CHEMICAL SYNTHESIS AND CHARACTERIZATION OF GRAPHENE OXIDE FOR USE AS SATURABLE ABSORBER AND BROADBAND POLARIZER

YAP YUEN KIAT

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2015

UNIVERSITY OF MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: YAP YUEN KIAT (I.C No: 790907-13-5165) Registration/Matric No: SHC 100034 Name of Degree: DOCTOR OF PHILOSOPHY Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): CHEMICAL SYNTHESIS AND CHARACTERIZATION OF GRAPHENE OXIDE FOR USE AS SATURABLE ABSORBER AND BROADBAND POLRIZER Field of Study: LASER & PHOTONICS

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date:

Subscribed and solemnly declared before,

Witness's Signature

Date:

Name:

Designation:

ABSTRACT

Chemically derived graphene oxide (GO) is an atomically thin sheet of graphite that has traditionally served as a precursor for graphene. The tunability of the ratio of its sp^2 and sp^3 hybridized carbon atoms is a great way to tune its bandgap for different applications. Manipulation of the size, shape and relative fraction of the sp^2 -hybridized domains of GO enables the tailoring of its optoelectronics properties.

This thesis presents works undertaken on the chemical synthesis, characterization and photonics applications of GO. The GO is synthesized using simplified Hummers' method. The emphasis of the synthesis method is on the experimental time, whereby the long experimental time spent during the oxidation process, typically on mixing the reactants and cooling or heating the reactants have been reduced from 3 - 5 hours to less than 5 minutes. The whole process was carried out without any temperature control, neither increasing nor decreasing the temperature. The mixture was stirred at room temperature for only 3 days and a high degree of oxidation is achieved.

Characterization of the area, size, morphology and physical properties of the GO is done using Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy (FESEM), X-ray Diffractometry (XRD), Raman spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy and Thermogravimetric Analysis (TGA). For the nonlinear optical properties of the GO, a set of wide dynamic range power dependent transmission and absorption measurement apparatus and technique are constructed and developed, enabling the determination of some important parameters such as saturation intensity, modulation depth and non-saturable loss.

Based on the characterizations, the GO is used as a saturable absorber (SA). The GO was transferred onto a fibre ferrule using 'dip-coating' and thin film transfer method.

Reliable *Q*-switched fibre lasers were successfully demonstrated. Pulse duration as short as ~4.0 μ s and pulse repetition rate of ~60.0 kHz had been achieved. Comparison between GO with reduced graphene oxide (rGO) as a *Q*-switching device in the same laser resonator was carried out and studied.

Finally, to harness the wave-guiding and anisotropic dielectric properties of GO, a broadband waveguide polarizer is realized by coating GO on a polymer optical waveguide. The polarization state of the polarizer output was measured in free space using a polarimeter. The extinction ratio of the GO based polarizer is found to be approximately 40 dB at 1590 nm. This is the highest extinction ratio ever reported for graphene-based waveguide polarizer to date.

ABSTRAK

Graphene oksida (GO) yang diperolehi secara kimia adalah lembaran nipis atom grafit dan digunakan sebagai pelopor untuk graphene mengikut tradisi. Kebolehtalaan nisbah pecahan sp^2 dan sp^3 adalah cara yang bagus untuk menala jurang jalur untuk kegunaan yang berlainan. Manipulasi saiz, bentuk dan pecahan relatif domain sp^2 terhibrid GO membolehkan penyesuaian sifat-sifat optoelektroniknya.

Tesis ini menyampaikan kerja-kerja yang dilaksanakan pada sintesis kimia , pencirian dan kegunaan fotonik GO . GO disintesis dengan menggunakan kaedah Hummers yang dipermudahkan. Penekanan cara sintesis ini adalah pada masa eksperimen, di mana waktu eksperimen panjang yang dihabiskan semasa proses pengoksidaan, biasanya pada mencampurkan bahan-bahan tindak balas dan menyejukan atau memanaskan bahan-bahan tindak balas telah dikurangkan dari 3 - 5 jam ke kurang dari 5 minit . Seluruh proses ini dilakukan tanpa kawalan suhu , tidak meningkatan atau menurunkan suhu . Campuran itu dikacau pada suhu bilik selama hanya 3 hari dan takat pengoksidaan tinggi dicapai .

Pencirian keluasan, saiz, morfologi dan sifat-sifat fizik GO dilakukan dengan menggunakan Mikroskopi Daya Atom, Mikroskopi Elektron Pengimbas Pancaran Medan, Belauan sinar-X, spektroskopi Raman, spektroskopi Infra-Merah Ubahan Fourier dan Analisis Termogravimetri. Untuk sifat-sifat optik tak linear GO, satu set alat dan teknik ukuran penghantaran dan penyerapan yang bergantung kepada kuasa yang berjulat dinamik meluas dibina dan diperkembangkan, membolehkan penentuan beberapa parameter yang penting seperti keamatan tertepu, kedalaman modulasi dan kehilangan tak linear.

Berdasarkan pencirian-pencirian tersebut, GO digunakan sebagai penyerap boleh tepu. GO dipindahkan ke atas ferrule serabut secara saluran celup dan pemindahan film nipis . Laser serabut optik Q tersuis yang boleh diyakini telah berjaya ditunjukkan. Tempoh denyutan sesingkat ~4.0 μ s and kadar ulangan denyutan ~60.0 kHz telah dicapai. Bandingan antara GO dengan GO yang dikurangkan sebagai suis Q dalam rongga resonans yang sama telah dijalankan dan dikaji.

Akhirnya , untuk memanfaatkan sifat-sifat memandu gelombang dan dielektrik anisotropik GO , sebuah pengutub pemandu gelombang jalur lebar direalisasikan dengan menyalurkan GO pada suatu pemandu gelombang optik polimer. Keadaan pengutuban output pengutub diukur pada ruang bebas dengan menggunakan polarimeter. Nisbah kepupusan pengutub berdasarkan GO didapati adalah lebih kurang 40 dB pada 1590 nm. Ini adalah nisbah kepupisan paling tinggi yang dilaporkan untuk pengutub pemandu gelombang berdasarkan graphene setakat ini.

ACKNOWLEDGEMENTS

The Living and Almighty God whom I believe in deserves the highest praise and honour for sustaining me through the 3 years of unusual experience of research and study. My family, typically my parents, deserve a place only second to God. Their love, support and understanding are a unfailing source of motivation and encouragement.

Distinguished Professor Datuk Dr Harith Ahmad, my supervisor, deserves special thanks for his patience and valuable advice to me. Professor Datuk Dr Harith brought me into graphene research, opened my eyes to the endless opportunities of graphene photonics and optoelectronics, and convinced me that graphene research is worth doing.

A big 'thank you' is conveyed to my co-supervisor, Professor Dr Sulaiman Wadi Harun, for supporting me wholeheartedly in all laboratory work. I owe my debt to the University of Malaya, for granting me the University of Malaya Scholarship Scheme.

Dr Nay-Ming HUANG needs special mention here. He shared with me many of his quality work on graphene oxide, and graciously granted me the opportunity and permission to learn the synthesis method and use all the facilities at the Low Dimensional Material Research Centre.

To Emeritus Professor Richard De La Rue (University of Glasgow), Dr Wu-Yi CHONG, Dr Chang-Hong PUA, Dr Kok-Sing LIM, Mr Leonard Bayang, Mr Weng-Hong LIM, my heartfelt thanks is due for their selfless support, and the joy and friendship they offered to me while working together in the research laboratory.

Many other caring individuals could still be added to the list. For all those who helped me in one way or the other, God remembers and shall reward you richly Himself.

TABLE OF CONTENTS

Abstract	iii
Abstrak	V
Acknowledgements	vii
Table of Contents	viii
List of Figures	xii
List of Tables	xviii
List of Symbols and Abbreviations	xix

CHA	APTER 1: INTRODUCTION	.1
1.1	Introduction to Nanoscience	.1
1.2	Ultrafast Lasers in Optical Communications	.1
	1.2.1 Single Wall Carbon Nanotubes	.3
	1.2.2 Graphene	.4
1.3	Broadband Polarizer	.5
1.4	Graphene Oxide	.6
1.5	Objectives, Scope of Study and Methodology	.9
Refe	rences1	2

CHA	PTER 2	: OPTICAL PULSE GENERATION	24
2.1	A Brief	History of Laser	24
2.2	Q-swite	hing of Laser	26
	2.2.1	Principle of <i>Q</i> -switching	27
	2.2.2	Active <i>Q</i> -switching	31
	2.2.3	Passive <i>Q</i> -switching	34

2.3	Theoret	ical Model of <i>Q</i> -switching
	2.3.1	Pulse Energy
	2.3.2	Pulse Width
	2.3.3	Repetition rate
2.4	Semicor	nductor Saturable Absorber Mirrors40
2.5	The Che	emical Structure of Graphene Oxide43
2.6	Saturabl	e Absorption Properties of Graphene Oxide49
2.7	Review	of Development of Graphene Oxide-based Q-switched Fibre Lasers51
Refe	rences	

CHAPTER 3: THE BASIC THEORY OF THE POLARIZATION OF LIGHT ... 60

3.1	Introduction	.60
3.2	Light polarization and Maxwell's Equations	61
3.3	Unpolarized Light	.63
3.4	Polarization of Light	.64
3.5	Polarization of Polarized Light	.67
	3.5.1 Polarization by Selective Absorption	68
3.6	Anisotropic Dielectric Property	.69
3.7	Light Polarizer	70
3.8	Review of the Development of Graphene Material-based Polarizer	72
Refe	prences	.75

CHAPTER 4: CHEMICAL SYNTHESIS, PHYSICAL CHARACTERIZATION,

LIN	EAR	AND	NONLINEAR	ABSORPTION	MEASUREMENTS	OF
GRA	PHENE	E OXID	DE			77
4.1	Introdu	ction				77
4.2	Prepara	tion and	d Synthesis Metho	ods of Graphene Oxi	de	77
4.3	Modifie	ed Hum	mers' Method			81
4.4	Propose	ed Meth	od for Graphene	Oxide Synthesis		84
4.5	Morpho	ological	Characterization.			86
4.6	Nonline	ear Abso	orption Measurem	nents of Graphene O	xide Saturable Absorber.	93
	4.6.1	Linear	Optical Characte	erization		93
	4.6.2	Nonli	near Absorption N	leasurements		94
Refe	rences					.101

CHAPTER 5: GRAPHENE OXIDE-BASED Q-SWITCHED FIBRE LASER.... 106

5.1	Ring Fi	bre Laser C	onfiguration106
	5.5.1.1	Results an	d Discussions108
5.2	Graphe	ne Oxide 'Pa	aper'-based <i>Q</i> -switched Fibre Laser114
	5.2.1	Results an	d Discussion116
		5.2.1.1	Characterization of Graphene Oxide 'Paper'116
		5.2.1.2	Q-switched Erbium-doped Fibre Laser Using Graphene
			Oxide 'Paper'117
5.3	Reduce	d Graphene	Oxide-based <i>Q</i> -switched Fibre Laser123
	5.3.1	Results an	d Discussions124
		5.3.1.1	Characterization of Reduced Graphene Oxide124
		5.3.1.2	Q-switched Erbium-doped Fibre Laser using Reduced
			Graphene Oxide127

5.4	Summary	134
5.5	Graphene Oxide-based Bismuth-based Erbium-doped Fibre Laser	.136
Refe	prences	143

CHAPTER 6: GRAPHENE OXIDE-BASED BROADBAND POLARIZER...... 149

6.1	Introduction149
6.2	Fabrication of Graphene Oxide-based Polymer Waveguide149
6.3	Physical Properties of the Graphene Oxide-based Polymer Waveguide154
6.4	Characterization of the Graphene Oxide-based Polymer Waveguide156
6.5	Performance of the Graphene Oxide-based Polymer Waveguide as a Broadband
	Polarizer157
6.6	Simulation and Modelling162
6.7	Summary167
Refe	rences

CHAPTER 7: CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

|--|

7.1 Future Work	171
-----------------	-----

List of Publications and Papers Presented173
--

LIST OF FIGURES

Figure 2.1: Schematic illustration of a simple electric circuit for generating high peak
pulsed power27
Figure 2.2: Variation of some laser parameters during Q -switching process. (a)
Flashlamp output (b) Cavity Q (c) Population inversion (d) Output power
as a function of time
Figure 2.3: Photons bouncing back and forth between the mirrors in a laser cavity30
Figure 2.4: Evolution of power, loss and gain on the time scale of the pulse width. The
peak of the Q -switched pulse is reached when the gain equals the total
losses
Figure 2.5: Hofmann's proposed structure of graphene oxide
Figure 2.6: Ruess's model of GO chemical structure, with hydroxyl groups in the basal plane
Figure 2.7: Scholz and Boehm's model with quinoidal species
Figure 2.8: Nakajima and Matsuo's model of GO, incorporating a lattice framework
related to poly(dicarbonmonofluoride), forming a stage 2 graphite
intercalation compound45
Figure 2.9: Lerf and Klinowski proposed structure of GO with (a) the presence (b) the
absence of carboxylic acids on the periphery of the basal plane of the
graphitic platelets of GO46
Figure 2.10: GO structure as proposed by Dékány and team
Figure 2.11: The process of saturable absorption. a) Optical interband transition via
absorption of photon. b) The photogenerated carriers cool down to form a
Fermi-Dirac distribution. Electron-hole equilibrium is achieved via
intraband phonon scattering and electron-hole recombination. c) At high
intensities, the photogenerated carriers cause the states near the edge of
the conduction and valence bands to be filled and saturated, blocking

Figure 3.1: Unpolarized light with component waves having different planes of polarization
Figure 3.2: A schematic representation of unpolarized light in all directions64
Figure 3.3: Random phase direction of unpolarized light
Figure 3.4: The linearly-polarized uniform plane wave as a function of time at $z = 0$
Figure 3.5: Rectangular components of a wave and when combined, yields a linearly polarized wave
Figure 3.6: Schematic illustration of selective absorption of waves in a dichroic crystal.
Eigure 4.1: Process of the group and CO sumthasis method.
Figure 4.1: Process of the proposed GO synthesis method
Figure 4.2: (a) Tapping mode atomic force microscopy image of single-layer graphene
oxide; (b) corresponding height cross-sectional profile with an average thickness of 1.2 nm
Figure 4.3: Raman spectrum of GO coated on a silica substrate
Figure 4.4: FESEM image of graphene oxide after 3 days of oxidation
Figure 4.5: X-ray diffraction spectrum of graphene oxide
Figure 4.6: FTIR spectrum of GO. The presence of oxygen-containing functional groups shows the complete oxidation of graphite
Figure 4.7: TGA plot for GO. The GO has a high thermal stability up to 200°C92
Figure 4.8: UV-Visible-NIR absorbance spectra of GO in water94
Figure 4.9: Fitting of nonlinear absorption using two-level fast absorber model95
Figure 4.10: A schematic illustration for the experimental setup for nonlinear absorption measurements
Figure 4.11: GO SA device assembly

Figure 4.12: Transmission of the GO SA device as a function of average pump power.
Figure 4.13: Normalized absorption as a function of pump peak intensity
Figure 5.1: GO based erbium-doped fibre laser (EDFL) ring configuration106
Figure 5.2: A GO based device was made by gently dipping a fibre ferrule end face onto the GO suspension107
Figure 5.3: Output power as a function of input power at 1558 nm
Figure 5.4: Typical laser spectrum of a EDFL, with and without the GO device inside the cavity
Figure 5.5: Pulse width and repetition rate as a function of the incident pump power. 110
Figure 5.6: Typical oscilloscope traces of <i>Q</i> -switched pulse train (left) and extended single pulse shape (right), showing the pulse repetition rate and pulse width respectively under different pump powers
Figure 5.7: Single pulse energy as a function of pump power
Figure 5.8: Fluctuation of average power of the <i>Q</i> -switched pulse113
Figure 5.9: Image of the GO 'paper' obtained through filtration
Figure 5.10: Orderly stacking of GO layers, indicating the formation of GO 'paper'116
Figure 5.11: Optical spectrum of the <i>Q</i> -switched laser at 150 mW118
Figure 5.12: Evolution of optical spectrum for pump power varied from 98 to 150 mW
Figure 5.13: (a) Pulse train and (b) single pulse envelope at a pump power of 150 mW.
Figure 5.14: Pulse width and pulse energy of the <i>Q</i> -switched laser as a function of different pump power levels
Figure 5.15: Repetition rate and average output power as a function of pump power.
Figure 5.16: UV to visible wavelength absorption spectrum of rGO flakes dispersed in NMP solution

Figure 5.1	7: Raman s	spectrum of rC	O flakes o	deposited	on a glass	substrate	
0							

Figure 5.18	: The laser output power as a function of diode pump power.	The laser
	configuration with rGO inside has lower slope efficiency, indica	ting there
	is insertion loss caused by the material	128

- Figure 5.21: Typical pulse train of a *Q*-switched laser......131
- Figure 5.22: The pulse duration as a function of pump power......132
- Figure 5.24: The calculated single pulse energy as a function of pump power......133
- Figure 5.25: ASE spectra for 21 cm Bi-EDF at different pump powers......137

- Figure 5.29: *Q*-switched laser spectra at different wavelengths tuned by a TBF at a fixed pump power of 92 mW. The base power is set at -73 dBm for clarity.

- Figure 5.30: Spectrum of a *Q*-switched pulsed laser at 1556 nm as obtained from the RFSA at the pump power of 92 mW. The fundamental frequency of the pulse is 21.8 kHz. The inset shows the RF harmonics of the *Q*-switched pulsed laser. The RFSA is set at a span of 25 kHz, with a resolution bandwidth and video bandwidth of 300 Hz......142
- Figure 6.1: Sairon Technology SPA-4000 Prism Coupler available at the Class 10K clean room of Photonics Research Centre, University of Malaya......150

Figure 6.2: DEF	KTAK D150	surface profile	r at the Class	10K Yellow	Room of
Phot	otonics	Research	Centre,	University	of
Mal	laya				151
Figure 6.3: Gra	•	based polymer	C	-	
Figure 6.4: Drop-	-cast GO coati	ng with differen	t drops of soluti	on	154
obse	nnel. (b) SEM erved betwee	oing of drop-ca image of a GO- n the sidewal	-coated wavegu ls of the w	ide channel. Ai aveguide and	r gaps are the GO
Figure 6.6: Scher GO-b	_	of the experime waveguide	_		
Figure 6.7: Graph	hene oxide-bas	ed waveguide p	olarizer		157
	ertion loss is 1	GO waveguide owest when the ass waveguide p	e incident light	is highly TM-	polarized,
Figure 6.9: Insert	tion loss of TE	- and TM-polari	zed light of wa	veguide polariz	ers coated
with	different num	ber of GO solution	ion drops corre	sponding to dif	ferent GO
film t	thickness. Bot	h values are me	asurement aver	ages in the 153	80 to 1630
nm w	vavelength rang	ge	•••••		159

- Figure 6.11: Broadband response of GO waveguide polarizer, where an extinction ratio of more than 20 dB is measured from 1250 1640 nm......162
- Figure 6.12: Illustration of GO-coated waveguide channel cross section. The waveguide channel cross section has a dimension of 5 μ m in height and 10 μ m in widths. GO coating thickness depends on the number of GO solution applied during drop-casting. The maximum air gap between the waveguide channel sidewall and the GO film is 0.5 μ m at the base of the channel...163

LIST OF TABLES

Table 2.1: A list of reported GO-based Q-switched lasers and their respective
performance53
Table 3.1: Maxwell's Equations and their respective differential and integral forms62
Table 3.2: A brief summary of various graphene material based polarizers and their
respective performance74
Table 4.1: Summary of the conventional synthesis methods of GO80
Table 5.1: Summary of the laser parameters with GO, GO 'paper' and rGO134

LIST OF SYMBOLS AND ABBREVIATIONS

AFM	:	Atomic Force Microscopy
ASE	:	Amplified Spontaneous Emission
Bi-EDFL	:	Bismuth-based Erbium-doped Fibre Laser
CNT	:	Carbon Nanotube
CW	:	Continuous wave
EDFA	:	Erbium-doped Fibre Amplifier
EDFL	:	Erbium-doped Fibre Laser
FESEM	:	Field Emission Scanning Electron
		Microscope
FTIR	:	Fourier Transform Infrared
FWHM	:	Full-Width at Half-Maximum
GO	:	Graphene Oxide
NMP	:	N-Methyl-2-Pyrrolidone
RFSA	:	Radio Frequency Spectrum Analyzer
rGO	:	Reduced Graphene Oxide
SA	:	Saturable Absorber
SEM	:	Scanning Electron Microscope
SESAM	:	Semiconductor Saturable Absorber Mirror
SWCNT	:	Single Wall Carbon Nanotube
TBF	:	Tunable Bandpass Filter
TE	:	Transverse Electric
TGA	:	Thermogravimetric Analysis
ТМ	:	Transverse Magnetic
VOA	:	Variable Optical Attenuator
XRD	:	X-ray Diffractometry

This Thesis Is Dedicated to

My Parents

Who Share My Joy and Tears, Providing Me With The Best in Education

Emeritus Professor Dr Kum-Sang LOW

My Physics Professor Who Opens My Eyes To The Endless Horizon of Science and Research

Sifu David Michael Peterson

My Martial Art Instructor Who Blasts My Mind In The *Wong Shun Leung Method* of *Ving Tsun*, Where I Realize That Fundamental Laws of Physics Can Be Simple, Direct and Efficient In Fighting

Shelian Stephen

Who Shares My Joy, My Grief of Life, Faith and Work