
PROCESS STATE SYNCHRONIZATION FOR MOBILITY
SUPPORT IN MOBILE CLOUD COMPUTING

EJAZ AHMED

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



PROCESS STATE SYNCHRONIZATION FOR
MOBILITY SUPPORT IN MOBILE CLOUD

COMPUTING

EJAZ AHMED

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF PHD

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya



UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Ejaz Ahmed

Registration/Matrix No.: WHA120014

Name of Degree: Doctor of Philosophy

Title of Thesis: Process State Synchronization For Mobility Support in Mobile Cloud

Computing

Field of Study:
Mobile Cloud Computing

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

Univ
ers

ity
 of

 M
ala

ya



ABSTRACT

Mobile Cloud Computing (MCC) enables the resource-constrained mobile devices

to execute the compute-intensive mobile applications either in client/server model or

through cyber foraging of the tasks to the cloud servers. However, long or permanent

network disconnections due to user mobility increase the execution time and in certain

cases refrain the mobile devices from getting response back for the remotely performed

execution. This research addresses the effect of mobility on application execution for

mobile cloud-based interactive applications. We propose Process State Synchronization

(PSS) as a mechanism to mitigate the impact of network disconnections on cloud-based

interactive mobile applications. We investigate the impact of varying the synchronization

interval size of PSS algorithms on the performance of application execution. The suffi-

cient condition and upper bound for the synchronization interval size are also determined

that minimize the execution time, computational wastage, synchronization overhead, and

energy consumption. Results show that PSS reduces the execution time of applications up

to 17% in case of intermittent disconnections. The comparison with existing offloading

mechanisms shows that PSS reduces the execution time by up to 47% in case of intermit-

tent network connectivity compared to COMET and by up to 35% in case of optimized

VM-based offloading. The improvement in application execution time increases the us-

ability of interactive mobile applications in MCC.

iii

Univ
ers

ity
 of

 M
ala

ya



ABSTRAK

Mobile Cloud Computing (MCC) membolehkan sumber daripada peranti mudah

alih yang terkekang melaksanakan pengiraan intensif daripada aplikasi-aplikasi mobil

sama ada dalam model pelanggan/pelayan atau melalui kerja-kerja pencarian siber kepada

pelayan-pelayan awan. Walau bagaimanapun, lama atau kekal pemutusan rangkaian yang

disebabkan oleh mobiliti pengguna yang meningkatkan pelaksanaan masa dan dalam kes-

kes tertentu menahan peranti mudah alih daripada mendapat kembali tindak balas yang

dilakukan dari jarak jauh. Kajian ini dibuat untuk menangani kesan pergerakan ke atas

tindak balas aplikasi masa dan pelaksanaan masa bagi aplikasi interaktif yang berasaskan

awan mudah alih. Kami mencadangkan Process State Synchronization (PSS) atau Proses

Penyelarasan Keadaan (PPK) sebagai mekanisme untuk meringankan impak daripada pe-

mutusan rangkaian ke atas aplikasi interaktif mudah alih yang berasaskan awan. Kami

menyiasat impak yang berbeza-beza daripada saiz selang masa penyelarasan algoritma

PSS ke atas prestasi pelaksanaan aplikasi. Keadaan yang mencukupi dan batas atas

yang terikat untuk saiz selang masa penyelarasan juga menentukan pengurangan masa

pelaksanaan, hasil buangan pengkomputeran, penyelarasan penggunaan , dan penggunaan

tenaga. Keputusan menunjukkan bahawa PSS mengurangkan masa pelaksanaan aplikasi

hampir 17% dalam kes pemotongan sekala. Perbandingan dengan mekanisme pelepasan

sedia ada menunjukkan bahawa PSS mengurangkan masa pelaksanaan sehingga 47%

dalam kes sambungan rangkaian terputus-putus berbanding COMET sehingga 35% dalam

kes pengptimuman perlepasan berasaskan VM. Penambahbaikan dalam perlaksanaan ap-

likasi masa dapat meningkatkan kebolehgunaan aplikasi mudah alih interaktif dalam MCC.

iv

Univ
ers

ity
 of

 M
ala

ya



ACKNOWLEDGEMENTS

First of all, I am thankful to Allah Almighty for endowing me the strength, wisdom, and

endless blessings to study.

I would like to sincerely express my deepest gratitude to my supervisor, Professor

Dr. Abdullah Gani, and co-supervisor, Dr. Siti Hafizah ab Hamid, for their invaluable

guidance, supervision, and encouragement to me throughout this research. Their contin-

uous guidance and support assisted me conducting a valuable piece of research reported

in this thesis. They provided me the opportunity to broaden my professional experience

and prepare me for future challenges. Thereafter, I am deeply indebted and grateful to

Dr. Anjum Naveed, Senior Lecturer, for his extensive technical guidance and personal

involvement in this research. I am also thankful to Muhamad Afiq Zaini Alamar for proof

reading of the Malay abstract.

I would also like to express my sincerest gratitude and special appreciation to my

parents and siblings for their endless love and support during my PhD journey. Without

their moral support, this dissertation would never have been completed. Words cannot

express how grateful I am to my parents and siblings for all of the sacrifices that they

have made on my behalf so I dedicate highest achievement of my student life to them.

Finally, I would like to thank University of Malaya for offering me a full research

scholarship throughout my doctoral study. I would also like to thank Bright Sparks Unit

and Faculty of Computer Science and Information Technology for the research grants and

financial support.

v

Univ
ers

ity
 of

 M
ala

ya



TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION ii

ABSTRACT iii

ABSTRAK iv

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS vi

LIST OF FIGURES x

LIST OF TABLES xii

CHAPTER 1: INTRODUCTION 1
1.1 Domain Background 2

1.1.1 Cloud Computing 2
1.1.2 Mobile Cloud Computing 3
1.1.3 Cloud-based Mobile Application Execution 4
1.1.4 Impact of Network Connectivity 5

1.2 Research Motivation 6
1.3 Statement of The Problem 7
1.4 Statement of Objectives 9
1.5 Proposed Methodology 9
1.6 Layout of Thesis 12

CHAPTER 2: CLOUD-BASED MOBILE APPLICATION EXECUTION
FRAMEWORKS 14

2.1 Cloud based Mobile Application Execution 14
2.1.1 Cloud-based Frameworks 15
2.1.2 Cloudlet-based Frameworks 20
2.1.3 Mobile Ad-hoc Cloud Frameworks 23
2.1.4 Hybrid Frameworks 24

2.2 Application Performance Enhancement by the Frameworks 29
2.2.1 Taxonomy of Application Performance Enhancement 29

2.2.1.1 Cloud-centric Approaches 30
2.2.1.2 Hybrid Approaches 34
2.2.1.3 Mobile-centric Approaches 38
2.2.1.4 Network-centric Approaches 42

2.3 Open Challenges: Application Performance Enhancement 44
2.4 Conclusion 48

CHAPTER 3: PROBLEM ANALYSIS OF CLOUD-BASED MOBILE
APPLICATION EXECUTION IN DISRUPTIVE NETWORKS 51

3.1 Empirical Study: Network Disconnection and Application Execution 52
3.1.1 Experimental Setup and Data Collection 52
3.1.2 Mobility Impact on Device Connectivity and Response Time in

3G Network 54

vi

Univ
ers

ity
 of

 M
ala

ya



3.1.3 Types of Network Connectivity Profiles 55
3.1.4 Execution Performance in Different Connection Profiles 56

3.1.4.1 Execution Time 56
3.1.4.2 Computation Wastage 58

3.1.5 State-of-the-art Frameworks Analysis 60
3.1.5.1 Execution Time 60
3.1.5.2 Computation Wastage 62
3.1.5.3 Energy Consumption 63

3.1.6 Impact of Varying the Disconnection Parameters 64
3.1.6.1 Execution Time 64
3.1.6.2 Computation Wastage 65
3.1.6.3 Cloud-based Application Execution Gain 65

3.1.7 Discussion 66
3.2 Formal Analysis: Network Disconnection and Application Execution 68

3.2.1 Formal Definitions 68
3.2.2 Connectivity Profiles and Execution Time 71

3.2.2.1 Same Cloud 72
3.2.2.2 Cloudlet-to-cloudlet 73
3.2.2.3 Cloud/Cloudlet-to-mobile 74

3.2.3 Disruptive Remote Execution Comparison with Non-disruptive
Execution 75

3.2.3.1 Same Cloud 76
3.2.3.2 Cloudlet-to-Cloudlet 77
3.2.3.3 Cloud/Cloudlet-to-mobile 78

3.2.4 Formal Analysis of Application Execution Frameworks in
Disruptive Network Conditions 80

3.2.4.1 Optimized VM based Cloudlet 80
3.2.4.2 COMET 81

3.3 Conclusion 83

CHAPTER 4: PROCESS STATE SYNCHRONIZATION ALGORITHM 85
4.1 Process State Synchronization (PSS) 85

4.1.1 Cloud-based Application Execution 86
4.1.2 Process State Capture and Process Resumption 87
4.1.3 State Synchronization 89

4.1.3.1 Cloud-side Module 90
4.1.3.2 Mobile-side Module 91

4.2 Example Illustration 93
4.3 Mathematical Model of PSS 97

4.3.1 Application Execution Time 98
4.3.2 Application Execution Time with PSS 99
4.3.3 Sufficient Condition for Usefulness of PSS 102
4.3.4 Upper-bound on Synchronization Interval 102

4.4 Distinguishing Features of Proposed Algorithm 104
4.4.1 Adaptive Synchronization Interval 105
4.4.2 Lightweight Synchronization Mechanism 105
4.4.3 Distributed Algorithm 105
4.4.4 Two-way Synchronization 106

4.5 Conclusion 106

CHAPTER 5: EVALUATION 108
5.1 Introduction 108
5.2 Performance Evaluation 109

vii

Univ
ers

ity
 of

 M
ala

ya



5.2.1 Experimental Setup 109
5.2.2 Connection Execution Profiles 111
5.2.3 Prototype Application and Performance Metrics 112
5.2.4 Data Gathering and Data Processing 113

5.3 Data Collected For Model Validation 114
5.4 Data Collected for Different Disconnection-Execution Profiles 116

5.4.1 Execution Time 116
5.4.2 Computation Wastage 118

5.5 Data Collection for Analyzing the Impact of Synchronization Interval 118
5.5.1 Impact of Synchronization Interval on Execution Time 119
5.5.2 Impact of Synchronization Interval on Number of Resynchronizations 120
5.5.3 Impact of Synchronization Interval on Synchronization Overhead 121
5.5.4 Impact of Synchronization Interval on Valuable Computation

Performed by Process State Synchronization Enabled Mobile Device 122
5.5.5 Impact of Synchronization Interval on Cloud Computation Wastage 123
5.5.6 Impact of Synchronization Interval on Mobile Device

Computation Wastage 124
5.5.7 Impact of Synchronization Interval on Number of Instructions

Executed Between Last Sync Point and Disconnection 125
5.6 Data Collected For Performance Comparison of PSS with Optimized

VM-based Cloudlet and COMET 126
5.6.1 Execution Time 126
5.6.2 Cloud Computation Wasted 127
5.6.3 Energy Consumption 127

5.7 Conclusion 128

CHAPTER 6: RESULTS AND DISCUSSIONS 130
6.1 Model Validation 130

6.1.1 Execution Time 130
6.1.2 Mobile Device Useful and Useless Computation Difference 131

6.2 Comparison of Mobile Application Execution in Different Connection Profiles 132
6.2.1 Execution Time 132
6.2.2 Computation Wastage 134

6.3 Performance Analysis of Process State Synchronization Algorithm 135
6.3.1 Impact of Synchronization Interval 136

6.3.1.1 Execution Time 136
6.3.1.2 Computation Wastage 136
6.3.1.3 Valuable Computation Performed on Mobile Device 140
6.3.1.4 Number of Resynchronizations 141
6.3.1.5 Instructions Executed Between Last Sync Point and

Disconnection 142
6.3.1.6 Synchronization Overhead 143
6.3.1.7 Energy Consumption 143

6.3.2 Synchronization vs. Non synchronization-based Execution 144
6.3.3 Valuable Computation on Mobile Device 145

6.4 Comparison of PSS-based Execution with COMET and Optimized
VM-based Execution 147
6.4.1 Execution Time 147
6.4.2 Computation Wasted 149
6.4.3 Energy Consumption 150

6.5 Conclusion 151

viii

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 7: CONCLUSIONS 153
7.1 Reappraisal of the Research Objectives 153
7.2 Contribution of the Research 155
7.3 Research Scope and Limitations 159
7.4 Future Work 159

REFERENCES 161

ix

Univ
ers

ity
 of

 M
ala

ya



LIST OF FIGURES

Figure 1.1 Proposed Research Methodology 10

Figure 2.1 Cloud-based MCC Environment 15
Figure 2.2 Cloudlet-based MCC Environment 21
Figure 2.3 Mobile Ad-hoc cloud 23
Figure 2.4 Hybrid MCC Environment 25
Figure 2.5 Taxonomy of Application Performance Enhancement Approaches

Employed by the Frameworks for the MCC 30

Figure 3.1 Data Collection Intra-city Metro Train Path Map (Courtesy:
MYrapid http://www.myrapid.com.my) 53

Figure 3.2 Mobility Effect on 3G Network Connectivity and Application
Response Time 55

Figure 3.3 Execution Time in Different Connection Profiles 58
Figure 3.4 Computation Wasted For Different Connection Profiles 59
Figure 3.5 Execution Time in Optimized VM-based Cloudlet, COMET, and

Cloud Server Execution 61
Figure 3.6 Computation Wastage in Optimized VM-based Cloudlet and COMET 62
Figure 3.7 Energy Consumption in Optimized VM-based Cloudlet, COMET,

and Mobile Device Execution 64
Figure 3.8 Impact of Disconnection Start Time on Cloud-based Application

Execution Time 65
Figure 3.9 Impact of Disconnection Start Time on Computation Wasted 66
Figure 3.10 Impact of Expected Disconnection Interval Size on Cloud-based

Application Execution Gain 67

Figure 4.1 Example Process State, highlighting the reference update required
while resuming the process 88

Figure 4.2 Non-Synchronized Application Execution Sequence Diagram for MCC 94
Figure 4.3 Synchronized Application Resumption Sequence Diagram for MCC 95
Figure 4.4 Re-Synchronization Decision on Reconnect Sequence Diagram for

MCC 97
Figure 4.5 Illustration of useful and useless computation disconnection intervals 100
Figure 4.6 Illustration of DC interval for useful and wasteful computations 101
Figure 4.7 Synchronization Interval For Balancing Trade-off between Mobile

Device Useful and Useless Computation 103

Figure 5.1 Experimental Setup Illustration 110

Figure 6.1 Comparison of Execution Time Empirical Results with
Mathematical Model Execution Time 131

Figure 6.2 Useful and Useless Mobile Computation Absolute Difference for
Different Data Traces 133

Figure 6.3 Execution Time in Different Connection Profiles 134
Figure 6.4 Comparison of Computation Wastage With Different Connection

Profiles 135
Figure 6.5 Impact of Synchronization Interval on Execution Time 137

x

Univ
ers

ity
 of

 M
ala

ya



Figure 6.6 Impact of Synchronization Interval on Mobile Device
Computation Wastage 138

Figure 6.7 Impact of Synchronization Interval on Cloud Computation Wastage 139
Figure 6.8 Impact of Synchronization Interval on Valuable Computation

Performed on Mobile Device 140
Figure 6.9 Impact of Synchronization Interval on Number of Resynchronizations 141
Figure 6.10 Impact of Synchronization Interval on Instructions Executed

Between Last Sync Point and Disconnection 142
Figure 6.11 Impact of Synchronization Interval on Synchronization Overhead 143
Figure 6.12 Impact of Synchronization on Energy Consumption 144
Figure 6.13 Execution Time in Synchronization and Non-Synchronization 145
Figure 6.14 Valuable Instructions Percentage Computed on Mobile Device 146
Figure 6.15 Execution Time Comparison With State-of-the-art Application

Execution Frameworks 148
Figure 6.16 Computation Wastage Comparison With State-of-the-art

Application Execution Frameworks 149
Figure 6.17 Energy Consumption Comparison With State-of-the-art

Application Execution Frameworks 150

xi

Univ
ers

ity
 of

 M
ala

ya



LIST OF TABLES

Table 1.1 Thesis Layout 13

Table 2.1 Comparison of frameworks based on application execution
performance enhancement cloud-centric approaches 35

Table 2.2 Comparison of frameworks based on application execution
performance enhancement hybrid approaches 38

Table 2.3 Comparison of the frameworks based on the application execution
performance enhancement mobile-centric approaches 39

Table 2.4 Comparison of frameworks based on the application performance
enhancement network-centric approaches 43

Table 3.1 Execution Time Comparison in Different Connection Profiles 57
Table 3.2 Computation Wastage Comparison in Different Connection Profiles 59
Table 3.3 Execution Time in Optimized VM-based Cloudlet, COMET, and

Cloud Server Execution 60
Table 3.4 Computation Wastage in Optimized VM-based Cloudlet and COMET 62
Table 3.5 Energy Consumption in Optimized VM-based Cloudlet, COMET,

and Mobile Device Execution 63
Table 3.6 Impact of Disconnection Time on Cloud-based Application

Execution Gain 66
Table 3.7 HOL Symbols used 69
Table 3.8 System variables 71

Table 4.1 Symbols and Their Descriptions 90
Table 4.2 Symbols and descriptions 98

Table 5.1 Systems specifications 111
Table 5.2 Mathematical model parameters and their corresponding values 114
Table 5.3 Application Execution Time Computed Through Mathematical

Model and Experiments 115
Table 5.4 Useful Instructions Computed Through Mathematical Model and

Experiments 115
Table 5.5 Wasted Instructions Computed Through Mathematical Model and

Experiments 115
Table 5.6 Application Execution Time for Different Disconnection-Execution

Profiles 117
Table 5.7 Computation Wastage for Different Disconnection-Execution Profiles 118
Table 5.8 Impact of Synchronization Interval on Execution Time 119
Table 5.9 Impact of Synchronization Interval on Number of Resynchronizations 120
Table 5.10 Impact of Synchronization Interval on Synchronization Overhead 121
Table 5.11 Impact of Synchronization Interval on Valuable Computation

Performed by Process State Synchronization Enabled Mobile Device 122
Table 5.12 Impact of Synchronization Interval on Cloud Computation Wastage 123
Table 5.13 Impact of Synchronization Interval on Mobile Device Computation

Wastage 124

xii

Univ
ers

ity
 of

 M
ala

ya



Table 5.14 Impact of Synchronization Interval on Executed Instructions
Between Last Sync Point and Disconnection 125

Table 5.15 Execution Time in Optimized VM-based Cloudlet, COMET and
PSS-based Execution 126

Table 5.16 Comparison of Computation Wastage in Optimized VM-based
Cloudlet, COMET and PSS-based Execution 127

Table 5.17 Comparison of Energy Consumption in Optimized VM-based
Cloudlet, COMET and Process State Synchronization Algorithm 128

xiii

Univ
ers

ity
 of

 M
ala

ya



xiv

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 1 : INTRODUCTION

The advancements in wireless technologies have shifted the computing paradigm from

static computing to mobile computing where a mobile user could perform the computing

tasks while user is on the move. Small sized easy to carry mobile computational units

are being developed that could communicate over wireless communication medium. Mo-

bile computing paradigm resulted in rapid growth of resource hungry mobile applications.

The demand for wireless bandwidth soon became many folds, compared to the bandwidth

available through most advanced wireless technologies. In addition, small size require-

ments of mobile devices resulted in limited computational resources and limited battery

power. Researchers have overcome the limitations of mobile devices through mobile

cloud computing (MCC).

MCC connects the resource limited mobile devices with the resource rich clouds

using wireless communication. A significant part of the mobile application is executed

in the cloud while mobile device is used only for user interaction and display of results.

At the same time, the communication between mobile device and the cloud is minimized

in an effort to reduce the use of resource limited communication medium. This thesis

addresses the research problem of cloud based mobile application state loss in the domain

of MCC. Therefore, we start the thesis as well as this chapter with the brief introduction

to MCC.

This chapter is organized into six sections. In Section 1.1, we discuss the domain

background of MCC, wireless communication limitations and their impact on cloud based

mobile application execution. Section 1.2 presents the motivation for research study in

the domain of MCC. Section 1.3 highlights the research gap, briefly explains the problem

of state loss of cloud-based mobile applications and summarizes the statement of the

problem. Section 1.4 enlists the research objectives of the research study carried out

in this thesis. Section 1.5 summarizes the methodology followed in the research and

1

Univ
ers

ity
 of

 M
ala

ya



Section 1.6 sketches the layout for the rest of the thesis.

1.1 Domain Background

This section starts with the brief discussion on cloud computing that leads to the

mobile cloud computing. Subsequently, we discuss the dependence of MCC on wireless

communications and the limitations of wireless communications that affect the applica-

tion execution in MCC. Finally, we discuss the cloud based mobile application execution

and briefly introduce the problem of state loss in cloud based mobile application execution

due to intermittent wireless connectivity.

1.1.1 Cloud Computing

Cloud computing is an on-demand computing paradigm, where computers and other

devices can access and use the shared resources and data on user request. Cloud com-

puting allows users to store and process their applications’ data on the third-party data

centers and enables enterprises to minimize the upfront infrastructure cost by leveraging

the resources of cloud. The enterprises can focus on projects that improve their business

growth. The cloud computing allows the organizations to develop their applications and

run faster with less maintenance cost.

Cloud computing is directed to deliver variety of services to Internet users. The

main services of cloud are infrastructure-as-a-service (IaaS) (Nguyen, Cheriet, & Lemay,

2013; Ghosh, Longo, Xia, Naik, & Trivedi, 2014; Xia et al., 2015), platform-as-a-service

(PaaS) (Androcec, Vrcek, & Kungas, 2015; Ardagna et al., 2012; Boniface et al., 2010),

and software-as-a-service (SaaS) (Ma & Kauffman, 2014; Wu, Garg, Versteeg, & Buyya,

2014; Ojala, 2013). These services are designed to meet the requirements of wider range

of the user demands across the Internet. Similarly, cloud computing promises to deliver

reliable, scalable, sustainable, and secure services to the cloud users. The cloud applica-

tions can leverage on parallel and distributed computing provided by cloud servers to run

in an isolated virtual environment. Cloud users access the cloud services and resources

through Internet technology, they use the services provided by the cloud and pay based

2

Univ
ers

ity
 of

 M
ala

ya



on their usage. Hence, such services are considered as a kind of utility services similar to

traditional utility services e.g. water, electricity, and gas.

A number of cloud platforms are available. For example, Elastic Compute Cloud

(EC2) (Amazon, 2014a) is one of the cloud platforms that provides distributed IaaS

for users to run their different operating systems (OS), similarly Amazon S3 (Amazon,

2014b) provides storage in a highly secure, fast and scalable manner. Google App En-

gine (GAE) (Google, 2012) is an example of a PaaS that facilitates the users for hosting

platform and enables them to deploy and run their specific web applications. DropBox

(DropBox, 2015) and Facebook (Facebook, 2015) are web-based cloud applications that

are based on “web 2.0" to provide SaaS. In summary, cloud computing is an emerging

technology that significantly decreases ownership cost by removing necessities for main-

tenance of locally deployed organization owned servers. In addition, the cloud computing

provides heterogeneous environments featuring varied hardware, business policies, and

architectures.

1.1.2 Mobile Cloud Computing

The mobile devices can also be augmented using cloud platforms in a fashion similar

to the static thin clients. This has resulted in a new computation paradigm of MCC.

Although MCC is already in wide use, in the future this paradigm will be employed in

several areas such as education (Wong, Chai, Zhang, & King, 2015), health-care (e.g.

telesurgery and telemonitoring) (Benharref & Serhani, 2014; Bourouis, Zerdazi, Feham,

& Bouchachia, 2013; X. Wang, Gui, Liu, Jin, & Chen, 2014), and social networking

(X. Wang, Chen, Kwon, Yang, & Leung, 2013; Lingjun, Jingdong, Bowen, & Jianzhong,

2014; Y. Wang, Wu, & Yang, 2013). As technological advancements in manufacturing

the mobile resources is relatively slower than the ever growing application requirements

and expectations of mobile users, the resource augmentation of mobile devices is the

preliminary requirement for delivering computing capabilities near to user expectations

(Abolfazli, Sanaei, Ahmed, Gani, & Buyya, 2014). MCC provides a software-based

3

Univ
ers

ity
 of

 M
ala

ya



solution for resource constrained mobile devices to leverage the resources of the cloud

servers.

Although MCC is extensively being used and is similar to the cloud computing in

principle, there are additional challenges involved in MCC. A significant difference be-

tween thin clients and the mobile devices is power availability. While thin clients are con-

stantly connected to the power supply, mobile devices have limited battery power. This

necessitates the limited use of computational as well as expensive wireless communica-

tional resources in case of mobile devices. Furthermore, the available bandwidth using

wireless technologies is far less than the wired counterparts, adding further restrictions

on the possible communications between the mobile device and the cloud.

1.1.3 Cloud-based Mobile Application Execution

Mobile devices can execute their applications on the clouds using one of the two

application execution models. The application can be programmed as a distributed appli-

cation with majority of the application executing in the cloud. In this case, the application

is pre-installed on the cloud as well as the mobile device. The mobile devices accesses

the specific cloud and the two ends collaboratively perform the user task where majority

of execution is done by the cloud. This is the more widely used model. The model has

two limitations. First, the application must be re-programmed for cloud based model in

order for it to be executed as cloud based mobile application. Second, the mobile device

can access the application only when it is connected with the specific cloud server. In

case the connection to the specific cloud is lost, the application becomes inaccessible.

The second model has extensively been discussed in research whereby the applica-

tion, its components or the virtual machine encapsulating the application are migrated to

the cloud server at run time and the execution is followed. This model has significant

advantages, however, it requires higher bandwidth for transfer of mobile application from

device to the cloud. Irrespective of the execution model, the successful execution of cloud

based mobile applications is highly dependent upon high quality wireless communication

4

Univ
ers

ity
 of

 M
ala

ya



between mobile devices and the clouds.

1.1.4 Impact of Network Connectivity

Mobile devices access the clouds either through WiFi or 3G/4G cellular technolo-

gies (Ahmed, Akhunzada, et al., 2015). WiFi technology provides higher bandwidth

compared to 3G/4G cellular networks, however, the coverage range of WiFi hotspots is

significantly lesser in comparison to cellular networks. WiFi as well as cellular tech-

nologies do not provide uniform bandwidth throughout the coverage area. In addition,

both technologies provide shared medium access. Therefore, the number of users access-

ing the Internet using wireless resources significantly affects the available bandwidth and

further complicates the non-uniform access problem, resulting in dynamically varying

bandwidth. Within the coverage area, the bandwidth decreases to a level where no effec-

tive communication can take place. Consequently, the network appears disconnected for

the applications. Similarly, there can be actual points of no coverage for the mobile device

users where no signals are received from any wireless transmitter in the close vicinity.

The performance of cloud-based mobile applications, particularly the execution of

interactive applications is severely affected by the limited and non-uniform bandwidth

and frequent network disconnections. Network disconnections result in loss of interaction

with the cloud based application for the period of disconnection. In the worst case, the

application can be terminated on the cloud server, its soft state can be cleared or the

mobile device may not be able to connect back to the same cloud service or the cloudlet.

Many a times, such disconnections mean the entire computation done at the cloud server

is wasted and the user needs to re-execute the application either locally or on alternate

cloud/cloudlet service.

In addition to intrinsic limitations of wireless technologies, the user mobility is one

of the key factors that contributes to the performance degradation of MCC service. The

user mobility causes the network disconnections when user moves into crowded areas,

areas of poor coverage or the areas of no coverage, all of which may lead to application

5

Univ
ers

ity
 of

 M
ala

ya



disruption. The application disruption can result in loss of the application state on the

cloud, which in turn leads to application discontinuation, re-migration of the application

to another cloud, or re-execution of the application on the mobile devices from the initial

stage. This induces the additional delay during the execution of the application.

1.2 Research Motivation

Cisco research (Cisco, 2015) reports that global mobile devices and connections

have increased from 6.9 billion in 2013 to 7.4 billion in 2014. The research also shows

global mobile data traffic grew from 1.5 exabytes per month at the end of 2013 to 2.5

exabytes per month at the end of 2014. Such explosive growth of mobile devices, mobile

connections, and global mobile data traffic is an evidence of the increasing use of mobile

devices. The report further presents the prediction of 11-fold growth in mobile cloud traf-

fic from 2014 (2 exabytes/month) to 2019 (21.8 exabytes/month). The cloud application

traffic was 81 percent of the total mobile data traffic in 2014 that is expected to reach the

90 percent of total mobile data traffic. Such tremendous increase in mobile cloud traffic

is an evidence of the increasing use of distributed cloud based mobile applications.

Recent studies also show that commute time and the use of mobile applications dur-

ing commute in metropolitan cities has significantly increased with the growth in popu-

lation. U.S.A. census bureau data shows that 10.8 million people in U.S.A. commute for

an hour or more to their work each way on a daily basis (Forbes, 2015). Another study

reports that 84% of smart phone users use their mobile devices during commute hours

(Chitika, 2015). The applications used can be entertainment based in the form of online

games, video streaming and social interaction. The applications can also be productiv-

ity based, extending the complete office setup for the mobile users while they commute.

Consider the example of Microsoft eBus introduced in 2007 where every seat is equipped

with a thin client connected to the Microsoft network. The employees can connect to the

network and start working while they commute to the office, making their commute time

as official work hours. We can safely conclude that a significant number of cloud based

6

Univ
ers

ity
 of

 M
ala

ya



mobile applications and resultant traffic is generated by the users while they are on the

move.

In this context, MCC enables the execution of the compute-intensive mobile applica-

tions by leveraging the resources of the cloud while the user is on move. The traditional

application execution frameworks mainly focus on offloading process and give a relatively

less consideration for handling the issue of network disconnection during the application

execution. Hence, there is a need for a solution to address the limitations arising from

network disruptions. Such a solution can significantly increase the possibility and range

of applications that can be made available for the users while the users are on the move.

The proposed research will be a big step in this direction and can become part of the

future mobile cloud computing technologies.

1.3 Statement of The Problem

During the recent years, a number of researchers have proposed the cloud-based

mobile application execution frameworks. These frameworks focus on partitioning the

legacy applications to separate the compute-intensive parts for cloud execution, wrap-

ping the application in virtual machines to make them platform independent, application

transfer, and result collection from the cloud servers.

Majority of the cloud based mobile application execution frameworks such as mobile

application execution framework (Hung, Shih, Shieh, Lee, & Huang, 2012) and MAUI

(Cuervo et al., 2010) only focus on application migration decision without emphasizing

on the mobility issue during the execution of the application on the cloud server. How-

ever, some of the state-of-the-art application execution frameworks, such as COSMOS

(Shi et al., 2014) and dynamic offloading algorithm (Y. Zhang, Niyato, Wang, & Tham,

2014), address the issue of the network disconnection by incorporating the risk of net-

work failure and user mobility speed in offloading decision making. These frameworks

re-execute the application either on a new cloudlet or on mobile device locally after net-

work disconnection. Hence, the execution based on these frameworks faces additional

7

Univ
ers

ity
 of

 M
ala

ya



execution time and computation wastage on the cloud server.

The frameworks such as optimized VM-based cloudlet (Ha, Pillai, Richter, Abe, &

Satyanarayanan, 2013) and COMET (Gordon, Jamshidi, Mahlke, Mao, & Chen, 2012)

exchange the executed portion of the application with the mobile device during the exe-

cution on the cloud server. The frameworks which exchange the intermediate execution

results with the mobile device face high overhead because of the exchange of VM-level

information. In case of network disconnection, the task can be resumed on the mobile

device from the last point of synchronization; however, upon reconnection, the execution

states can not be sent back to the cloud server for further execution. Similarly, the op-

timized VM-based cloudlet requires 12 seconds for VM-overlay transfer, which may be

long enough not to allow complete transfer before disconnection. Hence, it is concluded

that existing solutions do not fit for the uninterrupted execution of the mobile application

on the cloud server.

Based on this discussion, we can say that the problem of state loss of the cloud based

mobile application execution upon mobile device disconnection from cloud network has

not been addressed. The highlighted research gap leads us to the research statement for

this thesis.

MCC enables the users to leverage the cloud resources for enhancing the computa-

tional capabilities of mobile devices while on the move. However, the network connection

becomes unstable while user is on the move that causes application execution disruption.

The disruption leads loss of application state, execution discontinuation, re-execution

of the whole task from initial stage on mobile device, or remigrating the application to

another device. Such execution disruptions increase the application execution time and

cause the computation wastage that degrade the user experience and decrease the usabil-

ity of cloud-based mobile applications.

8

Univ
ers

ity
 of

 M
ala

ya



1.4 Statement of Objectives

We address the state loss problem of the cloud based mobile application execution at

an event of network disconnection. We define following objectives that are to be achieved

in order to attain the aim of this research.

1. Review the application execution frameworks in MCC for acquiring the insight

on the state-of-the-art with reference to network disconnection issue during the

execution of cloud-based mobile application.

2. Investigate the impact of user mobility on cloud based mobile application execution

in the cloud.

3. Design and develop the solution for saving the execution state in the form of pro-

cess state synchronization algorithm for mobility support to minimize the execution

time, computational wastage, synchronization overhead, and energy consumption.

4. Develop mathematical model for the proposed solution, validate the model using

empirical analysis and compare the performance of proposed solution with the

state-of-the-art cloud based mobile application execution frameworks.

1.5 Proposed Methodology

We divide the whole research into four main phases as shown in Figure 1.1 to achieve

the set of objectives defined in Section 1.4. Each research phase is targeted to achieve an

objective.

We review the state-of-the-art credible application execution frameworks in MCC to

investigate the support provided by the frameworks for handling the network disconnec-

tion issue. The traditional computational offloading frameworks are classified into three

main categories: a) cloud-based frameworks, b) cloudlet-based frameworks, and c) hy-

brid frameworks. The investigation also reveals that these frameworks can be classified

into three classes with respect to addressing the network disconnection issue during the

application execution on the cloud server. One class of frameworks incorporate the risk

9

Univ
ers

ity
 of

 M
ala

ya



· Collecting the mobile 
user connectivity data 
traces

· Performing experiments 
using the collected data 
traces

· Analyzing the results of 
the experiment

Well Established 
Problem

To investigate the impact of 
user mobility on application 

execution in the cloud

· Studying the existing 
tradeoff between 
synchronization 
frequency and execution 
cost

· Balancing the 
synchronization 
frequency and execution 
cost

· Synchronization 
algorithm (Cloud to 
mobile device)

· Re-synchronization 
algorithm (Mobile device 
to the cloud)

Process State 
Synchronization 

Algorithm

To model the process states 
synchronization algorithm

· Identifying the strengths 
and weaknesses of 
existing work

· Conducting a qualitative 
comparison

· Classifying the literature 
in the form of taxonomy

· Identifying the open 
research issues

· 

Identified Research 
Gap

To review the application 
execution frameworks in MCC 

· Identifying the 
performance measuring 
parameters

· Selecting the existing 
frameworks for 
comparison

· Verification 
    - Comparing with 
benchmark systems 

· Validation 
   - Mathematical Modeling 
and Real Experiments

Verified and 
Validated Solution

To evaluate the performance of 
the proposed solution

Figure 1.1: Proposed Research Methodology

of network failure and user mobility speed in offloading decision making and re-execute

the application on new cloudlet or on mobile device locally after network disconnection.

Another class of frameworks exchanges the executed portion of the application with the

mobile device before the mobile device disconnects from the cloud. Third class of ap-

plication execution frameworks only focuses on application migration decision without

emphasizing on the mobility issues. We have also identified the issues in the application

execution frameworks that affect the overall performance of the application execution on

the cloud.

Second phase of research involves investigating the research problem by conducting

experiments in an emulated environment of MCC in lab. The mobile device connectivity

data traces are collected and used in the experiments. The impact of user mobility on user

connectivity, application response time, application execution time, execution time gain

ratio, and computation wastage are investigated.

In next phase of the research, we propose a distributed process states synchroniza-

tion (PSS) algorithm that enables the application execution frameworks to exchange the

intermediate results between the mobile device and the cloud server. The aim of the pro-

10

Univ
ers

ity
 of

 M
ala

ya



posed solution is to minimize the execution time and synchronization overheads of an

application in case of network disconnections due to user mobility. The execution time is

minimized by exchanging the process states from the cloud server to the mobile device,

where the execution is resumed during the network disconnection. The process states of

the executed application are resynchronized back with the cloud server on the connection

reestablishment.

We implement and evaluate the proposed algorithm in emulated MCC environment.

A simple interactive prototype application is designed and developed for the mobile de-

vice, which is tested with different user connectivity profiles in the emulated MCC en-

vironment. A mathematical model is proposed and validated against empirical results.

Matlab implementation of the model has been used to generate results and 50% results

have been empirically verified. Experimental results are validated by benchmarking pro-

totype application under different conditions of mobile user connectivity. The data are

collected by testing PSS for 30 different mobile user connectivity data traces in intra-city

metro train mobility scenarios. The confidence interval for the experiment is computed

with 99% degree for the sample space of 30 values. The algorithm performance is veri-

fied by comparing experimental results of PSS with that of the state-of-the-art application

execution frameworks including optimized VM-based cloudlet and COMET.

1.6 Layout of Thesis

Research thesis is a detailed research study of the problem “Process State Synchro-

nization for Mobility support in Mobile Cloud Computing” therefore the thesis has been

organized into chapters for clear understanding of the matter. Table 1.1 presents the orga-

nization of thesis. This thesis is composed of seven chapters that is organized as follows:

Chapter 2 presents a review of the state-of-the-art application execution frameworks

proposed for MCC and investigates the critical aspects of the frameworks with respect to

network disconnections issues due to user mobility. We also classify the frameworks and

devise a taxonomy. The frameworks are compared on the basis of the parameters derived

11

Univ
ers

ity
 of

 M
ala

ya



Table 1.1: Thesis Layout
What? Why? How?

Introduction
(a) Highlighting the reason for the research
(b) Stating the problem and presenting the objectives
(c) Discussing the thesis organization

(a) Stating the rational for undertaking the
research,
(b) Formally writing the statement of problem
and statement of objectives

Literature Review

(a) Classifying and investigating the strengths
and weaknesses of the state-of-the-art
literature
(b) Identifying the open issues

(a) Critical analysis of the existing solutions
(b) Devisal of the taxonomy and comparison
based on the taxonomy

Problem Analysis
(a) Comprehensive understanding of the mobility
impact on application execution
(b) Understanding the impact of the problem

(a) Empirical study using real mobility scenar-
ios from metro transit MCC environment

Process State
Synchronization
Algorithm

(a) Giving the clear understanding of the proposed
solution to the reader

(a) Presenting the pseudo code of the algorithm
and giving an illustrative example

Data Collection (a) Discussing the data generation process and to
report the collected data

(a) Discussion on data collection method
(b) Explaining the tools used for evaluating
the proposed solution
(c) Reporting the collected data

Results and
Discussion

(a) Highlighting the effectiveness of the proposed
solution by analyzing the experimental results

(a) Sharing the insights gained from the
experimental results
(b) Comparing the performance of PSS-based
execution with optimized VM-based cloudlet
and COMET

Conclusion

(a) Summarizing the findings of the research work
and highlighting the significance of the proposed
solution
(c) Discussing the limitations of the research work
and proposing future directions of the research

(a) Reporting the re-examination of the
research objectives

from the thematic taxonomy. The issues to application execution frameworks are also

identified and discussed in the chapter.

Chapter 3 analyzes the mobility impact on application response time in wireless

network. The mobile user connectivity in scenarios of intra-city metro train mobility is

also studied. The impact of user mobility on application execution in MCC environment

is also analyzed by executing the application in intra-city metro train mobility scenarios.

The analysis of the problem is carried out with different connection profiles and for two

state-of-the-art application execution frameworks. The analysis shows that the state-of-

the-art frameworks lack of features to handle the issue of network disconnection during

the execution of the application on cloud server.

Chapter 4 presents a process state synchronization mechanism that aims to solve the

issue of network disconnections during the execution of application in MCC. It explains

the architecture and algorithms of the proposed solution. The distinct features of the

proposed solution are also highlighted and discussed.

Chapter 5 reports on the data collection method for the evaluation of the proposed

12

Univ
ers

ity
 of

 M
ala

ya



solution. We explain the tools used for evaluating the proposed solution, data collection

technique and the statistical method used for the data processing.

Chapter 6 presents the effectiveness of the proposed solution by analyzing the ex-

perimental results reported in Chapter 5. It analyses the different aspects of process state

synchronization in terms of synchronization overhead, synchronization frequency, and

energy consumption. The performance of the proposed solution is also compared with

the state-of-the-art solutions in various scenarios.

Chapter 7 concludes the thesis by reporting on the re-examination of the research

objectives. It summarizes the findings of the research work, highlights the significance of

the proposed solution, discusses the limitations of the research work and proposes future

directions of the research.

13

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 2 : CLOUD-BASED MOBILE APPLICATION EXECUTION

FRAMEWORKS

We started the thesis with basic introduction of mobile cloud computing. We also intro-

duced the problem of state loss in cloud based mobile applications during execution on

the cloud. The purpose of this chapter is to present the review of the literature related

to the problem. A number of application execution frameworks have been proposed in

the literature. These frameworks manage different aspects of cloud based mobile applica-

tion execution. We start by reviewing the application execution frameworks and highlight

their management of network resources and disconnections. Subsequently, we present

taxonomy of the frameworks with reference to application performance, specifically ap-

plication execution time, which is directly affected by network disconnections. Finally,

we highlight open challenges along with problem addressed in this thesis and conclude

the chapter.

The chapter is organized into four sections. In Section 2.1, we present the state-

of-the-art application execution frameworks and their management of network resources

and disconnections. Section 2.2 presents taxonomy of the various approaches employed

by the application execution frameworks to improve the application execution time in the

cloud, which is a factor affected by network disconnections. Section 2.3 highlights the

open challenges in optimizing the application execution time in MCC environment and

Section 2.4 summarizes the chapter with conclusive remarks.

2.1 Cloud based Mobile Application Execution

In this section, we present a comprehensive survey on the state-of-the-art mobile

application execution frameworks for MCC. The application execution frameworks are

analyzed with respect to various features, particularly mobility support and execution

failure handling during the network disconnections. We have published the conducted

survey on the topic in (Ahmed, Gani, Sookhak, Ab Hamid, & Xia, 2015; Ahmed, Gani,

14

Univ
ers

ity
 of

 M
ala

ya



Khan, Buyya, & Khan, 2015). The application execution frameworks can be catego-

rized into four types: cloud-based frameworks, cloudlet-based frameworks, mobile ad

hoc cloud-based frameworks, and hybrid frameworks.

2.1.1 Cloud-based Frameworks

The mobile device that uses the remote cloud to augment resources, acts as a thin

client while connecting through any of the wireless technologies to a remote cloud server

(X. Zhang, Jeong, Kunjithapatham, & Gibbs, 2010), as shown in Figure 2.1.

Figure 2.1: Cloud-based MCC Environment

The cloud-based frameworks enjoy a diverse range of available services in the cloud,

higher computational power, lower computation latency, and the on-demand availability

of resources (Abolfazli et al., 2014; Whaiduzzaman, Haque, Rejaul Karim Chowdhury,

& Gani, 2014). However, the communication between the mobile device and the cloud

goes through the Internet, which experiences high latency, non-guaranteed bandwidth,

bursty losses and non-deterministic traffic load along the path. The Internet link can be

unavailable for multiple reasons such as user mobility (Mehendale, Paranjpe, & Vempala,

2011). These factors increase the probability of network connectivity disruption during

the access of services provided by the remote cloud. Therefore, cloud based frameworks

need to consider the network connectivity as a major design challenge. In the following,

we discuss the frameworks, while keeping network connectivity in mind.

Zhang et al. have proposed an adaptive platform independent elastic application ex-

ecution framework (X. Zhang et al., 2010) to enable the use of remote cloud resources

in a seamless manner. The framework provides optimal elasticity by incorporating mul-

15

Univ
ers

ity
 of

 M
ala

ya



tiple factors, such as the availability of mobile devices and the cloud resources, users’

preferences, and the application performance measures. The proposed framework parti-

tions the application into multiple components called weblets. The distinctive attribute

of the framework is that the elastic partitioned components are replicated across multiple

cloud servers that enhances availability and reliability. To attain this objective, multiple

elasticity patterns, such as splitter, aggregator, and replication, are defined. In the replica-

tion pattern, multiple servers in the cloud execute multiple replicas of a single interface.

Therefore, the replica failure does not compromise the operation of the system. However,

the framework needs developer support to find the organization of the weblets by con-

sidering the data dependencies, resource requirements, and functionalities. Although the

framework minimizes the execution cost due to network failure, the replication of weblets

increases the overall maintenance cost. This is also not an effective solution to replicate

one application on multiple servers for the execution. Similarly, last hop link failure leads

to failure of the complete service.

Yang et al. have proposed an adaptive framework for optimal dynamic partition-

ing and execution of data stream applications (Yang et al., 2012) that aims to maximize

the speed and throughput. The framework consists of modules running on both sides

(mobile device and the cloud server). Every mobile application in the framework has an

application master on the cloud side, which is responsible for adaptive partitioning and

distributed execution. When an application runs on the mobile device, a request is di-

rected to the resource manager component in the cloud. The resource manager ascribes

an application master to deal with the request. Thereafter, the application master requests

the mobile device for the characteristics of the device, collected using profiler, that are in-

corporated with static application characteristics stored in the cloud. Optimization solver,

which is implemented on cloud side, is used to dynamically compute application parti-

tioning. Although the framework supports multi-tenancy and provides scalable, adaptive,

and dynamic partitioning, the framework does not handle the situation that arises after the

network disconnection.

16

Univ
ers

ity
 of

 M
ala

ya



S. Kosta et al. proposed ThinkAir (Kosta, Aucinas, Hui, Mortier, & Zhang, 2012),

a dynamic and adaptive framework that exploits multiple mobile device virtualizations to

simultaneously execute multiple offloaded methods to reduce the application execution

time. Different sized VMs are allocated to the user applications, depending on the appli-

cation demand. ThinkAir framework comprises of three main components: the profilers,

the application server, and the execution environment. The profiler provides information

for offloading decisions. The application server manages the cloud side of the offloaded

application components and is responsible for handling the client requests, allocating re-

sources, and facilitating with parallel processing. The execution environment consists

of a simple programming library, compiler, and execution controller. The library makes

the programmer’s job easier. the compiler has code generators to translate the annotated

code. The execution controller determines whether to offload the execution of a particular

method or let it continue locally on the mobile device. ThinkAir offloading decision is

complex due to the incorporation of multiple parameters in the decision, increases the

decision time. The framework re-executes the application on the mobile device when the

network failure occurs.

CloneCloud (Chun, Ihm, Maniatis, Naik, & Patti, 2011) supports a flexible applica-

tion partitioner that empowers the unmodified mobile applications to seamlessly offload

the compute-intensive partitions to the trusted remote cloud. The system supports dy-

namic profiling and static analysis to partition the mobile application. The main goal of

the partitioning is to optimize the energy usage and the execution time. Unlike its coun-

terparts, the CloneCloud partitions the application at thread level. Thread state migration

at pre-determined check points along with device replica on the cloud is used for migra-

tion. The overhead of CloneCloud comes from mobile device synchronization with the

cloud, which must be done securely to ensure privacy. Moreover, the framework migrates

a single thread at one time that restrains the gain of concurrent execution of components

to minimize the execution time at the remote cloud server. Similarly, network disconnec-

tions are not handled other than restarting the threads locally.

17

Univ
ers

ity
 of

 M
ala

ya



Hung et al. proposed a cloud-based mobile application execution framework (Hung

et al., 2012). The framework involves installation of proposed agent program, allocation

of delegate system, creation of a virtual environment, cloning of operating environment,

migration of applications, and synchronization of user data and application. To avoid the

loss of input data, application replay technique is integrated with a state-saving scheme.

The framework does not demand the application redesign; however, the application level

state saving approach and the data categorizations are added to prioritize the data syn-

chronization. The proposed framework only requires the transfer of the application saved

states instead of the states of the entire VM that results into low overhead. Although

the framework reduces the amount of data transfer, it still faces the delay induced by the

run-time agent program installation, VM creation, and states migration that hinders the

realization of smooth application execution for the MCC. Moreover, the mobile device

re-executes the application locally when the network disconnection occurs.

Lee et al. proposed application replication-based execution framework for the appli-

cation execution (Lee, 2012). The offloading decision is performed on the cloud server.

The framework comprises of a toolkit that facilitates the deployment of run-time infras-

tructure and development of the applications. For the first execution, the application is

transported from the mobile device, but for the rest of the requests, the application is

replicated from the previous WorkerNode. The framework exchanges a lot of control

and context information with the cloud data center to execute the complex offloading de-

cision algorithm. Therefore, the solution is not scalable for highly dynamic workload

environments and network conditions. The data consistency among different nodes is a

big challenge. No support for network disconnections is provided in the framework

Verbelen et al. introduced AIOLOS (Verbelen, Simoens, De Turck, & Dhoedt,

2012a), an adaptive offloading decision engine with support for dynamic resource and

network condition consideration. However, the adaptive offloading algorithm is compute-

and energy-intensive. Although the network state is monitored, it is only considered dur-

ing offloading decision. Giurgiu et al. proposed a middleware framework (Giurgiu, Riva,

18

Univ
ers

ity
 of

 M
ala

ya



Juric, Krivulev, & Alonso, 2009) that automatically and dynamically partitions and of-

floads various parts of an application to the cloud. The optimization objective function

of the framework minimizes the interaction latency between the mobile device and the

cloud server, while taking care of the exchanged data overhead. The framework uses

two different algorithms, namely: ALL and K-step where the problem is formulated as

static and dynamic optimization problem, respectively. Similar to other frameworks, both

frameworks have no support for network disconnections and re-executes the application

locally on the mobile device when the network disconnection occurs.

Coalesced offloading framework (Xiang, Ye, Feng, Li, & Li, 2014) was proposed

by Xiang et al., that saves energy by leveraging the property of multiple applications to

bundle their code offload requests. The problem of coalesced offloading is formulated

as a joint optimization problem with the objective to minimize the response time and

energy cost. Two online algorithms, called as Ready, Set, Go (RSG), are proposed to

solve the formulated optimization problem. Without any prior knowledge of upcoming

code offloading requests, the online algorithms outperforms the optimal offline algorithm.

Although the middleware framework reduces the interaction latency, the consumption

graph modelling, optimal cut finding algorithm, two-step dynamic partitioning analysis,

and intensive profiling consume computational resources of the mobile device. Therefore,

the compute-intensive nature of the framework increases the overall application execution

time. The framework executes the application on a local mobile device when the network

disconnection occurs.

It is obvious to observe that none of the discussed frameworks have adequate support

for the network disconnection. The primary focus of cloud based frameworks is applica-

tion partitioning, reduction in interaction between cloud and the mobile device to manage

latency, managing changing network conditions and energy efficiency of the mobile de-

vice. Apart from these efforts, some of the research works focus on efficient designing

of data centers as reported in (Shuja et al., 2014, 2012). Clearly, without proper sup-

port for network disconnections, significant computation can be wasted and leads to high

19

Univ
ers

ity
 of

 M
ala

ya



Figure 2.2: Cloudlet-based MCC Environment

overhead. Furthermore, given the present state of wireless networks and keeping user

mobility in view, handling network disconnections is a non-trivial task.

2.1.2 Cloudlet-based Frameworks

Cloudlets are small scale clouds that are generally accessible over a single hop either

through WiFi or through cellular technology (Zhao, Xu, Chi, Zhu, & Cao, 2012). Con-

sequently, the problem of managing the network latency and variable network conditions

reduces significantly (Satyanarayanan, Bahl, Caceres, & Davies, 2009). In (Shaukat,

Ahmed, Anwar, & Xia, 2016), we conducted a comprehensive survey on the cloudlet

architectures, applications, and open research challenges. Figure 2.2 shows a cloudlet

server being accessed by the mobile devices. A large body of work exists in this domain.

In this section, we highlight limited work that has been selected based on the number of

citations and novelty.

Fesehaye et al. proposed a design of a cloudlet-based network and an adaptive

decision-based service architecture (Fesehaye, Gao, Nahrstedt, & Wang, 2012). The

cloudlet-based network consists of the cloudlets server and mobile nodes affiliated with

the closer cloudlet. Two new routing algorithms are proposed following the centralized

20

Univ
ers

ity
 of

 M
ala

ya



and distributed approaches. Although the cloudlet-based approach outperforms the cloud-

based approach in terms of access latency, it still suffers from the initial delays due to

service discovery, authentication of mobile users, and joining process. Another limitation

is on the size of the network that affects the cloudlet-based approach. Mirror server-based

framework has been proposed in (Zhao et al., 2012) that maintains the VM template for

each of the mobile device inside the telecommunication network computing infrastruc-

ture. The framework feasibility is tested by designing a protocol, performing scalability

test, and developing synchronization methods. The framework has high synchronization

overhead that consumes significant network bandwidth. In case of the network discon-

nection, the mobile device has to re-execute the whole application in the cloud.

Kovachev et al. have presented the XMPP-based mobile cloud middleware (Kovachev,

Cao, & Klamma, 2012) that provides dynamic application partitioning and adaptive of-

floading to the nearby resource-rich devices. The offloading decision is based on a

context-aware cost model. The objective of the model is to make intelligent decisions

considering the constraints imposed by the wireless environments. The middleware must

exchange a number of control messages especially when the mobile device and network

conditions are highly dynamic, resulting in high overhead. The proposed solution sug-

gests to re-execute the application locally when the network disconnection occurs. Ver-

belen et al. proposed a fine-grained dynamic cloudlet approach (Verbelen, Simoens,

De Turck, & Dhoedt, 2012b) that deploys a cloudlet on any device in local area network

with sufficient available resources. The unit of deployment is a component. Although the

dynamic cloudlet overcomes the limitations of static cloudlet, there exist challenges of

optimal tasks mapping that are critical for optimizing application execution performance.

Moreover, the mobile device has to re-execute the application locally when the network

disconnection occurs.

The best mechanism to cater the user mobility while executing the mobile applica-

tion on cloud/cloudlet has been proposed by Gordon et al. (Gordon et al., 2012) in the

form of COMET. The framework transparently offloads the multi-threaded applications

21

Univ
ers

ity
 of

 M
ala

ya



Figure 2.3: Mobile Ad-hoc cloud

to a server in local proximity. COMET incorporates the workload of machines in the

decision making process of threads migration. Moreover, COMET leverages on the dis-

tributed shared memory techniques, such as field level granularity, to attain the execution

state consistency across the mobile device and the cloud server. Although COMET trans-

parently migrates the code to the cloud, the framework has high synchronization overhead

between the mobile device and the cloud server. Furthermore, in case of disconnection,

the task can be resumed on the mobile device from last point of synchronization; how-

ever, upon reconnection, the application is not transferable to another cloud/cloudlet or

for that matter, even the same cloud/cloudlet. COMET also uses periodic synchronization

as proposed in the present work; however, the performance of the synchronization and the

synchronization parameters have not been studied at all.

2.1.3 Mobile Ad-hoc Cloud Frameworks

The mobile ad-hoc clouds (Huerta-Canepa & Lee, 2010) is a group of mobile devices

that shares resources with each other in the local vicinity to reduce the resource limita-

tions of individual devices. Figure 2.3 shows mobile ad-hoc cloud. These clouds pose

22

Univ
ers

ity
 of

 M
ala

ya



significant additional challenges. This includes management responsibilities for mobile

devices, authentication, resource monitoring and task scheduling in distributed manner,

while ensuring minimum energy consumption. A selective set of literature is presented

here.

A framework for mobile ad-hoc cloud has been presented by Huerta et al. (Huerta-

Canepa & Lee, 2010). The framework enables a mobile device to discover other mobile

devices in the local vicinity that are in a stable mode. To provide the virtual cloud ser-

vice, an architecture is proposed that has five components: application manager, context

manager, offloading manager, resource manager, and peer-to-peer manager. Each of the

mobile device is required to detect the neighbours and keep the profile updated. The

framework does not provide the support for handling the mobility during the execution

of an application. Pocket cloudlet architecture (Koukoumidis, Lymberopoulos, Strauss,

Liu, & Burger, 2012) leverages on the large available memory capacity of the mobile

devices to alleviate the latency and energy issues in accessing the distant cloud services.

Although the pocket cloudlet maximizes the hit rate and minimizes the overall service la-

tency and energy consumption, the pocket cloudlet does not ensure the data integrity for

a user who is accessing the data from the pocket cloudlet on his own device. The research

work also does not discuss the incentives for mobile users to share the limited resources

of the mobile device.

2.1.4 Hybrid Frameworks

Some of the existing frameworks e.g. (Satyanarayanan et al., 2009; Goyal & Carter,

2004; Kovachev, Yu, & Klamma, 2012; Cuervo et al., 2010; Marinelli, 2009) leverage

on the hybrid platforms available in different clouds. The hybrid frameworks overcome

the limitations of both clouds as well as cloudlets. Figure 2.4 illustrates the execution

environment of hybrid frameworks.

Satyanarayanan et al. (Satyanarayanan et al., 2009) proposed a dynamic VM synthe-

sis approach that is employed for migrating an application. Mobile device sends a small

23

Univ
ers

ity
 of

 M
ala

ya



Figure 2.4: Hybrid MCC Environment

VM overlay to the cloudlet that already has a base VM from which the overlay VM was

derived. Thereafter, the cloudlet infrastructure derives the launch VM by applying over-

lay to the base VM. Unlike traditional VM migration, the VM-synthesis has significantly

reduced the data transfer size. Ha et al. (Ha et al., 2013) improved the performance of

dynamic synthesis process by reducing the overlay size using a series of optimization.

An aggressive deduplication approach eliminates the duplicated data between different

sources, such as Input/Output cache and virtual memory, to shrink the VM overlay. The

shrinked size of VM overlay reduces the transmission delay and energy consumption on

the mobile device for transmission. Another approach of bridging the semantic gap be-

tween the low-level representation of memory and disk, and higher-level abstraction also

reduces the additional data in VM overlay. In VM overlay, the contents of memory pages

freed or files deleted should not be included in overlay. Lastly, the pipelining reduces

the three delay-intensive steps of VM synthesis by beginning the later steps before the

preceding ones complete.

The VM based mechanisms do not propose any mechanism for mobility estimation.

The overlay VM is created on demand. However, these solutions can be complemented by

the mobility prediction mechanisms (Modares, Moravejosharieh, Lloret, & Salleh, 2014;

Pirozmand, Wu, Jedari, & Xia, 2014; Vu, Nguyen, Nahrstedt, & Richerzhagen, 2015) to

24

Univ
ers

ity
 of

 M
ala

ya



automate the process of overlay creation based on predicted user mobility. The reduced

size of overlay VM still requires up to 12 seconds of transfer time, which may not be long

enough to allow complete transfer before disconnection.

Mobile Augmentation Cloud Services (MACS) (Kovachev, Yu, & Klamma, 2012)

is an adaptive middleware framework that provides lightweight application partitioning,

seamless computational offloading, and resource monitoring. MACS enables mobile ap-

plications to take benefit from the seamless computational offloading into a remote or

nearby cloud. The developers do not need to change the application model to run an

application in the cloud. Application modules are divided into two groups. One group

runs on a mobile device and the other group runs in the cloud. The partitioning decision

is transformed into an optimization problem that is solved by a solver to dynamically

partition the application. MACS continuously monitors the environment parameters and

service execution, and adapts the partitioning and offloading. However, MACS requires

a strong developer support for structuring the code in a model. An additional layer of

proxy service adds more delay in the application execution. The framework re-executes

the application on the mobile device when the network disconnection occurs.

A lightweight cyber foraging framework is devised in (Goyal & Carter, 2004) for

mobile and embedded resource constrained devices. A lightweight discovery protocol is

used to discover potential surrogates. The proposed framework follows a client/server

architecture that enables the mobile devices to offload the compute-intensive tasks on

the surrogate server to utilize the computational resources of the server. The framework

also provides a support to simultaneously configure the multiple surrogate servers. A

single server can also run configurable number of virtual servers with the features of elas-

ticity, resource control, isolation, and simple cleanup. Each migrated application runs

on isolated virtual server. The cryptographic measures are employed by the framework

to ensure the secure communication between mobile device and surrogate server. The

framework uses low overhead client side authentication and ciphers. The proposed solu-

tion facilitates the end user with the benefit of low latency communication and minimal

25

Univ
ers

ity
 of

 M
ala

ya



overhead of privacy and security.

Although the proposed framework is lightweight as it does not require client to run

any middle-ware software, the framework is based on VMs that suffer from VM de-

ployment and management overheads. Due to the time consuming VM mechanisms, the

solution is unfavorable for the execution of an application in the MCC. Moreover, the

framework uses the component annotation that requires a developer support, and existing

applications must be rewritten to incorporate a component level annotation. The frame-

work also re-executes the application on a mobile device when the network disconnection

occurs.

MAUI (Cuervo et al., 2010) is proposed as an energy-aware fine grained, method

level mobile application offloading mechanism. MAUI supports a semi-dynamic parti-

tioning; wherein, programmers annotate an application with a considerably less effort.

Although MAUI significantly improves the battery life of a mobile device, it does not

address scalability, QoS, and transmission latency. Therefore, MAUI lacks implementing

favorable measures to ensure the seamless execution of an application within the MCC.

Moreover, the framework re-executes the application on a mobile device when the net-

work disconnection occurs.

A Hyrax-based platform is designed in (Marinelli, 2009) to provide cloud computing

services on a group of mobile devices and servers. The platform employs a mechanism

for tolerating node departure. Hyrax is developed by extending the Hadoop (White, 2012)

framework for Android mobile device. The MapReduce (Dean & Ghemawat, 2008)

guidelines are followed in the development of Hyrax while using Hadoop as an open

source implementation of the MapReduce. The platform relies on a centralized server

and a group of mobile devices. The server runs two client processes of MapReduce, Job-

Tracker and NameNode, to coordinate the overall execution process on a group of mobile

devices. The mobile devices run two Hadoop processes, DataNode and TaskTracker, to

accept tasks from the server. The Hyrax facilitates applications in transparently accessing

and utilizing the distributed resources. Similar to the cloudlet access, the accessibility of

26

Univ
ers

ity
 of

 M
ala

ya



the cloud is also supported when sufficient resources are unavailable on the nearby mobile

devices.

The discovery of a centralized server, access, and connection establishment among

the servers is a time-intensive task that induces the delay before executing the actual appli-

cation. The high overhead of the Hyrax also induces a delay while running the application

on the cloud. Moreover, the framework re-executes the application on a mobile device

when the network disconnection occurs.

A decentralized computation offloading game (X. Chen, 2015) is designed to model

the offloading decision making problem among mobile users. The game considers both

computation and communication cost of MCC. The authors have analyzed the computa-

tion offloading game in two types of wireless access scenarios: homogeneous and hetero-

geneous. In homogeneous scenario, the existence of Nash equilibrium is guaranteed by

admitting the beneficial cloud computing group structure. In heterogeneous scenario, the

existence of Nash equilibrium is guaranteed by admitting the finite improvement property.

The decentralized computation offloading mechanism enables the mobile users to make

the decisions locally that reduces the controlling and signaling overhead of the cloud and

makes it scalable. Although the solution reduces the controlling and signaling overhead

of the cloud, structuring a game such that an equilibrium is always reachable is difficult.

An offloading framework to solve the optimal application management problem in

MCC is presented in (S. Chen, Wang, & Pedram, 2013). The execution is either per-

formed locally or remotely on a cloud server. The local processing unit can dynamically

adjust the processing speed and power consumption of the processing unit by employing

dynamic voltage and frequency scaling (DVFS). Moreover, the transmitter can adaptively

select the most appropriate modulation scheme and bit rate for offloading request consid-

ering the channel capacity, the number of waiting requests, and server congestion levels.

A semi-Markov decision process is used to model the mobile device where actions are de-

cision pairs (bit rate, DVFS level) for the transmitter and the local processor in the mobile

device. The objective function of the framework is a linear combination of energy loss of

27

Univ
ers

ity
 of

 M
ala

ya



the mobile device battery and average request response time. Moreover, the framework

can derive the corresponding transmission scheme, offloading rate, and optimal DVFS

policy for different server congestion levels, wireless environment, and workload charac-

teristics. The identification of optimal transmission scheme, offloading rate, and optimal

DVFS policy needs continuous monitoring of the running environment.

2.2 Application Performance Enhancement by the Frameworks

The mobile devices access the clouds for two reasons. Firstly, the clouds and cloudlets

have abundant resources in the form of storage, services and applications and computa-

tional capacity. With reference to this thesis, computational capacity is the major fac-

tor because of which the clouds are accessed. Secondly, to save the battery power and

enhance the battery life of the device. In this section, we present the taxonomy with

reference to application performance enhancement in terms of execution time and com-

putational capability. Note the network disconnections directly impact the execution time,

making it a factor of interest. The taxonomy is an outcome of a comprehensive survey of

the state-of-the-art frameworks presented in Section 2.1. This section also investigates the

advantages and disadvantages of application performance enhancement approaches. The

strengths and weaknesses of the state-of-the-art frameworks with respect to application

execution time are also presented.

Application Execution Performance Enhancement Approaches for MCC

Cloud-Centric Mobile-Centric Network-Centric

Software Packages 
Storage

Caching
Reducing Number 

of Hops to the 
Cloud

Hybrid

Using High 
Bandwidth Links

On-demand 
Bandwidth 
Allocation

Service Codes 
Storage

Caching During VM 
Synthesis

Data Storage

Mirroring

Parallel Execution

Pre-Installations

Reduce Delay by 
Caching

Deploying Mirror in 
TSP Network

Multiple VMs on 
Single Server

Parallel Execution on 
Multiple Servers

Root Partition 
Images Storage

Pre-installed Run-
time Environment

Deploying 
Cloudlets

Lightweight 
Security

Reputation-based 
Trust

Low Overhead Ciphers

Cloning

Only VM States 
Migration to Clone VM

Opportunistic 
Synchronization

VM Migration
Optimization

Automated VM 
Creation/ Migration

Only Application 
States are Transferred

VM Synthesis

Applications Pre-
installations

Only Application 
States Synchronization

Caching and 
Compression

Lightweight

Partitioning
Static

Dynamic

Semi-Dynamic

Offloading 
Decisioning

Lightweight

Execution Time 
Optimization(Objective)

Optimizing 
Application

Reduce Data Transfer 
Size

Minimize Method Call 
Overhead

Pseudo-check 
Pointing

Fault Tolerance 
Approaches

Deploy Server in 
WLAN

Deploy Server in TSP 
Network

Mobile Adhoc 
Cloudlets

Server-based 
Cloudlets

Intermediate 
States Exchange

Figure 2.5: Taxonomy of Application Performance Enhancement Approaches Employed
by the Frameworks for the MCC

28

Univ
ers

ity
 of

 M
ala

ya



2.2.1 Taxonomy of Application Performance Enhancement

Figure 2.5 shows the thematic taxonomy of the application performance enhance-

ment approaches employed by the execution frameworks for the MCC. The approaches

are categorized based on implementation locations into four classes, namely: mobile-

centric, cloud-centric, network-centric, and a hybrid approaches.

2.2.1.1 Cloud-centric Approaches

Cloud-centric approaches are implemented in the cloud to enhance the application

execution performance. Cloud-centric approaches are caching (Zhao et al., 2012; Ko-

vachev, Yu, & Klamma, 2012; Satyanarayanan et al., 2009; Fesehaye et al., 2012; Goyal

& Carter, 2004), mirroring (Zhao et al., 2012), parallel execution (Kosta et al., 2012),

pre-installations (Goyal & Carter, 2004), and deploying cloudlets (Verbelen et al., 2012b;

Marinelli, 2009; Fesehaye et al., 2012; Satyanarayanan et al., 2009; Huerta-Canepa &

Lee, 2010). Table 2.1 shows the comparative summary of the frameworks based on the

application execution performance enhancement cloud-centric approaches.

Caching: Caching enables the framework to store the remote data locally to cope with

longer WAN delays. Caching is further classified into four classes according to the con-

tents, namely: software package caching (Goyal & Carter, 2004), service code caching

(Kovachev, Yu, & Klamma, 2012), VM synthesis caching (Satyanarayanan et al., 2009),

and data caching (Fesehaye et al., 2012). Software package caching approach employs

caching to store software packages. Such an approach allows the trusted user to install

packages directly without facing any download delay. Service code caching approach is

used to store the service code (jar files) when client sends data to the cloud for the very

first time. The VM synthesis caching approach is used either as a pre-fetching technique

to reduce the VM synthesis delay by caching the VM overlay or caching the VM launch

for future use. Lastly, the data caching approach temporarily stores the data such as video

streams on the local cloudlet. Thereafter, the cloudlet sends the cached data to the sub-

sequent mobile users on their requests. The caching of data on the local cloudlet reduces

29

Univ
ers

ity
 of

 M
ala

ya



the latency involved in video streaming.

The caching of contents on local servers reduces the WAN latency; thereby, mini-

mizing data access delay. The caching integration with pre-fetching in the VM synthesis

process reduces the VM synthesis delay. Moreover, the caching also lessens the network

redundant traffic. In spite of the aforementioned advantages, the caching increases the

storage overheads and cost in the cloud. Moreover, the cached data can be outdated for

the user.

Mirroring: Mirroring is another cloud-centric approach employed to improve the ap-

plication execution performance within MCC. The framework presented in (Zhao et al.,

2012) employs the mirroring approach to reduce the delay by caching at the mirror for

downloading and uploading. When a mobile device downloads a bulk of data from the

Internet, a mirror server first caches the data and then the mobile device can download

the data from the mirror cache. Similarly, to upload data, the mobile device merely sends

a command to the mirror server that replays the command with the data. Even for multi-

ple receivers, a mobile device needs only to send a command just for a single time. The

performance of application can also be improved by deploying a mirror in the nearby

telecommunication service providers (TSPs) network.

The mirror deployment reduces the operational overhead of a mobile device by trans-

mitting only commands of operations from mobile device; actual operations on data are

performed on the mirror server. The mirror-based frameworks alleviate the redundant

traffic in the network. Moreover, mirror server minimizes the data access latency by

caching the data on the server for subsequent users; thereby, optimizing the response time

of applications. However, the mirroring approach increases storage cost at cloud. The

mirror server requires management for updates, upgrades, new versions, and bug fixes.

Furthermore, the mirror-based frameworks require synchronization between the mobile

device and the mirror server.

30

Univ
ers

ity
 of

 M
ala

ya



Parallel Execution: Parallel execution is employed to minimize the application execu-

tion time in the cloud data center. We classify the parallel execution approaches into two

classes. One class uses multiple VMs on a single cloud server and the other performs

parallel execution on multiple servers. Using multiple VMs on a single server reduces the

server identification and selection time; whereas, the VM deployment on multiple servers

mandates the identification of multiple servers and to send two distinct requests to each

server. Using the VM on multiple servers increases the network overhead and operational

complexity. A framework proposed in (Kosta et al., 2012) uses the aforementioned ap-

proaches to improve the application execution performance. Elastic mobile applications

(X. Zhang et al., 2010) leverage on parallel processing in cloud to improve the response

time and load balancing by deploying weblets on multiple servers within the cloud.

The parallel execution reduces application execution time in cloud and facilitates

in load balancing. The parallel execution support makes the framework highly scal-

able. However, the parallel execution consumes more power and requires more hardware.

Moreover, the parallel execution mandates the identification of interdependency among

tasks to avoid deadlocks.

Pre-installations: Pre-installation reduces the initiation and preparation delay of re-

mote application execution by providing access to the already installed software pack-

ages. The pre-installations are classified into two categories. One category facilitates the

mobile user by installing root partitioned images with the necessary applications, system

boot-up scripts, and essential software packages on the cloud server. The researchers

in (Goyal & Carter, 2004) encourage the usage of already installed applications, system

boot-up scripts, and software packages to reduce the pre-execution delay. The other cat-

egory provides a pre-installed run-time environment (Lee, 2012) that facilitates in the

deployment of mobile applications into the cloud to reduce the remote application execu-

tion initialization delay.

The pre-installation of applications minimizes run-time transmission of data by elim-

31

Univ
ers

ity
 of

 M
ala

ya



inating the need of migrating the application from the mobile device to the cloud server.

However, the pre-installation increases the resource consumption cost in the cloud if the

applications and software packages are not frequently used. The pre-installation also

increases the cloud service provider’s services maintenance overhead.

Deploying Cloudlets: Deployment of cloudlets enhances application execution perfor-

mance by exploiting the capabilities of trusted resource-rich local system either in the

WLAN or in the TSP’s network. We classify these cloudlets based on the deployment

structure into three subclasses: (a) infrastructure-based/ static/ server-based cloudlet,

(b) infrastructure-less/ mobile ad-hoc cloudlet, and (c) virtualized infrastructure-based/

elastic cloudlet. M. Satyanarayanan et al. (Satyanarayanan et al., 2009) present an

infrastructure-based cloudlet that is deployed on the local server in the WLAN. Infrastructure-

less or mobile ad-hoc cloudlet is proposed in (Huerta-Canepa & Lee, 2010) that does not

require any local server for the deployment of cloudlet while all of the mobile devices

with sufficient idle resources form a mobile ad-hoc cloudlet. An elastic cloudlet is pre-

sented in (Verbelen et al., 2012b), in which a component level application migration is

performed instead of a whole VM migration. The approach provides flexible allocation

of resources and facilitates in prioritizing the deployment of real-time components of an

application in the cloudlet; whereas, delay tolerant components are offloaded in a remote

cloud.

The cloudlet deployment closed to user reduces the WAN latency and minimizes the

data transport cost. The cloudlet-based frameworks do not need to connect to the Internet.

In spite of the aforementioned advantages provided by the cloudlet, the cloudlet requires

network isolation for outside users to prevent them from accessing the private network

resources. Moreover, the practical realization of the cloudlet deployment requires in-

vestigation of incentives for cloudlet service providers to deploy cloudlet. The cloudlet

deployment also requires a well-defined charging policy as per usage basis. The cloudlet

service providers need more resources in their local networks to provide the on-demand

32

Univ
ers

ity
 of

 M
ala

ya



services and resources to the MCC users.

Table 2.1: Comparison of frameworks based on application execution performance en-
hancement cloud-centric approaches

Application Execution
Frameworks

Cloud
Usage

Overhead

Deploys
Mirror

Pre-
execution

Delay

Caching
Support

Parallel
Execution
Support

MAUI (Cuervo et al., 2010) High No High No No
Virtual Mobile Cloud Computing (Huerta-
Canepa & Lee, 2010) High No High No No

Secure Cyber Foraging (Goyal & Carter,
2004) High No Low Yes No

VM-based Cloudlets (Satyanarayanan et
al., 2009) Low No Medium Yes No

Optimized VM-based Cloudlets (Ha et al.,
2013) Low No Medium Yes No

Augmented Smartphone Application (Chun
& Maniatis, 2009) High No High No No

Cloudlets-based Network (Fesehaye et al.,
2012) High No High Yes No

Mirror Server-based Framework (Zhao et
al., 2012) High Yes Low Yes No

Pocket Cloudlets (Koukoumidis et al.,
2012) Low No Low Yes No

AIOLOS (Verbelen et al., 2012a) High No High Yes Yes
ThinkAir (Kosta et al., 2012) High No High No Yes
Hyrax (Marinelli, 2009) High No High No No
Cloudlet (Verbelen et al., 2012b) Low No Medium No No
COMET (Gordon et al., 2012) Low No Low Yes Yes
MACS (Kovachev, Yu, & Klamma, 2012) High No High Yes No

2.2.1.2 Hybrid Approaches

Hybrid approaches are implemented on both the mobile device and the cloud server

for improving the application execution performance in the MCC. Hybrid approaches

include provisioning of lightweight security mechanisms (Goyal & Carter, 2004), cloning

(Chun & Maniatis, 2009; Chun et al., 2011), (Hung et al., 2012; Satyanarayanan et al.,

2009), optimizing VM migration (Hung et al., 2012; Satyanarayanan et al., 2009), pre-

installation of applications that require only states to be transferred (X. Zhang et al.,

2010), and lastly, caching and compression of the data and meta-data (Mao, Xiao, Shi,

& Lu, 2012). Table 2.2 shows the comparative summary of frameworks based on the

application execution performance enhancement hybrid approaches.

Lightweight Security: Security is one of the main challenges that are obstructing the

major deployment of clouds. Security issues in cloud are investigated in (Xiao & Xiao,

2013; Khan, Mat Kiah, Khan, & Madani, 2012) that are necessary to be resolved to

rapidly increase the growth rate of the clouds. Aside from a number of security issues

33

Univ
ers

ity
 of

 M
ala

ya



in the cloud, existing security mechanisms induce delay in the application execution that

is obstructing the aim of the seamless application execution. The computational delay

of security mechanisms can be reduced by designing and employing lightweight secu-

rity approaches. Lightweight security is classified into reputation-based trust establish-

ment (Satyanarayanan et al., 2009), low overhead ciphers, and authentication mecha-

nisms (Goyal & Carter, 2004). The lightweight approaches improve the application per-

formance by reducing the delay involved in cipher execution, trust establishment, and

authentication. The lightweight security mechanisms reduce the time taken by authen-

tication process and minimize the resources consumption. Therefore, the application

response time in MCC can be reduced. However, the security of the data can be com-

promised because of the employment of the lightweight security mechanisms and relying

on reputation-based trust.

Cloning: The cloning improves the response time of an application by deploying the

mobile device clone in the cloud. The mobile device clone that needs to be deployed

in the cloud, requires only part of the application execution to be offloaded from mobile

device into the cloud. The pre-installed mobile device clone alleviates the overhead in-

volved in initiation and preparation of the application execution. During the application

execution process, the states are migrated to the mobile device clone. The research works

of (Chun & Maniatis, 2009) and (Chun et al., 2011) present the CloneCloud frameworks

that execute an application on the nearby and remote servers. Moreover, an incremen-

tal checkpointing and opportunistic synchronization are used to improve the application

execution performance in MCC. The cloning minimizes the application initiation and

preparation delay; thereby, improving the application overall response time. However,

the mobile device clone deployment increases the maintenance overhead for the cloud

service provider. The cloning also increases the resource consumption cost for the cloud

service provider if the applications are not frequently used. Moreover, providing the

clones of all available mobile devices is not practical solution in the MCC.

34

Univ
ers

ity
 of

 M
ala

ya



Optimizing VM Migration: The VM migration incurs a significant overhead that is in-

vestigated in (Spata & Rinaudo, 2011). The VM-based frameworks employ three strate-

gies to optimize the migration process: (a) automation of VM creation and migration

(Hung et al., 2012), (b) transfer of only application specific states instead of the whole

VM (Hung et al., 2012), and (c) the VM synthesis (Satyanarayanan et al., 2009). The op-

timized migration approaches alleviate the delay involved in the VM creation and migra-

tion. The transfer overhead is reduced by transferring only application relevant states and

by replacing the full VM migration with the VM synthesis that requires low bandwidth

and takes less transmission time. However, the VM creation, migration, and deployment

in the cloud is time-intensive process. Although the VM synthesis reduces the migration

overhead, the VM synthesis requires installation of VM base in the cloud, which arises

the compatibility issues.

Applications Pre-installation: Elastic mobile application framework presented in (X. Zhang

et al., 2010) employs an approach wherein the weblets are pre-installed on the remote

server, and during the execution only states need to be transferred for execution of an

application. The pre-installations of weblets reduce data transfer size, which lessens

transmission delay, lowers the bandwidth consumption, and conserves the battery power.

The application pre-installations reduce the application initiation and preparation time.

However, application pre-installation increases the maintenance overhead on cloud server

provider. Moreover, the pre-installed applications consume storage even if the applica-

tions are not frequently used.

Caching and Compression: The data caching and compression aid in locally caching

the data and employing an adaptive compression to reduce the amount of transferred

data (Mao et al., 2012). The caching and compression approach not only reduces the

latency but also the storage and network cost. Moreover, the compression significantly

reduces the data transfer size. However, the compression increases processing overhead

35

Univ
ers

ity
 of

 M
ala

ya



on resources-constrained mobile device; thereby, consuming a significant amount of bat-

tery power.

Intermediate States Exchange: To address the network disconnection issue that arises

mainly because of user mobility, the execution frameworks exchange the intermediate

states from the cloud server with the mobile device. Hence, the mobile device either can

re-offload the only remaining portion of the execution or resumes the execution locally

by itself. The successful exchange of intermediate states enables the mobile device to re-

sume the application after the disconnection by itself, thereby minimizing the application

execution time. Optimized VM-based cloudlet (Ha et al., 2013) and COMET (Gordon

et al., 2012) exchange the intermediate results with the mobile device. The optimized

VM-based cloudlet exchanges VM-overlay with the mobile device, which sends the re-

ceived overlay to the newly visited cloudlet for execution. The newly visited cloudlet

resumes the application from the point where the previously visited cloudlet left the ex-

ecution. COMET also exchanges the intermediate states from the cloud to the mobile

device. However, COMET cannot reconnect back with the cloud server on the connection

re-establishment. Moreover, both solutions are based on VM-level information exchange.

Table 2.2: Comparison of frameworks based on application execution performance en-
hancement hybrid approaches

Application Execution Frameworks Security
Overhead

Data Transfer
Overhead

VM Migration
Overhead

COMET (Gordon et al., 2012) N/A Low Low
Elastic Application Framework (X. Zhang et al., 2010) High Low N/A
CloneCloud (Chun et al., 2011) Medium High High
VM-based Cloudlets (Satyanarayanan et al., 2009) Medium Low Low
Optimized VM-based Cloudlets (Ha et al., 2013) Medium Low Low
Secure Cyber Foraging (Goyal & Carter, 2004) Low High N/A
Mobile Application Execution Framework (Hung et al.,
2012) High Medium Medium

2.2.1.3 Mobile-centric Approaches

In mobile-centric approaches, the main functionality for improving the application

execution performance is implemented on the mobile devices. The mobile-centric ap-

proaches consist of partitioning, offloading decisioning, optimizing application, pseudo-

checkpointing, and fault tolerance approaches. Table 2.3 shows the comparative summary

36

Univ
ers

ity
 of

 M
ala

ya



of the frameworks based on the application execution performance enhancement mobile-

centric approaches.

Table 2.3: Comparison of the frameworks based on the application execution performance
enhancement mobile-centric approaches

Application Execution
Frameworks

Pa
rt

iti
on

in
g

Ty
pe

Pa
rt

iti
on

in
g

O
ve

rh
ea

d

O
ffl

oa
di

ng
O

ve
rh

ea
d

M
et

ho
d

C
al

lO
ve

rh
ea

d

D
at

a
Tr

an
sf

er
O

ve
rh

ea
d

Fa
ul

tT
ol

er
an

ce

T r
an

sm
is

si
on

D
el

ay

COMET (Gordon et al., 2012) N/A N/A Med. Low Low Yes Low

Decentralized Computation Offloading Game (X. Chen,
2015) N/A N/A Med. N/A Low No Low

Semi-Markovian Decision Process-Based Offloading
(S. Chen et al., 2013) N/A N/A Med. N/A Low No Low

Coalesced offloading framework (Xiang et al., 2014) N/A N/A Low Low Low No Low
Replicated Application Execution Framework (Lee,
2012) Med. N/A High Med. No Med.

XMPP-based Middleware (Kovachev, Cao, & Klamma,
2012) High Low High High No Med.

Elastic Application Framework (X. Zhang et al., 2010) High High High High Yes High

Data Stream Application Partitioning Framework (Yang
et al., 2012) DyP Low High High High No High

AIOLOS (Verbelen et al., 2012a) High High Low High Yes Med.

ThinkAir (Kosta et al., 2012) High High High High Yes High

Dynamic Deployment & Quality Adaptation Frame-
work (Verbelen, Stevens, Simoens, De Turck, &
Dhoedt, 2011)

High High High High Yes High

MACS (Kovachev, Yu, & Klamma, 2012) Low High High Low No Med.

CloneCloud (Chun et al., 2011) StP Low High High Low No Low

MAUI (Cuervo et al., 2010) Med. High Low Low Yes Low

Calling the Cloud (Giurgiu et al., 2009) SdP Med. High High High No Med.

Augmented Smartphone Application (Chun & Mani-
atis, 2009) Med. High High Low Yes Low

Note: Med.: Medium, N/A: Not Applicable, DyP: Dynamic Partitioning, StP: Static Partitioning, SdP: Semi-dynamic
Partitioning

Partitioning: Partitioning is performed in three ways, static (Chun et al., 2011), dy-

namic (Chun & Maniatis, 2010; Lee, 2012; Kovachev, Cao, & Klamma, 2012; X. Zhang

et al., 2010; Yang et al., 2012; Verbelen et al., 2012a; Kosta et al., 2012; Verbelen et al.,

2011; Kovachev, Yu, & Klamma, 2012) and semi-dynamic (Giurgiu et al., 2009; Chun &

Maniatis, 2009; Cuervo et al., 2010). The static partitioning requires developer support

to annotate the remotely executable methods. Therefore, the static partitioning does not

37

Univ
ers

ity
 of

 M
ala

ya



incorporate the conditions of the run-time environment during the partitioning decision.

However, in the dynamic partitioning, a dynamic and adaptive decision engine takes the

context information as input, computes partitions, and adapts according to the new par-

titioning results. Although the static partitioning performs lesser run-time computations,

the static partitioning approach does not optimally partition the application. The semi-

dynamic partitioning takes the advantages of both static and dynamic partitioning. The

semi-dynamic partitioning performs static annotation to reduce the run-time computations

and also incorporates the dynamic environment parameters for run-time partitioning.

The lightweight application partitioning is vital for enhancing application execution

performance in the MCC that alleviates the complexity of migration process (Ahmed,

Akhunzada, et al., 2015; J. y. Liu et al., 2015). The lightweight partitioning approaches

employed by the frameworks are reported in (Chun & Maniatis, 2010; Kovachev, Yu, &

Klamma, 2012). The proposed approach in (Chun & Maniatis, 2010) employs a model

that predicts the costs of different partitions. Thereafter, a simple approximate optimizer

quickly solves the partitioning problem based on predicted costs. The authors transformed

an integer linear programming (ILP) problem into a linear programming (LP) problem to

attain speed up over the cost of accuracy. The lightweight application partitioning en-

hances the execution performance by reducing the complexity of the problem and per-

forms a quick partitioning. The lightweight partitioning reduces consumption of mobile

device battery power. The static partitioning does not require the profiling so it is rela-

tively less complex in nature. On the other hand, the dynamic partitioning incorporates

the dynamic conditions of the mobile device and network for partitioning, so performs

optimal decision. Moreover, the dynamic partitioning suffers with the complexity of pro-

filing. Similar to static partitioning, semi-dynamic partitioning is less complex, however,

the semi-dynamic partitioning also incorporates the dynamic conditions of the environ-

ment.

38

Univ
ers

ity
 of

 M
ala

ya



Offloading Decisioning: An offloading decision algorithm is required to be lightweight

with an objective function of minimizing the response time of an application in MCC. The

researchers in (Kovachev, Yu, & Klamma, 2012; Kovachev, Cao, & Klamma, 2012) pro-

posed an offloading middleware that incorporates network latency in the offloading deci-

sion with the objective of optimizing the overall application execution time. The XMPP-

based middleware (Kovachev, Cao, & Klamma, 2012) reduces the offloading overhead

by sharing the cloudlet-provided VM for all of the attached mobile users. The offload-

ing decision algorithms aim to optimize the execution cost (Chun & Maniatis, 2010), to

minimize the energy consumption (Cuervo et al., 2010), to reduce the execution time

(Kosta et al., 2012; Kovachev, Yu, & Klamma, 2012; Giurgiu et al., 2009; Ou, Yang, &

Zhang, 2007), to optimize the throughput (Yang et al., 2012), and to minimize the esti-

mated network latency (Verbelen et al., 2012a). Such essential objectives make the of-

floading mechanism favorable to execute on a mobile device because of the cost-effective

lightweight features. The offloading scheme that aims to minimize the execution time or

to optimize the estimated network latency is a favorable choice for the optimized appli-

cation execution.

The incorporation of the communication latency in the offloading objective function

minimizes the application migration time and optimizes data transfer cost; thereby reduc-

ing the overall application execution cost and time. However, the run-time application

offloading decision algorithms have high computational complexity; thereby consuming

battery power of the mobile device.

Application Optimization: An application optimization focuses on the reduction in the

amount of transferred data and method calls overhead. The amount of transferred data is

reduced by implementing incremental state deltas and fine-grained code offloading sup-

port (Cuervo et al., 2010). The method call overhead is reduced either by reducing the

number of method calls (Cuervo et al., 2010) or using callback functions (Verbelen et

al., 2012a). The number of method calls are reduced by implementing a set of similar

39

Univ
ers

ity
 of

 M
ala

ya



operations in a single method. The callback function consumes less CPU resources and

does not exchange much data. The method call overhead increases the delay especially

if the method is called remotely. The huge data size increases the transmission delay;

thereby, increasing the overall execution time. Therefore, the application optimization

is also an important feature to enhance the performance in MCC. The application opti-

mization minimizes the amount of data sent on network; thereby reducing the network

bandwidth consumption and conserving the mobile device battery. However, optimizing

the application design requires modification in application. Moreover, the optimization

of the application requires programmer support.

Pseudo check-pointing: The pseudo-checkpointing does not need to explicitly save the

states, which reduces the overall states storage and transmission overhead (Hung et al.,

2012). The reduction in the states storage and transmission overhead enables the fast

transmission and enhances the application execution performance. Pseudo-checkpointing

minimizes the application states storage size and transmission overhead; thereby optimiz-

ing the consumption of network bandwidth and mobile device battery. Moreover, pseudo-

checkpointing minimizes the network usage cost. In spite of aforementioned advantages,

the pseudo-checkpointing has two limitations: (a) requires modification in applications

and (b) needs programmer support.

Fault Tolerance Approaches: Fault tolerance approaches reduce the disruption time

caused by either the link failures or server failures while an application is executed in

MCC. The frameworks that support fault tolerance can execute the application locally

on mobile device, when the cloud server is inaccessible. The fault tolerance approaches

alleviate the disruption during execution and provide user transparent failure detection

mechanism. The framework supported with fault tolerance approaches gracefully de-

grades the application performance. However, to provide the fault tolerance support,

continuous monitoring mechanism is required to detect the failure. The proactive fault

40

Univ
ers

ity
 of

 M
ala

ya



tolerance approaches require more functionality; thereby inducing high complexity.

2.2.1.4 Network-centric Approaches

The network-centric approaches refer to a set of functions that utilize network related

information for improving application execution management in MCC environment. The

network-centric solutions are employed in a network to mitigate the network related is-

sues, such as high WAN latency, jitter, and packet losses, to enhance the application

execution performance in MCC. The network-centric solutions employ three types of

approaches that include reducing number of hops to the cloud, using high bandwidth

links, and on-demand bandwidth allocation. Table 2.4 shows the comparative summary

of the frameworks based on the application execution performance enhancement network-

centric approaches.

Table 2.4: Comparison of frameworks based on the application performance enhancement
network-centric approaches

Application Execution Frameworks Reduction in
Number of Hops

Usage of High
Bandwidth Links

Guaranteed
Bandwidth

COMET (Gordon et al., 2012) Yes Yes No
Cloudlets (Verbelen et al., 2012b) Yes Yes No
MAUI (Cuervo et al., 2010) Yes Yes No
Mirror Server-based Framework (Zhao et al.,
2012) Yes No No

AIOLOS (Verbelen et al., 2012a) No Yes No
ThinkAir (Kosta et al., 2012) No Yes No
Augmented Smartphone Application (Chun &
Maniatis, 2009) Yes Yes No

MACS (Kovachev, Yu, & Klamma, 2012) Yes Yes No
Virtual Mobile Cloud Computing (Huerta-
Canepa & Lee, 2010) Yes Yes No

VM-based Cloudlets (Satyanarayanan et al.,
2009) Yes Yes No

Cloudlets-based Network (Fesehaye et al.,
2012) Yes Yes No

Secure Cyber Foraging (Goyal & Carter, 2004) Yes Yes No
Hyrax (Marinelli, 2009) Yes Yes No
Mobile Application Execution Framework
(Hung et al., 2012) No Yes Yes

Pocket Cloudlets (Koukoumidis et al., 2012) Yes Yes No

Reducing Number of Hops: The number of hops to the cloud are reduced by bringing

the cloud closer to mobile user either by deploying servers in the WLAN (Fesehaye et

al., 2012) or in the TSP’s network (Zhao et al., 2012). The reduction in the number of

hops eliminates the issues of WAN high latency, jitter, and packet losses that significantly

improves application response time. Moreover, reducing the number of hops to the cloud

41

Univ
ers

ity
 of

 M
ala

ya



minimizes the data transport network cost. The framework does not require Internet con-

nection to access the cloud server if the cloud server is deployed inside the local network.

However, the servers in local networks are not always accessible due to security poli-

cies. The cloud deployment in locally available servers also requires isolation from local

networks to keep the outside users away from the private resources.

Using High Bandwidth Links: The high bandwidth links are deployed by using the

WiFi (Fesehaye et al., 2012) and 3G networks (Zhao et al., 2012) for offloading the ap-

plication. The high bandwidth links reduce the transmission time during the offloading of

an application in MCC. However, the use of high bandwidth links in the cloudlet-based

frameworks is more beneficial than the cloud-based frameworks because the path to the

cloudlet has a direct link. Using the high bandwidth wireless links to access the cloud

does not ensure that the same bandwidth will be allocated along the whole path. The

path may have bottleneck links to the cloud. The data of cloud-based frameworks may

have to go through such bottleneck link across the Internet; thereby reducing the overall

application performance. Using the high bandwidth links provides high data transfer rate

across the link. However, use of high bandwidth links increases monetary cost.

On-demand Bandwidth Allocation: The on-demand bandwidth is allocated to the

users’ traffic to ensure the bandwidth reservation according to the traffic requirements

within the network (Hung et al., 2012). The on-demand bandwidth reservation approach

helps in ensuring QoS for each application; therefore, it helps in improving the application

execution performance by providing sufficient bandwidth to each of the flow according

to the requirements. However, on-demand bandwidth allocation requires bandwidth ne-

gotiation with the network service provider. Moreover, the allocation of bandwidth to the

network flows also requires fairness among the flows that requires additional functional-

ity on the network elements. Such additional functionalities increase the overhead on the

network elements.

42

Univ
ers

ity
 of

 M
ala

ya



The deployment of server in WLAN and in TSP’s network copes with the WAN is-

sues, such as high latency, jitter, and packet losses that degrade the application execution

performance in MCC environment. The use of high bandwidth links reduces the trans-

mission delay that also assists in optimizing the application performance in MCC. The

on-demand allocation of bandwidth makes the execution framework scalable for varying

demand loads of applications.

2.3 Open Challenges: Application Performance Enhancement

In this Section, we highlight some of the most important challenges in optimizing

the application execution performance in MCC. The discussion on the research challenges

provides research directions to the domain researchers for further investigations and im-

provements in MCC. The discussion also leads us to our research problem.

User-transparent Cloud Discovery: A mobile device must discover the cloud to ac-

cess and utilize the services provided by the cloud service provider. Although the cloud

service discovery is discussed in (Goscinski & Brock, 2010), no one has investigated

the problem of the delay involved in discovering and selecting the cloud services. Ex-

isting frameworks also do not fully address the problem of cloud discovery and service

selection. The cloud discovery process is required to be crisp and user-transparent for op-

timizing the application execution performance in terms of delay. The delay involved in

discovering the cloud server can be reduced by pro-actively finding the server. However,

the proactive server discovery consumes processor cycles and battery power of mobile

device and network resources if the service is not used later. The service discovery solu-

tions, such as the ones reported in (Di Modica, Tomarchio, & Vita, 2011; Bertolli et al.,

2010) for the peer-to-peer networks can be used in effective design and implementation

of user-transparent cloud discovery in MCC.

Unobtrusive Application Offloading: The unobtrusive offloading of application refers

to the automated lightweight offloading process with the focus on reducing the offload-

43

Univ
ers

ity
 of

 M
ala

ya



ing time and user inference. The operational environment in MCC is highly dynamic in

nature. The common causes are varying connection status, bandwidth, and attenuation

distortion. Because of dynamic environmental conditions, an unobtrusive offloading of

application is vital to sustain the usability of real-time applications and to provide the en-

hanced quality of experience (QoE) to the end user. However, the dynamic environment

and run-time delay-inducing partitioning and offloading algorithms make it non-trivial to

optimize the application execution performance. The unobtrusive offloading of applica-

tions is still an open research challenge due to the dynamic environment and complexities

involved in offloading decision making.

Optimal Live VM Migration: Optimal live VM migration between cloud-based servers

is vital to improve the performance of application execution in MCC, considering inter-

mittent wireless network bandwidth and mobility limitations. The problem is more crit-

ical when the mobile device is leveraging the local available resources. When a mobile

user moves to a place far from the offloaded application, the increase in distance induces

the latency and degrades the user’s QoE. Therefore, migrating the live VM along with the

mobile service consumer without affecting the end-user’s service becomes vital to alle-

viate QoE degradation. The optimal live VM migration can be achieved by employing

automated low cost migration procedures with the objective of minimal downtime. How-

ever, the live VM migration in a seamless manner is still an open challenge due to intrinsic

limitations of wireless technologies and huge overhead of VM migration that cause the

significant delay and disruption in execution process. The optimal live VM migration

challenges can be addressed by migrating only the live states of VM that reduces the size

of data exchange at run-time.

The research efforts already done by researchers in similar domain (Takahashi, Sasada,

& Hirofuchi, 2012) can be guidelines for optimizing the Live VM migration for frame-

works in MCC. After successful migration and deployment of VM, it is required to ensure

the user-transparent access of migrated VM via initial IP address in the case of VM mi-

44

Univ
ers

ity
 of

 M
ala

ya



gration to new physical machine. Further efforts similar to (Raad et al., 2013) are required

to realize the vision of seamless access to migrated VM in MCC.

Seamless Computational Resources Handoff: Seamless computational resources hand-

off is an important concern to ensure smooth migration among varied cloud services when

mobile service consumer is on the move. The unmanaged mobility in wireless environ-

ment causes communication disruption when mobile device moves across two different

communication coverage areas (Zekri, Jouaber, & Zeghlache, 2012). In MCC, if a mo-

bile device moves farther from associated cloud server, then the application performance

is surely degraded due to the increase in the communication latency. The problem is more

critical when the services are provided by local cloudlets; since the local service provider

do not allow the mobile user to access the local resources from outside of the network be-

cause of security reasons. This situation results in large number of computation resources

handoffs.

The seamless computational resources handoff mechanisms aim to discover the avail-

able resources and migrate the application across two clouds/cloudlets in a seamless man-

ner. The seamless computational resources handoff requires user-transparent resources

discovery, automated handoff process, and non-perceivable disruption during the execu-

tion.

However, the realization of the seamless computational resources handoff is a chal-

lenging task because of inherited limitations of wireless technologies and limited re-

sources of the mobile device. The seamless computational resources handoff is an es-

sential research problem that needs effective solutions for improving the application ex-

ecution performance. The research efforts in emerging seamless handoff and mobility

management solutions in wireless networks, such as one reported in (Mitra, 2010) can be

used in designing effective seamless mechanisms for computational resources handoff in

MCC environment. In this thesis, we address this research challenge.

45

Univ
ers

ity
 of

 M
ala

ya



Lightweight Fault Tolerance: Fault Tolerance is a critical aspect which enables the

framework to continue its operation rather than failing completely, when cloud server

is no more accessible. For meeting availability requirements and considering offloading

dependency on cloud servers and wireless networks; it is vital to deal with failures and

to provide a reliable service. Fault tolerance is more critical aspect in MCC than tradi-

tional cloud. Failure can occur due to user mobility as mobile device enters and leaves

a network. Hardware failures, running out of battery power, and network signal loss are

other common reasons. Hence, to keep the failure hidden from end user, fault tolerance

mechanism is required to be lightweight and user-transparent, and implement the graceful

degradation if access to remote server is no more possible.

Although fault tolerance is addressed by (X. Zhang et al., 2010; Kosta et al., 2012;

Verbelen et al., 2012a; Chun & Maniatis, 2009; Verbelen et al., 2011; Gordon et al., 2012;

Ha et al., 2013), the solution is required to be user-transparent, lightweight and adaptive.

Therefore, designing and development of fast, user-transparent, and adaptive fault toler-

ance mechanism is still a research challenge due to low potential of mobile devices and

intrinsic limitations of wireless medium. The lightweight fault tolerance mechanisms are

proposed by different researchers in similar domains (Martins, Narasimhan, Lopes, &

Silva, 2010; Ahn, 2009), which can provide a guideline for researchers in MCC to design

lightweight fault tolerance mechanisms. In the proposed thesis, we address the issue of

network faults.

Agile Security and Privacy Mechanisms: Security and privacy are important concerns

that impede successful deployment of clouds across the Internet (Khan et al., 2012). A

number of frameworks emphasis the need of security and privacy but very few of them

actually implement the security solutions. To improve the application execution perfor-

mance in MCC, security and privacy mechanisms are required to be agile to mitigate

the intolerable delay caused by security provisioning (Satyanarayanan et al., 2009). The

agile security and privacy mechanisms can be implemented by employing quick and cost-

46

Univ
ers

ity
 of

 M
ala

ya



effective trust establishment, by designing efficient security algorithms, and low-overhead

encryption mechanisms.

Several solutions exist to provide security, such as hardware-based secure execution

and steganography (J. Liu, Kumar, & Lu, 2010). The limitations of these existing se-

curity mechanisms, such as large encryption key size and dramatic increase in amount

of data impede the practical realization of security solutions for improving the applica-

tion execution performance in MCC. The research efforts, such as the one reported in

(Al-Muhtadi, Mickunas, & Campbell, 2002) can be used to effectively design the agile

security mechanisms for MCC.

2.4 Conclusion

We reviewed the state-of-the-art application execution frameworks employed in the

MCC environment to execute the applications. We presented a thematic taxonomy of

various approaches employed by the application execution frameworks to improve the

application execution time in the cloud. The comparative summary of the application ex-

ecution frameworks based on the thematic taxonomy was also presented by highlighting

the similarities and differences on the basis of significant parameters. We highlighted the

open challenges in optimizing the application execution time in MCC environment, which

included the two problems of seamless network fault tolerance and seamless handover of

the applications. In the subsequent chapters, we build upon the highlighted problems and

further investigate the depth of the network disconnection problem and its impact on the

application performance in terms of execution time.

The state-of-the-art execution frameworks are designed for four different cloud mod-

els: cloud, cloudlet, mobile ad hoc cloud, and hybrid. Several frameworks focus on mi-

grating the application to the cloud for execution, some leverages the locally available

resources of cloudlet, and the rest use the hybrid platform of the cloud and cloudlet. The

frameworks that rely on the remote cloud to augment resources enjoy a diverse range

of available services in the cloud, on-demand availability of resources, low computation

47

Univ
ers

ity
 of

 M
ala

ya



latency, and high computational power. The cloud-based frameworks have to exchange

the data between the two ends using the wireless Internet resources. The communication

across the Internet is affected due to the high WAN latency, non-guaranteed bandwidth

reservation, interoperability among the underlying different networking technologies, ex-

cessive delays, and bursty losses.

The cloudlet-based frameworks mitigate the issues of accessing the remote cloud,

such as packet losses, jitter, link failure, and WAN latency, by migrating the mobile de-

vice application execution to locally available devices using the WLAN technology. The

cloudlet-based frameworks do not require the Internet connectivity to access and utilize

the cloudlet resources. However, the cloudlet possesses less resources, provide limited

services and suffers from scalability issues. Similar to cloudlet-based frameworks, mo-

bile ad hoc cloud frameworks also do not require the Internet connectivity to access and

utilize the mobile ad hoc cloud resources. However, the devices in mobile ad hoc cloudlet

share the resources with each other instead of accessing the centralized server.

The hybrid frameworks overcome the limitations of above mentioned both type

of MCC model. The hybrid platform provides the flexibility to a mobile user to run

time-critical components of an application on the nearby low-latency cloudlet and delay-

tolerant components of an application on the remote cloud servers. Therefore, the hybrid

frameworks manage the high WAN latency for time-critical components of an application

and resolve the scalability issue of cloudlets by migrating the delay-tolerant components

to the cloud server.

48

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 3 : PROBLEM ANALYSIS OF CLOUD-BASED MOBILE

APPLICATION EXECUTION IN DISRUPTIVE NETWORKS

The literature review in the previous chapter highlighted multiple open research issues.

In this thesis, we focus on the issue of the impact of disruptive networks on application

execution performance, which is part of fault tolerance of cloud based mobile application

execution frameworks. The purpose of this chapter is to establish the problem highlighted

in Chapter 1. In this chapter, we perform in depth investigation of the problem and its

severity. We conduct a set of experiments to show that under normal mobility profile,

the mobile user gets disconnected from the network frequently. Consequently, tackling

the problem of network disconnections is important with reference to cloud-based mobile

application execution performance. Subsequently, we conduct formal analysis of appli-

cation execution and show that in most of the cases, the problem is non-trivial.

The rest of the chapter is organized into two main parts. In the first part (Section 3.1),

we present the findings of our empirical study to show the significant impact of network

disconnections on application performance in terms of execution time. This part consists

of four subsections. Section 3.1.1 presents experimental setup and data collection. Sec-

tion 3.1.2 discusses the mobility impact on device connectivity and response time in 3G

network. Section 3.1.3 highlights the types of network connectivity profiles that a mobile

user can experience during cloud based mobile application execution. Data analysis is

presented in Section 3.1.4 and Section 3.1.5. Conclusions based on the empirical data

analysis are summarized in Section 3.1.7. In the second part, we formally define appli-

cation execution and include the impact of mobility induced network disconnections on

application execution (Section 3.2). We show that for majority of connectivity profiles,

application execution time is severely affected by network disconnections (Section 3.2.2).

We also consider the two most relevant application execution frameworks and show that

both frameworks fail to adequately handle the temporary as well as permanent network

49

Univ
ers

ity
 of

 M
ala

ya



disconnections (Section 3.2.4). Section 3.3 summarizes the findings of the analysis con-

ducted in this chapter.

3.1 Empirical Study: Network Disconnection and Application Execution

In this section, we present the empirical study conducted for problem establishment.

We discuss the measurement of the network connectivity pattern by using mobile device

inside a metro transit train. Different profile types are discussed in this section. Using

the collected profile, we replicate the scenario of mobile user accessing the cloud during

metro transit train in the lab and study the impact of network disconnections on cloud

based mobile application execution. Finally, we summarize the findings of empirical

study.

3.1.1 Experimental Setup and Data Collection

We conducted a series of experiments in the lab environment, that replicated the real

user connectivity scenario while the mobile users move in general. In the experimental

process, the first step was to replicate the real user mobility pattern while a cloud based

mobile application is being executed. For this purpose, we collected the real data traces

of mobile user connectivity in 3G network for intra-city metro train transit. Figure 3.1

shows the mobile user connectivity data trace collection path. An android application

“Network Monitor” that was installed on Samsung Galaxy S-II, was used to collect the

device connectivity parameters - connectivity status and signal strength. The collected

network connectivity data traces were used to conduct the experiments of cloud-based

mobile application execution through emulated 3G networks.

For emulation of the real implementation, we emulated the 3G connectivity traces

in the lab environment over the LAN network. The disconnection has been emulated by

dropping the packets between the computers during disconnection interval. The average

connectivity and disconnection intervals were computed using the collected data traces

and exponential distribution was used to generate a total of 30 data traces.

50

Univ
ers

ity
 of

 M
ala

ya



Figure 3.1: Data Collection Intra-city Metro Train Path Map (Courtesy: MYrapid
http://www.myrapid.com.my)

A client server application provides communication between the emulated mobile

device and the cloud server. Processing speed in terms of million instructions per second

on the emulated mobile device has been matched with Samsung Galaxy II by generating

background processes on the computer. On the cloud side, Openstack-based cloud is

deployed and a 4 core virtual machine with 2.4 GHz processor is created for the mobile

device. The virtual machine provides a processing speedup factor of 2.66 for the emulated

mobile device.

The tested application is a simple algebraic computation repeated for the given input

through automated interaction. Number of instructions of the application for use in the

model has been computed using Lackey tool for valgrind (Developers, 2015). Number of

other processes present in the system were kept uniform on the mobile and cloud side and

were limited to automated background linux processes that remained in sleep state for

entire experiment. Operating system overhead has been set to 7% of the total execution

time and has been estimated using top command.

Using the above defined setup, we executed the mobile application by transferring

it to the cloud server using communication module. The timing information was logged

51

Univ
ers

ity
 of

 M
ala

ya



0

1

1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

30
9

33
7

36
5

39
3

42
1

44
9

47
7

50
5

53
3

56
1

58
9

61
7

64
5

67
3

70
1

72
9

75
7

78
5

81
3

Time (Seconds)

C
on

ne
ct

iv
ity

 S
ta

tu
s

(a) Intra-city Metro Transit Mobile Connectivity
Graph

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

42
1

45
1

48
1

51
1

54
1

57
1

60
1

63
1

66
1

69
1

72
1

75
1

78
1

81
1

R
es

po
ns

e 
Ti

m
e 

(m
ill

is
ec

on
ds

)

Ping Sequence Number

(b) Ping Response Time in Intra-city Metro Transit

Figure 3.2: Mobility Effect on 3G Network Connectivity and Application Response Time

into text files during execution of the application by the cloud server as well as the mo-

bile client. The text files were processed to generate the data that has been used for the

analysis in the following sections. We start by showing the impact of mobility on device

connectivity with the cloud while using a 3G cellular network.

3.1.2 Mobility Impact on Device Connectivity and Response Time in 3G Network

The graph in Figure 3.2 (a) shows the 3G device connectivity along the route where

colored (red) space shows the device is connected and white space shows the device is

disconnected. The study reveals that mobile device remains intermittently disconnected

for 33% of the total sample time. We have also considered the effect of user mobility on

response time of an application in 3G wireless network. Ping utility that is a basic tool

to measure the response time on the Internet was used to collect the response time data.

The graph in Figure 3.2 (b) shows the number of hikes in response time along the route.

These hikes in the response time are due to extra delay added by retransmissions on 3G

networks. More than 33% of the pings got either no response or their response time is

greater than 400 ms. The response time greater than 400 ms is unacceptable for delay

sensitive applications (Satyanarayanan et al., 2009).

These results suggest that there are significant disconnections and those disconnec-

tions can interrupt the cloud based mobile application execution. We now look into the

52

Univ
ers

ity
 of

 M
ala

ya



possible types of network connectivity profiles. Subsequently, we study the impact of

each profile on application execution.

3.1.3 Types of Network Connectivity Profiles

With reference to cloud based mobile application execution, the network connectiv-

ity profiles can be one of the three types: (a) permanent disconnection, (b) intermittent

disconnection and (c) always connected.

The permanent disconnection profile is the one where the mobile device never con-

nects back with the cloud, once it gets disconnected from the cloud during the application

execution. In such cases, the entire application needs to be re-executed, unless the state of

the execution from the cloud is synchronized with the mobile device. On the other hand,

intermittent disconnection profiles have short periods of disconnections during applica-

tion execution; however, the device gets connected with the cloud. These profiles can be

of two types depending on re-connection with the same cloud or another cloud service.

When the mobile device re-connects with the same cloud, there is a likely chance

that the application state of the cloud based mobile application will be preserved on the

cloud. The mobile device in this case is able to interact with partially executed application

and can resume the application from the point of disconnection onwards. The adverse

impact of disconnections in this case is relatively lesser in terms of application execution

time. On the other hand, if the mobile device is unable to connect back with the same

cloud/cloudlet service, the scenario of application execution changes. This is often the

case when the mobile device user is on the move and is connected to different cloudlets

on the way. In this case, the application execution on the previous cloudlet is lost unless a

mechanism is devised for transfer of state to the new cloudlet. Multiple researchers have

addressed this problem as discussed in the literature review. In the always connected

profile, the mobile device never disconnects from the cloud server during the application

execution.

The adverse impact of network disconnections on application execution time in case

53

Univ
ers

ity
 of

 M
ala

ya



of three profiles is different. The always connected scenario gives the least execution time

as there is no disconnection during the application execution on the cloud server. The next

less affected scenario is intermittent disconnections with connection to same cloud where

the application execution time is generally increased by the time of disconnection. The

most affected case is permanent disconnection where the entire execution state on the

cloud is lost. Re-connection with a different cloud/cloudlet has intermediate affect on

application execution time and depends on the efficient state transfer by the application

execution framework. In the following sections, we present the experimental results for

the three profiles.

3.1.4 Execution Performance in Different Connection Profiles

In this subsection, we analyze the performance of application in different connec-

tion profiles: (a) permanent disconnection, (b) intermittent disconnection, and (c) always

connected.

3.1.4.1 Execution Time

We study the mobility effect on application execution time in MCC by executing a

cloud-based interactive mobile application in an emulated MCC lab environment. In this

study, the mobile device accesses the cloud server using emulated 3G wireless link over an

Ethernet. Table 3.1 shows that the execution time when mobile device remains constantly

connected is 995.17 ± 1.66 second with 99% confidence interval for the sample space of

30 values. This value is 69.53% and 31.91% less than the execution time of permanent

and intermittent disconnection scenarios respectively.

Table 3.1: Execution Time Comparison in Different Connection Profiles

Permanent
Disconnection (second)

Intermittent
Disconnection (second)

Always
Connected (second)

Mean 3266.74 1461.74 995.17
Standard Deviation 103.34 119.65 3.52
Confidence Interval 3266.74 ± 48.68 1461.74 ± 56.36 995.17 ± 1.66

Figure 3.3 shows the execution time in case of permanent disconnection, intermit-

tent disconnection, and always connected profiles for thirty different traces. The graph

54

Univ
ers

ity
 of

 M
ala

ya



presents the inconsistent trends for the execution time in case of permanent and inter-

mittent disconnection. The reason for inconsistency in execution time of the permanent

disconnection is the different time of disconnection occurrence. If the disconnection oc-

curs earlier, the execution time is lesser because of less repetitive execution on the mobile

device. In late occurrence of disconnection, the more instructions get wasted on the cloud

server that results in higher number of repetitive execution on the mobile device. Hence,

the execution time is higher in such cases. On the other hand, the inconsistency in case of

intermittent disconnection is because of different sizes of disconnection intervals.

0

500

1000

1500

2000

2500

3000

3500

4000

Permanent Disconnection Intermittent Disconnection Always Connected

Data Trace

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
ds

)

Figure 3.3: Execution Time in Different Connection Profiles

The higher execution time difference in case of permanent disconnection is because

of the re-execution of whole application execution from the initial stage on the mobile

device. That can be significantly reduced if the process execution on the remote cloud

synchronizes with the mobile device during the execution to avoid the re-execution of the

whole application on the mobile device. In case of intermittent disconnection, the execu-

tion time can be reduced by synchronizing the process states with the mobile device dur-

ing the execution. These process states can be used to resume the application locally on

the mobile device during the disconnection period. On the connection re-establishment,

the mobile device states can be re-synchronized back with the cloud server.

55

Univ
ers

ity
 of

 M
ala

ya



3.1.4.2 Computation Wastage

Table 3.2 shows that computation wastage in case of permanent disconnection is

42.13 ± 4.60 percent of the total instructions, 2.25 * 1012, with 99% confidence interval

for the sample space of 30 values that is significantly higher than that of the intermittent

and always connected scenarios. The computation wastage is zero in case of intermittent

disconnection because the execution resumes on the cloud server after the connection

re-establishment.

0

10

20

30

40

50

60

70

Permanent Disconnection Intermittent Disconnection Always Connected

Data Traces

W
as

te
d 

In
st

ru
ct

io
ns

(P
er

ce
nt

ag
e)

Figure 3.4: Computation Wasted For Different Connection Profiles

Figure 3.4 shows that the number of instructions wasted in case of permanent discon-

nection are presenting an inconsistent trend. The number of instructions wasted depends

on the first event of disconnection. If the disconnection occurs earlier, only a small num-

ber of computed instructions are wasted because of limited computation by the cloud. In

case of late disconnection, the number of instructions wasted is higher. The disconnec-

tion time in different data traces varies, hence the number of instructions wasted is also

different.

Table 3.2: Computation Wastage Comparison in Different Connection Profiles

Permanent
Disconnection

Intermittent
Disconnection

Always
Connected

Mean (%age) 42.13 0 0
Std Deviation (%age) 9.77 0 0
Confidence Interval (%age) 42.13 ± 4.60 0 0

56

Univ
ers

ity
 of

 M
ala

ya



Table 3.3: Execution Time in Optimized VM-based Cloudlet, COMET, and Cloud Server
Execution

Optimized VM-based
Cloudlet (second) COMET (second)

Cloud Server
Execution (second)

Sample Mean 1632.31 2080.93 995.17
Standard Deviation 295.32 172.26 3.52
Confidence Interval 1632.31 ± 139.11 2080.93 ± 81.14 995.17 ± 1.66

The results show that the interactive cloud based mobile applications are significantly

affected by network disconnections. The execution time of the applications increases and

the valuable computations are wasted, resulting in wastage of cloud resources that were

used for the computation. We can safely say that network disconnection problem is a non-

trivial challenge and needs to be addressed. We now consider the existing application ex-

ecution frameworks and see how these frameworks manage the network disconnections.

3.1.5 State-of-the-art Frameworks Analysis

Two of the existing application execution frameworks deal with network discon-

nection scenarios. These frameworks are COMET and optimized VM-based cloudlet.

COMET synchronizes the application state at thread level between the cloud and the mo-

bile device. Upon network disconnection, the application can be executed by the mobile

device from the last synchronized state. However, upon re-connection, the state cannot be

transfered back to the cloud for remaining execution. The optimized VM-based cloudlet

can generate VM overlay on demand. This on demand feature can be coupled with dis-

connection prediction to produce automated mechanism of application state transfer to

the mobile device upon disconnection. However, this method remains dependent upon

disconnection prediction, which is mostly inaccurate. We consider the two frameworks

for analyzing the performance of execution time and computation wastage under discon-

nection profiles.

3.1.5.1 Execution Time

Table 3.3 shows the comparison of execution time in optimized VM-based cloudlet,

COMET and uninterrupted cloud server execution. We are considering the cloud server

execution time as a base-line for comparing the execution time of these two frameworks.

57

Univ
ers

ity
 of

 M
ala

ya



The average execution time for cloud server execution is 995.17 ± 1.66 with 99% con-

fidence interval for the sample space of 30 values. However, the execution time mini-

mum difference and execution time maximum difference in case of optimized VM-based

cloudlet as compared to cloud server execution are 26% and 56%, respectively. The

execution time minimum difference and execution time maximum difference in case of

COMET as compared to cloud server execution is 40% and 58%, respectively. We can

safely say that network disconnection significantly affects the execution time in case of

existing frameworks, hence the existing frameworks fail to address the problem.

0

500

1000

1500

2000

2500

Optimized VM-based Cloudlet COMET Cloud Server Execution

Data Traces

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
ds

)

Figure 3.5: Execution Time in Optimized VM-based Cloudlet, COMET, and Cloud
Server Execution

Figure 3.5 shows one another aspect of the study for different data traces where

execution time in case of majority of the data traces is less for optimized VM-based

cloudlet than that of the COMET. However, the execution time in case of data traces 1, 6,

12, and 28 is higher for optimized VM-based execution than that of COMET. In these data

traces, mobile device disconnects from the network before getting back the VM-overlay

in case of optimized VM-based cloudlet. Hence, the mobile device has to re-execute the

whole application from initial stage that increases the application execution time of the

optimized VM-based cloudlet.

Although COMET is able to synchronize the state of application, its execution time

58

Univ
ers

ity
 of

 M
ala

ya



remains high because of local execution of remaining task on the mobile device, which is

significantly slower than the cloud.

3.1.5.2 Computation Wastage

Table 3.4 shows the comparison of the computation wastage in optimized VM-based

cloudlet and COMET. The computation wastage is 0.76% of the total number of com-

puted instructions, 2.25*1012 in case of COMET. This value is 95% less than that of the

optimized VM-based cloudlet. COMET wastes significantly fewer instructions because

of state synchronization. This highlights that the approach of state synchronization has

merit, provided a light weight and more effective solution can be devised.

Table 3.4: Computation Wastage in Optimized VM-based Cloudlet and COMET

Optimized
VM-based Cloudlet COMET

Sample Mean (%age) 14.4 0.76
Standard Deviation (%age) 2.29 0.40
Confidence Interval (%age) 14.4 ± 2.29 0.76 ± 0.40

0

10

20

30

40

50

60

70

D
T-

1
D

T-
2

D
T-

3
D

T-
4

D
T-

5
D

T-
6

D
T-

7
D

T-
8

D
T-

9
D

T-
10

D
T-

11
D

T-
12

D
T-

13
D

T-
14

D
T-

15
D

T-
16

D
T-

17
D

T-
18

D
T-

19
D

T-
20

D
T-

21
D

T-
22

D
T-

23
D

T-
24

D
T-

25
D

T-
26

D
T-

27
D

T-
28

D
T-

29
D

T-
30

Optimized VM-based Cloudlet COMET

Data Traces

W
as

te
d 

In
st

ru
ct

io
ns

 (
P

er
ce

nt
ag

e)

Figure 3.6: Computation Wastage in Optimized VM-based Cloudlet and COMET

Figure 3.6 presents the computation wastage comparison of optimized VM-based

cloudlet and COMET-based execution for different connectivity data traces. The compu-

tation wastage for optimized VM-based cloudlet is significantly higher for some of the

data traces where the mobile device is unable to get back the VM-overlay of cloudlet

59

Univ
ers

ity
 of

 M
ala

ya



executed process before the complete disconnection. Consequently, the computation per-

formed on the previously visited cloudlet is wasted.

3.1.5.3 Energy Consumption

Table 3.5 shows the energy consumption in optimized VM-based cloudlet, COMET

and mobile device execution. We have considered the energy consumption in mobile

device execution as a base-line for comparison. The average energy consumption for

mobile device execution is 72024 ± 2.67 with 99% confidence interval for the sample

space of 30 values. However, the energy consumption for optimized VM-based cloudlet

and COMET is 99.5% and 42% less than that of the mobile device execution, respectively.

Although the optimized VM-based cloudlet consumes the very less amount of energy, the

Table 3.5: Energy Consumption in Optimized VM-based Cloudlet, COMET, and Mobile
Device Execution

Optimized VM-based
Cloudlet (joule) COMET (joule)

Mobile Device
Execution (joule)

Sample Mean 235 41890 72024
Standard Deviation 112.25 7055.76 5.67
%age Standard Deviation 47.73 16.84 0.0078
Confidence Interval 235 ± 53 41891 ± 3323 72025 ± 3

solution suffers a longer execution time and higher computation wastage.

0

10000

20000

30000

40000

50000

60000

70000

D
T-

1
D

T-
2

D
T-

3
D

T-
4

D
T-

5
D

T-
6

D
T-

7
D

T-
8

D
T-

9
D

T-
10

D
T-

11
D

T-
12

D
T-

13
D

T-
14

D
T-

15
D

T-
16

D
T-

17
D

T-
18

D
T-

19
D

T-
20

D
T-

21
D

T-
22

D
T-

23
D

T-
24

D
T-

25
D

T-
26

D
T-

27
D

T-
28

D
T-

29
D

T-
30

Optimized VM-based Cloudlet COMET Mobile Device Execution

Data Traces

En
er

gy
C

on
su

m
pt

io
n 

(J
ou

le
)

Figure 3.7: Energy Consumption in Optimized VM-based Cloudlet, COMET, and Mobile
Device Execution

Figure 3.7 presents the energy consumption of optimized VM-based cloudlet, COMET

and mobile device execution for various connectivity data traces. The energy consump-

tion in case of COMET also varies for different data traces as COMET resumes the exe-

60

Univ
ers

ity
 of

 M
ala

ya



cution on the mobile device after the disconnection and complete it on the mobile device.

The disconnection occurs earlier for some of the data traces and for the rest of the data

traces the disconnection occurs relatively late.

Hence, the significant energy consumption in case of COMET arises the need to

minimize the energy by resynchronizing back the process execution with the cloud.

3.1.6 Impact of Varying the Disconnection Parameters

In this section, we analyze the impact of varying the disconnection parameters on

the application execution time and computation wastage.

3.1.6.1 Execution Time

y = 21.425x + 2827

0

500

1000

1500

2000

2500

3000

3500

4000

Disconnection Start Time (Seconds)

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
ds

)

Figure 3.8: Impact of Disconnection Start Time on Cloud-based Application Execution
Time

Figure 3.8 presents the impact of disconnection start time on the cloud-based mobile

application execution time. The increase in execution time is due to wastage of large

number of instructions wastage due to disconnection. The impact of the disconnection

start time brings the inverse effects in case where the intermediate states or VM-overlay

are successfully exchanged with the mobile device. The increase in disconnection start

time reduces the execution time as the larger portion of the execution is performed on the

cloud server.

61

Univ
ers

ity
 of

 M
ala

ya



3.1.6.2 Computation Wastage

Figure 3.9 shows the impact of the disconnection start time on number of instructions

wasted on the cloud execution. The study is based on optimized VM-overlay cloudlet

in the scenario where the mobile device is unable to get back the VM-overlay from the

cloudlet before the complete disconnection. The graph shows that with the increasing dis-

connection start time, the number of computed instructions wastage on the cloud/cloudlet

increases.

y = 2.0293x - 4E-05

0

10

20

30

40

50

60

70

Disconnection Start Time (Seconds)

In
st

ru
ct

io
ns

 w
as

te
d 

(P
er

ce
nt

ag
e)

Figure 3.9: Impact of Disconnection Start Time on Computation Wasted

3.1.6.3 Cloud-based Application Execution Gain

Table 3.6 presents the impact of disconnection time on cloud-based application ex-

ecution gain. The columns represent the expected disconnection time, execution time

difference between the mobile device execution and cloud execution, and execution gain

ratio.

Table 3.6: Impact of Disconnection Time on Cloud-based Application Execution Gain

Expected Disconnection Time (second) Execution Time Difference (second) Execution Gain (percentage)
10 1628 0.6195
20 1621 0.6168
30 1608 0.6119
40 1597 0.6077
50 1589 0.6047
60 1578 0.6005
70 1570 0.5974
80 1559 0.5933
90 1548 0.5888
100 1539 0.5856

62

Univ
ers

ity
 of

 M
ala

ya



Figure 3.10 shows the impact of expected disconnection interval size on the execu-

tion time gain ratio. The execution time gain ratio decreases with the increasing size of

expected disconnection interval.

y = -0.0038x + 0.6237

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

10 20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n 
Ti

m
e

G
ai

n 
R

at
io

Expected Disconnection Interval (Second)

Figure 3.10: Impact of Expected Disconnection Interval Size on Cloud-based Application
Execution Gain

3.1.7 Discussion

The empirical results highlight the following facts:

• Network disconnections are frequent during cloud based mobile application execu-

tion.

• The disconnections result in wasted computations and extended execution time.

The increase in time is dependent on the connectivity profile and the pattern of

disconnection.

• The existing frameworks do not completely manages the execution disruption caused

by the network disconnections therefore, the execution time remains significantly

high in case of network disconnections.

• The approach of state synchronization used by COMET has merit; however, COMET

has significantly higher synchronization overhead. In addition, it cannot resume the

computation on the cloud, in case of reconnection after intermittent disconnection.

63

Univ
ers

ity
 of

 M
ala

ya



This section clearly establishes the problem of adverse impact of network discon-

nections on cloud based mobile application execution as non-trivial. In the subsequent

section, we formally analyze the problem to better understand the factors affecting the

application execution in the event of disconnection.

3.2 Formal Analysis: Network Disconnection and Application Execution

Previous section showed that under usual mobility pattern of a mobile user, signif-

icant network disconnections can occur. The section also showed that the application

execution performance in terms of execution time is severely affected in most of the con-

nectivity profiles. In this section, we formally model the application execution time and

incorporate the factor of network connectivity into execution time. The formal modeling

has been used to facilitate in proofs of the impact of system parameters on performance

metrics using formal theorems. We formally define the impact of disconnections un-

der different connectivity profiles on application execution time. Finally, we show that

the existing application execution frameworks do not handle network disconnections and

majority of computation performed in the cloud is wasted in the event of network dis-

connection. The formal analysis has enabled us to obtain the insights by identifying the

factors affecting the application execution because of disconnections.

3.2.1 Formal Definitions

We start this section by presenting the definitions of factors affecting the execution

time under disruptive network connectivity such as instruction execution time and trans-

fer time. Subsequently, we use these definitions to identify the conditions for execution

time under disruptive network connectivity that affects the user experience. We use high

order logic that is based on the simple typed theory of Church (Church, 1940). Table 3.7

presents the logical symbols and functions used in the paper and summarizes the inter-

pretation.

Definition 1. (Execution Time) Given the processing speed of a mobile device as P(m)

64

Univ
ers

ity
 of

 M
ala

ya



Table 3.7: HOL Symbols used

∧ Logical conjunction, statement A∧B is true only if both A and B are true
∨ Logical disjunction, statement A∨B is true if at least A or B is true
x(Z) Variable x belongs to set Z or type of x is Z (set of integers)
∀ x. For all possible values of x
∃ x. There exists at least one value of x
λ x. f (x) Anonymous function of x with function definition given by expression f (x)
(λ x. f (x)) c Replace free occurrences of x in expression f (x), resulting in f [x := c]

sum(0,k) (λ x. f (x))
k
∑

x=0
f (x)

min(x,y) i f x≤ y then x else y
P x Function P applied on term x

and number of instructions of an application ‘p’ as I(p), the execution time is given as

I(p)
P(m) , ignoring all overheads and assuming the real-time automated user interaction.

The local execution time Time_EL can be modeled using the following equation:

Time_EL =
I(p)
P(m)

(3.1)

The remote execution time Time_ER can be modeled by dividing the local execution

time with the speedup factor ‘F’ of the cloud server and adding the round trip delay for

user interactions.

Time_ER =
I(p)
P(m)

× 1
F
+

I(p)
I(i)
×2d (3.2)

The term I(p)
I(i) represents the expected number of interactions during the execution

of an application ‘p’. The factor 2d represents the round trip delay taken by the single

interaction.

The execution time can formally be defined using λ -abstraction as:

` Time_ER(R≥0)
def
= (λ q(Z≥0) r(Z>0).

q
r
× 1

F
)+(λ a(Z≥0) b(Z>0) c(Z≥0). (a/b)(λ sz.s(s(z)))c)

(3.3)

Where (λ q r. E) indicates anonymous function of two variables q and r with the

function defined by the expression E. The expression in this case is q
r . The variables q

and r belong to the set of non-negative integers and positive integers respectively. The

output of the function instructions execution time belongs to the set of positive real num-

65

Univ
ers

ity
 of

 M
ala

ya



bers. The variables q and r can be replaced by the number of instructions executed to

perform the specific task I(p) and the processor speed in instructions per seconds (IPS)

P(m) respectively, to give the execution time on the specific processor. (λ a b c. E) in-

dicates anonymous function of three variables a, b, and c with the function defined by

the expression E. The expression in this case is a
b(λ sz.s(s(z)))c. The variables a, b and

c belong to the set of non-negative integers, positive integers, and non-negative integers,

respectively. The variables a, b, and c can be replaced by the total number of instruc-

tions I(p), number of instructions after which the user interaction is required I(i), and

propagation delay d.

Definition 2. (Data Transfer Time)

The transfer time comprises of time required to transmit the data (known as transmis-

sion delay) and the network propagation delay. Transmission delay is the time taken to

transmit the given amount of data using the available bandwidth. Transmission delay is

a function of amount of data to be transferred and the data-rate of wireless/ wired link.

Propagation delay is the time taken by the data to travel from the mobile device to the

cloud server.

Data transfer time Time_DT can be mathematically written in terms of transmission

delay Time_T D and propagation delay Time_PD as:

Time_DT = Time_T D+Time_PD (3.4)

For |p| amount of the data, data-rate Rr, and propagation delay of the path d, the transfer

delay Time_T D can be mathematically expressed as:

Time_DT =
|p|
Rr

+d (3.5)

66

Univ
ers

ity
 of

 M
ala

ya



Table 3.8: System variables

|p| Size of program p Z>0
|s| Size of process states Z>0
Rr Data rate of the bottlenecked link along the path Z>0
d Network propagation delay from mobile device to cloud R≥0
I(p) Number of instructions executed of a program p Z≥0
I(pm) Number of instructions executed on mobile device Z≥0
I(pc1) Number of instructions executed on cloudlet c1 Z≥0
I(pc2) Number of instructions executed on cloudlet c2 Z≥0
Tdc Disconnection time Z>0
F Speed up factor of cloud server with respect to mobile device Z≥0
0 : ⇐⇒ λ sz.z Natural number zero
2 : ⇐⇒ λ sz.s(s(z)) Natural number two

The data transfer time can formally be defined using λ -abstraction as:

` Time_DT(R≥0)
def
= (λ e(Z≥0) f(Z>0).

e
f
)+d (3.6)

where (λ e f E) indicates anonymous function of two variables e and f with the

function defined by the expression E. The expression in this case is e
f . The variable e

belongs to the set of non-negative integers. However, the variables f belongs to a set

of positive integers. The output of the function (transmission time) belongs to the set of

positive real numbers. The variables e and f can be replaced by the amount of the data to

be transmitted and the links transmission rates, respectively.

3.2.2 Connectivity Profiles and Execution Time

A number of research efforts in the form of cloud-based mobile application execu-

tion frameworks have been made to enable the execution in MCC. In case of network

connection disruption, the frameworks start execution either on the same computing de-

vice or has to move to other device. Considering the selection of execution location after

network connection disruption by the frameworks, we define three main categories.

• Same Cloud

• Cloudlet-to-cloudlet

• Cloudlet-to-mobile Device

67

Univ
ers

ity
 of

 M
ala

ya



There are two main cases of network connection disruption: a) permanent disconnection

and b) intermittent disconnection. In “permanent disconnection" scenario, the mobile de-

vice may not be able to reconnect back with the cloud due to failure of permanent network

connectivity. In “intermittent disconnection" scenario, the mobile device may be able to

reconnect back with the cloud. This category has two further types: (a) reconnection

with the same cloud and (b) reconnection with different cloud. The three disconnection

scenarios can be modelled for the three types of cloud, cloudlet and mobile based recon-

nections.

3.2.2.1 Same Cloud

This scenario occurs when the application can only be executed in the cloud. The to-

tal application execution time comprises of remote execution time Time_ER, propagation

delay ‘d’, disruption time Time_dis., interaction delay Time_I, and result transfer time

Time_Rtr. Total application execution time can be mathematically given by Equation 3.7.

Time_totE =d +Time_ER+Time_dis.+Time_I +Time_Rtr (3.7)

where Time_totE represent total execution time. In this scenario, we are assuming that

application is already installed in the cloud and only application start command is needed

to be sent from mobile device to cloud server.

Time_totE =2×d +
I(p)
P(m)

× 1
F
+

I(p)
I(i)
×2d + k×Tdc (3.8)

The terms F , I(p), P(m), Ii, k, and Tdc represent the cloud speedup factor, number of

instructions executed, mobile device speed, expected number of instructions to be exe-

cuted between consecutive interactions, number of disconnections, and expected disrup-

tion time, respectively. Total application execution time can formally be defined using

68

Univ
ers

ity
 of

 M
ala

ya



λ -abstraction as given in Expression 3.9.

Time_totE(R≥0)
def
= ∀d I(p) P(m) I(i) Tdc

` λdZ>0sz.s(s(z))d +(λq(Z≥0) l(Z>0).
q
l
)I(p)P(m)

1
F

+(λ a(Z≥0) b(Z>0) . (a/b)I(p)I(i))(λc(Z≥0)sz.s(s(z))c)d +(λ y.ky)Tdc

(3.9)

3.2.2.2 Cloudlet-to-cloudlet

This scenario occurs when the mobile device moves to and connects with another

cloudlet during the execution of the application. The application state of the applica-

tion being executed in the previous cloudlet needs to be transfered to the new cloudlet

using mobile device or an alternate mechanism. The execution is transferred from the

previously visited cloudlet to the newly visited cloudlet through the mobile device. The

mobile device takes the intermediate states from the previously visited cloudlet when it

starts moving from the cloudlet. On successfully getting the intermediate states, the mo-

bile device can migrate the previously computed process states along with the application

to the newly visited cloudlet. The rest of the execution will be performed on the newly

visited cloudlet after resuming the process. Assuming the cloudlet execution speed for

the mobile device to be equal and ignoring the suspend resume time, the total execution

time can be mathematically modelled as follows:

Time_totE = Time_DT MC1+Time_DT MC2+Time_DTCM+Time_Ec1+Time_Ec2

+Time_dis.+Time_I +Time_Rtr
(3.10)

where Time_DT MC1, Time_DT MC2, Time_DTCM, Time_Ec1, Time_Ec2, Time_dis.,

Time_I and Time_Rtr represent application transfer time from mobile device to first

cloudlet server, application and states transfer time from mobile device to second cloudlet

server, intermediate results transfer time from cloudlet to mobile device, application ex-

ecution time on first cloudlet, application execution time on second cloudlet, the disrup-

69

Univ
ers

ity
 of

 M
ala

ya



tion time, user interaction time, and result transfer time, respectively. That can further be

rewritten as follows:

Time_totE = (
|p|
Rr

+ d)+(
(|p|+ |s|)

Rr
+ d)+(

(|s|)
Rr

+ d)+
I(pc1)

P(m)
× 1

F1
+

I(pc2)

P(m)
× 1

F2
+

I(p)
I(i)
×2d + k×Tdc +d

(3.11)

The terms |p|, Rr, d, |s|, I(pc1), I(pc2), F1, F2, k, Tdc represent the application size, data

rate, propagation delay, state size, number of instructions to be executed on previously

visited cloudlet, number of instructions to be executed on newly visited cloudlet, speedup

factor for previously visited cloudlet, speedup factor for newly visited cloudlet, number

of disconnections, and expected disconnection interval respectively.

Total application execution time for this scenario can formally be defined using λ -

abstraction as:

Time_totE(R≥0)
def
= ∀|p| d |s| Rr I(p) F1 F2 k I(pc1) I(pc2) P(m) I(i) Tdc

` (λ e(Z≥0) f(Z>0) .
e
f
)|p|Rr+(λ m(Z≥0) n(Z>0) .

m
n
(|p|+ |s|)Rr)+

(λd(Z>0) sz.s(s(s(s(z))))d )+(λ m(Z≥0) n(Z>0) .
m
n
|s|Rr)+

(λ q(Z≥0) r(Z>0).
q
r

I(pc1)P(m))
1
F1

+

(λ q(Z≥0) r(Z>0).
q
r

I(pc2)P(m))
1
F2

+

(λ a(Z≥0) b(Z>0) c(Z≥0). (a/b)(λ sz.s(s(z)))c)I(p)I(i)d +(λ y.ky)Tdc

(3.12)

3.2.2.3 Cloud/Cloudlet-to-mobile

When the mobile device finds that connection to the cloudlet/cloud is unavailable,

the mobile device starts the application execution locally if no other cloudlet is accessible.

70

Univ
ers

ity
 of

 M
ala

ya



Total execution time for this scenario can be mathematically modeled as:

Time_totE = Time_ELAD+Time_DT MC+Time_DTCM+Time_EC+Time_I +Time_dis.

=
I(pm)

P(m)
+(
|p|
Rr

+d)+(
|s|
Rr

+d)+
I(pc)

P(m)
× 1

F
+

I(pc)

I(i)
×2d +Tdc

=
I(pm)

P(m)
+
|p|+ |s|

Rr
+

I(pc)

P(m)
× 1

F
+2×d +

I(pc)

I(i)
×2d +Tdc

(3.13)

where Time_ELAD, Time_DT MC, Time_DTCM, Time_EC, and Time_I represent the

local execution time after the disconnection, application transfer time from cloud to mo-

bile device, state transfer time from mobile device to cloud, execution time on cloud, and

interaction time, respectively. The total application execution time in case of applica-

tion execution on mobile device after disruption in network connection can formally be

defined using λ -abstraction as:

Time_totE(R≥0)
def
= ∀|p| |s| d Rr I(pm) I(pc) I(i) P(m) I(i) Tdc

` (λ q(Z≥0) r(Z>0).
q
r

I(pm)P(sm))+

(λ e(Z≥0) m(Z≥0) f(Z>0) .
(e+m)

f
|p||s|Rr)+

λx(Z≥0)y(Z≥0)xy(λ a(Z≥0) b(Z>0).
a
b

I(pc)P(sm))(
1
F
)+

(λd(Z>0) sz.s(s(z))d )+

(λ a(Z≥0) b(Z>0) c(Z≥0). (a/b)(λ sz.s(s(z)))c)I(p)I(i)d +Tdc

3.2.3 Disruptive Remote Execution Comparison with Non-disruptive Execution

In this section, we present the comparison of application execution time with and

without network disconnections. We consider two types of applications to highlight the

significance of the problem. The cloud based mobile applications can be interactive,

requiring user interaction during execution or the applications can be non-interactive. Al-

though this thesis is about interactive applications, we present the formal analysis for both

types to highlight why interactive applications are different and more complex compared

to non-interactive applications.

71

Univ
ers

ity
 of

 M
ala

ya



3.2.3.1 Same Cloud

In case of same cloud, for interactive applications, it is trivial to show that the ap-

plication execution time in disruptive networks is higher than that of the non-disruptive

network. We give the formal theorem for the sake of completeness. Mathematically,

we want to prove that remote execution time with disconnections is higher than the time

without disconnections. This is represented by the Equation 3.14, which is the simplified

form of the inequality.

Time_totEDC >Time_totENoDC

k×Tdc >0 (3.14)

Formally, the above equation can be represented as follows.

Theorem 1.

` ∀ k Tdc. k > 0∧Tdc > 0

=⇒ (λ y.ky)Tdc > 0

Proof. This is trivial to prove because this expression is always true, given that Tdc > 0.

Hence the theorem is a universal truth if the network is disruptive.

In case of non-interactive applications, it is again trivial to show that the application

execution time in disruptive networks with intermittent network connection is unaffected

by the network disconnections. This is because the application execution continues even

when the mobile device is disconnected from the network. This is mathematically repre-

sented in Equation 3.15.

(Time_ERb+Time_ERa+Time_Rtr) = (Time_ERb+Time_ERa+Time_Rtr) (3.15)

72

Univ
ers

ity
 of

 M
ala

ya



Both sides of the equations are equal as non-interactive application execution is un-

affected by the network disconnections.

3.2.3.2 Cloudlet-to-Cloudlet

In case of disconnection from one cloud/cloudlet and reconnection with another

cloud/cloudlet, there are two scenarios. If the state of application is not migrated to the

new cloudlet, the entire application needs re-execution. This is the worst case scenario

with reference to execution time under disruptive networks. The execution time for dis-

ruptive networks is always higher than non-disruptive case. Therefore, we do not consider

this scenario. The better scenario is where the state is transferred through mobile device

to the new cloudlet. In this case, irrespective of interactive or non-interactive application,

the execution time of application under disruptive network connection is higher as shown

in equation below.

(
|p|
Rr

+ d)+(
(|p|+ |s|)

Rr
+ d)+(

(|s|)
Rr

+ d)+
I(pc1)

P(m)
× 1

F1
+

I(pc2)

P(m)
× 1

F2
+

I(p)
I(i)
×2d

+Tdc +Time_Rtr > (
|p|
Rr

+ d)+
I(p)
P(m)

× 1
F
+

I(p)
I(i)
×2d +Time_Rtr

(3.16)

If we consider the case of equal speedup factor for both cloudlets then the simplified

form of the equation will be as below:

(
(|p|+ |s|)

Rr
+ d)+(

(|s|)
Rr

+ d)+Tdc > 0 (3.17)

This is formally given in theorem below.

Theorem 2.

` ∀ |p| |s| Rr d Tdc |p|> 0∧|s|> 0∧Rr ≥ 0 d > 0;Tdc > 0

=⇒ (λ m(Z≥0) n(Z>0) .
m
n
(|p|+ |s|)Rr)+(λd(Z>0) sz.s(s(z))d )

+(λ m(Z≥0) n(Z>0) .
m
n
|s|Rr)+Tdc > 0

73

Univ
ers

ity
 of

 M
ala

ya



Proof. This is trivial to prove because this expression is always true, given that Tdc > 0,

|s|> 0, and d > 0. Hence the theorem is a universal truth if the network is disruptive.

3.2.3.3 Cloud/Cloudlet-to-mobile

This scenario arises in case of permanent disconnection. We again ignore the worst

case of no state received. In this case, the application is executed by the mobile device lo-

cally after disconnection. In this scenario, the interactive and non-interactive applications

behave differently.

For non-interactive applications, the following theorem shows that the execution

time in disruptive networks is higher. The theorem is a universal truth for all non-negative

values of the state, even for arbitrarily large values of Rr.

Theorem 3.

` ∀ |s| Rr. |s|> 0∧Rr > 0

=⇒ (λ m(Z≥0) f(Z>0) .
m
f
|s|Rr)> 0

The case of interactive applications is complicated and needs special conditions to

hold for the non-disruptive case to give better execution time compared to the disruptive

case. We observe that the conditions before permanent network disconnection are same

for the case of disruptive as well as non-disruptive network execution of the cloud based

interactive mobile application. However, in case of non-disruptive case, the computation

continues on the cloud/cloudlet, which requires remote interaction with the user through

mobile device. On the other hand, the local execution on the mobile device does not

require remote interaction; however, the execution is slower in this case. In this case, a

specific relationship between interaction time, number of interactions and the local exe-

cution speed of the mobile device is required to hold for the disruptive case to have higher

time. We first derive the relationship mathematically. Subsequently we present the formal

theorem for this relationship to hold.

74

Univ
ers

ity
 of

 M
ala

ya



Ignoring the state transfer time in case of disruptive network, the following expres-

sion must be satisfied for the remote execution under disruptive network to have remote

execution gain.

I(pm)

P(m)
>

I(pm)

P(m)
× 1

F
+

I(pm)

I(i)
×2d (3.18)

The expression states that the time taken by the mobile device to compute the re-

maining instructions after disconnection must be higher than the aggregate time taken by

interactions and cloud/cloudlet based execution of the remaining instructions after pre-

sumed disconnection. The expression can be simplified to the following form.

P(m)∗F×2d < I(i)(F−1) (3.19)

Using the minimum value of F = 2, this expression states that the instructions executed

by the mobile device during two round trip propagation delays of the network should be

less than the instructions after which interaction takes place. To ensure that the above

expression holds, following formal theorem should hold, where the desired condition

appears as a pre-condition. In general, the network interaction is slower than twice the

round trip time, because the user response is one round trip time, hence the condition

always holds. With pre-condition satisfied, the theorem remains a universal truth.

Theorem 4.

` ∀ I(i) F d P(m) .F > 2∧P(m)< I(i)/4d

=⇒ (λ a(Z>0) .a(λd(Z>0) sz.s(s(s(s(z))))d )P(m)<

(λ b(Z>0) c(Z>0)b(c−1)I(i)F)

75

Univ
ers

ity
 of

 M
ala

ya



3.2.4 Formal Analysis of Application Execution Frameworks in Disruptive Net-
work Conditions

In this section, we analyze the remote application execution for application exe-

cution frameworks in disruptive network conditions of MCC. There are two frameworks

that can be used for network disconnection cases. First framework is optimized VM based

cloudlet, where the application along with the virtual machine is resumed on a different

cloudlet, after disconnection. This framework suggests using mobile device to carry over-

lay VM to the next cloudlet. A number of variations of the idea has been proposed where

VM is carried to the next cloudlet through intermediate cloud or using mobility predic-

tion and direct transfer. All such cases can be considered as special case of the VM based

cloudlet, as far as this analysis is concerned. This is because the mobile device can get

the VM on next cloudlet only after it has connected with the next cloudlet. Therefore, the

time taken for reconnection is at least equal to the time of the disconnection.

The second framework is COMET, where application is resumed on the mobile de-

vice after disconnection. The application continues to be executed on the mobile device

and cannot be transfered to the cloud/cloudlet upon reconnection. We formally analyze

both frameworks and compare them with one another, showing one to be superior com-

pared to the other. Subsequently, we also show how this analysis sets the objective for

our own proposed algorithms.

3.2.4.1 Optimized VM based Cloudlet

This mechanism has been proposed by Satyanarayanan et al.(Satyanarayanan et al.,

2009). In case the mobile device predicts a network disconnection, the VM overlay is

created and transfered to the mobile device. Upon reconnection with the next cloudlet,

the state is used to create new virtual machine for the mobile device on the next cloudlet.

For best case analysis of the execution time of the application, we make following set of

assumptions.

• Irrespective of the mechanism for mobility prediction, we assume that the mobile

76

Univ
ers

ity
 of

 M
ala

ya



device is always able to predict the network disconnection well in time.

• The time for overlay creation and creation of VM for the mobile device to resume

computation can be ignored.

• Irrespective of the mechanism for state transfer, the state is always available on the

next cloudlet, when the mobile device connects with the next cloudlet.

Under these assumptions, we can analyze the best case application execution time of

VM based cloudlet. Based on the above stated assumptions, irrespective of interactive

or non-interactive application, the execution time of application under disruptive network

connection is higher as shown in Equation 3.16. The simplified form of the equation for

the case of equal speedup factor for both cloudlets is shown in Equation 3.17.

L = {|p|+ |s|= 570×106bytes, |s| = 500×106bytes, Rr = 9.5 Mbps, Tdc = 2 seconds}

The condition (L.H.S. = 903.15 > R.H.S. = 0) holds. This is trivial to prove because

this expression is always true as all factors involved cannot be negative. Hence the theo-

rem 2 is a universal truth if the network is disruptive for optimized VM-based cloudlet.

To summarize, the optimized VM based cloudlet increases the application execution

time by at least the time of the network disconnection, in the best case scenario. In

general, the situation is worst, specifically, if the network disconnection is not predicted

in time. In such cases, the application execution on the cloudlet can be wasted and the

mobile device needs to restart from the point of second to last disconnection or in the

worst case, from the start of the application. It will be more practical, if the mobile device

can perform useful computations during disconnection time. COMET works based on

this idea as explained in next section.

3.2.4.2 COMET

COMET (Gordon et al., 2012) improves on optimized VM based cloudlet in three

ways. First, instead of exchanging the overlay VM, COMET synchronizes thread level

77

Univ
ers

ity
 of

 M
ala

ya



state between cloudlet and the mobile device. This has significantly lower overhead, al-

though the data is exchanged more frequently. Second, the state between cloud/cloudlet

and the mobile device is continuously synchronized, eliminating the possibility of total

state loss at the time of disconnection. Third, COMET resumes the application on the mo-

bile device, after network disconnection. This results in performing useful computations

during disconnection compared to wasting the time of disconnection. However, there is

a negative side of this execution. Even when the mobile device is able to reconnect with

same or a different cloud, the mobile device cannot take advantage of the cloudlet and

must continue the computation locally.

The case of COMET is equivalent to the cloudlet-to-mobile class that has been dis-

cussed above. COMET execution of application can be considered as interactive because

of continuous state synchronization. Ignoring the state transfer time in case of disruptive

network, the Equation 3.19 must be satisfied for the remote execution under disruptive

network to have higher execution time. The simplified form of the equation is as follows:

P(m)∗F×2d
(F−1)

< I(i) (3.20)

Using the minimum value of F = 2, to ensure that the above expression holds, the Theo-

rem 4 should hold, where the desired condition appears as a pre-condition. In general, the

network interaction is slower than twice the round trip time, because the user response is

one round trip time, hence the condition always holds. With pre-condition satisfied, the

theorem remains a universal truth.

L = {P(m) = 856×106, F = 2, d = 50×10−3, I(i) = 3.42×108, RT T = 100ms}

The condition (L.H.S. = 1.7 ×108 < R.H.S. = 3.42 ×108) holds for the Theorem 4 with

the constraint that the interaction interval must be greater than the RTT. It is worth noting

that unlike general application execution where user interaction cannot be controlled,

78

Univ
ers

ity
 of

 M
ala

ya



COMET based cloud/cloudlet interaction with the mobile device can be controlled and

intentionally set such that the above theorem’s precondition is not satisfied. COMET

synchronize the process states whenever the distributed shared memory is modified. That

increases the overhead. Although COMET outperforms the optimized VM-based cloudlet

execution, COMET is still an impractical solution in case of highly dynamic environment

as COMET does not support the resumption of execution on the cloud after the connection

re-establishment.

3.3 Conclusion

In this chapter, we showed that under very realistic user mobility scenarios, the mo-

bile device frequently gets disconnected from the cloud/cloudlet during the execution of

cloud based mobile applications. We also showed that such disconnections adversely im-

pact the performance of the applications. We presented extensive empirical analysis to

show that the existing application execution frameworks are unable to mitigate or reduce

the adverse impact of network disconnections on mobile application execution.

The findings of the empirical analysis lead us to the formal analysis of the applica-

tion execution time under disruptive networks. We derived the expressions for execution

time and showed that under different network connectivity scenarios, the application exe-

cution time is always affected by the network disconnections for interactive applications.

For non-interactive applications, the situation remains the same with exception of recon-

nection with the same cloud/cloudlet, in which case the performance is unaffected.

We formally analyzed the application execution frameworks and their handling of

network disconnections. The formal analysis revealed that under best case, the VM based

cloudlet experiences a delay equal to the aggregate time of network disconnections. On

the other hand, the COMET may experience lesser or higher than this delay, depending

upon the remaining computation at the time of disconnection. We note that continuous

synchronization of COMET helps it match the best case of optimized VM based cloudlet;

however, its inability to re-synchronize upon reconnection can lead to slower application

79

Univ
ers

ity
 of

 M
ala

ya



execution in case of network disconnection. This observation gives us hint about our

proposed solution.

In the subsequent chapter, we propose process state synchronization algorithms that

aim at minimizing the application execution delay from the best case of equivalent to the

aggregate of network disconnections. We propose the execution on the mobile device

during network disconnections. However, unlike COMET, our proposed solution aims at

transferring the computation on the cloud/cloudlet upon reconnection.

80

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 4 : PROCESS STATE SYNCHRONIZATION ALGORITHM

The empirical and formal analysis presented in the previous chapter establishes the prob-

lem of the impact of network disconnections on the cloud based mobile application ex-

ecution as non trivial. The purpose of this chapter is to present the algorithms proposed

for addressing the problem. We propose a solution for significantly improving the cloud-

based mobile application execution performance in disruptive networks. We propose the

use of process state synchronization as a solution to the problem. The problem is math-

ematically modeled to compute the preferred and upper-bound synchronization intervals

for process state synchronization, such that the loss of computation can be minimized for

cloud based mobile application execution.

The chapter is organized into five sections. Section 4.1 presents the proposed algo-

rithms for process state synchronization to support mobility in MCC. Section 4.2 elab-

orates the proposed process state synchronization algorithm with the help of a sequence

diagrams illustrating the execution and synchronization of a simple application. Section

4.3 presents the mathematical model and drives upper bound on synchronization inter-

val. The model will be used in next chapter for the validation of the emulated results of

the undertaken research. Section 4.4 highlights the distinctive features of the proposed

algorithm. Section 4.5 summarizes the chapter with conclusive remarks.

4.1 Process State Synchronization (PSS)

We propose the use of periodic process state synchronization as a solution to the

problem of application state loss because of network disconnections during cloud based

execution of mobile applications. This section presents the proposed process state syn-

chronization (PSS) algorithm. Synchronization of execution state of the process contains

three components. Firstly, the application execution environment (hardware architecture,

operating system and libraries support) in the cloud/cloudlet and the application execution

environment on the mobile devices should be compatible in such a way that the execution

81

Univ
ers

ity
 of

 M
ala

ya



state captured on one computational element can be used to resume the process on the

other. This requirement is explained in Section 4.1.1. Second requirement is a mech-

anism to capture the state on the given environment and resume the process from the

captured state on the environment of the second computational element. This component

is explained in the Section 4.1.2. Finally, the mechanism of actually synchronizing the

state across computational elements is required, which is explained in Section 4.1.3.

4.1.1 Cloud-based Application Execution

Three application execution models exist for execution of mobile applications in

clouds. (a) Client server model where application server performs complex and extensive

computations in the cloud while lightweight client side is executed on mobile device. (b)

VM based application execution where mobile application is executed inside a virtual

machine that is loaded into the cloud server on the mobile user demand. (c) Application

offloading to the clouds with the application programmed using Java and executing inside

Java virtual machine. The application execution state requirements and size varies for

all the three models. For the purpose of this research study, we have tested the PSS

mechanism for application offloading model. However, our mechanism is not dependent

on Java runtime environment support.

We suggested that the mobile application should be executed inside the mobile de-

vice emulator on the cloud server. The use of emulator on the cloud side enables any

mobile application to be offloaded to the cloud server without requiring any modification

in the application. Furthermore, the overhead of executing the application inside a virtual

machine on the mobile device can be eliminated. This approach also allows the mobile

applications to be programmed in any programming language. The primary advantage of

this approach is that properly captured application execution state can be used to resume

the application either on the mobile device or any other cloud/cloudlet where the emulator

support is available. Consequently, the complex task of developing a unified method for

cross platform application execution state capture and resume is reduced to a significantly

82

Univ
ers

ity
 of

 M
ala

ya



simpler task of state capture and resume over uniform platform.

Keeping above advantages in view, this research recommends and uses the emulator-

based execution of mobile application in the cloud/cloudlet, although the proposed PSS

mechanism can work for any execution model. It is assumed throughout the rest of the

paper that such an execution environment is available on the cloud server.

4.1.2 Process State Capture and Process Resumption

For ensuring PSS mechanism to work, a key prerequisite is an ability to successfully

capture the execution state of application processes from the remote server, transfer the

state over the network and resume the application processes on the local computation

element (Mobile device). In this section, we briefly explain the process state components

that are required for successful application migration across uniform architectures. We

also briefly explain the procedure for capturing the process execution state and resuming

the process from the captured state.

task_struct
(Process 

Descriptor)

mm_struct
(Memory 

Descriptor)
Heap

Stack (grows down)

Data Segment

Code Segment 
(ELF)start_code

end_code
start_data

end_data

start_brk
end_brk

start_stack

Process Associated
 Kernel Stack

Registers

Base 
0x60000000

Offset 20

0x60000020

Mobile Device Cloud Server

task_struct
(Process 

Descriptor)

mm_struct
(Memory 

Descriptor)
Heap

Stack (grows down)

Data Segment

Code Segment 
(ELF)start_code

end_code
start_data

end_data

start_brk
end_brk

start_stack

Process Associated
 Kernel Stack

Registers

Base 
0x61000000

Offset 20

0x61000020

In
te
rn
e
t

Figure 4.1: Example Process State, highlighting the reference update required while re-
suming the process

The state of a process comprises of memory segments (Heap, Data, Stack and Code/-

Text) for all threads and child processes, File references to the files on the permanent

storage or I/O modules and the CPU state. On linux based systems, the references to

the memory segments as well as other details of the process are saved in the linux kernel

structure of task_struct. The CPU register state of every process can be acquired from

top of the process-wise kernel stack that is associated with each process. To capture the

83

Univ
ers

ity
 of

 M
ala

ya



process state, a process can be suspended through a kernel level module. The process

task_struct is used to acquire the detail of all memory segments as well as file references

of the process. The segments are mapped on kernel logical address space. The data from

segments as well as the process associated kernel stack is copied for transfer over the

network to the computational element where the process is expected to be resumed.

To resume the process, a skeleton process is created by executing the mobile ap-

plication on the machine where process is to be resumed. This requires the availability

of the application executable on the system. The newly created process is immediately

suspended. This saves the synchronization module from performing the complex task of

creating the process state in the linux kernel. The skeleton state is populated with the

captured process state by kernel level copy of state data into process memory. Figure 4.1

highlights that the reference update is required while resuming the process on a different

computing platform. These references are updated by separating the offset part of the

reference and combining the acquired offsets with the segment addresses of the mem-

ory segments on the local machine. Multiple mechanisms are available for process state

migration over uniform architectures (Litzkow, Tannenbaum, Basney, & Livny, 1997;

Osman, Subhraveti, Su, & Nieh, 2002). We used kernel module on the local and remote

server to perform the state capture and resume operations.

The size of the process state can be reduced by taking the difference of two consec-

utive states and transmitting only the updated parts. Similarly, the code segment needs

not be transfered because a page fault on code segment can result in loading the required

code segment locally at the time of process resumption. With process state migration

issue resolved, we turn our attention to the process state synchronization.

4.1.3 State Synchronization

The PSS mechanism must fulfill a number of requirements in order to be effective.

Firstly, the synchronization mechanism should be lightweight requiring minimum data

transfer between the mobile device and the cloud, keeping in view the limited bandwidth

84

Univ
ers

ity
 of

 M
ala

ya



Table 4.1: Symbols and Their Descriptions
Symbol Description
A Application ID
M Mobile device ID
SyncInterval Synchronization interval
AppState Application state
PCID Previously connected cloud ID
Dis.int Disconnection time interval
Tdc Disconnection time instance
Tsync Synchronization time instance
F Speedup factor
Tsus. Suspend time
Ttrans. State transfer time
Tres. State resume time

of last hop wireless connection. Secondly, the computational overhead of the synchro-

nization mechanism, specifically on the mobile device side should be minimum. Thirdly,

in case of disconnection, the mobile device shall be able to resume the computation from

a reasonably up to date execution state to ensure minimum loss of computation. Finally,

upon reconnection, the mobile device shall be able to synchronize back with the cloud

server or resume the computation on an alternate cloud by transferring its current com-

putational state. In case of reconnection with the same cloud server, the mobile device

shall also be able to decide on resynchronization or continuation from the last cloud state,

depending upon which state is more recent. Note that although Gordon et al. (Gordon

et al., 2012) proposed the use of synchronization, they have not analyzed if the synchro-

nization provides advantage in computation by verifying the third requirements above.

Similarly, their synchronization mechanism does not fulfill fourth requirement and a user,

once disconnected, cannot resume the computation back on cloud server in any form.

We present the proposed algorithms for PSS that fulfill the listed requirements. The

proposed mechanism requires a module on the mobile device as well as on the cloud side.

Table 4.1 presents description of the symbols used in the proposed algorithms.

4.1.3.1 Cloud-side Module

The cloud-side synchronization module is presented in the form of pseudo-code in

the Algorithm 1.

The application ID ‘A’, mobile device ID ‘M’, and SyncInterval are inputs to the

algorithm. The two IDs help the cloud server from distinguishing multiple applications

85

Univ
ers

ity
 of

 M
ala

ya



Algorithm 1: Process State Synchronization Algorithm (Cloud Server to Mobile
Device)

Input: [A,M,SyncInterval]
1 AppState← NULL
2 do
3 sleep(SyncInterval)
4 if getNetworkState() = CONNECTED then
5 setAppStatus(A, SUSPEND)
6 CloudAppState← getAppState(A)
7 sendAppState(CloudAppState, M)
8 setAppStatus(A, RESUME)
9 end

10 else if getNetworkState()=RECENTLYCONNECTED then
11 waitforstate()
12 if receivedAppState(MobileAppState, A, M) then
13 setAppStatus(A, SUSPEND)
14 setAppState(A, MobileAppState)
15 setAppStatus(A, RESUME)
16 end
17 else
18 setAppStatus(A, RESUME)
19 end
20 end
21 while(execApp)

of same mobile device as well as same application being executed on the cloud from

different devices. When the application starts its execution on the cloud server, cloud

synchronization module sets a synchronization timer with the value of synchronization

interval, which is a tunable parameter. At the expiry of synchronization timer, the module

checks if the network status with the particular device is still connected. If yes, the cloud

synchronization module suspends the application, captures its execution states from mem-

ory, and resumes the application (Lines 5-8 of Algorithm 1). After capturing the state, the

entire state is transmitted to the mobile device. If the network state has recently changed

from disconnected to connected (recently connected) the module waits for the state from

the mobile device (Lines 10-11). If the cloud server receives the state, the cloud server

updates its state to the recently received state and resumes the application (Lines 12-15).

Alternatively, the application is resumed from the last available state (Line 18).

4.1.3.2 Mobile-side Module

Algorithm 2 presents the pseudo-code for the module on the mobile device. The

primary task of the module is receive and save the state, when it is transmitted by the

86

Univ
ers

ity
 of

 M
ala

ya



cloud. In addition, it checks the network status periodically. If the network status is

disconnected and the local instance of application is suspended, this means the network

recently got disconnected. In this case, the last received state from the cloud is used to

update the application state on the mobile device and the application is resumed (Lines 3-

8 of Algorithm 2). In case the application is not suspended, it indicates the application is

already executing locally while the network is disconnected and no action is taken (Lines

10-12).

Algorithm 2: Process State Re-Synchronization Algorithm (Mobile Device to
Cloud/Cloudlet)

Input: [A,M,PCID,Dis.int.,Tdc,Tsync.,F ,Tsus.,Ttrans.,Tres.]
1 AppState← NULL do
2 x← getNetworkState()
3 if x=DISCONNECTED then
4 y← getAppStatus()
5 if y=SUSPEND then
6 setAppState(A, CloudAppState)
7 resumeApp(A)
8 setAppStatus(A, LOCALEXEC)
9 end

10 else if y=LOCALEXEC then
11 continue
12 end
13 end
14 else if x=CONNECTED then
15 y=getAppStatus()
16 if y=LOCALEXEC then
17 if ResyncRequired(A,PCID,MobileAppState,Dis.int.,Tdc,

Tsync.,F ,Tsus.,Ttrans.,Tres.) then
18 setAppStatus(A, SUSPEND)
19 MobileAppState← getAppState(A)
20 sendAppStatetoServer(MobileAppState, A, PCID)
21 end
22 else
23 setAppStatus(A, PCID, SUSPEND)
24 end
25 end
26 end
27 if receivedAppState(CloudAppState, A, PCID) then
28 saveAppState(CloudAppState, A)
29 end
30 while(execApp)

If the network status is connected and the application status shows local execution,

it indicates that the network connection with the cloud server (same cloud or an alternate

cloud/cloudlet) recently got established. In this case, the procedure listed as Procedure

87

Univ
ers

ity
 of

 M
ala

ya



1: ResyncRequired is used. The procedure takes as input the application ID, cloud ID,

disconnection interval, disconnection time, synchronization timestamp, speedup factor,

suspend time, state transfer time and resume time. Return value is the possible action

to be taken by the mobile device. In case of re-connection with same cloud/cloudlet,

the mobile device checks if disconnection interval was long enough to have advanced

the application on mobile device beyond the expected last state of the application on the

cloud server (Line 4 of Procedure 1). If so, the action flag is set to re-synchronize. If the

disconnection is short, the flag is set to simple reconnect (Line 7 of Procedure 1).

In case of a new cloud/cloudlet connection, the flag is set to migrate and re-synchronize

whereby the mobile device must transfer its application along with the existing execution

state of the application for successful resumption on the cloud server (Line 11 of Proce-

dure 1). Depending upon the action required, the mobile device responds to the cloud

server either by requesting application resumption without state update or application

resumption with state update (state is also transmitted by the mobile device) or applica-

tion start using execution state (state as well as application code is transmitted by mobile

device).

Procedure 1: ResyncRequired(A,PCID, Dis.int.,Tdc,Tsync.,F ,Tsus.,Ttrans.,Tres.)
1 if A is INTERACTIVE then
2 if getCloudID() = PCID then
3 if Dis.int. > (Tdc - Tsync.)*F + (Tsus. + Ttrans. + Tres.) then
4 ReSyncFlag← RESYNC
5 end
6 else
7 ReSyncFlag← NORESYNC
8 end
9 end

10 else
11 ReSyncFlag← RESYNCWITHMIGRATION
12 end
13 end
14 else
15 ReSyncFlag← NORESYNC
16 end

Output: [ReSyncFlag]

88

Univ
ers

ity
 of

 M
ala

ya



4.2 Example Illustration

In order to further elaborate the concept of application execution process, we illus-

trate the application execution process in various scenarios. Figure 4.2 (a) illustrates a

scenario where the execution restarts on mobile device when the network disconnection

occurs. Initially the application is migrated to the cloud server for execution. However,

during the execution on the cloud server, the network is disconnected. On the network

disconnection detection, the mobile device restarts the application execution by itself.

The total execution time is the sum of the application migration time to the cloud, cloud

execution time before the network disconnection, and the whole application execution

time on the mobile device.

Figure 4.2 (b) illustrates the application re-offloading to another cloudlet after the

occurrence of network disconnection. In this scenario, two cloudlets, cloudlet ‘A’ and

cloudlet ‘B’, have been used. Initially, the application is migrated to the cloudlet ‘A’

where the execution is started. However, during the execution on the cloudlet ‘A’, the

network disconnection occurs. Consequently, the computation which was performed on

the cloudlet ‘A’ has lost. Meanwhile, the mobile device discovers another cloudlet ‘B’

and re-offloads its application for execution to the cloudlet ‘B’. The execution from the

initial stage is again performed on the cloudlet ‘B’. On the successful completion of the

application execution, the results are sent back to the mobile device. The total execution

time is the sum of the application migration time to the cloudlet ‘A’, cloudlet execution

before the network disconnection, application migration time to the cloudlet ‘B’, whole

application execution time on the cloudlet ‘B’, and the result transfer time to the mobile

device.

In these two scenarios, the mobile device did not get intermediate results from the

cloud server. Hence, the mobile device has to either re-execute the whole task from initial

stage as shown in Figure 4.2 (a) or has to re-offload the application to another cloudlet for

execution as shown in Figure 4.2 (b). The network disconnections in these two scenarios

89

Univ
ers

ity
 of

 M
ala

ya



0
1
2
3
4
5

0

1

2

3

4

5

6

7

8

9

Mobile 
Device

Cloud 
Server

Application migration

6
7Network Disconnects

Application 
restarts

Total Execution Tim
e

(a) Application Execution on Mobile De-
vice After Network Disconnection

0
1
2
3
4
5

0
1
2
3
4
5
6
7
8
9

Mobile 
Device

Cloudlet A

Application migration

6Network Disconnects

Application Remigration

Cloudlet B

W
as

te
d 

C
om

pu
ta

tio
n

Sending Back Results  

Total Execution Tim
e

Application 
Restarts

(b) Application Reoffloading on Another
Cloudlet After Network Disconnection

Figure 4.2: Non-Synchronized Application Execution Sequence Diagram for MCC

have resulted into wastage of computation. The re-execution of application from initial

stage or re-offloading of the application induces additional delay, consumes more energy,

and inefficiently utilizes the bandwidth.

Our proposed solution PSS reduces the computation wastage and the re-execution

cost by enabling the cloud server to exchange the intermediate results with the mobile

device. Figure 4.3 (a) and Figure 4.3 (b) illustrate the application resumption on the

mobile device and on the cloudlet, respectively, in network disconnection scenario.

Figure 4.3 (a) shows that application is initially migrated from the mobile device

to the cloud server for the execution. During the execution, cloud server synchronizes

the process execution states with the mobile device. When the network disconnection

occurs, the mobile device resumes the application execution from the last synchronized

states. In this case, the total execution time is the sum of the application migration time

to the cloud, cloud execution time before the network disconnection, and the remaining

application execution time on the mobile device.

Figure 4.3 (b) shows that application is initially migrated from the mobile device

to the cloudlet ‘A’ where the execution is started. During the execution, the cloudlet ‘A’

synchronizes application states with the mobile device. Upon the network disconnection,

90

Univ
ers

ity
 of

 M
ala

ya



0

1

2

3

4

5

6

7

Mobile 
Device

Cloud 
Server

Application migration

6

7
Network Disconnects

Execution 
Resumes

State Synchronization

State Synchronization

8

9

Total Execution Tim
e

(a) Application Execution Resumption on
Mobile Device After Network Disconnection

6
7
8
9

Mobile 
Device Cloudlet A

Application migration

Network Disconnects

Application & States Migration

Cloudlet B

Sending Back Results  

Total Execution Tim
e

State Synchronization

State Synchronization

State Synchronization

0
1
2
3
4
5
6
7

(b) Application Execution Resumption on
Another Cloudlet After Network Disconnec-
tion

Figure 4.3: Synchronized Application Resumption Sequence Diagram for MCC

the mobile device discovers another cloudlet that is cloudlet ‘B’, to execute the rest of

the task. When the mobile device discovers another cloudlet, it migrates the application

and last synchronization states from cloudlet ‘A’ to the cloudlet ‘B’. On receiving the

application and last synchronization process states, the application execution is resumed

on cloudlet ‘B’. The rest of the execution is performed on cloudlet ‘B’ and the results are

sent back to the mobile device on the completion of execution.

In these two scenarios, the mobile device gets the intermediate results from the cloud

server. Hence, the mobile device can resume the application execution from the last

synchronization point either on the mobile device as shown in Figure 4.3 (a) or on the

newly discovered cloudlet as shown in Figure 4.3 (b). Hence, the synchronization of the

process states between the mobile device and the cloud server reduces the computation

wastage after the network disconnection. Moreover, the synchronization minimizes the

execution time and energy consumption after the network disconnections.

Figure 4.4 (a) illustrates the interactive application execution scenario of state resyn-

chronization on reconnect. The figure shows that the application is initially migrated to

the cloud server where the execution is performed. During the execution, the process

91

Univ
ers

ity
 of

 M
ala

ya



states are synchronized with the mobile device. Meanwhile, the network disconnection

occurs and mobile device device starts the execution locally by itself. Execution on the

cloud server is suspended due to waiting for the input from the mobile device. When

the connection is re-established, the mobile device resynchronizes back the process states

with the cloud server. Thereafter, the application execution is resumed on the cloud server

from the resynchronization point. The rest of the application is executed on the cloud

server and results are sent back to the mobile device.

Figure 4.4 (b) illustrates the non-interactive application execution scenario where no

state re-synchronization gain on reconnect is shown. The figure shows that the application

is initially migrated to the cloud server where the execution is performed. During the

execution, the process states are synchronized with the mobile device. Meanwhile, the

network connection is lost and on the disconnection detection the mobile device resumes

the application execution locally by itself from the last synchronization point. When the

network connection is re-established, the mobile device computes the resynchronization

gain. As the cloud server has no gain to resynchronize the states therefore the process

states are not synchronized back with the cloud server. As the application is already

executing on the cloud server during the disconnection it continues and sends back the

results to the mobile device when network connection re-established.

4.3 Mathematical Model of PSS

The overhead and the efficiency of the algorithms presented in the previous section

are dependent on proper selection of the synchronization interval. The synchronization in-

terval is dependent upon disconnection frequency and disconnection intervals. Although

both frequency of disconnections and the duration of disconnections is unpredictable, the

average value of duration can be computed by observing the disconnection pattern in the

time proceeding the application execution. This can easily be achieved using already

available mechanisms within the mobile devices.

In this section, we develop a mathematical model to establish a correlation between

92

Univ
ers

ity
 of

 M
ala

ya



0

1

2

3

3

3
3

4

Mobile 
Device

Cloud 
Server

Application migration

3

3

3

6

Network Disconnected

Execution
Resumes

State Synchronization

State ReSync

Waiting 
for Input

5 Reconnected

7

8

9

Execution
Resumes

Sending Back Results 
Result

Total Execution Tim
e

(a) State Re-Synchronization on Reconnect

0

1

2

3

4

5
3

4

Mobile 
Device

Cloud 
Server

Application migration

6

7

8

9

Network Disconnected

State Synchronization

No Sync Gain

5 Reconnected

Execution
Resumes

Sending Back Results

Total Execution Tim
e

(b) No State Re-Synchronization on Reconnect

Figure 4.4: Re-Synchronization Decision on Reconnect Sequence Diagram for MCC

synchronization interval, disconnection interval, cloud to mobile processing speedup ra-

tio and the cloud-based mobile application execution time under intermittent network

connectivity. We derive the sufficient condition on synchronization interval for PSS to

ensure reduced execution time of mobile application. We also derive the upper bound

on synchronization interval such that a higher value of synchronization interval results

in negligible reduction in execution time and leads to significant overhead on mobile de-

vice in terms of wasted computations. We only present the case of local resumption on

mobile device after disconnection using PSS because the worst case execution time is ob-

served for PSS in this case compared to remote resumption, which is significantly more

beneficial. The variables used in this section are summarized in Table 4.2.

4.3.1 Application Execution Time

The execution time of an application depends on many factors including the CPU

time required by the application, operating system overhead, number of other applications

requiring the CPU time, direct memory access time and the wait time on resources such as

files, hardware peripherals etc. For the purpose of analysis, we assume that the application

only requires CPU time and automated access of a set of resources where it does not have

93

Univ
ers

ity
 of

 M
ala

ya



Table 4.2: Symbols and descriptions

Symbol Description
Pm Mobile device speed (Million Instructions per Second (MIPS))
Pc Cloud processing speed offered for mobile device (MIPS)
f Ratio of Cloud to mobile device processing speed
r Data Rate (Mbps)
l Propagation delay
I Expected number of application instructions
Imu Expected number of mobile useful instructions
Imw Expected number of mobile wasted instructions
M Code Migration Size (Bits)
Tsync Synchronization interval
T j

dc jth disconnection interval
t j
dc Time of jth disconnection

tk
sync Time of kth synchronization

to wait. Under this assumption the execution time of application being executed on a

local resource can be given in terms of expected number of instructions, processing speed

in million instructions per second (MIPS), operating system overhead and the wait time

because of time sharing with other applications. This expression for local execution time

is given in Equation 4.1 where I is the expected number of executed machine instructions,

Pm is the execution speed of processor in MIPS, O is the overhead instructions because of

operating system and n is the number of other processes in the system.

Tle =
I

Pm
+

O
Pm

+∑
n

I
Pm

(4.1)

If the same application is executed on a remote computational element, then the

overhead because of interaction with the local resources will add to the execution time of

application. Similarly, if offloading of code is required to transfer the application from

local to remote computational element, the offloading time will be added to the appli-

cation. Furthermore, in case of intermittent network connectivity, the execution time

for interactive applications increases by the total duration of disconnection. Assuming

the interaction is required after every Ii machine instructions and assuming that the data

transfered during interaction is negligible, the remote execution time of interactive appli-

cation under intermittent network connectivity is given by Equation 4.2. In the equation,

94

Univ
ers

ity
 of

 M
ala

ya



tmsync

tndc CCC

tksync

tjdc

t1+α
sync

t1dc

T(1+α )
dc

Texec

t1dc t(1+α)
sync( - )*f

Figure 4.5: Illustration of useful and useless computation disconnection intervals

r is the data transfer rate, M is size of migration state in bits and l is propagation delay

while T j
dc is the duration of jth disconnection interval.

T dc
re =

I
Pc

+
O
Pc

+∑
n

I
Pc

+
I
Ii
∗2∗ l +

M
r
+ l +∑

j
T j

dc (4.2)

4.3.2 Application Execution Time with PSS

If PSS is enabled, in case of disconnection, the mobile device can locally resume the

computation from the last received state. With reference to the execution being performed

by the mobile device, the disconnection intervals can be divided into two sub-intervals,

as shown in Figure 4.5. During first interval, mobile device will re-perform the execu-

tion that was performed on the cloud but not synchronized with the mobile device. The

duration of this interval is dependent upon the interval between last synchronization and

disconnection as well as on the processing speed of the mobile device and is given by the

expression (t j
dc− tk

sync) ∗ f where f is the ratio of processing speed of the cloud and the

mobile device. Any computation performed during this interval by the mobile device is

wasted if the mobile device reconnects with the same cloud after some time. The number

of wasted instructions execution performed on the mobile device is given by Equation 4.3.

During the second interval, mobile device will execute the part of application that has not

yet been executed by the cloud and resynchronization by mobile device with the cloud

will take place upon reconnection. The computation performed during the second inter-

95

Univ
ers

ity
 of

 M
ala

ya



C

tksync

tjdc

Tj
dc

(a) DC interval with Wasteful Comp.

C

tk+α
sync

tjdc

T(j+α )
dc

tjdc t(k+α)
sync( - )*f

(b) DC interval with Useful and wasteful comp.

Figure 4.6: Illustration of DC interval for useful and wasteful computations

val of the disconnections is useful computation. The number of instructions executed

during this interval are given by Equation 4.4 where k is last synchronization event before

disconnection event j. Note that the interval t j
dc− tk

sync is dependent upon the discon-

nection profile and the synchronization interval Tsync. The value of this interval varies

between 0 and Tsync−1.

Imw = ∑
j

min((t j
dc− tk

sync)∗ f ,T j
dc)∗Pm (4.3)

Imu = ∑
j

max(T j
dc− (t j

dc− tk
sync)∗ f ,0)∗Pm (4.4)

Using the useful computations performed by the mobile device, the execution time

of application under intermittent connectivity with PSS is given by Equation 4.5.

T sync
re =

I− Imu

Pc
+

O
Pc

+∑
n

I− Imu

Pc
+

I− Imu

Ii
∗2∗ l +

M
r
+ l +∑

j
T j

dc (4.5)

4.3.3 Sufficient Condition for Usefulness of PSS

Process state synchronization will be beneficial only if the application execution time

with synchronization is lesser than the execution time without synchronization. For per-

manent disconnections or reconnection to a different cloud/cloudlet upon reconnection,

it is trivial to show that T sync
re < T dc

re . Therefore, we focus on the case of intermittent

connectivity with same cloud and derive the sufficient condition that ensures T sync
re is less

96

Univ
ers

ity
 of

 M
ala

ya



than T dc
re .

We observe that T sync
re < T dc

re holds as long as Imu > 0. Imu will be positive if there

exists at least one disconnection interval j such that expression 4.5 holds. This can be

achieved in multiple ways. First, if synchronization interval Tsync =
1
f then even in the

worst case of t j
dc− tk

sync = Tsync, we get (t j
dc− tk

sync) ∗ f − 1 = 0; however, such a small

synchronization interval will lead to very high synchronization overhead and is not a

suitable option. Second, if synchronization is performed just prior to disconnection then

(t j
dc− tk

sync) ∗ f − 1 = 0. This requires accurate disconnection event prediction, which is

impractical. Most practical option is to estimate the average disconnection interval T̄dc

and set the synchronization interval as given in Equation 4.6. Under this condition, all

disconnection intervals greater than the average disconnection interval will fulfill condi-

tion listed in Expression 4.5 even in worst case scenario of t j
dc− tk

sync = Tsync−1 resulting

in Imu > 0. Therefore, Equation 4.6 gives the sufficient condition for PSS to be useful.

T j
dc− (t j

dc− tk
sync)∗ f −1 > 0 (4.5)

Tsync =
T̄dc

f
(4.6)

4.3.4 Upper-bound on Synchronization Interval

We now compute the upper bound on synchronization interval such that further in-

crease in Tsync does not lead to reduced application execution time under PSS. Experi-

ments show that a particular value of synchronization interval results in equal number of

useful and wasteful computations being performed by the mobile device. Experiments

also show that further increase in synchronization interval beyond this value causes the

sharp decline in useful computations and a sharp increase in wasteful computations as

shown in Figure 4.7. We select the synchronization interval as upper bound where useful

and wasteful computations performed by mobile device are equal, i.e., Imu = Imw.

97

Univ
ers

ity
 of

 M
ala

ya



0

5

10

15

20

5 15 25 35 45 55 65 75 85 95 10
5

11
5

12
5

13
5

14
5

15
5

16
5

17
5

18
5

19
5

20
5

21
5

22
5

23
5

24
5

Computation Wastage on Mobile Device
Valuable Computation on Mobile Device

Synchronization Interval (Seconds)

Pe
rc

en
ta

ge
 In

st
ru

ct
io

ns
 

Figure 4.7: Synchronization Interval For Balancing Trade-off between Mobile Device
Useful and Useless Computation

Useful and wasteful instructions are dependent on: (a) the interval between last syn-

chronization time tk
sync and the disconnection time t j

dc and (b) the duration of disconnection

T j
dc. We have 0≤ (t j

dc− tk
sync)< Tsync. For computation of upper bound, we use the aver-

age value of interval (t j
dc− tk

sync) which is Tsync−1
2 . The results show that the computation

of upper-bound is very accurate even with this simplifying assumption. Assuming the in-

terval (t j
dc− tk

sync) to be equal to Tsync−1
2 , the disconnection intervals fall in two groups. If

T j
dc ≤

Tsync−1
2 ∗ f , no useful computation is performed by the mobile device during this in-

terval as shown in Figure 4.6 (a). Alternatively, if T j
dc >

Tsync−1
2 ∗ f , then Tsync−1

2 ∗ f amount

of time is spent in wasteful computation while T j
dc−

Tsync−1
2 ∗ f amount of time is spent in

useful computation as shown in Figure 4.6 (b). Suppose a disconnection intervals out of

a total of n intervals satisfy T j
dc ≤

Tsync−1
2 ∗ f , then using above assumption Imu = Imw can

be written as Equation 4.7.

n

∑
i=a+1

[
T i

dc−
Tsync−1

2
∗ f
]
=

a

∑
i=1

T i
dc +

n

∑
i=a+1

Tsync−1
2

∗ f (4.7)

After simplification and replacing
n
∑

i=1
T i

dc = nT̄dc and T i
dc =

Tsync−1
2 ∗ f − T i

σ for T j
dc ≤

Tsync−1
2 ∗ f , we get the synchronization interval as given by Equation 4.8. The value of

Tsync can be computed iteratively for given value of average disconnection interval and

98

Univ
ers

ity
 of

 M
ala

ya



distribution of the disconnection intervals. This value gives the upper bound on synchro-

nization interval for a given average value of disconnection interval.

Tsync = 1+
1
f

[
T̄dc +

2
n

a

∑
i=1

T i
dc

]
(4.8)

4.4 Distinguishing Features of Proposed Algorithm

We discussed in the literature review that a number of application execution frame-

works have been proposed by the researcher. Some of these frameworks including COMET

address the issue of network disconnections; however, the solutions proposed in the liter-

ature are not adequate enough to mitigate the adverse impact of network disconnections.

In this section, we highlight how the proposed algorithms can address the shortcomings

of the existing solutions. Following are the distinguishing features of the proposed PSS-

based execution, which make it a distinct execution solution for interactive cloud-based

mobile applications in MCC.

4.4.1 Adaptive Synchronization Interval

The PSS-based execution is adaptive that enables the cloud server to tune the syn-

chronization frequency interval with the changes in the MCC environment. The advan-

tage of making the synchronization interval adaptive is that when the network is stable,

the synchronization frequency will be minimized that results in low synchronization over-

head. However, in case of highly dynamic environment, synchronizing the process states

after a long interval increases the computation wastage. Hence, the synchronization in-

terval should be adjusted to smaller value to frequently exchange the process states.

4.4.2 Lightweight Synchronization Mechanism

The synchronization is mainly performed by the cloud server during the application

execution to exchange the process states with the mobile device. The mobile device has

to receive the process states during the execution which consumes less energy as com-

pared to transmitting the process states. However, the resynchronization process that is

99

Univ
ers

ity
 of

 M
ala

ya



implemented on the mobile device exchanges the mobile executed process states with the

cloud server only on the re-establishment of the connection. Hence, the resynchroniza-

tion process also incur less overhead because of the synchronization on only connection

establishment. That is less frequent than the periodic synchronization of process states.

Therefore, the PSS-based execution is lightweight in terms of energy consumption.

4.4.3 Distributed Algorithm

The synchronization algorithm is implemented and run in the distributed form, thereby

reducing the information exchange overhead for selecting the synchronization interval.

The operational complexity of the algorithm is also divided between two ends, mobile

device and the cloud server. The distributed nature of the algorithm aids in implement-

ing the only specific functionality required for the computing platform. As on the cloud

server, periodic synchronization mechanism is required to periodically exchange the pro-

cess states with the mobile device during the execution. Hence, the synchronization algo-

rithm implements the periodically checks for the updated states, collects the process states

and exchanges the information with the mobile device. However, the synchronization re-

quirements on the mobile device are different as the mobile device has to exchange only

the process states of mobile computed execution after the reconnection establishment.

Most importantly, the mobile device is resource constrained so a lightweight resynchro-

nization procedure is required.

4.4.4 Two-way Synchronization

The most prominent feature of PSS that sets it distinctly apart from the existing so-

lutions is the use of two-way synchronization. Unlike COMET where application state

in cloud is synchronized with the mobile device, in case of PSS, the mobile device can

also send its state to the cloud/cloudlets. This reverse synchronization helps in case of

re-connections, which is often the case in network connectivity profile. The resynchro-

nization algorithm is implemented on the mobile device to exchange the locally executed

process states with the cloud server on the reconnection establishment. This enables

100

Univ
ers

ity
 of

 M
ala

ya



PSS based execution to take advantage of the faster cloud based computations upon re-

connection, which is not the case with COMET. The faster cloud based execution upon

reconnection significantly improves the application execution time.

This feature further liberates the mobile user because the user can have the saved

state on the mobile device and suspend the application execution during significantly

longer disconnections. The user can restart the application by transferring its state to

the cloud server, when it gets connected with the server, following an extended period

of time. Therefore, PSS provides significantly higher level of flexibility and improved

computation time for cloud based mobile applications, compared to the existing solutions.

4.5 Conclusion

In this chapter, we proposed a distributed synchronization algorithm for mobile ap-

plication execution in disruptive network conditions of MCC. Majority of the state-of-the-

art application execution frameworks start the application execution from initial stage on

mobile device or re-offload the whole task execution to nearby available cloudlets when

the network disconnection occurs. The proposed synchronization algorithm enables the

cloud server to exchange the intermediate execution states with the mobile device. The

execution can be resumed on the mobile device from the last synchronized point when

the network disconnection occurs. Upon reconnection, the execution state from mobile

device is synchronized back with the cloud server. In case of same cloud, the most current

of the two states is used to resume the computation on the cloud server.

The synchronization of the process states between cloud server and mobile device

is expected to reduce the overall execution time in disruptive network conditions with an

objective to minimize the synchronization overhead, energy consumption, and compu-

tation wastage. The computation wastage is minimized through the synchronization of

the intermediate states with the mobile device. The energy consumption is minimized

by utilizing the previously received synchronization states of a process on mobile device

instead of executing from initial stage. The additional execution delay is decreased by

101

Univ
ers

ity
 of

 M
ala

ya



resuming the application from last sync point. In the subsequent chapters, we present the

implementation details of the proposed algorithm, collect data using mathematical model

and the implementation, verify the model and present the performance analysis of the

proposed solution.

102

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 5 : EVALUATION

This chapter discusses the data collection method for the evaluation of proposed pro-

cess state synchronization algorithm in MCC environment. The purpose of the chapter

is to explain the experimental setup used for testing the performance of the proposed

algorithm, mathematical model parameters, data collection technique, and the statistical

method used for examining the accuracy of the data. The chapter also presents the data

collected for evaluating the performance of the proposed algorithm.

The chapter is organized into seven sections. Section 5.2 explains the experimental

setup, connection execution profiles, prototype application and performance metrics, and

data gathering and data processing. Section 5.3 presents the data collected to validate

the correctness of developed mathematical model by comparing the results obtained from

mathematical model with results of the experiments. Section 5.4 reports the collected

data for execution time and total computation wastage in case of different disconnection

profiles. Section 5.5 reports the data collected to analyze the impact of synchronization in-

terval on the following parameters: a) execution time, b) number of resynchronization, c)

synchronization overhead, d) mobile device computation wastage, e) cloud computation

wastage, f) valuable computation performed on the mobile device, g) number of instruc-

tions computed between last sync point and disconnection, and h) energy consumption.

Section 5.6 presents the data collected for the performance comparison of PSS-based

execution with optimized VM-based cloudlet and COMET. Finally, Section 5.7 extracts

conclusive remarks.

5.1 Introduction

Process state synchronization algorithm is designed to enable the application exe-

cution frameworks for executing the application with minimum execution overhead in

disruptive network conditions of MCC. The significance of PSS is evaluated in emulated

mobile cloud computing setup and with mathematical modeling. The performance of PSS

103

Univ
ers

ity
 of

 M
ala

ya



is evaluated by varying the synchronization interval, for different connectivity data traces,

and comparing with the benchmarked solutions.

A prototype application was developed to run on the mobile device as well as on

the cloud server which is tested in mobile cloud computing environment for five differ-

ent types of disconnection-execution profiles: a) permanent disconnection execution, b)

permanent disconnection execution with synchronization, c) intermittent disconnection

execution, d) intermittent disconnection execution with synchronization, and e) always

connected. The performance of an application is evaluated with respect to execution

time, computation wastage in form of number of instructions, energy consumption, and

synchronization overhead. The sample mean for the sample space of 30 values is deter-

mined that is signified by finding the error estimate for 99% confidence interval. The

results of testing the prototype application are also compared to validate the significance

of the proposed solution.

5.2 Performance Evaluation

This section presents the methodology used for the evaluation of the process state

synchronization algorithm. We discuss the experimental setup, five types of disconnection-

execution profiles used for comparison, prototype application used for the evaluation, and

data gathering and processing method.

5.2.1 Experimental Setup

We implemented process state synchronization algorithm in distributed form on a

mobile device and on the cloud server at linux kernel level. For conducting the exper-

iments, we emulated 3G connectivity traces in the lab environment over the LAN net-

work. The disconnection has been emulated by dropping the packets between the emu-

lated cloud server and emulated mobile device. The execution state capture and resume

has been implemented as linux kernel module while a simple client server application

provides communication between the emulated mobile device and the cloud server. Pro-

cessing speed in terms of million instructions per second on the emulated mobile device

104

Univ
ers

ity
 of

 M
ala

ya



Table 5.1: Systems specifications
Specification System 1 (Emulated Cloud Server) System 2 (Emulated Mobile Device)
Processor 2GHz 2GHz
RAM 8GB 4GB
BogoMIPS 5984 4655
Operating System Ubuntu 12.04.4 LTS Ubuntu 12.04.4 LTS

has been matched with Samsung Galaxy II by generating background processes on the

computer. On the cloud side, Openstack based cloud is deployed and a 4 core virtual

machine with 2.4 GHz processor is created for the mobile device. The virtual machine

on the cloud server provides a processing speedup factor of 2.66 for the emulated mobile

device.

Ethernet-based Emulated 3G 
Wireless Link

User 
Application

Architecture-Dependent Kernel 
Code

Client

Mobile Device Kernel Module 

Kernel 

System Call Interface

User Application

Architecture-Dependent Kernel 
Code

Server

Server Kernel Module 

Kernel 

System Call Interface

Emulated Mobile Device Cloud Server

Background 
Applications

Figure 5.1: Experimental Setup Illustration

The tested application is a simple algebraic computation repeated for the given input

through automated interaction. We computed the number of instructions of the applica-

tions for use in the model using Lackey tool for valgrind (Developers, 2015). Number of

other processes present in the system were kept uniform on the emulated mobile device

and emulated cloud server and were limited to automated background linux processes that

remained in sleep state for entire experiment. Operating system overhead has been set to

7% of the total execution time and has been estimated using top command. Table 5.1

presents the specifications of the systems used for the conducted experiments. Figure 5.1

presents the experimental setup illustration of the emulated MCC environment.

105

Univ
ers

ity
 of

 M
ala

ya



5.2.2 Connection Execution Profiles

We conducted a comparative study for five different scenarios: a) permanent discon-

nection, b) permanent disconnection with synchronization, c) intermittent disconnection,

d) intermittent disconnection with synchronization, and e) always connected. In perma-

nent disconnection scenario, the mobile device never connects back with the cloud server

once disconnected from the cloud. Hence, the execution that is performed on the cloud

server is wasted and after the disconnection the mobile device starts the execution from

the initial stage on the mobile device.

The execution time in case of permanent disconnection can be reduced by synchro-

nizing the process states with the mobile device. In this scenario, the mobile device can

resume the execution from the last synced point after the disconnection, thereby minimiz-

ing the wastage of previously performed computations on the cloud server. In intermittent

disconnection scenarios, the disconnections occur more than one time during the execu-

tion of the application in the cloud. However, with intermittent connectivity the execution

in the cloud depends on the nature of the application. In case of interactive applications,

the execution on the cloud may suspend for input from mobile device when the mobile de-

vice is disconnected from the network. For non-interactive applications, the cloud server

continues the execution during the disconnection period. On the connection reestablish-

ment, the mobile device can get back the results from the cloud server if the computation

is complete. We are considering a simple algebraic interactive application.

Similar to execution time of permanent disconnection execution, the execution time

in case of intermittent disconnections can be minimized by synchronizing the process

states with the mobile device. The mobile device can resume the application execution

locally during the network disconnection. On the network connection reestablishment,

the mobile device synchronizes back the process states with the cloud server. Thereafter,

the cloud server resumes the process. On the completion of execution, the results are sent

back to the mobile device. In case of always connected scenario, an offloaded application

106

Univ
ers

ity
 of

 M
ala

ya



will complete its execution on the cloud server, which gives less application execution

response time.

5.2.3 Prototype Application and Performance Metrics

To evaluate the performance of the process state synchronization algorithm in MCC

environment, we designed and developed a simple algebraic computation repeated for

the given input through automated interaction. The interactive component is added to

emulate the real interaction with the mobile device. We analyze the performance of our

proposed solution by studying the following performance measuring metrics.

1. Application Execution Time

2. Computation Wastage

3. Synchronization Overhead

4. Energy Consumption

The application execution time does not consider the offloading decision or application

migration time. We are assuming that application is already offloaded into the cloud.

Hence, the execution time is the time taken to perform computation on the cloud server,

disconnection time, and time taken to perform the computation on the mobile device or

results sent back time. The application execution time is measured in seconds.

The computation wastage represents the number of computed instructions wasted

on a computing device. The computation wastage is studied on both sides: the cloud

server and the mobile device. In case of permanent disconnection with synchronization,

the instructions are wasted on the cloud server but no instruction is wasted on the mobile

device. The instructions wasted on the cloud server are the instructions computed between

the last sync point and disconnection point. The reason of no computation wastage on the

mobile device is that mobile device either complete the execution by itself or offload it

to other cloudlet server. In case of intermittent disconnection, the computation is only

wasted on the mobile device and no computation is wasted on the cloud server. The

107

Univ
ers

ity
 of

 M
ala

ya



Table 5.2: Mathematical model parameters and their corresponding values
Parameter Value
Pm 856∗106 Instructions Per Second
f 2.667
Pc f * Pm
l 10 ms
I 2.25∗1012

M 3 KB
Tsync [5, 25, 45, 65, 85, 105, 125, 145, 165, 185, 205, 225, 245]

mobile device computation wastage is due to shorter network disconnection during which

the mobile device resumes the application execution locally but after reconnection the

mobile device does not resynchronize back with the cloud server. The re-computation of

instructions from last sync point to disconnection point, which is performed by mobile

device before the useful computation is also considered as computation wastage on the

mobile device. The reason is that the cloud server has already computed the instructions.

The synchronization overhead represents the number of bytes that needs to be ex-

changed during the execution of the application on the cloud server for synchronizing the

process states with the mobile device and for synchronizing back from the mobile device

with the cloud server. The synchronization overhead is measured in number of bytes.

The energy consumption is a parameter that measures the consumption of energy on the

process states synchronization from cloud server to mobile device and vice versa. The

energy consumption is measured in joules.

5.2.4 Data Gathering and Data Processing

The performance measuring parameters are investigated in diverse conditions by

varying the system variables such as synchronization interval. These variables effects

have been investigated on the performance measuring parameters. First of all, we com-

pared the results of the mathematical model with the results of execution in the emulated

MCC environment for validating the mathematical model. Thereafter, we used the mathe-

matical model to collect the results for different performance measuring parameters. The

parameter values used for the mathematical model are presented in Table 5.2.

The primary data is collected by testing the prototype application in the emulated

MCC environment for different scenarios. The data is collected for application execu-

108

Univ
ers

ity
 of

 M
ala

ya



tion time in case of thirty different mobile user connectivity data traces. The impact of

synchronization interval on execution time is analyzed by varying the synchronization in-

terval. The data for application execution time and total computation wastage is collected

for thirty different connectivity traces in case of different disconnection profiles.

Similarly, the data is collected for valuable computation performed on process state

synchronization enabled mobile device during the disconnection period. We also evalu-

ated the impact of synchronization interval on: a) execution time, b) number of resynchro-

nizations, c) synchronization overhead, d) cloud computation wastage, e) mobile device

computation wastage, f) valuable computation performed on mobile device, and g) num-

ber of instructions executed between last sync point and disconnection point. Further,

we collect the data for the comparison of our proposed solution with the state-of-the-art

application execution frameworks in case of application execution time, process states

exchange overhead, and energy consumption.

5.3 Data Collected For Model Validation

The correctness of developed mathematical model is validated by comparing the re-

sults obtained from mathematical model with empirical results. The execution time, use-

ful computation performed on mobile device, wasted computation performed on mobile

device are parameters which we studied for model validation.

Table 5.3: Application Execution Time Computed Through Mathematical Model and
Experiments

Synchronization Interval (seconds) 5 15 25 35 45 95 145 195 245
Experiment Data Trace-1 1341 1355 1352 1360 1368 1398 1478 1437 1437
Mathematical Model Data Trace-1 1291 1293 1313 1358 1369 1382 1347 1382 1382
Experiment Data Trace-2 1287 1301 1332 1323 1354 1420 1386 1386 1386
Mathematical Model Data Trace-2 1271 1287 1318 1321 1329 1358 1357 1358 1358
Experiment Data Trace-3 1376 1401 1413 1397 1446 1447 1511 1522 1532
Mathematical Model Data Trace-3 1330 1349 1391 1377 1423 1440 1440 1438 1440

1Note: Data presented in the table is in seconds.

Table 5.3 presents the comparison of execution time computed through mathematical

model and experiments. The first row and the first column of the table represent the

synchronization intervals for which the execution time is studied and the experiment type

respectively. The execution time is presented for different synchronization intervals of

109

Univ
ers

ity
 of

 M
ala

ya



three mobile user connectivity data traces. The average difference in execution time of

mathematical model and experiments is 2.9%, 1.8% and 3% for the three traces. This

small amount of difference validates the model results.

Table 5.4: Useful Instructions Computed Through Mathematical Model and Experiments
Synchronization Interval (seconds) 20 23 27 31 35
Experiments Run-1 6.75 8.25 10.25 13.25 10.92
Experiments Run-2 6.67 8.33 9.67 11.75 12.33
Experiments Run-3 7.67 8.33 8.83 12.00 10.92
Mathematical Model 6.75 8.40 10.40 12.44 11.46

2Note: Data presented in the table is percentage of useful instructions out of the total instructions.

Table 5.4 and Table 5.5 present the comparison of useful instructions computed and

wasted instructions through mathematical model and experiments, respectively.

The first column and the first row of the tables represent the experiment type and

synchronization interval respectively. Each column other than first column also repre-

sents data for separate trace. The selected synchronization interval is an ideal interval for

each data trace where useful and useless instructions are equal in case of mathematical

model. The presented data for useful and wasted instructions computed on the mobile

device are shown in the form of percentage out of the total number of instructions. The

average percentage differences in useful instructions computed on mobile device through

mathematical model and experiments are 0.33%, 0.096%, 0.82%, 0.65%, 0.65% for five

different data traces. Similarly, the average percentage differences in computed wasted

instructions on mobile device through mathematical model and experiments are 0.15%,

0.26%, 0.41%, 0.88%, and 1.02% for five different data traces. This small amount of

differences validate the model results for useful and wasted instructions computed on the

mobile device.

Table 5.5: Wasted Instructions Computed Through Mathematical Model and Experiments
Synchronization Interval (seconds) 20 23 27 31 35
Experiments Run-1 6.75 8.54 10.54 11.63 12.00
Experiments Run-2 6.96 8.54 10.17 11.42 10.38
Experiments Run-3 7.00 8.92 9.54 11.63 12.92
Mathematical Model 6.75 8.40 10.40 12.44 11.46

3Note: Data presented in the table is percentage of the wasted instructions out of the total instructions.

110

Univ
ers

ity
 of

 M
ala

ya



5.4 Data Collected for Different Disconnection-Execution Profiles

We study the execution time and computation wastage for different disconnection-

execution profiles. This section presents the collected data for the conducted studies.

5.4.1 Execution Time

Table 5.6 presents the collected data for execution time of an application in different

disconnection-execution profiles.

Table 5.6: Application Execution Time for Different Disconnection-Execution Profiles
Synchronization Interval

(seconds) Perm. Disc. P. D. W. Sync Int. Disc. I. D. W. Sync Al. Con.

Data Trace-1 3358 1931 1677 1458 994
Data Trace-2 3223 2168 1662 1458 1002
Data Trace-3 3346 1962 1632 1431 994
Data Trace-4 3214 2172 1617 1435 994
Data Trace-5 3190 2220 1610 1426 990
Data Trace-6 3525 1656 1396 1292 994
Data Trace-7 3131 2318 1568 1405 995
Data Trace-8 3086 2387 1566 1397 996
Data Trace-9 3361 1935 1539 1301 992
Data Trace-10 3223 2168 1512 1368 993
Data Trace-11 3324 1997 1498 1302 1004
Data Trace-12 3344 1960 1344 1253 990
Data Trace-13 3169 2256 1496 1357 991
Data Trace-14 3204 2191 1496 1320 996
Data Trace-15 3247 2120 1487 1345 999
Data Trace-16 3235 2136 1483 1353 989
Data Trace-17 3268 2084 1483 1236 991
Data Trace-18 3168 2255 1473 1338 993
Data Trace-19 3268 2084 1464 1234 996
Data Trace-20 3182 2226 1438 1315 999
Data Trace-21 3112 2342 1434 1309 994
Data Trace-22 3482 1727 1198 1155 994
Data Trace-23 3281 2068 1428 1286 998
Data Trace-24 3330 1989 1382 1259 997
Data Trace-25 3422 1824 1239 1188 996
Data Trace-26 3199 2200 1379 1272 1000
Data Trace-27 3235 2136 1371 1278 999
Data Trace-28 3345 1961 1329 1249 995
Data Trace-29 3218 2176 1358 1269 994
Data Trace-30 3308 2024 1293 1189 997

Mean 3267 2089 1462 1316 995
Standard Deviation 103 172 120 81 4
Confidence Interval 3267 ± 49 2089 ± 81 1462 ± 56 1316 ± 38 995 ± 2

4Note: Perm. Disc.: Permanent Disconnection, P. D. W. Sync: Permanent Disconnection With Synchronization,
Int. Disc.: Intermittent Disconnection, I. D. W. Sync: Intermittent Disconnection With Synchronization, Al. Con.: Always Connected

5Note: Data presented in the table is in seconds.

These executions were performed in permanent disconnection, permanent discon-

nection with synchronization, intermittent disconnection, intermittent disconnection with

synchronization and always connected scenarios. The results are collected for 30 different

connectivity data traces. The column permanent disconnection represents the execution

time for scenarios where the execution on the cloud server is disrupted due to permanent

disconnection. The execution time for permanent disconnection is comprised of execution

111

Univ
ers

ity
 of

 M
ala

ya



Table 5.7: Computation Wastage for Different Disconnection-Execution Profiles
Synchronization Interval

(seconds) Perm. Disc. P. D. W. Sync Int. Disc. I. D. W. Sync Al. Con.

Data Trace-1 50.83 0.10 0.00 2.23 0.00
Data Trace-2 38.05 0.51 0.00 2.03 0.00
Data Trace-3 49.72 0.51 0.00 1.72 0.00
Data Trace-4 37.14 0.10 0.00 2.54 0.00
Data Trace-5 34.90 0.41 0.00 2.12 0.00
Data Trace-6 66.66 0.20 0.00 2.03 0.00
Data Trace-7 29.32 0.41 0.00 2.64 0.00
Data Trace-8 25.06 0.20 0.00 1.93 0.00
Data Trace-9 51.14 0.41 0.00 2.09 0.00
Data Trace-10 38.05 0.51 0.00 2.38 0.00
Data Trace-11 47.59 0.41 0.00 1.62 0.00
Data Trace-12 49.51 0.30 0.00 1.52 0.00
Data Trace-13 32.87 0.41 0.00 2.32 0.00
Data Trace-14 36.22 0.20 0.00 1.72 0.00
Data Trace-15 40.28 0.20 0.00 2.71 0.00
Data Trace-16 39.17 0.10 0.00 2.64 0.00
Data Trace-17 42.31 0.20 0.00 1.42 0.00
Data Trace-18 32.77 0.30 0.00 1.83 0.00
Data Trace-19 42.31 0.20 0.00 1.80 0.00
Data Trace-20 34.09 0.10 0.00 1.83 0.00
Data Trace-21 27.50 0.10 0.00 1.42 0.00
Data Trace-22 62.60 0.20 0.00 0.81 0.00
Data Trace-23 43.53 0.41 0.00 2.13 0.00
Data Trace-24 48.20 0.51 0.00 1.59 0.00
Data Trace-25 56.92 0.10 0.00 1.52 0.00
Data Trace-26 35.72 0.20 0.00 2.31 0.00
Data Trace-27 39.17 0.10 0.00 2.21 0.00
Data Trace-28 49.62 0.41 0.00 1.93 0.00
Data Trace-29 37.54 0.51 0.00 2.74 0.00
Data Trace-30 46.06 0.41 0.00 1.32 0.00
Mean 42.16 0.29 0.00 1.97 0.00
Standard Deviation 9.80 0.15 0.00 0.46 0.00
Confidence Interval 42.16 ±4.62 0.29 ±0.07 0.00 1.97 ±0.22 0.00

6Note: Perm. Disc.: Permanent Disconnection, P. D. W. Sync: Permanent Disconnection With Synchronization,
Int. Disc.: Intermittent Disconnection, I. D. W. Sync: Intermittent Disconnection With Synchronization, Al. Con.: Always Connected

7Note: Data presented in the table is percentage of the wasted instructions out of the total instructions.

time before the network disconnection and execution time of the task from initial stage

after the network disconnection on the mobile device. The total execution time in case of

the permanent disconnection with synchronization is comprised of execution time before

the disruption on the cloud server and the execution time after the resumption on the mo-

bile device. The execution time in case of the intermittent disconnection is comprised of

time during the connection interval and suspension period due to interaction during the

execution in disconnection interval. The intermittent disconnection with synchronization

support attribute represents sum of the execution time during the connectivity period and

local execution time for the portion of execution during the disconnection period. The

synchronization support enables the mobile device to resume the application on the mo-

bile device from last sync point when the disconnection occurs. The always connected

attribute represents the only execution time on the cloud server as all the execution is

performed on the cloud server.

112

Univ
ers

ity
 of

 M
ala

ya



The data in Table 5.6 shows that the execution time for permanent disconnection is

significantly higher than others because of the computation wastage and local execution

for longer portion of the task. The always connected execution profile gives the lowest ex-

ecution time as complete execution is performed on the cloud. Table 5.6 also presents the

mean, standard deviation, and confidence interval for each of the disconnection-execution

profile.

5.4.2 Computation Wastage

Table 5.7 presents the collected data for computation wastage in different disconnection-

execution profiles. The table also contains the computation wastage sample mean, stan-

dard deviation, and confidence interval for the permanent disconnection, permanent dis-

connection with synchronization, intermittent disconnection, intermittent disconnection

with synchronization and always connected profiles.

5.5 Data Collection for Analyzing the Impact of Synchronization Interval

We studied the impact of synchronization interval on following parameters: a) execu-

tion time, b) number of resynchronizations, c) synchronization overhead, d) computation

wastage, e) valuable computation performed on mobile device, f) number of instructions

executed between last sync point and disconnection point, and g) energy consumption.

5.5.1 Impact of Synchronization Interval on Execution Time

Table 5.8 shows the collected data for analyzing the impact of synchronization inter-

val on execution time.

The execution time is measured in seconds. The execution time represents the total

time taken by cloud server and the mobile device to complete the execution of the task.

The columns attribute represent the synchronization interval for which the execution time

is computed and the rows represent the mobile user connectivity data traces for which the

execution time was studied.

113

Univ
ers

ity
 of

 M
ala

ya



Table 5.8: Impact of Synchronization Interval on Execution Time
Synchronization

Interval
(seconds)

5 25 45 65 85 105 125 145 165 185 205 225 245

Data Trace-1 1476 1531 1584 1644 1676 1649 1676 1676 1649 1676 1676 1676 1676
Data Trace-2 1459 1531 1606 1613 1662 1662 1662 1647 1662 1662 1662 1662 1662
Data Trace-3 1439 1499 1545 1583 1632 1632 1632 1566 1621 1632 1632 1632 1632
Data Trace-4 1431 1495 1581 1614 1617 1617 1617 1617 1617 1617 1617 1617 1617
Data Trace-5 1430 1522 1533 1610 1544 1610 1610 1610 1610 1610 1610 1610 1610
Data Trace-6 1435 1555 1540 1602 1602 1602 1602 1602 1602 1602 1602 1602 1602
Data Trace-7 1404 1456 1543 1546 1550 1557 1568 1559 1568 1568 1568 1568 1568
Data Trace-8 1395 1495 1557 1512 1522 1566 1566 1566 1566 1552 1566 1566 1566
Data Trace-9 1388 1428 1471 1510 1502 1539 1530 1539 1539 1510 1539 1539 1539
Data Trace-10 1367 1471 1487 1493 1512 1512 1498 1477 1455 1512 1512 1512 1512
Data Trace-11 1360 1480 1486 1487 1493 1498 1480 1498 1485 1498 1498 1498 1491
Data Trace-12 1357 1443 1455 1497 1471 1497 1497 1497 1491 1469 1497 1497 1497
Data Trace-13 1356 1403 1463 1451 1467 1467 1467 1452 1467 1467 1467 1467 1467
Data Trace-14 1355 1394 1479 1455 1486 1465 1486 1496 1496 1496 1496 1496 1496
Data Trace-15 1360 1409 1421 1454 1436 1487 1487 1487 1487 1487 1487 1487 1487
Data Trace-16 1348 1412 1483 1483 1477 1481 1483 1483 1479 1483 1483 1483 1483
Data Trace-17 1344 1442 1461 1450 1423 1483 1471 1450 1428 1483 1483 1483 1483
Data Trace-18 1340 1460 1457 1434 1463 1473 1453 1473 1473 1473 1473 1473 1473
Data Trace-19 1330 1391 1423 1426 1433 1440 1440 1440 1440 1440 1440 1436 1440
Data Trace-20 1320 1396 1378 1404 1438 1438 1438 1438 1438 1422 1438 1438 1438
Data Trace-21 1311 1372 1404 1434 1408 1391 1434 1411 1434 1434 1434 1434 1434
Data Trace-22 1311 1377 1369 1417 1425 1432 1422 1432 1431 1432 1432 1432 1432
Data Trace-23 1314 1392 1402 1399 1428 1422 1428 1418 1423 1428 1428 1428 1428
Data Trace-24 1291 1348 1395 1390 1398 1361 1398 1385 1398 1398 1366 1398 1398
Data Trace-25 1291 1313 1369 1377 1382 1382 1356 1347 1382 1361 1382 1382 1382
Data Trace-26 1288 1326 1357 1378 1378 1345 1379 1379 1379 1359 1379 1379 1379
Data Trace-27 1279 1347 1353 1371 1371 1371 1371 1371 1371 1371 1371 1354 1321
Data Trace-28 1273 1311 1355 1350 1358 1358 1357 1358 1358 1358 1358 1358 1358
Data Trace-29 1271 1318 1319 1338 1347 1358 1343 1357 1358 1358 1358 1358 1358
Data Trace-30 1261 1329 1329 1330 1346 1346 1346 1346 1346 1346 1346 1346 1346

Mean 1353 1422 1453 1468 1475 1481 1483 1479 1482 1483 1487 1487 1486
Standard
Deviation 60 72 82 90 93 97 97 94 93 96 96 96 97

Confidence
Interval

1353
± 28

1422
± 34

1453
± 39

1468
± 42

1475
± 44

1481
± 46

1483
± 46

1479
± 44

1482
± 44

1483
± 45

1487
± 45

1487
± 45

1486
± 46

8Note: Data presented in the table is in seconds.

The table shows that the execution time increases with the increasing size of syn-

chronization interval. The data traces in the table are sorted in descending order with

respect to the total disconnection time. The execution time decreases from top to the

bottom of the columns because of shorter disconnection time. The shorter disconnection

time helps the mobile device in executing the larger portion of the execution on the cloud

server that takes relatively less time to execute the same application.

5.5.2 Impact of Synchronization Interval on Number of Resynchronizations

Table 5.9 shows the data collected for analyzing the impact of synchronization inter-

val on number of resynchronizations performed by the mobile device.

The mobile device performs the resynchronization if the disconnection interval time

is greater than the time taken to perform the computation between the last sync point and

disconnection point, the state transfer time, suspend and resume time of the application

114

Univ
ers

ity
 of

 M
ala

ya



Table 5.9: Impact of Synchronization Interval on Number of Resynchronizations
Synchronization

Interval (seconds) 5 25 45 65 85 105 125 145 165 185 205 225 245

Data Trace-1 8 6 5 1 1 1 1 1 1 1 1 1 1
Data Trace-2 8 7 4 2 0 0 0 1 0 0 0 0 0
Data Trace-3 7 6 4 2 0 0 0 2 1 0 0 0 0
Data Trace-4 8 6 1 1 0 0 0 0 0 0 0 0 0
Data Trace-5 7 6 4 0 4 0 0 0 0 0 0 0 0
Data Trace-6 8 3 1 1 0 0 0 0 0 0 0 0 0
Data Trace-7 8 5 2 1 1 2 0 1 0 0 0 0 0
Data Trace-8 8 5 1 5 2 0 0 0 0 1 0 0 0
Data Trace-9 7 5 3 3 1 0 2 0 0 1 0 0 0
Data Trace-10 7 1 1 1 0 0 1 1 1 0 0 0 0
Data Trace-11 8 3 2 2 1 0 1 0 1 0 0 0 1
Data Trace-12 8 7 4 0 3 0 0 0 2 2 0 0 0
Data Trace-13 7 5 2 2 1 1 1 1 1 1 1 1 1
Data Trace-14 8 5 2 3 1 1 1 0 0 0 0 1 0
Data Trace-15 7 5 4 4 2 0 0 0 0 0 0 0 0
Data Trace-16 8 4 0 0 1 1 0 0 1 0 0 0 0
Data Trace-17 8 2 1 2 1 1 1 1 1 0 0 0 0
Data Trace-18 7 4 1 3 1 0 2 0 0 0 0 0 0
Data Trace-19 7 3 3 2 2 1 1 1 1 1 1 2 1
Data Trace-20 8 4 3 2 1 0 0 0 0 1 0 0 0
Data Trace-21 8 5 3 1 2 1 0 1 0 0 0 0 0
Data Trace-22 8 6 3 1 1 0 1 0 1 0 0 0 0
Data Trace-23 8 4 5 1 0 1 0 1 2 0 0 0 0
Data Trace-24 7 3 1 1 0 1 0 1 0 0 1 0 0
Data Trace-25 6 4 3 2 1 1 2 3 1 1 1 1 1
Data Trace-26 6 5 3 1 1 2 1 0 0 1 0 0 0
Data Trace-27 7 4 4 0 0 0 0 0 0 0 0 3 4
Data Trace-28 7 4 2 1 0 0 1 0 0 0 0 0 0
Data Trace-29 8 6 2 1 2 0 1 1 0 0 0 0 0
Data Trace-30 8 3 1 2 0 0 0 0 0 0 0 0 0

Mean 7.50 4.53 2.50 1.60 1.00 0.47 0.57 0.53 0.47 0.33 0.17 0.30 0.30
Standard Deviation 0.63 1.43 1.36 1.16 0.98 0.63 0.68 0.73 0.63 0.55 0.38 0.70 0.79

Confidence Interval 7.50±
0.30

4.53±
0.67

2.50±
0.64

1.60±
0.55

1.00±
0.46

0.47±
0.30

0.57±
0.32

0.53±
0.34

0.47±
0.30

0.33±
0.26

0.17±
0.18

0.30±
0.33

0.30±
0.37

on the cloud server. The column attribute represents the synchronization interval for

which the resynchronization count has been computed and row represents the mobile

user connectivity data trace.

5.5.3 Impact of Synchronization Interval on Synchronization Overhead

Table 5.10 shows the collected data for analyzing the impact of synchronization

interval on synchronization overhead.

The synchronization overhead is the number of bytes exchanged for performing the

synchronization task between the cloud server and the mobile device. The data presented

in the table is in kilobytes. The column attribute presents the synchronization interval for

which the synchronization overhead is computed and the rows represent the mobile user

connectivity data trace. The table shows that synchronization overhead decreases with the

increasing synchronization interval. The table also presents the mean, standard deviation,

and confidence interval for the collected data of synchronization overhead.

115

Univ
ers

ity
 of

 M
ala

ya



Table 5.10: Impact of Synchronization Interval on Synchronization Overhead
Synchronization

Interval (seconds) 5 25 45 65 85 105 125 145 165 185 205 225 245

Data Trace-1 468 90 51 33 21 18 15 12 12 9 9 6 6
Data Trace-2 474 93 48 33 21 15 12 12 9 9 6 6 6
Data Trace-3 477 90 48 30 24 21 15 12 12 9 6 6 6
Data Trace-4 483 96 54 36 27 21 18 15 12 12 9 9 9
Data Trace-5 483 93 54 36 27 21 12 12 9 9 6 6 6
Data Trace-6 486 102 51 36 24 21 18 12 9 9 6 6 6
Data Trace-7 492 99 54 36 27 18 15 12 9 6 6 6 6
Data Trace-8 492 96 51 39 24 15 15 12 12 9 6 6 6
Data Trace-9 498 93 51 36 21 18 15 9 9 9 6 6 6
Data Trace-10 504 99 51 33 21 18 15 12 12 9 6 6 6
Data Trace-11 507 105 51 33 24 18 18 12 12 9 9 9 9
Data Trace-12 507 102 57 30 27 15 12 12 9 9 6 6 3
Data Trace-13 507 99 51 33 18 18 15 12 6 6 6 3 3
Data Trace-14 507 99 54 36 24 18 12 9 6 6 6 6 3
Data Trace-15 510 99 51 36 27 12 9 9 6 6 6 6 3
Data Trace-16 510 99 51 33 24 15 15 12 12 6 6 6 6
Data Trace-17 510 99 51 33 24 18 12 12 9 6 6 6 3
Data Trace-18 510 105 54 33 24 15 15 12 9 9 9 6 6
Data Trace-19 513 99 54 30 21 15 12 9 9 9 6 6 3
Data Trace-20 519 99 51 33 24 15 15 12 12 9 6 6 6
Data Trace-21 522 99 51 33 21 15 12 12 6 6 6 3 3
Data Trace-22 519 102 51 30 24 18 18 12 12 6 6 6 6
Data Trace-23 522 102 54 33 21 18 15 12 9 6 6 6 6
Data Trace-24 528 99 51 36 21 21 18 12 6 6 6 3 3
Data Trace-25 528 102 51 36 21 18 18 12 6 6 3 3 3
Data Trace-26 531 102 54 33 24 21 12 9 6 6 3 3 3
Data Trace-27 534 105 57 33 27 18 12 12 12 9 9 9 9
Data Trace-28 537 102 54 33 21 15 15 12 9 6 3 3 3
Data Trace-29 537 105 51 36 24 18 15 9 6 6 6 3 3
Data Trace-30 540 105 54 36 24 18 9 9 9 6 3 3 3

Mean 509 99 52 34 23 18 14 11 9 8 6 6 5
Standard
Deviation 19.88 4.27 2.17 2.25 2.42 2.37 2.58 1.45 2.35 1.71 1.67 1.78 1.98

Confidence
Interval

19.88±
9.36

4.27±
2.01

2.17±
1.02

2.25±
1.06

2.42±
1.14

2.37±
1.12

2.58±
1.21

1.45±
0.68

2.35±
1.11

1.71±
0.81

1.67±
0.79

1.78±
0.84

1.98±
0.93

9Note: Data presented in the table is in Kilo Byte.

5.5.4 Impact of Synchronization Interval on Valuable Computation Performed by
Process State Synchronization Enabled Mobile Device

Table 5.11 presents the collected data for analyzing the impact of synchronization in-

terval on valuable computation performed by process state synchronization enabled mo-

bile device.

The presented data represent the percentage of valuable computation out of the total

computation performed on the mobile device in intermittent disconnection profile. The

columns show the valuable instructions computed on the mobile device during the dis-

connection for different values of synchronization interval. The rows present the mobile

user connectivity data trace number.

5.5.5 Impact of Synchronization Interval on Cloud Computation Wastage

Table 5.12 presents the data collected for the study of impact of synchronization

interval on cloud computation wastage.

116

Univ
ers

ity
 of

 M
ala

ya



Table 5.11: Impact of Synchronization Interval on Valuable Computation Performed by
Process State Synchronization Enabled Mobile Device

Synchronization
Interval (seconds) 5 25 45 65 85 105 125 145 165 185 205 225 245

Data Trace-1 19.15 13.83 8.85 3.21 0.16 2.70 0.16 0.16 2.70 0.16 0.16 0.16 0.16
Data Trace-2 19.33 12.45 5.27 4.73 0.00 0.00 0.00 1.47 0.00 0.00 0.00 0.00 0.00
Data Trace-3 18.30 12.59 8.22 4.67 0.00 0.00 0.00 6.19 1.05 0.00 0.00 0.00 0.00
Data Trace-4 17.73 11.56 3.37 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Data Trace-5 17.21 8.43 7.37 0.00 6.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Data Trace-6 15.88 4.50 5.92 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Data Trace-7 15.57 10.60 2.38 2.11 1.70 1.10 0.00 0.82 0.00 0.00 0.00 0.00 0.00
Data Trace-8 16.24 6.85 0.96 5.19 4.29 0.00 0.00 0.00 0.00 1.47 0.00 0.00 0.00
Data Trace-9 14.38 10.46 6.40 2.80 3.51 0.00 0.81 0.00 0.00 2.82 0.00 0.00 0.00
Data Trace-10 13.84 3.91 2.38 1.88 0.00 0.00 1.37 3.40 5.43 0.00 0.00 0.00 0.00
Data Trace-11 13.10 1.76 1.18 1.06 0.51 0.00 1.81 0.00 1.31 0.00 0.00 0.00 0.80
Data Trace-12 13.37 5.08 4.03 0.00 2.50 0.00 0.00 0.00 0.67 2.70 0.00 0.00 0.00
Data Trace-13 13.34 8.89 3.14 4.31 2.79 2.79 2.79 4.21 2.79 2.79 2.79 2.79 2.79
Data Trace-14 13.43 9.65 1.64 3.94 0.99 3.02 0.98 0.00 0.00 0.00 0.00 0.03 0.00
Data Trace-15 12.15 7.48 6.34 3.14 4.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Data Trace-16 12.87 6.70 0.00 0.00 0.68 0.23 0.00 0.00 0.47 0.00 0.00 0.00 0.00
Data Trace-17 13.28 3.88 2.14 3.16 5.69 0.05 1.13 3.16 5.19 0.00 0.00 0.00 0.00
Data Trace-18 12.73 1.32 1.61 3.77 1.10 0.00 1.97 0.00 0.00 0.00 0.00 0.00 0.00
Data Trace-19 12.72 6.90 3.93 3.58 2.97 2.27 2.27 2.27 2.27 2.27 2.27 2.73 2.27
Data Trace-20 11.27 3.97 5.73 3.28 0.04 0.00 0.00 0.00 0.00 1.56 0.00 0.00 0.00
Data Trace-21 11.73 5.90 2.92 0.02 2.49 4.08 0.00 2.19 0.00 0.00 0.00 0.00 0.00
Data Trace-22 11.55 5.24 6.05 1.48 0.63 0.00 0.98 0.00 0.10 0.00 0.00 0.00 0.00
Data Trace-23 10.93 3.50 2.62 2.90 0.00 0.61 0.00 1.08 0.56 0.00 0.00 0.00 0.00
Data Trace-24 10.31 4.86 0.37 0.81 0.00 3.55 0.00 1.38 0.00 0.00 3.04 0.00 0.00
Data Trace-25 9.52 7.34 2.08 1.28 0.75 0.75 3.31 4.11 0.75 2.78 0.75 0.75 0.75
Data Trace-26 8.70 5.15 2.16 0.14 0.18 3.33 0.04 0.00 0.00 1.97 0.00 0.00 0.00
Data Trace-27 8.80 2.28 1.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.62 4.68
Data Trace-28 8.08 4.49 0.33 0.72 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00
Data Trace-29 8.22 3.79 3.70 1.99 1.06 0.00 1.48 0.13 0.00 0.00 0.00 0.00 0.00
Data Trace-30 8.20 1.65 1.70 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mean 13.06 6.50 3.49 2.07 1.44 0.82 0.64 1.02 0.78 0.62 0.30 0.27 0.38
Std Deviation 3.28 3.47 2.42 1.68 1.88 1.34 0.96 1.65 1.47 1.07 0.83 0.75 1.05

Confidence
Interval

13.06
±1.54

6.50
±1.63

3.49
±1.14

2.07
±0.79

1.44
±0.88

0.82
±0.63

0.64
±0.45

1.02
±0.78

0.78
±0.69

0.62
±0.50

0.30
±0.39

0.27
±0.35

0.38
±0.49

10Note: Data presented in the table is percentage of valuable instructions out of total instructions computed by the mobile device.

The table shows the computation wastage only in case of permanent disconnection

profile. In permanent disconnection profile, the computation is only wasted on cloud

server. However, in case of intermittent disconnection the computation is only wasted

on the mobile device. The presented data represent the percentage of cloud computation

wastage out of the total computation performed on the cloud server. The columns at-

tribute represent the synchronization interval for which the cloud computation wastage is

computed and the rows represent the mobile user connectivity data traces for which the

cloud computation wastage was studied.

5.5.6 Impact of Synchronization Interval on Mobile Device Computation Wastage

Table 5.13 shows the collected data for analyzing the impact of synchronization

interval on mobile device computation wastage.

The presented data in the table represent the mobile device computation wastage in

117

Univ
ers

ity
 of

 M
ala

ya



Table 5.12: Impact of Synchronization Interval on Cloud Computation Wastage
Synchronization

Interval (seconds) 5 25 45 65 85 105 125 145 165 185 205 225 245

Data Trace-1 0.1 0.1 0.6 4.7 7.7 8.2 0.1 6.7 0.6 13.3 9.2 5.2 1.1
Data Trace-2 0.5 2.5 1.5 5.1 3.6 6.1 12.7 8.6 4.6 0.5 17.2 15.2 13.2
Data Trace-3 0.5 1.5 4.1 3.6 6.6 7.1 11.7 5.6 16.2 12.2 8.1 4.1 24.9
Data Trace-4 0.1 1.6 0.6 4.2 2.6 5.2 11.8 7.7 3.7 18.4 16.3 14.3 12.3
Data Trace-5 0.4 1.9 2.9 1.9 0.4 2.9 9.5 5.5 1.4 16.1 14.1 12.1 10.0
Data Trace-6 0.2 0.7 2.7 0.7 6.3 2.7 3.2 7.8 16.4 10.3 4.3 21.0 16.9
Data Trace-7 0.4 1.4 1.9 2.9 3.4 8.0 4.0 14.6 12.6 10.6 8.5 6.5 4.5
Data Trace-8 0.2 2.2 2.2 5.3 7.8 3.8 12.4 10.3 8.3 6.3 4.3 2.2 0.2
Data Trace-9 0.4 0.4 0.9 5.0 8.0 8.5 0.4 7.0 0.9 13.6 9.5 5.5 1.4
Data Trace-10 0.5 2.5 1.5 5.1 3.6 6.1 12.7 8.6 4.6 0.5 17.2 15.2 13.2
Data Trace-11 0.4 1.9 1.9 1.4 4.5 5.0 9.5 3.4 14.1 10.0 6.0 1.9 22.7
Data Trace-12 0.3 1.3 3.9 3.3 6.4 6.9 11.5 5.4 16.0 12.0 7.9 3.9 24.7
Data Trace-13 0.4 2.4 0.9 6.5 7.0 0.9 7.5 3.4 16.1 14.1 12.1 10.0 8.0
Data Trace-14 0.2 0.7 4.3 3.2 1.7 4.3 10.9 6.8 2.7 17.5 15.4 13.4 11.4
Data Trace-15 0.2 2.2 3.8 0.7 5.8 8.3 2.2 10.9 6.8 2.7 19.5 17.5 15.4
Data Trace-16 0.1 1.1 2.6 6.2 4.7 7.2 1.1 9.7 5.7 1.6 18.4 16.3 14.3
Data Trace-17 0.2 1.7 1.2 2.7 7.8 10.3 4.3 12.9 8.8 4.8 0.7 19.5 17.5
Data Trace-18 0.3 2.3 0.8 6.4 6.9 0.8 7.4 3.3 16.0 14.0 12.0 9.9 7.9
Data Trace-19 0.2 1.7 1.2 2.7 7.8 10.3 4.3 12.9 8.8 4.8 0.7 19.5 17.5
Data Trace-20 0.1 1.1 2.1 1.1 8.2 2.1 8.7 4.7 0.6 15.3 13.3 11.3 9.2
Data Trace-21 0.1 2.1 0.1 1.1 1.6 6.2 2.1 12.8 10.8 8.7 6.7 4.7 2.6
Data Trace-22 0.2 1.7 3.2 3.2 2.2 9.3 11.9 3.8 12.4 6.3 0.2 16.9 12.9
Data Trace-23 0.4 0.4 2.4 4.0 0.4 0.9 5.5 14.1 10.0 6.0 1.9 20.7 18.7
Data Trace-24 0.5 2.5 2.5 2.0 5.1 5.6 10.1 4.1 14.7 10.7 6.6 2.5 23.3
Data Trace-25 0.1 1.1 2.1 4.2 5.2 3.7 6.2 12.8 6.7 0.6 15.3 11.3 7.2
Data Trace-26 0.2 0.2 3.8 2.7 1.2 3.8 10.3 6.3 2.2 16.9 14.9 12.9 10.9
Data Trace-27 0.1 1.1 2.6 6.2 4.7 7.2 1.1 9.7 5.7 1.6 18.4 16.3 14.3
Data Trace-28 0.4 1.4 4.0 3.4 6.5 7.0 11.6 5.5 16.1 12.1 8.0 4.0 24.8
Data Trace-29 0.5 2.0 1.0 4.6 3.0 5.6 12.2 8.1 4.1 18.8 16.7 14.7 12.7
Data Trace-30 0.4 0.4 0.4 6.5 2.9 3.4 8.0 1.9 12.6 8.5 4.5 0.4 21.2

Mean 0.3 1.5 2.1 3.7 4.8 5.6 7.5 7.8 8.7 9.6 10.3 11.0 13.2
Standard Deviation 0.2 0.7 1.2 1.8 2.4 2.7 4.2 3.6 5.5 5.7 5.9 6.3 7.2

Confidence Interval
0.3
±0.1

1.5
±0.4

2.1
±0.6

3.7
±0.8

4.8
±1.2

5.6
±1.3

7.5
±2.0

7.8
±1.7

8.7
±2.6

9.6
±2.7

10.3
±2.8

11.0
±3.0

13.2
±3.4

11Note: Data presented in the table is percentage of wasted instructions out of the total instructions computed on the cloud server.

percentage out of the total computation performed on the mobile device. The computed

instructions wastage occurs because the mobile device has to re-execute the already cloud

computed instructions between the last sync point and disconnection. The columns at-

tribute represent the synchronization interval for which the mobile device computation

wastage is computed and the rows represent the mobile user connectivity data traces for

which the mobile device computation wastage was studied.

5.5.7 Impact of Synchronization Interval on Number of Instructions Executed Be-
tween Last Sync Point and Disconnection

Table 5.14 presents the collected data for analyzing the impact of synchronization

interval on number of instructions executed between last sync point and disconnection in

cloud.

The collected data is presented as a computed instructions percentage out of total

instructions computed on cloud server. The columns attribute represent the synchroniza-

118

Univ
ers

ity
 of

 M
ala

ya



Table 5.13: Impact of Synchronization Interval on Mobile Device Computation Wastage
Synchronization

Interval (seconds) 5 25 45 65 85 105 125 145 165 185 205 225 245

Data Trace-1 2.8 8.2 13.1 18.8 21.8 19.3 21.8 21.8 19.3 21.8 21.8 21.8 21.8
Data Trace-2 2.1 9.0 16.2 16.7 21.5 21.5 21.5 20.0 21.5 21.5 21.5 21.5 21.5
Data Trace-3 2.1 7.8 12.2 15.7 20.4 20.4 20.4 14.2 19.3 20.4 20.4 20.4 20.4
Data Trace-4 2.1 8.3 16.5 19.5 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9
Data Trace-5 2.4 11.2 12.3 19.6 13.3 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
Data Trace-6 3.4 14.8 13.4 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3
Data Trace-7 2.5 7.5 15.7 16.0 16.4 17.0 18.1 17.3 18.1 18.1 18.1 18.1 18.1
Data Trace-8 1.8 11.2 17.1 12.9 13.8 18.1 18.1 18.1 18.1 16.6 18.1 18.1 18.1
Data Trace-9 2.7 6.6 10.7 14.3 13.6 17.1 16.3 17.1 17.1 14.3 17.1 17.1 17.1
Data Trace-10 2.3 12.2 13.7 14.3 16.1 16.1 14.8 12.7 10.7 16.1 16.1 16.1 16.1
Data Trace-11 2.5 13.9 14.5 14.6 15.1 15.6 13.8 15.6 14.3 15.6 15.6 15.6 14.8
Data Trace-12 2.2 10.5 11.6 15.6 13.1 15.6 15.6 15.6 14.9 12.9 15.6 15.6 15.6
Data Trace-13 2.2 6.7 12.4 11.2 12.8 12.8 12.8 11.3 12.8 12.8 12.8 12.8 12.8
Data Trace-14 2.1 5.9 13.9 11.6 14.6 12.5 14.6 15.6 15.6 15.6 15.6 15.5 15.6
Data Trace-15 3.1 7.8 8.9 12.1 10.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
Data Trace-16 2.2 8.4 15.1 15.1 14.4 14.9 15.1 15.1 14.6 15.1 15.1 15.1 15.1
Data Trace-17 1.8 11.2 13.0 11.9 9.4 15.1 14.0 11.9 9.9 15.1 15.1 15.1 15.1
Data Trace-18 2.0 13.4 13.2 11.0 13.7 14.8 12.8 14.8 14.8 14.8 14.8 14.8 14.8
Data Trace-19 1.7 7.5 10.5 10.8 11.5 12.1 12.1 12.1 12.1 12.1 12.1 11.7 12.1
Data Trace-20 2.2 9.5 7.8 10.2 13.5 13.5 13.5 13.5 13.5 11.9 13.5 13.5 13.5
Data Trace-21 1.6 7.5 10.4 13.3 10.9 9.3 13.4 11.2 13.4 13.4 13.4 13.4 13.4
Data Trace-22 1.7 8.0 7.2 11.8 12.6 13.3 12.3 13.3 13.2 13.3 13.3 13.3 13.3
Data Trace-23 2.2 9.7 10.5 10.3 13.2 12.6 13.2 12.1 12.6 13.2 13.2 13.2 13.2
Data Trace-24 1.8 7.2 11.7 11.3 12.1 8.5 12.1 10.7 12.1 12.1 9.1 12.1 12.1
Data Trace-25 2.3 4.5 9.7 10.5 11.0 11.0 8.5 7.7 11.0 9.0 11.0 11.0 11.0
Data Trace-26 2.7 6.3 9.3 11.3 11.2 8.1 11.4 11.4 11.4 9.4 11.4 11.4 11.4
Data Trace-27 2.3 8.8 9.3 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 9.5 6.4
Data Trace-28 2.6 6.2 10.3 9.9 10.7 10.7 10.5 10.7 10.7 10.7 10.7 10.7 10.7
Data Trace-29 2.4 6.9 6.9 8.7 9.6 10.7 9.2 10.5 10.7 10.7 10.7 10.7 10.7
Data Trace-30 2.0 8.6 8.5 8.7 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2

Mean 2.3 8.8 11.9 13.3 13.9 14.5 14.7 14.3 14.6 14.7 15.0 15.1 15.0
Standard Deviation 0.4 2.5 2.8 3.2 3.5 3.8 3.7 3.6 3.5 3.6 3.6 3.5 3.7

Confidence Interval
2.3
±0.2

8.8
±1.2

11.9
±1.3

13.3
±1.5

13.9
±1.7

14.5
±1.8

14.7
±1.7

14.3
±1.7

14.6
±1.6

14.7
±1.7

15.0
±1.7

15.1
±1.7

15.0
±1.8

12Note: Data presented in the table is percentage of wasted instructions out of the total instructions computed on the mobile device.

tion interval for which the percentage instructions executed is computed and the rows

represent the mobile user connectivity data traces for which the percentage of executed

instructions is measured.

5.6 Data Collected For Performance Comparison of PSS with Optimized VM-
based Cloudlet and COMET

This section presents the data collected for verification of PSS through comparison

with optimized VM-based cloudlet and COMET.

5.6.1 Execution Time

Table 5.15 presents the data collected for comparing the proposed solution with

the state-of-the-art application execution frameworks, optimized VM-based cloudlet and

COMET, which provide support for intermediate information exchange.

The column attribute represents the type of approach for execution and row attribute

119

Univ
ers

ity
 of

 M
ala

ya



Table 5.14: Impact of Synchronization Interval on Executed Instructions Between Last
Sync Point and Disconnection

Synchronization
Interval (seconds) 5 25 45 65 85 105 125 145 165 185 205 225 245

Data Trace-1 2.8 10.2 15.4 26.5 36.0 33.5 36.0 36.0 33.5 36.0 36.0 36.0 36.0
Data Trace-2 2.1 9.5 21.3 25.6 44.0 45.1 45.1 41.7 45.1 44.2 45.1 45.1 45.1
Data Trace-3 2.2 10.1 17.9 25.4 27.9 23.8 32.4 30.3 43.1 44.2 44.9 44.9 44.9
Data Trace-4 2.1 10.5 16.6 21.4 22.9 26.0 24.5 27.0 33.6 25.5 37.8 32.1 26.0
Data Trace-5 2.4 12.9 13.8 21.7 16.5 31.4 46.9 41.7 46.9 44.2 46.9 46.9 46.9
Data Trace-6 3.4 10.5 18.4 21.3 30.4 26.2 22.3 32.9 47.5 44.2 47.5 47.5 47.5
Data Trace-7 2.5 8.1 16.3 20.0 22.6 27.2 35.7 33.7 48.3 48.3 48.3 48.3 48.3
Data Trace-8 1.8 12.5 21.2 15.1 22.6 37.7 35.7 33.7 31.7 29.6 48.3 48.3 48.3
Data Trace-9 2.9 12.1 17.9 21.3 33.4 36.7 37.2 50.4 50.3 44.2 50.4 50.4 50.4
Data Trace-10 2.4 12.8 19.8 22.8 36.4 36.7 36.9 37.9 29.3 44.2 52.6 52.6 50.8
Data Trace-11 2.5 11.0 19.1 24.6 28.5 33.1 24.6 39.7 33.7 35.6 33.6 31.6 26.1
Data Trace-12 2.2 10.8 14.0 28.6 20.5 44.1 42.1 40.1 38.0 36.0 54.7 54.7 54.7
Data Trace-13 2.2 9.2 19.0 22.4 38.0 34.0 29.9 39.1 55.1 55.1 55.1 55.1 55.1
Data Trace-14 2.1 8.3 19.3 23.4 30.5 34.2 43.5 56.1 56.1 56.1 56.1 54.9 56.1
Data Trace-15 3.1 10.6 19.5 20.7 20.5 56.4 56.4 56.4 56.4 56.4 56.4 54.9 56.4
Data Trace-16 2.2 10.6 25.4 30.9 31.6 36.7 37.2 41.8 33.7 57.8 57.8 54.9 50.8
Data Trace-17 1.8 13.4 21.1 22.2 27.3 36.7 45.3 39.7 41.2 57.8 57.8 54.9 57.8
Data Trace-18 2.0 13.4 15.7 20.0 31.7 45.3 37.1 41.7 50.3 44.2 38.2 54.9 50.8
Data Trace-19 1.7 8.9 13.8 26.3 33.3 37.7 46.4 44.3 42.3 40.3 38.3 36.2 59.0
Data Trace-20 2.2 12.9 14.4 24.8 31.7 45.4 37.2 41.8 33.7 40.4 56.4 54.9 50.8
Data Trace-21 1.6 10.5 18.9 26.8 33.8 38.3 46.8 41.8 59.4 59.4 59.0 59.4 59.4
Data Trace-22 1.7 10.1 15.1 28.1 31.8 36.8 24.7 39.9 33.7 60.3 59.0 54.9 50.8
Data Trace-23 2.2 11.7 13.2 25.2 40.4 36.8 48.3 41.8 50.3 62.2 59.0 54.9 50.8
Data Trace-24 1.9 12.4 20.8 21.4 38.3 26.3 24.8 34.6 63.8 63.0 58.4 63.8 63.8
Data Trace-25 2.3 8.2 19.1 18.6 38.8 32.7 24.0 35.1 64.3 62.3 64.3 64.3 64.3
Data Trace-26 2.9 7.8 18.7 32.3 31.0 22.9 40.0 50.5 65.1 63.0 65.1 65.1 65.1
Data Trace-27 2.4 11.7 14.0 27.6 30.1 36.7 47.8 41.8 33.7 44.3 38.3 32.2 23.4
Data Trace-28 2.6 9.7 17.7 26.9 37.9 44.9 37.3 36.8 49.4 63.0 66.1 66.1 66.1
Data Trace-29 2.4 8.2 18.8 21.8 30.9 36.8 36.9 54.1 66.0 63.0 59.0 71.7 71.7
Data Trace-30 2.0 10.0 16.8 20.4 31.7 36.9 61.8 56.5 50.4 57.8 76.5 76.5 75.7

Mean 2.3 10.6 17.8 23.8 31.0 35.9 38.2 41.3 46.2 49.4 52.2 52.3 51.8
Standard Deviation 0.4 1.7 2.8 3.8 6.5 7.4 9.8 7.6 11.2 11.0 10.2 11.3 12.3

Confidence Interval
2.3
±0.2

10.6
±0.8

17.8
±1.3

23.8
±1.8

31.0
±3.0

35.9
±3.5

38.2
±4.6

41.3
±3.6

46.2
±5.3

49.4
±5.2

52.2
±4.8

52.3
±5.3

51.8
±5.8

13Note: Data presented in the table is percentage of instructions computed between last sync point and disconnection.

represents the mobile user connectivity data traces for which the execution time is col-

lected. The average execution time of PSS-based execution is less than the time of opti-

mized VM-based cloudlet and COMET for all data traces.

5.6.2 Cloud Computation Wasted

Table 5.16 presents the collected data for comparing the computation wastage in

optimized VM-based cloudlet, COMET, and PSS-based execution.

The presented data in the table represent the percentage of computation wasted out

of the total computation performed. The column attribute of the table represents the

specific solution whereas the rows represent the data traces for which the execution time

is measured.

120

Univ
ers

ity
 of

 M
ala

ya



Table 5.15: Execution Time in Optimized VM-based Cloudlet, COMET and PSS-based
Execution

Optimized VM-based Cloudlet PSS-based execution COMET
Data Trace-1 2109.8 1475.7 1928.5
Data Trace-2 1974.9 1458.6 2153.2
Data Trace-3 1498.8 1439.3 1948.1
Data Trace-4 1965.3 1430.8 2169.3
Data Trace-5 1450.9 1429.7 2208.5
Data Trace-6 2276.7 1435.1 1650.2
Data Trace-7 1470.6 1404.0 2306.6
Data Trace-8 1485.6 1395.5 2381.6
Data Trace-9 1393.8 1388.0 1923.1
Data Trace-10 1974.9 1366.6 2153.2
Data Trace-11 1406.3 1360.2 1985.6
Data Trace-12 2095.9 1356.9 1951.7
Data Trace-13 1458.1 1355.9 2244.2
Data Trace-14 1446.3 1354.8 2185.3
Data Trace-15 1432.0 1360.2 2114.0
Data Trace-16 1436.0 1348.4 2133.6
Data Trace-17 1424.9 1344.1 2078.3
Data Trace-18 1919.3 1339.8 2246.0
Data Trace-19 1424.9 1330.2 2078.3
Data Trace-20 1933.2 1319.5 2222.8
Data Trace-21 1477.0 1310.9 2338.7
Data Trace-22 1353.5 1310.9 1721.6
Data Trace-23 1420.6 1314.2 2056.9
Data Trace-24 1404.2 1290.6 1974.9
Data Trace-25 1373.5 1290.6 1821.5
Data Trace-26 1448.1 1288.5 2194.3
Data Trace-27 1436.0 1278.8 2133.6
Data Trace-28 2096.9 1273.5 1949.9
Data Trace-29 1969.6 1271.4 2162.2
Data Trace-30 1411.7 1260.0 2012.3

Mean 1632.3 1352.8 2080.9
Standard Deviation 295.3 60.0 172.3
Confidence Interval 1632.3 ±139.1 1352.8 ±28.3 2080.9 ±81.1

14Note: Data presented in the table is in seconds.

5.6.3 Energy Consumption

Table 5.17 shows the data collected for comparing energy consumption of the pro-

posed solution with the state-of-the-art application execution frameworks that provide

support for the intermediate process states exchange with the mobile device.

The energy consumption is measured in Joules. The column attribute of the table

represents the type of the execution framework and row attribute represents the mobile

user connectivity data traces for which the energy consumption is measured.

5.7 Conclusion

The performance of proposed solution is evaluated by implementing and testing in

the emulated mobile cloud lab environment. The benchmarking is done by evaluating

the prototype application on the emulated mobile device and the cloud server. Data are

collected by sampling the evaluation parameters for 30 different mobile user connectivity

data traces for intra-city metro transit. The point estimator for each experiment is mea-

121

Univ
ers

ity
 of

 M
ala

ya



Table 5.16: Comparison of Computation Wastage in Optimized VM-based Cloudlet,
COMET and PSS-based Execution

Optimized VM-based Cloudlet PSS-based execution COMET
Data Trace-1 50.84 2.84 0.61
Data Trace-2 38.05 2.13 0.00
Data Trace-3 0.00 1.83 1.01
Data Trace-4 37.14 2.13 0.61
Data Trace-5 0.00 2.23 1.42
Data Trace-6 66.66 3.45 1.22
Data Trace-7 0.00 2.54 0.41
Data Trace-8 0.00 1.83 0.71
Data Trace-9 0.00 2.44 0.91
Data Trace-10 38.05 2.03 0.00
Data Trace-11 0.00 2.54 0.41
Data Trace-12 49.52 2.23 0.81
Data Trace-13 0.00 1.72 0.91
Data Trace-14 0.00 2.13 1.22
Data Trace-15 0.00 2.84 0.71
Data Trace-16 0.00 2.23 1.12
Data Trace-17 0.00 1.83 1.22
Data Trace-18 32.77 1.72 0.81
Data Trace-19 0.00 1.32 1.22
Data Trace-20 34.09 2.23 0.61
Data Trace-21 0.00 1.62 0.10
Data Trace-22 0.00 1.72 0.20
Data Trace-23 0.00 2.23 0.91
Data Trace-24 0.00 1.52 1.01
Data Trace-25 0.00 1.62 0.61
Data Trace-26 0.00 2.03 0.71
Data Trace-27 0.00 1.93 1.12
Data Trace-28 49.62 2.23 0.91
Data Trace-29 37.54 2.44 1.01
Data Trace-30 0.00 2.03 0.41

Mean 14.48 2.12 0.76
Standard Deviation 21.64 0.44 0.38
Confidence Interval 14.48 ±10.19 2.12 ±0.21 0.76 ±0.18

15Note: Data presented in the table is percentage of instructions wasted out of the total number of instructions.

sured by finding the sample mean of the sample space of 30 values for same experiment

that is signified by computing the interval estimate with 99% confidence.

It is concluded that PSS-based execution successfully reduces the execution time

and synchronization overhead of an application in dynamic mobile user connectivity con-

ditions of MCC environment. The PSS-based execution synchronizes the intermediate

states with the mobile device. On the network disconnection that is mainly due to user

mobility, the mobile device is able to resumes the application from the point of last syn-

chronization. When the mobile device detected the connection re-establishment, the mo-

bile device resync back the mobile device executed process states with the cloud server.

The cloud server resumes the application execution from the resync point and on the

completion of execution sent back the results to the mobile device. Synchronizing the

process states enables the process resumption on the mobile device where either the por-

tion of execution or complete execution is performed, thereby minimizing the execution

122

Univ
ers

ity
 of

 M
ala

ya



Table 5.17: Comparison of Energy Consumption in Optimized VM-based Cloudlet,
COMET and Process State Synchronization Algorithm

Optimized VM-based Cloudlet PSS-based Execution COMET
Data Trace-1 26.67 35645.91 72020.80
Data Trace-2 296.00 44852.60 72031.77
Data Trace-3 296.00 36449.14 72019.64
Data Trace-4 296.00 45508.62 72029.80
Data Trace-5 296.00 47115.07 72025.62
Data Trace-6 46.67 24250.36 72032.18
Data Trace-7 296.00 51134.40 72015.20
Data Trace-8 296.00 54203.29 72024.01
Data Trace-9 296.00 35428.31 72018.96
Data Trace-10 296.00 44852.60 72039.54
Data Trace-11 296.00 37985.19 72029.13
Data Trace-12 41.67 36596.34 72031.89
Data Trace-13 296.00 48577.52 72019.71
Data Trace-14 296.00 46167.84 72022.66
Data Trace-15 296.00 43246.15 72023.64
Data Trace-16 296.00 44049.38 72030.49
Data Trace-17 296.00 41783.71 72023.61
Data Trace-18 31.67 48651.12 72028.51
Data Trace-19 296.00 41783.71 72014.74
Data Trace-20 41.67 47700.69 72023.23
Data Trace-21 296.00 52449.64 72020.88
Data Trace-22 296.00 27172.05 72017.11
Data Trace-23 296.00 40906.88 72027.54
Data Trace-24 296.00 37546.77 72026.41
Data Trace-25 296.00 31261.78 72025.17
Data Trace-26 296.00 46532.65 72018.33
Data Trace-27 296.00 44049.38 72030.64
Data Trace-28 21.67 36522.74 72026.75
Data Trace-29 36.67 45217.41 72023.50
Data Trace-30 296.00 39079.62 72025.11

Mean 235.16 41890.70 72024.89
Standard Deviation 112.25 7055.76 5.67
Confidence Interval 235.16 ±52.87 41890.70 ±3323.56 72024.89 ±2.67

16Note: Data presented in the table is in Joules.

time. The implementation of the PSS-based execution on the emulated mobile device

and on the cloud server indicates the viability of PSS-based execution for minimizing the

execution time, computation wastage and energy consumption in the MCC environment.

Benchmarking of the prototype application with the different values of proposed system

variables validates the performance gains of the PSS-based execution for cloud-based

interactive mobile applications.

123

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 6 : RESULTS AND DISCUSSIONS

This chapter evaluates the performance of PSS-based execution and gives the insights on

performance of the algorithm by varying the parameters values. The chapter discusses

the analysis of the collected results presented in Chapter 5 for signifying the usefulness

of the proposed PSS algorithm. The chapter also focuses on verification of the proposed

solution by comparing PSS-based execution results with the execution of COMET and

optimized VM-based cloudlet.

The rest of the chapter is organized into five sections. Section 6.1 discusses the val-

idation of the mathematical model by comparing the results of PSS-based execution ob-

tained through mathematical model with the results obtained in emulated MCC environ-

ment. Section 6.2 presents the comparison of cloud-based mobile application execution

in different connection profiles. Section 6.3 investigates the performance of PSS-based

execution in MCC environment. Section 6.4 compares the performance of PSS-based

execution with the performance of COMET and optimized VM-based cloudlet. Section

6.5 concludes the chapter by highlighting the significance of PSS-based execution. The

usefulness of the proposed solution is signified by analyzing the experimental results col-

lected in different scenarios.

6.1 Model Validation

The correctness of developed mathematical model is validated by comparing the

results obtained from mathematical model with that of experiments. The execution time

and mobile device useful and useless computation difference are the parameters which

we have studied for model validation.

6.1.1 Execution Time

Figure 6.1 presents the comparison of execution time computed through mathemat-

ical model and experiments. The y-axis shows the execution time that is measured in

124

Univ
ers

ity
 of

 M
ala

ya



seconds whereas x-axis represents the execution type for three different data traces. The

graph shows that the results of mathematical model for all three data traces are closer to

the results obtained from the experiments. The difference in execution time for mathe-

matical model and experimental case is 3.7%, 1.2%, and 3.3% for data trace 1, data trace

2, and data trace 3. This small amount of difference validates the model results with that

collected from experiments.

1341

1287

1376

1351

1291

1271

1330.2
1319.5

1000

1050

1100

1150

1200

1250

1300

1350

1400

Experiments Mathematical Model

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

Data Trace-1 Data Trace-2 Data Trace-3 Data Trace-4

Figure 6.1: Comparison of Execution Time Empirical Results with Mathematical Model
Execution Time

6.1.2 Mobile Device Useful and Useless Computation Difference

We verified the upper-bound on synchronization interval where time spent by the

mobile device for useful and wasteful computations becomes equal. Ideally, the differ-

ence between useful and wasteful computations at this point should be zero. To verify

the analytically computed upper bound on synchronization interval, we used the com-

puted intervals in prototype implementation for the respective traces and computed the

difference between useful and wasteful mobile computations. Five different randomly

generated traces were used and the results were averaged. Empirical results are shown

in Figure 6.2 where percentage against total mobile computations of absolute difference

between useful and wasteful computations has been plotted against respective analyti-

cally computed upper-bound on synchronization intervals. The minimum and maximum

125

Univ
ers

ity
 of

 M
ala

ya



0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20/50 23/60 27/70 31/80 35/90

% of abs. diff b/w useful and wasteful mobile comp.

Sync Interval/ Avg. DC Interval

P
er

ce
nt

ag
e

D
iff

er
en

ce
s

Figure 6.2: Useful and Useless Mobile Computation Absolute Difference for Different
Data Traces

percentage difference has also been plotted as error bars. The graph shows that for all

disconnection intervals except 90 seconds, the difference percentage is around 6%. This

shows very good estimate of the upper-bound, keeping in view the fact that the traces

have been generated randomly. In case of disconnection interval of 90 seconds, the value

is 14%, which is acceptable but a little higher than 90% accuracy margin. The worst case

difference between useful and wasteful computations on the mobile device in individ-

ual traces is 17% while the best case is 0%. The acceptable deviation from ideal values

validates the analytically computed value of upper-bound on synchronization intervals.

6.2 Comparison of Mobile Application Execution in Different Connection Profiles

In this section, we compare the performance of a mobile application execution in

different connection profiles. The mobile application execution performance is compared

on the basis of execution time and computation wastage in different connection profiles.

We have conducted a comparative study of five different scenarios: a) permanent discon-

nection, b) permanent disconnection with process state synchronization, c) intermittent

disconnection, d) intermittent disconnection with process state synchronization, and e)

always connected.

126

Univ
ers

ity
 of

 M
ala

ya



6.2.1 Execution Time

Figure 6.3 presents the comparison of execution time in different connection profiles.

The execution time is measured in seconds. The x-axis represents the different connection

profiles and y-axis represents the execution time. The execution time in case of permanent

3358

1931

1677

1458

994

500

1000

1500

2000

2500

3000

3500

PermanentDisconnection PermanentDisconnectionWithSync
IntermittentDisconnection IntermittentDisconnectionWithSync
AlwaysConnected

E
xe

cu
tio

n
Ti

m
e 

(S
ec

on
ds

)

Figure 6.3: Execution Time in Different Connection Profiles

disconnection profile is the largest with a value of 3358 seconds. The execution time in

case of permanent disconnection profile is constituent of the execution time in the cloud

before the disconnection and the execution time of the whole task executed from the initial

stage on the mobile device after the permanent network disconnection. However, when

the process state synchronization support is integrated, the execution time is reduced 42%

of the execution time of permanent disconnection without synchronization support. The

execution time for intermittent disconnection is 50% lesser than the execution time in

case of permanent disconnection. The decrease in the execution time is due to resump-

tion of the execution after the disconnections and completion of whole execution on the

cloud server. The execution time in case of intermittent disconnection profiles is further

decreased 13% when the process state synchronization support is integrated with it. The

graph shows the least execution time in case of always connected profile. The comparison

shows that the process state synchronization significantly reduced the execution time in

permanent and intermittent disconnection profiles.

127

Univ
ers

ity
 of

 M
ala

ya



6.2.2 Computation Wastage

Figure 6.4 presents the comparison of number of total computed instructions wasted

for different connection profiles. The y-axis shows the computation wastage in terms of

number of instructions and x-axis represents the different connection profiles.

0

0.1

0.2

0.3

0.4

0.5

0.6

PermanentDisconnection PermanentDisconnectionWithSync
IntermittentDisconnection IntermittentDisconnectionWithSync
AlwaysConnected

W
as

te
d 

In
st

ru
ct

io
ns

 (P
er

ce
nt

ag
e) 0.508

0.0010 0
0.022

0

Figure 6.4: Comparison of Computation Wastage With Different Connection Profiles

The graph shows that the number of instructions wasted in case of permanent dis-

connection profile is the highest. The number of instructions wasted are reduced 99.8% of

the permanent disconnection profile wastage when the process state synchronization is in-

tegrated. The computation wastage for intermittent disconnection and always connected

profiles is zero. However, in case of intermittent disconnections the execution time will

be higher for interactive applications when the process states are not synchronized with

the mobile device. However, synchronizing the process states with mobile device in inter-

mittent disconnection profiles results in 5% instructions wastage of the total instructions

wastage in permanent disconnection without synchronization profile. However, unlike

the intermittent disconnection without synchronization support, synchronizing the pro-

cess states with the mobile device in intermittent disconnection profile reduces the appli-

cation execution time by enabling the mobile device to resume and execute the application

locally during the disconnection period.

128

Univ
ers

ity
 of

 M
ala

ya



6.3 Performance Analysis of Process State Synchronization Algorithm

In this section, we analyze the performance of PSS-based execution in MCC envi-

ronment. The analysis studies the impact of synchronization interval on following pa-

rameters: a) application execution time, b) synchronization overhead, c) mobile device

computation wastage, d) cloud computation wastage, e) valuable computation performed

by mobile device, f) number of resynchronization, g) number of instructions executed

between last sync point and disconnection and h) energy consumption. Apart from these

parameters, we have also studied the valuable computation performed by mobile device

in different data traces.

6.3.1 Impact of Synchronization Interval

In this subsection, we present the impact of synchronization interval on different

performance measuring parameters.

6.3.1.1 Execution Time

Figure 6.5 presents the impact of synchronization interval on execution time for one

data trace. The x-axis shows the synchronization interval whereas y-axis represents the

execution time. Both parameters are measured in seconds. The execution time of the

application is smaller when the synchronization interval is kept smaller. For the higher

values of the synchronization interval, the execution time also increases significantly. In

general, the increase in execution time with the increasing size of synchronization inter-

val is exponential. However, the data observed in case of the synchronization interval of

105 and 165 show that the execution time is not only dependent on the synchronization

interval but also on the disconnection period occurrence with respect to synchroniza-

tion interval. If the synchronization interval occurs immediately before the disconnection

point, the execution time wasted between the last sync point and the disconnection point

will be smaller otherwise the execution time wastage will be higher. The higher execution

time wastage will increase the overall execution time.

129

Univ
ers

ity
 of

 M
ala

ya



1000

1100

1200

1300

1400

1500

1600

1700

5 25 45 65 85 105 125 145 165 185 205 225 245

Synchronization Interval (Seconds)

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

Figure 6.5: Impact of Synchronization Interval on Execution Time

0

5

10

15

20

25

5 25 45 65 85 105 125 145 165 185 205 225 245
Synchronization Interval (Seconds)

C
om

pu
te

d 
In

st
ru

ct
io

ns
 W

as
te

d 
on

 M
ob

ile
 D

ev
ic

e 
(P

er
ce

nt
ag

e)

Figure 6.6: Impact of Synchronization Interval on Mobile Device Computation Wastage

6.3.1.2 Computation Wastage

In this subsection, we discuss the impact of synchronization interval on computation

wastage. The computation wastage is measured as a percentage of computed instructions

wasted on the computing device when the execution is migrated to the another computing

device.

Mobile Device Computation Wastage: Figure 6.6 presents the impact of synchro-

nization interval on the mobile device computation wastage in scenario of intermittent

disconnection. In case of intermittent disconnection, the computation is not wasted on

130

Univ
ers

ity
 of

 M
ala

ya



the cloud server as the mobile device always connects back with the cloud server. The

graph has synchronization interval and wasted instructions percentage of mobile device

on x- and y-axis, respectively.

The mobile device computation wastage occurs because of repeatedly performing

the computations from the last sync point to the disconnection time on the mobile device.

The graph shows that for smaller values of synchronization interval, the computation

wastage is relatively less on the mobile device. The reason is that the mobile device gets

the larger time during the disconnection period than the time taken for the instructions

computed on the cloud between the last synchronization point and disconnection point.

However, when the synchronization interval increases, the cloud has already com-

puted large set of instructions between the last synchronization point and the disconnec-

tion point, therefore the mobile device does not get greater time of disconnection to per-

form that execution. As a result, mobile device does not resynchronize back the process

states with the cloud. Hence, the locally computed instructions are wasted on the con-

nection re-establishment. However, the values of synchronization interval greater than

85 seconds do not affect the computation wastage of the mobile device. The exceptional

drop of computation wastage in case of 105 and 165 shows that computation wastage

does not only depends on synchronization interval but also on the disconnection intervals

that follow the exponentially distribution.

Cloud Computation Wastage: Figure 6.7 presents the impact of the synchronization

interval on the computation wasted in cloud in case of permanent disconnection. In case

of permanent disconnection, the computation is not wasted on the mobile device as the

rest of the execution performed by the mobile device. The x-axis of the graph repre-

sents the synchronization interval in seconds whereas the y-axis of the graph shows the

computed instructions wastage in percentage on the cloud. The computation wastage in-

creases for initial values of synchronization interval, however, the computation wastage

is reduced for larger values of synchronization interval as shown in Figure 6.7 in case of

greater than 185. The computation wastage on the cloud depends not only on the syn-

131

Univ
ers

ity
 of

 M
ala

ya



0

2

4

6

8

10

12

14

5 25 45 65 85 105 125 145 165 185 205 225 245

Synchronization Interval (Seconds)

C
om

pu
te

d 
In

st
ru

ct
io

ns
 W

as
te

d 
in

 C
lo

ud
 (P

er
ce

nt
ag

e)

Figure 6.7: Impact of Synchronization Interval on Cloud Computation Wastage

chronization interval but also on the pattern of disconnection. This insight is gained from

the lower percentage values of wasted instructions on synchronization interval of 125 sec-

onds and 165 seconds. The lower computation wastage is because of the occurrence of

disconnection just immediately after the synchronization time. Hence, less instructions

are computed between this interval.

6.3.1.3 Valuable Computation Performed on Mobile Device

Figure 6.8 presents the impact of synchronization interval on the valuable compu-

tation performed on the mobile device. The x-axis and y-axis of the graph represent

the synchronization interval and the percentage of valuable instructions computed on the

mobile device respectively.

In case of the lower values of synchronization interval, the number of valuable in-

structions computed on the mobile device is higher. However, in case of higher values of

synchronization interval such as greater than and equal to 65 seconds, the mobile device

computes the small amount of valuable instructions as in most of the cases the mobile

device decides not to resynchronize back with the cloud server as the cloud has already

executed the instructions. Hence, a large set of computation performed on the mobile

device got wasted when the synchronization interval is higher.

132

Univ
ers

ity
 of

 M
ala

ya



0

5

10

15

20

25

5 25 45 65 85 105 125 145 165 185 205 225 245

V
al

ua
bl

e 
In

st
ru

ct
io

ns
 C

om
pu

te
d 

on
 M

ob
ile

 D
ev

ic
e 

(P
er

ce
nt

ag
e)

Synchronization Interval (Seconds)

Figure 6.8: Impact of Synchronization Interval on Valuable Computation Performed on
Mobile Device

6.3.1.4 Number of Resynchronizations

0

1

2

3

4

5

6

7

8

9

5 25 45 65 85 105 125 145 165 185 205 225 245

Synchronization Interval (Seconds)

R
es

yn
ch

ro
ni

za
tio

n
C

ou
nt

Figure 6.9: Impact of Synchronization Interval on Number of Resynchronizations

Figure 6.9 shows the impact of synchronization interval on resynchronization count.

The x-axis and y-axis represent the synchronization interval and resynchronization count,

respectively. For smaller sizes of synchronization interval, most of time the mobile de-

vice resynchronizes back the process states with the cloud server. Initially, the number of

resynchronization decreases with the increasing size of synchronization interval. How-

ever, it becomes constant for the size of synchronization interval 65 seconds and onward.

For higher synchronization interval, the mobile device may not get enough time, due to

133

Univ
ers

ity
 of

 M
ala

ya



relatively shorter length of disconnection, to compute the more instructions which have

already been computed by the cloud between the last synchronization point and discon-

nection point. Hence, the mobile device does not resynchronize back its executed process

states with the cloud server.

6.3.1.5 Instructions Executed Between Last Sync Point and Disconnection

0

5

10

15

20

25

30

35

40

5 25 45 65 85 105 125 145 165 185 205 225 245

C
om

pu
te

d 
In

st
ru

ct
io

ns
 B

et
w

ee
n 

La
st

 S
yn

c 
an

d 
D

is
co

nn
ec

tio
n 

(P
er

ce
nt

ag
e)

  

Synchronization Interval (Seconds)

Figure 6.10: Impact of Synchronization Interval on Instructions Executed Between Last
Sync Point and Disconnection

Figure 6.10 shows the impact of synchronization interval on the instructions exe-

cuted between the last sync point and disconnection. The percentage of instructions exe-

cuted between last sync point and disconnection is increasing linearly with the increasing

size of synchronization interval. However, the percentage of instructions executed be-

tween last sync point and disconnection becomes constant for the size of synchronization

interval 85 seconds and onward with exceptions of 105 second and 165 second. The

exception in constant trend of computed instructions shows that the percentage of com-

puted instructions between last sync point and disconnection is not only dependent on the

synchronization interval but also on the time of the disconnection.

134

Univ
ers

ity
 of

 M
ala

ya



0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

5 25 45 65 85 105 125 145 165 185 205 225 245

Synchronization Interval (Seconds)

S
yn

ch
ro

ni
za

tio
n 

O
ve

rh
ea

d
(B

yt
es

)

Figure 6.11: Impact of Synchronization Interval on Synchronization Overhead

6.3.1.6 Synchronization Overhead

Figure 6.11 presents the impact of synchronization interval on synchronization over-

head for one data trace. The x-axis and y-axis of the graph represent the synchronization

interval and synchronization overhead respectively. The graph shows that the synchro-

nization overhead is higher for small size synchronization interval such as in case of

synchronization interval of 5 seconds. The higher synchronization overhead for small

size synchronization interval is because of more frequent exchange of process states with

the cloud server. The higher synchronization interval value results in low frequency of

process states exchange that decreases the synchronization overhead.

6.3.1.7 Energy Consumption

Figure 6.12 shows the impact of synchronization interval on the energy consumption

of the mobile device.

The x-axis and y-axis represent the synchronization interval and energy consumption

respectively. Similar to synchronization overhead, the energy consumption is also higher

for small size synchronization interval such as synchronization interval of size 5 seconds.

The graph also shows that the energy consumption also decreases with the increased size

of the synchronization interval. The higher energy consumption for small size synchro-

135

Univ
ers

ity
 of

 M
ala

ya



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5 25 45 65 85 105 125 145 165 185 205 225 245
Synchronization Interval (Seconds)

E
ne

rg
y

C
on

su
m

pt
io

n 
(J

ou
le

s)

Figure 6.12: Impact of Synchronization on Energy Consumption

nization interval is because of more frequent exchange of process states from the cloud

server with the mobile device.

6.3.2 Synchronization vs. Non synchronization-based Execution

Figure 6.13 presents the comparison of execution time for different traces in case

of synchronization-based and non-synchronization based mobile application execution in

the cloud. The x- and y-axis represents the data traces and execution time. It can be ob-

served that synchronization-based cloud execution of mobile application has reduced the

execution time in all cases. The minimum reduction is 2.8% while maximum reduction

in execution time is 10.7%. The reduction in execution time for case of synchronization-

based execution is due to the resumption of the application from the last sync point in

place of initial stage. Another important reason is the resynchronization of the process

states with the cloud server on the network connection reestablishment.

6.3.3 Valuable Computation on Mobile Device

Our proposed solution, process state synchronization algorithm for mobility support,

has enabled the mobile device to resume the application locally during the disconnec-

tion. We have studied the amount of instructions a mobile device can execute during

the disconnection period. The valuable instructions computed on mobile device are those

136

Univ
ers

ity
 of

 M
ala

ya



1000

1100

1200

1300

1400

1500

1600

1700

1800

D
t-1

D
t-2

D
t-3

D
t-4

D
t-5

D
t-6

D
t-7

D
t-8

D
t-9

D
t-1

0
D

t-1
1

D
t-1

2
D

t-1
3

D
t-1

4
D

t-1
5

D
t-1

6
D

t-1
7

D
t-1

8
D

t-1
9

D
t-2

0
D

t-2
1

D
t-2

2
D

t-2
3

D
t-2

4
D

t-2
5

D
t-2

6
D

t-2
7

D
t-2

8
D

t-2
9

D
t-3

0

With Synchronization Without Synchronization
Data Traces

Ex
ec

ut
io

n
Ti

m
e 

(S
ec

on
ds

)

Figure 6.13: Execution Time in Synchronization and Non-Synchronization

instructions which can be resynchronized with the cloud server when the connection is re-

established. The mobile device only synchronizes back the computed instructions if the

disconnection period is greater than the time taken to compute the instructions from the

last sync point to the disconnection point and time taken to suspend, transfer and resume

on the cloud server. Figure 6.14 presents the valuable instructions computed on mobile

0

2

4

6

8

10

12

14

16

18

20

D
T-

1
D

T-
2

D
T-

3
D

T-
4

D
T-

5
D

T-
6

D
T-

7
D

T-
8

D
T-

9
D

T-
10

D
T-

11
D

T-
12

D
T-

13
D

T-
14

D
T-

15
D

T-
16

D
T-

17
D

T-
18

D
T-

19
D

T-
20

D
T-

21
D

T-
22

D
T-

23
D

T-
24

D
T-

25
D

T-
26

D
T-

27
D

T-
28

D
T-

29
D

T-
30

Data Traces

Va
lu

ab
le

 In
st

ru
ct

io
ns

 C
om

pu
te

d 
on

 M
ob

ile
D

ev
ic

e 
(P

er
ce

nt
ag

e)

Figure 6.14: Valuable Instructions Percentage Computed on Mobile Device

device for our proposed solution during the disconnection period. The data traces have

varied disconnection time and the data traces are sorted in ascending order with respect to

disconnection time. The graph shows the insight that valuable instructions computed on

137

Univ
ers

ity
 of

 M
ala

ya



mobile device are higher for a data traces with larger disconnection time. However, the

valuable instructions computed on mobile device is lower for the data traces with smaller

disconnection time. The graph also shows that always significant amount of valuable

computation is performed by the mobile device for each data trace case.

6.4 Comparison of PSS-based Execution with COMET and Optimized VM-based
Execution

In this section, we compare the performance of PSS-based execution with COMET

and optimized VM-based execution. The parameters used for the comparison of PSS-

based execution are execution time, computation wasted and energy consumption.

6.4.1 Execution Time

Figure 6.15 presents the comparison of PSS-based execution, with the optimized

VM-based cloudlet (Ha et al., 2013) and COMET (Gordon et al., 2012). Herein, we

present the results for three different data traces. The execution time for all the 3 data

traces is least in case of PSS-based execution. In case of first data trace, the PSS-based ex-

ecution takes 1475.7 seconds, whereas execution time for optimized VM-based cloudlet

and COMET is 42.96% and 30.68% greater than that of PSS-based execution. The in-

creased execution time of optimized VM-based cloudlet is because the mobile device is

unable to get back the VM-overlay from the previously visited cloudlet before the net-

work disconnection. The mobile device has to re-offload the execution from initial stage

on the new cloudlet.

In case of second data trace, the execution time for PSS-based execution is 1339.8

seconds. However, the execution time for optimized VM-based cloudlet and COMET

is 43.25% and 67.64% greater than that of the PSS-based execution. The increase in

COMET time as compared to the execution time of optimized VM-based cloudlet is be-

cause of the earlier occurrence of disconnection time than that of the first data trace.

Hence, COMET has to execute more remaining part of the task on the mobile device and

in case of optimized VM-based cloudlet less amount of the execution is wasted due to

138

Univ
ers

ity
 of

 M
ala

ya



failure of getting back the VM-overlay from the previously visited cloudlet.

In case of third data trace, the mobile device is able to get back the results from

the first cloudlet, as the mobile device got enough time between the movement starting

point and the complete disconnection. The time between the movement started and the

complete disconnection is generated as exponential distribution with a mean value of 12

that was computed from the collected data traces. In this case, the execution time for

PSS-based execution is 1260 seconds, whereas in case of optimized VM-based cloudlet

and COMET, the increase of 12.03% and 59.71% has been observed in the execution

time. The execution time for optimized VM-based cloudlet is smaller than COMET as

the mobile device has got back the intermediate states in the form of VM-overlay from

the previously visited cloudlet and the VM-overlay has transferred to another cloudlet

for execution. The newly visited cloudlet derived the launch VM from the overlay VM

and resumed the execution. For all data traces, PSS-based execution takes least time,

the reason for the least execution time is synchronization of states with the mobile de-

vice, resumption of the execution on the mobile device during the disconnection period,

and resynchronizing the process states with the newly discovered cloudlet. These three

characteristics of PSS-based execution contributes in the least execution time.

1000

1200

1400

1600

1800

2000

2200

2400

DT-1 DT-2 DT-3

Optimized VM-based Cloudlet PSS-based Execution COMET

Data Traces

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

on
ds

)

Figure 6.15: Execution Time Comparison With State-of-the-art Application Execution
Frameworks

139

Univ
ers

ity
 of

 M
ala

ya



6.4.2 Computation Wasted

Figure 6.16 presents the comparison of PSS-based execution with the optimized VM-

based cloudlet and COMET in terms of computation wastage because of the network dis-

connection. In case of first and second data trace, the computation wastage for optimized

VM-based cloudlet approach is significantly higher than that in case of PSS-based exe-

cution and COMET. The increased computation wastage is because of the failure of the

mobile device to get back the VM-overlay from the previously visited cloudlet. Hence,

0

10

20

30

40

50

60

DT-1 DT-2 DT-3

Optimized VM-based Cloudlet PSS-based execution COMET

Data Traces

W
as

te
d 

In
st

ru
ct

io
ns

 (P
er

ce
nt

ag
e)

Figure 6.16: Computation Wastage Comparison With State-of-the-art Application Exe-
cution Frameworks

the computation performed on the previous cloudlet get wasted and the mobile device has

to re-offload the execution from the initial stage to the newly discovered cloudlet. A small

difference of computation wastage for PSS-based execution and COMET exists that is due

to periodic nature of the PSS-based execution over the event-based approach of COMET.

The PSS-based execution only shares the intermediate process states when the synchro-

nization interval arrives. The synchronization interval for this scenario is of 15 seconds.

However, COMET exchanges the intermediate states after the double of RTT that is rela-

tively smaller than the synchronization interval considered for the PSS-based execution.

In the third data trace, the computation wastage for optimized VM-based cloudlet is zero

because the mobile device successfully gets back the VM-overlay from the first cloudlet.

140

Univ
ers

ity
 of

 M
ala

ya



However, we have observed through experiments that it is relatively less probable for

mobile device to get back the VM-overlay before the complete disconnection.

6.4.3 Energy Consumption

Figure 6.17 shows the graphical representation of the comparison of PSS-based exe-

cution with the optimized VM-based cloudlet and COMET in terms of energy consump-

tion.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

DT-1 DT-2 DT-3

Optimized VM-based Cloudlet PSS-based Execution COMET

Data Traces

E
ne

rg
y

C
on

su
m

pt
io

n 
(J

ou
le

s)

Figure 6.17: Energy Consumption Comparison With State-of-the-art Application Execu-
tion Frameworks

The energy consumption for optimized VM-based cloudlet is the least for all repre-

sentative data traces. The energy consumption in case of PSS-based execution for three

data traces is 16218.6 joules, 15825.6 joules, and 15040.2 joules, respectively. However,

the optimized VM-based cloudlet consumes 99.83%, 98.12%, and 98.03% less energy

than the consumption of PSS-based execution. The mobile device in case of optimized

VM-based cloudlet execution does not perform the execution locally during the discon-

nection period. However, PSS-based execution supports the resumption of execution lo-

cally and performs the execution locally during the disconnection period. The energy

consumption for COMET-based execution is 54.50%, 64.72%, and 58.74% higher than

the consumption of PSS-based execution for three data traces respectively. The high

consumption of energy for COMET-based execution is because of performing the rest

141

Univ
ers

ity
 of

 M
ala

ya



of the execution locally on the mobile device when the network disconnection occurs.

However, PSS-based execution resynchronizes back the process states with the cloud and

resumes the execution on the newly discovered cloudlet after the network disconnection

that causes the relatively less consumption than that of COMET.

6.5 Conclusion

PSS-based execution is a two way synchronization of process states to address the

issue of network disconnection while executing the application on the cloud server. PSS-

based execution reduces the application execution time, synchronization overhead, and

computation wastage for cloud-based mobile application execution when disconnection

occurs during the execution.

We validated the set of equations presented in chapter 4 using real experiments.

The execution time results of mathematical model are within the 3.7% of the empirical

results. Similarly, the worst case difference between useful and wasteful computations

on the mobile device is 17% while the best case is 0% as compared to 0% in case of

analytical results. We studied the impact of synchronization interval on different perfor-

mance parameters. It was observed that the execution time and computation wastage for

shorter synchronization interval are less. However, the shorter synchronization interval

increases the synchronization overhead. The results also gave an insight that the benefit

of synchronization in terms of execution time and computation wastage diminishes as the

synchronization interval increases.

In best case the execution time of PSS-based execution is 64% and 78% less than

the execution time of optimized VM-based cloudlet and COMET, respectively. However,

in the worst case the execution time of PSS-based execution is 0.41% and 14.99% less

than the execution time of optimized VM-based cloudlet and COMET, respectively. Sim-

ilarly, in best case, the computation wastage of PSS-based execution is 19.21 times less

than the computation wastage of optimized VM-based cloudlet. However, in worst case

the computation wastage of PSS-based execution is 3.4% of the computation wastage

142

Univ
ers

ity
 of

 M
ala

ya



of optimized VM-based cloudlet. The computation wastage of PSS-based execution is

2.2% and 0.10% higher than that of the COMET in worst and best case respectively.

The optimized VM-based cloudlet consumes 99.83% and 98.03% less energy than the

PSS-based execution in the worst and the best cases, respectively. However, PSS-based

execution consumes 64.72% and 54% less energy than that of COMET in the best case

and the worst case, respectively. Considering the results obtained by the performance

analysis and comparison with the existing frameworks, it is concluded that PSS-based ex-

ecution supports a lightweight two way synchronization mechanism for the cloud-based

distributed mobile applications that efficiently manages the execution in case of network

disconnection during the cloud execution.

143

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 7 : CONCLUSIONS

We conclude the thesis by reflecting on the objectives set for this research in the first chap-

ter. The purpose of this chapter is to summarize the research contributions and highlight

the future work.

The chapter is organized into four sections. Section 7.1 discusses the reassessment

of the objectives of this research work. Section 7.2 highlights contribution of the research

work. Section 7.3 examines the scope and limitation of the research work. Section 7.4

gives future directions of the research work.

7.1 Reappraisal of the Research Objectives

The problem of application state loss because of network disconnections and its ad-

verse impact on application execution time has been investigated and addressed in this

thesis. Four objectives were set for the research in Section 1.4. We revisit the four objec-

tives and highlight how the research study met the objectives.

The first objective was to review the application execution frameworks in MCC for

acquiring the insight on the state-of-the-art with reference to network disconnection issue

during the execution of cloud-based mobile application. A thematic taxonomy of con-

ducted literature review has been devised to achieve the objective of literature review. We

have studied the state-of-the-art literature from web resources and online digital libraries

including IEEE, ACM, Springer, and Elsevier. We have collected and studied 150 papers

in the broader domain of mobile computing and mobile cloud computing and reviewed

the current literature on application execution frameworks by selecting 23 frameworks

published during last five years. A number of features employed by frameworks to opti-

mize the application performance have been identified. Qualitative analysis was done to

investigate the critical aspects of state-of-the-art application execution frameworks per-

formance and to identify the open issues for application execution frameworks in MCC.

The second objective was to investigate the impact of user mobility on cloud-based

144

Univ
ers

ity
 of

 M
ala

ya



mobile application execution in the cloud. To achieve this objective, we have collected

the original mobility traces of the mobile users in a typical mobility scenario. We clas-

sified the mobility profiles into three types of permanent disconnection, intermittent dis-

connection with reconnection to same computing source and reconnection with different

computing source. The mobility profiles have been replicated in the lab environment and

impact on application execution has been studied. The empirical analysis showed the

non-trivial impact of mobility and resulting disconnection on the application execution

time. Formal analysis of the problem has been conducted. The analysis shows that under

very realistic conditions, the existing frameworks were not able to adequately mitigate the

impact of disconnections on cloud based mobile application execution. This established

the problem of adverse impact of mobility on cloud based mobile application execution

as non-trivial.

The third objective was to design and develop the solution to save the execution state

for mobility support in order to minimize the execution time and synchronization over-

head. A process state synchronization algorithm has been proposed to address the issue

of network disconnection during the application execution on the cloud server. The pro-

cess state synchronization algorithm exchanges the process states with the mobile device

during the execution periodically, following a synchronization interval. On the network

disconnection, the mobile device is able to resume the application execution locally from

last synchronization state. The mobile device continues the execution until it gets back

the connection to the cloud server.

On the connection re-establishment, the mobile device decides whether to continue

the execution locally or resynchronize back the process states with the cloud server. If

the mobile device resynchronizes back the process states with the cloud server, the cloud

resumes the execution from the newly resynchronized process states. If the mobile device

does not resynchronize back and just sends a resumption signal to the cloud server, the

cloud server resumes from its own previous state. PSS algorithm minimizes the execution

time in case of network disconnection during the execution of mobile application on the

145

Univ
ers

ity
 of

 M
ala

ya



cloud server. The proposed algorithm also reduces the computation wastage and energy

consumption.

The final objective was to develop mathematical model for the proposed solution,

validate the model using empirical analysis and compare the performance of proposed

solution with the state-of-the-art cloud-based mobile application execution frameworks.

An emulated MCC environment has been designed and developed by using the Desk-

top systems and Ethernet technology to emulate the mobile device, wireless technology,

and cloud server. Proposed PSS has been implemented as a pair of linux kernel mod-

ules for empirical validation. A mathematical model has been developed to validate the

performance of PSS implementation. The performance verification of PSS is done by

comparing the performance of PSS with that of the optimized VM-based cloudlet and

COMET.

The results for evaluation of PSS algorithm have been collected and compared for

different disconnection profiles and state-of-the-art execution frameworks. The proposed

algorithm reduces the execution time 42% and 17% in case of permanent disconnection

and intermittent disconnections, respectively. For permanent disconnection, the compu-

tation wastage in case of PSS-based execution is reduced 99% as compared to without

synchronization support. The comparison with existing execution frameworks shows that

PSS reduces the execution time by up to 47% in case of intermittent network connec-

tivity compared to COMET and by up to 35% in case of optimized VM-based cloudlet

execution.

7.2 Contribution of the Research

This research produced a number of contributions to the body of knowledge which

are summarized as follows:

• Thematic Taxonomy: The taxonomy is used to analyze the critical aspects of the cur-

rent application execution frameworks and compare the frameworks on the basis of

146

Univ
ers

ity
 of

 M
ala

ya



significant parameters. The literature review contributed to identify open issues of

application execution frameworks in MCC.

• Process State Synchronization Algorithm: We propose a PSS-based execution algo-

rithm for addressing the issue of execution disruption that leads to additional ex-

ecution time and computation wastage. Unlike the contemporary approaches for

handling the mobility in MCC, PSS-based execution reduces the execution disrup-

tion with minimal synchronization overhead between the mobile device and cloud

server. In case of network disconnection, the task can be resumed on the mobile de-

vice from last point of synchronization. The locally executed process states can be

resynchronized back with the cloud server on the connection reestablishment. The

existing frameworks such as COMET fails to resynchronize back with the cloud

server and also suffers with the synchronization overhead because of the VM level

information exchange. On the contrary, PSS is a lightweight distributed synchro-

nization algorithm that reduces the operational overhead on the mobile device. An-

other key feature of PSS is bidirectional exchange of process states between the

mobile device and the cloud server.

•Mathematical Model: We have mathematically modelled the proposed solution that

is used to validate the performance of PSS algorithm. The model captures the

key features of PSS to represent the proposed solution in mathematical form. The

developed mathematical model was validated by comparing the results of the model

with the emulated PSS-based execution performed in the lab environment.

We have successfully published our work in well reputed journals.

• Accepted Articles on Research Topic:

Ejaz Ahmed, Abdullah Gani, Muhammad Khurram Khan, Rajkumar Buyya, Samee U.

Khan, Seamless Application Execution in Mobile Cloud Computing: Motivation,

147

Univ
ers

ity
 of

 M
ala

ya



Taxonomy, and Open Challenges, Journal of Network and Computer Applications,

Vol. 52, Pages 154-172, June 2015 (Impact Factor 2.229)

Ejaz Ahmed, Abdullah Gani, Mehdi Sookhak, Siti Hafizah Ab Hamid, Feng Xia, Ap-

plication Optimization in Mobile Cloud Computing: Motivation, Taxonomies, and

Open Challenges, Journal of Network and Computer Applications, Vol. 52, Pages

52-68, June 2015 (Impact Factor 2.229)

Ejaz Ahmed, Adnan Akhunzada, Md. Wahiduzaman, Abdullah Gani, Siti Hafizah Ab

Hamid, Rajkumar Buyya, Network-centric Performance Analysis of Runtime Ap-

plication Migration in Mobile Cloud Computing, Simulation Modelling Practice

and Theory Vol. 50, Pages 42-56 January, 2015 (Impact Factor 1.159).

• Articles Under Review on Research Topic:

Ejaz Ahmed, Anjum Naveed, Abdullah Gani, Siti Hafizah Ab Hamid, Formal Analy-

sis of Seamless Application Execution in Mobile Cloud Computing, under review,

2015 (Q1)

Ejaz Ahmed, Anjum Naveed, Abdullah Gani, Siti Hafizah Ab Hamid, Cloud-based Ex-

ecution Management for Mobility Support using Process State Synchronization,

under review, 2015 (Q1)

• Accepted Articles in Other Research Areas:

Ejaz Ahmed, Abdullah Gani, Saeid Abolfazli, Liu Jie Yao, Samee U. Khan, Channel As-

signment in Cognitive Radio Networks: Taxonomy, Open Issues, and Challenges,

IEEE Communication Surveys and Tutorials, in press, October, 2014 (Impact Fac-

tor 6.9)

Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani, Spectrum-aware Distributed Channel

Assignment in Cognitive Radio Wireless Mesh Networks, Malaysian Journal of

Computer Science, Vol. 26(3), Pages 232-250, September 2013 (Impact Factor 0.5)

148

Univ
ers

ity
 of

 M
ala

ya



Ejaz Ahmed, Junaid Qadir, Adeel Baig, High-Throughput Transmission-Quality-Aware

Broadcast Routing in Cognitive Radio Networks, Wireless Networks, Vol. 21, No.

4, October, 2014 (Impact Factor 1.02)

This research has contributed to the following collaborative research articles:

• Articles in Collaboration with Group Members:

Adnan Akhanzada, Ejaz Ahmed, Abdullah Gani, Muhammad Khurram Khan, Muham-

mad Imran, Sghaier Guizani, Securing the Software Defined Networks: Taxonomy,

Requirements, and Open Issues, IEEE Communications Magazine, Vol. 53, No. 4,

December 2014 (Impact Factor 4.46)

Jie Yao Liu, Ejaz Ahmed, Muhammad Shiraz, Abdullah Gani, Rajkumar Buyya, Ahsan

Qureshi, Application Partitioning Algorithms in Mobile Cloud Computing: Taxon-

omy, Review and Future Directions, Journal of Network and Computer Applica-

tions, Vol. 48, Pages 99-117, February 2015 (Impact Factor 1.77)

Mehdi Sookhak, Hamid Teleban, Ejaz Ahmed, Abdullah Gani, Muhammad Khurram

Khan, A Review on Remote Data Auditing in Single Cloud Server: Taxonomy

and Open Issues, Journal of Network and Computer Applications, Vol. 43, Pages

121-141 August 2014 (Impact Factor 1.77)

Saeid Abolfazli, Zohreh Sanaei, Ejaz Ahmed, Abdullah Gani, Raj Buyya, Cloud-based

Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Issues,

IEEE Communications Surveys and Tutorials, Vol. 16 Issue 1, Pages 337-368,

February 2014 (Impact Factor 6.9)

Muhammad Shiraz, Ejaz Ahmed, Abdullah Gani, Investigation on Runtime Partitioning

of Elastic Mobile Applications for Mobile Cloud Computing, Journal of Supercom-

puting, Vol. 67, Issue 1, Pages 84-103, January 2004 (Impact Factor 0.9)

149

Univ
ers

ity
 of

 M
ala

ya



7.3 Research Scope and Limitations

The proposed process state synchronization algorithms are effective for all interac-

tive cloud and cloudlet based mobile application executions. The algorithms will work for

legacy applications as well as newly developed applications. In addition, the client server

based applications can also take advantage of the algorithms, provided the additional data

to be transfered with the application is smaller in size.

The algorithms are not suitable for state transfer of virtualized application executions

because of the heavy load of transferring the virtual machine state, most of which is trivial,

with reference to a particular application execution. Similarly, the proposed algorithms

are less suitable for use in heterogeneous environments for two reasons. Firstly, the state

transfer and resume poses significantly higher overhead in such environments. Secondly,

a generic method for state capture in heterogeneous environment is not yet available and

requires extensive kernel support. Finally, the algorithms have been tested with linux

kernel over x86 architecture and are not guaranteed to work on other platforms.

7.4 Future Work

A huge amount of research effort goes into a PhD based research study. However,

a single PhD study is never enough to cover all the aspects of any research topic. In the

following, we present an insight into some of the possible future directions where further

research can be conducted by extending the proposed research work. This research is

focused only on the synchronization of process states between the homogeneous com-

puting platforms. The homogeneity of the platform in MCC environment is achieved by

running the emulator on the cloud server. The focus of our research is to provide the

two way synchronization of process states, which does not have an open file descriptors

associated with it. Hence, the future research work includes extending the scope of this

research to address the issue of synchronizing the process states including the all associ-

ated entities such as file descriptor and network sockets, synchronizing the process states

between the heterogeneous computing platforms, and predicting the mobility to adapt the

150

Univ
ers

ity
 of

 M
ala

ya



synchronization interval accordingly.

The following section discusses the future directions of this research:

• The issue of synchronizing the process states along with all associated entities, such as

file descriptors and network sockets, is aimed to be addressed in our future research.

The application processes usually do not open the file descriptors and network sock-

ets. The distributed processes, which have opened the network sockets, can only

be migrated and executed from one cloudlet to another cloudlet if the associated

network sockets are migrated along with the process states.

• We aim to address the issue of synchronizing the process states between the heteroge-

neous computing devices in our future research. The application execution that is

performed on one computing platform cannot be directly resumed on the different

computing platform. A mapping of memory segments and registers is required for

the successful resumption of the process on the different computing platform.

• We also aim to address the issue of predicting the mobility patterns to adapt the syn-

chronization interval according to the dynamic conditions of the mobile computing

environment. The mobility pattern estimation will enable us to adapt the synchro-

nization interval for reducing the computation wastage and synchronization over-

head in highly dynamic mobile computing environment.

There can be multiple other research directions, that we might be unaware of at this

particular stage. No matter how complete the research study be, the intriguing minds can

always find new ways of looking at existing things and have always been able to come up

with new ways of improving the state-of-the-art and the body of knowledge.

151

Univ
ers

ity
 of

 M
ala

ya



REFERENCES

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., & Buyya, R. (2014). Cloud-based aug-
mentation for mobile devices: motivation, taxonomies, and open challenges. IEEE
Communications Surveys & Tutorials, 16(1), 337-368.

Ahmed, E., Akhunzada, A., Whaiduzzaman, M., Gani, A., Ab Hamid, S. H., & Buyya,
R. (2015). Network-centric performance analysis of runtime application migration
in mobile cloud computing. Simulation Modelling Practice and Theory, 50, 42–56.

Ahmed, E., Gani, A., Khan, M. K., Buyya, R., & Khan, S. U. (2015). Seamless ap-
plication execution in mobile cloud computing: Motivation, taxonomy, and open
challenges. Journal of Network and Computer Applications, 52, 154-172.

Ahmed, E., Gani, A., Sookhak, M., Ab Hamid, S. H., & Xia, F. (2015). Application opti-
mization in mobile cloud computing: Motivation, taxonomies, and open challenges.
Journal of Network and Computer Applications, 52, 52-68.

Ahn, J. (2009). Lightweight fault-tolerance mechanism for distributed mobile agent-
based monitoring. In Proc. of 6th IEEE Consumer Communications and Networking
Conference, (CCNC’09), Las Vegas, Nevada, USA (p. 1-5).

Al-Muhtadi, J., Mickunas, D., & Campbell, R. (2002). A lightweight reconfigurable
security mechanism for 3G/4G mobile devices. IEEE Wireless Communications,
9(2), 60-65.

Amazon. (2014a, 2 December). Amazon elastic compute cloud (amazon ec2). Available
from http://aws.amazon.com/ec2/

Amazon. (2014b, 2 December). Amazon simple storage service (amazon s3). Available
from http://aws.amazon.com/s3/

Androcec, D., Vrcek, N., & Kungas, P. (2015). Service-Level Interoperability Issues of
Platform as a Service. In IEEE World Congress on Services (SERVICES) (p. 349-
356).

Ardagna, C., Damiani, E., Frati, F., Rebeccani, D., Ughetti, M., et al. (2012). Scalability
patterns for platform-as-a-service. In IEEE 5th International Conference on Cloud
Computing (CLOUD’12) (p. 718-725).

Benharref, A., & Serhani, M. (2014, Jan). Novel Cloud and SOA-Based Framework for
E-Health Monitoring Using Wireless Biosensors. IEEE Journal of Biomedical and
Health Informatics, 18(1), 46-55.

Bertolli, C., Buono, D., Mencagli, G., Torquati, M., Vanneschi, M., Mordacchini, M.,
et al. (2010). Resource discovery support for time-critical adaptive applications.
In Proc. of the 6th International Wireless Communications and Mobile Computing
Conference (IWCMC ’10), Caen, France (pp. 504–508).

152

Univ
ers

ity
 of

 M
ala

ya

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/


Boniface, M., Nasser, B., Papay, J., Phillips, S. C., Servin, A., Yang, X., et al. (2010).
Platform-as-a-service architecture for real-time quality of service management in
clouds. In Fifth International Conference on Internet and Web Applications and
Services (ICIW’10) (p. 155-160).

Bourouis, A., Zerdazi, A., Feham, M., & Bouchachia, A. (2013). M-health: Skin disease
analysis system using smartphone’s camera. Procedia Computer Science, 19, 1116–
1120.

Chen, S., Wang, Y., & Pedram, M. (2013). A semi-markovian decision process based
control method for offloading tasks from mobile devices to the cloud. In Globecom
(p. 2885-2890).

Chen, X. (2015). Decentralized computation offloading game for mobile cloud comput-
ing. IEEE Transactions on Parallel and Distributed Systems, 26(4), 974-983.

Chitika. (2015, Accessed on: 23 April). Hour-by-hour examination: Smartphone, tablet,
and desktop usage rates. Available from https://chitika.com/browsing-activity
-by-hour

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). Clonecloud: elastic
execution between mobile device and cloud. In Proceedings of the 6th EuroSys
conference on Computer systems (EUROSYS’11), Salzburg, Austria (pp. 301–314).

Chun, B.-G., & Maniatis, P. (2009). Augmented smartphone applications through clone
cloud execution. In Proceedings of the 8th Workshop on Hot Topics in Operating
Systems (HotOS’09), Monte Verita, Switzerland (pp. 8–14).

Chun, B.-G., & Maniatis, P. (2010). Dynamically partitioning applications between weak
devices and clouds. In Proc. of the 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond, (MCS’10), San Francisco, USA (pp. 1–5).

Church, A. (1940). A formulation of the simple theory of types. The journal of symbolic
logic, 5(02), 56–68.

Cisco. (2015, 3 february). Cisco visual networking index: Global mobile data traffic
forecast update, 2014-2019. Available from https://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-vni/
white_paper_c11-520862.pdf

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., et
al. (2010). MAUI: making smartphones last longer with code offload. In Proc.
of the 8th international conference on Mobile systems, applications, and services
(MobiSys’10), San Francisco, CA, USA. (pp. 49–62).

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1), 107–113.

Developers, V. (2015, Accessed on 5 May). Lackey: an example tool. Available from
http://valgrind.org/docs/manual/lk-manual.html

153

Univ
ers

ity
 of

 M
ala

ya

https://chitika.com/browsing-activity-by-hour
https://chitika.com/browsing-activity-by-hour
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.pdf
http://valgrind.org/docs/manual/lk-manual.html


Di Modica, G., Tomarchio, O., & Vita, L. (2011). Resource and service discovery in
SOAs: A P2P oriented semantic approach. International Journal of Applied Mathe-
matics and Computer Science, 21(2), 285–294.

Dropbox. (2015, Accessed on 2 June). Available from https://www.dropbox.com/

Facebook. (2015, Accessed on 2 June). Available from https://www.facebook.com/
?_rdr

Fesehaye, D., Gao, Y., Nahrstedt, K., & Wang, G. (2012). Impact of cloudlets on interac-
tive mobile cloud applications. In Proc. of 16th International Enterprise Distributed
Object Computing Conference (EDOC’12), Beijing, China (pp. 123–132).

Forbes. (2015, Accessed on: 23 April). Cities with the most extreme commutes. Available
from http://www.forbes.com/sites/jennagoudreau/2013/03/05/citieswith
-the-most-extreme-commutes/

Ghosh, R., Longo, F., Xia, R., Naik, V. K., & Trivedi, K. S. (2014). Stochastic model
driven capacity planning for an infrastructure-as-a-service cloud. IEEE Transactions
on Services Computing, 7(4), 667-680.

Giurgiu, I., Riva, O., Juric, D., Krivulev, I., & Alonso, G. (2009). Calling the cloud: En-
abling mobile phones as interfaces to cloud applications. In Proc. of the 10th ACM/I-
FIP/USENIX International Conference on Middleware (Middleware’09), Cham-
paign, IL, USA (p. 83-102). Springer.

Google. (2012, Accessed on: 2 December). Google app engine. Available from cloud
.google.com/appengine

Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M., & Chen, X. (2012). COMET:
code offload by migrating execution transparently. In Proc. of the 10th USENIX con-
ference on Operating Systems Design and Implementation, (OSDI’12), Hollywood,
CA. (Vol. 12, pp. 93–106).

Goscinski, A., & Brock, M. (2010). Toward dynamic and attribute based publication,
discovery and selection for cloud computing. Future Generation Computer Systems,
26(7), 947–970.

Goyal, S., & Carter, J. (2004). A lightweight secure cyber foraging infrastructure for
resource-constrained devices. In Proc. of 6th IEEE Workshop on Mobile Computing
Systems and Applications, (WMCSA’04), English Lake District, UK (pp. 186–195).

Ha, K., Pillai, P., Richter, W., Abe, Y., & Satyanarayanan, M. (2013). Just-in-time
provisioning for cyber foraging. In Proc. of the 11th annual international conference
on Mobile systems, applications, and services (pp. 153–166).

Huerta-Canepa, G., & Lee, D. (2010). A virtual cloud computing provider for mobile
devices. In Proc. of the 1st ACM Workshop on Mobile Cloud Computing & Services:
Social Networks and Beyond, (MCS’10), San Francisco, CA, USA (pp. 1–5).

154

Univ
ers

ity
 of

 M
ala

ya

https://www.dropbox.com/
https://www.facebook.com/?_rdr
https://www.facebook.com/?_rdr
http://www.forbes.com/sites/jennagoudreau/2013/03/05/citieswith-the-most-extreme-commutes/
http://www.forbes.com/sites/jennagoudreau/2013/03/05/citieswith-the-most-extreme-commutes/
cloud.google.com/appengine
cloud.google.com/appengine


Hung, S.-H., Shih, C.-S., Shieh, J.-P., Lee, C.-P., & Huang, Y.-H. (2012). Executing
mobile applications on the cloud: framework and issues. Computers & Mathematics
with Applications, 63(2), 573–587.

Khan, A. N., Mat Kiah, M., Khan, S. U., & Madani, S. A. (2012). Towards secure
mobile cloud computing: A survey. Future Generation Computer Systems, 29(5),
1278–1299.

Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading.
In Proc. of 31st IEEE International Conference on Computer Communications (IN-
FOCOM’12), Orlando, Florida, USA (pp. 945–953).

Koukoumidis, E., Lymberopoulos, D., Strauss, K., Liu, J., & Burger, D. (2012). Pocket
cloudlets. ACM SIGPLAN Notices, 47(4), 171–184.

Kovachev, D., Cao, Y., & Klamma, R. (2012). Augmenting pervasive environments with
an XMPP-based mobile cloud middleware. In Proc. of Fourth International Con-
ference on Mobile Computing, Applications and Services (MobiCASE’12), Seattle,
Washington, United States (pp. 361–372). Springer.

Kovachev, D., Yu, T., & Klamma, R. (2012). Adaptive computation offloading from
mobile devices into the cloud. In Proc. of 10th International Symposium on Parallel
and Distributed Processing with Applications (ISPA’12), Madrid, Spain (pp. 784–
791).

Lee, B.-D. (2012). A framework for seamless execution of mobile applications in the
cloud. Recent Advances in Computer Science and Information Engineering, 126,
145–153.

Lingjun, P., Jingdong, X., Bowen, Y., & Jianzhong, Z. (2014). Smart cafe: A mobile
local computing system based on indoor virtual cloud. Communications, China,
11(4), 38-49.

Litzkow, M., Tannenbaum, T., Basney, J., & Livny, M. (1997). Checkpoint and migration
of unix processes in the condor distributed processing system. Computer Sciences
Department, University of Wisconsin.

Liu, J., Kumar, K., & Lu, Y.-H. (2010). Tradeoff between energy savings and privacy pro-
tection in computation offloading. In Proc. of ACM/IEEE International Symposium
on Low Power Electronics and Design (ISLPED’10), Austin, TX, USA (p. 213-218).

Liu, J. y., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., & Qureshi, A. (2015). Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions. Journal of Network and Computer Applications, 48, 99-117.

Ma, D., & Kauffman, R. J. (2014). Competition between software-as-a-service vendors.
IEEE Transactions on Engineering Management, 61(4), 717-729.

Mao, H., Xiao, N., Shi, W., & Lu, Y. (2012). Wukong: A cloud-oriented file service
for mobile internet devices. Journal of Parallel and Distributed Computing, 72(2),

155

Univ
ers

ity
 of

 M
ala

ya



171–184.

Marinelli, E. E. (2009). Hyrax: Cloud computing on mobile devices using mapreduce
(Tech. Rep.). DTIC Document.

Martins, R., Narasimhan, P., Lopes, L., & Silva, F. (2010). Lightweight fault-tolerance for
Peer-to-Peer middleware. In Proc. of 29th IEEE Symposium on Reliable Distributed
Systems (SRDS’10), Delhi, India (pp. 313–317).

Mehendale, H., Paranjpe, A., & Vempala, S. (2011). Lifenet: a flexible ad hoc networking
solution for transient environments. In Proc. of the ACM SIGCOMM conference
(SIGCOMM’11), Toronto, On, Canada (p. 446-447). ACM.

Mitra, S. (2010). Seamless mobility management and QoS support for multihomed mo-
bile node in heterogeneous wireless networks. In Proc. of International Conference
on Industrial and Information Systems (ICIIS’10), Dalian, China (p. 145-150).

Modares, H., Moravejosharieh, A., Lloret, J., & Salleh, R. B. (2014). A survey on proxy
mobile IPv6 handover. IEEE Systems Journal, in press.

Nguyen, K.-K., Cheriet, M., & Lemay, M. (2013). Enabling infrastructure as a service
(IaaS) on IP networks: from distributed to virtualized control plane. IEEE Commu-
nications Magazine, 51(1), 136-144.

Ojala, A. (2013, May). Software-as-a-Service Revenue Models. IT Professional, 15(3),
54-59.

Osman, S., Subhraveti, D., Su, G., & Nieh, J. (2002). The design and implementation
of Zap: A system for migrating computing environments. ACM SIGOPS Operating
Systems Review, 36(SI), 361–376.

Ou, S., Yang, K., & Zhang, J. (2007). An effective offloading middleware for pervasive
services on mobile devices. Pervasive and Mobile Computing, 3(4), 362–385.

Pirozmand, P., Wu, G., Jedari, B., & Xia, F. (2014). Human mobility in opportunistic
networks: Characteristics, models and prediction methods. Journal of Network and
Computer Applications, 42, 45–58.

Raad, P., Colombo, G., Chi, D. P., Secci, S., Cianfrani, A., Gallard, P., et al. (2013).
Achieving sub-second downtimes in internet-wide virtual machine live migrations
in LISP networks. In Proc. of IFIP/IEEE International Symposium on Integrated
Network Management (IM’13), Ghent, Belgium (p. 286-293).

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009). The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

Shaukat, U., Ahmed, E., Anwar, Z., & Xia, F. (2016). Cloudlet deployment in local wire-
less networks: Motivation, architectures, applications, and open challenges. Journal
of Network and Computer Applications, 62, 18-40.

156

Univ
ers

ity
 of

 M
ala

ya



Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M., & Zegura, E. (2014). COS-
MOS: computation offloading as a service for mobile devices. In Proc. of the 15th
ACM international symposium on Mobile ad hoc networking and computing (pp.
287–296).

Shuja, J., Bilal, K., Madani, S., Othman, M., Ranjan, R., Balaji, P., et al. (2014). Survey
of techniques and architectures for designing energy-efficient data centers. Systems
Journal, IEEE, PP(99), 1-13.

Shuja, J., Madani, S. A., Bilal, K., Hayat, K., Khan, S. U., & Sarwar, S. (2012). Energy-
efficient data centers. Computing, 94(12), 973-994.

Spata, M. O., & Rinaudo, S. (2011). Virtual machine migration through an intelligent mo-
bile agents system for a cloud grid. Journal of Convergence Information Technology,
6(6).

Takahashi, K., Sasada, K., & Hirofuchi, T. (2012). A fast virtual machine storage migra-
tion technique using data deduplication. In Proc. of The Third International Confer-
ence on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING’12),
Nice, France (pp. 57–64).

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012a). AIOLOS: Middleware
for improving mobile application performance through cyber foraging. Journal of
Systems and Software, 85(11), 2629–2639.

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012b). Cloudlets: Bringing
the cloud to the mobile user. In Proc. of the third ACM workshop on Mobile cloud
computing and services, (MCS’12), New York, USA (pp. 29–36).

Verbelen, T., Stevens, T., Simoens, P., De Turck, F., & Dhoedt, B. (2011). Dynamic de-
ployment and quality adaptation for mobile augmented reality applications. Journal
of Systems and Software, 84(11), 1871–1882.

Vu, L., Nguyen, P., Nahrstedt, K., & Richerzhagen, B. (2015). Characterizing and mod-
eling people movement from mobile phone sensing traces. Pervasive and Mobile
Computing, 17, 220-235.

Wang, X., Chen, M., Kwon, T., Yang, L., & Leung, V. (2013, June). AMES-Cloud: A
Framework of Adaptive Mobile Video Streaming and Efficient Social Video Sharing
in the Clouds. IEEE Transactions on Multimedia, 15(4), 811-820.

Wang, X., Gui, Q., Liu, B., Jin, Z., & Chen, Y. (2014, May). Enabling Smart Personal-
ized Healthcare: A Hybrid Mobile-Cloud Approach for ECG Telemonitoring. IEEE
Journal of Biomedical and Health Informatics, 18(3), 739-745.

Wang, Y., Wu, J., & Yang, W.-S. (2013). Cloud-based multicasting with feedback in
mobile social networks. IEEE Transactions on Wireless Communications, 12(12),
6043-6053.

Whaiduzzaman, M., Haque, M. N., Rejaul Karim Chowdhury, M., & Gani, A. (2014).
A study on strategic provisioning of cloud computing services. The Scientific World

157

Univ
ers

ity
 of

 M
ala

ya



Journal, 2014.

White, T. (2012). Hadoop: the definitive guide. O’Reilly.

Wong, L.-H., Chai, C. S., Zhang, X., & King, R. (2015, Jan). Employing the TPACK
Framework for Researcher-Teacher Co-Design of a Mobile-Assisted Seamless Lan-
guage Learning Environment. IEEE Transactions on Learning Technologies, 8(1),
31-42.

Wu, L., Garg, S. K., Versteeg, S., & Buyya, R. (2014). SLA-Based Resource Provisioning
for Hosted Software-as-a-Service Applications in Cloud Computing Environments.
IEEE Transactions on Services Computing, 7(3), 465-485.

Xia, Y., Zhou, M., Luo, X., Zhu, Q., Li, J., & Huang, Y. (2015). Stochastic Modeling
and Quality Evaluation of Infrastructure-as-a-Service Clouds. IEEE Transactions on
Automation Science and Engineering, 12(1), 162-170.

Xiang, L., Ye, S., Feng, Y., Li, B., & Li, B. (2014, April). Ready, Set, Go: Coalesced
offloading from mobile devices to the cloud. In Proc. of IEEE INFOCOM, Toronto,
Canada (p. 2373-2381).

Xiao, Z., & Xiao, Y. (2013). Security and privacy in cloud computing. IEEE Communi-
cations Surveys & Tutorials, 15(2), 843-859.

Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., & Chan, A. (2012). A framework for
partitioning and execution of data stream applications in mobile cloud computing.
In Proc. of IEEE 5th International Conference on Cloud Computing, (CLOUD’12),
Honolulu, Hawaii, USA (pp. 794–802).

Zekri, M., Jouaber, B., & Zeghlache, D. (2012). A review on mobility management
and vertical handover solutions over heterogeneous wireless networks. Computer
Communications, 35(17), 2055–2068.

Zhang, X., Jeong, S., Kunjithapatham, A., & Gibbs, S. (2010). Towards an elastic ap-
plication model for augmenting computing capabilities of mobile platforms. Mobile
wireless middleware, operating systems, and applications, 48, 161–174.

Zhang, Y., Niyato, D., Wang, P., & Tham, C.-K. (2014). Dynamic offloading algorithm in
intermittently connected mobile cloudlet systems. In IEEE International Conference
on Communications (ICC’14) (pp. 4190–4195).

Zhao, B., Xu, Z., Chi, C., Zhu, S., & Cao, G. (2012). Mirroring smartphones for good:
A feasibility study. Mobile and Ubiquitous Systems: Computing, Networking, and
Services, 73, 26–38.

158

Univ
ers

ity
 of

 M
ala

ya


	Original Literary Work Declaration
	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Domain Background
	Research Motivation
	Statement of The Problem
	Statement of Objectives
	Proposed Methodology
	Layout of Thesis

	Cloud-based Mobile Application Execution Frameworks
	Cloud based Mobile Application Execution
	Application Performance Enhancement by the Frameworks
	Open Challenges: Application Performance Enhancement
	Conclusion

	Problem Analysis of Cloud-based Mobile Application Execution in Disruptive Networks
	Empirical Study: Network Disconnection and Application Execution
	Formal Analysis: Network Disconnection and Application Execution
	Conclusion

	Process State Synchronization Algorithm
	Process State Synchronization (PSS)
	Example Illustration
	Mathematical Model of PSS
	Distinguishing Features of Proposed Algorithm
	Conclusion

	Evaluation
	Introduction
	Performance Evaluation
	Data Collected For Model Validation
	Data Collected for Different Disconnection-Execution Profiles
	Data Collection for Analyzing the Impact of Synchronization Interval
	Data Collected For Performance Comparison of PSS with Optimized VM-based Cloudlet and COMET
	Conclusion

	Results and Discussions
	Model Validation
	Comparison of Mobile Application Execution in Different Connection Profiles
	Performance Analysis of Process State Synchronization Algorithm
	Comparison of PSS-based Execution with COMET and Optimized VM-based Execution
	Conclusion

	Conclusions
	Reappraisal of the Research Objectives
	Contribution of the Research
	Research Scope and Limitations
	Future Work

	References



