
ABSTRACT

This study describes three algorithms for efficient implementations in Elliptic

Curve Cryptography (ECC). The first algorithm determines an approach of per-

forming key exchanges between two subgroups for Decomposition Problem and three

subgroups for Triple Decomposition Problem. The algorithms work by arranging

parameters using finite field group in elliptic curve E. It is a new approach which

performs core operation using multiplication of points based in ECC. The algorithm

explores computational advantages of computing cofactor number of points on E

and it is computationally infeasible to obtain if the cofactor are large enough. This

approach presents better platform in finite field E as compared to the original works

using the braid groups. The second algorithm deals with the use of Decomposition

Problem in encryption scheme for ECC. We introduce two concepts of splitting mes-

sages using the scheme in El-Gamal and Massey-Omura algorithms. The messages

can be split either before or after the user sends the messages to the receiver. The

third algorithm describes the application of Decomposition Problem to the sign-

ing and verifying digital messages in ECC. Since subexponential-time algorithm is

known for ordinary discrete logarithm problem and integer factorization problem

and not for elliptic curve discrete logarithm problem, the algorithm presented for

the digital signature in this study has substantially greater strength per key bit than

in other digital signature algorithm.
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ABSTRAK

Kajian ini menerangkan tentang tiga jenis algorithma yang digunakan dalam

penggunaan kaedah Kriptografi Lengkung Elliptik (ECC). Algorithma pertama men-

genai protokol pertukaran kekunci antara dua sub kumpulan menggunakan kaedah

Masalah Penguraian dan tiga sub kumpulan menggunakan kaedah Masalah Pengu-

raian Gandaan Tiga. Algorithma baru ini berfungsi dengan mengubah parameter

menggunakan medan finit dalam lengkung elliptik E. Ia menggunakan operasi asas

pendaraban titik berdasarkan ECC. Ia juga menunjukkan manfaat pengiraan kofak-

tor nombor dalam E yang mana ia adalah tak tersaur apabila melibatkan kofaktor

yang lebih besar. Pendekatan ini juga memberi platform yang lebih baik dari kaedah

asal yang menggunakan kumpulan Braid. Algorithma kedua pula menghasilkan

skema enkripsi berdasarkan kaedah Masalah Penguraian bagi ECC. Dua konsep

diperkenalkan untuk memisahkan mesej dengan menggunakan skema ElGamal dan

Massey Omura. Mesej tersebut boleh dipisahkan sebelum atau selepas pengguna

menghantar mesej kepada penerima. Algorithma ketiga pula mengkaji penggunaan

kaedah Masalah Penguraian untuk tandatangan digital dalam ECC. Memandan-

gkan algorithma subeksponen-masa dikenali untuk masalah diskrit log biasa dan

masalah pemfaktoran integer dan bukannya untuk masalah diskrit logarithma bagi

lengkung elliptik, maka algorithma yang diperkenalkan untuk tandatangan digital

dalam kajian ini lebih kukuh penggunaannya berbanding yang terdahulu.
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CHAPTER 1

INTRODUCTION

Cryptography becomes very essential since the demand for the information inter-

change and electronic services has been increasing with the alarming needs for se-

cured data. In order to provide safe operation for transaction of valuable information

stands a strong mathematical theory for cryptography.

The main focus in this study is to create suitable key exchange for use by cryptog-

raphy. The description and implementation of mathematics in key exchange help to

understand how the system works in practice. For securely transmitting messages,

key exchange will be presented in a process called encryption, which is a process of

changing message into some different characters that cannot be unreadable. Then

user needs to sign the documents using digital signatures to make sure trust among

the transaction.

The algorithm which is used in encryption is called cryptographic algorithm and

the systems that implement such algorithm are called cryptosystems. There are two

types of cryptosystems that implement cryptographic algorithms. They are known

as Asymmetric cryptosystem which is a combination of public and private key and

Symmetric cryptosystem which only used private key.

1.1 Literature Review

The first concept of Asymmetric cryptography was first introduced by Whitfield

Diffie and Martin Hellman (Diffie and Hellman, 1976). Since then, the study of

public-key cryptography has grown rapidly. In 1977, Rivest, Shamir and Adleman

invented the well known RSA public-key cryptosystem (Rivest et al., 1978). Most of
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the cryptography systems focus on finite fields. The finite field of the form Fq, where

q is a prime number, can be used to implement public-key cryptography algorithms.

The Diffie-Hellman (DH) key agreement was the first and the best known example

for public-key cryptography.

There are two types of finite fields that are popular in cryptography operations

which is a prime Galois Fields (GF (p)) and binary extension Galois Fields (GF (2m)).

The basis of Galois Field (GF ) related operations are integer modular arithmetic

operations which consists of basic operation in modular inversion, modular division,

modular multiplication, and modular addition or subtraction operations.

Over past 150 years before, elliptic curves have been studied extensively as al-

gebraic and geometric entities and from these studies has emerged a rich and deep

theory. In 1985, Elliptic Curve Cryptography (ECC) in Asymmetric cryptosystem

was first discovered independently by Neal Koblitz from University of Washington

and Victor S. Miller from IBM. ECC been introduced as a group of points on an

elliptic curve over finite field which can be used for encrypting data and provides

more security than the fields of the form Fq. Since then, elliptic curves have played

a significant role in public-key cryptography. ECC can provide the same level of

security as RSA cryptosystem with much smaller key size. For example, a 160-bit

ECC is as secured as 1024-bit RSA cryptosystem (Rivest et al., 1978). The use

of smaller keys gives computationally more efficient algorithm for cryptosystems as

compared to the traditional cryptographic algorithms.

ECC presents its wide use in various public-key cryptography algorithms, par-

ticularly involving discrete logarithms such as:

1. Elliptic Curve Diffie-Hellman (ECDH) which is the key exchange method in

EC.
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2. Elliptic Curve El-Gamal Cryptosystem which is the famous encryption scheme

in EC.

3. El-Gamal Digital Signature which is the signing and verification method in

EC.

As in this research, the main focus will be on the study of new cryptographic

algorithms for key agreement scheme in ECC. A well-known key exchange in ellip-

tic curve is ECDH, which is based on the additive elliptic curve group. Originally

the idea is an implementation of the famous Asymmetric cryptosystem based on

the multiplicative group modulo p, Diffie-Hellman algorithm (Diffie and Hellman,

1976). In 2005, we have been introduced by the idea of key exchange protocol based

on Decomposition Problem (DP) (Shpilrain and Ushakov, 2005). It is a presenta-

tion of the decomposition problem in non-commutative group which involves two

subgroups over the main platform. The subgroups may contain different elements

for each user. But, the presentation of the platform in this method seems to be

more complicated for implementation purposes. The elements need to denote by

certain centralizers on a platform group G which has to be non-commutative. A

year later, another extension method has been developed known as Triple Decom-

position Problem (TDP) (Kurt, 2006). TDP is a presentation of exchanging key

into three different subgroups as the main platform. By adopting these two ideas,

we use ECC as the main platform and introduced it as Decomposition Problem

in Elliptic Curve Cryptography (DPECC) (Zazali and Othman, 2009) and Triple

Decomposition Problem in Elliptic Curve Cryptography (TDPECC) (Othman and

Zazali, 2009).

We continue the study of developing algorithm based on the idea of DPECC

into encryption method. First we study the encryption in El-Gamal (1985) and

3



Massey-Omura (1983) for ECC, and do some comparison on how the algorithm may

works by splitting the message into n shares. Based on the ideas, we developed

Encryption using Decomposition Problem in Elliptic Curve Cryptography. The

working algorithm in TDPECC for encryption will not be discussed in this thesis

due to the time constraint. Further researches are needed to make sure the process

of implementation of TDPECC in encryption may works perfectly before proceeds

to signing the digital messages.

To make it useful for security, we complete the study with the implementation of

DPECC in the digital signature. A signed of electronic documents is important to

represent trust relationships. We study the previous protocol for digital signature

in ECC known as Elliptic Curve Digital Signature Algorithm (ECDSA) (Vanstone,

1992) and developed our own digital signature called Digital Signature based on

DPECC.

Useful features of ECC gives the utmost benefits to the method. The information

used to implement the code can be shared in public by the users who wish to

communicate, without deciphering key. This, has been known to others, which

makes it unnecessary to have a private meeting to agree upon such keys, and makes

the codes workable in the context of electronic communication. The method has been

widely used especially over the internet and wireless systems, where eavesdropping

is often possible.

1.2 Objective of the Research

This thesis explores the study of elliptic curves over the finite field method. Ca-

pabilities of providing shorter key lengths compare to traditional methods help in

squeezing the cryptosystem to the limited environment for real world application.
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In 2005, Decomposition Problem based on discrete logarithm protocol has been

introduced by Vladimir Shpilrain and Alexander Ushakov. It is a method of devel-

oping key exchange that involves non-commutative group to create two subgroups

containing different elements for each user. And in 2006, Yaşem Kurt produced

an extension method from DP key exchange that creates three unknown subgroups

named as Triple Decomposition Problem.

Intensive studies of both methods have shown that it may have potential use in

elliptic curves. Therefore, we proposed a new platform for both methods in elliptic

curve finite field and performs the methods in three basic studies in cryptography

which consist of key exchange, encryption and digital signature.

The objectives for each application will be represented as follows:

1. To design an alternative method of key exchange using Decomposition Problem

and Triple Decomposition Problem based on elliptic curves in cryptography.

2. To design an encryption method in ECC based on proposed method in key

exchange.

3. To design a trusted certification in digital signature for ECC from proposed

protocol in key exchange and encryption.

1.3 Scope of the Research

The point of view offered in the research consists of the study of applied cryptogra-

phy in mathematics, engineering, physics and computer science. The study begins

with the basic arithmetic operation in elliptic curves over finite field. Together

with that, we study the algorithms, architectures and the implementation of elliptic

curve in cryptography, which relates to the main parts known as key exchange, en-

cryption and digital signature. Therefore, the implementations must consist of the
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security services, authentication, confidentiality, data integrity and non-repudiation

specifically for ECC finite field. We continue the study in significant Asymmetric

cryptosystem over discrete logarithm based method in Decomposition Problem (Sh-

pilrain and Ushakov, 2005) and Triple Decomposition Problem (Kurt, 2006). From

both cryptosystem, we developed new idea based on ECC as the main platform. At

the end of the study, we test the effectiveness of the system in Matlab and Sage

software, and present it in examples to ensure the reliability of the study.

1.4 Thesis Organisation

This thesis is organized as follows. It consists of 6 chapters.

Chapter 2 introduces the basic mathematical background which needed to un-

derstand the concept followed in this thesis. This chapter highlights on the concept

of arithmetic operations in ECC, the discrete logarithm problem on an elliptic curve

and some of its properties which is compatible to be used in Decomposition Problem

and Triple Decomposition Problem.

Chapter 3 introduces the key agreement scheme and the algorithm involve in

the scheme. This chapter is a major part as it introduces the main research in

our study. We started with the study of the first and well-known Asymmetric

cryptosystem which is Diffie-Hellman Key Exchange (DHKE) scheme (1976). We

continue the study of key exchange in cryptography from Decomposition Problem

(DP) (Shpilrain & Ushakov, 2005) and Triple Decomposition Problem (TDP) (Kurt,

2006). Motivated from these schemes, we designed the protocols of DP and TDP

by using ECC as the platforms. To strengthen the study, we included examples and

calculations using Matlab. For the next chapters, we continue our key exchange

study from DP in ECC to be apply in Encryption and Digital Signature schemes.
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TDP schemes in ECC will not be discussed through the next chapters, because it

will be conducted for the future research.

Chapter 4 introduces the study of encryption involves in ECC. Encryption using

El-Gamal will be the basic study for creating the new alternative method. It is based

on DPECC that has been mentioned in the previous chapter. A full algorithm for

encryption and decryption will be included.

Chapter 5 illustrates the study of signing electronic messages for ECC. From

the basic idea of signing messages called Elliptic Curve Digital Signature Algorithm

(ECDSA), we show how we manage to use the main idea of key exchange based on

DPECC, into signing and verifying the digital messages.

Chapter 6 explains the overall works and contributions of the study in cryptog-

raphy and elliptic curves and also the recommendation for future work.
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CHAPTER 2

MATHEMATICAL BACKGROUND

Asymmetric cryptosystem also known as public-key cryptography which involves

the use of secret-key with an addition of public-key. It is an improvement from

the traditional Symmetric cryptosystem which allows two parties to exchange data

privately in the presence of possible eavesdroppers, without previously agreeing

on a shared secret. Figure 2.1 shows how asymmetric-key is based on a matched

cryptographic key pair, which is the key split into two different keys, the private-key

and public-key.

Plaintext

Encrypt

Ciphertext

private key

Private channel Public channel

Ciphertext

Decrypt

Plaintext

Ciphertext

Decrypt

Plaintext

Plaintext

Encrypt

Ciphertext

public key

Figure 2.1: Asymmetric-key Cryptography

The implementation of algorithms in Asymmetric cryptosystem make the works

much slower than Symmetric cryptosystem, but it is widely used nowadays because

of the security relies on it. One of the famous studies in Asymmetric cryptosystem

is on Elliptic Curve Cryptography(ECC). Elliptic curves are not new in the study

of number theories, but the application of it is still recent. In 1985, Professor Neal
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Koblitz, a mathematician from University of Washington, and Dr. Victor Miller,

a scientist from IBM, discovered a new system of cryptography based on elliptic

curves. The mathematical implementation using ECC is difficult to be broken, but

the application of this study is easy to implement. Therefore, the main focus in this

study will be on the study of ECC and their applications to cryptosystems. The

difficulties of the computation in ECC depends on the abilities of taking two points

on the specific curve over finite fields, applies the addition method between them,

and gets another point on the same curve. This chapter summarizes the previous

works in mathematical concept of ECC to help understand the whole cryptosystem

study.

2.1 Elliptic Curve Cryptography

ECC is a cryptosystem method which utilizes points on elliptic curves. These points

can be represented graphically in a two dimensional-plane, or a toroid (Stalling,

2006; Schneier, 1996). Elliptic curves are formed from a cubic equation in two

variables called Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (2.1)

The mathematics associated in variable x and y can be real, complex, integers,

polynomial basis, optimal normal basis or any kinds of field element (Rosing, 1998).

In this thesis, we are dealing more to the real numbers as examples and understand-

ing of the fundamentals of algorithms. Galois field (GF) over prime field (p) and

binary field (2m) are specific condition to perform with ECC.

For finite prime field, GF(p) of order p, utilizes equation 2.1 as:

y2 ≡ x3 + ax + b (mod p) where 4a3 + 27b2 6= 0 (2.2)

9



and, for finite field GF(2m), the equation 2.1 denoted as:

y2 + xy ≡ x3 + ax2 + b (mod 2m) where b 6= 0 (2.3)

Finite field is important because the study in this research employs operations

performed in finite field. Choosing the suitable finite field for ECC gives advantages

for the users to generate number of points on the curve (Rosing, 1998).

2.1.1 Mathematical background in Elliptic curves

In this section, we define the basic terminology of creating the curve, and how

the computations do involve in ECC. An elliptic curve over finite field of F is the

set of all solutions (known as points) of (x, y) where x ∈ F and y ∈ F, to an

equation of a special form, y2 = x3 + ax + b. In this section, we will proceed to the

rules of constructing the curves follow by certain properties and the mathematical

background for ECC.

To construct an elliptic curve E, we need to define the curve over a finite field

of F. Since there are finitely pairs of (x, y) over the finite field F, it shows that the

group of E(F) is finite. Finite fields are therefore denoted as GF(q) where q = pn.

The properties of elliptic curve E over finite field are as follows (Washington, 2003):

Theorem 2.1. Let E be an elliptic curve over the finite field Fq. Then E(Fq) ' Zn

for some integer n ≥ 1 or Zn1 ⊕ Zn2 for some integer n1, n2 ≥ 1 with n1 dividing

n2.

Theorem 2.2. (Hasse) Let E be an elliptic curve over the finite field Fq. Then

the order of E(Fq) satisfies |q + 1−#E(Fq)| ≤ 2
√

q.

Proof: See Appendix A.
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Theorem 2.3. Let q = pn a power of a prime p and let N = q + 1 − a. There is

an elliptic curve E defined over Fq such that #E(Fq) = N if and only if |a| ≤ 2
√

q

and a satisfied one of the following:

1. gcd(a, p) = 1

2. n is even and a = ±2
√

q

3. n is even, p 6≡ 1 (mod 3), and a = ±2
√

q

4. n is odd, p = 2 or 3, and a = ± p(n+1)/2

5. n is even, p 6≡ 1 (mod 4) and a = 0

6. n is odd and a = 0.

Theorem 2.4. Let N be an integer that occurs as the order of an elliptic curve over

a finite field Fq as in Theorem 2.3.

When N = pen1n2 with p - n1n2 and n1 | n2 (possibly n1 = 1). There is an

elliptic curve E over Fq such that E(Fq) ' Zpe ⊕ Zn1 ⊕ Zn2 if and only if:

1. n1 | q − 1 in cases (1),(3),(4),(5),(6) of Theorem 2.3

2. n1 = n2 in case (2) of Theorem 2.3

These are the only groups that occur as groups E(Fq).

2.1.2 Algebraic structure in Elliptic curve

To determine numbers of points on elliptic curve E over finite field, it must satisfies

the combination of the set and operations called algebraic structure. The following

are the fundamental definitions that satisfy the algebraic structure in elliptic curve:

groups and rings. Additional information in algebraic structure can be found in

(Forouzan, 2008).
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Definition 2.1. (Group) A group (G) is sets of elements with binary operation

• , that satisfies four properties (axioms). A commutative group, also known as

abelian group, is group in which operator satisfies the four properties for groups

plus property in commutativity. The properties are defined as follows:

Consider an elliptic curve E with points P = (xP , yP ), Q = (xQ, yQ) and R =

(xR, yR).

Closure: If P and Q are elements of G, then R = P • Q is also an element

of G. This means that the operation on any two elements in set is another

element in the set.

Associativity: If P , Q and R are elements of G, then (P • Q) • R =

P • (Q • R). It does not matter which order it apply the operation.

Commutativity: For all P and Q in G, then P • Q = Q • P .

Note: this only satisfies for a commutative group.

Identity: For all P in G, there exist an element e, called the identity

element, such that e • P = P • e = P .

Inverse: For each P in G, there exist an element P ∗, called the inverse of

P , such that P • P ∗ = P ∗ • P = e.

Theorem 2.5. The addition points of an elliptic curve E satisfies the following

properties:

1. Commutative P + Q = Q + P for all P,Q on E.

2. Existence of identity P +∞ = P for all points P on E.

3. Existence of inverse Given P on E, there exist P ∗ on E with P + P ∗ = ∞.

This point P ∗ will usually denoted −P .
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Table 2.1: Abelian Group

Algebraic structure Operation (+ −)

Abelian Group 1. Closure

G =< (+ −) or (× ÷) > 2. Associativity

3. Commutativity

4. Identity

5. Inverse

4. Associativity (P + Q) + R = P + (Q + R) for all P,Q,R on E.

In other words, the points on E form an additive abelian group with ∞ as the

identity element.

Definition 2.2. (Cyclic group, Group Generator) A group G is said to be cyclic if

there exists an element a ∈ G such that for any b ∈ G, there exists an integer i ≥ 0

such that b = ai. Element a is called generator of G. G is also called the group

generated by a. When a group is generated by a, we can write G = 〈a〉. Details

can be referred at Mao (2003).

Definition 2.3. (Ring) A ring, denoted as R with two binary operations; addition/

substraction (+ / -) and multiplication (•). For the first operation must satisfy all

five properties required for abelian group. The second operation must be satisfied

by the following:

Consider an elliptic curve E with points P = (xP , yP ), Q = (xQ, yQ) and R =

(xR, yR).

Closure: If P,Q ∈ R then R = P + Q where R ∈ R
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Associativity: R is an abelian group with respect to addition. If P,Q,R ∈

R with P + (Q + R) = (P + Q) + R

Commutativity: For all P,Q ∈ R where P •Q = Q • P

Distributivity: For all P,Q,R ∈ R where P (Q + R) = PQ + PR

Table 2.2: Ring

Algebraic structure Operation (+ −) Operation (× ÷)

Ring 1. Closure 1. Closure

R =< (+ −) and (×) > 2. Associativity 2. Associativity

3. Commutativity 3. Commutativity

4. Identity 4. Distributivity

5. Inverse

A field is a commutative ring that satisfies the elements F form an abelian group

under the operation addition (+) with 0 as the identity element. The rest of the

elements of F other than the ones that form the additive associativity form an

abelian group under the operation multiplication (•) with 1 as the identity element.

The distributive law holds for the two binary operations such that for all a, b, c ∈ F

, a(b + c) = (a • b) + (a • c) . If the number of elements is finite, the field is called a

Finite Field. The field with pn elements is called GF(pn). For every power pn of a

prime, there exists exactly one finite field with pn elements, and these are the only

finite fields.

Definition 2.4. (Field) A field is denoted by F, is a commutative ring with second

operation satisfies all five properties defined for first operation except the identity

of the first operation has no inverse.
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Table 2.3: Field

Algebraic structure Operation (+ −) Operation (× ÷)

Field 1. Closure 1. Closure

F =< (+ −) and (× ÷) > 2. Associativity 2. Associativity

3. Commutativity 3. Commutativity

4. Identity 4. Identity

5. Inverse 5. Inverse

Definition 2.5. (Finite Field) A finite field, is a field that contains a finite number

of elements, also known as Galois Fields1 and denoted by GF(q).

2.1.3 The computations in Elliptic curve

In this section, we discuss the theories of elliptic curves over Fq or GF(q), where q

is prime with characteristic greater than 3 (q > 3). We defined elliptic curve by an

equation of the form y2 = x3 + ax + b where a, b ∈ Fq and 4a3 + 27b 6= 0 (mod q).

Notice that for all points (x, y), there will be x ∈ Fq, y ∈ Fq and point at infinity.

From Figure 2.2, let say P = (xP , yP ), Q = (xQ, yQ) are points on the curve, E

given by the equation y2 = x3 + ax + b. The addition from P and Q produce the

third point R. A line, L will be drawn through the points P and Q. The intersect

line on E, will be the third point as R∗. The reflection of this point across to the

x-axis will obtain the R point. Which is P + Q = R = (xR, yR).

For elliptic curves computation, users need to know that there will be different

operations on computing the addition and double points.

1introduced by Evariste Galois, a French mathematician in 1830 in his proof of insolvability of

the general quintic equation
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Figure 2.2: Elliptic Curve E

(a) Assume that P 6= Q , and neither points is ∞. Draw a line, L through P and

Q. The slope is

m =
yQ − yP

xQ − xP

If xP = xQ, then L will be vertical. But here, just assume that xP 6= xQ. Then,

equation of L will be y = m(x − xP ) + yP . Substitute (m(x − xP ) + yP )2 =

x3 + ax + b. And arrange it as the form 0 = x3 −m2x2 + ∙ ∙ ∙ .

The three roots of this cubic correspond to the three points of intersection of

L with E. Then we obtain x = m2 − xP − xQ, y = m(x− xP ) + yP .

The reflection across the x-axis obtain R = (xR, yR), given by

xR = m2 − xP − xQ

yR = m(xP − xR)− yP

(b) For xP = xQ and yP 6= yQ. The line through P and Q is a vertical line, and
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intersect, E at ∞. Reflecting ∞ across the x-axis yields the same point ∞.

Therefore, this case P + Q =∞.

Consider the case where P = Q = (xP , yP ). When two points on a curve are

very close to each other, the line through them approximates a tangent line.

Let, line L as the tangent line through this two points. We determine the

slope m of L using implicit differentiation as below:

2y
dy

dx
= 3x2 + A, so

dy

dx
=

3x2
P + A

2yP

= m

(c) If yP = 0, then the line is vertical and P + Q = ∞ as before. Therefore,

assume that yP 6= 0. The equation of L is y = m(x− xP ) + yP as before. We

obtain the cubic equation 0 = x3 −m2x2 + ∙ ∙ ∙ . In this case, it will be double

root since L is tangent to E at P . Therefore, we obtain

xR = m2 − 2xP ,

yR = m(xP − xR)− yP

(d) Suppose that PQ =∞.The line through P and∞ is a vertical line that intersect

E in the point P ∗, and the reflection of P across the x-axis. When reflect the

P ∗ across the x-axis get R = P + Q, so we are back at the P . Therefore,

P +∞ = P for all points P on E.

2.1.4 Choosing points on the curve, #E(Fq)

In this section, we consider the rules of choosing points on an elliptic curve E. Let

an elliptic curve E : y2 ≡ x3 +ax+b (mod q) where q ≥ 5. The number of points on
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E is roughly estimated by letting x = 0, 1, ∙ ∙ ∙ , q−1 and when x3 +ax+b is a square

mod q . In order to determine the points on E, one needs to look at each possible

x ∈ Fq and then attempt to solve the equation for y. By Theorem 2.2 (Hasse), the

number of points on an elliptic curve defined over a finite field Fq, must satisfy

|N − q − 1| < 2
√

q (2.4)

N is the number of points on elliptic curve. It is important to understand the

number of points on elliptic curves as it may help to understand the nature of the

group, which is the important element in solving the discrete logarithm problem.

2.1.5 Discrete Logarithm Problem on Elliptic Curves

From the classical discrete logarithm problem: We know that x ≡ gk (mod q) for

some k, and we need to find k. For elliptic curve version: Suppose we have points

A,B on an elliptic curve E and we know that B = kA(= A + A + ∙ ∙ ∙+ A) for some

integer k. We want to find k. This might not look like a logarithm problem, but it is

clearly the analog of the classical discrete logarithm problem. Therefore, it is called

the discrete logarithm problem for elliptic curves. For the attacks on discrete

logarithm problem, see (Washington, 2003) and (Trappe & Washington, 2006).

2.1.6 Example on computing addition and doubling point on E

Let E be the curve y2 = x3 + 7x + 12 over field representation F29. To count points

on E, we make a list of possible values of x then x3 +7x+12 (mod 29), then of the

square root y of x3 + 7x + 12 (mod 29). This yields the points on E.

sage: E1=EllipticCurve(GF(29),[0,0,0,7,12])

sage: E1

Elliptic Curve defined by y^2 = x^3 + 7*x + 12 over Finite Field
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of size 29

sage: show(plot(E1), aspect_ratio=1)

Figure 2.3: Elliptic curve GF(29)

All the points are symmetric about the line y = 14.5. There are 24 points on E

which is point∞ and (1,7), (1,22), (2,11), (2,18), (6,3), (6,26), (8,0),

(10,3), (10,26), (11,12), (11,17), (13,3), (13, 26), (18, 5), (18, 24),

(21, 13), (21, 16), (25,6), (25, 23), (26,14), (26, 15), (28, 2),

(28, 27)

Therefore E(F29) has order 24.

By using Sage software, we randomly choose two different points for P and Q.

sage: P=E1.random_point()

sage: Q=E1.random_point()

sage: P,Q

((26 : 14 : 1), (6 : 3 : 1))
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From the Sage software, we know that P = (26, 14) and Q = (6, 3). By referring

section 2.1.3, compute the slope m =
yQ−yP

xQ−xP

sage: F29=GF(29)

sage: F29((3-14)/(6-26))

2

Since the xP 6= xQ, we obtain the addition for P and Q using Matlab software:

>> addell([26, 14],[6,3],7, 12, 29)

ans =

1 7

Therefore, P + Q = R = (xR, yR) = (1, 7). And we can also obtain the double

operation for P or Q as below:

>> multell([26, 14],2,7,12,29)

ans =

2 11

>> multell([6,3],2,7,12,29)

ans =

13 3

The result for both points are 2P = (2, 11) and 2Q = (13, 3).
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Figure 2.4: All the computation points on GF(29)

2.2 Summary

This chapter presented the necessary mathematical background required for this

thesis. The security in ECC relies on computing the mathematics using public-key

created by multiplying two large primes over GF. This makes the computational

cost much higher compared to the modular exponentiation such as RSA (Rivest,

Shamir & Adleman, 1978).

Therefore, we continue the study on how to pick suitable elliptic curves so that

the order is trivial and the methods are vulnerable to provide equivalent result while

using fewer bits in ECC. With the complete series of theories, we continue the next

chapters by purposing algorithms for ECC in their key exchanges, encryption and

digital signing documents.
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CHAPTER 3

KEY AGREEMENT

Nowadays, the alarming advancement of technologies causes high requirement for

secure communication. Due to the fact that algorithms using Asymmetric cryp-

tosystems are much slower, most of the cryptosystems in the market are still based

on Symmetric cryptosystems. But the communication may only work privately and

limited only between authorized users. Therefore, we hope to improve more onto the

Asymmetric cryptosystem especially on the study of key agreement scheme. Key

agreement is a scheme that allows users to exchange and establish keys even under

unsecured channel. It is schemes that are based on public-key which is initiate a

conversation between two introduced users.

3.1 Introduction to Key Agreement

In the research of key agreement, we start the study with the most known key

agreement scheme, the Diffie-Hellman Key Exchange (DHKE). The scheme was

first published by Whitfield Diffie and Martin Hellman in 1976. It is a mathematical

algorithm that allows two users to generate an identical shared secret key on both

systems, even though those users may never have communicated with each other

before. The scheme is based on the assumption that the discrete logarithm problem

is intractable within a cyclic group, a passive adversary is not able to calculate or

compute any information about the key, K. The basic steps for DHKE initiate a

process between two users under the group of (G, •). It is a group closed under the

multiplication operation and g ∈ G is an element of the order n, both parameters

(G, •) and g are published in public domain. The two users can be referred as Alice
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and Bob, which is both of them chooses random integer numbers a and b within

the interval [0, n− 1] as the private-key. They create their public-key by computing

A = ga and B = gb and exchange to each other to be multiply with their private-key.

Alice obtains K = Ba and Bob obtains K = Ab. From here, we know that both

users have calculated same key using DHKE which is K = gba = gab. Further details

of this scheme can be referred at Mel & Baker (2005) and Forouzan (2008).

We continue the study with the implementation of elliptic curves as the platform

in generating the key exchange. It contains much more difficult set of problems for

generating public and private keys, compare too many of the algorithms over the

past decade. By using the combination discrete logarithm problem in ECC and

DHKE, it is believed will make public key encryption more secure. The idea of the

key exchange is known as Elliptic Curve Diffie Hellman (ECDH). For the basic steps

in this protocol, we also represent between two users, Alice and Bob. They choose

same elliptic curve E of the form y2 ≡ x3 + ax + b (mod p) and a public base point

Q ∈ E. Alice and Bob will choose a random integer a and b. It will be their private

keys. Both of them are computing scalar multiplication to create their public key

points, A = aQ and B = bQ. Due to the discrete logarithm problem of elliptic

curve, it is computationally infeasible to compute a and b even though A and B are

public. Then, both users compute multiplication from each opponents’ public key

with their private keys to obtain K = aB and K = bA. Any intruders will not able

to compute the shared K as the secret keys a and b are not known. For more details

for ECDH method can be referred at Washington (2003).

In 2005, a new key exchange method in cryptography has been introduced by

Vladimir Shpilrain and Alexander Ushakov, it is known as Decomposition Problem

(DP). The method is a study of exchanging keys between two different subgroups
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by arranging certain parameters, depending on the particular group of G, which

needs to be non-commutative group and denoted by the centralizer g. The method

represent two ideas that improve the security of the key establishment which is,

(a)The method conceal one of the subgroup A,B, and (b)The method make the

user, Alice chooses her left private key as a1 from one of the subgroup A,B and her

right private key a2 from the other subgroup. The same step goes to Bob. Here

is the basic description of the protocol. Let say, the first user, Alice chooses an

element in a1 ∈ G of length l, and a subgroup of CG(a1), then she publishes its

generators A = {α1, . . . , αk}. Bob also repeat the same, he chooses an element

b2 ∈ G of length l, chooses a subgroup of CG(b2), and publishes its generators

B = {β1, . . . , βm}. Then Alice chooses a random element a2 from < β1, . . . , βm >

and sends the normal form PA = N(a1wa2) to Bob. Similarly, Bob chooses a

random element b1 from < α1, . . . , αk > and sends the normal form PB = N(b1wb2)

to Alice. The key exchange can be obtain when Alice computes KA = a1PBa2 and

Bob computes KB = b1PAb2. Since a1b1 = b1a1 and a2b2 = b2a2, so K = KA = KB,

will be the shared key. Further details on this protocol can be referred at Shpilrain

& Ushakov (2005).

Continue from the idea in DP, another new extension of key exchange prim-

itive has been introduced by Yeşem Kurt (2006). This scheme known as Triple

Decomposition Problem (TDP), relies on decomposing an element into three parts,

where all are unknown. This seems to be harder problem since it requires quadratic

systems to be solved instead of linear systems. The idea is to hide each of these

components by multiplying them by random elements in subgroups. The crucial

part is that one of the components is multiplied by random elements both on the

right and on the left. The main difference of this scheme from Diffie-Hellman key
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exchange is that in latter systems a known element is multiplied by elements on

both sides whereas on this system an unknown element is multiplied by element

on both sides. This ruins the linear relation between the public key and the pri-

vate key. To find the private key or more accurately a key that works as a private

key, an adversary has to decompose an element into three elements to satisfy cer-

tain conditions (Kurt, 2006). Here are the basic steps on describing the protocols.

We have two users, Alice and Bob. Alice picks two elements x1, x2 ∈ G, chooses

subsets Sx1 and Sx2 of C(x1) and C(x2) respectively, and publishes Sx1 and Sx2 .

Bob also picks two elements y1, y2 ∈ G chooses subsets Sy1 and Sy2 of C(y1) and

C(y2) respectively, and publishes Sy1 and Sy2 . Then Alice chooses random elements

a1 ∈ G, a2 ∈ Sy1 , and a3 ∈ Sy2 . (a1, a2, a3) is her private key. She sends Bob her

public key (u, v, w) where u = a1x1, v = x−1
1 a2x2, w = x−1

2 a3. Bob chooses random

elements b1 ∈ Sx2 , b2 ∈ Sx1 , and b3 ∈ G. (b1, b2, b3) is his private key. He sends Alice

his public key (p, q, r) where p = b1y1, q = y−1
1 b2y2, w = y−1

2 b3. Therefore, Alice

computes a1pa2qa3r = a1b1a2b2a3b3 and Bob computes ub1vb2wb3 = a1b1a2b2a3b3.

For further details on the security and platform group G in this protocol, refer to

(Kurt, 2006).

Since the idea of DP and TDP in cryptography still recent, we decided to continue

the research by developing the same idea with implementing the elements from

both methods using ECC. We want to find out that the concepts of developing key

exchange ideas may also works in ECC because generating elements using points in

ECC is easy to work with. But for unknown users, they will not able to compute

the inverse within the reasonable amount of time because the security of ECC lies

between solving the discrete logarithm problem within it (Mel & Baker, 2005). As

the main research in this thesis, we will present two ideas of key exchange in ECC
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by describing the algorithms within the related fields, and to strengthen the working

method, we also included examples using mathematical programming Matlab and

Sage.

3.2 Decomposition Problem in Elliptic Curve Cryptography

The operation of public key cryptographic scheme in Decomposition Problem in

Elliptic Curve Cryptography (DPECC) involves arithmetic operation on an elliptic

curve over a finite field determined by some domain parameter. In this section, we

describe the elliptic curve parameters over finite field of order q denoted by Fq. ECC

domain parameters over Fq are:

An indication field representation (FR) of the method used to representing field

elements ∈ Fq, two field elements d and e ∈ Fq, that specifies the equation of the

elliptic curve E over Fq (i.e., y2 = x3 + dx + e for characteristic q > 3),

Assume that there will be two users involved in this key agreement; Alice and Bob,

have no prior contact and the only communication channel between them is public.

They both agreed on a same public point Q ∈ [1, n − 1] on E(Fq), a prime n

is the order of Q, and the different cofactor picks from each users r or s where

r/s = #E(Fq)/n. #E(Fq) is the number of points on elliptic curve. And they will

follow this sequence of steps for DPECC:

1. Alice chooses a1 = (xa1 , ya1) as her private key from group of G on E(Fq). She

picks #E(Fq)/n = r as the cofactor to generate her own subgroup. She uses

a1 to generates elements through the set. Then she gathers the points to be

A = {α1, α2, . . . , αr−1}. She sends A to Bob.

2. Bob chooses b2 = (xb2 , yb2) as his private key from group of G on #E(Fq). He

picks #E(Fq)/n = s as the cofactor to generate his own subgroup. He uses
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b2 to generate elements through the set. Then he gathers the points to be

B = {β1, β2, . . . , βs−1}. He sends B to Alice.

3. Alice gets subgroup of points B from Bob. From the list of < β1, β2, . . . , βs−1 >,

she picks one point to be her private key and defines it as a2. Then she multi-

plies it with public point Q and her first private key she chooses a1, to obtain

PA = a1Qa2 (3.1)

Then she sends PA to Bob.

4. Bob gets subgroup of points A from Alice. From the list of < α1, α2, . . . , αr−1 >,

he picks one point to be his other private key and defined it as b1. Then he

multiplies it with public point Q and his private key he chooses before b2, to

obtain

PB = b1Qb2 (3.2)

Then he sends PB to Alice.

5. Alice obtains PB from Bob, she multiplies it with her private key a1, a2 and

defines it as:

KA = a1PBa2 (3.3)

6. Bob obtains PA from Alice, he multiples it with his private key b1, b2 and

defines it as:

KB = b1PAb2 (3.4)
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Since the curve E(Fq) is cyclic, so that we will have a1a2 = a2a1 and b1b2 = b2b1.

Their shared key will be defined from:

KA = a1PBa2 = a1b1Qb2a2 (3.5)

KB = b1PAb2 = b1a1Qa2b2 (3.6)

∴ KA = KB = K, it shows that they shared the same key. Table 3.1 shows the

summary of this method.
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3.2.1 Summary of DPECC

Table 3.1: Summary of DPECC

Public: E : y2 = x3 + dx + e, Q ∈ [1, n− 1]

Alice Bob

Chooses private key a1 = (xa1 , ya2) Chooses private key b2 = (xb2 , yb2)

She picks r = #E(Fq)

n
as cofactor He picks s = #E(Fq)

n
as cofactor

generates A = {α1, α2, . . . , αr−1} generates B = {β1, β2, . . . , βs−1}

Sends A −→

←− Sends B

From subgroup of B, she picks From subgroup of A, he picks

a2 = {β1, β2, . . . , βs−1} and b1 = {α1, α2, . . . , αr−1} and

compute PA = a1Qa2 compute PB = b1Qb2

Sends PA −→

←− Sends PB

Multiply PB with a1, a2 to obtain Multiply PA with b1, b2 to obtain

KA = a1PBa2 KB = b1PAb2

Both obtain: K = KA = KB = a1b1Qb2a2 = b1a1Qa2b2
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3.2.2 Example of DPECC

Defined the public domain:

q as the large prime number on E : 101

E as the elliptic curve: y2 = x3 + 8x + 1 with d = 8, e = 1

Generate E as follows: E : y2 ≡ x3 + dx+ e (mod 101) where d = 8, and

choose point Q = (11, 39) to make sure point Q lie on E, then compute:

(39)2 ≡ (11)3 + (8)(11) + e (mod 101)

e ≡ 102 (mod 101)

≡ 1 (mod 101)

Q as the public point on E: Q = (11, 39)

n as an integer: n = 97

>> randprime(101)

ans =

97

Alice and Bob chooses r and s as their integer cofactor number where is

r/s = #E(F101)
97

sage: E_101=EllipticCurve(GF(101),[0,0,0,8,1])

sage: E_101

Elliptic Curve defined by y^2 = x^3 + 8*x + 1 over Finite Field

of size 101

sage: show(plot(E_101), aspect_ratio=1)
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Figure 3.1: Elliptic Curve defined by y2 = x3 + 8x + 1 over Finite Field of size 101

1. Alice chooses a1 = (0, 1) as her private key, and random r = 19, then she

generate subgroup of points from 19(0, 1)

>> multsell([0,1], 19, 8, 1, 101)

2. She gathers the points as her subgroup called A = {(16, 36), (41, 60), . . . , (71, 43)}

She sends subgroup of A to Bob.

3. Bob chooses b2 = (4, 81) as his private key, and random s = 59, then he

generate subgroup of points from 59(4, 81)

>> multsell([4,81], 59, 8, 1, 101)

4. He gathers the points as his subgroup called B = {(3, 70), (4, 20), . . . , (99, 52)}

He sends subgroup of B to Alice.

5. From subgroup B, Alice chooses a2 = (73, 34). Then calculates:

PA = a1Qa2 = (0, 1) ∗ (11, 39) ∗ (73, 34)

>> addell([0,1], addell([11,39],[73,34], 8, 1, 101), 8, 1, 101)

ans =

41 60
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PA = (41, 60). Then sends PA to Bob.

6. From subgroup A, Bob chooses b1 = (88, 51). Then calculates:

PB = b1Qb2 = (88, 51) ∗ (11, 39) ∗ (4, 81)

>> addell([88,51], addell([11,39],[4,81], 8, 1, 101), 8, 1, 101)

ans =

13 22

PB = (13, 22). Then sends PB to Alice.

7. Alice calculates a1PBa2

>> addell([0,1], addell([13,22],[73,34], 8, 1, 101), 8, 1, 101)

ans =

41 41

a1PBa2 = (41, 41) = KA

8. Bob calculates b1PAb2

>> addell([88,15], addell([41, 60],[4,81], 8, 1, 101), 8, 1, 101)

ans =

41 41

b1PAb2 = (41, 41) = KB

∴ K = (41, 41) = KA = KB
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3.3 Triple Decomposition Problem in Elliptic Curve Cryptography

Triple decomposition problem in ECC (TDPECC) is a protocol of decomposing

into three elements for key exchange. We were adopting the idea from previous

protocol by Yaşem Kurt (Kurt, 2006). As we have mentioned in section 3.2, the

method generates certain subgroup, by picking random elements and multiplies it

with three components under certain conditions. This method will break the linear

relation between the public and private key (Kurt, 2006).

By referring the protocols in decomposition problem in elliptic curve (Zazali and

Othman, 2009), we extend the ideas to the triple decomposition problem in elliptic

curve (Othman and Zazali, 2009). Here, we consider the two users, Alice and Bob,

both agreed on the same elliptic curve parameter over finite field of order q denoted

by Fq. ECC domain parameters over Fq are: An indication FR of the method used

to represent field elements ∈ Fq, two field elements d and e ∈ Fq that specifies the

equation of elliptic curve E over Fq (i.e., y2 = x3 + dx + e for characteristic p > 3),

Assume that they agree on the same based point Q = (xQ, yQ) on E(Fq), and

prime n which is the order of Q, and an integer h = #E(Fq)/n as the cofactor that

generates list of points on the curve E(Fq) by multiplying with Q. From this list of

points, they do the following steps:

1. Alice picks her own points from the list, and creates a subset of points for

herself known as A =< A1, A2, A3, X1, X2 >.

2. Bob picks his own points from the list, and creates a subset of points for

himself known as B =< B1, B2, B3, Y1, Y2 >.

3. From the subset of points, Alice chooses random points to get a1 ∈ A1, a2 ∈ A2,

a3 ∈ A3, x1 ∈ X1, x2 ∈ X2. Then she computes u = a1x1, v = x−1
1 a2x2,
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w = x−1
2 a3. She makes (a1, a2, a3) as her private key and publishes (u, v, w).

4. Bob does the same, from the subset of points, he chooses random points to

get b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1, y2 ∈ Y2. Then he computes p = b1y1,

q = y−1
1 b2y2, r = y−1

2 b3. He makes (b1, b2, b3) as his private key and publishes

(p, q, r).

5. Alice gets (p, q, r) from Bob, and multiplies with her private key to obtain

a1pa2qa3r = a1(b1y1)a2(y
−1
1 b2y2)a3(y

−1
2 b3) = a1b1a2b2a3b3 (3.7)

6. Bob gets (u, v, w) from Alice and multiplies with his private key to obtain

ub1vb2wb3 = (a1x1)b1(x
−1
1 a2x2)b2(x

−1
2 a3)b3 = a1b1a2b2a3b3 (3.8)

Hence it shows that both agreed on the same shared key K = a1b1a2b2a3b3. Table

3.2 shows the summary of this method.
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3.3.1 Summary of TDPECC

Table 3.2: Summary of TDPECC

Public: Q ∈ E(Fq), cofactor h = #E(Fq)n

Alice Bob

Creates her own subset of Creates his own subset of

A =< A1, A2, A3, X1, X2 > B =< B1, B2, B3, Y1, Y2 >

Chooses random points to get Chooses random points to get

a1 ∈ A1, a2 ∈ A2, a3 ∈ A3,x1 ∈ X1, b1 ∈ B1, b2 ∈ B2, b3 ∈ B3, y1 ∈ Y1,

x2 ∈ X2 y2 ∈ Y2

Computes: Computes:

u = a1x1, v = x−1
1 a2x2, w = x−1

2 a3 p = b1y1, q = y−1
1 b2y2, r = y−1

2 b3

(a1, a2, a3) as private key and (b1, b2, b3) as private key and

publishes (u, v, w) publishes (p, q, r)

Gets (p, q, r) and computes Gets (u, v, w) and computes

KA = a1pa2qa3r KB = ub1vb2wb3

Both obtain: K = KA = KB = a1b1a2b2a3b3
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3.3.2 Example of TDPECC

Defined the public domain:

p as the large prime number on E : 29

E as the elliptic curve: y2 = x3 + 24x + 13 with d = 24, e = 13

Generate E as follows: E : y2 ≡ x3 + dx+ e (mod 29) where d = 24, and

choose point Q = (1, 3) to make sure point Q lie on E, then compute:

(3)2 ≡ (1)3 + (24)(1) + e (mod 29)

e ≡ −16 (mod 29)

≡ 13 (mod 29)

Q as the public point on E: Q = (1, 3)

n as an integer: n = 100

Alice and Bob chooses r as their integer cofactor number where is r =

#E(F29)
100

sage: E_29=EllipticCurve(GF(29),[0,0,0,24,13])

sage: E_29

Elliptic Curve defined by y^2 = x^3 + 24*x + 13 over Finite Field

of size 29

sage: show(plot(E_29), aspect_ratio=1)

1. Generate 100Q using Matlab to have points on finite field F29.

>> multsell([1,3],100,24,13,29)
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Figure 3.2: Elliptic Curve defined by y2 = x3 + 24x + 13 over Finite Field of size 29

2. Alice generates her own subset from the list of points on F29.

< A >= (A1, A2, A3, X1, X2)

A1 = {(11, 10), (23, 28), (20, 24)}

A2 = {(4, 17), (15, 23), (18, 10)}

A3 = {(15, 6), (0, 10), (4, 17)}

X1 = {(19, 17), (1, 3), (0, 19)}

X2 = {(∞,∞), (23, 1), (1, 26)}

3. Bob generates his own subset from the list of points on F29.

< B >= (B1, B2, B3, Y1, Y2)

B1 = {(18, 10), (1, 26), (11, 10)}

B2 = {(11, 19), (23, 28), (1, 3)}

B3 = {(23, 1), (20, 24), (18, 19)}

Y1 = {(11, 10), (19, 22), (∞,∞)}

Y2 = {(15, 23), (19, 7), (4, 17)}

4. Alice chooses a1 = (23, 28) ∈ A1, a2 = (4, 17) ∈ A2, a3 = (0, 10) ∈ A3, x1 =

(1, 3) ∈ X1, x2 = (1, 26) ∈ X2

5. Bob chooses b1 = (11, 10) ∈ B1, b2 = (11, 19) ∈ B2, b3 = (18, 19) ∈ B3, y1 =
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(19, 22) ∈ Y1, y2 = (15, 23) ∈ Y2

6. Alice computes: x1 = (1, 3), x−1
1 = (1, 2) and x2 = (1, 26), x−1

2 = (1, 3)

u = a1x1 = (23, 28) ∗ (1, 3)

>> addell([23,28],[1,3],24,13,29)

ans =

0 10

v = x−1
1 a2x2 = (1, 26) ∗ (4, 17) ∗ (1, 26)

>> addell([1,26],addell([4,17],[1,26],24,13,29),24,13,29)

ans =

20 24

w = x−1
2 a3 = (1, 3) ∗ (0, 10)

>> addell([1,3],[0,10],24,13,29)

ans =

19 7

7. Bob computes: y1 = (19, 22), y−1
1 = (19, 17) and y2 = (15, 23), y−1

2 = (15, 6)

p = b1y1 = (11, 10) ∗ (19, 22)

>> addell([11,10],[19,22],24,13,29)

ans =

23 1

q = y−1
1 b2y2 = (19, 7) ∗ (11, 19) ∗ (15, 23)

>> addell([19,7],addell([11,19],[15,23],24,13,29),24,13,29)

ans =

0 19
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r = y−1
2 b3 = (15, 6) ∗ (18, 19)

>> addell([15,6],[18,19],24,13,29)

ans =

18 10

8. Alice gets (p, q, r) and calculate:

a1pa2qa3r = (23, 28) ∗ (23, 1) ∗ (4, 17) ∗ (0, 19) ∗ (0, 10) ∗ (18, 10)

>> addell([23,28],addell([23,1],[4,17],24,13,29),24,13,29)

ans =

4 17

>> addell([4,17],addell([0,19],[0,10],24,13,29),24,13,29)

ans =

4 17

>> addell([4,17],[18,10],24,13,29)

ans =

0 10

9. Bob gets (u, v, w) and calculate:

ub1vb2wb3 = (0, 10) ∗ (11, 10) ∗ (20, 24) ∗ (11, 19) ∗ (19, 7) ∗ (18, 19)

>> addell([0,10],addell([11,10],[20,24],24,13,29),24,13,29)

ans =

19 22

>> addell([19,22],addell([11,19],[19,7],24,13,29),24,13,29)

ans =

11 19
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>> addell([11,19],[18,19],24,13,29)

ans =

0 10

From the calculation using Matlab, we show that they obtain the same shared

keys of K = a1pa2qa3r = ub1vb2wb3 = (0, 10)

3.4 Implementation issues

Our main goal in this research is to do some modification on the previous method in

DP and TDP, so that it appears to be more secure, at least from the choices of the

platform. Generally, we know that the security relies in ECC is based on solving the

discrete logarithm problem. Therefore, we use ECC as the modification platform

for DP and TDP.

The security in DPECC is apparently based on computing the cofactor number

of points on the curve for r or s. It is computationally infeasible to obtain, if r or s

large enough. Before arranging any attacks, the adversary would have to compute

the number of points on elliptic curve by solving the discrete logarithm problem

because r/s = #E(Fq)/n.

As in TDPECC, the motivation of implementing the method in ECC is to reduce

the problem of solving quadratic equations in generating elements for the protocol.

In previous protocol, the system said to be at less capable from being altered by

standard attack, but in this system, we can said that, it is very difficult to performing

the attack since the basis of ECC is to solving the discrete logarithm problem for

elliptic curves. The computation in this scheme seems to be longer because it

employs steps of dividing keys into three different parts.

In the next chapters, we will present the idea of using the shared key, K (from
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DPECC). Chapter 4, we will show how the computation of shared key K in the

secured encryption method for ECC. And in Chapter 5, we will show how the key

K could be implemented in signing digital messages. But, we do not discuss the

shared key from TDPECC in the next chapters since certain implementation issues.

We will continue the study of TDPECC in further research, thus it may also works

in encryption and digital signing.
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CHAPTER 4

ENCRYPTION IN CRYPTOGRAPHY

Encryption is the process of converting original information (plaintext) to another

form of information (ciphertext), so that it will be readable to the authorized users

only. In order to make the process useful, encryption needs keys to make it accessi-

ble. The basic idea in this process is the keys, which comes in pairs of an encryption

and decryption keys. Encrypting messages can only be decrypted with the private-

key. The private-key may only be known to the owner and must be kept secret,

and it is infeasible to compute the private-key from public-key. Encryption algo-

rithm determines how simple or complex the transformation process of the messages

(or data). Encryption provides confidentiality, integrity and authentication of the

information transferred between the users.

4.1 Introduction to Encryption

In this chapter, we focus on the study of asymmetric encryption schemes. We start

with the encryption method introduced by Taher ElGamal in 1984. He was the first

mathematician to propose asymmetric cryptosystem based on discrete logarithm

problem. He proposed two distinct cryptosystems, one for encryption and the other

for digital signatures (ElGamal, 1984), well before the elliptic curves were introduced

in cryptography. The El-Gamal public-key encryption scheme used Diffie-Hellman

key agreement protocol as the key transfer mode. The El-Gamal encryption is

based on the same principle as Diffie-Hellman key exchange scheme which is a cyclic

multiplicative group modulo some prime number. Here, we describe the El-Gamal

encryption in ECC. The transaction is between two users, Alice and Bob who want
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to communicate between each other over an insecure communication network. First,

Bob chooses an elliptic curve E over a finite field Fq, he chooses a point Q ∈ E(Fq),

which usually the order is a large prime N . He chooses secret integer s ∈ [1, N −

1] and computes B = sQ, another point on the curve. The public key becomes

(E(Fq), N,Q,B). Alice, who has a message M which embeds in the point on E.

For the encryption, Alice downloads Bob’s public key, then she changes the messages

into a point M ∈ E(Fq). Alice chooses a secret random integer k and computes

M1 = kQ. Then, she computes M2 = M + kB and sends pair of (M1,M2) to

Bob. To decrypt the messages, Bob calculates M = M2 − sM1. This decryption

works because M2 − sM1 = (M + kB) − s(kQ) = M + k(sQ) − skQ = M . We

can see that Bob’s secret integer s allows him to decrypt the message properly.

Also, the assumption that is hard to compute in the discrete logarithm problem for

elliptic curves gives an important responsibility. This is because, if there are any

eavesdroppers who could solve the discrete logarithm problem, they could calculate

s and therefore could retrieve the message M . For further details in this algorithm,

refer ElGamal (1984).

We continue the study of encryption in El-Gamal by exploring a method of split-

ting messages introduced by Levent Ertaul and Weimin Lu in 2005. Split encryption

is a method of splitting messages into n pieces before proceeding to using the El-

Gamal encryption method. The messages can be split either before or after they

send the messages to the receiver (Ertaul and Lu, 2005). They manage to use ECC

as the platform to perform the split encryption. Suppose there will be a point Q

on an elliptic curve E(Fq), with the order is a large prime N . Bob’s private key

is nB ∈ [0, N − 1] and compute the public key as KB = nBQ. The public key

becomes (E(Fq), N,Q,KB). For encryption, Alice converts the secret message, M
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to a point PM on the elliptic curve. Then, she uses El-Gamal encryption to get

P1 = rQ and P2 = PM + rKB. By letting P2 = (x2, y2), she chooses two random

polynomials f1, f2 of degree k − 1 ∈ E(Fq) such that f1(0) = x2, f2(0) = y2, and

split x2, y2 into n shares respectively. Then, Alice sends P1 and n shares of P2(x2, y2)

with their corresponding indices to Bob. To decrypt the messages, Bob recovers x2

and y2 and calculates the point PM = P2 − nBP1. This decryption works because

P2 − nBP1 = (PM + rKB) − nB(rQ) = PM + r(nBQ) − nBrQ = M . Then Bob

converts the point PM to the secret message, M . Instead of sending n pieces of

x2, y2 to Bob, Alice chooses a random k − 1 degree polynomial f with a0 = x2 and

a1 = y2. If they want to share more than one secret, they need to use Vandermonde

matrix (Washington, 2003). According to the idea by Ertaul and Lu (2005), users

may change the message M in two different way, (1) split before the encryption:

Alice computes the n shares of secret message M first, then converts it to points

Pt ∈ E(Fq), or (2) split after the encryption: Alice converts secret message M into

a point Pt first, then she splits the point Pt into n shares of secret, let say we have

n = 3 so that the messages split into Pt1 , Pt2 , Pt3 . For more details on this protocol,

refer Ertaul & Lu (2005).

Before the El-Gamal, Massey-Omura scheme was introduced in 1983 by James

Massey and Jim K. Omura, it is an encryption scheme based on three stages encryp-

tion protocol from the improvement of Shamir three-pass protocol (around 1980s).

The Massey-Omura uses exponentiation in the Galois field for both encryption and

decryption algorithm. It is schemes that can multipass protocol from key sharing,

and it is suitable to prevent from man-in-the-middle attack. This method uses expo-

nential in Galois field, GF(q) for both encryption and decryption. This is how the

procedure be implemented in mathematical part. Let say we have, Alice and Bob
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agree on an elliptic curve E over a finite field Fq such that discrete logarithm problem

is hard in E(Fq). Let N = #E(Fq). For encryption Alice represents her message

as a point M ∈ E(Fq). She chooses a secret integer mA with gcd(mA, N) = 1, com-

putes M1 = mAM , and sends M1 to Bob. Then, Bob chooses a secret integer mB

with gcd(mB, N) = 1, computes M2 = mBM1, and sends M2 to Alice. To decrypt

the message, Alice calculates m−1
A ∈ ZN and computes M3 = m−1

A M2. Then she

send M3 to Bob. Bob calculates m−1
B ∈ ZN and computes M4 = m−1

B M3. Therefore,

he know that M4 = M . This algorithm uses single elliptic curve as a platform,

which is known. It foils the man-in-the-middle-attack, because it requires lot of

communication. For further details how to convert message into points in elliptic

curve, refer (Washington, 2003). For more details on this protocol, refer Massey &

Omura (1983).

Here is the same idea as in El-Gamal which is the concept of splitting messages

using Massey-Omura scheme by Ertaul & Lu (2005). Here is how it works. Let N

be the order of Eq(a, b) and we have two users, Alice and Bob. They choose secret

point nA and nB respectively, such that nA (mod N) and nB (mod N). n−1
A , n−1

B is

an integer representing the inverse of nA, nB. So we will have n−1
A nA ≡ 1 (mod N)

where n−1
A nA = 1 + kN for some k, which also implies to nB. The group E(Fq)

has order N , referring the Lagrange’s theorem, it implies that NR = ∞ for any

point R ∈ E(Fq). For encryption, Alice wants to send message M to Bob. She

splits the message into n shares of secret message Mt which is 1 ≤ t < N . She

converts the secret message Mt into a point Pt as on the elliptic curve. Then create

Pt1 = nAPt and sends to Bob. Bob sends back Pt2 = nBPt1 to Alice. To decrypt

the message Alice sends back Pt3 = (n−1
A (mod N))Pt2 to Bob. Bob decrypts the

message using the inverse of his secret key, n−1
B and obtain (n−1

B (mod N))Pt3 = Pt.
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When Bob receives the k shares message from Alice, he finally gets the message PM

and converts PM to the secret message M . The same concept goes to this method

which is the messages can be split either before or after the user send the messages

to the receiver. Since it is requires four transmissions between Alice and Bob, it

have been found that it was not an efficient solution for threshold cryptosystems

(Washington, 2003). Further details for this protocol also can be referred at Ertaul

& Lu (2005).

With the study of El-Gamal, Massey-Omura and their split encryption in ECC,

we continue the research by proposing an alternative method for encryption using

the idea of decomposition keys in ECC (DPECC) from Chapter 3. This new al-

gorithms are motivated from the techniques of designing encryption for ECC using

El-Gamal and Massey Omura. Decomposition problem in Elliptic Curve Cryptogra-

phy (DPECC) is a method of creating key exchange using two different subgroups,

depending on the finite field group in E(Fq). By employing the hash function, the

messages will be split into n shares before proceeding to the encryption. We only

concentrate on the encryption study of DPECC in El-Gamal and Massey Omura

because DPECC were developed from the use of two different secret/public keys.

To strengthen the idea, there also an example included for the encryption concept

in El-Gamal using the keys in DPECC.

4.2 El-Gamal encryption based on DPECC

Suppose that we have a point Q on an elliptic curve E(Fq) which usually the order

is a large prime N .

From the method of generating keys in DPECC (Chapter 3), let Bob’s private

key as points of b1, b2 ∈ Fq and the public key is a combination of Alice’s subgroup,
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and public point of Q which is K = KB = b1a1Qa2b2. The domain parameters in

this method are (E(Fq), N,Q,K = KB).

Encryption:

1. Alice converts the secret message M to a point PM on the elliptic curve.

2. Alice chooses secret random integer r and using her private key a1, a2, she

computes P1 = ra1Qa2 and P2 = PM + rKB.

3. Let P2 = (x2, y2) by choosing two random polynomial f1, f2 of degree k−1 ∈ Fq

such that f1(0) = x2 and f2(0) = y2 and split x2, y2 into n shares of secret

message respectively. Alice sends P1 and n shares of P2(x2, y2) with their

corresponding to Bob.

Decryption:

1. Bob recovers n shares of x2, y2. Then he decrypt P1 with his private key.

2. He retrieves the message with this step:

P2 − b1P1b2 = (PM + rKB)− b1(ra1Qa2)b2

= PM + r(a1b1Qb2a2)− b1(ra1Qa2)b2

= PM

3. Convert point PM to get message, M .

From this method, we can say that, there will be two different Alice’s and Bob’s

private key will be used to decrypt the message properly. Note that that the difficulty

of obtaining Alice’s and Bob’s private key from the encrypted message is based on

the discrete logarithm problem in ECC.
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4.2.1 Example of El-Gamal encryption based on DPECC

This is an example of how Alice would send a message to Bob using the key exchange

of DPECC that we calculate from previous chapter (section 3.2.2).

Bob chooses E to be y2 = x3 + 8x + 1 defined over F101 and Q to be (11, 39) ∈

E(F101). Bob’s public point PB = (13, 22), then he chooses s = 59 (using rand-

prime.m) and calculates

sPB = 59(13, 22) = (26, 98)

>> multell([13,22],59,8,1,101)

ans =

26 98

To send a message to Bob, Alice proceeds as follows.

1. Alice obtains Bob’s public key and encodes her message as PM = (4, 20) ∈

E(F101).

2. Alice chooses her secret integer r = 19 and computes

P1 = ra1Qa2 = (26, 98)

>> multell([41,60],19,8,1,101)

ans =

26 98

and P2 = PM + a1r(sPB)a2 = (4, 20) + (16, 65) = (13, 22)

>> addell([4,20],[16,65],8,1,101)

ans =

13 22
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3. Alice sends P1 and P2 to Bob.

4. Bob calculates b1(sP1)b2 = (3, 31)

>> addell([88,15],addell([31,89],[4,81],8,1,101),8,1,101)

ans =

3 31

and P2 − b1(sP1)b2 = (4, 20)

>> addell([13,-22],[3,-31],8,1,101)

ans =

4 20

So Bob has securely received Alice’s message PM = (4, 20).

4.3 Massey-Omura encryption based on DPECC

For this section, we want to show how the key exchange in DPECC may work on

Massey-Omura encryption.

Let large prime N be the order of E(Fq), where a1, a2, b1, b2 is a secret points

selected from Alice and Bob. There will be the inverse for each point so that

a1a
−1
1 ≡ 1 (mod N), a2a

−1
2 ≡ 1 (mod N), b1b

−1
1 ≡ 1 (mod N) and b2b

−1
2 ≡ 1

(mod N). So the encryption is as follows:

Encryption:

1. Alice wants to send message M to Bob. She splits the messages into n shares

of messages which is Mt where 1 < t < N .

2. Alice converts the secret message, Mt into a point Pt ∈ E(Fq).

49



3. Alice calculates a1Pta2 = Pt1 . Then sends Pt1 to Bob.

4. Bob receives Pt1 and multiplies it with his private key and obtains b1Pt1b2 =

Pt2 . Then he sends Pt2 back to Alice.

Decryption:

1. Alice decrypts the message by multiplying with the inverse of her private key,

a−1
1 Pt2a

−1
2 = Pt3 . She sends back Pt3 to Bob.

2. Bob decrypts Pt3 by multiplying it with the inverse of his private key and

obtains b−1
1 Pt3b

−1
2 = Pt. He converts the point Pt to get message M .

As in the original Massey-Omura encryption, we show that this method also

works using key exchange from DPECC. The working algorithm requires lots of

communication and transaction to prevent from Man-In-The-Middle attack.

4.4 Implementation issues

Our goal in this chapter is to provide an encryption scheme, based on the idea of key

exchange in DPECC from Chapter 3. We want to computationally prove that the

idea could be done not only in key agreement but also for the encryption concept.

By referring the concept from El-Gamal and Massey-Omura encryption on ECC,

we implement the keys from DPECC and split the messages into n pieces. The

mathematical computation in both encryption seems to be easy to apply which is

users choose large prime order of N , so that the choices of points are large enough.

The purpose of this method is to make sure that the calculations for the inverse

are much harder. It may prevent from Man-In-The-Middle attack, which is a type

of attacker intrude into an existing connection to exchanged data and inject false

information.
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CHAPTER 5

DIGITAL SIGNATURE SCHEME

Digital signature scheme is way to ensure that an electronic document (e-mail,

spreadsheet, text file, etc.) is authentic. Authentic means users know who created

document and it has not been altered by any unauthorized parties. Digital signatures

rely on certain types of encryption to ensure the authentication. Encryption is the

process of taking all the data that one computer is sending to another and encoding

it into a form that only the other computer will be able to decode. Authentication

is the process of verifying that information is coming from a trusted source. These

two processes work hand in hand for digital signatures.

5.1 Introduction to Digital Signature Algorithm

In this chapter, we start our study with the general view for digital signature scheme.

In August 1991, the U.S National Institute of Standard and Technology (NIST) have

proposed a digital signature scheme known as the Digital Signature Standard (DSS).

They published DSS as FIPS 186, where uses a Digital Signature Algorithm (DSA)

based on El-Gamal signature scheme. DSA is one of three signature scheme specified

in FIPS 186 (Johnson and Menezes, 1999). To describe the protocol for DSA, let

say we have two users, Alice and Bob, they need to defined the domain parameters

where as select a 160-bit prime q and a 1024-bit prime p with the property that

q|p− 1. Then, select a generator g of the unique cyclic group of order q in Z∗
p . An

element of h ∈ Z∗
p and compute g ≡ h(p−1)/q (mod p). Repeat until q 6= 1. So,

the domain parameter are p, q and g. To generate the key pair, both users, select

random or pseudorandom integer x such that 1 ≤ x ≤ q − 1. Then compute y ≡ gx

                                                      51



(mod p). Alice’s public key is y and the private key is x. To sign a message m,

Alice selects random integer k such that 1 ≤ k ≤ q − 1. She computes X ≡ gk

(mod p), r ≡ X (mod q). Then computes k−1 (mod q) and e = SHA − 1(m).

Then, she computes s ≡ k−1(e + xr) (mod q). Therefore, Alice’s signature message

is (m, r, s). To verify the message, Bob obtains authentic copies of Alice’s domain

parameter (p, g, q) and public key y. He verify that r and s are integers in the

interval [1, q − 1]. He computes e = SHA − 1(m) and w ≡ s−1 (mod q). Then

he calculate U1 ≡ ew (mod q), U2 ≡ rw (mod q). to get X ≡ gU1yU2 (mod p) and

V ≡ X (mod q). Therefore, he verify the signature if V = r. The signature can be

verified by computing V and then ratify if r = V (mod q). For further details on

this protocol, refer (Washington, 2003).

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve

analogue of the DSA. ECDSA was first proposed in 1992 by Scott Vanstone in

response to NIST’s request for public comments on their first proposal to DSS.

It was accepted in 1998 as an International Standard Organization standard (ISO

14888-3), accepted in 1999 as an ANSI (American National Standard Institute)

standard (ANSI X9.62), and accepted in 2000 as an IEEE (Institute of Electrical and

Electronic Engineers) standard (IEEE 1363-2000) and FIPS standard (FIPS 186-2).

It is also under consideration for inclusion in some other ISO standard (Johnson

and Menezes, 1999). The ECDSA schemes are generally describe as a transaction

between two users, Alice and Bob. Let say, Alice wants to sign a message m, which

is integer. She chooses a prime p and an elliptic curve E (mod p). The number of

points n on E is computed and a large prime factor q of n is found. A point A( 6=∞)

is chosen such that qA =∞. The message m must satisfy 0 ≤ m < q. Alice generate

pair of key by associated with a particular set of EC domain parameters (E, q, A, n).
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Alice chooses her secret integer a and computes B = aA. The public information

is p, E, q, A,B and a kept as secret. Alice signs the message m using EC domain

parameters (E, q, A, n) and key pairs of (B, a). She chooses a random integer k with

1 ≤ k < q and computes R = kA = (x, y). Then, she computes e = SHA − 1(m)

and s ≡ k−1(e + aR) (mod q). She sends the signed message (m,R, s) to Bob. To

verify the signing messages, firstly Bob needs to obtains an authentic copy of Alice’s

domain parameters (E, q, A, n) and associated with public key B. Then Bob verifies

the signature by computes e = SHA−1(m). Then, he computes u1 ≡ s−1e (mod q)

and u ≡ s−1R (mod q) and V = u1A + u2B. If V = O, otherwise accept V . He

declares the signature valid if V = R. Conceptually, the ECDSA is simply obtained

from the DSA algorithm, refer Johnson and Menezes (2005) for further details on

the comparison between the protocols.

We have study how the implementation of decomposition problem in ECC for

key agreement in Chapter 3 and encryption in Chapter 4. Therefore, in the next

section, we will study how DPECC may works for signature scheme in verifying and

signing electronic messages.

5.2 Decomposition Problem in Elliptic Curve Cryptography in Digital

Signature Algorithm

To develop an algorithm based on DSA, it must consist of four steps for signing the

electronic messages, such as:

1. A domain parameter generation algorithm that generates a set D of domain

parameters.

2. A key generation algorithm that takes as input a set D of domain parameters

and generates key pairs (KA, PB, a1, a2).
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3. A signature generation algorithm that takes as input a set of domain param-

eters D, a private key a1, a2, and a message m, and produces a signature

Σ.

4. A signature verification algorithm that takes as input the domain parameters

D, a public key KA, PB, a message m, and a purported signature Σ, and

accepts or rejects the signature.

We assume that the domain parameter D are valid, with the key generation

using DPECC and SHA-1 denotes a cryptographic hash function whose output have

bitlength not more than N , the signature scheme follows as below:

Domain Parameters: Alice and Bob agreed on the same public domain on elliptic

curve field such as:

1. Two field elements a and b ∈ Fq, as the elements in elliptic curve E over Fq

(i.e., y2 = x3 + ax + b for characteristic q > 3).

2. Both agreed on the same public point Q ∈ E(Fq) with the order of prime q.

3. Domain parameter D = (E(Fq), Q, q,N ).

DPECC Key Pair Generation: For the key generation, Alice will follow these

steps based on key generation in DPECC method:

1. Alice chooses her own private keys a1 and a2.

2. Alice gets PB which is the public key generate by Bob.

3. She multiplies PB with her own private key a1 and a2 to obtain KA.

4. The public information is E(Fq), Q,N, q, PB and KA.

54



DPECC Signature Generation: Using the domain parameter D = (E(Fq),

Q, N, q, PB, KA), private key a1, a2 and message m, Alice generates the digital sig-

nature as below:

1. Select a random or pseudorandom integer k which is 1 ≤ k ≤ q − 1.

2. Computes kPB = (x1, y1) and R ≡ x1 (mod q). If R = 0, go step 1.

3. Computes k−1 (mod q).

4. Computes e = SHA− 1(m).

5. Computes s ≡ k−1(e + a1a2R) (mod q). If s = 0, go step 1.

6. Alice’s signature message is (m,R, s) and she sends it to Bob.

DPECC verification: Bob obtains an authentic copy of Alice’s domain param-

eters D = (E(Fq), Q, N, q, PB, KA), public key KA, PB, message m and signature

(m,R, s).

1. Verify that R and s are integers in the interval [1, q − 1]. If any verification

fails, then reject the signature.

2. Computes e = SHA− 1(m).

3. Computes U1 ≡ es−1 (mod q) and U2 ≡ Rs−1 (mod q)

4. Computes V = U1PB +U2KA. If V = O, then reject the signature. Otherwise

compute.

5. Convert the x-coordinate x1 of R and computes x1 (mod q).

6. If V = R, then accept the signature. Else, reject the signature.
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Proof:

V = (U1 + U2a1a2)PB

Let s = k−1(e + a1a2R)

k ≡ s−1(e + a1a2R)

≡ s−1e + s−1a1a2R

≡ (U1 + U2a1a2) (mod q)

so the signature can be verified by computing V and then ratify if V = R as required.
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5.3 Summary of DPECC in Signing Digital Messages

Table 5.1: Summary of DPECC in Signing and Verifying Digital Messages

Global public-key component:

Q: public point with [1, n− 1]

Fq: finite field of order q

#E(Fq): number of points on E

Alice’s private key Alice’s public key

a1: random or pseudorandom KA: key exchange generate by Alice

point from #E(Fq) (Refer Section 3.2: KA = KB = K)

a2: random or pseudorandom PB: public key from Bob

point from β1, . . . , βs−1

Alice’s per-message secret number:

k: random or pseudorandom point from 1 ≤ k ≤ q − 1

Signing Verifying

k PB = (x1, y1) and R ≡ x1 (mod q) U1 ≡ SHA-1(m)s−1 (mod q)

s ≡ k−1(SHA-1(m)+a1a2R) (mod q) U2 ≡ Rs−1 (mod q)

Signature: (m,R, s) V = U1PB + U2KA

Test: if V = R; accept
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Figure 5.1: DPECC Signing
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Figure 5.2: DPECC Verifying
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5.4 Implementation Issues

By completing this chapter, we conclude that Decomposition Problem from the

original work by Shpilrain & Ushakov could be implemented in finite field of elliptic

curves arithmetic. The intractability of EC Discrete Logarithm Problem (ECDLP)

in ECC give a higher complexity in computing ECDLP even with uses of smaller

parameters. Even with smaller parameters, it give better level of security to help

in faster computations, utilization of less power consumption, bandwidth, storage

space and other constrained resources such as processing power. The signature

scheme based on elliptic curves can be used for data authentication, data integrity

and non-repudiation (Hankerson et al., 2003).

The key generated by the implementation of DPECC is secured and it consumes

smaller key size used by the elliptic curves. From the algorithm, it shows that the

users can verify the messages using DPECC, the working part seems to be longer

since we split the messages using SHA − 1 function. To achieve an outstanding

result, we consider the protocol needs to include certain particular consideration

such as the suitability of elliptic curve arithmetic (in point addition, point doubling,

point multiplication) using DPECC.
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CHAPTER 6

CONCLUSION

In this study, we use the elliptic curves as algebra in all over the mathematics dis-

cussed. The ability of elliptic curves is to take any two points on a specific curve,

add them together, and get another point on the same curve. More importantly for

cryptography, is the difficulty of figuring out which two points are added together

to get the answer. For the right choice of various parameters, that difficulty is expo-

nential with key length. The cryptanalyst must use a very advanced mathematics

even in the early attempt to crack a code where it does not take many bits because

the task is practically impossible.

We started the study with the basis of several Asymmetric cryptosystem in

key management cryptography, and one of the study that attracted the interest is

in the idea of Decomposition Problem (Shpilrain and Ushakov, 2005) and Triple

Decomposition method (Kurt, 2006). Both ideas are based on developing keys on

non-commutative (infinite) groups and we manage to develop the same idea in ECC

commutative (finite) groups. We called both method as Decomposition Problem in

Elliptic Curve Cryptography and Triple Decomposition Problem in Elliptic Curve

Cryptography. The rational of this implementation seem to be practical without

infringing the main concept of the protocols.

We continue the study in encryption for ECC because we want to investigate

the effectiveness of the key generation that has been done in DPECC. We were

motivated from the ideas of splitting encryption scheme from El-Gamal (1985) and

Massey-Omura (1983). Modifications are made on this algorithm by using keys

from DPECC. From this encryption study, we did not continue the encrypted algo-
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rithm using TDPECC because we find out that the scheme give us longer encrypted

algorithm compare to DPECC key exchange.

We complete the research by designing digital signature in ECC. We design the

digital signature using key exchange in DPECC by adopting the idea of former

digital signature from Elliptic Curve Digital Signature Algorithm (ECDSA).

But in this thesis, we did not continue the scheme using key exchange in TD-

PECC for encryption and digital signature. One of the reasons is the scheme take

us longer time to complete the rotation of the algorithm. But we are positively

ensured that we can complete this part of research in our future works.
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Appendix A

Elliptic Curves

A.1 Weierstrass equation

Elliptic curves are not ellipses. It was from the relation of elliptic integrals such that

∫ z2

z1

dx
√

x3 + bx + c
and

∫ z2

z1

xdx
√

x3 + bx + c

that arises between the computations of the arc length of ellipses.

Elliptic curves are interesting studies in cryptography. We can use any two points

on the curve to produce a third point on the curve.

The set of points (x, y) on elliptic curve E is defined from the Weierstrass

equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1.1)

where a1, a2, a3, a4, a6 ∈ F and Δ 6= 0 , where Δ is the discriminant of E and defined

as follows:

Δ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

Elliptic curve E is defined over F because the coefficients a1, a2, a3, a4, a6 are

elements of F, where F is called the underlying field. The condition Δ 6= 0 ensures
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Figure A.1: Elliptic Curves examples on R

that elliptic curve E is smooth, which is there are no points at which curve has two

or more distinct tangent lines.

Let F be the real numbers with the characteristic q larger than 3. Set of points

where ∞ denotes the point at infinity:

E(F) = {(x, y) ∈ F× F; y2 = x3 + Ax + B} ∪ {∞}

If F is a field with A,B ∈ F, then we can say that the elliptic curve E is defined

over F. In general, we use E and F to represent the field and write it as E(F). Point

of infinity, {∞} are included on elliptic curves for the use in the group operation

defined in following section.

A.1.1 Simplified Weierstrass equation

A Weierstrass equation in equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

defined over F can be simplified depending on the characteristic q of field F. Con-

sider the separate cases as below:

1. If the characteristic of field F defined over prime q /∈ {2, 3} with the field Fq
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transforms elliptic curve E to the curve

y2 = x3 + Ax + B (1.2)

where A,B ∈ F. The discriminant of the curve is Δ = −16(4A3 + 27B2) 6= 0

2. If the characteristic of field F defined over prime q = 2 with the field F2m ,

then there are two cases to consider.

• If a1 6= 0, elliptic curve E transforms to the curve

y2 + xy = x3 + Ax2 + B (1.3)

where A, B ∈ F. And the curve is said to be non-supersingular with

discriminant Δ = B 6= 0.

• If a1 = 0, elliptic curve E transforms to the curve

y2 + Cy = x3 + Ax + B (1.4)

where A,B,C ∈ F. And the curve is said to be supersingular with

discriminant Δ = C4 6= 0.

3. If the characteristic of F defined over prime q = 3 with the field F3m , then

there are two cases to consider.

• If a2
1 6= −a2, elliptic curve E transforms to the curve

y2 = x3 + Ax2 + B (1.5)

where A,B ∈ F. And the curve is said to be non-supersingular with

discriminant Δ = −A3B 6= 0.

• If a2
1 = −a2, elliptic curve E transforms to the curve

y2 = x3 + Ax2 + B (1.6)
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where A,B ∈ F. And the curve is said to be supersingular with discrim-

inant Δ = −A3 6= 0.

A.2 Group Law

In this section, we describe how the computation works from two points on an elliptic

curve (or even one) to produce another point. Let E be an elliptic curve defined

over the field F. There is a chord-and-tangent rule for adding two points in E(F)

to give third point in E(F). The set of points E(F) forms an abelian group with ∞

as its identity.

The addition rule can be explained by let P = (xP , yP ) and Q = (xQ, yQ) be

the two distinct points on an elliptic curve E. The sum R defined by draw a line

through P and Q, and this line intersects the elliptic curve at third point. Then R

is the reflection of this point about the x-axis. This can be shown in Figure 2.2.

The double rule of R defined by draw a tangent line to the elliptic curve at point

P . The line intersects the elliptic curve at a second point. Then R is the reflection

of this point about the x-axis.

Algebraic formulas for the group law can be derived from the geometric descrip-

tion. In this thesis, we presented the elliptic curve E of the simplified Weierstrass

form 1.2 in affine coordinates when the characteristic of the underlying field F is

not 2 or 3 (e.g., Fq where q > 3 is a prime).

A.2.1 Addition and Doubling operation

As a summary, from an elliptic curve E, defined by y2 = x3 + ax + b over a finite

field Fq, with characteristic larger than 3. Let P = (xP , yP ) and Q = (xQ, yQ) be

the points on E with P, Q 6=∞. Then define that P +Q = R = (xR, yR) as follows:
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1. (Point addition) If P 6= Q, then

xR = m2 − xP − xQ

yR = m(xP − xR)− yP

where m =
yQ − yP

xQ − xP

2. (Point doubling) If P = Q, and yP 6= 0, then

xR = m2 − 2xP

yR = m(xP − xR)− yP

where m =
3x2

P + A

2yP

3. (Identity) If P = Q and yP = 0, then P +Q =∞. Also define that P +∞ = P

for all points P on E.

4. (Negatives) P = Q, but yP 6= yQ, then P + Q =∞.

For the characteristic of Fq is 2 or 3, then we use the same method for elliptic

curve addition but the formula are different.

A.3 Group order

Let E be an elliptic curve defined over Fq. The number of points in E(Fq), denoted

#E(Fq), is called the order of E over (Fq). Since the Weierstrass equation (1.1) has

at most two solutions for each x ∈ (Fq), we know that #E(Fq) ∈ [1, 2q +1]. Hasse’s

theorem provides tighter bounds for #E(Fq).

Here we will proof how the Hasse theorem in Theorem 2.2 works.

Proof. Let

a = q + 1−#E(Fq) = q + 1− deg(φq − 1)
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We want to show that |a| ≤ 2
√

q. We need the following

Lemma A.1. Let r, s be integers with gcd(s, q) = 1. Then deg(rφq − s) = r2q +

s2 − rsa

Since deg(rφq − s) ≥ 0, the lemma implies that

q(
r

s
)2 − a(

r

s
) + 1 ≥ 0

for all r, s with gcd(s, q) = 1. The set of rational numbers r/s such that gcd(s, q) = 1

is dense in R. (Proof: Take s to be a power of 2 or a power of 3, one of which must

be relatively prime with q. The rationals of the form r/2m and those of the form

r/3m are easily seen to be dense in R.) Therefore,

qx2 − ax + 1 ≥ 0

for all real number x. Therefore the discriminant of the polynomial is negative or

0, which means that a2 − 4q ≤ 0, hence |a| ≤ 2
√

q.

A.4 Number theory

• The greatest common divisor (gcd), of two non-zero integers, is the largest

positive integer that divides both numbers.

• The integers a and b are said to be coprime if they have no common factor

other that 1 or −1, or equivalently, it their gcd is 1.

• The Euler totient function φ(n) of positive integer n is defined to be the num-

ber of positive integers less than or equal to n and coprime to n. For example,

φ(8) = 4 since the four numbers 1, 3, 5 and , 7 are coprime to 8, but 2, 4 and

6 are not.
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• Let n be a positive integer. Then Zn is the set of integers modulo n:

Zn = {0, 1, 2, . . . , n − 1}

and Zn is a group under addition. Define Z∗
n as

Z∗
n = {a|1 ≤ a ≤ n, gcd(a, n) = 1

Z∗
n is a group with respect to multiplication mod n.

• Let a ∈ Z∗
n. The order of a mod n is the smallest integer k > 0 such that ak ≡

1 (mod n). The order of a mod n divides φ(n) (the Euler totient function).

• A primitive root modulo n is an integer g such that, modulo n, every integer

coprime to n is congruent to a power of g. Consider, for example, when n = 14

so Z∗
n = {1, 3, 5, 9, 11, 13}. We see that 3 is a primitive root modulo 14 as

{31, 32, 33, 34, 34, 35, 36} = {3, 9, 27, 81, 243, 729} ≡ {3, 9, 13, 11, 5, 1} = Z∗
n

The only other primitive root modulo 14 is 5.

• Let p be prime and a ∈ Z∗
p. The order of a mod p divides (p − 1). A

primitive root mod p is an integer, g, such that the order of g mod p equals

(p − 1). Then every integer is congruent modulo p to 0 or a power of g. For

example, 3 is a primitive root mod 7:

{1, 3, 9, 27, 81, 243} ≡ {1, 3, 2, 6, 4, 5} (mod 7) ≡ Z∗
7

There are φ(n − 1) primitive roots mod p. A primitive root mod p always

exists and so Z∗
p is a cyclic group.
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Theorem A.1. (Chinese Remainder theorem) Let n1, n2, . . . , nr be positive integer

such that gcd(ni, nj) = 1 when i 6= j. Let a1, a2, . . . , ar be integers. There exist an

x such that

x ≡ ai (mod ni) for all i

The integer x is uniquely determined modulo n1n2 . . . nr.

Example A.1. Let n1 = 4, n2 = 3, n3 = 5 and let a1 = 1, a2 = 2, a3 = 3. Then

x = 53 is a solution to the simultaneous congruences

x ≡ 1 (mod 4), x ≡ 2 (mod 3), x ≡ 3 (mod 5)

and any solution to the congruences is equivalent to 53 modulo 60.

Theorem A.2. (Fermat’s little theorem). If p is a prime number then for any

integer a

ap ≡ a (mod p)

A.5 Group Theory

• A set is a collection of objects considered as a whole. The objects of a set are

called elements. If A and B are sets and every element of A is also an element

of B, then A is a subset of B.

• A group (G, ∗) is a nonempty set, G together with a group operator, ∗, which

satisfy the group axioms:

- Associativity: ∀a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)

- Identity element: ∃e ∈ G such that ∀a ∈ G, e ∗ a = a ∗ e = a

- Inverse element: ∀a ∈ G∃b ∈ G such that, a ∗ b = b ∗ a = e

(where e is the neutral element).
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- Closure: ∀a, b ∈ G a ∗ b ∈ G

• A group G is said to be abelian (or commutative) if for every a, b ∈ G, a ∗ b =

b ∗ a. Group lacking this property are called non-abelian.

• The integers under addition form an abelian group while the integers under

multiplication do not (as not ever has an inverse that is also an integer under

multiplication)

• If the operation is thought of as an analogue of multiplication, then the group

operations are written multiplicatively. That is:

- write a ∙ b or even ab for a ∗ b and call it the product of a and b.

- write 1 (or e) for the identity element and call it the unit element.

- write a−1 for the inverse of a and call it the reciprocal of a.

However, sometimes the group operation is thought of as analogous to addition

and written additively:

- write a + b for a ∗ b and call it the sum of a and b.

- write 0 for the identity element and call it the zero element.

- write −a for the inverse of a and call it the opposite of a.

Usually, only abelian groups are written additively, although abelian groups

may also be written multiplicatively.

• As elliptic curves form additive abelian groups we use additive group notation

in this project (although we use ∞ for the identity element)

• The order of a group G, denoted by |G|, is the number of elements of the set

G. A group is called finite if it has finitely many elements.
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• The order of an element g ∈ G is the smallest integer k > 0 such that g ∗ g ∗

. . . ∗ g (k times) = e. So using the additive notation of this product the order

of g ∈ G is the smallest integer k > 0 such that kg = 0. Note that if k is the

order of g then

gi = gj ⇔ i ≡ j (mod k)

• Given a group G under binary operation ∗, we say that a subset H of G is a

subgroup of G is H also forms a group under the operation ∗.

Theorem A.3. (Lagrange’s theorem). Let G be a finite group.

i. Let H be a subgroup of G. Then the order of H divides the order of G.

ii. Let g ∈ G. Then the order of g divides the order of G.

Consider two sets of elements, the domain and the codomain, and a function

f that maps elements from the domain to the codomain.

• f in injective (1− 1) if, for every y in the codomain, there is at most one x in

the domain such that f(x) = y.

• f is surjective (onto) if, for every y in the codomain, there is at least one x in

the domain such that f(x) = y.

• f is bijective if, for every y in the codomain, there is exactly one x in the

domain such that f(x) = y.

So the function f is bijective if it is both injective and surjective.

• A homomorphism is a structure-preserving map between two algebraic struc-

tures (such as groups, rings, or vector spaces). So a homomorphism between

groups preserves the structure of the group operation.
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• An isomorphism is a bijective (1− 1 & onto) map f such that both f and its

inverse f−1 are homomorphisms.

• An automorphism is an isomorphism from an object to itself

• An endomorphism is a homomorphism from an object to itself.

The diagram below denotes implication.

Automorphism → Isomorphism

↓ ↓

Endomorphism → Homomorphism

Figure A.2: The mathematical concept of Algebraic Structure

A cyclic group is a group isomorphic to either Z of Zn for some n. These

groups can be generated by one element. For example Z4 is generated by 3:

{0, 3, 3 + 3, 3 + 3 + 3} = {0, 3, 6, 9} ≡ {0, 3, 2, 1} (mod 4) = Z4

Theorem A.4. Let G be a finite cyclic group of order n and let d > 0 divide

n. Then

(i) G has a unique subgroup of order d.

(ii) G has d elements of order dividing d, and G has φ(d) elements of order

exactly d (where φ(d) is the Euler Totient function).

Theorem A.5. A finite abelian group, G, is isomorphic to

Zn1 ⊕ Zn2 ⊕ . . .⊕ Zns

with ni|ni+1 for i = 1, 2, . . . , s − 1. The ni are uniquely determined by G.
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A.6 Field theory

A field is a set in which we can perform analogues of the operations (+ ,−,×) for

all elements and also ÷ by all elements except for 0. We usually think of division

by an element as multiplying by that elements inverse. So b/a = ba−1 where a−1 is

the element such that a−1 × a = 1. The formal definition of a fields follows.

A field is a commutative ring (F, +,×) such that 0 does not equal 1 and all

elements of F except 0 have a multiplicative inverse. (Note: 0 and 1 here stand for

the identity elements for the + and × operations, and not the real numbers). This

means that the following all hold:

• Closure of F under + and ×

For all a, b belonging to F , both a+ b and a× b belong to F (or more formally,

+ and × are binary operations on F )

• Both + and × are associative

For all a, b, c ∈ F, a + (b + c) = (a + b) + c and a× (b× c) = (a× b)× c.

• Both + and × are commutative

For all a, b belonging to F , a + b = b + a and a ∗ b = b ∗ a.

• The operation × is distributive over the operation +

For all a, b, c, belonging to F , a× (b + c) = (a× b) + (a× c).

• Existence of an additive identity

There exist an element 0 ∈ F , such that for all a belonging to F , a + 0 = a.

• Existence of a multiplicative identity

There exist an element 1 ∈ F , different from 0, such that for all a belonging

to F , a ∗ 1 = a.
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• Existence of additive inverses

For every a ∈ F , there is an element −a ∈ F , such that a + (−a) = 0.

• Existence of multiplicative inverses

For every a 6= 0 in F , there is an element a−1 ∈ F , such that a× a−1 = 1.

The requirement 0 6= 1 ensures that the set which only contains a single

element is not a field.

Let K be a field. There is a ring homomorphism ϕ : Z → K that sends 1 ∈ Z

to 1 ∈ K. If ϕ is injective then we say K has characteristic 0. Otherwise there is a

smallest positive integer q such that ϕ(q) = 0 and we say K has characteristic q.

So if we are in a field (K, +,×) with identities 0 and 1 then consider the elements,

1, 1 + 1, 1 + 1 + 1, ∙ ∙ ∙

Now if there is n such that

1 + 1 + ∙ ∙ ∙ + 1

n times
≡ 0

then we say the field K has characteristic n. If however all those elements are unique

then we say K has characteristic 0.

(Clearly if K is a finite field then it cannot have characteristic zero, but there are

infinite fields with positive characteristic.)

Theorem A.6. The characteristic q is prime

Proof. (By Contradiction) Assume q = ab with 1 < a ≤ b < q. Then ϕ(a)ϕ(b) =

ϕ(q) = 0⇒ ϕ(a) = 0 or ϕ(b) = 0

⇒ CONTRADICTION so q is prime

• A multiplicative group is formed from a field K(+, ∗) under the multiplication

operator with the zero element removed. This group is usually denoted K×.
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• When K has characteristic 0 the field Q of rational numbers in contained in

K. When K has characteristic q the field Fq of integers modulo q is contained

in K.

• Let K and L be fields with K ⊆ L. If α ∈ L we say that α is algebraic over

K if there exists a non-constant polynomial

f(X) = Xn + an−1X
n−1 + . . . + a0

with a), . . . , an−1 ∈ K such that f(α) = 0.

• We say that the field L is algebraic over K (or that L is an algebraic extension

of K) if every element of L is algebraic over K.

• An algebraic closure of a field K is a field K containing K such that:

1. K is algebraic over K.

2. Every non-constant polynomial g(X) with coefficients in K has a root in

K (⇒ K is algebraically closed).

If g(X) has degree n and has a root α ∈ K, then we can write g(X) =

(X − α)g1(X) with g1(X) of degree (n − 1). By induction we see that g(X)

has exactly n roots (counting multiplicatively) in K.

• It can be shown that every field K has an algebraic closure, and that any two

algebraic closures of K are isomorphic. Assume that a particular algebraic

closure of a field K has been chosen, and refer to it as the algebraic closure of

K.

• A field K is said to be algebraically closed is every polynomial (in one variable

of degree at least 1), with coefficient in K, has a zero (root) in K. C is

algebraically closed (by fundamental theorem of algebra).
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The algebraic closure of K can also be defined as the smallest algebraically

closed field containing K.

A.6.1 Finite Fields

A finite field is a field that contains only finitely many elements. The finite fields

are completely known as described below.

1. Every finite field has qn elements for some prime q and some integer n ≥ 1.

(This q is the characteristic of the field.)

2. For every prime q and integer n ≥ 1, there exists a finite field with pn elements.

3. All fields with qn elements are isomorphic, which justifies using the same name

for all of them, Fqn (in other literature GF(qn) is often used).
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Appendix B

Programming code

This appendix contains the related code in Matlab programs for the computation

in ECC. It is a function associated with the book by Wade Trappe & Lawrence

Washington (2006). The functions are available at

www.prenhall.com/washington

Below is a table summarising on the programs.

Appendix Code Description

B.1 addell.m Addition points on the elliptic curve E

B.2 multell.m Computing M th multiple of p on the elliptic curve

B.3 multsell.m Prints the first M multiples of p

B.4 randprime.m Finds a random prime between 1 and N

We also used Sage to generate graph on ECC but we did not include the code

here because Sage is a open-source software that can be downloaded at

www.sagemath.org
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B.1 The Matlab code for addell.m

function p3 = addell(p1,p2,a,b,n);

% This function add points on the elliptic curve

% y^2 = x^3 + ax +b mod n

% The points are represented by

% p1(1) = x1 p1(2) = y1

% p2(1) = x2 p2(2) = y2

if (any(p1==Inf)),

p3=p2;

return;

end;

if (any(p2==Inf)),

p3=p1;

return;

end;

x1=p1(1);

x2=p2(1);

y1=p1(2);

y2=p2(2);

z1=1; % this will store the gcd incase the addition

produced a factor of n

if ( (x1==x2) & (y1==y2) & (y1==0)), % an infinity case

p3(1)=inf; p3(2)=inf;

return;

end;
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if ( (x1==x2) & (y1 ~= y2)), % an infinity case

p3(1)=inf; p3(2)=inf;

return;

end;

if (all(p1==p2) & (gcd(y1,n)~=1) & (gcd(y1,n) ~=n)),

z1=gcd(y1,n);

p3=[];

disp([’Elliptic Curve addition produced a factor of n,

factor = ’,num2str(z1)]);

return;

end;

if all(p1==p2),

temp=mod(2*y1,n);

if temp==0,

p3(1)=Inf;

p3(2)=Inf;

return;

end;

den=powermod(2*y1, -1, n);

num=mod(x1*x1,n);

num=mod(mod(3*num,n) + a,n);

m=mod(num*den,n);

temp=mod(m*m,n);

x3=mod(temp-x1-x2, n);

temp=x1-x3;
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y3=mod(m*temp,n);

y3=mod(y3-y1,n);

else % case p1 ~= p2

if (gcd(x2-x1,n) ~= 1),

z1=gcd(x2-x1,n);

p3=[];

disp([’Elliptic Curve addition produced a factor of n,

factor= ’,num2str(z1)]);

return;

end; % end if gcd

temp=mod(x2 - x1,n);

if (mod(n,temp)==0), % Infinity case

p3(1)=Inf;

p3(2)=Inf;

return;

end;

den=powermod(temp,-1,n);

num=mod(y2-y1,n);

m=mod(num*den,n);

temp=mod(m*m,n);

x3=mod(temp-x1-x2, n);

temp=x1-x3;

y3=mod(m*temp,n);

y3=mod(y3-y1,n);

end;
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p3(1)=x3;

p3(2)=y3;
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B.2 The Matlab code for multell.m

function y = multell(p,M,a,b,n);

% This function prints the Mth multiple of p on the elliptic

% curve with coefficients a and b mod n.

z1=M;

y=[inf inf];

while (z1 ~=0),

while (mod(z1,2) ==0),

z1=(z1/2);

p=addell(p,p,a,b, n)

if (length(p)==0),

y=[];

disp(’Multell found a factor of n and exited’);

z1

return;

end;

end; %end while

z1=z1-1;

y=addell(y,p,a,b,n)

if (length(y)==0),

disp(’Multell found a factor of n and exited’);

z1

return;

end;

end;
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B.3 The Matlab code for multsell.m

function y = multsell(p,M,a,b,n);

% This function prints the first M multiples of p

p=p(:)’;

y=zeros(M,2);

y(1,:)=p;

q=p;

for k=2:M,

z=addell(p,q,a,b,n);

q=z;

if (length(z)==0), % must have returned a factor!

y(k:M,:)=[]; % null out the rest

disp(’Multsell ended early since it found a factor’);

return;

end;

y(k,:)=z;

end;
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B.4 The Matlab code for randprime.m

function y = randprime(N);

% This function finds a random prime between 1 and N

% The prime is tested using Miller-Rabin

N1=N-1;

flag=1;

while flag,

y=1+floor((N1)*rand(1,1));

if primetest(y),

return;

end;

end; %end while
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