ABSTRACT

Tamarind (T) or avocado (A) seed was included in diets offered to rats. Its effects on growth performance, blood glucose and cholesterol levels, and glycogen in liver of rats were studied in three different experiments involving two species of rats (Sprague Dawley (SD) and out bred of Wistar-Kyoto rats-SHR (spontaneously hypertensive rats). Basal diet (BD) and high sucrose diet (HSD) containing ground dried of T or A at the following inclusion 2, 4 or 8% were offered to SD rats in experiments 1 (n=28) and 2 (n=28) respectively, while SHR received BD in experiment 3 (n=28). Feed intake, fecal output and body weight were measured; samples of liver were analyzed for glycogen, whereas serum cholesterol and glucose content were determined. The T inclusion in the diet did not affect the feed intake of SD except for the SHR, where the feed intake was lowered at the highest inclusion of T. The increase in the body weight of the rat in the control and experimental group varied during the trials (p>0.05) with indications of impaired assimilation of nutrient (i.e. reduced feed efficiency) in SHR after extended feeding on the diet containing T. The digestibility of the diet was not affected by T inclusion in the diet offered to the rats. Feed conversion efficiency was better in SD fed with 2%T than in control (12.5±2.8 and 27.1±2.3 respectively; p<0.05) and 4%T in SHR (12.49±2.80) compared to control (0%T; 14.37±1.83; p>0.05). Protein efficiency ratio improved only at 2%T (0.53±0.20) in SD offered BD compared to control (0.19±0.02). The serum cholesterol level of SD offered BD was reduced at all level of T inclusion (2%(0.50±0.17g/l), 4%(0.24±0.14g/l), and 8%(0.31±0.06g/l)) compared to control (0.79±0.04g/l; p<0.05) whereas the serum glucose levels of the SHR (50.74±2.50mg/dl for 4%T) was lower than control (93.52±10.83mg/dl; p<0.05).
Higher liver glycogen content (8%T; 3.43±0.55mg/g) compared to control (1.27±0.24mg/g; p<0.05) was found only in the SHR group. The rats fed on diets containing avocado seed showed increased intake of feed. There were indications of impaired assimilation of nutrients (i.e. reduced feed efficiency) in SD rats offered HSD when T was added. The digestibility of the diets was not affected at the inclusion of A in the diet offered to the rats. Feed conversion efficiency was better in 2 and 4 %A (16.78± 0.97 and 15.53±1.58 respectively; p<0.05) compared with control (0%A; 27.11±2.28; p<0.05) whereas protein efficiency ratio was better in the SD treated groups than the control. The serum cholesterol level of SD offered BD and SHR were lowered with the inclusion of tamarind seed when compared to control (p<0.05) whereas the addition of avocado seed lowered the glucose levels at 2%A (21.35±2.29mg/dl) for the SD offered BD compared to control (0%T; 41.72±12.46mg/dl; p<0.05). The liver glycogen content increased with the inclusion of avocado seed to the diet of the rats in the treated groups. Tamarind or avocado seed can lower blood glucose and serum cholesterol and also enhance storage of glycogen where included to diet offered to rats. It may also partially influence feed and growth performance though the effect is dose dependent.
ABSTRAK

Tamarind (T) atau alpukat (A) benih dimasukkan ke dalam diet yang ditawarkan kepada tikus. Kesannya terhadap prestasi pertumbuhan, glukosa darah dan paras kolesterol, dan glikogen di dalam hati tikus telah dikaji dalam tiga eksperimen yang berbeza yang melibatkan dua spesis tikus (Sprague Dawley (SD) dan keluar dibesarkan Wistar-Kyoto tikus-SHR (tikus secara spontan hipertensi) diet pangkal (BD) dan diet sukrosa tinggi (HSD) yang mengandungi tanah yang kering T atau A pada kemasukan berikut 2, 4 atau 8% telah ditawarkan kepada tikus SD eksperimen 1 (n = 28) dan 2 (n = 28) masing-masing, manakala SHR menerima BD dalam 3 eksperimen (n = 28). Pengambilan makanan, pembuangan tinja, dan berat badan diukur; sampel hati dianalisis untuk glikogen, manakala kolesterol serum dan kandungan glukosa ditentukan. Kehadiran T dalam diet tidak menjejaskan pengambilan makanan oleh tikus SD, tetapi menjejaskan pengambilan makanan oleh tikus SHR, dimana pengambilan makanan terjejas pada kehadiran T tertinggi. Peningkatan berat badan tikus dalam kumpulan kawalan dan eksperimen berubah semasa tempoh ujian (p > 0.05) dengan tanda-tanda kecekapan makanan berkurangan bagi SHR selepas tempoh ujian pengambilan diet mengandungi T berlanjutan. Penghadaman makanan tidak terjejas dengan kehadiran T dalam diet. Keberkesanan pengubahan makanan adalah lebih baik bagi SD yang memakan 2%T berbanding kawalan (12.5 ± 2.8 dan 27.1 ± 2.3 masing-masing; p <0.05) dan 4%T bagi SHR (12.49 ± 2.80) berbanding kawalan (14.37 ±1.83; p> 0.05). Nisbah kecekapan protein meningkat hanya pada kehadiran2% T (0.53 ± 0.20) bagi SD yang diberi makan BD berbanding kawalan (0.19 ± 0.02). Tahap kolesterol serum bagi SD diberi makan BD berkurangan pada semua tahap kehadiran T (2% (0.50 ± 0.17g / l), 4%
(0.24 ± 0.14g/l), dan 8% (0.31 ± 0.06g/l) berbanding kawalan (0.79 ± 0.04g/l; p <0.05) manakala tahap glukos serum bagi SHR (50.74 ± 2.50mg/dl; 4T%) adalah lebih rendah berbanding kawalan (93.52 ± 10.83mg/dl; p <0.05). Kandungan glikogen hati yang lebih tinggi (8 T%; 3.43 ± 0.55mg/g) berbanding kawalan (1.27 ± 0.24mg/g; p <0.05) hanya didapati dalam kumpulan SHR. Tikus-tikus yang memakan diet mengandungi A menunjukkan peningkatan pengambilan makanan. Kecekapan makanan berkurangan bagi tikus SD yang memakan HSD mengandungi T. Penghadaman diet tidak terjejas apabila A hadir dalam makanan. Kecekapan pengubahan makanan adalah lebih baik pada kehadiran 2 dan 4%A (16.78±0.97 dan 15.53±1.58 masing-masing) berbanding kawalan (0% A; 27.11±2.28; p<0.05). Tahap kolesterol serum bagi BD yang diberi makan kepada SD dan SHR berkurangan dengan kehadiran T berbanding kawalan (p <0.05) manakala kehadiran A merendahkan paras glukosa pada 2% A (21.35 ± 2.29mg/dl) untuk SD ditawarkan BD berbanding kawalan (0 T%; 41.72 ± 12.46mg/dl; p <0.05). Kandungan glikogen hati meningkat dengan kehadiran A dalam diet. Biji asam jawa atau alpukat boleh menurunkan glukosa darah dan kolesterol serum dan juga meningkatkan penyimpanan glikogen di mana termasuk diet yang ditawarkan kepada tikus. Ia mungkin juga sebahagiannya mempengaruhi prestasi suapan dan pertumbuhan walaupun kesan dos bergantung.
ACKNOWLEDGEMENT

I would like to thank my supervisor, Prof Madya Dr. Ahmad Salihin Baba, who gave me this great opportunity to work under his supervision and to conduct this project. A special thank also to IPPP University Malaya for their financial support and orderliness in their work. More great thanks to the University Malaya fellowship board for their fellowship award under which this project was conducted. I would not forget to express my appreciation to the Dean of Faculty of Science, Head of Department of Biological Sciences and the staff and students of Division of Biochemistry. I would also like to thank Professor Dr. Abdul Razak of University Putra Malaysia and Professor Dr. Ramli Bin Abdullah for their assistance towards the running of the rat feeding trial. I would not fail to thank my friends and associates who have immensely in one way or another helped to see that this project went through, such as Amal Sori, Sarah Berhad, Shamrul Khairul, Bede Udechukwu, Nee Rui Yi, and Udegbe Jude, just to mention a few. I would like to thank En. Asokan and Wani, for their kind assistance on providing apparatus for this experiment. Finally I would like thank the former Vice Chancellor Professor Dr. Rafiah Salim and the present Vice Chancellor of the University Malaya, Professor Ghauth Jasmon who gave me the opportunity to work and study in the University.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xi</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Tamarind</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Cultivation</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Phytochemistry</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3 Medicinal uses</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Avocado</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Cultivation</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Phytochemistry</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 Medicinal uses</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Cholesterol</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1 Cholesterol metabolism</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2 Clinical significance</td>
<td>14</td>
</tr>
</tbody>
</table>
2.4 Carbohydrate..15
 2.4.1 Carbohydrate metabolism...16
 2.4.2 Clinical significance ...17

2.5. The relevance of using rats in human studies...18

3.0 MATERIALS AND METHODS..20
 3.1 Materials..20
 3.1.1 Animal feed..20
 3.1.2 Experimental animals...20
 3.2 Methods..20
 3.2.1 Preparation of ground tamarind and avocado seed..20
 3.2.2 Preparation of diet containing ground tamarind or avocado seed20
 3.3 Experimental procedures...21
 3.3.1 Feeding performance analysis...22
 3.4 Biochemical Analysis..23
 3.4.1 Estimation of blood glucose..23
 3.4.2 Estimation of liver glycogen content..24
 3.4.3 Enzymatic determination of total cholesterol ..24
 3.4.4 Statistical analysis...26
4.0 RESULTS..27

4.1 Feed intake and bodyweight of SD rats fed BD containing tamarind seed27
4.2 Feed intake and body weight of SD rats offered HSD containing tamarind seed.....29
4.3 Feed intake and body weight of SHR offered BD containing tamarind seed.........32
4.4 Digestibility of the diet containing tamarind seed in rats.................................35
4.5 Feed conversion efficiency of rats offered diets containing tamarind seed in rats...36
4.6 The protein efficiency ratio of diet containing tamarind seed in rats37
4.7 Serum cholesterol concentration of rats offered diets containing tamarind seed.....38
4.8 Serum glucose levels of rats offered diets containing tamarind seed39
4.9 Liver glycogen content of rats offered diets containing tamarind seed40
4.10 Feed intake and body weight of SD rats offered BD containing avocado seed....41
4.11 Feed intake and body weight of SHR offered BD containing avocado seed.....43
4.12 Feed intake and body weight of SHR offered BD containing avocado seed......46
4.13 Effect of avocado seed on the digestibility of diets in rats...............................48
4.14 Effect of avocado on Feed conversion efficiency of diets in rats.....................49
4.15 Effect of avocado on the protein efficiency ratio of diets in rats50
4.16 Serum cholesterol concentration of rats offered diets containing avocado seed....51
4.17 Effects of avocado seed on serum glucose concentration of rats offered diets.....52
4.18 Effect of avocado seed on liver glycogen content of rats offered diets53

5.0 DISCUSSION...54

5.1 Introduction..55
5.2 Effect of inclusion of tamarind on feeding and growth performance in rats........55
5.3 The effect of tamarind seed on serum cholesterol..59
5.4 The effect of tamarind seed on serum glucose level.....................................60
5.5 The effect of tamarind seed on liver glycogen content in rat.........................61
5.6 Effect of inclusion of avocado on feeding and growth performance in rats62
5.7 The effect of avocado seed on serum cholesterol level in rats.........................65
5.8 The effect of avocado seed on serum glucose level......................................66
5.9 The effect of avocado seed on liver glycogen content in rat.............................66
5.10 Possible implications of the avocado or tamarind seed on human nutrition.......66

6.0 CONCLUSIONS..69
REFERENCE..69
APPENDIX..87

LIST OF FIGURES

Figure 4.1. Feed intake of SD rats offered BD containing tamarind seed......................27
Figure 4.2. Body weight of SD rats offered BD containing tamarind seed.....................28
Figure 4.3. Feed intake of SD rats offered HSD containing tamarind seed......................30
Figure 4.4. Bodyweight of SD rats offered HSD containing tamarind seed......................31
Figure 4.5. Feed intake of SHR offered basal diet containing tamarind seed....................33
Figure 4.6. Body weight of SHR offered basal diet containing tamarind seed...............34
Figure 4.7. The digestibility of feed containing tamarind seed offered to SD and SHR35
Figure 4.8. The FCE of feed containing tamarind offered to SD and SHR.......................... 36
Figure 4.9. The PER of feed containing tamarind offered to SD and SHR..........................37
Figure 4.10 The serum cholesterol of SD and SHR fed on diets containing tamarind seed........38
Figure 4.11. The serum glucose of SD and SHR fed on diets containing tamarind seed.........39
Figure 4.12. The liver glycogen of SD and SHR fed on diets containing tamarind seed.........40
Figure 4.13. Feed intake of SD rats offered BD containing avocado seed..........................41
Figure 4.14. Body weight of SD rats offered BD containing avocado seed..........................42
Figure 4.15. Feed intake of SD rats offered HSD containing avocado seed..........................44
Figure 4.16. Body weight of SD offered HSD containing avocado seed.............................45
Figure 4.17. Feed intake of SHR offered BD containing avocado seed.............................46
Figure 4.18. Body weight of SHR offered BD containing avocado seed.............................47
Figure 4.19. The digestibility of feed containing avocado offered to SD and SHR..................48
Figure 4.20. The FCE of feed containing avocado offered to SD and SHR..........................49
Figure 4.21. The PER of feed containing avocado offered to SD and SHR..........................50
Figure 4.22. The serum cholesterol of SD and SHR fed on diets containing avocado seed......51
Figure 4.23. The serum glucose of SD and SHR fed on diets containing avocado seed...........52
Figure 4.24. The liver glycogen of SD and SHR fed on diets containing avocado seed...........52

LIST OF TABLES

Table 1: Glucose calibration curve ..23
Table 2: Proximate analysis of rat chow and fresh seeds. (%)...24
Table 3: Proximate analysis of the basal diet containing tamarind seed..............................24
Table 4: Proximate analysis of the high sucrose diet containing tamarind seed.....................25
Table 5: Proximate analysis of the basal diet containing avocado seed...............................25
Table 6: Proximate analysis of the high sucrose diet containing avocado seed.......................26
Table 7: Average feed intake per day and body weight gain of SD offered BD containing
tamarind seed ...29
Table 8: Average feed intake per day and body weight gain of SD offered HSD containing	tamarind seed ...32
Table 9: Average feed intake per day and body weight gain of SHR offered BD containing	tamarind seed ...35
Table 10: Average feed intake per day and body weight gain of SD offered BD containing
avocado seed ...43
Table 11: Average feed intake per day and body weight gain of SD offered HSD containing
avocado seed ...45
Table 12: Average feed intake per day and body weight gain of SHR offered BD containing
avocado seed ...48

ABBREVIATIONS

PS Phytosterol
DAG Diacylglycerol
NPK Nitrogen, Phosphorus and Potassium
MβCD Methyl beta-Cyclodextrin
HMG-COA 3-hydroxy-3-methylglutaryl CoA
HDL High density Lipoproteins
LDL Low density lipoproteins
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLDL</td>
<td>Very low density lipoproteins</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenine dinucleotide hydrogen phosphate</td>
</tr>
<tr>
<td>NAD</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>T</td>
<td>Tamarind seed</td>
</tr>
<tr>
<td>SHR</td>
<td>Spontaneously hypertensive rats</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague-Dawley</td>
</tr>
<tr>
<td>BD</td>
<td>Basal diet</td>
</tr>
<tr>
<td>HSD</td>
<td>High sucrose diet</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>FI</td>
<td>Feed intake</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>FCE</td>
<td>Feed conversion efficiency</td>
</tr>
<tr>
<td>PER</td>
<td>Protein efficiency ratio</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>g</td>
<td>gram (s)</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Hydrogen sulphate/Sulphuric acid</td>
</tr>
<tr>
<td>IBW</td>
<td>Initial body weight</td>
</tr>
<tr>
<td>g/kg</td>
<td>gram per kilogram</td>
</tr>
<tr>
<td>A</td>
<td>Avocado seed</td>
</tr>
<tr>
<td>wks</td>
<td>Weeks</td>
</tr>
</tbody>
</table>