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ABSTARCT 

Manufacturers and services providers often encounter stochastic parametric scenarios. 

Researchers have, thus far, considered deterministic truck and trailer routing problems 

(TTRP) that cannot address the prevailing demand, travel time, service time 

uncertainties and other pertinent complexities. The purpose of this research is to expand 

the deterministic TTRP models by introducing stochastic parameters to bring these 

models closer to the reality. In this research, firstly, truck and trailer routing problems 

with stochastic demands (TTRPSD) is introduced and modeled. Since the demands are 

not fixed, the failure may occur when the cumulative demands exceed or attain exactly 

the truck or vehicle capacities, which is again subject to the types of route. For solving 

TTRP, a variety of algorithms have been applied earlier but TTRPSD programming has 

not yet solved. Therefore, multi-point simulated annealing (M-SA), memetic algorithm 

(MA) and tabu search (TS) algorithms are applied to solve the TTRPSD. Twenty one 

benchmark-instances have been modified for this case and solved by using the aforesaid 

algorithms. Afterward, the TTRPSD is extended by considering the time window 

constraints. Since special operational restrictions or requirements may exist in some real 

applications such as customer‘s working period that some customers must be serviced 

during a specified time interval and there can be no delays in servicing those customers. 

Therefore, truck and trailer routing problem with stochastic demands and time window 

(TTRPSDTW) is more realistic and thus modeled. Another purpose of this model is to 

solve it in a reasonable timeframe by administering the MA, M-SA and TS methods. 

Here, firstly, two experimental tests have been carried out to show the validity and 

consistency of the applied algorithms for solving TTRPSDTW. The results is compared 

with vehicle routing problem with stochastic demands and time window (VRPSDTW) 

solution obtained by large neighborhood search (LNS) by an earlier researcher. The 

results indicate that the applied algorithms can generate the useful results. Therefore, 
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MA, M-SA and TS are found suitable for solving TTRPSDTW as well. Moreover, fifty 

four benchmark instances have been modified for this case. The initial feasible solutions 

have been generated for this purpose. The solutions have then been significantly 

improved by the algorithms. In addition, travel and service times between customers 

may not be deterministic in real life applications. So, truck and trailer routing problem 

with stochastic travel and service times with time window (TTRPSTTW) are 

considered. For solving this problem, the aforesaid algorithms have been applied. One 

hundred and forty four benchmark instances in six levels have been modified for this 

study. The initial feasible solutions have been generated for this purpose. The solutions 

have been significantly improved by the algorithms. This issue has been formulated 

under chance constrained programming (CCP) model and stochastic programming 

model with recourse (SPR). Since the CCP model is completely depended on the 

confidence level and sometimes makes the solutions infeasible, in this case no feasible 

solution for CCP model is found. Therefore, the problems are only solved within the 

framework of SPR. Also, all of the aforesaid problems have been tested by sensitivity 

analysis to understand the effects of parameters as well as to make comparison between 

the respective best results and sensitivity analysis. Since the differences between the 

results are insignificant, the algorithms are found appropriate and suitable for solving 

TTRPSDTW.  

All those models have been applied in a real company. This study has been carried out 

with the collaboration of Pegah Co, a large dairy products distribution company in Iran. 

One hundred customers with their demands that follow the Poisson distribution are 

considered for this study. Methods such as MA, M-SA and TS have been applied. The 

problems are solved by using the MA, M-SA and TS. In addition, these problems also 

have been tested using the sensitivity analysis. 
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ABSTRAK 

Produsen dan penyedia jasa sering menghadapi scenario stochastik parametric. Para 

peneliti sejauh ini menganggap bahwa penentuan truck and trailer routing problem 

(TTRP) belum dapat memenuhi permintaan secara umum, waktu perjalanan, ketidak 

pastian perkhidmatan dan komplesitas lainnya. Tujuan dari penelitian ini adalah untuk 

memperluas jangkauan model TTRP dengan memperkenalkan parameter stochastic 

sehingga model ini mendekati keadaan sebenarnya. Dalam penelitian ini, yang utama 

adalah memperkenalkan dan membuat model routing permasalahan truk dan trailer 

dengan permintaan stochastic. Selama permintaan tidak tetap, kegagalan dapat saja 

terjadi ketika permintaan komulatif melebihi atau menyamai dengan kapasitas truk atau 

kenderaan untuk setiap jenis rute. Untuk menyelesaikan TTRP, beberapa logaritma telah 

diterapkan sebelumnya tetapi pemograman TTRPSD belum juga terpecahkan. Oleh 

karena itu, multi-point simulation annealing (M-SA), memetic algorithm (MA), dan 

tabu search algorithm (TS) diterapkan untuk memecahkan TTRPSD tersebut. Dua 

puluh satu patokan-kasus telah dimodifikasi untuk kasus ini dan diselesaikan dengan 

menggunakan algoritma tersebut diatas. Setelah itu, TTRPSD dilanjutkan dengan 

mempertimbangkan kendala waktu yang dihadapi. Semenjak pembatasan operasional 

khusus atau persyaratan yang mungkin ada di beberapa aplikasi sebenar seperti masa 

kerja pelanggan dimana beberapa diantara mereka harus dikhidmatkan dalam interval 

waktu tertentu dan perkhidmatannya tidak dapat ditunda. Sehingga, truck and trailer 

routing problem with stochastic demand and time window (TTRPSDTW) lebih relistis 

untuk dimodelkan. Tujuan lain dari model ini adalah untuk menyelesaikannya dalam 

jangka waktu yang wajar dengan melibatkan metode MA, M-SA, dan TS. Pada tahap 

awal, dua percobaan telah dilakukan untuk menunjukkan validitas dan konsistensi dari 

algoritma yang diterapkan untuk memcahkan TTRPSDTW. Hasil yang diperoleh 

kemudian dibandingkan dengan hitungan di vehicle routing problem with stochastic 

demand and time window (VRPSDTW) yang diperoleh dari large neighborhood search 



vi 

 

(LNS) dari peneliti sebelumnya. Hasilnya menunjukkan bahwa penerapan algoritma 

dapat mendatangkan hasil yang bermanfaat. Sehingga, MA, M-SA, dan TS didapati 

juga sesuai untuk menyelaikan TTRPSDTW. Selain itu, 54 contoh persoalan telah 

dimodifikasi dalam hal ini. Solusi yang memungkinkan telah disusun untuk tujuan ini. 

Solusi ini kemudian dinaiktarafkan secara signifikan dengan algoritma. Selanjutnya, 

perjalanan dan masa perkhidmatan diantara pelanggan tidak diperhitungkan dalm 

penerapan sebenar. Jadi, truck and trailer routing problem with stochastic travel and 

service times with time windows (TTRPSTTW) dapat dipilih. Algortima tersebut diatas 

telah diterapkan untk menyelesaikan persoalan ini. Seratur empat puluh empat contoh 

kasus dimodifikasi dalam enam tingkatan untuk penelitian ini. Solusi awal yang 

memungkinkan telah ditemukan untuk tujuan ini dan diperoleh peningkatan yang 

signifikan dengan penggunaan algoritma. Permasalahan ini telah formulasikan 

menggunakan model chance constrained programming (CCP) dan stochastic 

programming model with recourse (SPR). Dikarenakan model CCP tergantung 

sepenuhnya pada tingkat kepercayaan and kadang-kadang membuat hasil tidak akurat, 

dalam hal ini tidak ditemukan solusi yang tepat untuk model CCP. Oleh karena itu, 

persoalan ini hanya diselesaikan dalam bingkai kerja SPR. Semua persoalan tersebut 

diatas juga sudah diuji dengan analisa sensitifitas untuk memahami pengaruh dari 

parameter yang ada serta membuat perbandingan antara hasil terbaik masing-masing 

dan analisa sensitivitas. Karena perbedaan antara setiap hasil sangat signifikan, maka 

algoritma adalah yang tepat dan sesuai untuk penyelesaian TTRPSDTW. 

Semua model tersebut sudah pernah diterapkan di perusahaan. Penelitian ini dilakukan 

berkolaborasi dengan Pegah Co, sebuah syarikat distribusi susu terbesar di Iran. Seratus 

pelanggan dengan permintaan mengikuti posisi arah distribusi menjadi pertimbangan 

pada penelitian ini. Beberapa metode seperti MA, M-SA, dan TS telah diapplikasikan. 

Permasalahan dapat diselesaikan dengan menggunakan MA, M-SA, dan TS. Selain itu, 

masalahini juga telah diuji dengan menggunakan analisa sensitifitas.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background  

The world has witnessed and experienced two hundred years of unprecedented 

breakthroughs within the realm of transport system development, vehicle technology, 

and traffic network extension. Technical advancement happens to be an ongoing process 

but seems to have come across some confinements such as pollution, congestion, and 

increasing costs that have been considered as existing impediments, in some parts of the 

globe, the context of hostility against transportation technology could be a standing 

example. A climate of hostility does exist when it comes to transportation technology; 

albeit, mobility is still on the increase.  

Recently, more complicated customer demands under mass customization have 

arisen but that are required to be satisfied by many companies. Therefore, a large 

number of companies are trying to achieve a high level of reliability, flexibility, and 

agility in their transportation system for fulfilling different demands. As a result, the 

subject of supply chain management (SCM) has emerged and become an interesting 

subject for a lot of companies, seeking for ways of efficiently improving their 

customers‘ satisfaction. In a way, according to the position and role, supply chain is 

categorized into three classes; the inbound, intra company, and outbound supply chain. 

As the network of supplies begins at the inbound supply chain, the role of this group is 

transporting the semi-finished products or the raw materials to the site of 

manufacturing. The main concern of the intra company supply chain, as the 

intermediary part, is with the flow of material in the site of manufacturing. Finally, the 

outbound supply chain is concerned with the delivery of final products to the customers. 

The inventory allocation and transportation are strongly considered in the outbound 
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supply chain for minimizing the cost and satisfying the customers‘ demands. One 

significant part of the supply chain management is to provide the services or/and goods 

from a supply point to different destinations, which have been geographically 

distributed, with significant implications of economics. Aside from the cost of 

purchasing the goods, on the average and compared to the other relative activities, a 

higher percentage of the costs of logistics are absorbed by transportation. Therefore, 

efficiency improvement through the maximum usage of the necessities of transportation 

and decreasing the costs of transportation along with the improvement of services for 

customers are the frequent and significant decision problems. Customers, warehouses, 

manufacturers, and suppliers are the main elements of the supply chain (SC), carrying 

the goods from the upstream to the downstream sides of a supply chain. 

In a supply chain, there are four main business functions to be performed: 

distribution, inventory, manufacturing, and purchasing. The function of distribution 

includes two activities: the shipment of finished products from the companies to the 

locations of demand, and transportation of parts or raw materials from the suppliers to 

the companies. The individual management of the supply chain functions is not 

possible, because they are intensely interrelated by flow of information and materials.  

Vehicle routing problem in the supply chain management (VRP-SCM) is 

introduced by Dondo et al. (2009). Since the VRP-SCM problem allows direct shipment 

of products from the storages of manufacturers‘ to the demand locations (customers) 

and handles multiple items, it is considered as a generalized version of the M-echelon 

vehicle routing problem.  

The vehicle routing problem (VRP) is one of the widely studied and most 

important combinatorial optimization problems in this field and because of its natural 

complications and efficacies in a large number of real world and supply chain 

management applications. The vehicle routing problem (VRP) is a terminology being 
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used in transportation programming. Dantzing and Ramser (1959) first introduced this 

concept. It is now receiving more attention in the current research than earlier. It is 

related to transporting manufacturing goods within a plant or factory floor and 

delivering products to markets or customers. VRP concept is also applied in services 

sectors. Sometimes it is used to define and solve combinatorial optimization problems 

(COP) (Dantzig & Ramser, 1959; Gilbert Laporte et al., 2000). The importance of VRP 

is in transportation, distributions and logistics caused by the plentiful practical 

applications. Before 1990, most of researchers focused on deterministic vehicle routing 

problem. However, because of uncertainty in parameters such as stochastic demand, 

stochastic travel time, stochastic service time and stochastic presence of customers, 

deterministic VRP is not always practical.  

During the last two decades, some constraints were added to the stochastic VRP 

such as time window, travel and service time. Due to some other practical issues, such 

as narrow roads and bridges in village or government restrictions, maneuvering a 

complete vehicle appears to be difficult - the VRP approach is found inadequate and 

these issues are considered in truck and trailer routing problem (TTRP) model. In 

general, TTRP is more extensive than VRP and can cover more real life aspects since 

some limitations in VRP as mentioned above can be considered in TTRP. In TTRP, 

sometimes trucks pull a trailer to serve the customers, which has a feature of TTRP that 

is usually ignored in the VRP. However, because of some real-life obstacles as 

mentioned earlier, only a truck has to serve some of the customers.  These constraints 

are obvious in many practical situations (Derigs et al., 2013; Lin et al., 2009; Villegas et 

al., 2013). Several researchers have so far contributed in this area. One instance is that 

of Gerdessen (1996) who worked on VRP with a trailer. He demonstrated two real 

applications pertaining to TTRP.  In one case it was the distribution of dairy products in 

cities where the distributor face with heavy traffic. The second application was to 
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distribute components of animal feed to farmers. He showed the necessity of 

considering TTRP by demonstrating the applications.  

In this study, the supply chain is considered in terms of transportation and 

distribution. Due to the complexity, in the past researches, a large number of realistic 

solutions are yet to be considered. For instance, when the dispatcher is considered to 

have a number of serving limitations for the customers, stochastic service and travel 

times and stochastic demands in the model were not taken into account.   

1.2 Statement of the problem 

In order to manage a supply chain, a large number of business processes need to 

be carried out and many decisions are required to be made. Particular design versions of 

these general supply systems and inventory planning problems have been studied for a 

long time. It is pretty obvious that the main supply chain problems are greatly related. 

As the time goes by, more companies are awakened about their supply chain 

performance and how important it is that they improve this performance. They also have 

become aware of the competitive advantage of distribution operations, inventory, 

integration and coordination of supplies. One of the main problems in supply chain 

management and logistics is the routing of a series of vehicles, which are assigned to 

transport goods from a warehouse to the customers or/and retailers. Since goods are 

hardly ever produced and consumed in one particular place, transportation is considered 

as a significant factor in the supply chain management.  

Any company in the world currently faces with a number of challenges in serving 

their customers. Transportation is considered to be the largest logistics expense for a 

vast number of firms and companies. Transportation is the area where costs can be 

diminished quickly. This is a very bearing question, how servicing and manufacturing 
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companies could successfully diminish transportation expenses without overshadowing 

customers‘ satisfaction.  

Our contemporary universe is so demanding and competitive today. If companies 

and business entities aim to be sustainable in this competitive atmosphere, they are 

required to cut down on their costs in order to increase their profit. As mentioned 

earlier, the cost associated with transportation is a considerable chunk to be taken into 

account in each and every firm or company. All management teams are willing to 

decline this expenditure without reduction in the satisfaction level of customers. 

Consequently, coming up with the best method to ideally optimize this problematic area 

will assist the copious number of corporations to continue in better manner in this 

competitive market regime. It is widely accepted principle that firms aiming to service 

the customers scattered in a vast area should possess a servicing plan if they don't want 

to waste time and money. One of the best approaches to work out the arising 

problematic issues is to apply a special and unique method under the title of Vehicle 

Routing Problem (VRP) and truck and trailer routing problem (TTRP). There are lots of 

studies which treat the VRP and TTRP in the SC. The problems in supply management 

that deserves to focus are as follows: 

 In practical situations, a dispatcher may not know the demands in advance. 

Therefore, a company may face a problem of delivering the right volume of products‘ to 

customers for these random demands. Consequently, unexpected extra cost might be 

imposed to the company. These issues can be considered in vehicle routing problem 

with stochastic demands (VRPSD). Moreover, when facing the limitations and 

restrictions such as government restrictions, VRPSD cannot cover these issues and need 

to consider truck and trailer routing problem (TTRP) with stochastic demands 

(TTRPSD).  
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 In addition, due to traffic congestion, different weather conditions, level of 

driver‘s skills may be influenced by distribution technology, often travel and service 

times are not really deterministic between two customers and normally follow stochastic 

distributions. Therefore, due to some limitations in VRP model mentioned above and 

the necessity of stochastic travel and service times in real-life issues, the truck and 

trailer routing problem with stochastic travel and service times (TTRPST) need to be 

considered.  

Moreover, often special operational restrictions or requirements may exist such as 

customer‘s working period that some customers must be serviced during a specified 

time interval and there can be no delays in servicing those customers. These issues 

cause to be considered VRP with time windows. Correspondingly, time windows 

constraints can be seen in stochastic TTRP applications. These problems are known as 

stochastic TTRP with time windows. These issues deserve more researches and 

attentions. 

 

1.3 Objectives 

The main focus of this research is to introduce, model and solve stochastic truck 

and trailer routing problems (TTRPs)  by using metaheuristic algorithms without 

overshadowing customers‘ satisfaction. This study embarks on the following specific 

objectives: 

1. To improve the TTRP results using the modified memetic algorithm in 

order to validate the relevance of memetic algorithm in distribution planning. 

2. To model and optimize the truck and trailer routing problem with 

stochastic demand using meta-heuristic algorithms.  

3. To model and optimize the truck and trailer routing problem with 

stochastic demand and time windows using meta-heuristic algorithms. 



7 

 

4. To model and optimize the truck and trailer routing problem with 

stochastic travel and service time with time windows using meta-heuristic 

algorithms. 

5. To solve and validate the above three models using different meta-

heuristic algorithms. 

1.4 Methodology  

This research has been divided into two parts: formulations of the truck and trailer 

routing problems with stochastic demands, stochastic travel and service time 

considering time window constraints for these models. These mathematical models have 

been solved using different algorithms such as multi-point simulated annealing, tabu 

search and memetic algorithm . In addition, the problem have been solved by sensitivity 

analysis to validate the results. In case of both parts, a comperhensive literature review 

has been carried out. The aforesaid algorithms are coded by MATLAB 7.9.0 using a 

computer with a 2.4 GHz dual processor and 4 G RAM. To validate the algorithms, the 

benchmark instances are used and solved by using these algorithms. Furthermore, some 

experimental tests have been conducted in order to increase the validity of the aforesaid 

algorithms and to show the consistency of the results.  

 

1.5 Contribution of the research 

This research has developed some models in supply chain management that are 

useful in manufacturing and service organizations. In the proposed models, the 

stochastic parameters are considered to bring the TTRP model closer to reality and 

solve the models in a reasonable timeframe by administering the meta-heuristic 

algorithms. In addition, the real case study has been carried out and the models have 

been customized for this real case to show the effectiveness of the model in practical 
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situations. Moreover, the meta-heuristic algorithms have been modified to solve the 

problems. 

 

1.6 Scope and limitations  

This is a real case research based on standard research design and related to 

transportation cost which can be applied in service and  manufacturing  companies in 

the prevailing scope of supply chain management (SCM). However, this research also 

has some limitations. 

Firstly, TTRP models should be applied in large companies with vast customers in 

different areas. Applying this model for a large company may have more efficiency 

comparing with small one. For instance, a company with limited customers may not 

need to serve the customers using mathematical models. They may serve their 

customers manually. Since stochastic TTRP model is a complicated mathematical 

programming in transportation of goods , therefore, customizing the model to any 

company needs some expert and time. Therefore, this conditions need to be considered 

in finding a appropriate case study with at least 100 customers.   

Secondly, the initial data for stochastic TTRP model is the information about all 

customers such as their demands and locations. Therefore, the models can be best fitted 

to serve and satisfy the customers if large volume of data is used to validate the models. 

However, often companies are not willing to share the complete data about their 

customers‘ demand and travel time to the researchers. In addition, sometimes the 

customers are also not willing to cooperate in these cases and need to convince them to 

cooperate.  

Thirdly, since the travel and service times are considered stochastic for this model 

for the first time to bring the TTRP model closer to reality. Estimating the travel and 
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service times between the customers is complicated. In general, finding the complete 

initial information for this case needs time even if the company and the customers 

cooperate for this research. Finally, implementation of the models for the company is 

the main limitation part since it is a big decision for the management and most of the 

time the transportation system needs to be changed completely and the applier should 

show the reliability of the model to the management and convince them. In addition, the 

tangible results cannot be seen quickly and need time to determine. 

 

1.7 Thesis organization 

There are seven Chapters in this thesis, which are arranged as follows. 

Chapter 1: In this Chapter, the rationale or background of study, problem 

statements, research objectives, scope and limitations of the work are placed. 

Chapter 2: This Chapter contains an extensive literature survey using the articles 

which are relevant to supply chain management and vehicle routing problems 

particularly with stochastic parameters and truck and trailer routing problems. In 

addition, the solution approaches for the aforesaid problems are explained. Finally, the 

necessary research directions are drawn in its conclusion. 

Chapter 3: This Chapter describes the detailed methodology used to accomplish 

the research objectives. The methods for collecting real data and the relevant 

benchmarks are also described in this Chapter. 

Chapters 4 and 5: In these Chapters, the truck and trailer routing problems with 

stochastic demands and with stochastic travel and service time model are formulated. 

Chapter 6: In this Chapter, the relevant analysis and discussions on results are 

made based on the models.  

Chapter 7: This last Chapter summarizes the research in terms of conclusion and 

recommendations for further study. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

 

2.1 Introduction 

The Chapter discusses on topics, models, and solution methodologies pertaining 

to supply chain management (SCM) and transportation of goods in its distribution side.   

Truck and trailer routing problems are related to transporting manufacturing 

goods within a plant or between factory floors and delivering products to markets and/or 

customers. TTRP is a variant of the conventional vehicle routing problem (VRP). 

Indeed, VRP has been known as one of the most studied combinatorial optimization 

problems in this area in the past few decades, due to the fact that it covers certain areas 

in practice and considers complexities to a reasonable extent (Gilbert Laporte, 1992; 

Vidal et al., 2013a). This theory was originally derived from travelling salesman 

problems (TSP) (Vidal et al., 2013a). Over the last two decades, constraints like time 

windows, travel and service time and depot deadline were added to VRP solutions (Lei 

et al., 2011; Li et al., 2010). 

In TTRP, the customers may be serviced by either a single truck or complete 

vehicle (truck with a trailer). This feature is usually ignored in VRP. However, because 

of some obstacles that appear in real life situations, such as road conditions, market 

locations, government regulations or limited space to maneuver at customer site, only a 

single truck is needed to serve a few workstations and/or customers.  

Literature survey shows no paper on TTRP with stochastic parameters. Only a few 

articles were published on TTRP with deterministic parameters. Papers published on 

SVRP are simply large in number. These concepts need to be considered together for 

formulating stochastic TTRP. Therefore, this section classifies the relevant models in 

two groups - standard TTRP models with deterministic parameters and VRP with 

stochastic parameters. 
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2.2 Supply Chain Management and Transportation 

The supply chain includes the entire activities which are related to the 

transformation and flow of the goods from the stages of raw material to the final 

customers as well as the related flows of information. Both information and material 

flow down and up on the supply chain. Basically, a supply chain includes the following 

factors: finished goods inventory of work-in process, raw material, customers and retail 

outlets, transportation systems, distribution centers, warehouses, manufacturing centers, 

suppliers, and information which flows among the various factors.  

There are a number of definitions in the literature. The following one has been 

presented by Simchi-Levi et al. (2004): ―The supply chain management is a series of 

methods that have been used for the integration of stores, warehouses, manufactures, 

and suppliers in an efficient way, so that the goods are produced and distributed in the 

proper quantities, at the right time, and to the right destinations, for minimizing the 

costs in the entire system, while the requirements of the service level is satisfied.‖ 

One of the main problems in the field of supply chain management is product 

coordination and flow of material among the locations. A usual problem includes 

bearing the minimum cost to bring the goods that have been located at a central facility 

to geographically scattered facilities. For instance, a supply of goods is located at a 

distribution center, cross docking center, warehouse or plant and needs to be distributed 

to the retailers or customers. The transportation activity is a task in most firms that 

absorbs a major amount of cost. As a result, most of the companies need to have some 

methods to deal with the significant issues in the transportation such as, shipment 

consolidations, vehicle routing, carrier routing, and mode selection.  

One of the significant aspects in the management of transportation is for the 

transportation to be coordinated with the remaining tasks in the firm, particularly within 

customer service and warehouse. Sometimes, the last contact of the sellers with the 
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customer is the transport, thus, the companies need to pay extra attention to the 

fulfillment of the customer needs and expectations and use this relationship for 

improving their sales. The transport coordination of the various elements in a supply 

chain, which is able to change different companies, which can be of significant 

importance, because all of them presumably benefit by having a fast delivery to a 

particular customer. Consequently, a large number of issues in integrating the 

transportation with the other network tasks which could become a challenge to the 

industrial and academic communities.  

Vehicle routing is one of the well-known and basic transportation problems. A 

series of instructions need to be output by a vehicle routing system to inform the drivers 

what to deliver, where and when. One of solutions, which is known to be ―efficient‖, is 

enabling goods to be delivered where and when required at the minimum cost, subject 

to political and legal constraints.  

The legal constraints are the ones that concern with the unloading restrictions, 

vehicle use and construction regulations, speed limits, and hours of work and so on. 

Since the sales are growing with the internet use and the times for delivery are often 

very short, this problem is getting more importance and the customers can be distributed 

in an area. Everyday a different type of customer emerges and they require very short 

time-windows for their products to be delivered. 
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2.3 Transportation and Truck and trailer routing problem  

The TTRP is defined as an undirected graph         , where    

 {                 }  is the set of vertices and   {                      }  is the 

set of edges. The central depot is represented by ‗  ‘ and the other vertices in    {  } 

correspond to customers. Each vertex vi is associated with a non-negative demand di to 

be collected. A customer type    is available for all customers, where      shows that 

customer i is truck customer (TC) and can be serviced only by single truck. If     , a 

customer i is a vehicle customer (VC) and it can be serviced by single truck or complete 

vehicle (truck pulling a trailer).               is a symmetric travel cost which is 

defined on E. It is assumed that all vehicles have the same feature and maintain the 

same speed (Chao, 2002; Lin et al., 2009; Scheuerer, 2006), so the travel cost is equal to 

Euclidean distance between    and    . 

A fleet of    and    number of trucks and trailers are available, respectively. 

However, some trucks and trailers may not be used in TTRPSD solution. Without loss 

of generality, it is assumed that       , as in Chao (2002), Scheuerer (2006) and Lin 

et al.  (2009). The capacity of a truck is   , and that of a trailer is   , where Qk and Qr 

are different (Chao, 2002; Lin et al., 2009; Scheuerer, 2006). 

Three types of route are available in TTRP as follow: 1) a pure travel route (PTR). 

It can be traveled by only a single truck. 2) A pure vehicle route without any sub-tour 

(PVR). Only complete vehicle can be traveled in this route. 3) Complete vehicle route 

(CVR). CVR consists of a main tour and at least one sub-tour. A sub-tour starts and 

finishes at the same vehicle customer (vr) (trailer is parked in parking place which is 

called root) and it can be traveled only by a single truck; however, it should be serviced 

by complete vehicle in the main tour. 
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In 2002, Chao used the term ―Truck and Trailer Routing Problem‖ for the first 

time. However, some research has been performed on the related topics from 1993. The 

first research that can be mentioned on this topic is the research by Semet and Taillard 

(1993). The motivation of these authors was a real life problem (distribution of food for 

the supermarkets). Therefore, they conducted their study on a VPR, which included the 

application of trailers under some restrictions for the accessibility. Unlike the standard 

TTRP, a sub-tour cannot service the truck customers. Besides, the variable costs, which 

are vehicle dependent and the time windows have been taken into consideration. A 

heuristic method has been proposed based on tabu search and clustering. 

Semet (1995) has modeled a problem, which is related to TTRP. This problem is 

called the ―partial accessibility constrained VRP‖. This model is like the model of 

TTRP. The major differences between them are: 1) there is a restriction for the sub-

tours number and it has been set to the maximum of one; 2) in a particular route, the 

depot is only to be visited for once; 3) all the trucks which are available are used; 4) it is 

necessary to determine the number of trailers. This problem is formulated as an integer 

program and the author has proposed a heuristic method with two phases. This model is 

based on a generalized method of assignment, which was proposed by Fisher and 

Jaikumar (1981). Gredessen (1996) has also conducted a study on the VRP with trailers. 

The classical TTRP and this particular TTRP-related problem are different. This 

difference is due to the assumption that the unit demand is possessed by every customer; 

Instead of types of customers, the maneuvering costs are assigned to the customers; it is 

possible to use each one of the customer sites, as an area for parking; every one of the 

trailers is parked once and once only; diverse speeds for driving has been taken into 

consideration with or without the trailers. Several procedures of improvement and 

construction heuristics have been presented. 
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A similar problem was studied by Chao et al. (1999). This problem was the site-

dependent VRP (SDVRP). Here is a variety of different vehicles which are subjected to 

serve a series of customers that are limited to compatible constraints. The serving of 

these customers has to be between the type of vehicle and clients. This variety includes 

different (but limited) types of vehicles and not each vehicle type is able to perform 

every request of the customers. As an example, a high demand can be related to a 

customer and it might need a vehicle with large scales; one other customer can be 

known to be in an area with a restricted access and might need a vehicle with small 

scales and the other customers (the remaining ones) can be served by vehicles with any 

scale and with no limitations. Chao et al. (1999) have proposed a solution for this 

problem. It is a local search with downhill and uphill moves as well as diverse re-

initializations. In addition, Cordeau and Laporte (2001) conducted a research on the 

problem of site dependent routing and modeled the latter as a very particular case of the 

period VRP and then an algorithm with a base of tabu search was proposed. This 

algorithm was especially designed for the period VRP for solving the SDVRP. More 

information on this topic can be found in another study by Lee et al. (2014), in which an 

algorithm based on the tabu search is proposed for addressing the SDVRP. 

Standard TTRP was first proposed by Chao (2002). Then the method mentioned 

in Chao (2002) was extended by Scheuerer and two novel heuristics of construction 

were presented as well as a tabu search approach for addressing the same problem. 

Scheuerer (2006) applied 0 -1 integer programming formulation for solving TTRP. 

Chao (2002) and Scheuerer (2006) used a 2-phase approach for solving TTRP. They 

used heuristics to construct the initial TTRP solution in the first phase. In the second 

phase, Tabu search algorithm was used to improve the initial solution. Chao (2002) 

followed Fisher and Jaikumar's (1981) construction for vehicle routing problem solving 

(Fisher and Jaikumar, 1981). Scheuerer (2006) used Chao's (2002) model and improved 
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it by using two-construction heuristics, T-Cluster and T-Sweep, and applied a new Tabu 

search improvement algorithm for solving TTRP. The results obtained from 

experiments indicated that the heuristics that were proposed are competitive for the 

current methods. Scheuerer had studied the TTRP in his 2004 PhD thesis with multiple 

depots.  

A hybrid multi-objective method was presented by Tan et al. (2007), which was 

an evolutionary algorithm to solve the trailer and truck VRP where both of the required 

number of trucks and the routing distance need to be minimized. In addition a number 

of constraints for operations such as the availability of trailers and time windows are to 

be taken into consideration. The results from the computational experiments indicated 

that this type of method can be effective for finding the applicable trade off solutions for 

the TTRP. In the scientific literature, the only study that contributed in the development 

of exact method for addressing the TTRP is the study by Drexl (2011). In this study an 

algorithm of branch and price has been presented. The author has considered a 

particular example of TTRP and presented a path flow based and an arc flow based 

formula. This formula is characterized by a series of different vehicles, optional 

transshipment and parking locations, and time windows constraints. Randomly 

generated instances have been considered and based on a heuristic and exact version of 

the approach, computational experiments have been performed. The outcomes of the 

experiments indicate that the only instances that may be optimally solved are the very 

small ones.  

Lin et al. (2009) introduced simulated annealing to solve TTRP and obtained 17 

best solutions to the 21 benchmarked TTRP as reported by Lin et al. (2009). Then they 

applied time windows constraint in TTRP solution for the first time to bring the model 

closer to the reality (Lin et al., 2011). Villegas et al. (2010) considered single truck and 

trailer routing problem with satellite depots (STTRPSD). Variable neighborhood 
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descent (VND) and greedy randomized adaptive search procedures (GRASP) were 

proposed by them for solving TTRP. In addition, they applied GRASP/VND algorithm 

for multi-depot VRP and improved the previous analysis. Villegas et al. (2011) 

improved this solution by considering a hybrid algorithm based on the GRASP/VND 

and a path relinking (PR) algorithm and proved that this hybrid algorithm exceeds in 

performance in comparison with GRASP/VND. Finally, Villegas et al. (2013) proposed 

a new hybrid algorithm by considering GRASP and an iterated local search (ILS) and 

found a new solution for benchmarking, which were considered by Lin et al. (2009) for 

the first time. Derigs et al. (2013) proposed TTRP without load transfer between truck 

and trailer for the first time. A hybrid algorithm was applied for solving TTRP problem 

by considering the large neighboorhood search (LNS) and local search (LS). In addition, 

time window constraints were also considered for each customer to bring the model 

closer to the reality. 

 

2.4 Stochastic Vehicle routing: issues and problems 

The definition of Stochastic Vehicle Routing problem (SVRP) has emanated from 

VRP. Some parameters of SVRP are regarded as random variables. Commonly known 

SVRPs are VRP with stochastic demand, VRP with stochastic customer, VRP with 

stochastic customer and demand, and VRP with stochastic travel and service time. All 

variants of SVRP can be considered with time windows, pick up and deliveries and 

multi-depot. Mostly, classical VRP cannot cover all real issues in the world because 

some parameters are not deterministic (Gendreau et al., 1996b). These issues can be 

settled within the framework of stochastic vehicle routing problems (SVRP) (Li et al., 

2010). The most common variants of SVRP are as follows:  



18 

 

 2.4.1 Vehicle Routing Problem with stochastic demands (VRPSD) 

VRPSD is the most popular variant of SVRP. Similar to VRP, the VRPSD is 

defined as an undirected graph         , where     {                 } is the set of 

vertices and   {                      }  is the set of edges. The central depot is 

represented by    and the other vertices in    {  } correspond to customers. Each 

vertex vi is associated with a stochastic and non-negative demand ξi, which is to be 

determined. They are splittable and unknown until vehicle arrives at a vertex (Lei et al., 

2011; Jorge E. Mendoza et al., 2010).  

Tillman (1969) introduced stochastic demand in VRP for the first time to solve 

some real life problems. He considered a multi-depot VRP and Poisson distributed of 

demands and modified the work of (Clarke & Wright, 1964) savings algorithm. Laporte 

et al. (1989) used varying demands in their study. Earlier, most of the researchers 

assumed a unit demand for each customer. In this research, the location of a depot was 

also a decision variable. The branch and cut algorithm was used for the chance 

constrained version of the VRPSD. Bertsimas (1992) demonstrated analytical evidence 

for stochastic vehicle routing problem and showed that a priori and re-optimization 

strategies are very similar. Laporte and Louveaux (1993) improved L-shaped method 

and customized it for stochastic programs with recourse. They used relax branch and cut 

algorithm to add feasible cuts until an integer feasible solution was found. Gendreau et 

al. (1995) also presented the L-shaped method for stochastic program with recourse and 

added a penalty cost for return trip to the depot due to route failure. Gendreau et al. 

(1996a) presented a tabu search algorithm for solving VRP with stochastic demands and 

customers. The demands followed a known distribution and customers were also 

presented with a probability. It should be mentioned that the duration constraints are 

ignored in VRPSD in most of the articles. However, in practical situations, this 
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constraint often occurs because the route has a time limitation for termination and 

servicing customers after the preset time is not acceptable. Erera et al. (2010) introduced 

a new solution and used the Tabu search algorithm to solve VRPSD. Laporte et al. 

(2002) developed the L-shaped method for capacitated vehicle routing problem with 

Poisson and normal demand distributions. Secomandi (2001) used Neuro Dynamic 

Programming techniques for VRPSD and considered Re-optimization approach. Then, 

Novoa and Storer (2009) used dynamic programming algorithm with Re-optimization 

concept and computed the total distance using the Monte Carlo simulation method. 

Also, the article computed the cost directly and showed that the computation time using 

the Monte Carlo algorithm is up to 65 percent shorter than using the direct computation. 

In addition, Lei et al. (2011) extended VRPSD, and imposed time window constraint to 

vertices. They solved the vehicle routing problem with stochastic demand and time 

windows (VRPSDTW) by considering discrete and continuous cases to model the 

demand. These methods have been improving since 1990 and now can consider a wide 

variety of VRPSD. However, there are having some limitations that can be resolved for 

any specific case of SVRP. For example, exact algorithms such as branch-and-bound 

method should be used for small scale problems. These limitations have been mentioned 

in subsequent sections.  

 

2.4.2 Vehicle Routing Problem with stochastic customers (VRPSC) 

The VRPSC can be demonstrated by an undirected graph         , same as the 

definition of VRPSD. However, each vertex vi is associated with a deterministic 

demand di and the customers are presented with some probabilities,   . It means that the 

customers are absents with some probabilities      . The VRPSC can be solved in two 

stages. In the first stage, the routes are constructed without considering the probability 

of present customers. The absent customers will be revealed in the second stage 
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(Bertsimas, 1992; Gendreau et al., 1995; Gendreau et al., 1996b). For example, 

sometimes the distributor doesn‘t know that the customers are present or not (also, if 

they have any demand or not), therefore, it is possible to predict the probability of 

customer present. Most of researchers considered VRPSC with unit demand (Bertsimas, 

1992) because it is easier to understand. Bertsimas described properties, bound and 

heuristics for VRPSC (Bertsimas, 1992; Gendreau et al., 1996; Lei et al., 2011). Then, 

Bent and Van Hentenryck (2004) used Multiple Scenario Approach (MSA) to solve 

Dynamic VRPTW with stochastic customer. In dynamic VRPTW, customer‘s requests 

are not determined and become available during the service being provided. Although 

most of the articles wanted to minimize the cost or the distance in VRP, the purpose of 

the Bent‘s article is to maximize the number of serviced customers as much as possible 

considering all constraints (Bent & Van Hentenryck, 2004; Pillac et al., 2013). In some 

real life issues, customers are present with probabilities. In addition, their demands are 

stochastic. Therefore, for these cases VRPSC should consider with stochastic demand 

which is named as VRPSDC.  

 

2.4.3 Vehicle Routing Problem with stochastic demands and customers (VRPSDC) 

Any combination of VRPSD and VRPSC is known as VRPSDC. It means that the 

demands are stochastic; also the customers are present with probabilities. Jezequel 

(1985) is the first researcher who worked on this topic. Bertsimas (1992) presented the 

most accepted definition of VRPSDC. The Bertsimas methodology has two stages. The 

routes were constructed in the first stage for all customers (present or absent). In the 

second stage, the absent customers were revealed and considered. Gendreau et al. 

(1995) used an exact algorithm using the integer L-shaped method for solving VRPSDC 

and they used Tabu search algorithm for solving VRPSDC in late 1990s (Gendreau et 

al., 1996b). After this, all researchers who have been working on VRPSC have 
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considered stochastic demand. It means that VRPSC and VRPSDC can be classified 

into one group. These references may be seen for further information (Bent & Van 

Hentenryck, 2004; Hvattum et al., 2007; Lei et al., 2011).  

 

2.4.4 Vehicle Routing Problem with stochastic travel and service time (VRPST) 

VRPST is one of the most popular variants of SVRP. The VRPST is defined as an 

undirected graph         , where     {                 } is the set of vertices and 

  {                      }  is the set of edges. The central depot is represented 

by    and the other vertices in    {  } correspond to customers. Each vertex vi is 

associated with a deterministic and non-negative demand qi to be collected. Also each 

customer has a random variable service time δi. Each arc (i, j) is associated with a travel 

distance, or a travel cost cij and         should satisfy the triangle inequalities (Lei et 

al., 2011; Li et al., 2010; Zhang et al., 2012). Kenyon and Morton (2003) considered 

VRPST with a real case study in a service sector in Belgium. This was the first case 

study in VRPST and could help other researchers to improve their real life  problems. 

The goal of this work was to provide service to all branches of bank and the objective 

was to minimize the completion time using branch-and-cut algorithm with a Monte 

Carlo simulation. Li et al. (2010) extended VRPST and studied SVRP in which travel 

and service times were stochastic with time windows (VRPSTTW) constraint and used 

tabu search algorithm to solve it. The VRPSTTW was formulated with chance 

constrained programming (CCP) and stochastic programming with recourse (SPR). 

Solving a real life problem with CCP concept is easier than SPR; however, CCP 

concept completely ignores recourse action and the solution cannot be optimized. The 

objective is to design a set of routes and minimize the corresponding total travel cost 

considering all constraints in the model. The VRPST can be considered with other 
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constraints such as time windows and service times (Li et al., 2010). Lei et al. (2012) 

considered CVRP with stochastic service times (CVRPSST) without any limitation in 

the number of vehicles and used the generalized variable neighborhood search heuristic 

to solve the problem which was first introduced by Mladenovic and Hansen (1997). In 

these articles, the insertion and swap methods were used to find a better solution and, 

indeed, reversion method could be used to find a better neighborhood and better 

solution. In addition, the CVRPSST becomes more practical if travel time is considered 

stochastically. Taş et al. (2013) improved VRP with stochastic travel times and worked 

on VRP with soft time windows and stochastic travel times (VRPTWST). In this article, 

transportation cost (including travel distances, number of vehicles and over time 

penalties) and service times were considered in the model and the problem was solved 

in three phases. An initial solution was constructed in the first stage. In the next stage, 

the initial solution was improved by tabu search meta-heuristic algorithm. In most of the 

articles, Meta-heuristic algorithm was the last step for optimization; however, the 

solution was improved by post-optimization method in the last phase. Post-optimization 

method tries to modify the departure time of each customer and reduce the service costs 

to decrease the total cost. 

 

 

2.5 Differences between stochastic VRP and classical VRP 

The classical Vehicle Routing Problem is defined by an undirected graph   

     , where     {                 } is the set of vertices and   {(     )         

      }  is the set of edges. The central depot is represented by    and the other 

vertices are corresponding to customers or cities. Each vertex    is associated with a 

non-negative demand di. Costs are represented by edges.               is a cost 
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matrix,  which shows the cost between two vertices for all edges defined on E. The cost 

can be represented by travel distance; travel costs itself or travel time. The number of 

vehicles can be considered constant or as a decision variable and it depends on situation 

that can be changed. All vehicles are assumed to have the same features and have a 

constant capacity Q. The purpose is to design a set of routes and find the one that 

minimizes the total cost. In contrast to their CVRP counterparts, SVRP involves some 

stochastic parameters such as stochastic demand, stochastic travel and stochastic service 

time. Therefore, the company may face a problem of delivering the products‘ to 

customers. Consequently, unexpected extra cost will be imposed to the company.  

 

2.6 Solution approaches  

Two main concepts for solving the aforesaid types of problems can be discerned 

from stochastic programming (Lei et al., 2011). The first one is known as chance 

constrained programming (CCP). In CCP, a problem is solved by imposing a constraint 

ensuring that the probability of a route failure is bounded by some parameters, such as 

time limitation and service time (Lei et al., 2011). This concept attempts to convert the 

stochastic parameters to the equivalent deterministic values. For instance, the VRPSD 

can be converted to an equivalent deterministic program. Stewart Jr and Golden (1983) 

and Laporte et al. (1989) have demonstrated this transformation by considering 

statistical relationship between the parameters. The second concept is stochastic 

programming with recourse (SPR). Two main solution strategies are available under 

SPR. The first one is a priori optimization (Bertsimas, 1992; Gendreau et al., 1996;  

Mendoza et al., 2010; Tan et al., 2007) and the second one is re-optimization (Psaraftis, 

1995; Secomandi, 2000; Secomandi & Margot, 2009). In an a priori optimization 

solution, the set of tours and sub-tours is constructed in the first stage. Recourse actions 

considering the random variables are then revealed. In a re-optimization solution, the 
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customers are serviced until the failure is occurred. Then it comes back to the depot and 

fills the capacity for the remaining customers; however, the dispatcher decides which 

customer should be served next, because re-optimization is a dynamic process and the 

route may be changed during the en route service (Pillac et al., 2013; Secomandi & 

Margot, 2009). During the past few decades different methods and algorithms were 

applied and developed for solving Stochastic Vehicle Routing Problem. These can be 

classified into three groups: exact, heuristics and meta-heuristics algorithms. Mostly, 

exact algorithms are used for small scale problems; however, heuristics and meta-

heuristics can be used for large scale cases. Tables 2.1, 2.2, 2.3 show the examples for 

SVRP, on those approaches. 

 

Table 2.1: Summary on Exact Algorithms to solve SVRP 

Method  Short description Reference papers Limitation 

Dynamic 

Programming 

with State Space 

Relaxation 

Considering problems by 

breaking them down into 

simpler sub-problems. 

Performs the recursion on 

smaller state-space. 

(Novoa & Storer, 

2009; Nicola 

Secomandi, 2000; 

Topaloglu & 

Powell, 2006) 

N < 100 (N 

is number 

of 

customers)  

Branch-and-

bound 

Uses upper and lower 

estimated bounds on the  cost  

of  an  optimal  schedule 

(Kenyon & Morton, 

2003; Laporte et al., 

1989)  

N < 100  

Branch-and-cut Is a hybrid algorithm between 

branch-and-bound and the 

cutting plane methods and 

uses for solving integer linear 

program  

(Karaoglan et al., 

2011; G. Laporte & 

Louveaux, 1993; 

Valle et al., 2011) 

N < 100 

Branch-and-cut-

and-price 

Branch-and-bound with 

column generation using 

cutting plane method. Column 

generation techniques are 

used to compute linear 

relaxation 

(Christiansen & 

Lysgaard, 2007; 

Christiansen et al., 

2009) 

N < 100 

L-shaped 

algorithm 

Is a decomposition method. 

An important restriction to 

this method is that all 

problems should be linear 

programs 

(G. Laporte et al., 

1998; Yang et al., 

2000) 

N  < 100 
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Table 2.2: Summary on Heuristic Algorithms to solve SVRP 

Method Short description Reference papers Limitation 

Saving 

method 

Tries to improve the initial 

solutions by combining the 

customer of two routes and check 

the feasibility of the routes 

(Dror & Trudeau, 

1986; Poot et al., 

2002; Tillman, 

1969) 

This algorithm can 

improve initial solutions 

and should be combined 

with other algorithms to 

find optimal solution 

Lagrangian 

method 

The Lagrangian method is based 

on a ‗sufficiency theorem‘. 

Problems can be formulated for 

maximization of a concave non-

smooth function. 

(Stewart Jr & 

Golden, 1983) 

Researchers need to be 

careful about local minima 

and maxima to escape 

from this issue 

Sweep 

method 

Able  to  find  near-optimal 

solutions  in  large  problems  at  

low  CPU  times 

(Goodson et al., 

2012) 

Researchers should be 

careful about local minima 

and maxima to escape 

from this issue. 

Cluster 

method 

The purpose is to gather 

customers in small group to find 

optimal solution in reasonable 

time 

(J.E. Mendoza et 

al., 2011; Yang et 

al., 2000) 

The customers cannot 

easily be categorized 

Clarke and 

Wright 

heuristic 

Tries to find initial solution then 

merges two routes for decreasing 

the travel or distance cost 

(Mendoza et al., 

2011) 

Should be used with other 

algorithms until the 

solution reach to an 

optimum level. 

 

Table 2.3: Summary on Meta-heuristic Algorithms to solve SVRP 

Method Short description Reference papers Limitation 

Tabu search 

(TS) 

Tries to find good 

neighborhood to decrease the 

cost using a tabu list to avoid 

repetition 

(M. Gendreau et al., 

1996; Hu & Liu, 2011; 

Ismail & Irhamah, 

2010; Taş et al., 2013) 

Time taken to solve the 

problem may be more than 

other meta-heuristics 

particularly population 

search algorithm. 

Simulated 

annealing 

(SA) 

Based on annealing in 

metallurgy, tries to find good 

neighborhoods with this 

technique to improve the 

solutions 

 

(Goodson et al., 2012; 

Suman & Kumar, 

2005) 

Time taken in SA is more 

than population search 

algorithms and highly 

dependent on the parameters. 

They must be defined 

precisely. 

Genetic 

algorithm 

(GA) 

Based on natural evolution, 

tries to generate and improve 

solutions using crossover and 

mutation techniques 

(Ismail & Irhamah, 

2010; Tasan & Gen, 

2012; Xie & An, 2006) 

The effectiveness of GA is 

fully dependent on the 

parameters. They must be 

defined precisely. 

Neural 

networks 

(NN) 

Based on biological neurons, 

tries to simulate some 

properties of biological 

neurons and find and improve 

solutions 

(Bullnheimer et al., 

1999; Ghiani et al., 

2003; Ismail & 

Irhamah, 2010; Nygard 

et al., 1990; Tasan & 

Gen, 2012; Xie & An, 

2006) 

Time taken in NN is more 

than population search 

algorithms which must often 

be matched with incredible 

amounts of CPU. 

Ant colony 

optimization 

(ACO) 

To generate and improve the 

solution based on the 

behavior of ants seeking  

(Bianchi et al., 2006; 

Bullnheimer et al., 

1999) 

Researchers need to be 

careful about the local 

minima and maxima to find 

real optimal solutions. 

Adaptive 

memory 

procedure 

(AMP) 

AMP is a series of suitable 

and proper solutions, which 

during the search process, 

gets updated dynamically. 

(Bent & Van 

Hentenryck, 2004) 

TS is mostly embedded in 

AMP to empower the 

algorithm.  

http://en.wikipedia.org/wiki/CPU
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Particle 

Swarm 

Optimization 

(PSO) 

Tries to find optimal solution 

based on organism‘s behavior 

such as flocking of birds. 

(Shanmugam et al., 

2011) 

PSO is sensitive to the 

system of coordinates and 

researchers need to be 

careful about this issue. 

Memetic 

algorithm 

(MA) 

Similar to GA; however, MA 

uses local search method to 

generate and improve 

solutions. 

(Mendoza et al., 2010) Researchers need to be 

careful about the local 

minima and maxima to find 

real optimal solutions. 

Adaptive 

large 

neighborhood 

search 

Uses different simple 

heuristic algorithms to cull 

and repair the current solution  

(Gilbert Laporte et al., 

2010; Lei et al., 2011) 

The algorithms for culling 

and repair should be chosen 

accurately for empowering 

the algorithm. 

Table 2.3 continued 

 

2.6.1 Heuristic and Meta-heuristic algorithms 

Heuristic indicates a series of problem solving techniques that are experience-

based. In addition to problem solving, they are also used for learning and discovery. 

These techniques find a solution that is not guaranteed to be the optimal solution, but it 

is proper enough for a given series of goals. Heuristic methods are applied where the 

exhaustive search is not practical. They are applied for speeding up the process of 

finding a good enough solution through mental shortcuts to simplify the decision 

making cognitive load. In a more precise way, heuristics are strategies using readily 

accessible information (though loosely applicable) for controlling the problem solving 

in machines and humans.  

A meta-heuristic is a procedure at a higher level or it is considered as a heuristic 

designed procedure to select, generate, or find a heuristic or procedure at a lower level 

(partial search algorithm) that can provide a good enough solution for a problem of 

optimization, especially with imperfect or incomplete information or restricted capacity 

of computation. There may be some assumptions made by the Meta-Heuristics about the 

optimization problem, which is being solved and therefore they might be applicable for 

various problems. Meta-heuristics search over a large set of feasible solutions and 

through this search, they are usually capable of finding proper solutions through lower 

http://en.wikipedia.org/wiki/Procedure_(computer_science)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Feasible_solution
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computing efforts than simple heuristics, iterative methods, or algorithms. Over the last 

two decades, most of researchers have focused on the development of heuristics and 

meta-heuristics algorithms to solve VRPs. It is indeed, not possible to solve all variants 

without considering heuristic approaches, particularly in large scale problems. For 

instance, dynamic programming algorithm can only be used for less than 100 customers 

otherwise the performance of the algorithm will be decreased. Heuristic algorithms such 

as the sweep algorithm (Goodson et al., 2012), saving method (Dror & Trudeau, 1986), 

the Fisher and Jaikumar algorithm (1981) and cluster algorithm (Mendoza et al., 2011) 

emphasize to obtain a feasible solution quickly. It depends on the type or complexity of 

SVRP, some heuristic algorithms may be appropriate. Mostly, these algorithms may be 

used to construct initial solutions and these solutions can be improved by meta-heuristic 

algorithms. 

Meta-heuristics use two principal methods to improve the solution from that of 

heuristic in terms of different performance criteria. These methods are known as local 

search method (Hu & Liu, 2011; Lei et al., 2011; Liu et al., 2008) and population search 

method (Ismail & Irhamah, 2010; Vidal et al., 2013b). When using the local search 

methods, one should know that a thorough search of the solution space is implemented 

by moving at each step from the existing solution to another likely solution in its 

neighborhood. Tabu search (TS) and simulated annealing (SA) (Suman & Kumar, 2005) 

are the most well-known algorithms in this area. The population search includes 

upholding a pool of good parent solutions and then re-associating them to create new 

offsprings. Genetic algorithm (GA) and adaptive memory procedures (AMPs) and 

particle swarm optimization (PSO) are the three main examples in this principle. The 

other famous meta-heuristic algorithms are ant colony optimization, evolutionary 

strategy, artificial immune system and neural networks. Genetic algorithm is a classic 

example in population search method. If several parents are used to produce several 
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descendants, this method can be identified as an adaptive memory procedure (Cordeau 

et al., 2002). AMP can cover more space than GA, therefore AMP has more chance to 

find an acceptable solution; however, this method is more complicated than GA because 

AMP has more parameters and needs enough experience to customize the method into 

the corresponding problem. Some meta-heuristics algorithms which may use for solving 

SVRP and STTRP are reviewed more specifically.  

1- Genetic algorithms 

Genetic algorithms (GAs) are the population search algorithms, which are based 

on the genetics and the natural selection evolutionary ideas. In fact, what they represent 

is a random search intelligent exploitation that has been applied for solving the 

optimization problems.  

The procedure of GA is to simulate the fittest survival among individuals for the 

following generation to solve a problem. Every one of the generations includes a 

character string population, which are similar to the chromosome that exists in the 

human DNA. In a search space, possible solutions and the points are represented by 

each individual. 

Then, an evolution process needs to be performed for the individuals of the 

population. The base of the GA is an analogy with a structure of genetics and the 

chromosomes behavior in an individual population, using the foundations that are 

mentioned as follows (Goldberg & Holland, 1988): 

 In a population, each individual competes with others for mates and 

resources. 

 More offspring is generated by the individuals that are most successful in 

the competitions than the ones with a poor performance. 
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 The spread of genes from superior individuals is throughout the 

population in a way that sometimes a better offspring is produced by the good parents 

that is superior to either parent. 

 Therefore, each following generation will be more adapted for the 

surrounding environment. 

For a GA, a population of individuals is kept among the space of search and a 

possible solution is represented by each one of them for a particular problem. Usually 

the alphabet of binary {0, 1} is used as a term of variables or finite length vector of 

components for coding each individual. 

For contenting the analogy of genetic, a connection has been made between these 

individuals and the chromosomes and the variables are similar to the genes. Therefore, 

it is genes (variables) that make a chromosome (solution). In order to represent the 

capabilities of a particular individual in competing, a score of fitness is assigned to 

every solution. The individual that has the near optimal or the optimal score is looked 

for. The objective of the GA is to apply the selective solution breeding for the 

production of better offspring than the parents by mixing the chromosomes information. 

A population including n chromosomes is maintained by the GA and this population 

includes the associated fitness values as well. According to the fitness of the parents, 

they are chosen to mate resulting to produce offspring through a plan of reproduction. 

As a result, more opportunities are given to the solutions with a high fit to reproduce so 

that the characteristics from each individual parent are inherited by the offspring. Since 

there is a static size for the population, room has to be generated for the new offspring 

as the parents mate (Holland, 1975). 

In the population, the individuals die and their replacements are the new solutions. 

When all the mating possibilities are exhausted, eventually a fresh generation is created. 

The hope is that in the following generations more improved solutions are generated 
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and the solutions with less fitness die out. New generations are produced as the 

solutions which include improved genes than a usual solution in a previously created 

generation. Each one of the following generations includes improved solutions than the 

one that was generated right before this current generation. At the end, when the 

population in no longer in the process of producing improved offspring compared to the 

previous generation, it is concluded that the algorithm is converged to a series of 

solutions for the objective problem (Goldberg, 1989). An improved GA was proposed 

by Nagendra et al. (1996) for finding the most appropriate sequence of stacking of the 

stiffeners laminate and the skin. In addition, GA was used by Xie et al. (2008) for the 

best design of the heat exchangers of plate fin. The total annual cost and minimizing this 

cost was the consideration of the authors and it was considered as the objective function 

and the constraint for this objective function was the pressure drop. In order to perform 

the second law based optimization for the heat exchangers of the plate fin cross flow, 

GA was used by Mishra et al (2009).  The GA flowchart is drawn in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1: Genetic algorithm flowchart 
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2- Ant colony optimization 

Ant colony optimization (ACO) is an example for the design of meta-heuristic 

algorithm for the combinatorial optimization problems. In 1991, the very first algorithm 

that could be categorized in this type of framework was proposed by (Dorigo et al., 

1991a). After that, it has been expanded from the basic principle. 

In fact, a low level solution, which is also constructive, is driven by the ACO 

algorithms. However, these algorithms include the solution in a framework population 

and the construction is randomized in a Monte Carlo method. In addition, GAs also 

suggests the different solution elements with a Monte Carlo combination. However, in 

the ACO case, the distribution of probability is defined clearly by the solution 

components that have been previously obtained. 

The basic idea of the Ant Colony was inspired by the ants‘ behavior in real life. 

Their parallel search on several computational threads, which are constructive and the 

search is based on the data about the local problem and a structure for dynamic memory 

that includes information about the quality of the results that have been previously 

achieved. The interactions among the different search threads have led to the emergence 

of collective behavior. This behavior has been proved to be effective for solving the 

problems of combinatorial optimization (CO). 

The ACO has been very successful in many problems of combinatorial 

optimization such as vehicle routing problem (Bell and McMullen, 2004), and travelling 

salesman problem (TSP) (Dorigo et al., 1991b). The ACO flowchart is drawn in Figure 

2.2. 
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Figure 2. 2: ACO flowchart 

 

3- Particle swarm optimization 

The Particle Swarm Optimization or so called PSO is a technique for optimization 

which is stochastic and population based and it has been developed by Kennedy and 

Eberhart (1995). The inspiration of this method is by the social behavior of fish 

schooling or bird flocking. There are many similarities that the PSO shares with the 

computation techniques of evolutionary such as Genetic Algorithms. The initialization 

of the system is by a random solutions population and it tries to search for the optima by 

performing updates for generations.  

However, not similar to the Genetic Algorithm, there are no operators of evolution 

for PSO. Some instances of these operators can be mentioned as the mutation and the 

crossover operators. The potential solutions of the PSO are known as the particles and 

they follow the current optimum particles to fly and go through the space of the 
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particles themselves. However, only the coordinates, which are related to the best 

fitness (solution) that the particle has obtained so far are maintained (the value of the 

fitness is stored as well). This particular value is known as the pbest. In addition, there 

is another ―best‖ value that the optimizer of the particle swarm tracks and it is the best 

value that has been achieved by any other particle in the neighborhood of the particle. 

This location of this neighborhood is called the lbest. At the time that a particular 

particle receives all of the population as the neighbors of topological location, the best 

achieved value is best globally and it is known as the gbest. 

At each step of time, the concept of PSO includes the change in the each particle‘s 

velocity (accelerating) toward the locations of its lbest and pbest (the PSO local 

version). A random term weights the acceleration. Random numbers are separately 

generated for getting closer toward the locations of lbest and pbest (Kennedy & 

Eberhart, 1997).  

Particles in the PSO are in a multidimensional search space and they can fly 

around. During the time of flying, the position of each one of the particles is adjusted by 

the particle itself according to the own experience of the particle and the experience of a 

particle in the neighborhood. This adjustment is in a way that the particle will be able to 

make use of the best position that its neighbor or itself has encountered (Bergh & 

Engelbrecht, 2006). Therefore, the local search is combined by an algorithm of PSO 

with the global methods of searching and it attempts to make a balance for the 

exploitation and the exploration. For the methods that can be applied in a wide range of 

applications, the PSO has been used. The PSO flowchart is drawn in Figure 2.3. 
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Figure 2.3: PSO flowchart 
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some new solutions from the neighborhood of the current solutions and finds the best 

one between them and chooses this as a new solution. If a new solution appears to be 

better than the current solution, this new solution is termed as a best solution and the 

procedure is continued. In this process, the number of predetermined iterations is 

applied in each temperature level to improve the possibility of a set of appropriate 

solutions. However, sometimes the algorithm occurs in local optima. The procedure 

may escape from this issue by accepting worse solution with some conditions. This new 

solution with a worse objective function value can be accepted as the current solution 

with a small probability determined by the Boltzmann function,           , where K 

is a predetermined constant and T is the current temperature in Boltzmann function  (Lin 

et al., 2011). The M-SA flowchart is drawn in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 2.4: M-SA flowchart 
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5- Tabu search 

Tabu search (TS) is a famous iterative local search heuristics. It can be applied to 

a wide variety of combinatorial optimization problems (Li et al., 2010). It was 

introduced by Glover (1986). A comprehensive version of TS was developed by 

(Glover & Laguna, 1993). At each iteration, the algorithm explores the solution space 

and produces a new solution from the neighbourhood of the current solution. Even if, 

the objective function value becomes worse with this new solution. A tabu mechanism 

is put in place to prevent the process from cycling over a sequence of solutions. An 

intuitive way to prevent cycles is to forbid the process from returning to previously 

encountered solutions, which is achieved by exploiting excessive bookkeeping. Some 

attributes of the past solutions are registered and any solution possessing these attributes 

may not be considered, and temporarily declared tabu for number of iterations (it is 

called tabu tenure). The TS flowchart is drawn in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: TS flowchart 
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6- Memetic algorithm 

Memetic Algorithms (MAs) fit into the category of the evolutionary algorithms 

(EAs) where local search procedures are used to distribute the search area and enhance 

the search to refine individual. In fact, MA is a hybrid algorithm which combines the 

population and local search procedures to improve the initial solutions. The inspiration 

for MA has been realized from the adaptation models in the natural systems. These 

models combine the lifetime learning of an individual with the populations‘ 

evolutionary adaptation (Tavakkoli-Moghaddam et al., 2006). Besides, another 

inspiration of the MAs was obtained from the concept of meme from Dawkin. A 

cultural evolution unit is represented by this concept and it can indicate the local 

refinement (Tavakkoli-Moghaddam et al., 2006) and can be applied for solving TTRP. 

In proposed MA, the population P consists of a set of individuals which are 

generated randomly. Each individual is called a ‗chromosome‘, which is simply a 

permutation of the set of n nodes (customers) {       } and N dummy zeros (artificial 

store or the root of sub-tour). This idea was initially proposed by (Beasley, 1983) as part 

of a route-first cluster-second heuristic, and was then used by (Prins, 2004). Recently, 

this method was applied to other versions of the VRP, such as heterogeneous fleets 

(Prins, 2009) and pickup and delivery vehicle routing problem (Velasco et al., 2009). 

The MA flowchart is drawn in Figure 2.6. All heuristic and meta-heuristic algorithms 

can be assessed based on five criteria: accuracy, speed, flexibility, simplicity and 

consistency (Cordeau et al., 2002). Accuracy measures the differences between the 

value which is obtained from heuristic and meta-heuristic algorithms and the actual 

optimal value. In addition, computational speed is important in SVRP, because 

sometimes solving a variant of SVRP with a particular algorithm consumes a lot of time 

and researchers might prefer to use another algorithm. Therefore, after solving SVRP, 

the time taken should be calculated. Mostly, accuracy and speed are against each other.  
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Figure 2. 6: MA flowchart 
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If the speed of algorithm is increased by changing the parameter such as 

temperature in simulated annealing by an operator, the accuracy may decrease and vice 

versa. In SVRP, most of algorithms cannot solve a problem for the optimal value. 

Hence, researchers compare their solutions with benchmark instances such as 

Christofides and Solomon benchmarks (Christofides et al., 1979; Solomon, 1987) and 

try to improve the best known values for each benchmark instance. In addition, 

consistency which is relevant to accuracy is important in heuristic algorithms 

particularly in SVRP. Researchers prefer algorithms which implement well for all 

models rather than algorithms which perform better for most of the time; however, some 

algorithms may have a poor performance over others (Cordeau et al., 2002).Also users 

prefer to get best values at an early stage to decrease the computing time whenever the 

speed is a priority; however, it depends on the case under the study where this strategy 

may be changed whenever accuracy is more important than speed. Flexibility and 

simplicity are two other important criteria in all heuristics, particularly in SVRP. Some 

of the algorithms are seldom used to solve the SVRP because they are too complicated 

or have too many parameters, and operator should have a confidence to customize these 

algorithms with problem. Hence it is difficult to understand and most researchers are not 

likely to use them (Cordeau et al., 2002). Therefore, some algorithms which have more 

flexibility can be appropriate for solving SVRP, because users should accommodate the 

algorithm after stochastic parameters are revealed. Because of that, most researchers 

define a penalty cost in their model to increase the flexibility of the algorithm. Some 

heuristic algorithms such as saving method, lagrangian method, sweep method, cluster 

method and Clarke and Wright and meta-heuristics such as tabu search, simulated 

annealing, genetic algorithm, neural network, ant colony, particle swarm optimization, 

adaptive memory, memetic algorithm and adaptive large neighborhood search have 
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been proposed to solve variants of SVRP. In general, the accuracy and flexibility in 

meta-heuristics are higher than heuristics. However, meta-heuristics can involve more 

parameters but needs user confidence or experience (Cordeau et al., 2002). The 

heuristics and meta-heuristics algorithms are evaluated in Tables 2.4 and 2.5.  

Table 2.4: Evaluation of some of the main SVRP heuristic algorithms 

Heuristic algorithms Accuracy Speed Flexibility Simplicity Consistency 

Saving method Medium Medium Low Easy Medium 

Lagrangian method High Medium Medium Difficult Medium 

Sweep method Medium High Medium Easy Medium 

Cluster method Medium High Low Easy Medium 

Clarke and Wright  High High Low Medium Medium 

 

Table 2.5: Evaluation of some of the main SVRP meta-heuristic algorithms 

Meta-heuristic algorithms Accuracy Speed Flexibility Simplicity Consistency 

Tabu search High Medium High Medium High 

Simulated annealing Very high Medium High Medium High 

Particle swarm optimization High High High Medium Medium 

Genetic algorithm Very high High High Medium High 

Memetic algorithm Very high High Very high Medium High 

Neural networks Very high Medium High Difficult Medium 

Ant colony Very high Medium High Difficult Medium 

Adaptive memory Very high High High Difficult Medium 

 

2.6.2 Exact algorithms  

Exact algorithms for SVRP can be classified into three groups: tree search method 

(Christiansen & Lysgaard, 2007; Laporte et al., 1989), integer linear programming 

(Laporte et al., 2002) and dynamic programming (Novoa & Storer, 2009; Pillac et al., 

2013). In tree search methods, the purpose is to limit the constraints by calculating 

lower and upper bounds. Branch-and-bound, Branch-and-cut and Branch-and-cut-and-

price are the three well-known methods in this group. Dynamic programming is used for 

optimization and re-optimization and can be formulated as a stochastic shortest path 

(SSP) approach (Novoa & Storer, 2009). In this method, service and routing decisions 

need to be made simultaneously and such decisions are made on the current system 

state. Each time the vehicle reaches at a location and observes the demands, the system 
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state is then updated. In this system, there is no pre-planned course or which customers 

to be visited next and should be considered at each stage. The other decision to 

minimize the expected routing costs is whether or not to send the vehicle to the depot 

for replenishment (Pillac et al., 2013). Exact algorithms can be studied by four criteria: 

speed, flexibility, simplicity and scale. The number of customers which can be 

addressed by the algorithms in a reasonable time in SVRP is called scale. In exact 

methods, users do not consider accuracy as an important criterion because the most 

significant difference between exact and heuristics is that the first one gives a precise 

solution; however, the heuristics produce a proximate solution. So accuracy is not an 

important criterion in exact methods. In past few decades, many different exact 

algorithms have been proposed. All of them have some positive and negative aspects. 

For most researchers, speed and scale of the algorithms are more important criteria than 

others. If the number of customers is increased in SVRP, users should consume more 

time to find an appropriate solution and researchers should consider speed and scale of 

algorithm together. In addition, flexibility and simplicity are two other criteria that 

should be considered in these algorithms. Researchers compare their solutions with the 

benchmark instances and try to improve their algorithms by using wider instances 

(Novoa & Storer, 2009). Some exact algorithms such as dynamic programming, branch 

and bound, branch and cut (Gounaris et al., 2011), branch and cut and price (Bettinelli 

et al., 2011; Christiansen & Lysgaard, 2007) and L-shaped algorithms (Laporte et al., 

2002; Lei et al., 2011) have been used in SVRP. In general, an exact algorithm is 

designed for a special case, so it might not have a good flexibility. However, among the 

exact algorithms, dynamic programming can provide the highest flexibility. Based on 

the main criteria of evaluation, different exact algorithms are compared and are placed 

in Table 2.6. 
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Table 2.6: Evaluation of some of the main SVRP exact algorithms 

Exact algorithm Speed Flexibility Simplicity Scale 

Dynamic Programming Medium High Difficult Medium 

Branch-and-bound Medium Low Easy Small 

Branch-and-cut Medium Low Easy Small 

Branch-and-cut-and-price Medium Low Medium Medium 

L-shaped algorithm Medium Medium Medium Large 

  

2.7 TTRPs and solution algorithms  

The level of activities on the subject of VRP and the variations of VRP has been 

very high in the last decades. However, as far as it‘s known, the attention that has been 

given to the subject of TTRP and its applications is limited. Table 2.7 indicates that 

some of the practical applications have also addressed the TTRP. One of the most 

related ones is the raw milk collection. For more details about this application, the 

reader might be referred to (Derigs et al., 2013; Villegas et al., 2013). 

Table 2.7: Classification of truck and trailer routing problem (TTRP) 

Authors Algorithm Specific features and limitations 

Semet and Taillard 

(1993) 

Tabu search Time windows, vehicle-dependent 

variable costs; Cannot consider sub-tour 

Semet (1995) Two-phase heuristic based on 

Fisher and Jailumar (1982) 

The number of trailer needs to be 

determined; 

Maximum one sub-tour can consider 

Gredessen (1996) Two-phase heuristics: 

construction and 

improvement 

Each customer must have unit demand 

Chao (2002) Construction heuristics and 

Tabu search  

Standard TTRP 

Scheuerer (2006) Construction heuristics and 

Tabu search 

Standard TTRP 

Hoff and 

Løkketangen (2007) 

Tabu search Standard TTRP 

Lin et al. (2009) Simulated annealing Standard TTRP 

Lin et al. (2009) Simulated annealing A relaxation of TTRP 

Lin et al (2009) Simulated annealing TTRP with time windows 

Villegas et al. (2010) Variable neighborhood 

descent (VND) and greedy 

randomized adaptive search 

procedures (GRASP) 

Single TTRP with satellite depots 

Villegas et al. (2011) A hybrid algorithm based on 

the GRASP/VND and a path 

relinking (PR) algorithm 

Single truck and trailer routing problem 

with satellite depots 

Villegas et al. (2013) A hybrid algorithm based on 

the GRASP and an iterated 

local search (ILS) 

Single truck and trailer routing problem 

with satellite depots 

Derigs et al. (2013) A hybrid algorithm based on 

large neighboorhood search 

(LNS) and local search (LS) 

TTRP without load transfer between 

truck and trailer with time window 
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 2.8 SVRPs and solution algorithms  

SVRPs are classified into three groups: VRP with stochastic demand, VRP with 

stochastic customers, and VRP with stochastic travel and service time. Also it may be 

partitioned into single depot, multi depot and multi compartments. Table 2.8 considers 

the algorithms which are used to solve a variety of stochastic VRP real-life problems. 

Researchers have to decide the suitability of an algorithm for solving SVRPs. 

Table 2.8: Classification of stochastic vehicle routing problems (SVRP) 

Authors   VRPSD  VRPSC VRPST Algorithm Specific features and 

limitations 

Tillman 

(1969) 

Not exactly SVRP 

but is helpful for 

introducing SVRP  

---------- ---------- Clarke and 

Wright  

Single depot, consider 

only the basic concept 

(Golden & 

Stewart, 1978) 

Introduced 

VRPSD 

considering the 

penalty cost for 

return trips 

---------- ---------- Clarke and 

Wright 

Single depot, 

considered only the 

basic concept 

(Dror & 

Trudeau, 

1986) 

VRPSD with 

single depot 

---------- ---------- Savings 

algorithm 

Presented new recourse 

action method in 1986 

(Laporte et al., 

1989) 

consider stochastic 

location routing 

problem with 

single depot 

---------- ---------- Integer linear 

programs 

The recourse action 

need to be calculated 

completely 

(Bertsimas, 

1992) 

Modeled with 

single depot and 

recourse action 

Modeled 

with single 

depot and 

recourse 

action 

---------- Branch-and-

bound 

Use the basic concept 

of recourse action that 

could be used as a good 

reference for SPR 

(Teodorović 

& Pavković, 

1992) 

VRPSD with 

single depot 

---------- ---------- Simulated 

annealing 

Recourse action and 

route fauilare need to be 

considered in the model 

(Laporte & 

Louveaux, 

1993) 

Consider 

stochastic integer 

programming with 

recourse action 

---------- ---------- Integer L-

shaped 

Only binary variables  

are considered 

(Gendreau et 

al., 1995) 

VRPSD with 

single depot and 

recourse action  

VRPSC 

with single 

depot and 

recourse 

action 

---------- Integer L-

shaped 

Need to be considered 

with multi depot and for 

large scale problems. 

(Gendreau et 

al., 1996b) 

VRPSD VRPSC ---------- ------- explained variants and 

algorithms of SVRP in 

1996 

(Gendreau et 

al., 1996a) 

VRPSD with 

single depot and 

recourse action  

VRPSC 

with single 

depot and 

recourse 

action 

---------- Tabu search Can be considered with 

multi depot or 

heterogeneous fleet 

vehicle 
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Table 2.8, continued: Classification of stochastic vehicle routing problems (SVRP) 

Authors VRPSD VRPSC VRPST Algorithm Specific features and 

limitations 

(Secomandi, 

2000) 

VRPSD with 

single depot 

---------- ---------- Neuro-

dynamic 

programmi

ng 

Can be considered 

with multi depot and 

cost-to-go 

estimation. 

(Yang et al., 

2000) 

Single and multi 

VRPSD with 

single depot 

---------- ---------- Tabu 

search 

Can be considered 

with multi depot and 

for large scale 

(Protonotarios 

et al., 2000) 

VRPTWSD with 

single depot and 

heterogeneous 

fleet vehicle 

---------- ---------- Genetic 

algorithm 

The paper considered 

customer satisfaction  

(Bianchi et al., 

2004) 

VRPSD with 

single depot 

---------- ---------- SA, GA, 

TS, ACO 

Some meta-heuristic 

algorithms are 

Compared  

(Bianchi et al., 

2006) 

VRPSD with 

single depot 

---------- ---------- SA, GA, 

TS 

Hybrid algorithm is 

considered in this 

paper 

(Tan et al., 

2007) 

Multi-objective 

VRPTWSD with 

single depot 

---------- ---------- Evolutiona

ry 

algorithm 

Consider routing 

schedules, driver 

remuneration, and 

number of vehicles 

(Haugland et 

al., 2007) 

VRPSD with 

single depot 

---------- ---------- Tabu 

search 

designing districts 

for vehicle routing 

problems with 

stochastic demands is 

introduced 

(Christiansen 

& Lysgaard, 

2007) 

VRPSD with 

single depot 

---------- ---------- Branch-

and-price 

Can be considered 

with meta-heuristic 

algorithms and multi 

depot 

(Hvattum et 

al., 2007) 

VRPSD with 

single depot 

VRPSC 

with single 

depot 

---------- Branch-

and-

Regret, 

dynamic 

programin

g  

Real life issue in 

Norway. Consider 

dynamic and 

stochastic vehicle 

routing problems. 

(Liu et al., 

2008) 

VRPSD with 

single depot 

---------- ---------- Tabu 

search 

Tabu search and 

genetic algorithm are 

compared in this 

paper  

(Novoa & 

Storer, 2009) 

Single VRPSD 

using cost-to-go 

estimation 

---------- ---------- Dynamic 

programmi

ng 

Can only considered 

single VRPSD with 

unit distribution 

demands 

(Secomandi & 

Margot, 2009) 

Single VRPSD 

with single depot 

under re-

optimization 

concept 

---------- ---------- Partial 

reoptimiza

tion 

Consider a finite-

horizon Markov 

decision process 

(Shen et al., 

2009) 

Considered  

VRPSD under 

CCP 

---------- Considered 

stochastic 

travel times 

Tabu 

search 

Considered 

stochastic demand 

and travel times 

simultaneously  
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Table 2.8, continued: Classification of stochastic vehicle routing problems (SVRP) 

Authors VRPSD VRPSC VRPST Algorithm Specific features and 

limitations 

(Ismail & 

Irhamah, 

2010) 

VRPSD with 

single depot 

---------- ---------- Genetic 

algorithm, 

tabu search 

real life case in waste 

collection, need to be 

considered with SPR 

recourse action 

(Mendoza et 

al., 2010) 

VRPSD with 

multi-

compartment 

---------- ---------- Memetic 

algorithm 

An extension of VRP 

with multi-

compartment 

(Li et al., 

2010) 

---------- ---------- Consider 

VRPSTTW 

with CCP 

and SPR 

concept 

single depot 

Tabu 

search 

Multi-depot can be 

considered to 

transform the problem 

into more practical 

form than what single 

depot can do 

(Lei et al., 

2011) 

Consider 

VRPSDTW with 

SPR concept  

with single depot 

---------- ---------- Adaptive 

large 

neighborho

od  

capacitated VRPSD 

and time windows is 

modeled and 

introduced 

(Mendoza et 

al., 2011) 

Multi 

compartment 

VRPSD 

---------- ---------- Clarke and 

Wright, 

memetic 

algorithm 

Restocking can be 

considered for 

extention of this paper 

(Hu & Liu, 

2011) 

Multi objective 

VRPSD with 

single depot 

---------- ---------- Tabu 

serach 

Considered routing 

distance and  number 

of vehicles 

(Goodson et 

al., 2012) 

VRPSD with 

single depot 

---------- ---------- Simulated 

annealing 

Try to expand the 

problem considering 

multi depot or 

heterogeneous fleet 

vehicle 

(Lei et al., 

2012) 

---------- ---------- VRP with 

stochastic 

service time 

with single 

depot 

Generalize

d variable 

neighborho

od 

Service cost can be 

considered in the 

model for further 

research  

(Moghaddam 

et al., 2012) 

VRPSD with 

single depot 

---------- ---------- Particle 

swarm 

optimizatio

n 

Can be considered 

with multi depot and 

heterogeneous fleet 

vehicle 

(Agra et al., 

2013) 

----------- ---------- VRPST 

with time 

windows 

and single 

depot 

Dynamic 

programmi

ng, robust 

linear 

programmi

ng 

The paper uses robust 

approach and 

considers real 

instances from 

maritime 

transportation 

(Taş et al., 

2013) 

---------- ---------- VRPST 

with single 

depot 

Tabu 

search 

Considering total 

distance traveled, 

number of vehicles 

used costs 

(Marinakis et 

al., 2013) 

VRPSD with 

single depot 

---------- ---------- PSO Considered PSO 

algorithm with the 2-

opt and 3- 

opt local search 

algorithms 
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Table 2.8 illustrates that many researchers preferred to improve their initial 

solutions with meta-heuristics algorithms, particularly preferred to utilize local search 

algorithms such as tabu search and simulated annealing. This preference was given with 

a view to achieve an appropriate solution in a reasonable time length using these 

algorithms (Cordeau et al., 2002). However, population search algorithms such as GA, 

ACO and PSO are used for SVRP. Indeed, these meta-heuristics algorithms are used for 

combinatorial optimizations and for using them, a user needs to customize the algorithm 

for SVRP.      

As said earlier, some researchers used exact algorithms such as dynamic 

programming and integer programming. They preferred to see the problems 

mathematically. So they modeled their problems precisely and used the dynamic and 

integer programming algorithms to solve SVRP. For using meta-heuristic algorithms, 

the problem is not necessarily to be modeled mathematically. 

In addition, it should be mentioned that most of the researchers in this area prefer 

to consider SVRP with stochastic demands. However, the common real life issues such 

as traffic jam or road conditions may affect service performances. Consequently, those 

issues may change the travel and service times (Li et al., 2010). Therefore, various 

aspects of VRPST such as soft or hard time windows, service time and service cost with 

different constraints need to be considered. And, different algorithms may be 

recommended for solving VRPST in order for comparing the results and coming up 

with the best solution. 

2.9 Research Direction 

It is obvious that very little research has been conducted in TTRP. These days 

truck and trailer routing problem (TTRP) solving in broader perspectives are gaining 

extensive attention in research and applications than earlier. Therefore, its variants and 
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solution approaches need to be reviewed to cope up with the research advancements and 

the real-world needs. From the above literature review, the following research directions 

or conclusions can be considered as follows: 

1. TTRP model is only solved by a few algorithms; however, this problem can be 

solved using other algorithms to improve the results. 

2. TTRP with stochastic demands model needs to be considered. Due to prevent 

unexpected extra cost to the company since the company may face a problem of 

delivering the right volume of products‘ to customers for these random demands. 

3. TTRP with stochastic travel and service time needs to be considered. Due to 

prevent unexpected extra cost to the company since route duration may exceed 

the threshold of a driver duration and driver may need to work more than the 

predetermined working hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

CHAPTER 3: METHODOLOGY 

 

3.1 Introduction  

This Chapter presents a short research methodology. The detailed methodology of 

formulation of each model is given in the following Chapters.  The research frameworks 

and mathematical formulations were done based on extensive literature review in area 

of supply chain management (SCM) and transportation. This work was conducted based 

on the necessity of stochastic transportation cost in SCM. The models can be divided 

into two types, TTRP with stochastic demands and TTRP with stochastic travel and 

service time. These are relevant in modeling the stochastic truck and trailer routing 

problems (STTRPs). The proposed models were tested by real-life data. Also, some 

benchmark instances were modified for each case. In addition, the problems were tested 

using sensitivity analysis to understand the effects of the parameters. Finally, the 

method of data collection is explained in this Chapter.  

 

3.2 Sources of Theoretical Information  

Inevitable authentic knowledge sources were considered for required review for 

locating the further needs of research. Currently, the internet is considered as one of the 

most important information sources, which includes theoretical material. Some of the 

search engines such as ISI Web of Knowledge, Google, Springer, Science Direct, 

ProQuest and Emerald were used for downloading authentic papers for this research as 

reliable information. After probing the papers, an inclusive reference of the literature 

about the variant of SCM, VRP and TTRP and their related solution approaches was 

achieved. In addition, the papers, which were published in edited books, proceedings, 

and peer-reviewed journals, were gathered. The conduct of the search about the 

literature review was based on the following key words: ―trailer and truck routing 
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problem‖, ―Stochastic vehicle routing problem‖, and ―vehicle routing problem‖. 

Initially, each paper was fully reviewed so that the unrelated articles to the SCM, VRP 

and TTRP and their related solution methods could be separated. Unpublished working 

papers, doctoral dissertations, and conference papers were rarely included. However, it 

was probable that a few numbers of the published papers were not included. At last, 

close to 110 authentic papers were utilized from more than twenty journals. The 

selected papers were thoroughly reviewed for stochastic methods of TTRP. In the 

literature review chapter, the relevant contents to the research topic and the content of 

this work have been presented. 

 

3.3 Approach applied in the research 

This research has been done since September, 2011. The literature review phase 

can be divided into four sections. The first one discussed about the necessity of 

considering transportation cost in SCM. As vehicle routing is one of the well-known 

and basic transportation problems, a series of instructions need to be taken into account 

by a vehicle routing system in order to inform the drivers what to deliver, where and 

when. The second and third parts studied stochastic vehicle routing problem, truck and 

trailer routing problem and their variants. These parts were used for formulating the 

proposed models. In the last part, the algorithms which may be used for solving 

stochastic truck and trailer routing problem were classified. 

This work was conducted based on the theories and concept involving SCM and 

stochastic TTRP for establishing efficient mathematical models, which can be used in 

real-life SCM problem. The expansion of the literature review is for introducing a 

number of essential issues that manufacturers are facing. However, the past researchers 

in the area have not sufficiently considered these issues. The methodological flowchart 

of this research is shown in Figure 3.1.  
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Figure 3.1: Methodological flowchart of this research 
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are available to compare the solutions that are used in solving stochastic TTRP. As three 

new models have been considered in this research, three set of benchmarks were 

modified for this purpose. The first benchmark is for TTRP with stochastic demand. 

The special 21 TTRPSD benchmark instances have been modified which are derived 

from Chao (2002) for the truck and trailer routing problem with deterministic demands 

(TTRP).  The coordinates of vertices are the same as in the Chao‘s instances. The 

customer demands are stochastic and are generated with Poisson distributions having a 

mean value equal to the customer average demand. However, due to increasing 

possibility of failure on the route, the capacity of the truck and trailer is less than Chao‘s 

benchmark, because the failure has rarely occurred with its capacities. 

The second benchmark is for TTRPSDTW. To generate the benchmark for 

TTRPSDTW, the special 54-benchmark-instance problems are modified in three 

different classes, as derived from Lin (2011). The numbers of customers are 50, 100 and 

200 in the first, second and third classes, respectively. The coordinates of the vertices 

are the same as in Lin‘s (2011) instances. The customers‘ demands are stochastic and 

were generated with Poisson distributions having a mean value equal to the customers‘ 

average demand. However, same as TTRPSD benchmarks, due to the increasing 

possibility of failure on the route, the capacity of the truck and trailer is less than Lin‘s 

benchmarks because failure has rarely occurred with its capacities.  

The third benchmark is for TTRP with stochastic travel and service time with time 

windows (TTRPSTTW). One hundred and forty four benchmark instances in six levels 

have been produced for this study. Firstly, some instances with different properties have 

been selected from the basic test problem of Li et al (2010) with 50 and 100 customers 

and three different scheduling horizons, i.e., R1, R2, and R3. The problem in R1, R2 

and R3 have short, medium and long scheduling horizons, respectively (Li et al., 2010). 

Then each problem were converted into three new TTRPSTTW problems by the 
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following description. The distances between each customer and its nearest customer is 

calculated and symbolized as   . Sixty percent of the customers with the largest    

values are put as TCs in the first problem. This is decreased to forty and twenty percents 

for the second and third problems, respectively. The remaining customers were 

specified as VCs. The coordinates of vertices and demands were the same as in the Li‘s 

instances. Also the number of trucks and trailer and their capacities were customized for 

this problem. In addition, the travel and service times between customers are stochastic 

with normal distributions         
   having a mean value equal to deterministic travel 

times from Li et al. (2010). Furthermore,    
  is a randomly generated integer value 

taken from      . All distances and travel times are considered in meters and minutes, 

respectively. Also the time window constraints are same as Li et al (2010) and the 

capacity of trucks and trailers are 300 and 200, respectively. 

 

3.3.2 Data Collection method  

A real case study from an Iranian dairy company has been considered for this 

Research. It is Pegah Co, a large dairy distribution company in Iran, whose products are 

distributed to more than 50,000 retailers (customers) in Iran and some other countries. 

Iran Dairy Industries Co. (IDIC) is the largest dairy producer in Iran with "PEGAH" 

brand. This factory produces some dairy products such as Pasteurized and UHT milk, 

flavored milk, pasteurized and UHT cream, a variety of cheese (process, slice, pizza, 

UF), different kinds of yoghurt, probiotic products (such as yoghurt, cheese, ice cream), 

and drinking yoghurt (see Appendix-A). 

For case study, the data were collected through two methods. With securing the 

formal permission from university and company sides, the company documents were 

collected. To augment the data available through these documents, customers were 
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interviewed. Repeated contacts were made with the company and customers to get the 

right data in terms of volume and authenticity (see Appendix-B). To implement the 

TTRPSD model for this case, 100 customers were selected based on their stochastic 

demands and the types of customers. To select the customers, the last 20 demands of 

each customer were realized and the customers of stochastic demands with the Poisson 

distribution were selected for this research (see Appendix-C). Then the customers‘ 

locations were determined to compute the travel distance matrix between the customers 

and the depot. Furthermore, the type of each customer was distinguished and the truck 

customers (TCs) and the vehicle customers (VCs) were classified into their respective 

groups, where 30 customers were TC and the remaining customers were VC. The 

demands were measured based on their weights. The company considered 5 trucks and 

3 trailers to serve these customers. The capacity of a truck and a trailer are 2000 and 

3000 kilograms, respectively. Also, this method was used to implement the 

TTRPSDTW and TTRPSTTW models.  

 

3.4 Model assumptions   

In the mathematical programming, it is inevitable to make the pertinent 

assumption. It is assumed that      , as considered by Chao (2002), Scheuerer 

(2006) and Lin et al. (2009). It is assumed that all trucks and all trailers have their 

respective constant capacities, such as    and   , respectively. 

 The assumptions relevant to TTRP with stochastic demands are as follow: 

1. All demands are independent random variables with known distributions. 

2. Each demand ξi is a non-negative random variable and never exceeds the truck 

capacity. So, since each demand must be less than the truck capacity,  {   

  }          {  } . 
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3. A maximum of one return trip to the root is possible during any sub-tour (ST) and 

a maximum of one return trip to the depot can be allowed on any main tour (in a 

complete route). Because more than one failure is impossible on any kind of 

route   . 

        {∑             }         
        If      PVR and CVR      

                  {∑          }         
                 If      PTR and ST 

This failure means that the demand of a customer cannot be satisfied while serving the 

customers since the vehicle does not have enough capacity to serve the respective 

customer and has to come back to the depot (or parking place) and fill the capacity 

and return to the respective customer to serve it completely. This assumption is 

considered to ensure that this failure may occur a maximum once. Therefore, the 

cumulative demand of the customers must be less than twice the route capacity in 

the worst case. 

4. Customers whose time windows are violated must be served by a single trip from 

the depot, which imposes an additional cost equal to the distance between a 

customer and the depot multiplied by two. Each customer with this condition is 

serviced with a special single trip.  

The assumptions relevant to TTRP with stochastic travel and service time are as follow: 

1. Each customer is associated with a deterministic and non-negative demand qi that 

has to be met. 

2. Time windows constraints are considered for each customer and a stochastic 

service time is imposed when visiting a customer 

3. The travel times between customers are considered stochastic. 
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CHAPTER 4: FORMULATION ON TTRP WITH STOCHASTIC DEMANDS 

4.1 Introduction 

This Chapter discusses on formulation and solution of a truck and trailer routing 

problem in which demands are stochastic (TTRPSD) in nature. This work is an 

advancement of the well-known truck and trailer routing problem (TTRP). TTRP is a 

variant of the vehicle routing problem (VRP). In general, TTRP is more extensive than 

VRP and can cover more real life aspects since some limitations in VRP as mentioned 

in Chapter 1 can be considered in TTRP.  

 

4.2 Formulation on TTRP with stochastic demand 

TTRPSD is defined as an undirected graph         , where the set of vertices 

is     {               } and   {                      }  is the set of edges. 

The central depot is represented by ‗  ‘ and the other vertices in    {  } correspond to 

customers. Each vertex vi is associated with a stochastic and non-negative demand ξi. 

They can be split and are unknown until the vehicle arrives at the vertex. A customer 

type     is available for all customers, where      shows that customer    is a truck 

customer (TC) and can be serviced only by a single truck. If     , a customer i is a 

vehicle customer (VC) and it can be serviced by a single truck or a complete vehicle 

(truck pulling a trailer).                is a symmetric travel cost, which is defined on 

E. It is assumed that all vehicles are the same and have a unit speed, so the travel cost is 

equal to the Euclidean distance between    and   . Say a fleet of    and   , trucks and 

trailers, respectively, is available. However, some trucks and trailers may not be used at 

any time in the TTRPSD solution. Without loss of generality, it is assumed that 

     , as in Chao (2002) and Scheuerer (2006) and Lin et al. (2009). All trucks 



56 

 

have the same capacity    , and all trailers also have the same capacity    , where Qk 

and Qr are different. 

Three types of route are available in TTRPSD as follows: 1) a pure travel route 

(PTR), which can be travelled by only a single truck; 2) a pure vehicle route without 

any sub-tours (PVR), which can only be travelled by a complete vehicle; 3) complete 

vehicle route (CVR), which consists of a main tour and at least one sub-tour. A sub-tour 

starts and finished at the same VC (vr) (the trailer is parked in a parking place which is 

called the root) and it can be travelled only by a single truck; however, it should be 

serviced by a complete vehicle in the main tour. It is assumed that shifting demand 

loads between the truck and the trailer is possible at the parking places. In addition, it 

should be mentioned that there may be a lack of capacity in serving the customers since 

the customers‘ demands are stochastic. Therefore, the vehicle must return to the depot 

or to the parking place (while the truck is delivering on the sub-tours) and re-fill to 

capacity to serve the remaining customers. This is the so-called failure in the route. 

The TTRPSD can be cast as stochastic programming. Two main solution concepts 

for solving the aforesaid types of TTRPSD can be discerned from stochastic 

programming (Lei et al., 2011). The first is known as chance constrained programming 

(CCP). In CCP, the problem can be solved by imposing a constraint ensuring that the 

probability of route failure is bounded by some parameters, such as time limitation and 

service time (Li et al., 2010; Lei et al., 2011). This concept attempts to convert 

stochastic parameters to equivalent deterministic values. For instance, the TTRPSD can 

be converted to an equivalent deterministic program. Stewart and Golden (1983) and 

Laporte et al. (1989) demonstrated this transformation by considering the statistical 

relationships among the parameters. The second concept is stochastic programming 

with recourse (SPR). Two main solution strategies are available under SPR. The first is 

known as a priori optimization (Bertsimas, 1992; G. Laporte et al., 2002; Jorge E. 
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Mendoza et al., 2010; Tan et al., 2007) and the second is re-optimization (Psaraftis, 

1995; Secomandi & Margot, 2009). In an a priori optimization solution, the set of tours 

and sub-tours is constructed in the first stage. Recourse actions considering random 

variables are then revealed. The common recourse policy in TTRPSD is as follows: if 

the cumulative demand exceeds the vehicle capacity on the main tour (it means that the 

cumulative demand exceeds the summation of capacities of truck and trailer on the main 

tour up to a vertex), the vehicle returns to the depot to unload, fills the capacity (truck 

and trailer) and then comes back to the last visited vertex. However, if the vehicle 

capacity is reached exactly for any vertex on the main tour (it means that the cumulative 

demand is equal to the summation of capacities of truck and trailer on the main tour up 

to a vertex), the vehicle should return to the depot, fills the capacity and then start 

servicing from the next vertex along its route. But if the cumulative demand exceeds the 

truck capacity on the sub-tour, the vehicle should return to its root to upload, use the 

remaining trailer capacity and return to the last visited vertex on the sub-tour. In 

addition, if the truck capacity exactly reached the customer demand for any vertex on 

the sub-tour (it means that the cumulative demand on the sub-tour is equal to the truck 

capacity up to a vertex), the truck returns to the root, using the remaining trailer 

capacity to fill the truck and comes back to the next vertex on the sub-tour.  

The TTRPSD consists of designing the first-stage routes, including the truck 

route, vehicle route and complete route, satisfying all constraints and if a failure occurs, 

a recourse action is applied. The purpose is to minimize the sum of the total distance of 

the first-stage routes and the expected recourse costs. 
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4.2.1 The expected cost of a solution 

Since all trucks and trailers in their respective groups are the same, each having its 

own features in terms of capacity and associated unit speed, the cost is associated with 

the distance travelled. Initially, the expected recourse cost (distance) is computed under 

the assumptions mentioned in Chapter 3. These assumptions have been used to generate 

the TTRPSD benchmarks and the recourse costs will be computed based on these 

assumptions. This assumption is considered to ensure that this failure may occur at most 

once in a route. Therefore, the cumulative demand of the customers must be less than 

twice the vehicle capacity in a worst case scenario. Then the total cost is computed.  

 

4.2.2 Mathematical estimation of the total expected cost 

It should be considered that TTRPSD has three different types of route. Each 

route is planned in the first stage of the solution               , where       
  

     
       

       
     . Objective function      is the summation of two terms: 

     and     , where      is the deterministic cost of the planned routes and      is 

the expected cost of recourse. 

                                                                                                       (4.1)    

The computation of      is easy. The cost of each route should be found and the 

costs of all routes that are planned in the first-stage should be computed. Refer to Lin et 

al. (2009), the estimation of      is complicated and will be computed later in this 

section. First of all, the probability of failure should be computed. 

The probability of the cumulative demand up to the customer   
 , on a route rk, 

can be calculated by the following recursive equation. This equation is an extension 

from (Lei et al., 2011), where         is a boundary condition for this equation and 

 
  
      {  

   }  
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     ∑  

    
 

 

   
                                                                          (4.2) 

 For instance, considering    
           ,     

                  +     
          

    
                        . This means that the cumulative demand up to customer 

4 can be three if the cumulative demand up to customer 3 is three and the demand of 

customer 4 is zero, or the cumulative demand up to customer 3 is two and the demand 

of customer 4 is one, or the cumulative demand up to customer 3 is one and the demand 

of customer 4 is two, or the cumulative demand up to customer 3 is zero and the 

demand of customer 4 is three. Therefore, the probability of these cases should be 

summed to calculate the total cumulative demand up to customer 4. 

If the failure occurred at vertex   
  on a route rk as follows, then     

  

         
    , if failure occurred in a pure truck route or ST or     

     

         
       , if failure occurred in a pure vehicle route or a main tour. Then 

depending on the type of route, the probability   
  can be computed. The probability of 

route failure   
  at customer   

  on a route rk can be computed (Lei et al., 2011) as 

  
  

{
 
 

 
 ∑  

    
 

    

   
    ∑  

  
      

    

   
                                               

∑  
    
 

       

   
    ∑  

  
     

       

   
                                     

                                                                                     ℎ        

     

(4.3) 

For example, if the failure occurs on the main tour of CVR, the probability   
  can 

be computed as 

  
   {     

              
        } 

         {    
       }   {  

       }   

       {    
       }   {  

       } 
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      ∑  
    
 

       

   
    ∑  

  
     

       

   
 

4.2.3 The expected cost of the recourse 

Failure can happen in different situations. First, failure may occur in the PTR, 

PVR or main-route on the CVR; second failure may occur in an ST on the CVR. For 

instance, the failure types 1 and 3 occur when the cumulative demands up to customer i  

is exactly equal to the capacity. Therefore, dispatcher can serve customer i; however, 

the vehicle does not have any available capacity to serve the next customer. Thus, it has 

to come back to depot, fill the capacity and go to customer i+1 to continue serving the 

remaining customers. Failure types 2 and 4 occur when the cumulative demands up to 

customer i is more than the capacity. Then the dispatcher cannot serve customer i and 

must come back to depot, fill the capacity and return to customer i to continue serving 

the remaining customers. Therefore, the recourse cost can be computed according to 

four failure types as follows: 

1- Type 1:    
      

    
    (  

      
 )      

      
  , if   

    
    , if failure 

occurred in the PTR or ST 

2- Type 2:    
       

    
  , if   

    
    , if failure occurred in the PTR or ST 

3- Type 3:   
      

    
    (  

      
 )      

      
  , if   

    
        , if 

failure occurred in the PVR, main tour 

4- Type 4:   
       

    
  , if   

    
       , if failure occurred in the PVR, 

main tour. 

The expected cost of a recourse for route rk can be computed as  

         ∑    
   

   
(  

 )     
 (  

 )     
 (  

 )     
    

                        (4.4) 
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where   
    

    
    

  are the probabilities that the first, second, third and fourth 

failure types occur, respectively. Considering Eqs. 4.2 and 4.3, the four probabilities can 

be written as (Lei et al., 2011). 

  
  {∑  

  
 

  

   
    

    
                                                   

                                                                                     ℎ        

          (4.5) 
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(4.6) 
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                                                                                     ℎ        

           

(4.7) 

  
  

{∑  
    
 

       

   
    ∑  

  
 

       

   
      

                                                

                                                                                     ℎ        

     

(4.8) 

Four failure types and four recourse actions have been considered for this 

problem. The recourse actions impose the extra travel cost. For instance,   
  is the cost 

of recourse action type 1 and it should be multiplied by the relevant failure type which 

is   
  to compute the extra travel cost type 1. Also   

  should be multiplied by   
  and so 

on. 

Finally, the total expected cost of recourse action in terms of distance can be 

computed as  

        ∑         
 
                                                                                     (4.9) 
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4.3 Formulation of TTRP with stochastic demand and time windows 

(TTRPSDTW) 

TTRPSDTW is defined as an undirected graph         , where the set of 

vertices is     {               } and   {                      }  is the set of 

edges. The central depot is represented by ‗  ‘ and the other vertices in    {  } 

correspond to customers. Each vertex vi is associated with a stochastic and non-negative 

demand ξi. They can be split and are unknown until the vehicle arrives at the vertex. In 

addition, time window constraints have been considered for each customer and a service 

time is imposed when visiting a customer. A customer type     is available for all 

customers, where      shows that customer    is a truck customer (TC) and can be 

serviced only by a single truck. If     , a customer i is a vehicle customer (VC) and it 

can be serviced by a single truck or a complete vehicle (truck pulling a trailer).   

             is a symmetric travel cost, which is defined on E. It is assumed that all 

vehicles are the same and have a unit speed, so the travel cost is equal to the Euclidean 

distance between    and   . Say a fleet of    and   , trucks and trailers, respectively, is 

available. However, some trucks and trailers may not be used at any time in the 

TTRPSDTW solution. Without loss of generality, it is assumed that      , as in 

Chao (2002) and Scheuerer (2006) and Lin et al. (2009). All trucks have the same 

capacity    , and all trailers also have the same capacity    , where Qk and Qr are 

different. Three types of route are available in TTRPSDTW. These types of route are 

same as the routes in TTRPSD with same assumptions. 

The TTRPSDTW consists of designing the first-stage routes, including the truck 

route, vehicle route and complete route, satisfying all constraints and if a failure occurs, 

a recourse action is applied. The purpose is to minimize the sum of the total distance of 

the first-stage routes and the expected recourse costs. 
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4.3.1 Mathematical estimation of the total expected cost 

It should be considered that TTRPSDTW has three different types of route. Each 

route is planned in the first stage of the solution               , where       
  

     
       

       
      . The final objective function      is the sum of two costs: 

     and      , where      is the total distance of the first-stage routes, and       is 

also the sum of two terms:      and       Here,       is the recourse cost,      is the 

expected recourse cost in the case of failure and      is the recourse cost in the case of 

customers whose time window is missed. So, the objective function is, 

                  

                                                                                                          (4.10) 

The computation of      is not difficult. To compute     , the cost of each 

route should be found and the costs (total distances) of all routes, which are planned in 

the first stage, should be computed (Lin et al., 2010). The estimations of      and      

are complicated and these are shown in the next section. First, the probability of failure 

should be computed.   
  and   

  are the demand from customer    and the cumulative 

demand up to customer     in a route rk. 

The probability of the cumulative demand up to the customer   
 , on a route rk, 

can be calculated by the following recursive equation (Lei et al., 2011), where         is 

a boundary condition for this equation and  
  
      {  

   }  

 
  
     ∑  

    
 

 

   
                                                                       (4.11) 

If the failure occurred at vertex   
  on a route rk as follows, then     

  

         
    , if failure occurred in a pure truck route or ST or     

     

         
       , if failure occurred in a pure vehicle route or a main tour. Then 
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depending on the type of route, the probability   
  can be computed. The probability of 

route failure   
  at customer   

  on a route rk can be computed (Lei et al., 2011) as 

  
  

{
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(4.12) 

For example, if the failure occurs on the main tour of CVR the probability   
  can 

be computed as 

  
   {     

              
        } 

         {    
       }   {  

       }   

       {    
       }   {  

       } 

      ∑  
    
 

       

   
    ∑  

  
     

       

   
. 

 

4.3.2 The expected recourse cost 

Failure can happen in different situations. First, failure may occur in the PTR, 

PVR or main-route on the CVR; second failure may occur in an ST on the CVR. The 

recourse cost can be computed according to four failure types as follows: 

5- Type 1:    
      

    
    (  

      
 )      

      
  , if   

    
    , if 

failure occurred in the PTR or ST 

6- Type 2:    
       

    
  , if   

    
    , if failure occurred in the PTR or ST 

7- Type 3:   
      

    
    (  

      
 )      

      
  , if   

    
        , if 

failure occurred in the PVR, main tour 
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8- Type 4:   
       

    
  , if   

    
       , if failure occurred in the PVR, 

main tour 

Let   
  be the arrival time at the customer   

  with a time window              

before applying recourse action when failure occurred at customer  .   
     is the new 

arrival time after applying the recourse action. In addition,    
  is the service time for 

customer i. The value of   
     can be computed as follows where   

      
    

   

  
     {

  
                                            

  
                                          

  
                                    

                                                         (4.13) 

where   
     {           

 }    
        

    
   and    is the number of 

customers in route    . Since recourse action has not occurred during service up to 

customer   
 , the new arrival time is the same as the arrival time before the recourse 

action. 

The computing of    
     and    

      is dependent on the failure types and time 

windows, and needs further discussion. 

Type1:   
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Type 3: 

  
         

         
      

        
    

    

  
     {

   {           
    }      

   (    
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Type 4:  
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      (    
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The failure occurred at customer   
  then the arrival times were not affected by a 

failure up to this vertex. Therefore,    
       

            . However, since failure 

occurred at vertex    
 , the failure actions are dependent on time windows and the 

failure type and they should be considered separately as follows. 

For example, if the failure is of the first type, it means that after serving customer 

  
 , the vehicle has to return to the root of the route if the vehicle is in ST, otherwise it 

must return to the depot, then continue serving customers from the next vertex     
 . 

Therefore, the cost of   
      is equal to   

         
         

      
        

    
  . 

In addition,   
     equals    {           

    }, plus the service time at customer   
  and 

the travel time from   
  to     

  if this recourse action does not violate the time 

windows; however, the cost is equal to     
      (    

    
 ) if the vehicle violates the 

time windows because it skips vertex     
 . If the the second failure type occurs, after 

serving customer   
 , the single truck must return to the depot or to the root of its route 

and again proceed to vertex   
 . Therefore,   

     equals    {           
    }, plus the 
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service time at vertex   
 , plus the second type of recourse action, plus travel time 

between vertex   
  to vertex     

  if this recourse action does not violate the time 

windows,     
         

      . Also,   
     equals     

       
   (    

    
 ) if 

    
         

       because the vehicle skips customer i and service time is not 

imposed. Other similar proofs can be used for failure types 3 and 4. 

Hence, some customers, whose time windows are missed, should be considered 

separately in the model. Consequently, these are classified into four groups in terms of 

four failure types as follows. 

1-         {  
    

                
    

            } for failure type 1 

(single truck).                                                                                                  (4.14)                                                                                       

2-         {  
    

                 
    

            } for failure type 2 

(single truck).                                                                                                    (4.15)                    

3-         {  
    

                 
    

                } for failure 

type 3 (complete vehicle)                                                                                (4.16)                                 

4-         {  
    

                 
    

                } for failure 

type 3 (complete vehicle)                                                                               (4.17)                                                                                              

Therefore, a separate single truck must be considered for each customer whose 

time window is missed for all types of route since the dispatcher cannot serve the 

customer after the lateness time. This issue imposes an additional cost equal to the 

distance between a customer and the depot multiplied by two. 

The expected cost of recourse for route   can be computed as 

         ∑    
   

   
(  

  ∑      
           

            )     
 (  

  

∑      
           

            )     
 (  

  ∑   (  
   )   (    

 )          )  

   
    

  ∑   (  
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 )                                                                       (4.18) 
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where   
    

    
    

  are the probabilities that the first, second, third and fourth 

failure types occur, respectively. Considering Eqs. 4.11 and 4.12, the four probabilities 

can be written as 
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(4.19) 
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(4.21)                       
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    ℎ        

  

(4.22) 

To recognize the failure types and their probabilities, it should be mentioned that 

the expected costs of recourse comprise two parts: the first is the extra travel cost and 

the second is the cost of serving customers whose time windows are missed and need 

special services. Therefore, four failure types and four recourse actions have been 

considered for this problem. For instance,   
  is the cost of recourse action type 1 and 

should be multiplied by the relevant failure type which is    
  to compute the extra travel 

cost type 1. Also,   
  should be multiplied by    

  and so on. In addition, to compute the 
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second part of the recourse cost, the cost is ∑      
           

             and should 

be multiplied by the corresponding failure type probability. Consequently, the total 

expected recourse cost is the sum of two failure parts in terms of four failure types. 

Hence,   {     }          {  } , then the total expected recourse cost can be 

computed as 

         ∑         
 
   ,                                                                                   (4.23) 

Subject to: 

∑ ∑ (         )                                                                                          (4.24) 

∑ (         )                                                                                              (4.25) 

∑                                                                                                           (4.26)             

∑      ∑                                                                                         (4.27)       

∑      ∑                                                                                            (4.28) 

 {∑     ∑                 }         If     PVR or CVR                             (4.29) 

 {∑     ∑              }                   If      PTR or ST                                (4.30) 

     {   }          {   }                                                                          (4.31) 

where,    is the k-th route and m is the number of routes including PTR, PVR and 

CVR.      is equal to 1 if customers i and j (edge        ) are serviced by a complete 

vehicle (the k-th truck with a trailer), and 0 otherwise.      is equal to 1 if edge        

  is used by the k-th truck (without trailer). Eq. (4.24) gives information about each 

customer that must be serviced by a single truck or complete vehicle. Eq. (4.25) is 

concerned with starting each route from the depot and going to exactly one customer 

using vehicle k. Eq. (4.26) is similar to Eq. (4.25); however, it shows the route 

terminates by leaving one customer. Eqs. (4.27) and (4.28) indicate the flow on the 

route to be followed by vehicle k. Eqs. (4.29) and (4.30) are the capacity constraints for 
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the vehicle route and the truck route, respectively, and ensure the feasibility of servicing 

customers, and    is the expected value of the stochastic customers‘ demands. 
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CHAPTER 5: FORMULATION ON TTRP WITH STOCHASTIC TRAVEL AND 

SERVICE TIME WITH TIME WINDOWS 

 

5.1 Introduction 

This Chapter presents a formulation and solution on truck and trailer routing 

problem(s) under stochastic travel and service time with time window (TTRPSTTW) 

constraints. For solving TTRPSTTW, it appears that its solution is computationally 

more difficult than VRP with stochastic travel and service times under certain time 

windows (VRPSTTW).  Indeed, VRP with stochastic parameters itself is one of the 

most difficult combinatorial optimization problems. This type of problems is generally 

framed and solved by heuristics approaches (Baker & Ayechew, 2003; Chin et al., 1999; 

Cordone & Calvo, 2001; Eksioglu et al., 2009). To formulate and solve TTRPSTTW, 

one can make effort to reduce it to VRPSTTW. As VRPSTTW is also a complex type of 

combinatorial optimization problem, it can be solved by heuristics approaches (Tillman, 

1969; Chao, 2002; Scheuerer, 2006; Derigs et al., 2013) which could be done in 

repetative manner under a dynamic situation. The purpose of TTRPSTTW is to design a 

set of routes to cover all customers and optimize the total costs that will satisfy all 

constraints. 

In some real applications, special operational restrictions or requirements may 

exist such as customer‘s working period that some customers must be serviced during a 

specified time interval and there can be no delays in servicing those customers. These 

issues cause to be considered VRP with time windows. Correspondingly, time windows 

constraints can be seen in TTRP applications in the name of TTRP with time windows. 

In addition, due to traffic congestion, varied weather conditions, level of driver‘s skills 

or effect of distribution technology, often travel and service times are not really 
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deterministic between two vertices but normally follow stochastic distributions. 

Therefore, taking notes on some limitations in VRP model mentioned earlier and the 

necessity of stochastic travel and service times in real-life issues, the truck and trailer 

routing problem with stochastic travel and service times with time windows need to be 

considered.  

 

5.2 Formulation on TTRP with stochastic travel and service times with time 

windows 

TTRPSTTW is an extension of the TTRP. It is defined as an undirected graph   

      , where     {                 } is a set of vertices, and   {                

      }  is the set of edges. The central depot is represented by    and the other 

vertices in    {  } correspond to customers. Each vertex vi is associated with a 

deterministic and non-negative demand qi that has to be met. In addition, time window 

constraints are considered for each customer and a stochastic service time is imposed 

when visiting a customer. Also the travel times between customers are considered 

stochastic. A customer type    is available for all customers. If      ,  the customer i is 

a truck customer (TC) and can be serviced only by single truck. If     , a customer i is 

a vehicle customer (VC) and it can be serviced by single truck or complete vehicle 

(truck pulling a trailer).               is a stochastic travel cost (distance) defined on 

E. 

In the fleet of    and   , respectively, the number of trucks and trailers are 

available at a point of time. However, some available trucks and trailers may not be 

used any time in TTRPSTTW solution.  

Three types of route are available in TTRPSTTW as: 1) a pure travel route (PTR), 

which can be travelled by only single truck. 2) A pure vehicle route without any sub-
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tour (PVR). Only a complete vehicle can be travelled in this route. 3) Complete vehicle 

route (CVR). CVR consists of a main tour and at least one sub-tour. A sub-tour starts 

and finishes at the same vehicle customer (vr) (trailer is parked in parking place which is 

known as the root) and it can be travelled only by a single truck; nonetheless, it should 

be serviced by complete vehicle in the main tour. The TTRPSTTW can be cast as a 

stochastic programming with recourse. In SPR optimization model, the set of tours and 

sub-tours are constructed in the first stage before considering the stochastic travel and 

service times. Recourse actions considering the random variables are then revealed in 

the next stage.  

The TTRPSTTW consists of designing the first-stage routes such as truck route, 

vehicle route and complete route under the given conditions: (1) each route starts and 

finishes at the depot; (2) each vertex is visited only by one vehicle, (3) if the time taken 

is reached or exceeded at any vertex, a recourse action need to be applied, and (4) the 

objective function is a minimization function. 

 

5.3 The stochastic programming model with recourse of TTRPSTTW  

Since CCP model cannot consider recourse cost, e.g., when time window 

constraints are violated or the driver needs to work more than predetermined D hours. 

Therefore, in order to bring the model closer to the reality, recourse cost need to be 

considered in the model. The common recourse policy in TTRPSTTW is as follows: the 

set of tours and sub-tours is constructed in first stage. Recourse actions considering 

random variables are then revealed in the second stage. In this research, soft time 

windows constraint is considered for the model because this is more general than hard 

time window and it is closer to the reality than hard time window constraint (Li et al., 

2010). In soft time window, the dispatcher does not have any permission to start serving 
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a customer before its earliest time window and have to wait until this time comes. 

Therefore, additional waiting time on the route may be imposed. 

     It should be considered that TTRPSTTW has three different types of routes. 

Each route is planned in the first-stage of the solution. The final objective function 

       is the sum of two costs:        and       , where        is the objective 

function value of the first stage routes, and         is also the sum of two terms: 

   and    . Here        is the recourse cost,    is the expected cost of recourse in case 

of driver remuneration and    is the recourse cost in case of customers whose time 

window is missed. So, the objective function is, 

                                                                                                                (5.1)   

     Assume the vertex    is the last vertex in the route k, the route k is feasible if 

the route is terminated before   . Then 

    {   (      )        }                                                                                            (5.2) 

      

 In addition, the arrival time of all customers can be calculated by the following 

recursive equation when     . It should be mentioned that the equation 5.3 is an 

extension from (Li et al., 2010). 

    {   (           )             }                                                                  (5.3) 

 Since servicing customer i before the earlier time    is not possible and the 

vehicle has to wait until this time comes. Therefore, additional waiting time    on the 

route may be occurred, which is a random variable for    and     are random variables. 

                                                                                                                (5.4) 

Consequently, the total waiting time is computed as 

   ∑   
  
                                                                                                               (5.5)  

 Also the penalty cost is imposed to the objective function when the customer is 

serviced after deadline   . The total random variable penalty cost    can be computed as 
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   ∑                  
  
                                                                                       (5.6) 

Where    is the unit penalty cost in servicing customer j after the deadline. 

The objective function value of the first stage routes can be computed by the following 

equation. 

        ∑ ∑ ∑            ∑ ∑ ∑                                                            (5.7) 

Where       is equal to 1 if customer i and j (edge        ) are serviced by a 

complete vehicle (the k-th truck with a trailer), and 0 otherwise.       is equal to 1 if 

edge         is used by the k-th truck (without trailer). 

The normal working hours for each driver is D hours. If the driver works more 

than D hours, he needs to get remuneration for each extra hour. 

The total driving duration is    including travel, service and waiting times and the 

total driver remuneration    on the route k can be computed by the following equations. 

   ∑ ∑    (         )  ∑        ∑ (         )                                    (5.8) 

   {
                         

                             
                                                                              (5.9) 

Where    is the unit driver remuneration for each one hour extra work on the route 

k. The purpose is to minimize the objective function of SPR version of TTRPSTTW in 

two stages. Each route is planned in the first stage and recourse cost consists of    and 

   are considered in the second stage. 

                                                                                                                         (5.10) 

Subject to: 

∑ ∑ (         )                                                                                          (5.11) 

∑ (         )                                                                                              (5.12) 

∑                                                                                                           (5.13)             

∑      ∑                                                                                         (5.14)       
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∑      ∑                                                                                            (5.15) 

∑       ∑                                                                                          (5.16) 

∑       ∑                                                                                                  (5.17)  

   ∑                  
  
                                                                                     (5.18) 

   ∑ ∑    (         )  ∑        ∑ (         )                                  (5.19) 

   {
                         

                             
                                                                            (5.20) 

     {   }          {   }                                                                          (5.21) 

Eq. (5.11) gives information about each customer that must be serviced once by a 

single truck or complete vehicle. Eq. (5.12) is about starting each route from depot to 

exactly one customer place by vehicle k. Eq. (5.13) is similar to Eq. (5.12); however, it 

shows the route termination by leaving one customer. Eq. (5.14) and Eq. (5.15) indicate 

the flow on the route to be followed by vehicle k. Eq. (5.16) and Eq. (5.17) are capacity 

constraints for vehicle route and truck route, respectively which are to ensure the 

feasibility of servicing customers. 
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CHAPTER 6: ANALYSIS, RESULT AND DISCUSSION 

 

6.1 Introduction 

This chapter presents the relevant analysis accomplished for the fulfillment of the 

research objectives mentioned in Chapter 1. The purpose of this study is to expand the 

deterministic TTRP model by introducing stochastic parameters and time window 

constraints to bring the TTRP model closer to reality and solve the model in a 

reasonable timeframe by administering the meta-heuristic algorithms. Also, the 

performance validity of each proposed model is discussed in this chapter. In addition, 

the algorithms were coded by MATLAB 7.9.0 using a laptop with a 2.4 GHz dual 

processor and 4 G RAM. 

6.2 Applicability of the proposed models and algorithms 

Firstly, the applied algorithms should solve TTRP problem to confirm the 

efficiency and confidence of the algorithms. Since TTRP problem has been solved by 

other researchers, the results obtained by the algorithms and other researchers can be 

compared. For this purpose, TTRP benchmark instance problem which was generated 

by Chao (2002) has been chosen to solve. This TTRP has been solved using tabu search 

(Scheurer, 2006) and simulated annealing (Lin et al., 2009). In this study, different 

algorithms have been applied to solve the TTRP. However, the memetic algorithm, 

multi-point simulated annealing and tabu search were chosen for solving the proposed 

models due to their efficiency. Firstly, the procedure of each algorithm and generating 

the initial solutions need to be described. 
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6.2.1 Initial solutions 

Generally, initial populations are randomly generated using logical concepts and 

methods. The algorithm uses this initial population to cover any area of search space. In 

this study, the particular method is used to produce an initial population for proposed 

TTRP with stochastic demand and proposed TTRP with stochastic travel and service 

time as well. The procedure of generating initial solution for TTRP with stochastic 

demand and TTRP with stochastic travel and service time are almost same; however, 

some differences need to be considered. This particular method is used to produce an 

initial solution for TTRP with stochastic demand considering the following 

assumptions. 

 {∑             }         
        If      PVR and CVR      

  {∑          }         
                 If      PTR and ST 

All customers are classified as TCs and VCs. A string of numbers represents an 

initial solution, which is denoted by the set {       } and N dummy zeroes (see Figure 

6.1). The parameter N is utilized to terminate the ST or the route. This parameter is only 

used to predict the number of routes or STs. If demand was deterministic and failure 

could not occur, this parameter could be ⌊∑         ⌋, where    is a customer‘s demand 

and    is the truck capacity. However, since demand is stochastic and failure can occur 

a maximum of once, the parameter N can be computed by ⌊∑          ⌋ where 

⌊ ⌋ denotes the largest integer, which is equal to or smaller than the enclosed number 

and    is the expected value of customers‘ demand. In the first     positions, the ith 

non-zero number denotes the ith customer to be serviced. VC can be serviced either by a 

complete vehicle or a single truck and the service vehicle type can be of 1 or 0. 

Therefore, the vehicle type for VC is 1 if it is serviced by a single truck. Otherwise, its 
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vehicle type is 0 and must be serviced by a complete vehicle. Hence, TCs must be 

serviced only by a single truck; therefore there is no need to mention it in the solution. 

The presentation of the solution is explained more as follows. In this solution, the 

first number addresses the first customer that is to be served on the first route. A PTR is 

decided for the route, if a single truck is to service the first customer on a route. Without 

violating the following assumptions  {∑             }          
 if     PVR and 

CVR or  {∑          }         
, if     PTR or ST to represent the servicing 

sequence, from left to right, one by one, other customers are added to the route. Note 

that if it is a complete vehicle on the CVR main tour or on a PVR, the vehicle capacity 

may be          or on a CVR ST or on a PTR, if it is a single truck, it may be    and 

it all depends on the vehicle type in use for the service. If, in the solution representation, 

the next customer to be served is zero, the vehicle will come back to the depot or the 

parking place. If it is on a CVR ST, the ST will be terminated, because the vehicle 

returns to the parking place. If not, it is on a CVR main tour, on a PVR or on a PTR. 

Consequently, the vehicle goes back to the depot and the route is terminated. It is worth 

mentioning that when recourse cost occurs, it should be considered and computed. 

In the solution representation, generation of a new route will occur if termination 

of the previous route has taken place and there are still customers to be serviced. 

Therefore, the next customer will be selected for the new route. Figure 6.2 illustrates a 

simple individual representation of the initial solution. Initially, Customers 4, 5, 7 and 6 

are serviced by a complete vehicle. Therefore, Customer 6 is the parking place (root) 

and the trailer has to be parked at this area while servicing Customers 3 and 2. Finally, 

Customer 1 is serviced and the route is finished by returning the complete vehicle to the 

depot. A TTRPSDTW (or TTRPSD) solution is given by this solution representation, 

without violating the foretold assumptions, and it can be verified. On the other hand, by 
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using this solution representation, the number of the vehicles that are used might exceed 

the available vehicles. As a result, when the solution representation has generated the 

routes, in order to decrease the number of vehicles used, a procedure for route 

combination is considered necessary. Such a procedure checks the possibility of 

combining two existing routes. However, this combinatorial process must not violate 

the constraint of the capacity of the vehicle, and if there are routes that can be combined 

together without violation of this constraint they will be merged without any 

modification. This process goes on until the number of vehicles used does not exceed 

the number of vehicles available or stops if there are no more routes that can be 

combined without violating the assumptions. If the generated solution still persists in 

using more vehicles than available, for each additional trailer or truck that is used, a cost 

of P, as a penalty, is imposed on the objective function in order to make the solutions of 

this type undesirable. 

The method to produce an initial solution for TTRPSTTW is almost same as 

TTRPSD. However, the parameter N is utilized to terminate sub-tour or route and can 

be calculated by ⌊∑         ⌋ since the demand is deterministic. In the solution 

representation, generation of a new route is almost same as the aforesaid one. This 

process goes on until the number of the used vehicles is not greater than the number of 

the vehicles available or it will stop if there are not any more routes that can be 

combined together without violating the constraints. If the outcome solution still 

persists on using more vehicles than are available, for each additional trailer or truck 

that is used, a cost of     , as a penalty, is added to the objective function in order to 

make the solutions of this type undesirable.  
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4 7 2 12 5 16 10 17 0 8 1 14 15 11 13 0 3 19 20 9 18 6 0 

Route 1 

CVR 

Route 2 

PTR 

Route 3 

PVR 

 

Figure 6. 1: A sample stochastic TTRP representation with 20 customers and 3 dummy 

zeros 

 

Figure 6. 2: Representation of an individual solution 

 

6.2.2 Multi-point simulated annealing to solve the models 

Simulated annealing (SA) is one of the most famous local search heuristics. It can 

be applied to a wide variety of combinatorial optimization problems (Lin et al., 2009; 

Lin et al., 2011; Van Breedam, 1995). It was introduced by Metropolis et al. (1953). 

When using the local search methods, one should know that a standard SA thoroughly 

searches a solution space by moving from an existing solution to another likely solution 

in its neighborhood. However, due to increase the possibility of finding better solution, 

the standard SA needs to be modified. Therefore, a multi-point version of SA is 

considered for this study. At first, the number of predetermined initial solutions should 

be produced and it is known as best solutions. In each iteration, the algorithm produces 

some new solutions from the neighborhood of the current solutions and finds the best 

one between them and chooses this as a new solution. If a new solution appears to be 

better than the current solution, this new solution is termed as a best solution and the 

procedure is continued. In this process, the number of predetermined iterations is 

applied in each temperature level to improve the possibility of a set of appropriate 

solutions. However, sometimes the algorithm occurs in local optima. The procedure 

may escape from this issue by accepting worse solution with some conditions. This new 

solution with a worse objective function value can be accepted as the current solution 

4 5 7 6 3 2 1 
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with a small probability determined by the Boltzmann function,           , where K 

is a predetermined constant and T is the current temperature in Boltzmann function  (Lin 

et al., 2011). 

6.2.2.1 Neighborhood 

In a local search-based heuristic approach, it is important to define an appropriate 

method for finding the effective neighbors to improve an existing solution. A random 

neighborhood structure including swap, reversion, insertion, and change of service 

vehicle type of VCs is used for generating an appropriate neighborhood from a current 

solution. In each iteration, the algorithm generates new solution Y from the current 

solution X by using swap, reversion, insertion and change of service vehicle type 

randomly. 

The swap is carried out by selecting two customers randomly and swapping them 

to generate a new solution from the current solution. The reversion is performed by 

selecting two numbers (customers) from the string of numbers representing the current 

solution then reversing the route from bigger number to smaller one. The insertion is 

performed by selecting two customers randomly and inserting the first customer 

immediately after the second one. The change of service vehicle type of VCs is fulfilled 

by selecting a vehicle customer randomly. If it is serviced by a single truck in the 

current solution, its service vehicle type will be changed to a complete vehicle and vice 

versa. It means that the vehicle service type of a selected VC will be changed from 1 to 

0 or 0 to 1. For example, VC customer servicing in the main-tour by a complete vehicle 

will be serviced on a sub-tour by a single truck and vice versa.  

The probability of selecting swap, reversion, insertion and change service vehicle 

type methods will be set to be 0.25 for each of them as it is assumed that each of these 

methods has an equal chance to improve the solution. In addition, failure may be 
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occurred. Therefore, the failure should be diagnosed in the route and recourse action 

cost should be calculated for each failure. 

 

6.2.2.2 Parameters 

Multi-point Simulated annealing uses some parameters for improving the 

solutions, such as                                                , where   indicates 

the thermodynamic temperature,  which is used to simulate the system at different 

temperatures , whereas   gradually cools down from an initial high temperature (  ) to 

a final low temperature (  ). It means that the procedure will be stopped when the 

temperature reaches lower than   .       represents the number of iterations during the 

procedure.    is the Boltzmann constant which is used in the probability function.      

denotes the maximum number of allowable iterations in temperature. The algorithm will 

be terminated if the number of reductions exceed the      without improving the best 

cost.   is the coefficient for controlling the cooling scheme.   is the penalty cost 

associated with the number of extra vehicles used. Hence it is not allowed to use more 

than the number of available vehicles in 21 benchmark instance problems that are used 

for TTRPSD, the penalty cost is assigned to be very large (e.g.,       is considered 

for this model) to prevent from this issue.      is the number of initial solution that 

should be considered for producing new solutions.       is the number of move from 

current solution to generate new solutions. It means that each current solution can 

produce       new solutions and then the best one should be chosen as new solution. 

             is the number of iterations in each temperature  . 
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6.2.2.3 The M-SA procedure 

At first, the current temperature is set to be the initial temperature and the 

algorithm generates the initial solutions     randomly. In addition, the best 

solution        and the best objective function considering recourse cost, if occurred, are 

set to be    and          , respectively. In each iteration, the algorithm generates new 

solutions     from its neighborhood and evaluates its objective function value. Let    

represents the differences between objective function values from    and   . Therefore, 

                       .  The probability of replacement of the current solution 

with the next solution is as follows. 

{
                                 

   (
   
  

)                
 

If     , it means that the next solution is better than the current solution and 

should be replaced with the current solution. If     , it means that the next solution is 

not appropriate. However, as it mentioned, since escaping from trapping in local search, 

these kinds of solutions will be accepted with    ( 
  

  
) probability by generating a 

random number r  [0,1] and replacing the solution    with    if      ( 
  

  
). 

After accomplishing the number of iterations, the current temperature will be 

decreased according to the formula     , where      .  As there are more 

chances to find a better solution, the algorithm uses a local search procedure which 

sequentially performs 2-Opt, swap, reversion, insertion and change of service vehicle 

types in every three temperature reductions (Lin et al., 2009).  

If the current temperature   becomes lower than    or the number of reductions 

exceed the      without improving the best cost, the algorithm will be terminated. 
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6.2.3 Tabu search algorithm to solve the models 

Similar to M-SA, TS also needs to start its procedure from an initial solution in 

the solution space. This initial solution can be infeasible. For this purpose, the initial 

solution method which is explained in previous section can be used for TS. TS 

algorithm tries to encourage the procedure to explore that part of the solution space 

which has not been visited yet. This purpose can be attained by preventing the reverse 

moves. The reversal of previous moves should become tabu for prohibiting a return to 

the previous solutions. Cycle avoidance can be obtained over the tabu tenure. At each 

iteration, the inverse modification is identified as a tabu and occurred in the tabu list. In 

this paper, four operators (swap, reversion, insertion, and change of service vehicle type 

of VCs) have been considered for finding new solutions. In addition, tabu tenure ɳ is 

generated randomly with integer uniform distribution from [r, s]. Four tabu lists 

                  are considered to store the relevant inverse modifications for four 

operators. If the tabu status            is less or equal 0, it means that arc       is not 

tabu and vice versa.  

Tabu moves can be overridden if the aspiration criterion is satisfied. If the tabu 

solution has less objective function value, it can be overridden. 

The TS algorithm is explained as follows. At first, the relevant symbols are 

mentioned as follows: 

 S: set of candidate solutions;  

 t: iteration counter; 

 tnon: current number of iteration without improvement; 

 tn: maximum number of allowable iterations; 

 tmax: maximum number of iterations; 

 nc: current number of generated candidate solutions; 

 nmax: maximum number of candidate moves; 
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 x*
: best-found solution for complete vehicle; 

 y*
: best-found solution for single truck; 

       : the objective value; 

       : the penalized objective value. 

6.2.3.1 Tabu search procedure 

1) Generate an initial solution. 

2) Initialize the parameters:        ,           ,    ,   

 ,     ,       ,     , nmax, tmax, tn, r, s. 

3) Update the data:      ,     ,        and       . 

4) If        , go to 3. 

5) Generate random neighborhood        and moves from current solution 

to new solution. 

6) Update      ,        ,      {   }  {   }. 

7) Evaluate all solutions in S by procedure 1 and set    ,       

          and          and insert all non-tabu solutions in        . 

8) If     , go to 10 

9) If (                and                        ,               

        and                        ; else if the solution is feasible, and 

                  , some parameters should be updated as 

follows.                      ,                         and     

  and go to 8. 

10) If                       , set            , else update: 

                   ,                      . 
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11) If               is feasible and                         , then 

set                      . In addition,                          and 

update the values of             and   . 

12) Set                        . It should be mentioned that the 

corresponding inverse modifications are tabooed for a tabu tenure ɳ, which 

is generated randomly from         

13) If            , then    should be updated. In addition,      

and      . 

If        and        , then go to 5; else the algorithm is terminated and the 

best solution found is        . 

 

6.2.4 Memetic algorithm to solve the models 

MAs fit into the category of the evolutionary algorithms (EAs) where LS 

procedures are used to distribute the search area and enhance the search to refine the 

individual. In fact, MA is a hybrid algorithm which combines the population and LS 

procedures to improve the initial solutions. The inspiration for MA was realized from 

the adaptation of models in the natural systems (Ghaderi et al., 2012). These models 

combine the lifetime learning of an individual with the populations‘ evolutionary 

adaptation (Tavakkoli-Moghaddam et al., 2006). Besides, another inspiration of the 

MAs was obtained from the concept of meme from Dawkin. A cultural evolution unit is 

represented by this concept and it can indicate the local refinement (Norouzi et al., 

2012; Tavakkoli-Moghaddam et al., 2006) and can be applied in solving TTRPs. 

In applied MAs, the population P consists of a set of individuals generated 

randomly. Each individual is called a ‗chromosome‘, which is simply a permutation of 

the set of n nodes (customers) {       } and N dummy zeroes (artificial stores or the 
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root of ST). This idea was initially proposed by Beasley (1983) as part of a route-first 

cluster-second heuristic, and was then used by Prins (2004). Recently, this method has 

been applied to other versions of the VRP, such as heterogeneous fleets (Prins, 2009), 

pickup and delivery vehicle routing problems (Velasco et al., 2009) and TTRP (Villegas 

et al., 2010). 

The presentation of the solution for TTRPSDTW is explained more as follows. 

Initially, parents are selected based on tournament selection. Then, in each stage, 

offspring are randomly generated from the initial population. First, two chromosomes 

(parents) are randomly selected and two new chromosomes (offspring) are produced by 

crossover operation. The functional value is computed by the chromosomes. The new 

solutions are compared with the existing solutions. If a new solution is better than an 

existing solution, the algorithm replaces the existing solution with the new one. Then 

the new solution can be improved by mutations and LS procedures. This procedure is 

continued until the termination condition occurs. 

 

6.2.4.1 Crossover operator 

Partial-mapped crossover (PMX) and order crossover (OX) have been considered 

as permutation representations. PMX was first proposed by Goldberg and Lingle 

(1985). The PMX operator is an extension of the two-point crossover. Two-point 

crossover is used for a binary string and some infeasible solutions may occur using this 

operator. However, PMX uses some procedures to fix this illegitimacy (infeasible 

solutions) by repairing solutions caused by two-point crossover. First, two positions in 

the chromosome are randomly selected and the sub-chromosomes situated between 

these positions are substituted. Then the relations between two mapping sections are 

determined. Finally, the remaining customers are arranged randomly in the remaining 
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positions according to the relations discovered (Tavakkoli-Moghaddam et al., 2006). 

This PMX operator is considered for the TTRPSDTW solution. The sample 

representation of a PMX is depicted in Figure 6.3. In this figure, two samples known as 

parent chromosomes are selected and two new offspring are produced according to 

PMX. First, shadow customers (sub-chromosomes) are selected. Then all customers in 

this sub-chromosome are replaced and finally the remaining customers are randomly 

allocated according to the relations developed. 

 

Parent 1 

Parent 2 

 

Offspring 1 

Offspring 2 

Figure 6.3: Partial-mapped crossover 

The OX operator uses different methods for repairing the procedure. This operator 

has been successfully applied for the TSP (Oliver et al., 1987) and VRP (Prins, 2004). 

First, a sub-chromosome from one parent is randomly selected. Then the new offspring 

is made by dropping the sub-chromosome into the same position. Finally, the remaining 

customers are arranged according to their positions in the other parent. A sample 

representation of an OX is illustrated in Figure 6.4. 

Parent 1 

Parent 2 

Offspring 1 

Figure 6.4: Order crossover 

2 6 4 7 11 17 15 3 8 9 12 

3 9 4 8 6 2 15 12 7 11 17 

7 4 17 8 6 2 15 12 3 9 11 

12 6 8 7 11 17 15 3 9 4 2 

2 6 4 7 11 17 15 3 8 9 12 

3 9 4 8 6 2 15 12 7 11 17 

9 4 8 7 11 17 15 3 6 2 12 
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6.2.4.2 Mutation operator 

Different types of mutations such as inversions, insertions, swaps, displacements 

and changes in service vehicle type for VCs have been applied in producing offspring 

by the MA. The displacement mutation is implemented by selecting the sub-

chromosomes randomly and inserting them in a random situation. Swap is performed by 

choosing two customers at random and changing them to create new solutions from the 

existing solution. Reversion is carried out by selecting two customers of the 

chromosome and reversing the route from the larger number to the smaller. Insertion is 

achieved by choosing two customers at random and inserting the first one just after the 

second. The change in service vehicle type for VCs is fulfilled by selecting a VC at 

random. If it is serviced by a single truck in the current solution, its service vehicle type 

will be changed to a complete vehicle and vice versa. This means that the vehicle 

service type of the selected VC will be changed from 1 to 0 or 0 to 1. For example a VC 

serviced in the main tour by a complete vehicle will be serviced on an ST by a single 

truck and vice versa. Figures 6.5, 6.6, 6.7 and 6.8 illustrate different kinds of mutations 

that are used in MA. 

Parent  

Offspring 

Figure 6.5 : Displacement mutation 

Parent 

Offspring 

Figure 6.6: Swap mutation 

Parent 

Offspring 

Figure 6.7: Reversion mutation 

2 6 4 7 11 17 15 3 8 9 12 

2 6 17 15 3 4 7 11 8 9 12 

2 6 4 7 11 17 15 3 8 9 12 

2 6 3 7 11 17 15 4 8 9 12 

2 6 4 7 11 17 15 3 8 9 12 

2 6 3 15 17 11 7 4 8 9 12 
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Parent 

Offspring 

Figure 6.8: Insertion mutation 

 

6.2.4.3 Local search operator 

After applying crossovers and mutation procedures, LS approaches are applied to 

improve the chromosomes in the pool of candidates. Four various LS procedures, one-

point movement (OMP), two-point exchange (TPE), change ST root and two-opt are 

used in the MA. Each approach can be chosen randomly with equal probability. In 

OPM, a customer is moved from one route to another. If the cost is decreased by this 

movement, it can be accepted. Also one customer is considered at a time. In executing 

the movement, moving a TC customer to the main tour of the CVR or two PVRs is 

forbidden. First, the algorithm examines customers on the PTR and the main-tours, and 

then the ST customers are examined. In a TPE, two customers of two different routes 

should be replaced. However, moving a TC customer into the main tour in the CVR or 

into a PVR is banned. When customers are switched between two routes, all of the sub-

route continues to be feasible taking into account truck capacity. In the case of the two 

aforesaid procedures, the root node never changes its position. This may happen as a 

result of an improved solution when some of the root nodes are replaced. In this stage, 

re-selecting roots or re-sequencing the customers are considered. The two-opt algorithm 

is a kind of k-opt algorithms (Chao, 2002). In k-opt, k edges are removed by the k-opt 

algorithm and then reconnected in any possible situation. In the same way, the two-opt 

algorithm removes two edges randomly and then re-inserts the edges in any possible 

situation (Chao, 2002). An example of two-opt is given in Figure 6.9. If the objective 

2 6 4 7 11 17 15 3 8 9 12 

2 6 7 11 17 15 3 4 8 9 12 
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function is not deteriorated by these movements, the procedure is applied. This 

procedure is continued until the algorithm cannot find any other improvements.  

 

 

 

 

Figure 6. 9: 2-opt illustration 

 

6.3 TTRP benchmarks solutions using aforesaid algorithms 

For solving TTRP, 21 TTRP benchmark problems which were generated by Chao 

(2002) have been considered. This benchmark is derived from Christofides et al (1979). 

To evaluate the performance of the solutions, the results are compared with Chao 

(2002), Scheuerer (2006) and Lin et al. (2010). Chao and Scheuerer used proposed tabu 

search while Lin et al., used proposed SA for solving TTRP. The results from Chao, 

Scheuerer, Lin et al., and proposed MA are presented in Table 2. Each instance has been 

run in 10 times and the best solutions from 10 run are located in the last column. Also 

the time taken for best solutions is presented in the next columns. In addition, Table 6.1 

shows the number of customers and the capacity of each truck and trailer which are 

mentioned by Chao (2002). 

Table 6.1: Dimensions of the TTRP benchmark problems proposed by Chao (2002) 

Problem 

ID 

Number 

of VC 

Number 

of TC 

Truck 

capacity 

Trailer 

capacity 

Ratio of 

demand to 

capacity 

1 38 12 100 100 0.971 

2 25 25 100 100 0.971 

3 13 37 100 100 0.971 

4 57 18 100 100 0.974 

5 38 37 100 100 0.974 

6 19 56 100 100 0.974 

7 75 25 100 100 0.911 

8 50 50 100 100 0.911 

9 25 75 100 100 0.911 
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10 113 37 100 100 0.931 

11 150 75 100 100 0.931 

12 100 112 100 100 0.931 

13 150 49 150 150 0.923 

14 100 99 150 150 0.923 

15 50 149 150 150 0.923 

16 90 20 150 150 0.948 

17 60 60 150 150 0.948 

18 30 90 150 150 0.948 

19 75 25 150 150 0.903 

20 50 50 150 150 0.903 

21 25 75 150 150 0.903 

Table 6.1 continued 

Table 6. 2: Results obtained using MA and other approaches 

ID Chao Scheuere

r 

Lin BKS Best-Sol 

MA 

Average 

Sol MA 

Gap(%) Time(

min) 

1 565.02 566.80 566.82 564.68 561.62 578.32 -2.88767 5.44 

2 662.84 615.66 612.75 611.53 612.75 624.11 -1.82019 6.57 

3 664.73 620.78 618.04 618.04 618.04 628.90 -1.72682 6.84 

4 857.84 801.60 808.84 798.53 809.53 817.25 -0.94463 13.91 

5 949.98 839.62 839.62 839.62 839.62 851.03 -1.34073 13.09 

6 1084.82 936.01 934.11 930.64 928.92 940.77 -1.25961 11.78 

7 837.80 830.48 830.48 830.48 830.48 843.86 -1.58557 22.87 

8 906.16 878.87 875.76 872.56 872.56 886.26 -1.54582 22.94 

9 1000.27 942.31 912.64 912.02 909.60 922.39 -1.38662 23.45 

10 1076.88 1039.23 1053.90 1036.20 1042.73 1067.88 -2.35513 55.43 

11 1170.17 1098.84 1093.57 1091.91 1083.89 1098.10 -1.29405 57.33 

12 1217.01 1175.23 1155.44 1149.41 1157.43 1170.98 -1.15715 48.27 

13 1364.50 1288.46 1320.21 1284.71 1296.22 1313.91 -1.34636 102.58 

14 1464.20 1371.42 1351.54 1333.66 1342.99 1356.21 -0.97478 105.06 

15 1544.21 1459.55 1436.78 1416.51 1427.82 1435.06 -0.50451 88.00 

16 1064.89 1002.49 1004.47 1000.84 1002.49 1009.43 -0.68752 42.11 

17 1104.67 1042.35 1026.88 1026.17 1021.12 1033.31 -1.1797 34.56 

18 1202.00 1129.16 1099.09 1098.15 1096.10 1105.26 -0.82876 28.21 

19 887.22 813.50 814.07 812.69 811.72 823.72 -1.45681 31.29 

20 963.06 848.93 855.14 848.12 848.12 859.16 -1.28498 27.73 

21 952.29 909.06 909.06 909.06 909.06 920.45 -1.23744 21.53 

Avg 1025.74 962.40 958.06 951.69 953.50 966.02 -1.37 36.62 

 

The solutions for TTRP benchmarks tested by Chao (2002) obtained using 

proposed MA and other approaches are compared in Table 6.2. Table 6.2 indicates that 

the proposed MA obtained 13 best solutions from 21 which are shown in boldface in 

this table. Furthermore, the average of Best-sol, the average of Avg-sol are computed 

and the results confirm that the difference is very small. So, the MA can generate the 

results. In addition, the average times taken for the solutions are presented, which are 

rounded to the nearest integer. Thus MA can solve the problems faster in comparison 
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with SA and TS. Table 6.3 compared the results obtained from proposed MA with other 

approaches. 

Table 6. 3: Comparison of MA with other approaches 

Problem 

ID 

Comparison of 

best solution 

between 

proposed MA 

and Chao‘s 

results (MA-

TS)/TS ( ) 

Comparison of 

best solution 

between 

proposed MA 

and 

Scheuerer‘s 

results (MA-

TS)/TS  ( ) 

Comparison 

of best 

solution 

between 

proposed MA 

and Lin‘s 

results (MA-

SA)/SA ( ) 

Comparison of 

best solution 

between 

proposed MA 

and BKS 

(MA-

BKS)/BKS 

( ) 

1                          -0.00542 
2                     0.001995 
3                    0 
4                            0.013775 
5              0 
6                           -0.00185 
7              0 
8                            0 
9                           -0.00265 
10                           0.006302 
11                            -0.00734 
12                          0.006977 
13                            0.008959 
14                            0.006996 
15                            0.007984 
16                     0.001649 
17                            -0.00492 
18                            -0.00187 
19                            -0.00119 
20                    0 
21              0 

Average                          0.001 

 

Table 6.3 indicates that the average results obtained using proposed MA were 

improved about 6.85 percent, 0.82 percent and 0.427 percent comparing with Chao‘s 

results, Scheuerer‘ results and Lin‘s results, respectively. Also, the average results 

obtained using MA is almost same as BKS. Consequently, the performance of proposed 

MA is better than SA and TS. Then the results can be accepted as the new solutions. 

Therefore, the results approved and indicate that the MA is efficient and effective in 

solving TTRP and can generate the results. Finally, the TTRP benchmarks results tested 

by Lin et al. (2010). Each instance has been run in 10 times and the best solutions (Best-
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Sol) from 10 run, the average solutions (Avg-Sol) from the 10 runs and the gap between 

the Best-Sol and Avg-Sol are located in Table 6.4. Moreover, BKS is prepared for each 

solution to compare the results obtained using proposed MA and the others. Also the 

time taken for best solutions is presented in the last column. 

 

Table 6.4: Results for TTRP benchmark by Lin et al., (2010) obtained using MA and 

other approaches 

ID Number of 

customers 

BKS Best-Sol 

MA 

Average-Sol 

MA 

Gap (%) Time 

(min) 

1 75 1640.53 1640.53 1645.90 -0.3262 3.41 

2 75 1706.36 1708.22 1715.09 -0.4005 2.94 

3 75 1774.14 1772.75 1780.36 -0.4274 4.01 

4 75 1273.56 1273.56 1279.31 -0.4494 4.10 

5 75 1292.60 1291.01 1298.26 -0.5584 4.20 

6 75 1414.41 1416.47 1421.78 -0.3734 6.75 

7 75 1205.57 1204.00 1210.30 -0.5205 4.30 

8 75 1243.13 1243.13 1247.82 -0.3758 3.48 

9 75 1314.78 1312.55 1319.63 -0.5365 3.19 

10 75 1372.84 1374.51 1379.50 -0.3617 4.76 

11 75 1414.84 1412.43 1420.71 -0.5828 4.69 

12 75 1501.18 1501.18 1508.46 -0.4826 4.11 

13 100 2047.53 2047.53 2052.01 -0.2183 4.01 

14 100 2109.50 2109.50 2115.45 -0.2812 4.89 

15 100 2245.80 2243.13 2248.39 -0.2339 4.40 

16 100 1901.08 1901.08 1910.01 -0.4675 4.68 

17 100 1957.70 1957.70 1961.43 -0.1901 3.66 

18 100 2041.76 2040.11 2045.25 -0.2513 4.58 

19 100 1274.92 1274.92 1280.49 -0.4349 5.20 

20 100 1324.83 1326.10 1332.17 -0.4556 5.26 

21 100 1460.88 1461.69 1467.38 -0.3877 4.29 

22 100 1467.82 1466.24 1471.59 -0.3635 5.54 

23 100 1536.95 1536.95 1539.42 -0.1604 4.92 

24 100 1615.71 1617.30 1623.03 -0.3530 3.87 

25 150 3224.64 3226.90 3233.40 -0.2010 14.74 

26 150 3295.78 3292.01 3300.14 -0.2463 9.00 

27 150 3429.69 3429.69 3432.67 -0.0868 23.94 

28 150 2580.92 2579.13 2586.58 -0.2880 18.14 

29 150 2653.12 2653.12 2658.43 -0.1997 19.36 

30 150 2796.44 2797.38 2804.21 -0.2435 20.53 

31 150 2027.70 2027.70 2031.79 -0.2013 13.64 

32 150 2112.03 2111.31 2116.88 -0.2631 9.64 

33 150 2374.85 2374.85 2378.50 -0.1534 8.50 

34 150 2669.92 2671.02 2677.43 -0.2394 39.00 

35 150 2727.15 2725.10 2731.28 -0.2262 41.37 

36 150 2896.85 2896.85 2900.39 -0.1220 40.42 

AVG ---- 1970.21 1969.94 1975.71 -0.324 10.10 

 

Table 6.4 indicates that the proposed MA obtained 27 best solutions from 36 

which are bolded in this table. The Table 4 proofed that the differences between the 

results of Best-sols, Avg-sols and the BKS in each group are not considerable and the 
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results confirm that the differences is small. Therefore, as the algorithm generates 27 

best solutions, the applied MA is efficient with confidence consistency of a reasonable 

time. 

6.4 TTRPSD benchmarks solutions using aforesaid algorithms 

This type of problem has not yet been considered and there is no scope to compare 

this solution with an existing one. To overcome this issue, the special 21 TTRPSD 

benchmark instances are modified which are derived from Chao (2002). First, the 

benchmarks were solved in order to increase the validity of the aforesaid algorithms and 

to show the consistency of the results. Then the case study problem was solved using 

MA, M-SA and TS. Further, the case study problem was checked by sensitivity analysis 

to confirm the results. The implementation of the benchmark was discussed in Chapter 

3. Parameters used in the model may affect the quality of computational results. These 

parameters may be used for MA, M-SA or TS. In order to obtain better solutions, 

different values have been tested in initial experiments.  These are: 

       ;                  ;                                ; 

                       ;                        ;               ;       

         ;               or               ;             ;       

      ;                                ;                ;    

           ;               ;         , where          and n are the probability 

of crossover, mutation, LS improvement and population size, respectively. Since it is 

not possible to use more than the predetermined number of vehicles, the penalty cost is 

considered too high. The parameters have been examined with different values and set 

to be       ,           ,      ,      ,         ,       ,        , 
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               and         ,             ,        ,        and   

   . They seem to give the best results and will be used for further computation. 

Table 6.5 illustrates the benchmark results. Each set has been run 10 times and the 

best solutions of MA, M-SA and TS from the 10 runs are shown. 

Table 6.5: The best solutions of TTRPSD benchmarks 

Problem 
ID 

Number 
of VC 

Number 
of TC 

Truck 
number 

Truck 
capacity 

Trailer 
number 

Trailer 
capacity 

MA 
results 

M-SA 
results 

TS 
results 

1 38 12 5 60 3 60 635.45 639.38 643.30 

2 25 25 5 60 3 60 671.84 659.77 666.56 

3 13 37 5 60 3 60 677.44 683.76 686.42 

4 57 18 9 60 5 60 929.11 931.63 942.32 

5 38 37 9 60 5 60 921.01 919.10 924.55 

6 19 56 9 60 5 60 971.90 991.28 1007.85 

7 75 25 8 100 4 60 934.34 931.83 926.79 

8 50 50 8 100 4 60 879.80 898.86 911.33 

9 25 75 8 100 4 60 956.87 949.57 954.27 

10 113 37 12 100 6 60 1117.32 1126.66 1133.38 

11 75 75 12 100 6 60 1220.02 1198.94 1228.06 

12 38 112 12 100 6 60 1221.29 1230.32 1243.02 

13 150 49 17 100 9 60 1312.69 1309.84 1305.68 

14 100 99 17 100 9 60 1374.32 1377.01 1381.58 

15 50 149 17 100 9 60 1473.65 1475.00 1482.67 

16 90 30 7 100 4 60 1092.37 1129.42 1113.86 

17 60 60 7 100 4 60 1139.52 1114.28 1118.90 

18 30 90 7 100 4 60 1118.93 1127.65 1120.05 

19 75 25 10 100 5 60 843.46 843.46 852.14 

20 50 50 10 100 5 60 853.72 867.77 876.15 

21 25 75 10 100 5 60 867.62 965.24 948.41 

Avg.       1010.13 1017.65 1022.25 

 

Table 6.5 indicates that the average results generated by the MA are better than 

M-SA and TS. However, the differences between these results are insignificant and the 

results show that these algorithms are effective for solving related problems.  

Table 6.6: Compared the results obtained from proposed MA with TS and M-SA 

Problem 

ID 

Comparison of best 

solution between 

proposed MA and TS 

results (MA-TS)/TS 

( ) 

Comparison of best 

solution between 

proposed MA and M-

SA results (MA-

SA)/SA ( ) 

1             

2               

3             

4             

5              

6             

7               

8             

9               

10             
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Table 6.6 indicates that the average results obtained by the proposed MA were 

improved about 1.27 and 0.78 percent comparing with tabu search and multi-point 

simulated annealing, respectively. Consequently, the performance of the proposed MA 

is found slightly better than SA and TS. As the differences between these results are 

insignificant, the results obtained by MA, M-SA and TS can be accepted as the new 

solutions. Therefore, the results indicate that the algorithms are efficient and effective in 

solving TTRP with stochastic demands. 

 

6.5 TTRPSDTW benchmarks solutions using aforesaid algorithms 

This is a new model of the TTRPSDTW. Hence, there is no scope to compare this 

solution with an existing one. In the first step, two experimental TTRPSDTW tests were 

carried out in order to increase the validity of the modified MA, M-SA and TS and to 

show the consistency of the results. In the case of the first test, all the customers are 

supposed to be TC. Therefore, all the capacities of the trucks have the same features as 

the vehicle in the original VRPSDTW (Lei et al., 2011). Consequently, the 

TTRPSDTW problem is converted to VRPSDTW since the TCs cannot be serviced by a 

CVR or PVR; therefore, the results should not be significantly different from the 

11              

12             

13               

14             

15             

16             

17               

18             

19           

20             

21              

Average             
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VRPSDTW results. Three problem-instances, such as R103, C206 and RC204, are 

randomly selected and the results are reported in Table 6.7. 

Table 6.7: The applied MA solutions with a comparison of results obtained by LNS 

ID Instance                LNS  Time 

(second) 
(MA) 

Time 

(second) 
(LNS) 

1 R101 647.241 28.974 676.215 683.529 421 445 

2 R102 693.969 32.034 726.003 726.003 732 812 

3 R103 441.260 49.104 490.364 477.878 1421 1607 

4 C101 421.104 22.788 443.892 439.468 734 935 

5 C102 433.700 29.395 463.095 473.793 894 1004 

6 C103 367.581 11.206 378.787 376.468 583 627 

7 RC101 627.563 2.995 630.558 639.631 1165 1417 

8 RC102 957.847 1.256 959.103 959.373 1659 2172 

9 RC103 466.715 3.113 469.828 466.461 2148 2666 

Average ----- ----- ----- 581.982 582.178 1084 1298 

 

Table 6.7 indicates that the results generated by the MA are slightly better than 

LNS except for R103. The differences between these results are insignificant and the 

results show that this MA is effective for solving both TTRPSDTW and VRPSDTW. 

The second test is customized as follows. All customers are set to be VCs. The 

truck and trailer capacities are equal and half of the vehicle capacity is already in the 

original VRPSDTW. The difference between tests 1 and 2 is that VCs can be serviced 

by either a single truck or a complete vehicle; however, TCs have to be serviced only by 

a single truck. Therefore, in the second test all types of route can be produced. In 

addition, all failure types may occur in test 2 whereas only failure types 1 and 2 can 

happen in test 1. To compare the results in Tables 6.8 and 6.9, the same instances are 

chosen and solved in test 2. The results of test 2 can be seen in Table 6.7. 

Table 6. 8: Results of the first experiment 

ID Instance                LNS  

1 R103 441.260 49.104 490.364 477.878 

2 C206 331.107 3.293 334.400 350.271 

3 RC204 720.017 0 720.017 722.483 

Average ----- ----- ----- 514.927 516.877 
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Table 6. 9: Results of the second experiment. 

ID Instance                (test 2) Result in test 1 LNS  

1 R103 442.128 50.005 492.133 490.364 477.878 

2 C206 331.107 3.293 334.400 334.400 350.271 

3 RC204 722.017 0.804 722.821 720.017 722.483 

Average ----- ------ ------ 516.451 514.927 516.877 

 

These results also reveal that the proposed MA approach is efficient and can 

confidently solve TTRPSDTW. In addition, the average time taken for the solutions is 

presented in the last column of each table, which is rounded to the nearest integer. Thus 

MA can solve the problems faster in comparison with LNS. 

Further, to solve TTRPSDTW, the special 54-benchmark-instance problems are 

modified in three different classes, as derived from Lin (2011) for the TTRPSDTW. The 

numbers of customers are 50, 100 and 200 in the first, second and third classes, 

respectively. The implementation of the benchmark was discussed in Chapter 3. The 

parameters used in the model may affect the quality of the computational results and are 

the same as TTRPSD solutions. 

Since it is not possible to use more than the predetermined number of vehicles, the 

penalty cost is considered to be too high. The parameters have been examined with 

different values are the same as the TTRPSD solutions and one-at-a-time sensitivity 

analysis has been used to solve the problems. To apply sensitivity analysis for every 

parameter, the algorithms were tuned sequentially, leaving the remaining parameters 

unchanged. For each of the benchmark problems, in total about 400 runs were 

undertaken during the sensitivity analysis (including running a parameter setting 10 

times on the same benchmark problem).  

The results from 50, 100 and 200 customers are presented in Tables 6.10–6.18, 

respectively. Each set has been run 10 times and the best solutions (Best-sol) and the 

average solutions (Avg-sol) from the 10 runs are shown. Also the time taken for the best 

solutions is presented in the last column. Hence, this problem has not yet been 
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considered; the results cannot be compared with any comparative data or proposed 

heuristics considered previously by other researchers. However, the problems were 

solved by sensitivity analysis. Therefore, the results can be compared. 

 

Table 6.10: Results for TTRPSDTW with 50 customers using M-SA 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

second 

1 C101 429.12 442.28 426.10 816 

2 C101 514.43 530.05 511.16 622 

3 C101 519.66 526.50 518.56 862 

4 C201 403.90 409.04 397.52 781 

5 C201 404.56 408.00 400.64 650 

6 C201 396.11 409.23 392.48 802 

7 R101 968.23 976.64 963.15 995 

8 R101 986.28 992.31 980.09 908 

9 R101 1018.42 1031.62 1014.98 871 

10 R201 842.62 867.74 842.62 864 

11 R201 848.27 861.40 842.62 843 

12 R201 842.62 852.21 842.62 941 

13 RC101 984.61 993.05 983.92 891 

14 RC101 1004.44 1010.71 998.28 882 

15 RC101 1010.71 1021.25 1008.65 843 

16 RC201 723.73 731.21 722.83 757 

17 RC201 723.73 729.77 721.47 877 

18 RC201 725.08 729.39 721.47 808 

Average ----- 741.47 751.24 738.29 834 

 

Table 6.11: Results for TTRPSDTW with 50 customers using MA algorithm 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

second 

1 C101 427.74 436.60 424.65 693 

2 C101 511.02 523.43 510.09 531 

3 C101 521.89 524.32 517.11 724 

4 C201 399.64 404.91 394.21 701 

5 C201 401.23 405.46 397.77 672 

6 C201 390.99 401.58 385.05 762 

7 R101 963.57 967.82 959.94 901 

8 R101 982.09 990.51 977.72 829 

9 R101 1011.42 1023.33 1009.28 721 

10 R201 842.62 854.47 842.62 839 

11 R201 842.62 848.08 842.62 790 

12 R201 842.62 849.39 842.62 892 

13 RC101 987.23 989.98 982.22 852 

14 RC101 1001.19 1007.80 996.58 782 

15 RC101 1010.71 1015.00 1007.05 812 

16 RC201 723.73 726.81 721.47 718 

17 RC201 723.73 723.38 721.47 832 

18 RC201 723.73 725.36 721.47 785 

Average ----- 739.32 745.46 736.33 769 

 

Table 6.12: Results for TTRPSDTW with 50 customers using TS 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

second 

1 C101 433.89 452.22 429.23 896 

2 C101 518.84 528.48 514.07 742 

3 C101 519.66 532.27 519.66 922 

4 C201 410.27 421.74 403.75 901 
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5 C201 406.07 418.23 403.58 728 

6 C201 396.11 412.58 395.67 833 

7 R101 964.66 973.00 963.15 952 

8 R101 983.16 995.07 980.47 893 

9 R101 1021.17 1039.43 1018.55 855 

10 R201 842.62 869.05 842.62 898 

11 R201 844.49 856.32 843.34 868 

12 R201 842.62 858.89 842.62 1003 

13 RC101 984.61 989.97 984.10 828 

14 RC101 1009.95 1021.45 1006.62 924 

15 RC101 1008.78 1016.89 1008.78 890 

16 RC201 723.73 738.78 723.73 799 

17 RC201 725.73 731.77 722.69 778 

18 RC201 724.57 732.35 722.64 837 

Average ----- 742.27 754.92 740.29 864 

  

 

Table 6.13: Results for TTRPSDTW with 100 customers using M-SA 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

(second) 

1 C101 931.37 940.64 928.85 2809 

2 C101 1009.68 1020.02 1007.92 3101 

3 C101 1027.64 1030.05 1021.48 2812 

4 C201 799.64 809.21 799.64 1920 

5 C201 806.69 811.40 799.54  2021 

6 C201 890.99 908.91 887.00 1925 

7 R101 1467.83 1481.51 1463.18 2881 

8 R101 1578.51 1586.09 1575.72 2750 

9 R101 1414.42 1430.65 1411.21 3121 

10 R201 1240.09 1247.86 1240.09 1960 

11 R201 1287.62 1312.25 1282.01 1821 

12 R201 1189.16 1215.26 1187.65 2124 

13 RC101 1893.83 1905.52 1890.38 2902 

14 RC101 1798.69 1810.47 1797.33 2832 

15 RC101 1915.54 1923.23 1909.87 3009 

16 RC201 1223.42 1231.71 1223.42 2402 

17 RC201 1263.52 1286.38 1260.82 2210 

18 RC201 1270.12 1286.48 1270.12 2546 

Average ----- 1278.26 1290.98 1275.35 2508 

 

Table 6.14: Results for TTRPSDTW with 100 customers using MA 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

(second) 

1 C101 927.74 936.60 925.43 2693 

2 C101 1011.02 1023.43 1007.92 2931 

3 C101 1021.89 1024.32 1017.03 2724 

4 C201 799.64 804.91 797.82 1801 

5 C201 801.23 805.46 795.74 1972 

6 C201 890.99 901.58 886.63 1862 

7 R101 1463.57 1477.82 1460.83 2801 

8 R101 1582.09 1590.51 1580.11 2629 

9 R101 1411.42 1423.33 1408.49 3021 

10 R201 1242.22 1254.47 1240.07 1839 

11 R201 1284.38 1308.08 1282.01 1790 

12 R201 1189.16 1209.39 1183.82 2092 

13 RC101 1887.23 1889.98 1884.36 2852 

14 RC101 1801.19 1807.80 1797.33 2782 

15 RC101 1910.71 1915.00 1903.93 2912 

16 RC201 1223.42 1227.81 1223.42 2218 

17 RC201 1263.52 1273.37 1260.82 2132 

18 RC201 1271.81 1280.33 1270.67 2485 

Average ----- 1276.85 1286.34 1273.69 2419 
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Table 6. 15: Results for TTRPSDTW with 100 customers using TS 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

(second) 

1 C101 933.45 947.05 929.90 3023 

2 C101 1007.53 1016.61 1006.42 3241 

3 C101 1032.89 1040.24 1028.85 2905 

4 C201 802.02 808.87 799.64 1965 

5 C201 807.74 815.38 802.00  2066 

6 C201 888.85 911.33 887.00 1987 

7 R101 1469.68 1479.81 1465.43 2909 

8 R101 1577.14 1589.01 1576.73 2798 

9 R101 1413.59 1425.11 1410.26 3100 

10 R201 1241.33 1248.60 1240.09 2013 

11 R201 1287.62 1307.54 1283.34 1877 

12 R201 1188.80 1205.44 1187.65 2099 

13 RC101 1891.26 1900.07 1890.38 2919 

14 RC101 1801.19 1814.06 1799.19 2901 

15 RC101 1917.46 1927.73 1913.00 2958 

16 RC201 1223.42 1241.35 1223.42 2381 

17 RC201 1268.58 1289.98 1264.62 2258 

18 RC201 1273.32 1289.49 1271.24 2505 

Average ----- 1279.22 1292.09 1276.62 2550 

Table 6. 16: Results for TTRPSDTW with 200 customers using M-SA 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

(second) 

1 C101 3331.49 3365.73 3326.56 12805 

2 C101 3414.42 3450.77 3408.58 14090 

3 C101 3741.89 3775.85 3739.86 11875 

4 C201 2401.81 2410.00 2397.61 10951 

5 C201 2401.23 2418.95 2399.18 11035 

6 C201 2394.89 2407.05 2390.33 11978 

7 R101 5960.60 5988.85 5957.24 9961 

8 R101 5982.09 5994.34 5979.18 9852 

9 R101 6013.65 6047.94 6008.56 10143 

10 R201 3731.83 3767.98 3730.73 12933 

11 R201 3827.22 3856.67 3824.74 13956 

12 R201 3690.40 3721.30 3688.86 12234 

13 RC101 3987.23 4005.07 3985.67 14990 

14 RC101 3601.19 3637.89 3600.43 13909 

15 RC101 3813.46 3845.87 3809.74 14360 

16 RC201 3025.01 3036.19 3021.55 12727 

17 RC201 3149.04 3174.00 3147.21 13361 

18 RC201 3099.95 3137.78 3095.23 12633 

Average ----- 3753.74 3780.12 3750.63 12433 

  

Table 6. 17: Results for TTRPSDTW with 200 customers using MA 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

(second) 

1 C101 3327.74 3356.60 3320.83 12693 

2 C101 3411.02 3463.43 3404.90 13931 

3 C101 3741.89 3774.32 3737.02 11724 

4 C201 2399.64 2412.91 2394.29 10801 

5 C201 2401.23 2411.46 2393.03 10972 

6 C201 2390.99 2401.58 2386.39 11862 

7 R101 5963.57 5977.82 5955.46 9801 

8 R101 5982.09 5996.51 5976.52 9629 

9 R101 6011.42 6053.33 6002.88 10021 

10 R201 3734.17 3804.47 3730.73 12837 

11 R201 3825.80 3848.08 3822.62 13792 

12 R201 3692.02 3739.39 3685.63 12092 

13 RC101 3987.23 3999.98 3984.04 14852 

14 RC101 3601.19 3647.80 3600.43 13782 

15 RC101 3810.71 3845.00 3804.52 14212 

16 RC201 3023.38 3026.81 3021.55 12518 

17 RC201 3151.82 3183.10 3147.21 13132 

18 RC201 3095.22 3125.42 3091.86 12485 

Average ----- 3752.84 3781.56 3747.77 12286 
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Table 6. 18: Results for TTRPSDTW with 200 customers using TS 

Problem 

ID 

Original  Best-sol Avg-sol Sensitivity 

analysis 

Time 

(second) 

1 C101 3331.49 3357.42 3329.63 12942 

2 C101 3417.31 3442.36 3411.90 14220 

3 C101 3738.42 3777.75 3738.42 11202 

4 C201 2402.70 2427.08 2399.75 11051 

5 C201 2401.23 2423.69 2401.23 11130 

6 C201 2398.70 2416.11 2395.24 12043 

7 R101 5958.48 5979.58 5956.98 10032 

8 R101 5986.77 6003.13 5982.89 9910 

9 R101 6016.00 6035.65 6011.39 10219 

10 R201 3731.83 3754.03 3730.73 12019 

11 R201 3829.89 3869.69 3826.54 13291 

12 R201 3687.77 3701.08 3687.77 12271 

13 RC101 3985.25 4015.12 3983.34 14060 

14 RC101 3601.19 3636.32 3600.43 13853 

15 RC101 3817.68 3833.11 3813.70 14680 

16 RC201 3026.67 3053.80 3024.33 12327 

17 RC201 3149.04 3167.08 3147.21 13901 

18 RC201 3097.74 3122.80 3092.29 12493 

Average ----- 3754.34 3778.66 3751.88 12314 

 

Tables 6.10–6.18 indicate that the differences between the results of Best-sols, 

Avg-sols and sensitivity analysis in each group are not considerable. In addition, the 

average of Best-sol, the average of Avg-sol and the average of the results obtained by 

sensitivity analysis are computed and the results confirm that the difference is very 

small. Therefore, the applied algorithms are efficient with confidence consistency of a 

reasonable time. 

Table 6.19: Compared the TTRPSDTW results with 50 customers obtained from 

proposed MA with TS and M-SA 

Problem 

ID 

Comparison of 

best solution 

between 

proposed MA 

and TS results 

(MA-TS)/TS 

( ) 

Comparison of 

best solution 

between 

proposed MA 

and M-SA 

results (MA-

SA)/SA ( ) 

1 -1.42 -0.32 

2 -1.51 -0.66 

3 0.43 0.43 

4 -2.59 -1.06 

5 -1.19 -0.82 

6 -1.29 -1.29 

7 -0.11 -0.48 

8 -0.11 -0.43 

9 -0.96 -0.69 

10 0 0 

11 -0.22 -0.67 

12 0 0 
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Table 6.19, continued: Compared the TTRPSDTW results with 50 customers obtained 

from proposed MA with TS and M-SA 

Problem 

ID 

Comparison of 

best solution 

between 

proposed MA 

and TS results 

(MA-TS)/TS ( ) 

Comparison of 

best solution 

between 

proposed MA 

and M-SA 

results (MA-

SA)/SA ( ) 

13 0.27 0.27 

14 -0.87 -0.32 

15 0.19 0 

16 0 0 

17 -0.28 0 

18 -0.12 -0.19 

19 -1.42 -0.32159 

20 -1.51 -0.66287 

21 0.43 0.429127 

Average             

 

Table 6. 20: Compared the TTRPSDTW results with 100 customers obtained from 

proposed MA with TS and M-SA 

Problem 

ID 

Comparison of 

best solution 

between 

proposed MA 

and TS results 

(MA-TS)/TS 

( ) 

Comparison of 

best solution 

between 

proposed MA 

and M-SA 

results (MA-

SA)/SA ( ) 

1 -0.61 -0.39 

2 0.35 0.13 

3 -1.07 -0.56 

4 -0.30 0 

5 -0.81 -0.68 

6 0.24 0 

7 -0.42 -0.29 

8 0.31 0.23 

9 -0.15 -0.21 

10 0.07 0.17 

11 -0.25 -0.25 

12 0.03 0 

13 -0.21 -0.35 

14 0 0.14 
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Table 6.20, continued: Compared the TTRPSDTW results with 100 customers obtained 

from proposed MA with TS and M-SA 

Problem 

ID 

Comparison of 

best solution 

between 

proposed MA 

and TS results 

(MA-TS)/TS 

( ) 

Comparison of 

best solution 

between 

proposed MA 

and M-SA 

results (MA-

SA)/SA ( ) 

15 -0.35 -0.25 

16 0 0 

17 -0.39 0 

18 -0.12 0.13 

19 -0.61 -0.39 

20 0.35 0.13 

21 -1.07 -0.56 

Average             

 

Table 6. 21: Compared the TTRPSDTW results with 200 customers obtained from 

proposed MA with TS and M-SA 

Problem 

ID 

Comparison of 

best solution 

between 

proposed MA 

and TS results 

(MA-TS)/TS 

( ) 

Comparison of 

best solution 

between 

proposed MA 

and M-SA 

results (MA-

SA)/SA ( ) 

1 -0.11 -0.11 

2 -0.18 -0.10 

3 0.09 0 

4 -0.13 -0.09 

5 0 0 

6 -0.32 -0.16 

7 0.09 0.05 

8 -0.08 0 

9 -0.08 -0.04 

10 0.06 0.06 

11 -0.11 -0.04 

12 0.12 0.04 

13 0.05 0 

14 0 0 

15 -0.19 -0.07 

16 -0.11 -0.05 

17 0.09 0.088 

18 -0.08 -0.15 

19 -0.11 -0.11 

20 -0.18 -0.10 

21 0.09 0 

Average             
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Tables 6.19, 6.20 and 6.21 indicate that the average results obtained by the 

proposed MA were improved about 0.54 and 0.35 percent comparing with tabu search 

and multi-point simulated annealing for TTRPSDTW with 50 customers, respectively. 

These improvement are 0.21 and 0.12 percent for TTRPSDTW with 100 customers and 

0.05 and 0.03 percent for TTRPSDTW with 200 customers, respectively. Consequently, 

the performance of the proposed MA is found slightly better than SA and TS. As the 

differences between these results are insignificant, the results obtained by MA, M-SA 

and TS can be accepted as the new solutions. Therefore, the results indicate that the 

algorithms are efficient and effective in solving TTRP with stochastic demands and time 

windows. 

6.6 TTRPSTTW benchmark solutions using aforesaid algorithms 

The performance of the M-SA, MA and TS are evaluated for solving SPR 

versions of TTRPSTTW. Parameters used in the model might have some shake on the 

quality of computational results and they are same as TTRPSD solutions.  In order to 

obtain better solutions, different values have been tested during initial experiments. 

Since it is not possible to use more than the predetermined number of vehicles, the 

penalty cost is considered too high. The parameters have been examined with different 

values and set to be        ,            ,      ,      ,         , 

      ,        ,                and        . They seem to give best results 

and will be used for further computational study. Firstly the algorithm is applied for 

solving CCP version of the problem. The problems have been tested with different 

significance and confidence levels α and β. However, the algorithm cannot find any 

feasible solution for these problems when both confident levels of α and β are active 

simultaneously since the CCP model is completely depended on the confidence level 
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and sometimes makes the solutions infeasible. Therefore, the results indicate that 

although CCP model is easily understood, it is not appropriate for modelling 

TTRPSTTW. In real applications, these method may only use for a few important 

customers. The aforesaid algorithms are then applied for solving SPR version of 

TTRPSTTW. Each set has been run for 10 times and the best one (        and the 

average results of each problem are located in Tables 6.22-6.27. In addition, the 

problems have been solved by sensitivity parameter analysis to understand the impact of 

parameters and data elements.  

Table 6. 22: Results for TTRPSTTW with 50 customers and R1 scheduling horizons 

ID Best 

solution 

M-SA 

Average 

solution 

M-SA 

Sensitivity

 parameter 

analysis 
M-SA 

Best 

solution 

MA 

Average 

solution 

MA 

Sensitivity

 parameter 

analysis 
MA 

Best 

solution 

TS 

Average 

solution 

TS 

Sensitivity

 parameter 

analysis 
TS 

1 5047.45 5073.63 5036.90 5042.46 5065.49 5039.03 5049.43 5070.34 5041.21 

2 4960.84 5024.88 4947.71 4958.92 4967.58 4951.10 4961.01 4979.90 4955.32 

3 5194.44 5217.31 5189.65 5195.84 5206.94 5190.02 5196.42 5213.28 5188.82 

4 4529.11 4542.56 4517.05 4528.29 4539.03 4519.27 4532.94 4540.86 4522.13 

5 3487.01 3503.11 3479.73 3486.98 3501.12 3480.37 3489.73 3507.33 3480.81 

6 3801.90 3821.86 3792.31 3801.90 3817.85 3794.42 3803.55 3820.75 3795.72 

7 2812.34 2819.09 2807.52 2810.48 2820.11 2805.43 2814.81 2829.73 2807.76 

8 2833.20 2845.23 2828.86 2830.93 2845.31 2838.92 2835.89 2850.03 2830.37 

9 2878.87 2890.76 2871.33 2878.87 2889.02 2880.96 2881.91 2898.66 2872.22 

10 2607.32 2615.12 2599.29 2607.32 2619.92 2599.29 2609.42 2618.82 2601.27 

11 2720.02 2732.60 2719.03 2718.26 2729.77 2715.32 2720.02 2732.83 2717.92 

12 2891.29 2908.34 2887.74 2890.11 2904.48 2883.04 2890.11 2910.91 2886.62 

13 5232.69 5241.77 5226.37 5228.20 5239.59 5225.37 5231.43 5243.57 5226.40 

14 5300.32 5308.56 5289.65 5298.24 5309.32 5287.22 5303.44 5320.21 5294.50 

15 5392.65 5401.53 5378.12 5392.65 5406.62 5380.29 5394.27 5407.32 5390.12 

16 3592.37 3610.09 3588.73 3594.02 3602.92 3589.92 3596.29 3610.39 3591.23 

17 3359.52 3367.73 3352.68 3355.38 3364.41 3353.19 3357.03 3370.53 3354.85 

18 3478.93 3485.82 3468.38 3478.93 3489.23 3472.29 3484.35 3493.35 3475.11 

19 3769.00 3777.83 3756.00 3770.22 3779.18 3761.12 3769.00 3779.39 3760.24 

20 3783.72 3790.70 3778.93 3779.99 3788.33 3775.32 3782.29 3790.34 3775.32 

21 3844.62 3853.52 3835.59 3839.02 3846.94 3834.82 3841.92 3857.62 3838.31 

22 2932.74 2941.94 2926.48 2929.25 2938.00 2922.02 2932.74 2939.32 2924.43 

23 2777.93 2790.45 2769.75 2773.83 2784.55 2770.23 2780.38 2792.40 2775.01 

24 2894.23 2910.11 2889.53 2894.23 2905.52 2887.47 2895.42 2914.95 2888.39 

Avg 3755.11 3769.77 3747.39 3753.51 3765.05 3748.19 3756.41 3770.54 3749.53 
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Table 6. 23: Results for TTRPSTTW with 50 customers and R2 scheduling horizons 

ID Best 

solution 

M-SA 

Average 

solution 

M-SA 

Sensitivity

  analysis 
M-SA 

Best 

solution 

MA 

Averag

e 

solution 

MA 

Sensitiv

ity  anal

ysis 
MA 

Best 

solution 

TS 

Averag

e 

solution 

TS 

Sensitivit

y  analys

is 
TS 

1 4584.96 4601.43 4577.75 4584.96 4595.59 4578.43 4587.49 4606.69 4584.30 

2 4621.35 4642.24 4611.56 4617.28 4638.53 4613.61 4623.99 4641.29 4616.29 

3 4441.93 4456.23 4436.98 4438.30 4449.04 4434.01 4442.56 4458.83 4436.04 

4 5101.11 5112.86 5093.17 5103.43 5114.82 5091.84 5107.73 5119.05 5095.66 

5 5009.47 5120.55 4997.85 5009.47 5016.83 5002.78 5011.38 5021.14 5007.56 

6 5222.54 5231.54 5218.09 5220.92 5232.20 5217.36 5224.69 5243.93 5219.72 

7 2724.47 2731.84 2717.68 2727.53 2743.90 2720.20 2729.79 2740.12 2722.15 

8 2841.43 2850.73 2833.11 2838.33 2845.84 2830.62 2835.92 2848.11 2830.62 

9 2821.63 2834.56 2816.60 2821.63 2834.49 2817.12 2825.26 2832.15 2819.05 

10 2562.53 2572.88 2557.30 2559.30 2570.24 2554.38 2563.29 2571.44 2556.22 

11 2611.21 2630.42 2603.62 2607.47 2623.31 2601.11 2610.10 2626.92 2607.27 

12 2579.09 2583.86 2564.42 2579.09 2587.62 2570.55 2586.75 2597.09 2579.21 

13 4023.37 4035.54 4011.56 4018.63 4032.16 4010.07 4018.63 4029.61 4012.49 

14 4165.54 4173.03 4156.99 4161.13 4176.95 4155.90 4167.81 4180.50 4159.20 

15 4089.90 4101.86 4086.42 4089.90 4100.10 4084.84 4091.01 4102.24 4087.42 

16 3835.71 3849.09 3827.58 3830.29 3843.39 3824.04 3837.49 3845.53 3829.03 

17 3495.47 3511.81 3487.92 3495.47 3503.44 3485.52 3499.24 3520.10 3489.93 

18 3684.76 3699.22 3676.01 3680.48 3690.08 3675.67 3678.90 3687.69 3677.27 

19 2947.48 2958.73 2941.91 2945.59 2951.15 2939.03 2949.94 2960.12 2942.20 

20 3163.52 3181.85 3153.40 3163.52 3172.22 3155.42 3166.33 3178.82 3159.95 

21 3215.96 3242.95 3210.76 3218.91 3230.91 3209.10 3217.02 3220.15 3211.46 

22 2932.28 2950.01 2930.23 2930.32 2943.03 2928.43 2929.01 2940.84 2926.02 

23 3010.83 3025.53 2999.02 3005.66 3014.48 3000.47 3012.39 3029.35 2999.02 

24 3454.48 3479.88 3448.35 3452.20 3465.00 3444.92 3454.48 3461.39 3445.29 

Avg 3630.89 3649.10 3623.26 3629.16 3640.64 3622.73 3632.13 3644.30 3625.56 

 

Table 6. 24: Results for TTRPSTTW with 50 customers and R3 scheduling horizons 

ID Best 

solution 

M-SA 

Averag

e 

solution 

SA 

Sensitivi

ty  analy

sis SA 

Best 

solution 

MA 

Average 

solution 

MA 

Sensitivity

  analysis 
MA 

Best 

solution 

TS 

Average 

solution 

TS 

Sensitivity

  analysis 
TS 

1 2968.75 2983.83 2959.73 2964.39 2972.20 2960.91 2970.02 2982.14 2963.81 

2 3060.14 3084.74 3052.00 3060.14 3070.32 3053.58 3060.14 3076.01 3055.37 

3 3194.60 3217.90 3186.86 3189.93 3199.94 3182.87 3191.04 3204.67 3189.09 

4 2522.15 2542.56 2518.49 2526.95 2535.55 2517.02 2520.77 2534.36 2517.15 

5 2407.71 2423.41 2394.72 2404.83 2413.59 2395.24 2411.63 2425.78 2399.74 

6 2081.75 2101.96 2077.69 2084.77 2095.31 2079.48 2086.29 2102.26 2080.13 

7 2112.34 2119.19 2109.37 2109.37 2118.15 2107.74 2111.59 2121.73 2108.77 

8 2133.20 2145.23 2124.62 2130.93 2143.03 2125.00 2135.23 2148.66 2127.70 

9 2474.67 2490.36 2468.38 2471.18 2486.82 2466.79 2470.02 2483.45 2467.44 

10 2527.82 2535.17 2523.47 2524.96 2533.85 2520.92 2528.98 2545.42 2524.70 

11 2633.82 2652.43 2627.47 2633.82 2646.55 2626.83 2632.12 2650.61 2628.19 

12 2991.54 3008.54 2984.02 2987.97 2995.84 2985.77 2989.83 2997.30 2986.12 

13 4232.39 4251.37 4226.48 4229.66 4237.05 4225.27 4234.52 4242.63 4227.88 

14 4324.21 4340.67 4321.15 4327.51 4337.39 4319.13 4330.05 4344.39 4321.17 

15 4412.45 4431.13 4400.03 4409.35 4423.38 4401.12 4414.28 4436.49 4403.42 

16 2743.17 2760.02 2737.31 2742.95 2753.89 2735.99 2745.86 2759.75 2737.95 

17 2384.92 2407.23 2377.62 2384.92 2398.77 2378.93 2384.92 2401.60 2379.88 

18 2975.33 3005.05 2968.21 2974.26 2986.03 2967.62 2974.26 2983.99 2970.29 

19 3024.37 3037.81 3018.92 3021.87 3033.38 3017.42 3024.37 3038.00 3019.80 

20 3283.28 3299.70 3278.54 3281.57 3289.90 3277.52 3285.36 3294.76 3279.67 

21 3731.85 3753.02 3727.11 3729.20 3738.95 3726.80 3731.85 3750.99 3728.63 

22 3072.54 3101.94 3068.53 3072.54 3089.39 3067.25 3070.54 3083.29 3068.31 

23 2977.73 2990.95 2968.27 2976.29 2989.21 2967.67 2979.08 2993.35 2969.40 

24 3194.13 3210.11 3180.37 3193.34 3207.64 3181.32 3193.34 3209.04 3186.46 

Av 2977.70 2995.60 2970.81 2976.36 2987.34 2970.34 2978.17 2992.11 2972.55 
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Table 6. 25: Results for TTRPSTTW with 100 customers and R1 scheduling horizons 

ID Best 

solution 

M-SA 

Average 

solution 

M-SA 

Sensitivit

y  analys

is 
M-SA 

Best 

solution 

MA 

Average 

solution 

MA 

Sensitivit

y  analys

is 
MA 

Best 

solution 

TS 

Average 

solution 

TS 

Sensitivit

y  analys

is 
TS 

1 8963.53 9003.63 8957.07 8958.39 8972.09 8953.39 8966.63 8996.82 8957.67 

2 6599.54 6634.35 6589.52 6595.73 6627.50 6687.11 6601.21 6629.62 6590.00 

3 7294.43 7317.30 7285.72 7294.43 7308.60 7286.38 7298.00 7315.19 7290.22 

4 10562.8 10642.56 10552.98 10555.59 10600.27 10551.29 10563.09 10625.92 10554.39 

5 9407.71 9443.41 9399.32 9410.18 9439.39 9397.38 9409.60 9430.73 9402.24 

6 8081.42 8101.56 8077.22 8078.69 8094.92 8076.58 8078.69 8097.38 8077.52 

7 6115.42 6129.59 6115.42 6116.03 6122.29 6115.42 6118.83 6131.34 6116.53 

8 5432.04 5445.93 5424.58 5428.77 5439.32 5420.76 5431.41 5448.07 5424.82 

9 6271.78 6310.06 6265.05 6268.29 6282.02 6264.21 6272.29 6308.39 6266.32 

10 4527.42 4552.26 4519.85 4525.03 4543.30 4520.23 4530.20 4550.33 4522.31 

11 4682.03 4698.43 4674.94 4682.56 4690.01 4675.88 4686.82 4707.59 4677.84 

12 5011.54 5018.27 5002.24 5007.47 5017.74 5003.63 5012.25 5021.15 5006.32 

13 6032.99 6051.11 6021.31 6030.48 6046.49 6025.31 6036.64 6052.25 6023.28 

14 5324.43 5344.32 5319.90 5320.75 5338.70 5317.69 5325.58 5346.68 5319.73 

15 5712.46 5731.17 5705.18 5715.70 5730.61 5707.05 5714.71 5735.74 5709.00 

16 8753.66 8770.82 8746.66 8755.40 8764.93 8747.12 8756.75 8772.31 8750.90 

17 8374.72 8400.23 8363.60 8369.34 8379.99 8362.02 8372.96 8397.62 8367.08 

18 9275.23 9288.62 9265.41 9275.23 9286.58 9266.81 9279.06 9307.76 9267.50 

19 7024.69 7041.81 7016.79 7020.30 7033.14 7015.53 7022.20 7037.61 7019.07 

20 6783.78 6799.74 6775.04 6784.25 6798.86 6773.09 6786.00 6796.41 6777.48 

21 5991.95 6053.04 5988.56 5989.05 6021.46 5987.41 5993.20 6038.29 5988.48 

22 4672.54 4701.24 4666.83 4675.22 4698.31 4668.02 4677.47 4695.66 4668.02 

23 4957.43 4990.44 4950.97 4955.95 4970.70 4951.23 4957.43 4981.14 4953.09 

24 4094.14 4110.72 4090.14 4093.86 4105.00 4087.38 4093.86 4112.82 4091.70 

Av 6664.49 6690.86 6657.26 6662.80 6679.68 6660.87 6666.04 6689.03 6659.23 

 

Table 6. 26: Results for TTRPSTTW with 100 customers and R2 scheduling horizons 

ID Best 

solution 

M-SA 

Average 

solution 

MA 

Sensitivit

y  analys

is 
TS 

Best 

solution 

MA 

Average 

solution 

MA 

Sensitivit

y  analys

is 
MA 

Best 

solution 

TS 

Average 

solution 

TS 

Sensitivit

y  analys

is 
TS 

1 11528.1 11563.8 11522.26 11524.65 11558.90 11520.12 11528.15 11560.89 11523.02 

2 10960.6 11004.0 10954.72 10963.28 10989.01 10957.80 10963.28 11008.18 10959.64 

3 10074.9 10117.4 10067.76 10070.91 10102.21 10066.92 10080.35 10126.42 10068.93 

4 9572.45 9602.56 9561.55 9568.38 9589.42 9559.00 9575.55 9604.74 9565.50 

5 8727.71 8743.21 8720.21 8725.01 8750.61 8721.14 8724.59 8742.71 8722.58 

6 8081.93 8101.32 8074.78 8078.22 8098.34 8075.53 8080.25 8107.68 8077.67 

7 6102.34 6119.59 6091.16 6104.29 6122.25 6094.30 6104.69 6125.93 6098.44 

8 6734.27 6765.43 6722.54 6727.61 6749.90 6721.83 6735.10 6769.32 6725.69 

9 6474.32 6490.66 6465.80 6474.32 6496.38 6466.34 6478.28 6502.45 6467.24 

10 5323.94 5355.37 5314.57 5318.58 5360.39 5313.30 5320.15 5349.76 5315.03 

11 5661.12 5682.43 5656.38 5658.94 5678.37 5656.38 5660.40 5680.31 5657.66 

12 5291.34 5308.04 5283.46 5287.02 5299.24 5284.20 5287.02 5310.83 5285.55 

13 8282.69 8301.37 8276.24 8279.19 8296.43 8274.05 8285.68 8313.32 8276.10 

14 8994.51 9040.67 8988.56 8996.76 9042.03 8987.14 8994.51 9048.70 8989.08 

15 8012.05 8063.13 7999.31 8009.92 8041.10 8001.37 8008.21 8038.63 8006.28 

16 10743.1 10810.0 10736.04 10738.30 10789.53 10734.67 10746.49 10808.00 10737.00 

17 9374.93 9407.23 9363.85 9370.39 9398.46 9364.30 9376.22 9410.01 9366.49 

18 9975.53 10005.0 9971.92 9975.53 9998.03 9970.65 9979.90 10009.11 9973.35 

19 7424.38 7437.41 7417.69 7420.31 7436.02 7418.71 7423.27 7447.40 7419.58 

20 6887.68 6909.30 6879.73 6885.72 6915.56 6877.90 6890.66 6920.84 6880.35 

21 7031.85 7053.02 7025.92 7026.00 7047.47 7023.38 7034.26 7060.99 7026.17 

22 6076.74 6101.04 6066.54 6071.91 6090.21 6067.30 6074.04 6111.82 6068.06 

23 5977.73 5990.95 5969.60 5980.61 6001.33 5973.26 5982.69 6011.15 5972.01 

24 5197.13 5213.91 5192.27 5195.83 5210.90 5188.16 5200.72 5231.10 5191.02 

Av 7854.65 7882.80 7846.79 7852.15 7877.59 7846.57 7855.60 7887.51 7848.85 
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Table 6. 27: Results for TTRPSTTW with 100 customers and R3 scheduling horizons 

ID Best 

solution 

M-SA 

Averag

e 

solution 

MA 

Sensitiv

ity para

meter 

analysis 
TS 

Best 

solution 

MA 

Averag

e 

solution 

MA 

Sensitivit

y parame

ter 

analysis 
MA 

Best 

solution 

TS 

Averag

e 

solution 

TS 

Sensitiv

ity para

meter 

analysis 
TS 

1 9568.35 9583.22 9559.43 9565.67 9580.71 9560.42 9569.66 9590.09 9562.90 

2 9065.13 9074.34 9057.13 9060.33 9069.12 9056.10 9063.80 9074.14 9059.84 

3 9194.60 9207.90 9190.92 9197.37 9210.42 9191.62 9200.06 9213.90 9192.57 

4 8532.15 8544.36 8525.04 8529.59 8537.89 8526.61 8534.00 8546.93 8528.92 

5 8807.71 8813.41 8798.63 8807.71 8814.03 8800.01 8809.12 8818.20 8801.29 

6 8081.65 8094.06 8076.57 8081.65 8098.21 8076.57 8083.22 8101.10 8078.29 

7 7612.14 7629.13 7603.85 7609.19 7620.38 7605.49 7615.05 7628.81 7608.00 

8 7103.25 7115.03 7100.88 7101.34 7116.91 7100.88 7105.20 7117.01 7102.24 

9 7436.17 7450.26 7427.54 7440.03 7457.66 7429.10 7442.36 7451.37 7430.54 

10 6517.82 6528.87 6514.01 6515.95 6522.17 6512.53 6520.31 6529.45 6514.40 

11 6634.22 6645.93 6629.36 6634.22 6641.76 6628.10 6632.75 6650.32 6630.00 

12 7091.54 7108.54 7088.54 7093.32 7100.51 7088.54 7097.84 7106.42 7090.80 

13 8272.42 8281.39 8266.22 8272.42 8279.20 8268.40 8269.38 8276.48 8266.22 

14 8358.23 8370.27 8351.46 8360.39 8370.13 8355.00 8356.67 8365.19 8355.00 

15 8415.35 8420.19 8410.14 8413.23 8424.03 8411.10 8418.10 8423.29 8413.38 

16 9703.17 9714.42 9689.42 9700.35 9711.38 9690.24 9705.21 9720.58 9693.80 

17 8704.92 8717.34 8701.82 8707.30 8720.58 8702.39 8709.28 8718.65 8702.20 

18 8975.33 8990.05 8968.57 8970.28 8983.50 8966.04 8977.40 8995.43 8969.31 

19 6724.75 6747.85 6716.67 6724.75 6736.64 6718.46 6721.69 6731.10 6717.20 

20 7083.26 7100.70 7078.74 7079.57 7090.13 7078.74 7083.26 7098.04 7080.71 

21 6931.53 6943.02 6926.89 6931.53 6940.92 6928.00 6935.83 6945.87 6930.11 

22 6072.43 6080.98 6068.82 6070.40 6077.21 6068.82 6072.43 6089.05 6069.60 

23 6977.73 6994.95 6972.49 6974.04 6989.49 6970.09 6971.80 6989.64 6970.09 

24 6194.13 6207.11 6187.34 6190.37 6200.18 6187.34 6193.01 6210.33 6188.49 

Avg 7835.75 7848.47 7829.60 7834.63 7845.55 7830.02 7836.98 7849.64 7831.50 

 

 

Tables 6.22-6.27 present the detailed solutions information from 50 and 100 

customers in three scheduling horizons, respectively and confirm that the differences 

between best results, average results and the results obtained by sensitivity analysis are 

very small. Since these differences are insignificant, the aforesaid algorithms are 

efficient that provides with consistency in a reasonable time and the results are useful. 

To confirm these differences please refer to Table 6.28 and 6.29. 
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Table 6. 28: Compared the TTRPSTTW results with 50 customers obtained from 

proposed MA with TS and M-SA 

Problem 

ID 

Comparison 

of best 

solution 

between 

proposed 

MA and TS 

results (MA-

TS)/TS ( ) 

and R1 

Comparison 

of best 

solution 

between 

proposed 

MA and M-

SA results 

(MA-

SA)/SA ( ) 

and R1 

Comparison 

of best 

solution 

between 

proposed 

MA and TS 

results (MA-

TS)/TS ( ) 

and R2 

Comparison 

of best 

solution 

between 

proposed 

MA and M-

SA results 

(MA-

SA)/SA ( ) 

and R2 

Comparison 

of best 

solution 

between 

proposed 

MA and TS 

results (MA-

TS)/TS ( ) 

and R3 

Comparison 

of best 

solution 

between 

proposed 

MA and M-

SA results 

(MA-

SA)/SA ( ) 

and R3 

1 -0.13804 -0.09886 -0.05515 0 -0.18956 -0.14686 
2 -0.04213 -0.0387 -0.14511 -0.08807 0 0 
3 -0.01116 0.026952 -0.09589 -0.08172 -0.03478 -0.14618 
4 -0.10258 -0.01811 -0.08419 0.04548 0.245163 0.190314 
5 -0.0788 -0.00086 -0.03811 0 -0.28197 -0.11962 
6 -0.04338 0 -0.07216 -0.03102 -0.07286 0.14507 
7 -0.15383 -0.06614 -0.08279 0.112315 -0.10513 -0.1406 
8 -0.1749 -0.08012 0.084981 -0.1091 -0.20138 -0.10641 
9 -0.10549 0 -0.12848 0 0.046963 -0.14103 

10 -0.08048 0 -0.15566 -0.12605 -0.15896 -0.11314 
11 -0.06471 -0.06471 -0.10076 -0.14323 0.064587 0 
12 0 -0.04081 -0.29612 0 -0.06221 -0.11934 
13 -0.06174 -0.08581 0 -0.11781 -0.11477 -0.0645 
14 -0.09805 -0.03924 -0.16028 -0.10587 -0.05866 0.076315 
15 -0.03003 0 -0.02713 0 -0.11168 -0.07026 
16 -0.06312 0.045931 -0.18762 -0.1413 -0.10598 -0.00802 
17 -0.04915 -0.12323 -0.10774 0 0 0 
18 -0.15555 0 0.042948 -0.11615 0 -0.03596 
19 0.032369 0.032369 -0.14746 -0.06412 -0.08266 -0.08266 
20 -0.06081 -0.09858 -0.08875 0 -0.11536 -0.05208 
21 -0.07548 -0.14566 0.05875 0.09173 -0.07101 -0.07101 
22 -0.119 -0.119 0.044725 -0.06684 0.065135 0 
23 -0.23558 -0.14759 -0.22341 -0.17171 -0.09365 -0.04836 
24 -0.0411 0 -0.066 -0.066 0 -0.02473 

Average -0.08136 -0.04426 -0.08464 -0.04914 -0.05995 -0.04496 
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Table 6. 29: Compared the TTRPSTTW results with 100 customers obtained from 

proposed MA with TS and M-SA 

Problem 

ID 

Comparison 

of best 

solution 

between 

proposed 

MA and TS 

results (MA-

TS)/TS ( ) 

and R1 

Comparison 

of best 

solution 

between 

proposed 

MA and M-

SA results 

(MA-

SA)/SA ( ) 

and R1 

Comparison 

of best 

solution 

between 

proposed 

MA and TS 

results (MA-

TS)/TS ( ) 

and R2 

Comparison 

of best 

solution 

between 

proposed 

MA and M-

SA results 

(MA-

SA)/SA ( ) 

and R2 

Comparison 

of best 

solution 

between 

proposed 

MA and TS 

results (MA-

TS)/TS ( ) 

and R3 

Comparison 

of best 

solution 

between 

proposed 

MA and M-

SA results 

(MA-

SA)/SA ( ) 

and R3 

1 -0.0919 -0.05734 -0.03036 -0.03036 -0.04169 -0.02801 
2 -0.08302 -0.05773 0 0.023812 -0.03828 -0.05295 
3 -0.04892 0 -0.09365 -0.0396 -0.02924 0.030126 
4 -0.071 -0.06826 -0.07488 -0.04252 -0.05168 -0.03 
5 0.006164 0.026255 0.004814 -0.03094 -0.01601 0 
6 0 -0.03378 -0.02512 -0.0459 -0.01942 0 
7 -0.04576 0.009975 -0.00655 0.031955 -0.07695 -0.03875 
8 -0.04861 -0.0602 -0.11121 -0.0989 -0.05433 -0.02689 
9 -0.06377 -0.05565 -0.06113 0 -0.03131 0.051908 

10 -0.11412 -0.05279 -0.02951 -0.10068 -0.06687 -0.02869 
11 -0.09089 0.01132 -0.02579 -0.03851 0.022163 0 
12 -0.09537 -0.08121 0 -0.08164 -0.06368 0.0251 
13 -0.10204 -0.0416 -0.07833 -0.04226 0.036762 0 
14 -0.09069 -0.06912 0.025015 0.025015 0.044515 0.025843 
15 0.017324 0.056718 0.021353 -0.02658 -0.05785 -0.02519 
16 -0.01542 0.019877 -0.07621 -0.04533 -0.05008 -0.02906 
17 -0.04323 -0.06424 -0.06218 -0.04843 -0.02273 0.027341 
18 -0.04128 0 -0.04379 0 -0.07931 -0.05627 
19 -0.02706 -0.06249 -0.03987 -0.05482 0.045524 0 
20 -0.02579 0.006928 -0.07169 -0.02846 -0.05209 -0.05209 
21 -0.06925 -0.0484 -0.11743 -0.08319 -0.062 0 
22 -0.0481 0.057356 -0.03507 -0.07948 -0.03343 -0.03343 
23 -0.02985 -0.02985 -0.03477 0.048179 0.032129 -0.05288 
24 0 -0.00684 -0.09403 -0.02501 -0.04263 -0.0607 

Average -0.05094 -0.02504 -0.04418 -0.0339 -0.02952 -0.01477 

 

Tables 6.28 and 6.29 indicate that the average results obtained by the proposed 

MA were improved about 0.08 and 0.04 percent comparing with tabu search and multi-

point simulated annealing for TTRPSTTW with 50 customers and R1, respectively. 

These improvements are 0.08 and 0.05 percent for TTRPSTTW with 50 customers and 

R2, 0.06 and 0.04 percent for TTRPSTTW with 50 customers and R3, respectively. 

Furthermore, these improvements are 0.05 and 0.02 percent for TTRPSTTW with 100 
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customers and R1, 0.04 and 0.03 percent for TTRPSTTW with 100 customers and R2, 

respectively. Also, the average results obtained by the proposed MA were improved 

about 0.03 and 0.01 percent comparing with tabu search and multi-point simulated 

annealing for TTRPSTTW with 100 customers and R3 as well. 

Consequently, the performance of the proposed MA is found slightly better than 

SA and TS. As the differences between these results are insignificant, the results 

obtained by MA, M-SA and TS can be accepted as the new solutions. Therefore, the 

results indicate that the algorithms are efficient and effective in solving TTRP with 

stochastic travel and service time with time windows. 

6.7 Case study 

In this section, a real case study from an Iranian dairy company is provided. This 

study has been carried out with the aid of Pegah Co, a large dairy distribution company 

in Iran, whose products are distributed to more than 50,000 retailers (customers) in Iran 

and some other countries. Iran Dairy Industries Co. (IDIC) is the largest dairy producer 

in Iran with "PEGAH" brand. This factory produces some dairy products such as 

Pasteurized and UHT milk, flavored milk, pasteurized and UHT cream, a variety of 

cheese (process, slice, pizza, UF), different kinds of yoghurt, probiotic products (such as 

yoghurt, cheese, ice cream), and drinking yoghurt. The method of collecting data has 

been explained in Chapter 3. 

6.7.1 Computational results for real case study  

Same as the previous sections, these problems has been solved using M-SA, MA 

and TS. The parameters may be used for MA, M-SA or TS are same as previous 

sections as well. In order to obtain better solutions, different values have been tested in 

initial experiments.  These are: 
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       ;                  ;                                ; 

                       ;                        ;               ;       

         ;               or               ;             ;       

      ;                                ;                ;    

           ;               ;         , where          and n are the probability 

of crossover, mutation, LS improvement and population size, respectively. Since it is 

not possible to use more than the predetermined number of vehicles, the penalty cost is 

considered too high. The parameters have been examined with different values and set 

to be       ,           ,      ,      ,         ,       ,        , 

               and         ,             ,        ,        and   

   . They seem to give the best results and will be used for further computation. The 

results in kilometers for three models (TTRPSD, TTRPSDTW and TTRPSTTW) which 

are obtained using MA, M-SA and TS are presented in Tables 6.30–6.33, respectively. 

Each set has been run 10 times and the best (Best-sol), the worst (worst-sol) and the 

average solutions (Avg-sol) from the 10 runs are shown. Also, the time taken for the 

best solutions is presented in the last column. As this type of problem was not solved 

earlier, the results cannot be compared with any data or earlier heuristic solutions. 

However, the problems were checked by sensitivity analysis. Now, the results can be 

compared. 

 

Table 6. 30: The TTRPSD results 

Algorithm Best-sol Worst-sol Avg-sol Sensitivity analysis Time (second) 

MA 164.484 175.498 169.389 163.673 947 

M-SA 166.230 177.827 169.027 164.004 1010 

TS 167.015 174.984 170.582 164.004 959 
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Table 6. 31: The TTRPSDTW results 

Algorithm Best-sol Worst-sol Avg-sol Sensitivity analysis Time (second) 

MA 170.490 180.593 176.900 169.380 1049 

M-SA 171.000 179.432 175.781 169.753 1099 

TS 177.421 183.690 180.290 169.910 1180 

 

Table 6. 32: The TTRPSTTW results 

Algorithm Best-sol Worst-sol Avg-sol Sensitivity analysis Time (second) 

MA 190.889 197.003 194.502 189.381 1111 

M-SA 191.392 196.012 193.452 189.381 1179 

TS 192.889 198.346 195.367 189.381 1292 

 

Tables 6.30 to 6.32 show the best solutions for TTRPSD obtained using MA, M-

SA and TS are 164.484, 166.230 and 167.015, respectively. Moreover, these results are 

170.490, 171.000 and 177.421 for TTRPSDTW and 190.889, 191.392 and 192.889 for 

TTRPSTTW, respectively. In addition, the comparison between the obtained results and 

the sensitivity analysis results confirm a very slight difference. Furthermore, the Best 

solution, worst solution and the average solution for each set from 10 run have been 

mentioned in Tables 6.30-6.32. As the differences between all these results are 

insignificant, the applied MA, M-SA and TS are efficient with confidence consistency 

of a reasonable time. 

To indicate the convergence of the proposed approach, trends are shown in 

Figures 6.10 to 6.12. This study has presented the relation between the number of 

iteration and the obtained objective function value. As it can be noted from the figures, 

the improvement rate of the solution reduces as the number of the iteration increases 

and after a particular number of iteration, the achieved solution converges. Therefore, 

the quality of the solution may not be enhanced by a greater number of iteration. 
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Figure 6. 10: Convergence trend for the algorithms‘ TTRPSD solutions 

 

Figure 6. 11: Convergence trend for the algorithms‘ TTRPSDTW solutions 
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Figure 6. 12: Convergence trend for the algorithms‘ TTRPSTTW solutions 

In breif, the analyses show that all of the methods of TS, M-SA, and MA are 

greatly efficient and their efficiency is almost equal, however, its seems that MA 

indicates slightly more efficiency than the others. 
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CHAPTER 7: CONCLUSION AND RECOMMENDATION 

Discussion on various issues and the main findings have been placed in the past 

chapters. Stochastic truck and trailer routing problems under different uncertainties 

were formulated and the proposed methods of solution were located. Results of analyses 

and the necessary recommendations were made. The main findings of the research have 

been summarized in this Chapter. 

7.1 Summary of the work 

Overall, the objectives of this research are achieved. Uncertainty in parameters 

such as demands, travel and service times are found to have critical importance in 

TTRP. In this research, the stochastic TTRP was introduced, modelled and solved. Most 

researchers have undertaken work on TTRP with deterministic parameters. However, to 

meet the real-life needs, stochastic parameters such as varying or stochastic demands, 

stochastic travel and service time should be taken into account and the deterministic 

TTRP should be expanded for stochastic parameters. In addition, the time window 

constraint occurs in many practical situations. Therefore, TTRP is extended in three 

parts by considering stochastic demands, stochastic demands and time windows, and 

stochastic travel and service time with time windows. Different meta-heuristic 

algorithms such as multi-point simulated annealing (M-SA), memetic algorithm (MA) 

and tabu search (TS) have been applied to solve these problems. For memetic algorithm, 

different kinds of crossover, such as PMX and OX, and different kinds of mutations, 

such as inversion, insertion, displacement, swap and change of service vehicle type of 

vehicle customers (VCs) were applied. In addition, various types of LS approaches were 

used to improve the chromosomes in the pool of candidates to find better solutions. For 

tabu search and multi-point simulated annealing, random neighborhood structure uses 
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four different types of moves such as swap, reversion, insertion and the change of 

service vehicle type of VCs were considered to find the new solution. Besides, 2-Opt 

local search was used to augment the algorithm for improving the solution. 

7.2 Conclusions 

The main conclusions of this research are as follows: 

i. Researchers have, thus far, observed that the deterministic truck and trailer 

routing problem (TTRP) cannot address the prevailing parameter uncertainties 

and/or other complexities. The purpose of this study is to expand the 

deterministic TTRP model by introducing stochastic parameters to bring the 

TTRP model closer to reality. Three new models have been considered to bring 

the TTRP model to that end. Stochastic demands and stochastic travel and 

service time have practical significance. In addition, the time window constraint 

occurs in many practical situations. Therefore, these new models are truck and 

trailer routing problems with stochastic demands (TTRPSD), truck and trailer 

routing problem with stochastic demands and time windows (TTRPSDTW). 

Finally, truck and trailer routing problem with stochastic travel and service time 

with time windows (TTRPSTTW).  

ii. All these issues have been addressed in formulation of the problems within the 

framework of a stochastic program with recourse action. Since uncertainty is 

occurred in some parameters such as demands, travel and service time, the 

failure might occur in the models. Thus, the models must be considered with 

recourse cost. 

iii. Different meta-heuristic algorithms such as multi-point simulated annealing (M-

SA), memetic algorithm (MA) and tabu search (TS) have been successfully 

applied to solve variants of TTRP and stochastic TTRP. 
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iv. The proposed MA has been applied to solve TTRP. Different kinds of crossover, 

such as PMX and OX, and different kinds of mutations, such as inversion, 

insertion, displacement, swap and change of service vehicle type of VCs, are 

applied for this algorithm. In addition, various types of LS approaches have been 

used to improve the chromosome in the pool of candidates to find better 

solutions.The results have been compared with existing approaches to show the 

validity of the solutions. The results approved it and indicated that the MA is 

efficient and effective in solving TTRP. The proposed MA obtained 13 best 

solutions from 21 including 7 new best solutions and 6 best solutions, which 

were previously reported by applying other approaches for TTRP benchmark 

tested by Chao (2002). Also obtained 27 best solutions from 36 including 12 

new best solutions and 15 best solutions which were previously reported for 

TTRP benchmarks tested by Lin et al. (2010). 

v. Twenty-one TTRPSD benchmarked problems, 54 TTRPSDTW benchmarked 

problems in three equal sets and One hundred and forty four TTRPSTTW 

benchmarked problems in six equal sets have been generated and modified for 

these models to validate the models. Each of these benchmarks has been solved 

using the aforesaid meta-heuristic algorithms. Each set has been run 10 times 

and the best and average results are compared. In addition, since no results are 

available for comparing these solutions at this point in time, the problems are 

tested by sensitive-parameter analysis to realize the impact of the parameters. As 

the differences between the best and corresponding average solutions are 

insignificant, the algorithms are capable of producing the variant of stochastic 

TTRP solutions consistently and the results are useful. 

vi. Three different models (TTRPSD, TTRPSDTW and TTRPSTTW) have been 

applied for three case study problems. Data collections including customers‘ 
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information for a dairy factory product have been done and the analysis for these 

three models have been made using three aforesaid meta-heuristic algorithms. 

Each set of three case studies problem has been run for 10 times and the best, 

worst and average results have been compared. Furthermore, the problems have 

been tested by sensitive parameter analysis to realize the impact of the 

parameters. As the differences between the best, worst and corresponding 

average solutions are insignificant, the algorithm is found capable of producing 

TTRPSD solutions consistently and the results are useful.  

vii. The research expanded the knowledge in the truck and trailer routing problem 

area and come up with the publications in Tier-1, Tier-2 ISI, non-ISI and 

conference papers (Appendix-B). 

7.3   Further research direction 

The research reported in this thesis is not necessarily exhaustive for the area in question 

but is a step ahead to the works done by quite a few other researchers. The main 

contribution of this research is to expand the deterministic TTRP model by introducing 

stochastic parameters such as stochastic demand, stochastic travel and service time to 

bring the TTRP model closer to reality and solve the models in a reasonable timeframe 

by administering the meta-heuristic algorithms. This research can be extended into the 

following areas/directions. 

i. Results of the proposed models may be improved using other algorithms. It is 

appreciated if a new algorithm is applied to check this conceivability.  

ii. Researchers may attempt to expand each of the aforesaid models by introducing 

more practical or real-world conditions, such as multiple time windows, time 

dependent travel times and multi-depots. 
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iii. Future work may be devoted to study a multi-objective version of the stochastic 

TTRP as the problem can be defined for more than one objective 

simultaneously.  

iv. For any extension in stochastic TTRP mentioned above, new relevant TTRP 

benchmark instance problems need to be modified to validate the results. 

v. To define the objective function value by considering monetary cost and time 

instead of distance. Then it would be interesting to see how flexible the different 

approaches can be modified, and to study their computational behaviour on these 

scenarios. 
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Appendix A: Confirmation of implementation of the case study 
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Appendix B: The name and demand of the customers 
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Appendix C: The name and location of the customers 
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