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ABSTRACT 

A slightly branched urethane acrylate macromer (UAM) was synthesized by reacting 

palm oil-based polyol with excess amounts of polymeric methylene diphenyl 

diisocyanate (MDI) to form urethane prepolymer, then reacted with 2-hydroxyethyl 

methacrylate (HEMA) and FT-IR spectroscopy confirmed the urethane and grafted 

acrylate groups. 0.2% by weight of camphoroquinone (CQ) and 0.8% by weight of 

ethyl-4-N,N-dimethylamino-benzoate (4EDMAB) by weight were added to render the 

experimental resins light-curable. Their viscosity, percentage of degree of conversion 

(%DC) and cross-linking density (CLD), percentage of volumetric polymerization 

shrinkage (%VPS), water sorption and solubility, flexural strength, modulus of 

elasticity and toughness were determined and compared to Bis-GMA.  

Light-curable experimental resin systems were also prepared by adding TEGDMA (T) 

and Bis-EMA (E) as reactive diluents and co-monomers. The following formulations of 

resin systems were investigated: BT (blending of Bis-GMA and TEGDMA); U/BT 

(blending of UAM and BT); U/E (3/1) (blending of UAM and Bis-EMA with mass ratio 

3/1); U/E(1/1) (blending of UAM and Bis-EMA with mass ratio 1/1); and U/E/BT 

(blending of UAM and Bis-EMA and BT). The experimental flowable composites 

(FCs) were prepared by adding 60 % by weight of silanated barium borosilica glass to 

each of the experimental resin systems except for the U/E(3/1). The same light-

initiators, 0.2% by weight CQ and 0.8% by weight 4EDMAB were used. The groups of 

FCs are as follows; FC-BT which acts as a control group amongst the experimental FCs 

(Exp-Cont); FC-U/BT; FC-U/E; and FC-U/E/BT. A commercially available Bis-

GMA/TEGDMA-based flowable composite, Esthet.X flow (Dentsply, Caulk, USA) was 

selected as another control group (Com-Cont). The %VPS, percentage of volumetric 

change, water sorption and solubility, flexural strength, modulus of elasticity, toughness 
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and cytotoxicity (percentage of viable cell) were determined for all the experimental 

FCs and Esthet.X flow.  

UAM exhibited lower viscosity than Bis-GMA. In addition, the UAM resin showed a 

higher % DC, flexural strength, toughness and % VPS than the rigid Bis-GMA, while, 

the water sorption and solubility of Bis-GMA was lower compared to UAM. The 

viscosities of U/E and U/E/BT were lower than others.  When compared to the 

commonly used resin system BT (Cont), the U/E showed higher % DC, CLD, flexural 

strength and toughness, and lower water sorption and solubility. When UAM was 

blended with BT as U/BT resin system, the % DC, CLD, flexural strength, and 

toughness was higher than BT. However, the U/BT resin system showed higher % VPS, 

water sorption and solubility than BT resin system. When both UAM and Bis-EMA 

were blended with BT resin, the U/E/BT resin system showed higher flexural strength, 

modulus of elasticity, toughness and lower water sorption and solubility.  

All experimental FCs fulfilled the requirements of ISO 4049:2000 for flexural strength 

and water sorption and solubility. The FC-U/BT showed higher water sorption, water 

solubility and volumetric change than FC-BT (Exp-Cont). On the other hand, FC-U/E 

and FC-U/E/BT showed lower water sorption and solubility and higher % VPS than 

FC-BT. UAM-based experimental FCs showed low cytotoxic activity based on the 

percentage of viable cell determination and the results obtained for the experimental 

FCs were comparable with the commercial flowable composite, Esthet.X flow. 

Within the limitations of this study, it can be concluded that UAM resin showed 

significantly higher % DC, flexural strength and toughness than Bis-GMA. The UAM 

resin has potential to be used as a resin system with significantly improved DC, CLD, 

flexural strength and toughness. The experimental UAM-based-flowable composites 

fulfilled the ISO 4049 requirements and satisfactory preliminary cytotoxicity screening 

showed no significant difference in percentage of cell viability compared to Esthet.X 
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flow.  However, future studies using different types of filler systems should be carried 

out to further enhance its properties. 
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