel paths

at least, and 22n at most. The parallel paths are the links between pairs of servers, which

is independent to others. Those pair of two servers can be selected from any position,

any levels in STB, and no matter if they connected to the same switch or not. Suppose a

link failure happens, there are enough number of parallel paths can be selected to forward

data in STB. Hence, from figure 6.6 - 6.8 we can see that the performance of average

throughput with different link failure rates in STB is much better than that of the tree-

based architecture. In addition, with the increasing number of servers, more parallel paths

are supported, and the influence of throughput performance in STB is getting smaller and

smaller by different link failure ratio. In this research, a major feature about the fault-

tolerance is, different than the tree-based architecture, the parallel paths existing in STB

without any redundancy devices support.

6.5 Data Validation

We select the Paired Two-Sample for Means t-test to analysis the sample data generated

from the simulation and verify whether there is a significant difference between the per-

formance of throughput of the proposed STB architecture and the DCell and tree-based,

respectively. Based on the 30 times simulations, the values ofP(T 6 t)two− tail are

0.003497545 and 0.006544028, which are less than 0.05, mean that there are significant

differences in STB as compared to DCell and tree-based, in the performance of through-

put when proportion of server failure happens.

113

Univ
ers

ity
 of

 M
ala

ya

Results indicate that STB has a better performance than DCelland tree-based. As

we known that the bandwidth between switches is normally higher than that of switch and

server, and it is also restricted by the lowest value between two servers in data forwarding,

it is obviously that data forwards between switches is much faster than servers with same

path length. A major feature of STB is using fewer switches connecting more servers,

which ensure that the nodes located between two servers are switches, to provide a higher

transfer efficiency.

6.6 Conclusion

In this chapter, we have presented the data analysis and discussion of our proposed STB

architecture by comparing with DCell and tree-based. The best application scenario for

STB is large data centers. Due to the restriction by the number of devices in current ex-

periment, we cannot deploy a real large-scale for testing the STB architecture. However,

we use limited devices, virtual machines and simulator to test the proposed model. After

the evaluation in different scenarios, we found a trend that the throughput performance of

STB is better and better with the number of server increased. Therefore, we believe that,

the STB architecture has a potential capacity to have better throughput performance in a

real large-scale cloud-oriented data center network.

114

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7

CONCLUSION

This chapter provides the conclusion on the achievements from the research – the signif-

icance and contribution of the research outcomes. It also contains recommendation on

areas for future research.

7.1 Evaluation on Achievement of Objectives

The research reported in this thesis involves the development of the Sierpinski Triangle

Based (STB) data center network architecture for large-scale cloud-oriented data cen-

ters. The purpose of STB is to provide a higher throughput and server utilization, a

shorter shortest path length, as well as a fault-tolerant routing mechanism in DCNs. STB

uses Sierpinski triangle fractal to deploy a hierarchical and recursive network structure

in which higher level STB network is combined by multi lower level STBs. This means

that the bottleneck of aggregation throughput in tree-based can be solved in STB. In the

process of routing selection, STB routing mechanism provides at least two parallel paths

for each pair of two servers in DCN without redundancy devices. The performances of

the STB, tree-based, and DCell architectures have been evaluated using the real experi-

ment and NS2 simulator from the perspectives of network throughput, average shortest

path length, and proportion of servers to switches.

The objective of literature review is achieved in chapter 2, where the existed archi-

tectures such as tree-based, Fat-tree, DCell, BCube, CamCube, VL2, and so on, for DCNs

were reviewed to provide an overview and relevant knowledge on the subject matter of

the research. A thematic taxonomy of the state-of-the-art architectures is also produced

in this chapter.

115

Univ
ers

ity
 of

 M
ala

ya

Chapter 3 presents the performance analysis of current widely used tree-based archi-

tecture in DCN from the perspectives of throughput restriction, network scalability, cost

of construction, and resource fragmentation. We point out the potential problems using

the tree-based architecture in cloud-oriented DCN and give a benchmark experiment of

the problem issues for verification.

Design of the proposed STB architecture is achieved in chapter 4. STB uses server

with multiple network adapters and mini-switch to construct the recursive network by

adding a number of 0− level triangle structures on the(n−1)− level to constructn−

level Sierpinski triangle structure. This construction method can effectively increase the

throughput by removing the aggregate layer contrast to the tree-based architecture in

DCN. Moreover, STB uses an angle based node identification scheme to describe the

position of inter node and provide a fault-tolerance routing in DCN.

The objective of evaluation is achieved in chapter 5 where presents the use of real

experiment and NS2 simulator to test and simulate the environment to apply the STB and

selected architectures. Knowledge was gained on how to deploy the proposed architec-

tures, establish the DCN and create network components.

In chapter 6, the behaviors of the STB, tree-based, and DCell are evaluated. The

performances of throughput, average shortest path length, rates of server utilization, scal-

ability and fault-tolerance have been compared among the selected architectures. The

results of the experiment show that the STB architecture has higher throughput, shorter

average shortest path length, and higher proportion of servers to switches than traditional

tree-based, and DCell architectures. In addition, the better performance of scalability and

fault-tolerance in STB to the tree-based is also proved by using theoretical derivation.

Furthermore, the results are validated by using T-Test to verify the authenticity in the last

section of this chapter, which achieved the objective of data validation.

116

Univ
ers

ity
 of

 M
ala

ya

7.2 Contributions

The main contribution of this work is our proposed STB network architecture which pro-

vides the goals of large-scale data center network design, especially for cloud-oriented

data centers. By comparing with Tree-based, and DCell architectures in simulation and

real experiment, the STB has a better performance in proportion of switches to servers,

average shortest path length, and network throughput as well, and the results have been

verified by the theoretical analysis and simulations. The major contributions from this

research can be summarized as follows:

1. Establishment of taxonomy to analyze the implications and critical aspects of

existing DCN architectures and making a comparison among the architectures on the

basis of significant parameter metrics.

2. Design of the STB architecture in order to improve performance of DCN in large-

scale cloud-oriented data centers

3. Writing of the codes of the proposed STB routing mechanism.

4. Establishment of the measurement parameters to evaluate the performance of

STB.

5. Recommendation of areas for future research endeavors.

This research results were accepted in the following papers.

1. Han Qi,Muhammad Shiraz,Abdullah Gani, Md Whaiduzzaman,Suleman Khan.

Sierpinski Triangle Based Data Center Architecture in Cloud Computing. The Journal of

Supercomputing. 69(2), 887-907, DOI: 10.1007/s11227-014-1187-9(ISI Indexed Q2)(Qi,

Shiraz, Gani, et al., 2014)

2. Qi Han, Muhammad Shiraz, Liu Jie Yao, Abdullah Gani, Zulkanain Bin Abdul

Rahman, Data Center Network Architecture in Cloud Computing: Review, Taxonomy,

and Open Research Issues. Journal of Zhejiang University SCIENCE C, 15(9), 776-793.

117

Univ
ers

ity
 of

 M
ala

ya

DOI: 10.1631/jzus.C1400013. (ISI-Indexed Q3)(Qi, Shiraz,Liu, et al., 2014)

3. Han Qi, Abdullah Gani, Research on mobile cloud computing: review, trend and

perspectives. 2012 Second International Conference on Digital Information and Com-

munication Technology and it’s Applications (DICTAP),Bangkok, Thailand, 16-18 May

2012, pp 195-202 (ISI IEEE, Indexed).(Qi & Gani, 2012)

Papers in collaboration with others:

1. Suleman Khan, Muhammad Shiraz, Ainuddin Wahid Abdul Wahab, Abdullah

Gani,Qi Han, Zulkanain Bin Abdul Rahman, A Comprehensive Review on Adaptability

of Network Forensics Frameworks for Mobile Cloud Computing The Scientific World

Journal, vol. 2014, Article ID 547062, 27 pages, 2014. doi:10.1155/2014/547062.(Khan

et al., 2014)

2. Muhammad Shiraz, Ejaz Ahmed, Abdullah Gani,Qi Han Investigation on Run-

time Partitioning of Elastic Mobile Applications for Mobile Cloud Computing Journal of

Supercomputing, , Volume 67, Issue No. 1, pages 84- 103 January 2014, DOI:10.1007/s

11227-013-0988-6(ISI Indexed Q2)(Shiraz et al., 2014)

7.3 Strength and Weakness

There are several strengths and weaknesses in undertaking this research, and they are

summarized as follows:

7.3.1 Strength

1. STB architecture improves the throughput performance of DCN. High-level STBs are

built recursively from several low-level STBs. STB uses only mini-switches to replace

high-advanced network devices to scale out. Therefore, STB is able to support large-scale

DCN without using core switches/routers.

2. STB deploys the Angle based node identify mechanism to replace the IP based

address allocation for supporting the scale of DCN with exponential growth and fault-

118

Univ
ers

ity
 of

 M
ala

ya

tolerant routing mechanism.

3. Owing to the difficulty to deploy a real large-scale DCN in our research, we used

five PCs and one switch to establish a small-scale DCN, and NS2 to simulate our proposed

scheme in large-scale network, which can reduce the costs of our research, effectively.

4. In this research, NS2 is used to deploy large-scale DCN. As the NS2 is an open

source product, we can directly modify the source files to achieve our scheme.

7.3.2 Weakness

One of the limitations of this fault-tolerant routing scheme is the rerouting path may not

be the optimal.

1. In this research, the experiment in real devices was deployed in a small-scale

DCN, which may not full indicate the significant performance of STB in a large-scale.

2. The simulation environment of NS2 is a little bit simple and cannot measure all

performance of STB architecture in DCN.

3. Parent node failure may cause part of children nodes failed.

This research work is limited in the performance evaluation among the selected DCN

architectures. We only selected three metrics to compare that is not enough to evaluate

the performance of proposed architecture objectively. It is important to note the other

supplementary issues such as deployment cost, energy consumption, applicability of cur-

rent routing protocol, wireless/optical network communication, security and others are

not covered in this research.

7.4 Future Research Work

In this research, we present a novel architecture to improve performance of the DCN for

cloud-oriented data centers. This method should not be used in large-scale DCN only, but

is also suitable for use in some relative small-scale networks.

In the simulation done in this research, the STB routing mechanism is simulated

119

Univ
ers

ity
 of

 M
ala

ya

without experimented in real DCN environment. Thus the issueof implementing the

proposed STB routing and Angle based node identify mechanisms in real device exper-

iment are aimed to be addressed in our future research. In addition, the deployment of

STB architecture in real experiment is taken in a small-scale DCN in this research due to

the restriction of devices, which may not fully indicate the performance of the proposed

STB architecture in large-scale DCN. Thereby, implementing the STB architecture in real

large-scale DCN environment is also aimed in our future research.

In the near future, the hybrid-based structures could still be a major structure widely

used in DCN. To be competitive, servers would need to obtain multi-core processor, large

memory and multiple network adapters to improve the network performance capacity and

participate data forwarding. However, there are several other technical and non-technical

factors that need to be considered for further development. For example, servers often

have lower performance in data transmission compared to switches. Also, the existing

routing algorithms would meet a radical shift when they directly transplant from tradi-

tional network to large DCN. To overcome these concerns, an efficient dynamic schedule

algorithm, DCN-oriented routing protocol with a significant advantage is necessary for

providing high quality service to end users.

7.5 Conclusion

This thesis presents the report of the research conducted on the data center network (DCN)

architectures in cloud-oriented data centers. By using the traditional tree-based archi-

tecture in DCN, the performance is affected because of the limitations in aggregation

throughput, server utilization, bandwidth capacity and network scale. The performance

of DCN can be enhanced by using the proposed Sierpinski Triangle Based (STB) ar-

chitecture, which uses the well-known Sierpinski triangle fractal to deploy the structure

together with the STB routing mechanism, to mitigate the throughput bottleneck in ag-

120

Univ
ers

ity
 of

 M
ala

ya

gregate layers as accumulated in tree-based architecture.

We evaluated the behavior of STB architecture developed in this research, analyzed

its performance and compared it to the traditional tree-based, and DCell architectures in

proposed DCN environments. The performance has been evaluated based on throughput,

average shortest path length, and proportion of servers utilization using a real experi-

mental test-bed and NS2 simulator. The results show that the STB architecture achieves

higher network performance than the tree-based, and DCell architectures.

121

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

122

Abu-Libdeh, H., Costa, P., Rowstron, A., O’Shea, G., & Donnelly, A. (2010). Symbiotic
routing in future data centers.ACM SIGCOMM Computer Communication Review,
40(4), 51–62.

Al-Fares, M., Loukissas, A., & Vahdat, A. (2008). A scalable, commodity data center
network architecture. InAcm sigcomm computer communication review(Vol. 38,
pp. 63–74).

Alon, N., & Roichman, Y. (1994). Random cayley graphs and expanders.Random
Structures & Algorithms, 5(2), 271–284.

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., et al. (2010). A
view of cloud computing.Communications of the ACM, 53(4), 50–58.

Baker, S. (2007). Google and the wisdom of clouds.Business Week, 14.

Beimborn, D., Miletzki, T., & Wenzel, S. (2011). Platform as a service (paas).Business
& Information Systems Engineering, 3(6), 381–384.

Beloglazov, A., & Buyya, R. (2010). Energy efficient resource management in virtu-
alized cloud data centers. InProceedings of the 2010 10th ieee/acm international
conference on cluster, cloud and grid computing(pp. 826–831).

Beloglazov, A., Buyya, R., Lee, Y., Zomaya, A., et al. (2011). A taxonomy and survey of
energy-efficient data centers and cloud computing systems.Advances in Computers,
82(2), 47–111.

Bhardwaj, S., Jain, L., & Jain, S. (2010). Cloud computing: A study of infrastructure as
a service (iaas).International Journal of engineering and information Technology,
2(1), 60–63.

Bianchi, G. (1998). Ieee 802.11-saturation throughput analysis.Communications Letters,
IEEE, 2(12), 318–320.

Borthakur, D. (2007). The hadoop distributed file system: Architecture and design.
Hadoop Project Website, 11, 21.

Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., & Zomaya, A. Y. (2013). Energy-
efficient data replication in cloud computing datacenters. InIeee globecom 2013 in-
ternational workshop on cloud computing systems, networks, and applications (gc13
ws-ccsna), atlanta, ga, usa.

Buxmann, P., Hess, T., & Lehmann, S. (2008). Software as a service.Wirtschaftsinfor-
matik, 50(6), 500–503.

Buyya, R., Yeo, C. S., & Venugopal, S. (2008). Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as computing utilities. InHigh

Univ
ers

ity
 of

 M
ala

ya

123

performance computing and communications, 2008. hpcc’08. 10th ieee international
conference on(pp. 5–13).

Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., et al. (2008).
Bigtable: A distributed storage system for structured data.ACM Transactions on
Computer Systems (TOCS), 26(2), 4.

Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., et al. (2012).
Osa: An optical switching architecture for data center networks with unprecedented
flexibility.

Chen, Y., Alspaugh, S., Borthakur, D., & Katz, R. (2012). Energy efficiency for large-
scale mapreduce workloads with significant interactive analysis. InProceedings of
the 7th acm european conference on computer systems(pp. 43–56).

Chen, Y., Griffith, R., Liu, J., Katz, R. H., & Joseph, A. D. (2009). Understanding tcp
incast throughput collapse in datacenter networks. InProceedings of the 1st acm
workshop on research on enterprise networking(pp. 73–82).

Clausen, T., Jacquet, P., Adjih, C., Laouiti, A., Minet, P., Muhlethaler, P., et al. (2003).
Optimized link state routing protocol (olsr).

Clos, C. (1953). A study of non-blocking switching networks.Bell System Technical
Journal, 32(2), 406–424.

Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Elmeleegy, K., & Sears, R. (2010).
Mapreduce online. InNsdi(Vol. 10, p. 20).

Cui, Y., Wang, H., Cheng, X., & Chen, B. (2011). Wireless data center networking.
Wireless Communications, IEEE, 18(6), 46–53.

Dally, W., & Towles, B. (2004).Principles and practices of interconnection networks.
Morgan Kaufmann.

Dean, J., & Ghemawat, S. (2008). Mapreduce: Simplified data processing on large
clusters.Communications of the ACM, 51(1), 107–113.

Deering, S. E. (1998). Internet protocol, version 6 (ipv6) specification.

Ding, Z., Guo, D., Liu, X., Luo, X., & Chen, G. (2012). A mapreduce-supported network
structure for data centers.Concurrency and Computation: Practice and Experience,
24(12), 1271–1295.

Droms, R. (1997). Dynamic host configuration protocol.

Farrington, N., Porter, G., Radhakrishnan, S., Bazzaz, H. H., Subramanya, V., Fainman,
Y., et al. (2011). Helios: a hybrid electrical/optical switch architecture for modular
data centers.ACM SIGCOMM Computer Communication Review, 41(4), 339–350.

Formu, J. (2009). Cloud cube model: Selecting cloud formations for secure collabora-
tion.

Univ
ers

ity
 of

 M
ala

ya

124

Foster, I., Kesselman, C., Nick, J. M., & Tuecke, S. (2002). Grid services for distributed
system integration.Computer, 35(6), 37–46.

Frécon, E., & Stenius, M. (1998). Dive: A scaleable network architecture for distributed
virtual environments.Distributed Systems Engineering, 5(3), 91.

Gantz, J., & Reinsel, D. (2012). The digital universe in 2020: Big data, bigger digital
shadows, and biggest growth in the far east.IDC iView: IDC Analyze the Future.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. InAcm
sigops operating systems review(Vol. 37, pp. 29–43).

Greenberg, A., Hamilton, J., Jain, N., Kandula, S., Kim, C., Lahiri, P., et al. (2009). Vl2:
a scalable and flexible data center network.ACM SIGCOMM Computer Communi-
cation Review, 39(4), 51–62.

Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (2008). The cost of a cloud:
research problems in data center networks.ACM SIGCOMM Computer Communi-
cation Review, 39(1), 68–73.

Greenberg, A., Lahiri, P., Maltz, D. A., Patel, P., & Sengupta, S. (2008). Towards a next
generation data center architecture: scalability and commoditization. InProceedings
of the acm workshop on programmable routers for extensible services of tomorrow
(pp. 57–62).

Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., et al. (2009). Bcube: a high
performance, server-centric network architecture for modular data centers. InAcm
sigcomm computer communication review(Vol. 39, pp. 63–74).

Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., & Lu, S. (2008). Dcell: a scalable and
fault-tolerant network structure for data centers. InAcm sigcomm computer commu-
nication review(Vol. 38, pp. 75–86).

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee, S., et
al. (2010). Elastictree: Saving energy in data center networks. InNsdi (Vol. 3, pp.
19–21).

Ikeda, T., & Tsutsumi, O. (1995). Optical switching and image storage by means of
azobenzene liquid-crystal films.SCIENCE-NEW YORK THEN WASHINGTON-,
1873–1873.

Infrastructure, C. D. C. (2007). 2.5 design guide, cisco systems.Inc, San Jose, CA.

Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: distributed data-
parallel programs from sequential building blocks.ACM SIGOPS Operating Systems
Review, 41(3), 59–72.

Kandula, S., Padhye, J., & Bahl, P. (2009). Flyways to de-congest data center networks.

Katayama, Y., Takano, K., Kohda, Y., Ohba, N., & Nakano, D. (2011). Wireless data
center networking with steered-beam mmwave links. InWireless communications

Univ
ers

ity
 of

 M
ala

ya

125

and networking conference (wcnc), 2011 ieee(pp. 2179–2184).

Khan, S., Shiraz, M., Abdul Wahab, A. W., Gani, A., Han, Q., & Bin Abdul Rahman, Z.
(2014). A comprehensive review on adaptability of network forensics frameworks
for mobile cloud computing.The Scientific World Journal, 2014.

Knuth, D. (1977). A generalization of dijkstra’s algorithm.Information Processing
Letters, 6(1), 1–5.

Kumar, A. A., Rao, S., Goswami, D., & Sahukari, G. (2012). Dcell-ip: Dcell embold-
ened with ip address hierarchy for efficient routing. InProceedings of international
conference on advances in computing(pp. 739–746).

Lee, Y. C., & Zomaya, A. Y. (2012). Energy efficient utilization of resources in cloud
computing systems.The Journal of Supercomputing, 60(2), 268–280.

Leighton, F. T. (1992).Introduction to parallel algorithms and architectures. Morgan
Kaufmann San Francisco.

Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., & Lu, S. (2009). Ficonn: Using backup port
for server interconnection in data centers. InInfocom 2009, ieee(pp. 2276–2285).

Li, W., & Svard, P. (2010). Rest-based soa application in the cloud: A text correction
service case study. InServices (services-1), 2010 6th world congress on(pp. 84–90).

Lian, F.-L., Moyne, J., & Tilbury, D. (2002). Network design consideration for distributed
control systems.Control Systems Technology, IEEE Transactions on, 10(2), 297–
307.

McCanne, S., Floyd, S., Fall, K., Varadhan, K., et al. (1997).Network simulator ns-2.

Model, C. C., Secure Collaboration, S. C. F. for, et al. (2009). Jericho forum.

Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan,
S., et al. (2009). Portland: a scalable fault-tolerant layer 2 data center network fabric.
In Acm sigcomm computer communication review(Vol. 39, pp. 39–50).

Pioro, M., Szentesi, A., Harmatos, J., Jüttner, A., Gajowniczek, P., & Kozdrowski, S.
(2002). On open shortest path first related network optimisation problems.Perfor-
mance evaluation, 48(1), 201–223.

Popa, L., Ratnasamy, S., Iannaccone, G., Krishnamurthy, A., & Stoica, I. (2010). A cost
comparison of datacenter network architectures. InProceedings of the 6th interna-
tional conference(p. 16).

Qi, H., & Gani, A. (2012). Research on mobile cloud computing: Review, trend and
perspectives. InDigital information and communication technology and it’s appli-
cations (dictap), 2012 second international conference on(pp. 195–202).

Qi, H., Shiraz, M., Gani, A., Whaiduzzaman, M., & Khan, S. (2014). Sierpinski triangle
based data center architecture in cloud computing.The Journal of Supercomputing,

Univ
ers

ity
 of

 M
ala

ya

126

69(2), 887–907.

Qi, H., Shiraz, M., Liu, J.-y., Gani, A., Rahman, Z. A., & Altameem, T. A. (2014).
Data center network architecture in cloud computing: review, taxonomy, and open
research issues.Journal of Zhejiang University SCIENCE C, 15(9), 776–793.

Ranachandran, K., et al. (2008). 60ghz data-center networking: wireless=> worryless.
NEC Laboratories America, Inc., Tech. Rep., July.

Redkar, T., & Guidici, T. (2011).Windows azure platform. Apress.

Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing
systems. InInc, ims and idc, 2009. ncm’09. fifth international joint conference on
(pp. 44–51).

Sanaei, Z., Abolfazli, S., Gani, A., & Buyya, R. (2014). Heterogeneity in mobile cloud
computing: taxonomy and open challenges.Communications Surveys & Tutorials,
IEEE, 16(1), 369–392.

Shankar, S. (2009).Amazon elastic compute cloud.CS.

Shin, J.-Y., Sirer, E. G., Weatherspoon, H., & Kirovski, D. (2012). On the feasibility of
completely wireless datacenters. InProceedings of the eighth acm/ieee symposium
on architectures for networking and communications systems(pp. 3–14).

Shiraz, M., Ahmed, E., Gani, A., & Han, Q. (2014). Investigation on runtime parti-
tioning of elastic mobile applications for mobile cloud computing.The Journal of
Supercomputing, 67(1), 84–103.

Sierpinski, W. (1916). Sur une courbe cantorienne qui contient une image biunivoque et
continue de toute courbe donnée.Comptes Rendus, 629.

Singh, A., Korupolu, M., & Mohapatra, D. (2008). Server-storage virtualization: in-
tegration and load balancing in data centers. InProceedings of the 2008 acm/ieee
conference on supercomputing(p. 53).

Singla, A., Hong, C.-Y., Popa, L., & Godfrey, P. B. (2012). Jellyfish: Networking data
centers randomly. InProceedings of the 9th usenix conference on networked systems
design and implementation(pp. 17–17).

Tarantino, A. (2012). Point-of-view paper: High tech’s innovative approach to sustain-
ability. International Journal of Innovation Science, 4(1), 37–40.

Tennenhouse, D. L., & Wetherall, D. J. (2002). Towards an active network architecture.
In Darpa active networks conference and exposition, 2002. proceedings(pp. 2–15).

USEPA. (2012). 2012 annual report - us environmen-
tal protection agency (Tech. Rep.). Available from
http://www2.epa.gov/sites/production/files/2013-11/d

ocuments/rad_12_annual_rep

Univ
ers

ity
 of

 M
ala

ya

127

Vahdat, A., Al-Fares, M., Farrington, N., Mysore, R. N., Porter, G., & Radhakrishnan, S.
(2010). Scale-out networking in the data center.IEEE micro, 30(4), 29–41.

Valiant, L. G. (1990). A bridging model for parallel computation.Communications of
the ACM, 33(8), 103–111.

Wang, G., Andersen, D. G., Kaminsky, M., Papagiannaki, K., Ng, T., Kozuch, M., et
al. (2010). c-through: Part-time optics in data centers. InAcm sigcomm computer
communication review(Vol. 40, pp. 327–338).

Wang, T., Su, Z., Xia, Y., & Hamdi, M. (2014). Rethinking the data center networking:
Architecture, network protocols, and resource sharing.

Wang, X., Fan, J., & Cheng, B. (2014). One-to-many disjoint path covers in dcell net-
works. Computer Science and Systems Engineering, 68, 465.

Wang, X., Fan, J. X., Cheng, B. L., Liu, W. J., & Li, F. F. (2013). A hamilton path
embedding algorithm on dcell.Applied Mechanics and Materials, 336, 2468–2471.

Ward, B. (2002).The book of vmware: the complete guide to vmware workstation. No
Starch Press.

Wu, H., Lu, G., Li, D., Guo, C., & Zhang, Y. (2009). Mdcube: a high performance
network structure for modular data center interconnection. InProceedings of the 5th
international conference on emerging networking experiments and technologies(pp.
25–36).

Wu, K., Xiao, J., & Ni, L. M. (2012). Rethinking the architecture design of data center
networks.Frontiers of Computer Science, 6(5), 596–603.

Zahariev, A. (2009). Google app engine.Helsinki University of Technology.

Univ
ers

ity
 of

 M
ala

ya

LIST OF PUBLICATIONS AND PAPERS PRESENTED

128

Khan, S., Shiraz, M., Abdul Wahab, A. W., Gani, A., Han, Q., & Bin Abdul Rahman, Z.
(2014). A comprehensive review on adaptability of network forensics frameworks
for mobile cloud computing.The Scientific World Journal, 2014.

Qi, H., & Gani, A. (2012). Research on mobile cloud computing: Review, trend and
perspectives. InDigital information and communication technology and it’s appli-
cations (dictap), 2012 second international conference on(pp. 195–202).

Qi, H., Shiraz, M., Gani, A., Whaiduzzaman, M., & Khan, S. (2014). Sierpinski triangle
based data center architecture in cloud computing.The Journal of Supercomputing,
69(2), 887–907.

Qi, H., Shiraz, M., Liu, J.-y., Gani, A., Rahman, Z. A., & Altameem, T. A. (2014).
Data center network architecture in cloud computing: review, taxonomy, and open
research issues.Journal of Zhejiang University SCIENCE C, 15(9), 776–793.

Shiraz, M., Ahmed, E., Gani, A., & Han, Q. (2014). Investigation on runtime parti-
tioning of elastic mobile applications for mobile cloud computing.The Journal of
Supercomputing, 67(1), 84–103.

Univ
ers

ity
 of

 M
ala

ya

APPENDIX A

PYTHON SOURCE CODE OF SAMPLE FILE GENERATION IN CHAPTER 5

__author__ = "QH"

__date__ = "$Date: 2013/04/09 $"

def generateRandom(rangeFrom, rangeTo):

import random

return random.randint(rangeFrom,rangeTo)

def generageMassiveIPAddr(fileLocation,numberOfLines):

IP = []

file_handler = open(fileLocation, ’a+’)

for i in range(numberOfLines):

IP.append(’192.168.’ + str(generateRandom(0,255))

+’.’+ str(generateRandom(0,255)) + ’\n’)

file_handler.writelines(IP)

file_handler.close()

if __name__ == ’__main__’:

from time import ctime

print ctime()

for i in range(10):

print ’ ’ + str(i) + ": " + ctime()

generageMassiveIPAddr(’d:\\SampeIP.txt’, 100000000)

print ctime()

129

Univ
ers

ity
 of

 M
ala

ya

APPENDIX B

PYTHON SCRIPT FOR CALCULTING THE WORD COUNT

__author__ = "QH"

__date__ = "$Date: 2013/04/18 $"

import os

from time import ctime

def findIPAtOnce(targetFile):

print "Started At: " + ctime()

Result = {}

file_handler = open(targetFile, ’r’)

for line in file_handler:

if line in Result:

Result[line] = Result[line] + 1

else:

Result[line] = 1

print "Write to Dic Finished At: " + ctime()

file_handler.close()

Result = sorted(Result.items(), key=lambda d: d[1])

print "Sorting Finished At: " + ctime()

print ’Result:’

for i in range(10):

print ’ ’ + str(Result.pop())

if __name__ == ’__main__’:

findIPAtOnce("d:\\massiveIP.txt")

130

Univ
ers

ity
 of

 M
ala

ya

APPENDIX C

SOURCE CODE FOR DEPLOYING MAPREDUCE ON SERVERS

#1.core-site.xml

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:9000</value>

</property>

<property>

<name>hadoop.tmp.dir</name>

<value>/opt/hadoop-1.2.1/tmp</value>

</property>

</configuration>

#2.hdfs-site.xml

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.name.dir</name>

131

Univ
ers

ity
 of

 M
ala

ya

<value>/opt/hadoop-1.2.1/hdfs/name</value>

</property>

<property>

<name>dfs.data.dir</name>

<value>/opt/hadoop-1.2.1/hdfs/data</value>

</property>

</configuration>

#3.mapred-site.xml:

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>localhost:9001</value>

</property>

</configuration>

132

Univ
ers

ity
 of

 M
ala

ya

APPENDIX D

SOURCE CODE OF AWK SCRIPT FOR THROUGHPUT

BEGIN {

recvdSize=0;

startTime=0;

stopTime=1000;

}

{

event=$1;

time=$2;

node_id=$3;

level=$4;

flags=$5;

seqno=$6;

type=$7;

pkt_size=$8;

if(event=="s" && type == "cbr" && node_id == "_0_") {

if(time < startTime){

startTime=time;

}

}

if(event=="r" && type == "cbr" && node_id == "_2_") {

if(time > stopTime){

133

Univ
ers

ity
 of

 M
ala

ya

stopTime=time;

}

}

recvdSize+=pkt_size;

}

END{

printf("Aggregated Throughput[Mbps] Reserved by QH=%.3f\t\t

StartTime=%.3f\t StopTime=%.3f\n",(recvdSize/

(stopTime-startTime))*(8/1000000),startTime,stopTime);

}

134

Univ
ers

ity
 of

 M
ala

ya

	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	List of Appendices
	Introduction
	Background
	Motivation
	Statement of Problem
	Research Aim and Objectives
	Research Questions
	Scope of Work
	Proposed Methodology
	Research Contribution
	Thesis Layout

	Data Center Network Architecture in Cloud Computing - Literature Review
	Background
	Cloud Computing
	Infrastructure
	Service Level
	Technology Level

	Data Center Network

	Review on Data Center Network Architectures
	Taxonomy of Data Center Network Architecture
	Review on Data Center Network Architectures Using Taxonomy
	Clos/Tree-Based
	Valiant Load Balancing
	Hierarchical Recursive
	Optical/Wireless

	Comparison of Data Center Network Architectures
	Open Issues and Challenges for Cloud-Oriented Data Center Network Architecture Design
	Deployment Cost and Energy Consumption
	Network Optimization
	The Novel Network Architecture Studies
	Quality of Service in Upper Layer
	Congestion Control
	Load Balancing/Flow Scheduling
	Compatibility
	Research and Improvement of DCN Protocol
	Automatic IP Address Assignment
	Future Applications of Optical Switching and Wireless Transmission

	Conclusion

	Performance Analysis of the Tree-based Network Architecture in Cloud-oriented Data Center
	Analysis of Traditional Tree-Based Architecture
	Topology
	Bandwidth and Throughput Restriction
	Network Scalability and Reliability
	Resource Fragmentation
	Cost

	Benchmarking Experiments
	Throughput Analysis
	Implementation
	Test-bed
	Results

	Conclusion

	Sierpinski Triangle Based Data Center Network Architecture
	Sierpinski Triangle
	Sierpinski Architecture
	Physical Structure
	Initial Recursive Unit
	Recursive Rule

	Construction Method

	Node Identification and Routing schemes in STB Architecture
	Node Identification Scheme
	Routing scheme
	Packet header
	Routing without failure
	Fault-tolerant routing

	Topological Properties of STB Architecture
	Network Size
	Bisection Width
	Network Diameter

	Conclusion

	Evaluation
	Test-Bed
	Scenarios
	Implementation
	Testing File Generating
	Hadoop MapReduce Deployment
	Execution

	Simulation
	STBRouting in NS2
	Simulation

	Data Collection and Performance Metrics
	Throughput
	Implementation
	Simulation

	Number of Supported Servers
	Average Shortest Path Length

	Data Analysis Tool
	Conclusion

	Results Analysis and Discussion
	Throughput
	Experimentation Result Analysis
	Simulation Result Analysis
	Without Link Failure
	With Link Failure
	Disscussion

	Rates of Server Utilization
	Average Shortest Path Length Analysis
	Scalability and Fault-Tolerance
	Data Validation
	Conclusion

	Conclusion
	Evaluation on Achievement of Objectives
	Contributions
	Strength and Weakness
	Strength
	Weakness

	Future Research Work
	Conclusion

	References
	List of Publications and Papers Presented
	Appendices

