ABSTRACT

A slightly branched urethane acrylate macromer (UAM) was synthesized by reacting palm oil-based polyol with excess amounts of polymeric methylene diphenyl diisocyanate (MDI) to form urethane prepolymer, then reacted with 2-hydroxyethyl methacrylate (HEMA) and FT-IR spectroscopy confirmed the urethane and grafted acrylate groups. 0.2% by weight of camphoroquinone (CQ) and 0.8% by weight of ethyl-4-N,N-dimethylamino-benzoate (4EDMAB) by weight were added to render the experimental resins light-curable. Their viscosity, percentage of degree of conversion (%DC) and cross-linking density (CLD), percentage of volumetric polymerization shrinkage (%VPS), water sorption and solubility, flexural strength, modulus of elasticity and toughness were determined and compared to Bis-GMA.

Light-curable experimental resin systems were also prepared by adding TEGDMA (T) and Bis-EMA (E) as reactive diluents and co-monomers. The following formulations of resin systems were investigated: BT (blending of Bis-GMA and TEGDMA); U/BT (blending of UAM and BT); U/E (3/1) (blending of UAM and Bis-EMA with mass ratio 3/1); U/E(1/1) (blending of UAM and Bis-EMA with mass ratio 1/1); and U/E/BT (blending of UAM and Bis-EMA and BT). The experimental flowable composites (FCs) were prepared by adding 60 % by weight of silanated barium borosilica glass to each of the experimental resin systems except for the U/E(3/1). The same light-initiators, 0.2% by weight CQ and 0.8% by weight 4EDMAB were used. The groups of FCs are as follows; FC-BT which acts as a control group amongst the experimental FCs (Exp-Cont); FC-U/BT; FC-U/E; and FC-U/E/BT. A commercially available Bis-GMA/TEGDMA-based flowable composite, Esthet.X flow (Dentsply, Caulk, USA) was selected as another control group (Com-Cont). The %VPS, percentage of volumetric change, water sorption and solubility, flexural strength, modulus of elasticity, toughness

and cytotoxicity (percentage of viable cell) were determined for all the experimental FCs and Esthet.X flow.

UAM exhibited lower viscosity than Bis-GMA. In addition, the UAM resin showed a higher % DC, flexural strength, toughness and % VPS than the rigid Bis-GMA, while, the water sorption and solubility of Bis-GMA was lower compared to UAM. The viscosities of U/E and U/E/BT were lower than others. When compared to the commonly used resin system BT (Cont), the U/E showed higher % DC, CLD, flexural strength and toughness, and lower water sorption and solubility. When UAM was blended with BT as U/BT resin system, the % DC, CLD, flexural strength, and toughness was higher than BT. However, the U/BT resin system showed higher % VPS, water sorption and solubility than BT resin system. When both UAM and Bis-EMA were blended with BT resin, the U/E/BT resin system showed higher flexural strength, modulus of elasticity, toughness and lower water sorption and solubility.

All experimental FCs fulfilled the requirements of ISO 4049:2000 for flexural strength and water sorption and solubility. The FC-U/BT showed higher water sorption, water solubility and volumetric change than FC-BT (Exp-Cont). On the other hand, FC-U/E and FC-U/E/BT showed lower water sorption and solubility and higher % VPS than FC-BT. UAM-based experimental FCs showed low cytotoxic activity based on the percentage of viable cell determination and the results obtained for the experimental FCs were comparable with the commercial flowable composite, Esthet.X flow.

Within the limitations of this study, it can be concluded that UAM resin showed significantly higher % DC, flexural strength and toughness than Bis-GMA. The UAM resin has potential to be used as a resin system with significantly improved DC, CLD, flexural strength and toughness. The experimental UAM-based-flowable composites fulfilled the ISO 4049 requirements and satisfactory preliminary cytotoxicity screening showed no significant difference in percentage of cell viability compared to Esthet.X

flow. However, future studies using different types of filler systems should be carried out to further enhance its properties.

DECLARATION

I certify that this research report is based on my own independent work, except where acknowledged in the text or by reference. No part of this work has been submitted for degree or diploma to this or any other university.

DR. FADHEL A. A. AL-SANABANI

Date:

SUPERVISOR:

ASSOCIATE PROFESSOR DR. NOOR HAYATY ABU KASIM DEPARTMENT OF CONSERVATIVE DENTISTRY FACULTY OF DENTISTRY

CO-SUPERVISOR: PROFESSOR DR. GAN SENG NEON DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE

ACKNOWLEDGEMENTS

All praise and thanks are due to Allah (S.W.T) the most gracious and merciful who has given me the ability to complete this study.

First of all, I would like to express my profound gratitude and deep appreciation to my supervisory committee. My deepest appreciation and infinite gratitude to my first supervisor Associate Professor Dr. Noor Hayaty Abu Kasim for her guidance and encouragement, feedback, insightful remarks, unforgettable support, magnanimity, research behaviour, and advises. My heartfelt appreciation also goes to my second supervisor Professor Dr. Gan Seng Neon who has a wealth of knowledge and experience in chemistry. His guidance in the chemistry field, which is new to me, helped me build my confidence. I am really grateful and appreciative of his understanding, guidance and patience.

I would also like to express my gratitude to Dr. Shamsul from Institute of Medical Research (IMR) for his guidance and help in the cytotoxicity test and for his permission to use the laboratory at IMR.

Many thanks to my colleague, Ms. Shafiza (Chemistry department), and gratitude to the conservative department's secretarial staff; Yati, Florence, and Halimah for being cooperative and friendly.

Financial support from MOSTI (grant 03-01-03SF019), University of Malaya (grant PS281/2007B and PS323/2009A), and Yemen government (Scholarship-Dhamar

v

University) are gratefully acknowledged. I would also like to thank ESSTECH for donating the chemicals and fillers.

I would like to express my special thanks and deep gratitude to my family (Alsanabani), first of all my brother Hani for his encouragement and financial support, also Dr Maher, and Professor Dr. Jaber.

Finally, I cannot imagine going through graduate life without my lovely wife Belqes and my sweet sons Ali and Rian and lovely daughter Dona. They provided me with love, support and patience.

TABLE OF CONTENT

Abstract	i
Declaration	iv
Acknowledgements	v
Table of contents	vii
List of Tables	xii
List of Figures	xvi
Abbreviations	xix

CHAPTER ONE: INTRODUCTION AND OBJECTIVES

1.1	Introduction	1
1.2	Aim of the study	5
1.3	Objectives of the study	5
1.4	Null hypothesis of the study	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Histori	cal development of dental composite	8
2.2	Genera	l aspects of methacrylate-based monomer of current	13
	dental o	composites	
	2.2.1	Chemical structure and polymerization reaction	13
	2.2.2	Monomers	17
		2.2.2.1 Bis-GMA-based monomer	17
		2.2.2.2 UDMA-based monomer	18
		2.2.2.3 Co-monomers	24
	2.2.3	Degree of conversion and cross-linking density	26

	2.2.4	Structure-properties relationship	28
	2.2.5	Trails to develop new methacryalte-based monomers for	33
		dental composite	
2.3	Resin r	natrix and its influence on the dental composite performance	40
	2.3.1	Resin system composition and viscosity	40
	2.3.2	Initiator and stabilizer	46
2.4	Filler a	nd its influence on the dental composite performance	48
2.5	Couplin	ng agent and its influence on performance of dental composite	57
2.6	Limitat	tions of dental composite's properties	59
	2.6.1	Polymerization shrinkage	59
	2.6.2	Water sorption, solubility and volumetric change	61
	2.6.3	Mechanical properties	66
	2.6.4	Biocompatibility	70
	2.6.5	Durability of composite restoration	75

CHAPTER THREE: METHODOLOGY

3.1	Mater	ials	78
3.2	Synth	esis of experimental monomer	79
3.3	Exper	imental resins	85
	3.3.1	Preparation of light-curable resins	85
	3.3.2	Determination of viscosity	87
	3.3.3	Determination of degree of conversion and cross-linking density	89
	3.3.4	Determination of volumetric polymerization shrinkage	92
	3.3.5	Determination of water sorption and solubility	95
	3.3.6	Determination of flexural strength, modulus of elasticity and	98

toughness

	3.3.7	Data analysis	102
3.4	Exper	imental resin systems	102
	3.4.1	Preparation of light-curable resin systems	102
	3.4.2	Determination of viscosity	103
	3.4.3	Determination of degree of conversion and	103
		cross-linking density	
	3.4.4	Determination of volumetric polymerization shrinkage	104
	3.4.5	Determination of water sorption and solubility	104
	3.4.6	Determination of flexural strength, modulus of elasticity	104
		and toughness	
	3.4.7	Data analysis	104
3.5	Flowa	ble composites	105
	3.5.1	Preparation of experimental flowable composites	105
	3.5.2	Determination of volumetric polymerization shrinkage	106
	3.5.3	Determination of volumetric change	106
	3.5.4	Determination of water sorption and water solubility	109
	3.5.5	Determination of flexural strength, modulus of elasticity and	110
		toughness	
	3.5.6	Assessment of cytotoxicity	110
		3.5.6.1 Preparation of extract	110
		3.5.6.2 Cell culture	111
		3.5.6.3 Cytotoxic test	111
	3.5.7	Data analysis	114

CHAPTER FOUR: RESULTS

4.1	Identi	fication of experimental urethane acrylate macromer FT-IR	115
	spectr	um	
4.2	Exper	imental resins	117
	4.2.1	Viscosity	117
	4.2.2	Degree of conversion and cross-linking density of	117
		experimental resins	
	4.2.3	Volumetric polymerization shrinkage of experimental resins	118
	4.2.4	Water sorption and solubility of experimental resins	119
	4.2.5	Flexural strength, modulus of elasticity and toughness of	120
		experimental resins	
4.3	Exper	imental resin systems	122
	4.3.1	Viscosity	122
	4.3.2	Degree of conversion and cross-linking density of	125
		experimental resin systems	
	4.3.3	Volumetric polymerization shrinkage of experimental resin	127
		systems	
	4.3.4	Water sorption and solubility of experimental resin systems	129
	4.3.5	Flexural strength, modulus of elasticity and toughness of	132
		experimental resin systems	
4.4	Flowa	ble composites	138
	4.4.1	Volumetric polymerization shrinkage of flowable composite	138
	4.4.2	Volumetric change of flowable composites	140
	4.4.3	Water sorption and water solubility of flowable composites	143
	4.4.4	Flexural strength, modulus of elasticity and toughness of	146
		flowable composites	
	4.4.5	Cytotoxicity of the flowable composite	153

CHAPTER FIVE: DISCUSSION

5.1	Experimental urethane acrylate macromer	157
5.2	Experimental resin systems	172
5.3	Flowable composites	180
5.4	Limitations of the study	191
5.5	Summary	193

CHAPTER SIX: CONCLUSIONS AND SUGGESTIONS

6.1	Conclusions	196
6.2	Suggestions for future studies	200

REFERENCES

APPENDICES (I-XIII) 219

201

LIST OF TABLES

TABLE	DESCRIPTION	PAGE
2.1	Physical properties of composite	53
3.1	Materials used in the study	78
3.2	Composition (percentage by weight) of light-curable resin	
	systems	103
3.3	Experimental flowable composites composition (percentage by	
	weight)	105
4.1	Viscosity (cp) of uncured experimental resins	117
4.2	Mean percentage degree of conversion of experimental resins	117
4.3	Comparison of means for degree of conversion between	
	experimental resins	118
4.4	Mean percentage of volumetric polymerization shrinkage of	
	experimental resins	118
4.5	Comparison of mean for volumetric polymerization shrinkage	
	between experimental resins	119
4.6	Means water sorption and solubility ($\mu g/mm^3$) of	
	experimental resins	119
4.7	Comparison of water sorption between experimental resins	120
4.8	Comparison of water solubility between experimental resins	120
4.9	Means flexural strength, modulus of elasticity and toughness of	
	experimental resins	120
4.10	Comparison of flexural strength between experimental resins	121
4.11	Comparison of modulus of elasticity between experimental resins	121
4.12	Comparison of toughness between experimental resins	121
4.13	Effect of various resin systems on viscosity	123
4.14	Multiple comparisons of mean viscosity of UAM-based resin	
	systems against BT resin system	124
4.15	Multiple comparisons of the mean viscosity among UAM-based	
	resin systems	124
4.16	Effect of various experimental resin systems on degree of	
	conversion and cross-linking density	126
4.17	Multiple comparisons of the mean degree of conversion and	

	cross-linking density among all experimental resin systems	126
4.18	Effect of various experimental resin systems on volumetric	
	polymerization shrinkage	128
4.19	Multiple comparisons of the mean volumetric polymerization	
	shrinkage among all experimental resin systems	128
4.20	Effect of various experimental resin systems on water sorption	130
4.21	Multiple comparisons of the mean water sorption among all	
	experimental resin systems	130
4.22	Effect of various experimental resin systems on water solubility	131
4.23	Multiple comparisons of mean water solubility of UAM-based	
	resin systems against BT resin system	131
4.24	Multiple comparisons of the mean water solubility among UAM-	
	based resin systems	132
4.25	Effect of various experimental resin systems on flexural strength	134
4.26	Effect of various experimental resin systems on toughness	135
4.27	Multiple comparisons of the mean flexural strength among all	
	experimental resin systems	135
4.28	Multiple comparisons of the mean toughness among all	
	experimental resin systems	135
4.29	Effect of various experimental resin systems on modulus of	
	elasticity	136
4.30	Multiple comparisons of mean modulus of elasticity of UAM-	
	based resin systems against BT resin system	136
4.31	Multiple comparison of the mean modulus of elasticity among	
	UAM-based resin systems	137
4.32	Effect of various flowable composites on volumetric	
	polymerization shrinkage	139
4.33	Multiple comparisons of the mean volumetric polymerization	
	shrinkage among all flowable composites	139
4.34	Effect of various flowable composites on percentage of	
	volumetric change	141
4.35	Multiple comparisons of mean volumetric change of flowable	
	composite against FC-BT (experimental control)	141
4.36	Multiple comparisons of mean volumetric change of	

	experimental flowable composite against Esthet.X flow	
	(commercial control)	142
4.37	Multiple comparisons of the volumetric change among UAM-	
	based flowable composites	142
4.38	Effect of various flowable composite on water sorption	144
4.39	Multiple comparisons of the mean water sorption among all	
	flowable composites	144
4.40	Effect of various flowable composites on water solubility	145
4.41	Multiple comparisons of mean water solubility of flowable	
	composite against FC-BT (experimental control)	145
4.42	Multiple comparisons of mean water solubility of experimental	
	flowable composite against Esthet.X flow (commercial control)	146
4.43	Multiple comparisons of the mean water solubility among UAM-	
	based flowable composites	146
4.44	Effect of various flowable composites on flexural strength	148
4.45	Effect of various flowable composites on toughness	149
4.46	Multiple comparisons of mean flexural strength of flowable	
	composite against FC-BT (experimental control)	150
4.47	Multiple comparisons of mean flexural strength of experimental	
	flowable composite against Esthet.X flow (commercial control)	150
4.48	Multiple comparisons of mean toughness of flowable composite	
	against FC-BT (experimental control)	150
4.49	Multiple comparisons of mean toughness of experimental	
	flowable composite against Esthet.X flow (commercial control)	151
4.50	Multiple comparisons of the flexural strength among UAM-based	
	flowable composites	151
4.51	Multiple comparisons of the toughness among UAM-based	
	flowable composites	152
4.52	Effect of various flowable composites on modulus of elasticity	152
4.53	Multiple comparisons of the mean modulus of elasticity among	
	all flowable composites	153
4.54	Effect of various flowable composites on percentage of viable	
	cells	155
4.55	Multiple comparisons of mean viable cells of flowable composite	

	against FC-BT (experimental control)	155
4.56	Multiple comparisons of mean viable cells of experimental	
	flowable composite against Esthet.X flow (commercial control)	156
4.57	Multiple comparisons of the viable cells among UAM-based	
	flowable composites and solvent	156
5.1	Comparison of materials tested in dry conditions after 24 hours	
	following rolling ball contact test (Abu Kasim, 1995)	158

LIST OF FIGURES

FIGURE	DESCRIPTION	PAGE
2.1	Free radical polymerization (O'Brien, 2002)	16
2.2	Synthesis of Bis-GMA (Peutzfeldt, 1997)	17
2.3	Chemical reaction of urethane (Gary, 2005)	18
2.4	Synthesis of urethane dimethacryalte (Peutzfeldt, 1997)	21
2.5	Schematic representation of the UDMA used in Fotofil composite (Peutzfeldt, 1997)	22
2.6	Schematic representation of the UDMA used in Ful-Fil composite (Peutzfeldt, 1997)	22
2.7	Schematic representation of the UDMA used in Kalore composite	23
2.8	Chemical structure of TEGDMA	24
2.9	Chemical structure of Bis-EMA	25
2.10	Chemical structure of HEMA	26
2.11	Schematic representing the polymerization and cross-linking	
	polymer network containg unreacted monomers and pendant	27
2.12	methacrylate group (C=C) (Ferracane 1995) Chemical structure of light-initiator system	48
2.12		10
2.15	Simplified schematic representation of silane bonding the fillers and the resin (Ferracane, 1995)	58
3.1	Chemical structure of AlkOA65N polyol	79
3.2	Reaction route of UAM synthesis (first step)	80
3.3	Reaction route of UAM synthesis (second step)	81
3.4	The reaction set up	82
3.5	FT-IR spectroscopy used in this study	83
3.6	FT-IR accessories	84
3.7	A vacuum pump connected with filled syringes	86

3.8	A Brookfield viscometer	88
3.9	Digital caliper showing thickness of the thin film used for FT-IR	91
3.10	Electronic densitometer	94
3.11	Water sorption mould	97
3.12	Split stainless steel mould	
3.13	3-point bending test using universal testing machine	
3.14	Split mould held by a slotted plastic sleeve	108
3.15	Cytotoxicity test procedure	113
4.1	Spectra of starting materials	115
4.2	Spectrum of UAM illustrating the presence of –NH peak and the absence of -CNO (2273) and –OH (3445) peaks	116
4.3	Mean viscosity of experimental resin systems	122
4.4	Mean degree of conversion and cross-linking density of experimental resin systems	125
4.5	Mean volumetric polymerization shrinkage of experimental resin systems	127
4.6	Mean water sorption and water solubility of experimental resin systems	129
4.7	Mean flexural strength and modulus of elasticity of experimental resin systems	133
4.8	Mean toughness of the experimental resin systems	133
4.9	Mean volumetric polymerization shrinkage of flowable composites	138
4.10	Mean volumetric change of flowable composites	140
4.11	Mean water sorption and water solubility of flowable composites	143
4.12	Mean flexural strength and modulus of elasticity of flowable composites	147
4.13	Mean toughness of flowable composites	147

ABBREVIATIONS

Abbreviation	DESCRIPTION
μΙ	Micro-liter
μm	Micrometer
4EDMAB	Ethyl-4-N,N-dimethylamino-benzoate
AlkOA65N	Alkyd polyol
Bis-EMA	Ethoxylated Bisphenol A methacrylate
Bis-GMA	Bisphenol A glycidyl methacrylate
CLD	Cross-linking density
cm ⁻¹	Centimeter per minus one
cm ²	Centimeter per meter square
Com-Cont	Commercial control
ср	Centipoise
CQ	Camphoroquinone
DBTDL	Dibutyltin dilaurate
DC	Degree of Conversion
DMEM	Dulbecco's modified Eagle's medium
Exp-Cont	Experimental control
FT-IR	Fourier Transform Infrared Spectroscopy
g	Gram
GPa	Giga Pascal
HEMA	2- hydroxyethyl methacrylate
HQ	Hydroquinone
ISO	International organization for standardization.
MDI	Polymeric methylene diphenyl diisocyanate
LDH	Lactate dehydrogenates
ml	Milliliter
mm	Millimeter
μg/mm ³	Micrograms per cubic millimeter
MPa	Mega Pascal
Mw	Molecular weight
mW/cm ²	Milliwatts per square centimeter

NaCl	Sodium chloride
PBS	Phosphate buffered saline
rpm	round per minute
SOC	spiro orthocarbonate
SD	Standard deviation
SPSS	Statistical package for the social science
TEGDMA	Triethylene glycol dimethacrylate
UAM	Urethane acrylate macromer
UDMA	Urethane dimethacrylate
UV	Ultra violet
VPS	Volumetric polymerization shrinkage