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ABSTRACT 

In this study, two aspects of structural dynamic problems have been considered, involving 

direct structural dynamics as well as inverse problems. The first part of this research is 

directed towards improving an explicit and indirect time integration method for structural 

dynamic problems capable of using adaptive wavelets. The developed scheme is 

comprehensive enough for use with any wavelet basis function. To investigate the 

applicability of different wavelet functions for different problems, in particular, the simple 

family of Haar wavelets, the complex and free-scaled Chebyshev wavelets of the first (FCW) 

and second kind (SCW) and Legendre wavelets (LW) have been evaluated. A detailed 

assessment is carried out on the stability, accuracy and computational efficiency of responses 

calculated by Haar wavelet, FCW, SCW and LW. The proposed method lies on an 

unconditionally stable scheme, hence, there is no requirement on the selection of the time 

interval. This allowed the numerical procedure to be performed on long time increments. 

Practically, an efficient structural health monitoring strategy is the resultant of the 

implementation of an enhanced structural simulation through inverse problem approach. As 

a consequence, the computational performance of structural health monitoring strategies will 

be directly influenced by the higher computational competency and convergence rate of the 

proposed wavelet-based method for structural simulation. 

Accordingly, in the second part of this research, the procedure of structural identification 

and damage detection has been developed by employing the wavelet-based method through 

the modified genetic algorithms (GAs) to optimally solve inverse problems. For this purpose, 

a wavelet-based GAs strategy is improved by using free-scaled adaptive wavelets to 

optimally identify unknown structural parameters. The appropriateness and effectiveness of 

the proposed strategy have been evaluated both numerically and experimentally. The 
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numerical assessment demonstrated the robustness of the proposed technique for 

identification and damage detection of large-scaled structures with the best performance. For 

the experimental validation, three test setups were conducted for identification and damage 

detection, including two different MDOF systems and a 2-dimentional truss structure. 

Consequently, it was shown that the computational efficiency of structural identification and 

relatively, damage detection strategies were significantly enhanced. This led the optimum 

results with the highest accuracies and provided the sufficiently reliable strategy in assessing 

the structural integrity, safety and reliability. 
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ABSTRAK 

Melalui kajian ini, pihak pengkaji telah menitikberatkan dua aspek masalah dinamik 

struktur, yakni yang melibatkan dinamik struktur secara terus dan masalah songsangan. 

Bahagian pertama kajian ini adalah menjurus ke arah meningkatkan kaedah integrasi masa 

yang nyata dan secara tidak langsung untuk masalah struktur dinamik yang mampu 

menggunakan penyesuaian gelombang kecil (wavelet). Skim yang disediakan cukup 

komprehensif untuk digunakan dengan sebarangan fungsi asas wavelet. Bagi Menyiasat 

penggunaan / keterterapan fungsi gelombang kecil (wavelet) yang berbeza untuk masalah 

yang berbeza, terutamanya, keluarga mudah (riak) wavelet Haar, wavelet Chebyshev pertama 

(FCW) yang kompleks dan berskala bebas dan jenis kedua (SCW) serta wavelet Legendre 

(LW) telah dinilai. Satu penilaian terperinci telah dijalankan terhadap kestabilan, ketepatan 

dan kecekapan dalam pengiraan tindak balas yang telah dikira dengan menggunakan wavelet 

Haar, FCW, SCW dan LW. Kaedah yang dicadangkan bergantung kepada skim yang stabil 

tanpa syarat, walhal, tidak ada keperluan terhadap pemilihan selang masa. Ini telah 

membolehkan prosedur berangka yang dilakukan ke atas pertambahan masa yang panjang. 

Secara praktikalnya, struktur strategi pemantauan kesihatan yang cekap adalah paduan 

pelaksanaan simulasi struktur yang telah dipertingkatkan melalui pendekatan masalah 

songsang. Akibatnya, prestasi pengkomputeran strategi pemantauan kesihatan struktur akan 

terus dipengaruhi oleh kecekapan pengiraan dan penumpuan pada kadar yang lebih tinggi 

daripada kaedah berasaskan gelombang kecil (wavelet) yang dicadangkan untuk simulasi 

struktur.  

Oleh itu, dalam bahagian kedua kajian ini, prosedur mengenalpasti struktur dan 

pengesanan kerosakan telah dibentuk dengan menggunakan kaedah berasaskan wavelet-

melalui algoritma genetik yang telah diubahsuai (GA) bagi  menyelesaikan masalah songsang 
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secara optimum. Bagi tujuan ini, strategi GA berasaskan wavelet telah dipertingkatkan 

dengan menggunakan riak (wavelet) penyesuaian bebas untuk meningkatkan keupayaannya 

dalam mengenalpasti secara optimum parameter struktur yang tidak diketahui. Kesesuaian 

dan keberkesanan strategi yang dicadangkan telah dinilai secara berangka dan uji kaji. 

Penilaian berangka menunjukkan keteguhan teknik yang dicadangkan untuk pengenalan dan 

pengesanan kerosakan struktur berskala besar yang mempunyai prestasi terbaik. Untuk 

pengesahan eksperimen, persediaan tiga ujian telah dijalankan untuk mengenalpasti dan 

mengesan kerosakan, termasuklah dua sistem MDOF yang berbeza dan struktur kekuda 2-

dimensi. Oleh yang demikian, ia menunjukkan bahawa kecekapan pengiraan dalam 

pengenalan struktur dan secara relatifnya, strategi pengesanan kerosakan telah 

dipertingkatkan dengan ketara. Ini telah menghasilkan keputusan yang optimum dengan 

ketepatan tertinggi dan menjamin strategi yang cukup dipercayai dalam menilai keutuhan, 

keselamatan dan kebolehpercayaan struktur tersebut. 
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CHAPTER 1: INTRODUCTION 

1.1 General 

In general, structural dynamics problems can be classified into direct (forward) problems 

and inverse problems. The main purpose for structural simulation (direct or forward analysis) 

of dynamical systems is to estimate the output (response) for a set of given input comprised 

of known structural parameters and lateral forces. In contrast, inverse analysis deals with 

identification of system parameters corresponding to a set of given input and output (I/O) 

information and relation between these data. Accordingly, structural health monitoring is 

emerging as a vital tool to help engineers improve the safety and maintainability of critical 

structures. This popular and of course fundamental paradigm involves structural 

identification and damage detection in order to analyze the current structural reliability, 

integrity and safety (Figure 1.1). Moreover, the advantages of structural identification 

procedures have been demonstrated in various disciplines of engineering. For instance, in the 

non-destructive evaluation of structures, prediction of parameters for active and passive 

control of structures, pattern predictions, image recognition and so forth. 

 

 

Figure 1.1: (a) Structural simulation (direct); (b) structural identification (inverse).  

a)  Simulated 

response 

b) Measured 

response 

SYSTEM 

(e.g., civil engineering structure) 

 

a) Known system (assumed 

system) 

b) Unknown system (to be 

identified) 

  

INPUT OUTPUT 

a) Design excitation and 

boundary conditions 

b) Applied loading and 

boundary conditions 
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Over the past two decades, wavelets have been effectively utilized for signal processing 

and solution of differential equations. There are many mathematical reports on characteristics 

of wavelet functions and wavelet transforms. For more than a decade, wavelet operators have 

been employed to solve and analyze problems associated with structural engineering and 

engineering mechanics. Subsequently, further to the previous discussion on direct and inverse 

analysis, implementation of wavelet functions and wavelet transforms in engineering can be 

viewed from two underlying perspectives. Firstly, in structural simulation (direct analysis), 

whereby, the solution of differential equations governing the structural systems is considered. 

Secondly, the practice of wavelets through an inverse problem (structural identification) to 

analyze the measured structural responses in order to extract the system properties, including 

time varying parameters, modal properties, damage measurement, sensitivity analysis, de-

noising (filtering I/O data) and so forth. 

Generally, the identification of structural parameters i.e., mass, damping and stiffness is 

commonly referred to as ‘system identification’. System identification can be applied in order 

to update or calibrate the structural models so as to better estimate response and accomplish 

more cost-effective designs. Fundamentally, structural assessment, structural health 

monitoring and damage evaluation are concerned with recording and comparing identified 

properties over a period of time in a non-destructive way by tracking changes of the structural 

parameters. This is especially practical for firstly, identifying structural damages imposed by 

natural causes such as earthquakes, winds or tsunamis, and secondly for evaluation of the 

reliability and safety of aging structures.  

Consequently, for any structural simulation and identification strategy, it is essential to 

achieve the most reliable and optimum results. In this regard, the computational efficiency, 

robustness and convergence rate of algorithms proposed for structural health monitoring 

approaches shall be evaluated in details. The research presented in this thesis develops an 
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efficient and robust approach for solving structural dynamic problems (forward analysis) by 

using adaptive wavelet functions. Subsequently, the proposed wavelet-based scheme is 

implemented in conjunction with a heuristic optimization strategy based on modified genetic 

algorithms in order to optimally solve inverse problems, involving structural identification 

and damage detection problems. 

1.2 Objectives and problem statement  

Structural health monitoring using adaptive wavelet functions is the primary aim of this 

study. For this purpose, an indirect time integration method is developed to solve structural 

dynamic problems (structural simulation) using adaptive wavelet functions, initially. Later, 

the proposed procedure is implemented in order to solve inverse problems (structural 

identification). Detailed objectives and corresponding problem statements that contribute to 

this aim include: 

 To develop an explicit and indirect time integration method capable of using various 

wavelet functions suitable for solving structural simulation problems. 

There are several reports available for the solution of dynamic problems using explicit 

methods. In fact, all of them lie on time domain analysis of either lateral excitation or 

inherent properties of structures. Consequently, the frequency components of outputs are 

not being considered through the numerical integration. Therefore, the size of data is 

significantly increased, and computational competency degrades. In addition, 

implementation of indirect approaches in structural dynamics problems using frequency 

domain analysis is sparsely addressed in literature. For instance, the practice of well-

known Fourier transformation (FT) is reported as one of the frequency-domain 

procedures. However, the information about time cannot be captured by using FT 
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scheme. So far no information is available regarding to a comprehensive procedure for 

numerical time integration concerning with frequency components as well as time 

information. For this reason, it seems inevitable to develop the solution of structural 

simulation problems in order to achieve a computationally efficient procedure that will 

result in an optimum implementation through the structural identification strategies. 

 To investigate the efficiency of the proposed time integration approach for using various 

wavelet basis functions. 

Mathematically, different wavelet basis functions have been implemented to solve 

ordinary differential equations (ODEs). The significant shortcomings observed in the 

literature are the limitations of proposed schemes for the solution of only unit time 

intervals, which, makes those numerical methods impractical for structural dynamics 

problems. In addition, there is no consideration on frequency components of equations. 

Consequently, the assessment of computational efficiency corresponding to different 

wavelet basis functions on various scales is not addressed, and therefore there is no 

considerable attempt on the practice of adaptive wavelet functions for different problems 

of structural dynamics. 

 To evaluate the stability and accuracy of results calculated with the proposed time 

integration procedure using different wavelet functions.  

No significant research has investigated the stability and accuracy of results obtained by 

adaptive wavelet functions. In structural health monitoring problems, either direct 

analysis or inverse analysis, the criterion on stability and accuracy of responses and thus, 

selection of the appropriate sampling rates (time intervals) play the underlying role to 

accomplish the most optimum strategies. There have been many researches conducted 

for this purpose on not only explicit but also implicit time integration methods. However, 
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there is no study on the evaluation of wavelet-based procedures for structural dynamics 

problems. 

 To improve a wavelet-based scheme in order to compute the third derivative of 

displacement with respect to time (namely, the jerk quantity) capable of using different 

wavelet basis functions.  

One of the advantages of wavelet functions is undoubtedly the analysis of sensitivity of 

time varying parameters with respect to time. Particularly, for solving inverse problems 

through an online pattern, calculating and comparison of this quantity is very useful for 

identification and damage detection algorithms. Subsequently, there is little or no study 

in the literature addressing so-called jerk measurement. 

 To modify and develop an efficient structural identification and damage detection 

(inverse analysis) strategy originating from the proposed method of time integration using 

adaptive wavelet functions.  

The structural identification algorithms involve identification of unknown structural 

parameters such as mass, damping and stiffness for each existing degree of freedom or 

for each structural element. Accordingly, a structural identification strategy can be 

extended in order to improve a damage detection algorithm. Implementation of the 

proposed method using various wavelet functions through an inverse problem, 

significantly enhances the common non-classical algorithms of structural identification 

i.e., genetic algorithm (GA) and gains the most optimum and reliable results. 

Fundamentally, the proposed method lies on a time domain scheme, however its practice 

can be beneficial while it is not blind on the frequency contents of dynamic equilibrium. 

From the computational efficiency point of view, substantial discussions have 

demonstrated that an excessive computational cost is the main drawback of 
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aforementioned non-classical procedures. Consequently, by using the proposed scheme 

the entire details of considered inverse problem is being optimally captured (especially, 

frequency contents), and resulting in the higher rate of convergence and accuracy of 

results. 

 To develop an efficient wavelet-based procedure for identification of external forces 

(input data) suitable for output-only data inverse analysis that is referred in literature to 

‘operational inverse problems’.  

Basically, it is observed that methods utilized for force identification are mostly based on 

frequency domain analysis and thus, have fundamental drawbacks which will be 

discussed in subsequent chapters. Consequently, the capability and appropriateness of the 

proposed scheme as an explicit time integration method should also be evaluated for force 

identification problems. However, several limitations still remained for using the 

proposed method such as the bounded measurement of responses or restricted boundary 

conditions. 

1.3 Scope of study 

Basically, the overall scope of this study falls under two underlying prospects. Firstly, the 

numerical development of the proposed algorithms together with numerical validation and 

evaluations. Secondly, the experimental verifications. The former part of this study contains 

the mathematical development and improvement of a wavelet-based method for dynamic 

analysis of structures. For various structural systems a comprehensive program code is 

developed in MATLAB in order to formulate structural properties prior to implementation 

of the main scripts involving the operation of the proposed method using different wavelet 

functions. It is expected that, due to different ranges of frequency components of external 
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excitations, the influence of various wavelet basis functions i.e., 2-dimensional (2D) wavelets 

will be totally different with 3D basis functions. As it is shown in Figure 1.2, for diverse 

structural problems i.e., single-degree-of-freedom (SDOF) and multi-degrees-of-freedom 

(MDOF), the adaptive analysis is achieved due to an iterative scheme using different wavelet 

basis functions. In addition, the proposed scheme is implemented for solving inverse 

problems and the robustness of using wavelet functions is demonstrated numerically and later 

is validated experimentally. 

In order to accomplish the aforementioned objectives, the present research has been 

carried out in following steps: 

 In order to investigate the influence of using various wavelets through the proposed 

method, four wavelet basis functions are considered i.e., 2D and simple Haar wavelets, 

family of 3D and complex Chebyshev wavelet functions of the first (FCW) and second 

kind (SCW) and finally, 3D and complex Legendre wavelet (LW) functions. An explicit 

and indirect time integration method is developed for structural dynamics problems 

capable of using foregoing wavelets. For this purpose, the dynamic equilibrium 

governing SDOF and MDOF structures is efficiently approximated by wavelet functions 

emphasizing on frequency-domain approximation. A simple step-by-step algorithm has 

been implemented and improved in order to calculate the response of finite element 

systems. A clear cut formulation is derived for transforming differential equations into 

the corresponding algebraic systems using wavelet operational matrices. A converter 

coefficient is developed in order to extend operations of wavelets from local times to 

global times. For the purpose of numerical evaluations, results are compared with 

simulated responses by common numerical time integration procedures such as the family 

of Newmark-𝛽 (linear and average acceleration method), Wilson-𝜃, central difference 
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and Hilber-Hughes-Taylor (HHT-𝛼) method. In all the procedures, the CPU computation 

time involved has also been considered for evaluating the computational efficiencies.  

 In order to examine the efficiency of different wavelet basis functions, the operational 

matrices of integration corresponding to each basis function are compared in detail. For 

this purpose, various scales of 2D and 3D wavelet functions are employed in order to 

solve the first and second ordered differential equations. Accordingly, a comprehensive 

investigation on the computational efficiency of 2D and 3D wavelet functions is 

conducted prior to selecting the most compatible basis function with the lateral excitation. 

 One of the preliminary aims of this study is to develop a robust technique for numerical 

time integration. The most important criterions on the use of numerical time integration 

procedures are the stability and accuracy of responses. For this reason, the stability and 

accuracy of results should be investigated in detail. The algorithm of stability analysis is 

different for 2D and 3D wavelet functions. For 2D and discrete wavelet functions such 

as Haar wavelet, an alternative scheme is proposed for analysis of stability. However, it 

is satisfied by utilizing a direct approach for 3D wavelet functions such as Chebyshev or 

Legendre wavelets. 

 In order to optimally compute the derivative of time varying parameters with respect to 

time, an operator of derivative is proposed capable of using different wavelet basis 

functions. As long as the vector of accelerations is considered as one of the time varying 

parameters, then the quantity of jerk is optimally computed by using the proposed 

method. Accordingly, the effectiveness of jerk measurement is numerically investigated 

for different structures. 
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Figure 1.2: The proposed iterative algorithm for solving structural dynamics problems 

using adaptive wavelet functions.  

 The proposed scheme for forward analysis is implemented for solving inverse problems. 

For this purpose, the non-classical genetic algorithms (GA) is first modified in order to 

dealing with complex problems. Then, a wavelet-based modified GA strategy is enhanced 

by using adaptive wavelet functions. In other words, by using 2D and 3D wavelet 

functions simultaneously, initial values of unknown parameters are predicted very fast, 

and therefore the computational efficiency is significantly increased compared to the 

simple and common GA strategies. The overall layout of the methodology utilized for 

solving inverse problems is illustrated in Figure 1.3. Accordingly, the algorithm of 

identification is extended for an optimum damage detection strategy. The capability of 
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the proposed algorithms is numerically and experimentally evaluated on MDOF shear 

buildings (refers to only shear DOFs), 2D trusses and finally, for only numerical 

verifications on 3D truss structures (Figure 1.4). For this purpose, a comprehensive 

program code is developed in MATLAB for structural identification and damage 

detection algorithms. 

 

 

Figure 1.3: Overall schematic view of methodology utilized in this study for solving 

inverse problems.  

 The essence of the proposed method lies on an explicit time integration method. 

Consequently, it allows to define an iterative procedure involving corrector and predictor 

iterations in order to optimally identify unknown forces. The measured accelerations 
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Figure 1.4: The scope of numerical and experimental work for inverse analysis. 

1.4 Organization of thesis 

Accordingly, this thesis has been divided into 6 chapters and the brief description on each 

chapter is provided as following. 

The importance and the definition of the problem statement of this research have been 

highlighted in Chapter 1 along with the objectives and the scope of current study. 

Chapter 2 is allocated to the literature review of time integration methods, application of 

wavelet functions in forward and inverse problems, the review of classical and non-classical 

approaches for structural identification and damage detection algorithms.  

Chapter 3 is devoted to the numerical developments and applications of structural 

simulations (direct analysis) using adaptive wavelet functions. Operational matrices of 

integration and derivation are presented in this chapter. Furthermore, the stability and 

accuracy analysis are numerically evaluated in Chapter 3.  
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Accordingly, the proposed strategy in order to solve inverse problems is presented in 

Chapter 4. The numerical applications are given in order to investigate the robustness of the 

proposed procedure for both, direct (simulation) and inverse problems (structural 

identification). 

Chapter 5 deals with the practical and experimental verifications of the proposed method, 

especially, for structural identification and damage detection algorithms.  

Subsequently, Chapter 6 highlights the main results and conclusions drawn from the study 

carried out in the thesis together with the recommendations for further works.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction   

In general, dynamic problems in structural engineering are being categorized into two 

main categories. The first category involving low frequencies i.e., the order of few Hz to few 

hundred Hz (1e2), and is commonly called structural dynamics problems. The second 

category involves very high frequencies i.e., the order of kHz (1e3) to Tera Hz (1e12) namely 

wave propagation problems. The main objectives of this study contribute to the former 

classification relevant to the most common and practical problems in structural engineering.  

This chapter presents the conceptual ideas of wavelet analysis and introduces some of the 

superior characteristics of this powerful tool compared with well-known Fourier analysis. In 

addition, a review of solution approaches for structural simulation and inverse problems is 

highlighted. For the purpose of consistency of the numerical developments, the available 

methods are classified into the appropriate classifications, accordingly. In addition, there are 

many attempts made for solution of inverse problems using wavelet transforms. However, 

the majority of them only contributed to damage detection problems; the main consideration 

in this chapter is taken for review of those applications in structural identification problems. 

Subsequently, some of the novel and earlier researches conducted on application of wavelet 

functions for both direct and inverse problems are presented. 

2.2 Background of wavelet analysis 

In general, the primary reference to the wavelet is referred to the early twentieth century 

Haar (1910), that is cited in Chui (2014). However, many researchers believe that 
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fundamentals of the Fourier transforms (FT) have constituted the underlying definitions of 

wavelet functions. Over the past three decades, the practical applications of wavelet analysis 

have attracted much attentions among researchers in various disciplines of science and 

engineering. For the purpose of a brief review of the literature in this context, reference is 

made to the basic ideas of this powerful tool and relevant past works related to this study. 

Detailed mathematical definitions and surveys may be found in Refs. (Chui, 1992; 

Daubechies, 1992; Buades, Coll, and  Morel, 2005; Chui, 2014). In addition, some of the 

underlying definitions and descriptions will be discussed in detail in Chapter 3 of this thesis. 

2.2.1 Mathematical transforms        

Structural analysis and design have undergone considerable development. In the recent 

decade, one of the general attempts to accurately modify design codes has been made by 

adding rigorous design restrictions. In other words, by considering these stringent 

restrictions, today’s design is much more reliable and safer. This idea has led to a significant 

evolvement in structural engineering, especially in the area of structural simulation, structural 

health monitoring, structural identification, active and passive control of oscillators and 

damage detection problems. Moreover, numerical simulation and finite element analysis 

known as conventional analysis procedures cannot deal with these problems in initial design 

domains due to the complexity of modeling and then modelling restrictions resulting in 

excessive computational cost. Consequently, the only alternative option to handle such 

problems is to implement mathematical transforms (Strang, 1993; Jeffrey, 2001). As it is 

shown in Figure 2.1, the general idea of transforms is to take a problem from a complex 

setting domain (i.e., time domain), transform it to an alternative domain (i.e., frequency 

domain) where the problem can be more readily solved, then operating the inverse transform 

back to the original domain (Strang, 1993). 
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Figure 2.1: The schematic view of operation of transforms 

The general idea of integral transform methods was established first by Laplace (1749-

1827) and Fourier (1768-1830). Later, the theory of Laplace transform, family of Fourier 

transform (FT) and wavelet transform (WT) were expanded in order to solve variety of 

mathematical problems. However, in practical applications the most common transforms are 

referred to the use of FT and WT, especially for functional approximations and signal 

processing problems (Debnath and Bhatta, 2014).  

2.2.2 Family of Fourier transforms        

Basically, either simulated or measured outputs of a structure are represented on the basis 

of either simulated signals or signals measured by sensors, respectively. In addition, the 

general form of the foregoing signals is time-domain and thus they are indicated as time 

series signals (e.g., various forms of time-dependent signals for vibration problems, pressure, 

temperature, etc.). Fundamentally, an efficient and robust signal processing approach is 

needed in order to properly extract the dynamic features of aforementioned time-domain 

signals. Typically, in order to extract the dynamic characteristics of the time-domain signal, 

it is transferred into another domain of the analysis through a signal processing approach. In 

this regards, the signal processing aims to extract the dynamic characteristics’ information 
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contained within the time series that is otherwise not easily visible in its primary form 

(Strang, 1993).  

Undoubtedly, the most practical integral transform to date is the Fourier transform (FT). 

It is well-known that a signal can be decomposed by the Fourier transform into its sinusoidal 

components (Debnath and Bhatta, 2014). One of the main benefits of using the Fourier 

transform for structural dynamics problems is that several basic features of the system can 

be directly obtained from the transformed frequency domain. Many studies have been done 

on application of the Fourier transform for solving differential equations and it is 

demonstrated that in differentiation problems, high precisions can be accomplished by using 

the Fourier transform (Haberman, 2013). Brigham (1988) stated that the family of Fourier 

transform comprised of continuous Fourier transform (CFT), Fourier series (FS), and discrete 

Fourier transform (DFT) and are being implemented analytically, semi-analytically and 

numerically, respectively. However, another perspective of the Fourier transform constitutes 

short-term Fourier transform (STFT) and windowed Fourier transform (WFT). 

The CFT can only be applied to analytical functions i.e., signals which are given as 

continuous functions of time. Hence, it cannot be used for numerical analysis. Heil and 

Walnut (1989) highlighted that, this is the major drawback of CFT as the majority of the 

present problems are required to be solved numerically. For instance, in our case study, the 

signal is obtained as numerical data captured at certain time interval as it happens in most of 

real and practical engineering situations. Therefore, DFT was introduced in order to improve 

the numerical representation of FT. However, FS has been commonly used as an intermediate 

form of FT to solve real problems (Rader, 1968). 

The widespread application of the DFT in its early stage was strictly limited due to the 

high computational cost of the analysis. In order to overcome aforesaid drawback, a more 

efficient approach, called the Cooley-Tukey algorithm, was introduced (Cooley and Tukey, 
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1965). This procedure is also referred to the fast Fourier transform (FFT), and what it does 

is to recursively break down a DFT of a large data sample (i.e., a large N) into a series of 

smaller DFTs of smaller samples by partitioning the transform with size N into two pieces of 

size N/2 at each interval. 

Fundamentally, two major shortcomings have been reported for the numerical 

representation of FT, FS, CFT and also DFT. First, the necessity of a periodicity assumption. 

Second, time information during the time domain is lost and is referred to as the blind 

processing procedure. In other words, the considered signal should be stationary which 

impose many restrictions in actual cases (Rioul and Vetterli, 1991). In addition, the most 

probable phenomena can happen during the calculation of DFT lies on leakage and aliasing 

phenomena (Körner, 1989; Rioul and Vetterli, 1991).  Basically, leakage is the resultant of 

the discontinuities involved when a signal is extended periodically for conducting the DFT. 

The only option to prevent leakage phenomena is to apply a window to the signal in order to 

force it to cover a full period of the signal. However, the window itself may contribute 

frequency information to the signal. On the other hand, when the Shannon’s sampling 

hypothesis is violated, aliasing phenomena will be occurred (Bracewell, 1965) and causing 

the real frequency contents to be revealed at different places in the frequency spectrum. In 

order to solve this issue, it should be ensured that the sampling frequency to be at least twice 

as large as the maximum frequency content existed in the signal (Oppenheim, Schafer, and  

Buck, 1989). This requires several initial information which in practical cases is not defined 

at all. 

To overcome the limitations of the Fourier transform, a straightforward solution is to 

implement an analysis window of certain length that glides through the signal along the time 

axis in order to perform a time-localized Fourier transform. Such a concept led to the short-

time Fourier transform (STFT) introduced by Gabor (1946). Basically, the STFT employs a 
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sliding window function that is centered at time interval. For each specific time interval, a 

time-localized Fourier transform is carried out on the signal within the window. 

Subsequently, the window is moved by time interval along the time domain, and another 

Fourier transform is performed. Through such consecutive operators, Fourier transform of 

the entire signal can be performed. The signal segmentation within the window function is 

assumed to be approximately stationary. As a consequence, the STFT decomposes a time-

domain signal into a 2D time-frequency representation, and variations of the frequency 

content of that signal within the window function are revealed. 

Diverse kinds of window functions have been improved and each of them is especially 

linked to a particular type of application (Oppenheim et al., 1989). For instance, for analyzing 

the transient signals the Gaussian window was constructed, and the Hann and Hamming 

windows are applicable to random signals and narrowband signals, respectively. 

Furthermore, the Kaiser-Bessel window is better suited for separating two signal components 

with frequencies very close to each other but with widely differing amplitudes. Cohen (1989) 

reported that the time and frequency resolutions of the analysis results are directly influenced 

by the choice of the window function. While higher resolution in general provides better 

separation of the underlying contents within a signal, the time and frequency resolutions of 

the STFT technique cannot be chosen arbitrarily at the same time, according to the 

uncertainty principle. 

Experimentally measured signals are generally not known, and therefore the choice of an 

appropriate window size for effective signal decomposition by using the STFT approach is 

not guaranteed (Strang, 1993). The inherent shortcoming of the STFT motivates researchers 

to search for other applicable procedures that are better suited for processing and 

decomposition of non-stationary signals. One of the robust and popular techniques that has 

recently attracted much attentions is the wavelet transform. 
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2.2.3 Wavelet transforms        

The conceptual and overall findings of wavelet transforms are reviewed in this subsection. 

Accordingly, one of the practical applications of wavelets will be elaborated in the next 

chapter of this thesis. As it was discussed earlier, mathematicians have been persuaded to 

employ wavelet transforms in order to overcome the shortcomings of family of the Fourier 

transforms. Haar (1910) developed the first family of wavelet functions comprised of positive 

and negative pulses (Chui, 2014). However, many researchers have reported that this wavelet 

function lies on discrete formulation; it is known as the simplest wavelet basis function till 

now. The basis function of Haar wavelet was used to illustrate a countable orthonormal 

system for the space of square-integrable functions on the time domain (Haar, 1910). It is 

also observed that Haar basis functions were used for compressing images (Devore, Jawerth, 

and  Lucier, 1992). Lévy (1954) investigated the Brownian motion through a minor 

enhancement of Haar wavelets. He discovered that the scale-varying function, that is, the 

Haar basis function, was better suited than the Fourier basis functions for studying subtle 

details in the Brownian motion. Several studies have contributed to advancing the state of 

research in wavelets as it is called today (Littlewood and Paley, 1931; Ricker, 1953; Jaffard, 

Meyer, and  Ryan, 2001). The main advancement was reported by Grossmann and Morlet 

(1984). They developed and implemented the technique of scaling and shifting of the analysis 

window functions in analyzing acoustic problems. They found that keeping the width of the 

window function fixed did not work (Mackenzie, 2001).  

The resulting waveforms of varying widths were called by Mallat (1999) the “Wavelet”, 

and this marked the beginning of the era of wavelet research. Grossmann, Morlet, and Paul 

(1985) and Grossman, Morlet, and Paul (1986) introduced that a signal could be transformed 

into the form of a wavelet and then transformed back into its original form without any 
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information loss (the main enhancement of FFT). Basically, the wavelet transform allows 

one to employ variable window sizes in order to analyze different frequency components 

within a signal, in contrast to the STFT procedure where the window length is remained 

constant. This is realized by comparing the signal with a set of template functions obtained 

from the scaling (i.e. dilation and contraction) and shift (i.e. translation along the time axis) 

of a base wavelet function and looking for their similarities with the original signal (Mallat, 

1999). 

Further developments of the theory of wavelet transform have been widely investigated 

by numerous researchers. Strömberg (2006) worked on discrete wavelets, while Grossmann 

and Morlet (1984) evaluated random signals in terms of scales and translations of a single 

base wavelet function, and Newland (1993) worked on harmonic wavelet transforms.  

Mallat (1989b; 1989a), Meyer (1989; 1993) and Mallat (1999) invented the most 

important step that has led to the robustness of the wavelets and it is commonly referred to 

multi-resolution analysis. Multi-resolution analysis is to design the scaling function of the 

wavelet such that it allowed other researchers to construct their own basis wavelet functions 

in a mathematically grounded fashion. For instance, Daubechies (1988; 1992), created her 

own family of wavelet. She reported that this type of wavelet is orthogonal and can be utilized 

using simple digital filtering techniques. Significant attempt has been made in order to 

implement orthogonal functions (series) as the basis wavelet function. The property of 

orthogonality reduces the size of computations due to ignoring similar calculations in a sense 

of analysis. One of the popular orthogonal functions is the family of Chebyshev polynomials 

which lies on the first and second kind of Chebyshev polynomials. Mathematically, Runge 

phenomena will occur due to the end-point errors of interpolation and approximation. It has 

been demonstrated that the only option to reduce the effect of Runge phenomena for higher 
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interpolations and approximations is to utilize Chebyshev polynomials (Wickerhauser and 

Chui, 1994; Razzaghi and Yousefi, 2000; Babolian and Fattahzadeh, 2007). 

2.3 Structural dynamics simulation (direct or forward analysis) 

Basically, the structural dynamic simulation lies on simulations of the response of the 

structure to externally applied excitation, the motion of boundary conditions (i.e. support 

motion) and so on. For a discrete system such as a multi-degrees-of-freedom (MDOF) 

structure, the governing equilibrium is a set of ordinary differential equations (ODEs) which 

in general are coupled. Bathe (2006) classified solution techniques for governing equations 

into mode superposition procedures and direct methods. Hughes (2012) presented that the 

first category involves decoupling these equations through the linear superposition by modal 

matrix and commonly called modal analysis.  

The modal analysis may be interpreted as an eigenvalue analysis. Bathe and Wilson 

(1972a) and Bathe and Ramaswamy (1980) introduced matrix iteration method as one of the 

superior choices in order to solve aforementioned eigenvalue problems. Furthermore, they 

concluded that, the essence of a mode superposition solution of a dynamic response is that 

only a small fraction of total number of decoupled equations needs to be considered in order 

to obtain a good approximation solution to an exact solution. In general, the number of modes 

to be used for the accurate solution is dependent on the structure considered, the spatial 

distribution and frequency content of the lateral excitation. It is demonstrated that, 

assumption of linear behavior of structures is the major drawback for these methods (refers 

to the basic principle of superposition strategy) and they are impractical for non-linear 

analysis (Gavin, 2001; Hulbert, 2004).  
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The next category involves numerical time integration methods whereby the influence of 

all existing modes are included in the response.  Step-by-step time integration methods are 

being widely considered for the solution of the second-ordered differential equation of 

motion. In this regards, it is observed that researchers are more interested to the practical and 

precise numerical integration schemes rather than only theoretical methods; particularly, for 

solving large-scaled MDOF systems (Chopra, 2001; Hulbert, 2004). Consequently, time 

integration approaches are the most capable schemes for either non-linear dynamic analysis 

or time-history evaluation of large-scaled systems (Wilson, Farhoomand, and  Bathe, 1972). 

Moreover, numerical time integration approaches are the only options to solve the second 

ordered ODEs governing the dynamic equilibrium, because in most cases, the applied 

excitations are not explicit functions. 

Mathematically, numerical time integration procedures have been classified into three 

aspects as follows: 

 Direct vs. indirect time integration methods: Generally, there are two basic types of step-

by-step time integration methods. First, direct integration schemes whereby the quantities 

of the dynamic system are being calculated through a direct space vector in the step-by-

step solution of the equation of motion. Second, indirect integration schemes involving 

all corresponding equations being numerically transformed into a new space vector, e.g. 

from the time domain to the frequency domain. Afterwards, a step-by-step vibration 

analysis is accordingly performed and fulfilled on the current space vector. Background 

of aforesaid numerical approaches may be found in Dokainish and Subbaraj (1989), 

Chopra (2001) and Hughes (2012). Basically, Dokainish and Subbaraj (1989), Chung and 

Hulbert (1994), Chang (2002), Rio, Soive, and Grolleau (2005) and Chang (2010) 

reported that direct schemes are more effective for structural dynamics, where the 

response is calculated in set of short time intervals through the accurate approximation 

Univ
ers

ity
 of

 M
ala

ya



 

23 

 

of complex loadings. As a result, it requires excessive long computational time to gain a 

desirable time history analysis of either large-scaled or nonlinear structures. Moreover, 

responses computed by direct algorithms are not sufficiently optimum over the wide 

range of natural frequencies, i.e., large-scaled space structures (Mahdavi and Razak, 

2013). Rostami, Shojaee, and Moeinadini (2011) developed a new family of direct 

integration methods originated from spline functions. The smooth behavior of spline 

function for functional approximation led to computationally efficient method. However, 

the higher ordered functional approximations are not being satisfied.  

 Explicit vs. implicit procedures: The explicit procedures do not require a factorization of 

the characteristics of the system in the step-by-step solution of the equation of vibration. 

On the other hand, the implicit schemes require a set of simultaneous linear equations for 

the time instant solution for vibration analysis (Chang, 2010). Accordingly, it has been 

inferred that implicit schemes are most effective for structural vibration analysis, in which 

the response is ascertained by a relatively small number of low frequency modes. In 

addition, it is reported that these procedures are more popular for the vibration analysis 

of fluids using longer time steps (Bathe, 2006). As a consequence, the shortcomings of 

numerical approaches have been revealed when encountering broad-frequency content 

excitations. In contrast, explicit schemes are very efficient for structural simulation of 

large systems. Consequently, in shaking or blast problems where a small-time step is 

needed to evaluate the response of large-scaled models, a practical and optimal algorithm 

has been implemented through the explicit procedure (Dokainish and Subbaraj, 1989). 

Chang (2002) proposed a pseudo-dynamic algorithm for time integration methods and 

have demonstrated that it lies on explicit time integration scheme. There have been many 

researches conducted to improve implicit and explicit time integration methods. 
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However, it has been observed that the general classification of those schemes lies on 

direct time integration algorithms. 

 Conditionally vs. unconditionally stable approaches: Hughes (2012) defined terms 

conditionally stable to methods that require a time step of analysis (along time domain) 

smaller than the critical time step and unconditionally stable approaches if the above 

condition is violated. Prior to this, Bathe and Wilson (1972b) deduced that this critical 

time step varies for different methods. However, the main criterion for selecting the 

smallest available time step is the minimum period of a structure. Consequently, the 

implementation of conditionally stable methods for the analysis of problems which 

consists high frequencies (for lowest periods are existing) is in fact impractical.  

The review of the literature has shown that, a method of time integration may be direct 

and explicit while it is unconditional or some other combinations. The choice which 

numerical approach is to be utilized depends on engineering judgment about the physical 

phenomena being analyzed; external excitation, computational costs and so on. However, it 

is observed that for the same cases, similar combinations may be employed (Bathe, 2006). 

2.4 Structural identification (inverse analysis) 

Modelling and simulation of dynamic systems is generally concerned with determining 

the response of the unknown considered system to some given initial conditions and external 

excitation. In contrast, for inverse analysis or identification problems, the response of the 

system is measured and it is of course one of the main contributions to identify unknown 

systems properties. Over the last two decades, numerous procedures have been developed for 

efficiently solving inverse problems (Sirca and Adeli, 2012). Most classical identification 

techniques are being classified into two main categories. Firstly, frequency domain methods 
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in which, identification scheme is carried out based on frequency information. Secondly, time 

domain methods whereby, the identification performed from direct measurement of time-

history signal. The detailed comparison of time and frequency domain techniques can be 

found in Ljung and Glover (1981). They noted that frequency and time domain methods 

should be viewed as complementary rather than competing and discussed their ease of use 

under different experimental conditions.  

As computer power has increased in recent time, the use of heuristic methods has become 

possible and thus non-classical methods have received considerable attention. The review of 

identification methods presented here is categorized into frequency domain methods, time 

domain methods and non-classical approaches. 

2.4.1 Frequency domain methods 

Basically, measured frequencies, mode shapes and modal damping ratios are the 

underlying data required in order to identify the dynamic properties of a structure and 

correspondingly detect damages in frequency domain. These system properties are 

commonly obtained by a fast Fourier transform (Cooley and Tukey, 1965; Ewins, 2000). 

However, Jinwen (2009) implemented the wavelet algorithm to convert dynamic responses 

from the time domain into frequency information. 

2.4.1.1 Frequency based methods 

In general, natural frequencies are the basic characteristics of a system and can be obtained 

using vibration analysis. In order to identify structural damage, one of the common 

procedures is investigating on shifts in natural frequencies. Cawley and Adams (1979) 

utilized variations in natural frequencies to identify damage in complex structures. To derive 

the ratio between frequency shifts for two modes, they proposed a grid between likely 
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damage points and created an error term that related measured frequency shifts to those 

predicted by a modal based on a local stiffness reduction. 

Farrar et al. (1994) used the shifts in natural frequencies to identify damage on the I-40 

bridge. They observed that shifts in natural frequencies were not adequate for detecting 

damage of small faults. In order to improve the precision of the natural frequency approach, 

it was found to be more practical to conduct the experiment in controlled environments where 

the uncertainties of measurements were comparatively low. One example of such a controlled 

environment performed is in using resonance ultrasound spectroscopy to measure the natural 

frequencies and establishes the out-of-roundness of ball bearings (Migliori, 1991). Other 

satisfactory usages of natural frequencies were obtained by Williams, Messina, and Payne 

(1997) and Messina, Williams, and Contursi (1998) who successfully utilized the natural 

frequencies to locate single and multiple damages in a simulated 31-bar truss and tabular 

steel offshore platform. Damage was imposed to the two systems by reducing the stiffness of 

the individual bars by up to 30%. This procedure was experimentally evaluated on an 

aluminum test-rod structure, where damage was imposed by reducing the cross-sectional area 

of one of the members from 7.9 to 5.0 mm2.  

Further applications of natural frequencies include spot welding by Wang, Shang, Li, and 

Li (2008) and beam-like structures (Zhong and Oyadiji, 2008; Zhong, Oyadiji, and  Ding, 

2008). The use of natural frequencies in damage detection necessitates the development of 

models that can accurately predict natural frequencies. It has been inferred that the first few 

natural frequencies are easy to measure and represent a physical relationship between 

stiffness and mass of dynamic systems. Loss of stiffness, representing damage to the 

structure, is detected when measured natural frequencies are significantly lower than 

expected (Schulz, Pai, and  Abdelnaser, 1996). A useful review on the use of frequencies in 
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detecting structural damage is given in (Salawu, 1997). Foregoing research gives a good 

overview of frequency methods and also discusses some practical limitations. 

There has been considerable discussion as to the change in frequency required to detect 

damage, and also if changes in frequencies due to environmental effects can be separated 

from those due to damage. Creed (1987) estimated that it would be necessary for a natural 

frequency to change by 5% for damage to be confidently detected. Case studies on an 

offshore jacket and a motorway bridge showed that changes of frequency in the order of 1% 

and 2.5% occurred due to day to day changes in deck mass and temperature, respectively. 

Simulations suggested that large damage, for example from the complete loss of a major 

member would be needed to achieve the desired 5% change in frequencies. Aktan, Lee, 

Chuntavan, and Aksel (1994) suggested that frequency changes alone do not automatically 

suggest damage. They reported frequency shifts for both steel and concrete bridges exceeding 

5% due to changes in ambient conditions within a single day. They also reported that the 

maximum change in the first 20 frequencies of a RC slab bridge was less than 5% after it had 

yielded under an extreme static load. 

Moreover, application of frequency-response function (FRF) which is the ratio of the 

response to excitation in the frequency domain have attracted much attentions among 

researchers to identify uncertain parameters. The direct use of the frequency-response 

functions without extracting the modal data to identify faults has become a subject of research 

by Faverjon and Sinou (2009). Sestieri and Damb (1988) directly applied the frequency-

response functions to identify the presence of faults in a truss structure. Imregun, Visser, and 

Ewins (1995) observed that the direct use of the frequency-response functions to categorize 

faults in simulated structures, yields certain advantages over the use of modal properties. 

The major drawbacks are reported for FRF analysis while they contain more information 

than is needed for structural identification (Ni, Zhou, and  Ko, 2006; Liu, Lieven, and  
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Escamilla, 2009; Shone, Mace, and  Waters, 2009). In addition, Todorovska and Trifunac 

(2008) and White et al. (2009) concluded that there is no procedure to choose the frequency 

bandwidth of interest. Eventually, they are generally noisy in the anti-resonance regions 

(Maia and Esilva, 1997). 

2.4.1.2 Mode shape based methods 

A mode shape depicts the estimated curvature of a plane vibrating at a given mode 

corresponding to a natural frequency. The mode shape depends on the nature of the surface 

and the boundary conditions of that surface. West (1982) used the modal assurance criterion 

(MAC), a criterion that was used to measure the degree of correlation between two mode 

shapes to locate damage on a space shuttle orbiter body flap. In applying the MAC, the mode 

shapes prior to damage were compared to those subsequent to damage. Damage was initiated 

using acoustic loading. The mode shapes were partitioned and changes in the mode shapes 

across a range of partitions were subsequently compared. Kim and Bartkowicz (1993) 

employed the partial MAC (PMAC) and the coordinate modal assurance criterion (COMAC). 

Salawu (1995) established a global damage integrity index, based on a weighted ratio of the 

natural frequencies of damaged to undamaged structures. The weights were used to specify 

the sensitivity of each mode to damage.  

According to Steenackers and Guillaume (2006), the main shortcoming of the modal 

properties is that, they involve some optimization procedures, and therefore they are 

computationally expensive. Furthermore, mode shape based methods are merely appropriate 

for linear problems and lightly damped structures (Qiao, Lu, Lestari, and  Wang, 2007). 

Finally, Sazonov and Klinkhachorn (2005), Qiao and Cao (2008) and Fang and Perera (2009) 

concluded that these approaches are vulnerable to additional noises. 
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2.4.2 Time domain methods 

Fundamentally, because of the low signal to noise ratio, information for higher modes are 

not reliable and this constitutes the major shortcoming of frequency based methods. 

Furthermore, the frequency-based approaches generally involve modal superposition and 

limiting the applications to linear systems. Accordingly, frequencies are reasonably 

insensitive to local damage as they represent the global property of the structure. As a 

consequence, identifying and locating damage will be very difficult, particularly when only 

the first few modes of vibration can be measured. Time domain methods remove the need to 

extract frequencies and modes and instead make use of the dynamic time-history information 

directly. In this way, information from all modelled modes of vibration are directly included. 

Moreover, non-linear models can be identified as there is no requirement for the signal to be 

resolved into linear components (Perry, 2006). While, Ljung and Glover (1981) presented 

that frequency and time domain methods should be viewed as complementary rather than 

rivalling. In addition, its concluded that time domain methods should be adopted, if prior 

knowledge of the system is available and a model to simulate time-histories is to be obtained. 

A comprehensive review and comparison of time domain techniques is given in Ghanem and 

Shinozuka (1995). They categorized time domain methods into classical and non-classical 

procedures. 

2.4.2.1 Classical methods  

Maybeck (1982) and Welch and Bishop (2001) compared the performance of extended 

Kalman filter (Kalman, 1960), maximum likelihood (Ljung and Glover, 1981; Dipasquale 

and Cakmak, 1990), recursive least squares (Caravani, Watson, and  Thomson, 1977; Ling 

and Haldar, 2004) and recursive instrumental variable methods (Söderström and Stoica, 
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2002). Aforementioned methods commonly known as classical methods. In addition, the 

classical methods were compared by Shinozuka and Ghanem (1995) according to the 

expertise required i.e.,  numerical convergence, on-line potential, sensitivity to initial guess 

and reliability of results. They found that while more sophisticated algorithms, such as the 

extended Kalman filter, gave more accurate results, they were more sensitive to initial guess 

and did not always converge. 

Furthermore, a Bayesian approach is a procedure based on Bayes’ Theorem (Beck and 

Katafygiotis, 1998) and functions for conducting statistical inference through using the 

evidence (observations) to update the probability that a hypothesis may be true (Marwala, 

2002). Vanik, Beck, and Au (2000) applied Bayesian approaches for structural identification 

of a bridge model using sensor data, while Marwala and Sibisi (2005) applied this algorithm 

in beam structures. Zheng et al. (2009) applied a Bayesian approach for the identification of 

a long-span, steel sky-bridge. Hemez and Doebling (1999) successfully applied a Bayesian 

approach to solve inverse problems and applied this to linear dynamics, while Lindholm and 

West (1996) applied a Bayesian parameter approximation for the solution of inverse problem 

and applied this to model experimental dynamic response data. 

Kitagawa (1996) proposed Monte Carlo filter (MCF) for structural identification 

problems. He presented that structural parameters are being derived by obtaining recursively 

the conditional distribution function of the state variable when observation values up to the 

present time step are given. A modified approach called the adaptive MCF method was 

developed by Sato and Chung (2005). In addition, Mares, Mottershead, and Friswell (2006) 

successfully applied Monte Carlo method for stochastic model updating. 

There are substantial discussions been reported on application of gradient search methods 

under classical procedures. Bicanic and Chen (1998) proposed a Gauss-Newton least square 

method. Liu, Frangopol, and Kim (2009) derived an approach originated from Newton’s 
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method for structural identification problems. It is observed that these methods have the 

drawbacks such as the need of good initial guess and gradient information which in actual 

inverse problems cannot be obtained. More importantly, aforementioned classical methods 

tend to be ineffective in the presence of noise, because they lack global search capability and 

tend to converge prematurely to local optima (Liu and Chen, 2002). 

2.4.2.2 Non-classical methods  

It is observed that for an efficient structural identification using classical methods, a 

desirable initial guess for unknown parameters is essential. In addition, classical methods are 

very sensitive to signal-to-noise ratio and this limits the practical applications. Beside these 

drawbacks in the use of classical methods, it is very probable for the optimizer to converge 

to the local optima. Moreover, many classical methods work on transformed dynamic 

models, such as state-space models, where the identified parameters lack physical meaning. 

Koh, Hong, and Liaw (2003) stated that this may often make it difficult to extract and separate 

physical quantities such as mass and stiffness. Moreover, a recent trend of research is towards 

identification of large systems with many unknown parameters as possible. For large systems 

many classical methods suffer the ill-condition problem and the difficulty of convergence 

increases drastically due to numerous unknown parameters. 

With the increase in computational speed available, non-classical methods have become 

increasingly popular. In particular, the use of heuristic-based non-classical schemes has 

become very attractive. For instance, artificial neural networks (NN), based on the networks 

present in the brain, and genetic algorithms (GAs), developed on Darwin’s theory of survival 

of the fittest have received considerable attention in recent years. The identification strategy 

proposed in this thesis is based on enhancement of genetic algorithms using adaptive wavelet 

functions. 
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In principal, genetic algorithms differs from traditional search strategies in several ways; 

first, they work with a coding of the parameter set rather than the parameters themselves. 

Second, they search from a population of points and not a single point. Third, they work 

based on probabilistic rules rather than deterministic ones. Fourth, they use an objective 

function rather than derivatives or other auxiliary information. Furthermore, GAs have a high 

level of concurrency and thus very suitable for distributed programming (Michalewicz, 

1996).    

More recently, the application of GA in civil engineering has attracted tremendous interest 

from researchers. The main strength of GA is the better capability to escape from local optima 

to find the global optima solution compared to many other available methods. Furuta et al. 

(2006) adopted an improved multi-objective GA to develop a bridge management system 

that can facilitate practical maintenance plan. The proposed cost-effective decision-support 

system was verified via the investigation on a group of bridge. Okasha and Frangopol (2009) 

incorporated redundancy in lifetime maintenance optimization based system reliability.  

Marwala (2002) successfully applied a genetic algorithm to minimize the distance 

between the measured wavelet data and predicted parameter using wavelet data. The 

drawback of his approach for structural identification was the associated high computational 

expense of the GA simulation and the wavelet processing of the vibration data used. 

Akula and Ganguli (2003) applied structural identification, based on genetic algorithms 

to helicopter rotor-blade design. Perera and Ruiz (2008) successfully applied a GA-based, 

structural identification for damage identification in large-scale structures, while Tu and Lu 

(2008) enhanced GA applications by considering artificial boundary conditions and 

Franulović, Basan, and Prebil (2009) implemented a GA for material model parameter 

identification for low-cycle fatigue.  
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Other  recent  successful  applications  of GA include Balamurugan, Ramakrishnan, and 

Singh (2008) who evaluated the performance of a two-stage adaptive GA, enhanced with 

island and adaptive features in structural topology optimization, while Kwak and Kim (2009) 

successfully implemented a hybrid genetic algorithm, enhanced by a direct search for 

optimum design of reinforced concrete frames. 

Perry (2007) developed a robust GA strategy for identifying parameters of dynamic 

systems. The identification strategy that he proposed, works at two levels. At the first level, 

a modified GA based on migration and artificial selection, using multiple species and 

operators to search the current search space for suitable parameter values. At the second level, 

a search space reduction method using the results of several runs in order to reduce the search 

space for those parameters that converged quickly. The search space reduction allowed 

further identification of the parameters to be conducted with greater accuracy and improved 

convergence of the less sensitive system parameters. However, the core of proposed GA for 

computation of fitness functions was adopted for average Newmark time integration method 

and from computational point of view, the proposed scheme was not satisfactory optimum. 

 Liu et al. (2009) applied fuzzy theory for structural identification. In their research, the 

model parameters and design variables were modeled as fuzzy variables and this technique 

was successfully implemented on an actual concrete bridge.  

Jung and Kim (2009) implemented a hybrid genetic algorithm for system identification 

and tested this procedure on a numerical bridge model. A hybrid genetic algorithm was 

formed by combining a genetic algorithm with Nelder-Mead simplex method. The proposed 

technique was found to be effective on the identification of bridge structures.  

Tan, Qu, and Wang (2009) applied support vector machines and wavelet data for inverse 

problems. The result obtained from the simulated data validated that this approach could 

successfully update the model. 
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Marano, Quaranta, and Monti (2011) modified a GA multi-species strategy to enhance the 

computational performance of simple genetic algorithms for structural identification. They 

implemented the modified GA procedure for identification of up to 50 story shear buildings. 

However, the convergence rate of results obtained by their method was outstanding. From 

the computational point of view, their identification procedure relies on a costly approach. 

This is due to the inner fitness evaluations for each particular species. 

From the review of the literature, it has been concluded that the combination of coding, 

population points, blindness to auxiliary information and randomized operators give GAs the 

robustness required for implementation in wide range of problems such as identification of 

structures with many unknown parameters. However, observations on implementation of the 

simple GAs for simple problems (only one unknown) have demonstrated that, the 

computational time for more unknowns would be prohibitive and still many refinements are 

needed to make the GA strategy work efficiently.  

On the other hand, neural networks (NN) work by combining layers of ‘neurons’ through 

weighted connections. At each neuron the weighted inputs are processed using some simple 

function to determine the output from the neuron. A fundamental NN usually comprises three 

layers, including an input layer, hidden layer and output layer. By correct weighting of the 

links and simple functions at the neurons, the inputs can be fed through the network to arrive 

at the outputs for both linear and non-linear systems. One of the strong points of NN lies in 

the fact that they can be trained. This means that through some process the network can adjust 

its weights to match given input/output sequences. This pattern recognition ability has 

allowed the application of NN to artificial intelligence applications. There have been several 

training methods developed for NN. One of the most popular training procedures is the back 

propagation algorithm. This involves feeding the errors at the output layer back through the 

net to adjust the weights on each link. Other methods such as the probabilistic NN have also 
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been developed. An example of the application of NN to structural identification is given in 

Chen et al. (1990). They used multilayer NN for the identification of non-linear 

autoregressive moving average with exogenous inputs systems. Ko, Ni, and Chan (1999) and 

Ko and Ni (2005) inferred that the main drawback of NN for large scale systems 

identification is that huge amount of data are required to properly train the network prior to 

analysis. A lack of some patterns of data will cause the identification to return incorrect 

values.   

Zapico, González, Gonzalez, and Alonso (2008) also applied non-classical method of NN 

for structural identification. The results showed that the updated finite element model could 

accurately predict the low modes that were identified from measurements.  

2.5 Applications of wavelet functions 

2.5.1 Structural simulation (direct or forward analysis) 

One of the very popular basis functions to solve dynamical problems is the family of Haar 

wavelets. Haar basis function as a rectangular pulse pair was presented with Alfred Haar in 

1910. Although in 1980s it was derived that the Haar function is the first order of Daubechies 

Wavelet; it is concluded that Haar basis is the simplest basis for wavelet analysis in numerical 

problems (Farge, 1992; Goedecker and Ivanov, 1998). Haar wavelet is not continuous and at 

the point of discontinuity, the derivatives do not exist. Hence, it is impossible to use this 

wavelet directly to solve high-ordered differential equations. Although, Lepik (2009) and 

Yuanlu (2010) used the practice of this discrete wavelet to solve several fractional differential 

equations. Moreover, the efficiency of Haar wavelet method was demonstrated by Lepik 

(2008b) in order to solve higher order differential equations.  
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In general, there are two possibilities to overcome the essential shortcoming of discrete 

Haar wavelet. Firstly, the piecewise constant Haar functions can be regularized with 

interpolation splines. This method that has been applied by Cattani (2004), greatly 

complicates the solution. Second convenient solution to utilize this wavelet is using the 

integral method, which the highest derivative objections in the differential equation are 

expanded into the Haar series. This approximation is integrated where the boundary 

conditions are incorporated by using integration constants. This approach has been 

considered for the Haar wavelet by Chen and Hsiao (1997) and an optimal control problem 

with the quadratic performance index was discussed by Cattani (2004).  

In addition, Haar discrete wavelet transforms have been utilized by Cattani (2004) to 

achieve three main goals: first, in order to filter the data without removing localized effective 

changes which is capable in the case of structural engineering to shorten components of 

complicated loadings such as earthquake to achieve an optimum structural dynamic scheme. 

Second, to classify the detected jumps, and finally, in order to obtain a smooth trend to 

represent the time series evolution.     

According to the technique of Chen and Hsiao (CHM), either linear differential equation 

or non-linear one are converted into an algebraic equation. Fundamentally, in time-history 

analysis of structures, durations of time intervals are very important to gain the stable 

responses. The main advantage of CHM method for solving structural dynamic problems is 

the possibility of using longer time increments, especially for problems where complicated 

loads such as base excitations are applied. In this regards, the use of longer time steps with 

many collocation points constitutes the accurate wavelet operational matrices in order to 

achieve desirable responses. Basically, in order to accomplish an adaptive analysis, time 

intervals are being divided into many collocation points for accurately capturing all dynamic 
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properties (i.e., frequency contents). This procedure is referred to the “Segmentation 

Method” (SM) in the literature (Hubbard, 1998; Lepik, 2005).  

Obviously, for smooth loadings (i.e. harmonic loadings) in order to reduce computational 

complexity and computation time involved, the time interval of integration requires to be 

divided into fewer points (Salajegheh and Heidari, 2005b), this method is called reduced 

Haar transform (Galli, Heydt, and  Ribeiro, 1996). Meanwhile, in the reduced Haar transform 

technique the number of collocation points in each segment is smaller than that of in the 

CHM method. Consequently, for some specific and simple loadings, further simplification 

of the solution can be obtained as long as a segment is being divided into only one interval. 

It is assumed that the highest derivative is constant in each segment. This method is called 

Piecewise Constant Approximation (PCA) (Chen and Hsiao, 1997). Overall, review of the 

literature shows that for structural dynamic problems implementation of continues wavelet 

basis functions is inevitable to achieve the most adaptive and cost-effective analysis, while 

the Haar basis is discrete and mathematically cannot be used for higher derivatives.    

More recently, orthogonal polynomials have received significant attention in dealing with 

dynamical systems of partial (Dahmen, Kurdila, and  Oswald, 1997), ordinary (Babolian and 

Fattahzadeh, 2007; Lepik, 2008a; 2008b) or fractional differential equations (Benedetto, 

1993; Heydari, Hooshmandasl, Maalek Ghaini, and  Fereidouni, 2013). The main property 

of such series (i.e., family of Chebyshev and Legendre polynomials) is that, it converts these 

problems to solving a system of linear algebraic equations, whereby, the repeated and 

redundant calculations are neglected during the process of analysis and greatly simplifying 

the problem. In fact, one may conclude that, a family of wavelet functions are being 

constructed by developing diverse versions of orthogonal polynomials. Consequently, the 

effective characteristics of wavelets, such as localization properties and multi-resolution 
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analysis, can be broadly extended in the use of such polynomials for solving dynamical 

problems.   

The surveys on some of the earlier studies are reported in Dahmen et al. (1997), Fan and 

Qiao (2009) and Fang and Perera (2009). Theoretically, wavelet functions are categorized 

into two main categories. The first being the two-dimensional (2D) wavelets, whereby a 

definite basis function of wavelet is being shifted for all scaled functions. The second 

category comprises three-dimensional (3D) wavelets, which involves the use of a developed 

wavelet basis function for each new scale of the mother wavelet. Subsequently, a signal with 

broad-band frequency content is examined precisely by 3D wavelets rather than 2D ones 

(Mahdavi and Razak, 2013). In other words, the details of the signal (i.e., frequency contents) 

are accurately captured by a set of adaptive collocation points (Vasilyev and Paolucci, 1997). 

In this definition, scale, transition and time are expressed as individual dimensions, 

respectively. Moreover, the application of the family of Haar wavelets, known as a family of 

2D wavelets, has attracted much attention for solving dynamic problems due to its simplicity. 

Due to the inherent properties of this wavelet, several shortcomings have been reported for 

this technique in order to solve dynamic problems. For instance, Mahdavi and Shojaee (2013) 

proposed an indirect algorithm because of the point of discontinuity existing at the middle 

point of Haar basis functions, thus major errors are recorded. However, because of the very 

simple basis function of this 2D wavelet, faster computations can be achieved. 

On the other hand, 3D wavelets are employed for many linear or non-linear variation 

problems. However, no specific attention has been given to the capability of different 3D 

wavelet functions for structural dynamic problems (Mason and Handscomb, 2002; Babolian 

and Fattahzadeh, 2007). Three of those wavelets, such as Chebyshev wavelets of the first and 

second kind and Legendre wavelets have been effectively implemented for solving time 

varying problems. Essentially, two main gaps are observed from these contributions. Firstly, 
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the considered time instant of the analysis is confined to the unity for only scalar variables, 

hence, the proposed schemes are not applicable in actual cases, involving long-time dynamic 

analysis of large-scaled problems. Secondly, the feasibility and capability of those wavelets 

(which in terms of inherent properties are very similar) have not been examined, 

comparatively.             

There are several studies have been conducted on application of wavelet functions in order 

to de-noise the size of time-history data either the measured and simulated data or the lateral 

excitation. Proposed procedures lie on a pre-operating process prior to ordinary solution of 

dynamic equilibrium governing the structures (Salajegheh and Heidari, 2003; 2005a; 2005b). 

Consequently, an adaptive strategy has not been improved for time-history analysis 

simultaneous with reduction of the data size. It is predicted that, an optimum dynamic 

analysis will be achieved by using such adaptive algorithms especially for large scale 

structural systems. 

Mahdavi and Razak (2015b) introduced an indirect time integration method for dynamic 

analysis of large-scaled space structures originated from adaptive wavelet functions. The 

proposed scheme lies on unconditionally stable method, hence, there is no requirement for 

selecting time interval lesser than a prescribed time step. They recognized that, adaptive 

wavelet functions states for the possibility of using different basis functions corresponding 

to different frequency contents in various scales (referring to multi-resolution analysis 

associated for diverse sets of collocation points). As a result, the computational costs are 

significantly reduced for dynamic analysis of large scale space structures. 

2.5.2 Structural identification and damage detection 

Since last two decades, due to the powerful characteristics of wavelet analysis, its 

applications for solving inverse problems have become the focus of interest in various 
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disciplines of structural engineering. Different aspects of wavelet analysis have been 

established. Quek, Wang, Zhang, and Ang (2001) contributed to the sensitivity analysis using 

wavelet functions. They examined the sensitivity of wavelet technique in the detection of 

cracks in beam structures. The effects of different crack characteristics, boundary conditions, 

and wavelet functions employed, were investigated. Crack characteristics studied included 

the length, orientation and width of slit. The two different boundary conditions considered 

were simply supported and fixed-end support, and the two types of wavelets compared were 

the Haar and Gabor wavelets. It was demonstrated that, the wavelet transforms are more 

practical in damage detection problems. Moreover, they concluded that this powerful tool is 

one of the useful tools in detection of cracks in beam structures.  

Several researchers proposed wavelet method in order to extract modal parameters. Zhong 

and Oyadiji (2011) presented an approach based on the difference of the continuous wavelet 

transforms (CWTs) of two sets of mode shape data which corresponded to the left half and 

the right half of the modal data of a cracked simply-supported beam. The simulated and 

experimental results showed that the proposed method has great potential in crack detection 

of beam-like structures as it does not require the modal parameter of an un-cracked beam as 

a baseline for crack detection. 

Kougioumtzoglou and Spanos (2013) developed an identification approach for linear and 

non-linear time-variant systems subject to non-stationary excitations based on the 

localization properties of the harmonic wavelet transform. According to their method, first 

the system model is transformed into an equivalent multiple-input/single-output system in 

the wavelet domain. Next, time and frequency details generalized a set of harmonic wavelet-

based frequency response functions. 

Mahdavi and Razak (2015a) proposed a robust wavelet technique to improve iterative 

approaches for the solution of inverse problems. Subsequently, an efficient method is 
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developed to compute operation of derivative, appropriate for computation of second ordered 

derivatives. They concluded that, their scheme is suitable for the solution of highly varying 

non-linear problems. 

Ren and Sun (2008) combined the wavelet transform with Shannon entropy to detect 

structural damage from measured vibration signals. They defined damage features such as 

wavelet entropy, relative wavelet entropy and wavelet-time entropy. Subsequently, they 

investigated the proposed damage features for detecting and locating structural damages. It 

was demonstrated that, wavelet-time entropy is a sensitive damage feature in detecting the 

abnormality in measured successive vibration signals, while relative wavelet entropy was a 

good damage feature to detect damage occurrence and damage location through the vibration 

signals measured from the intact (reference) and damaged structures. In addition, they 

concluded that the relative wavelet entropy method is flexible in choosing the reference 

signal simultaneously measured from any undamaged location of the target structure. 

Notwithstanding the bulk of reports on damage detection strategies using the superior 

features of wavelet functions (referring to the sensitivity property), there are less studies 

performed on structural identification problems. Zabel (2003) presented a method for 

structural identification based on wavelet packet transforms. His method was performing to 

compute the wavelet coefficients corresponding to the measured signals and it was 

originating solely from a fixed wavelet basis function. Accordingly, in order to solve the 

dynamic equilibrium through an inverse problem the simple genetic algorithm and least 

square were implemented. However, there are many questions should be answered on the use 

of his proposed strategy i.e., the problem of ill-conditioning of the algebraic system 

encountering with large values for identified stiffness compared to very small values of 

wavelet coefficients. Eventually, from the computational cost point of view, the use of his 
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method seems to be not reasonably practical, as it should be performed at very large sampling 

rates (short time intervals). 

2.6 Discussion 

In general, from the review of the literature can be concluded that, the computational 

competency of available strategies for solving both structural simulation and inverse 

problems plays the underlying role in achieving a practical procedure. In other words, many 

of conducted studies are not reliable for especially large scale problems with many unknowns 

to be identified. On the other hand, it has been observed that wavelet solution technique can 

be very optimum one in structural dynamic problems as long as being adaptive with the 

problem considered. The emphasis is selecting the most adaptive wavelet basis function in 

order to solve different problems. The overall gaps inferred from the review of the literature 

are as following: 

 There is no report on the application of wavelets in structural dynamics problems capable 

of using compatible collocation points for capturing entire details (i.e., frequency 

components) associated to the simple and complex problems. 

 The implementation of different wavelet basis functions in structural dynamics problems 

has not been thoroughly investigated. In addition, the evaluation of their computational 

performance for solving structural simulation problems is sparsely addressed in the 

literature. 

 So far, no report is available on the stability and accuracy analysis of wavelet-based 

methods in forward structural dynamics problems. 

 The review of the literature indicated the lack of investigation on developing the wavelet-

based techniques in structural identification problems, especially for complex cases 
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involving a comprehensive identification such as mass, stiffness, damping and force 

identification. It has been observed that wavelets are more practical in only damage 

detection problems in frequency domain. However, the employment of wavelets for both 

structural identification and damage detection problems in time domain has not been 

sufficiently addressed in the literature.  

 So far, there is no report on the modification of non-classical procedures in time domain 

for structural identification and damage detection problems in order to achieve the most 

optimum strategy. It has been observed that, the main consideration is taken on improving 

the convergence of non-classical methods, however, improving the computational 

competency (referring to the cost of the analysis) has not been sufficiently addressed for 

time domain procedures. In addition, the majority of damage detection algorithms suffer 

from false detection, and therefore the location of damages will not be confidently 

detected as fast as it should be practical in real cases. For this reason, in most real cases 

the identification and damage detection are being performed several times to ensure 

precise and reliable results. Consequently, the use of a cost-effective approach for a 

reliable identification and damage detection is not only worthwhile but also inevitable.    

It can be inferred that, the convergence and computational competency of results are 

interpreted as the sufficient and necessary conditions in order to investigate the robustness of 

any structural simulation and identification strategy. It is anticipated that, once the 

computational efficiency and convergence of the structural simulation (direct analysis) are 

significantly developed by using adaptive wavelet functions, the solution of inverse problems 

will be considerably improved.  
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2.7 Chapter summary 

Based on the literature review presented in this chapter, many numerical time integration 

methods have been introduced by researchers. It is observed that, the computational 

efficiency is the fundamental criterion for choosing a procedure for solving practical 

problems. However, the aforementioned feature of a time integration method is directly 

dependent to the dynamic problems considered. For this reason, there is a need to develop a 

robust time integration method compatible with the existing characteristics of structural 

systems i.e., the scale of structure and frequency components of external excitation. 

The proposed method should be unconditional stable and explicit to achieve the optimum 

results for either direct problems or inverse problems. In this definition, optimum expresses 

the high computational performance of the proposed method. In addition, to simplify the 

solution of large scale systems, an indirect time integration is more effective than direct 

integration methods while most of the time the externally applied load lies on the complex 

one. As the major challenge is the frequency components of the both sides of the dynamic 

equilibrium i.e., frequency components of excitation (right side) as well as inherent properties 

of the structure (left side), the proposed method will be efficient as long as it is based on 

frequency transformations. On the other hand, as time domain methods for structural 

identification are more practical than frequency domain procedures, undoubtedly, the 

information along time domain should be recorded. Consequently, the application of Fourier 

transforms is impractical while the time information are lost during the analysis. There is no 

evidence on the improvement of such numerical method for solving either structural 

dynamics or inverse problems. 

It can be concluded from the review of the literature that, by using multi-resolution feature 

of 2D and 3D wavelets, an adaptive time integration scheme can be developed with the most 
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satisfactory results. In other words, an adaptive numerical approach will be improved capable 

of capturing details in the vicinity of highly varying structural responses. Accordingly, as an 

indirect integration method, all equations are being numerically transferred into the 

corresponding frequency domains, concurrent with the numerical integration scheme. 

Significantly, current transformation has made the prosperity of this procedure over the other 

numerical schemes, particularly, when a broad-frequency-content loading has been 

approximated in terms of its frequency contents in step-by-step piecewise approach. 

Accordingly, in the context of inverse problems, the literature revealed that the major 

drawback of frequency based methods is that for real structures information for higher modes 

of vibration will be unreliable due to low signal to noise ratio. In addition, the methods 

usually involve modal superposition limiting the application to linear systems. Finally, 

frequencies are a global property and are reasonably insensitive to local damage. Identifying 

and locating damage is therefore very difficult, particularly when only the first few modes of 

vibration can be measured. In contrast, time domain methods remove the need to extract 

frequencies and modes and instead make use of the dynamic time-history information 

directly. In this regards, information from all modelled modes of vibration are directly 

included. Moreover, non-linear models can be identified as there is no requirement for the 

signal to be resolved into linear components. Consequently, a wavelet-based indirect time 

integration technique for solving inverse problems in time domain will be concerned in this 

research, however, the proposed procedure is not blind on frequency contents. This argument 

can be interpreted as the time-scale-frequency characteristic of the wavelet-based strategy.   

Furthermore, structural identification problems will be considerably improved by using 

the aforesaid time integration method through an inverse problem. While the majority of 

studies till now, have contributed to the only damage detection strategies using the robust 
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features of wavelets. In addition, there is a lack of investigation on practice of various wavelet 

functions in a sense of analysis to achieve an adaptive and cost-effective analysis. 

From the review of the literature it can be inferred that, the heuristic and non-classical 

strategy of genetic algorithm can be considered as an effective method in order to solve 

inverse problems, provided that the computational competency of this algorithm is increased. 

The emphasis is on the capability of this strategy for identification of many unknown 

parameters i.e., mass, damping, stiffness and force. There is no report received in the 

literature for the enhancement of this strategy by using adaptive wavelet functions. The 

especial attention can be drawn on the employment of various wavelet functions for capturing 

entire details of measured data at longer time intervals concurrent with the running of the 

main algorithm for identification. It is observed that, the computational cost plays the 

underlying role to solve actual and real structural health monitoring problems. Consequently, 

developing a computationally efficient approach in this context is inevitable in order to 

overcome many issues encountered in structural health monitoring problems.   
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CHAPTER 3: STRUCTURAL DYNAMICS 

3.1 Introduction  

Over the last two decades, application of wavelet technique has been the focus of interest 

in various domains of science and technologies. Particularly, engineers are interested in the 

wavelet solution method in time series analysis. This Chapter presents an explicit and indirect 

time integration method for structural dynamic problems capable of using 2-dimensional 

(2D) Haar wavelets, free-scaled Chebyshev wavelets of the first (FCW) and second kind 

(SCW) and Legendre wavelets (LW) known as 3D wavelet functions. For this purpose, the 

dynamic equilibrium governing single-degree-of-freedom (SDOF) and multi-degrees-of-

freedom (MDOF) structures is efficiently approximated by wavelet functions. A clear cut 

formulation is derived for transforming differential equations into the corresponding 

algebraic systems using wavelet operational matrices. A converter coefficient is developed 

to extend operations of wavelets from local time to global time. A detailed assessment is 

carried out on the stability, accuracy and computational efficiency of responses calculated by 

FCW, SCW and LW. Furthermore, an optimal operator of derivative is developed using 

wavelet functions on adaptive collocation points. 

 Subsequently, the capability of the proposed approach is examined using several 

examples, and results are compared with those of the common numerical integration 

schemes, such as Hilbert-Hughes-Taylor (HHT-α), Wilson-𝜃, family of Newmark-𝛽 and 

central difference method. Accordingly, to investigate the cost of analysis as the indication 

of computational competency, CPU computation time involved is also considered in order to 

evaluate the computational efficiency corresponding to each numerical time integration 

method. 
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3.2 Solution of direct problems (forward analysis) 

In this section, a wavelet-based approach is developed in order to solve structural 

dynamics problems (forward problems). For this purpose, the fundamentals of wavelet 

analysis utilized in this thesis are briefly discussed, initially. Later, the proposed procedures 

are consecutively presented. It should be noted here that, the proposed method is capable of 

using any wavelet basis function. However, in this study the free scales of 2D Haar wavelets, 

family of 3D Chebyshev wavelets and 3D Legendre wavelets are implemented. 

3.2.1 Fundamentals of wavelet analysis   

In this section, a brief background on wavelet functions is presented. Mathematically, the 

various versions of scaled and transformation of the mother wavelet 𝜓(𝜏) construct a family 

of wavelet functions. The main representation of the family of continuous wavelets is given 

as (Babolian and Fattahzadeh, 2007; Chui, 1995; S. Mallat, 1999):  

 𝜓𝑎,𝑏(𝜏) = |𝑎|−0.5𝜓(
𝜏 − 𝑏

𝑎
)   , 𝑎, 𝑏 ∈ ℜ, 𝑎 ≠ 0 (3.1) 

where, 𝑎 and 𝑏 denote the scale and transition of the corresponding mother wavelet, 

respectively. Generally, wavelets those constituted by diverse transitioned scales of any basis 

function, i.e., different orders of Haar, Legendre or Chebyshev polynomials, have four 

arguments of 𝜓𝑎,𝑏= 𝜓(𝑘′, 𝑛,𝑚, 𝜏). The indicator of transition 𝑘′ can be any positive integer, 

𝑛 denotes the relevant scale, 𝑚 is the order (degree) of the corresponding polynomials and 𝜏 

indicates the local time of the wavelet.  

In addition, Mahdavi and Shojaee (2013) presented that wavelet functions are theoretically 

characterized into two main categories. The first being the 2D wavelets whereby a definite 

basis function of wavelet is being shifted for all scaled functions. The other category is 3D 
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wavelets involving used of an improved wavelet basis function being shifted on each new 

scale of the mother wavelet. Subsequently, a signal with wide-band frequency components 

is evaluated accurately by 3D wavelets rather than 2D ones, where scale, transition and time 

are expressed as dimensions, respectively. Consequently, for 2D wavelet functions such as 

family of Haar wavelets the order of polynomial is constant.  

Basically, a function is decomposed by transition of the scaled wavelets on global time 

interval of 𝑡𝑖 to 𝑡𝑖+1 (𝑖=0,1,2,….). This global time instant is divided into many subdivisions 

relevant to the degree of the corresponding wavelet. The idea of dividing the time domain 

into multiple partitions appropriate to the time-scaled-frequency analysis is known as 

Segmentation Method (SM) (Cohen, Dahmen, and  DeVore, 2003; Gurley and Kareem, 

1999). The main purpose of SM is to define several adaptive collocation points on the main 

setting domain (global points of 𝑡𝑖 along the time domain), and therefore to relate components 

of those to the new alternative domain of the analysis (local points 𝜏𝑖 in frequency domain). 

In this study, 2𝑘
′−1𝑀 is assumed as the number of partitions in each global time interval (in 

referring to the SM collocation points) and the corresponding wavelets are constructed by 

𝑚= 0, 1, 2,… ,(2𝑘
′−1𝑀/2𝑘

′−1)−1 order of the considered polynomials. Accordingly, local 

times 𝜏𝑖 are defined through the concept of SM as follows: 

 𝜏𝑖 = (1
2𝑘

′−1𝑀
⁄ ) (𝑖 − 0.5)         ,   𝑖 = 1, 2, 3, … , 2𝑘

′−1𝑀 (3.2) 

𝑀 denotes the order of wavelet. Moreover, it is to be pointed out that in this study, 𝑘′ = 2 

is presumed for all derivations and calculations referring to the initial transition functions. 

3.2.1.1 2D Haar wavelet functions 

The simple family of Haar wavelet was presented by Alfred Haar in 1910 for 𝑡 ∈ [0,1] as 

follows (Lepik, 2005, 2008c, 2009a, 2009b): 
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 ℎ𝑚−1(𝑡) =

{
 
 

 
 1 𝑡 ∈ [

𝑎

2𝑗
    ,     

𝑎 + 0.5

2𝑗
]

−1 𝑡 ∈ [
𝑎 + 0.5

2𝑗
 ,
𝑎 + 1

2𝑗
]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3.3) 

 where; 

 𝑚 = 2𝑗 + 𝑎 + 1 ,    𝑗 ≥ 0 ,   0 ≤ 𝑎 ≤ 2𝑗 − 1 (3.4) 

where, 𝑀 = 2𝑗(𝑗 = 0, 1, … , 𝑗) denotes the order of wavelet; 𝑎 = 0, 1, … ,𝑀 − 1 is the 

value of transition. In Equation (3.3), 𝑚 = 1 and 𝑚 = 2 indicate scale function and mother 

wavelet of Haar, respectively. As it was mentioned earlier, the signal is examined by scaled 

and delayed wavelet from 𝑡𝑖 to 𝑡𝑖+1 (known as global time; i = 0, 1, 2, … ), and dividing this 

interval to  many partitions corresponding to the order of wavelet. As a result, as long as a 

global time interval is partitioned to shorter subdivisions of time interval, a set of segments 

will collectively cover the whole signal. For the case of Haar wavelet 2𝑀 = 2𝑗+1 denotes the 

2𝑗th scale of Haar wavelet (Mahdavi and Shojaee, 2013). 

 

                                      

Figure 3.1: Different scales of Haar wavelets as scaled and transitioned pulse functions. 

As it is apparent from Figure 3.1, the simple 2D Haar family is constituted from shifting 

the scale function of mother Haar wavelet corresponding to 𝑚 = 2. 
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3.2.1.2 First kind of 3D Chebyshev wavelets 

The sequence of orthogonal Chebyshev polynomials are categorized into two main kinds. 

The first kind of Chebyshev polynomials 𝑇𝑚(𝑡) is defined by a recursive equation as follows 

(Mason and Handscomb, 2002): 

 

𝑇0(𝑡) = 1,   𝑇1(𝑡) = 𝑡, 𝑇𝑚+1(𝑡) = 2𝑡 𝑇𝑚(𝑡) − 𝑇𝑚−1(𝑡),

𝑚 = 1, 2, … 

(3.5) 

where, the orthogonality of polynomials 𝑇𝑚(𝑡) is satisfied with respect to the weight 

function 𝜔(𝑡) = 1 √1 − 𝑡2⁄  on |𝑡| < 1.  

Subsequently, Chebyshev wavelets of the first kind (FCW) are developed by substituting 

𝑇𝑚(𝑡) in Equation (3.1) as follows (Babolian and Fattahzadeh, 2007): 

 𝜓𝑛,𝑚(𝑡) = {
(2𝑘

′ 2⁄ ). �̃�𝑚(2
𝑘′𝑡 − 2𝑛 + 1),    

𝑛 − 1

2𝑘
′−1

≤ 𝑡 <
𝑛

2𝑘
′−1
 

                                0                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.6) 

where; 

 �̃�𝑚(𝑡) = {
1 √𝜋⁄                    𝑚 = 0

√2/𝜋𝑇𝑚(𝑡)          𝑚 > 0
 

  

(3.7) 

where, in this study 𝑚= 0,1,2, …, 𝑀 − 1 and 𝑛= 1,2, …, 2𝑘
′−1imply the order of 

corresponding polynomials and the considered scale of the wavelet, respectively. 𝑇𝑚(𝑡) 

implies the recursive formula in Equation (3.5) corresponding to different orders of 𝑚. 

Accordingly, the aforementioned weight function of 𝜔(𝑡) is dilated and therefore 

transitioned as 𝜔𝑛(𝑡) = 𝜔(2𝑘
′
𝑡 − 2𝑛 + 1) in order to calculate orthogonal Chebyshev 

wavelets of the first kind (FCW). 
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3.2.1.3 Second kind of 3D Chebyshev wavelets 

Chebyshev polynomials of the second kind 𝑈𝑚(𝑡) are defined by the recurrence relation 

of (Maleknejad, Sohrabi, and  Rostami, 2007; Wang and Fan, 2012): 

 
𝑈0(𝑡) = 1,   𝑈1(𝑡) = 2𝑡, 𝑈𝑚+1(𝑡) = 2𝑡 𝑈𝑚(𝑡) − 𝑈𝑚−1(𝑡),

𝑚 = 1, 2, … 

(3.8) 

The weight functions of 𝜔(𝑡) = (2/𝜋)√1 − 𝑡2, (|𝑡| < 1) satisfy the orthogonal relation 

between different orders of 𝑈𝑚(𝑡). Accordingly, the second kind of Chebyshev wavelets 

(SCW) are constructed as follows: 

 𝜓𝑛,𝑚(𝑡) = {(2
𝑘′ 2⁄ ). �̃�𝑚(2

𝑘′𝑡 − 2𝑛 + 1),    
𝑛 − 1

2𝑘
′−1

≤ 𝑡 <
𝑛

2𝑘
′−1
 

                                0                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3.9) 

where, �̃�𝑚(𝑡) =  √2/𝜋𝑈𝑚(𝑡) and arguments of 𝑘′, 𝑛 and 𝑚 are the same as introduced 

before. Furthermore, for different degrees of 𝑚, 𝑈𝑚(𝑡) is defined from Equation (3.8).  

 

 

             

Figure 3.2: (a) Weight functions, (b) shape functions for the 8th and 12th order, (c) shape 

functions for the 8th and 12th order corresponding to the first (𝑻𝒏(𝒙)) and second 

((𝑼𝒏(𝒙)) kind of Chebyshev polynomials.   
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Similarly, delayed and transitioned weight functions of 𝜔𝑛(𝑡) = 𝜔(2
𝑘′𝑡 − 2𝑛 + 1) are 

improved in order to calculate orthogonal SCWs. 

Moreover, the shape functions for the 8th and 12th orders, corresponding to the first (𝑇𝑛(𝑥)) 

and second (𝑈𝑛(𝑥)) kind of Chebyshev polynomials as well as the weight functions are 

depicted in Figure 3.2.   

3.2.1.4 3D Legendre wavelets 

In mathematics, Legendre polynomials of 𝑚th degree 𝐿𝑚(𝑡) are orthogonal with respect 

to the weight function of 𝜔(𝑡) = 1 and are obtained by the following recursive formula 

(Razzaghi and Yousefi, 2000, 2001; Yousefi and Razzaghi, 2005):  

 

𝐿0(𝑡) = 1,   𝐿1(𝑡) = 𝑡, 𝐿𝑚+1(𝑡) =
(2𝑚+1)

(𝑚+1)
𝑡 𝐿𝑚(𝑡) −

𝑚

(𝑚+1)
𝐿𝑚−1(𝑡),

𝑚 = 1, 2, …       

(3.10) 

Subsequently, the family of Legendre wavelets are expressed as follows:   

 

𝜓𝑛,𝑚(𝑡)

= {(𝑚 + 1/2)1/2. 𝐿𝑚(2
𝑘′𝑡 − 2𝑛 + 1),    

𝑛 − 1

2𝑘
′−1

≤ 𝑡 <
𝑛

2𝑘
′−1
 

                                0                                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(3.11) 

where, for diverse orders of 𝑚, 𝐿𝑚(𝑡) is obtained from Equation (3.10). It should be noted 

that, the nominations are similar for parameters of transition (𝑘′), scale (𝑛) and the order of 

corresponding polynomials and wavelets. The 2nd and 8th orders of Legendre polynomials 

and Chebyshev polynomials of the first and second kind are depicted in Figure 3.3.  
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Figure 3.3: The mth degree of Chebyshev polynomials of the first (Tm(t)) and second 

kind (Um(t)) and Legendre polynomials (Lm(t)). (a) m=8, (b) m=2. 

As it is shown in Figure 3.3, the major amplitude of y-axis is covered by the second 

Chebyshev polynomials, however, the fluctuated patterns are converged at point zero of t-

axis. As an initial inference, the widest band of frequencies can be captured by the family of 

wavelets, which are originated by this polynomials (in referring to SCW) rather than 

Legendre or the first Chebyshev wavelets (FCW). 

3.2.1.5 Functional decomposition and operational matrix of integration 

In subsequent sections, the derivation of wavelet coefficients and the operation matrix P 

of integration corresponding to 2D Haar wavelet and 3D FCW, SCW and LW are introduced. 

3.2.1.5.1 2D Haar wavelet function 

Basically, signal 𝑓(𝑡) can be decomposed in 2D Haar series as (Lepik, 2005): 
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 𝑓(𝑡) ≅∑𝑐𝑖ℎ𝑖(𝑡)

2𝑀

𝑖=0

 (3.12) 

Accordingly, Haar coefficients 𝑐𝑖 (𝑖 = 0, 1, 2, … ) are defined by: 

 𝑐𝑖 = 2𝑗∫ 𝑓(𝑡)
1

0

ℎ𝑖(𝑡)𝑑𝑡 (3.13) 

Hence, 𝐻2𝑀 is a square matrix (2𝑀 × 2𝑀), including the first 2𝑀 scales of Haar wavelet; 

Haar coefficients are directly given as: 

 𝑐𝑖 = 𝑓(𝑡)𝐻2𝑀
−1(𝑡) (3.14) 

Equivalently, signal 𝑓(𝑡) may be rewritten as: 

 𝑓(𝑡) ≅ 𝑐2𝑀
𝑇 𝐻2𝑀(𝑡) (3.15) 

Subsequently, integration of 𝐻2𝑀 is obtained by Haar series with new square coefficient 

matrix of integration 𝑃2𝑀 as (Lepik, 2005; Mahdavi and Shojaee, 2013): 

 ∫ 𝐻2𝑀(𝑡)𝑑𝑡 ≈ 𝑃 𝐻2𝑀(𝑡)
1

0

 (3.16) 

It should be noted that, local times are calculated relatively to the scale of wavelet as: 

 𝜏𝑙 =
𝑙 − 0.5

2𝑀
 , 𝑙 = 1, 2, … , 2𝑀 (3.17) 

Finally, the local time divisions (𝜏𝑙), are adapted to the global domain. Assumption of 𝑑𝑡 

as global time interval one may obtain (Lepik, 2005): 

 𝑡𝑙𝑡 = 𝑑𝑡(𝜏𝑙) + 𝑡𝑡 ⟹ 𝜏𝑙 =
𝑡𝑡 − 𝑡𝑙𝑡
𝑑𝑡

  , 𝑙 = 1,2, … , 2𝑀 (3.18) 
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3.2.1.5.2 3D wavelet functions 

Fundamentally, any quadratically-integrable function 𝑓(𝑡) may be expanded in terms of 

FCW, SCW or Legendre wavelets (LW) for 𝑡 ∈ [0,1) as (Babolian and Fattahzadeh, 2007; 

Razzaghi and Yousefi, 2001): 

 𝑓(𝑡) = ∑∑ 𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑡)

∞

𝑚=0

∞

𝑛=1

 (3.19) 

Integrating both sides of Equation (3.19), and then multiplying by the components of 

wavelets, corresponding wavelet coefficients are being obtained as follows (the orthogonality 

is satisfied by employing the weight functions of 𝜔𝑛(𝑡)): 

 𝑐𝑛,𝑚 = (𝜓𝑛,𝑚(𝑡), 𝑓(𝑡), 𝜔𝑛(𝑡)) = ∫ 𝜔𝑛(𝑡)𝜓𝑛,𝑚(𝑡)
1

0

𝑓(𝑡)𝑑𝑡 (3.20) 

Subsequently, the function 𝑓(𝑡) can be decomposed by the truncated series of a wavelet’s 

family as follows (Babolian and Fattahzadeh, 2007; Razzaghi and Yousefi, 2001): 

 𝑓(𝑡) ≅ ∑ ∑ 𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑡) = 𝐶𝑇Ψ(𝑡)

𝑀−1

𝑚=0

2𝑘
′−1

𝑛=1

 (3.21) 

where, 𝐶 denotes the coefficients vector of the relevant wavelets, i.e., FCW, SCW or 

Legendre wavelets, and the corresponding wavelet function vector is designated by Ψ(𝑡) as: 

 

𝐶 = [𝑐1, 𝑐2, 𝑐3, … , 𝑐2𝑘−1]2𝑘′−1𝑀×1
𝑇

    ⟺      𝑐𝑖

= [𝑐𝑖0, 𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖,𝑀−1]
𝑇 , 𝑖 = 1,2, … , 2𝑘

′−1 

(3.22) 

 

Ψ(𝑡) = [𝜓1, 𝜓2, 𝜓3, … , 𝜓2𝑘−1]2𝑘′−1𝑀×1   
𝑇

 ⟺    𝜓𝑖(𝑡)

= [𝜓𝑖0(𝑡), 𝜓𝑖1(𝑡), 𝜓𝑖2(𝑡), … , 𝜓𝑖,𝑀−1(𝑡)]
𝑇 

(3.23) 

Eventually, a 2𝑘
′−1𝑀 × 2𝑘

′−1𝑀-dimensional matrix of 𝜙𝑛,𝑚(𝑡) is formed as:  
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 𝜙𝑛,𝑚(𝑡) = [Ψ(𝑡1)  Ψ(𝑡2)  …  Ψ(𝑡𝑖)]2𝑘′−1𝑀×2𝑘′−1𝑀 (3.24) 

The square matrix 𝜙𝑛,𝑚(𝑡) is populated with vectors of wavelet functions for a set of 

discrete SM local points (𝑡𝑖,   𝑖 = 1, 2, 3, … , 2𝑘
′−1𝑀). 

It is assumed that the integration of Ψ(𝑡) can be obtained as (assumption of 𝑘′ = 2) : 

 ∫ Ψ2𝑀(𝑡)
1

0

𝑑𝑡 = 𝑃2𝑀Ψ(𝑡) (3.25) 

In Equation (3.25), the subscripts of Ψ2𝑀 and 𝑃2𝑀indicate the dimensions of matrices. 

Correspondingly, the 2𝑘
′−1𝑀 × 2𝑘

′−1𝑀-dimension operational matrix P for FCW, SCW and 

LW, which plays the underlying role in dealing with solution of differential equations is 

derived as (𝑘′ = 2) (Babolian and Fattahzadeh, 2007; Razzaghi and Yousefi, 2000): 

 

𝑃2𝑀 =
1

2𝑘
′

[
 
 
 
 
 
[𝐿]2𝑀

2
×
2𝑀
2

[𝐹]2𝑀
2
×
2𝑀
2

𝐹 … 𝐹

[𝑂]2𝑀
2
×
2𝑀
2

[𝐿]2𝑀
2
×
2𝑀
2

𝐹 … 𝐹

𝑂 𝑂 ⋱ ⋱ ⋮
⋮ ⋮ … ⋱ 𝐹
𝑂 𝑂 … 𝑂 𝐿]

 
 
 
 
 

 

 

(3.26) 

where, 
2𝑀

2
×
2𝑀

2
 square matrices F and L are given as follows ([𝑂] shows a zero matrix): 
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𝐹 =

[
 
 
 
 
 
2 0 0 … 0 0
0 0 0 … 0 0
𝑎1 0 0 … 0 0
0 0 0 ⋱ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝑎2 0 … … 0 0]

 
 
 
 
 

,

𝐿 =

[
 
 
 
 
 
 
 
1 𝑎6 𝑎9 𝑎12 … 0 0 0
𝑎3 0 𝑎10 𝑎13 … 0 0 0
𝑎4 𝑎7 0 𝑎14 … 0 0 0
𝑎5 𝑎8 𝑎11 0 … ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑎15 0 0 … … 𝑎17 ⋱ 𝑎19
𝑎16 0 0 … … 0 𝑎18 0 ]

 
 
 
 
 
 
 

 

 

(3.27) 

Generally, it is inferred from Equations (3.26) and (3.27) that, there is a similar population 

for components of P corresponding to considered wavelets. In details, particular coefficients 

of 𝑎𝑖 are derived for FCW, SCW and LW, and tabulated in Table 3.1. It should be kept in 

mind that 
2𝑀

2
 implies 2𝑘

′−1𝑀/2𝑘
′−1. To calculate operation matrix of P for FCW, SCW and 

LW, a backward algorithm of program coding is recommended. In other words, only the first 

four rows and columns of P are being calculated, initially. At the second stage, the 

components of P are being calculated and replaced from the last row and column 
2𝑀

2
 th until 

computation of the 5th row and column. To clarify the expression of wavelets parameters of 

FCW, SCW and LW, matrices of 𝜙4,4 and 𝑃4,4 are computed and shown in Table 3.2 for 𝑘′ =

2,
2𝑀

2
 = 2. 
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Table 3.1: Coefficients of 𝑎𝑖, defined in Equation (3.27) corresponding to FCW, 

SCW and Legendre wavelets (2𝑀/2 = 𝑀). 

𝒂𝒊 Legendre wavelet FCW SCW 

𝑎1 0 −2√2 3⁄  2/3 

𝑎2 0 √2

2
(
1 − (−1)𝑀

𝑀
−
1 − (−1)𝑀−2

𝑀 − 2
) |sin (

𝑀𝜋

2
)|
2

𝑀
 

𝑎3 −√3 3⁄  −√2 4⁄  −3/4 

𝑎4 0 −√2 3⁄  1/3 

𝑎5 0 √2 4⁄  −1/4 

𝑎6 1 √3⁄  1 √2⁄  ½ 

𝑎7 −√5 (5√3)⁄  −1/2 −1/6 

𝑎8 0 0 0 

𝑎9 0 0 0 

𝑎10 √3 (3√5)⁄  ¼ ¼ 

𝑎11 −√7 (7√5)⁄  −1/4 −1/8 

𝑎12 0 0 0 

𝑎13 0 0 0 

𝑎14 √5 (5√7)⁄  1/6 1/6 

𝑎15 0 √2

2
(
(−1)𝑀−3

𝑀 − 3
−
(−1)𝑀−1

𝑀 − 1
) (−1)𝑀−2

1

𝑀 − 1
 

𝑎16 0 √2

2
(
(−1)𝑀−2

𝑀 − 2
−
(−1)𝑀

𝑀
) (−1)𝑀−1

1

𝑀
 

𝑎17 
−

(2𝑀 − 3)1/2)

(2𝑀 − 3)(2𝑀 − 5)1/2
 

−1

2(𝑀 − 3)
 −

1

2(𝑀 − 1)
 

𝑎18 
−

(2𝑀 − 1)1/2

(2𝑀 − 1)(2𝑀 − 3)1/2
 

−1

2(𝑀 − 2)
 −

1

2𝑀
 

𝑎19 (2𝑀 − 3)1/2

(2𝑀 − 3)(2𝑀 − 1)1/2
 

1

2(𝑀 − 1)
 

1

2(𝑀 − 1)
 

Note: FCW= first Chebyshev wavelet, SCW= second Chebyshev wavelet. 
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Furthermore, from the computational time point of view, Equation (3.27) and Table 3.1 

demonstrate that the cost of computation of F and therefore P for LW (because of its scaled 

weight functions) is less than either FCW or SCW, in which that, the whole arrays are zeros 

(except for the first one). Significantly, the foregoing point is highlighted when higher 

degrees of polynomials and scales of wavelets are employed. Basically, this is due to the 

simple weight function 𝜔 = 1 of Legendre polynomials in contrast to the variable weight 

functions of FCW and SCW. Accordingly, it will be shown later that the total CPU time for 

solving especially large-scaled structures using free scales of LW is less than that of using 

FCW or SCW. However, from accuracy point of view, variable weight functions of FCW 

and SCW lead to less errors of end points of integration and resulting in more precise results 

compared to the results obtained with LW. 

3.2.1.6 Comparison of 2D and 3D wavelet functions 

In this subsection, the characteristic of 2D Haar wavelet has been compared with FCW 

known as a 3D wavelet function. It should be kept in mind that the characteristics of FCW, 

SCW and LW are very close, so only FCW is considered here in order to reasonably compare 

2D and 3D wavelets. 

3.2.1.6.1 Inherent characteristics  

As it was mentioned before, each particular scale of corresponding wavelet is constituted 

by an improved wavelet function, related to the corresponding polynomial for 3D wavelets. 

In other words, provided that scales of functions are being increased, basis functions will be 

respectively developed.   
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Table 3.2: Corresponding components of wavelets 𝜙𝑖,𝑗 and 𝑃, calculated on four SM points for 2D Haar wavelet, 3D FCW, SCW and LW.  

Column 𝒋 1 2 3 4 
Row 𝒊  𝜙𝑖,𝑗 𝑃𝑖,𝑗 𝜙𝑖,𝑗 𝑃𝑖,𝑗 𝜙𝑖,𝑗 𝑃𝑖,𝑗 𝜙𝑖,𝑗 𝑃𝑖,𝑗 

1 
HA 1.0000 0.5000 1.0000 -0.2500 1.0000 -0.1250 1.0000 -0.1250 

FCW 1.1284 0.2500 1.1284 0.1768 0 0.5000 0 0 
SCW 1.5958 0.2500 1.5958 0.1250 0 0.5000 0 0 
LW 1.4142 0.2500 1.4142 0.1442 0 0.5000 0 0 

         

2 
HA 1.0000 0.2500 1.0000 0 -1.0000 -0.1250 -1.0000  

FCW -0.7979 -0.0884 0.7979 0 0 0 0 0 
SCW -1.5958 -0.1875 1.5958 0 0 0 0 0 
LW -1.2247 -0.1442 1.2247 0 0 0 0 0 

         

3 
HA 1.0000 0.0625 -1.0000 0.0625 0 0 0 0.1250 

FCW 0 0 0 0 1.1284 0.2500 1.1284 0.1768 
SCW 0 0 0 0 1.5958 0.2500 1.5958 0.1250 
LW 0 0 0 0 1.4142 0.2500 1.4142 0.1442 

         

4 
HA 0 0.0625 0 -0.0625 1.0000 0 -1.0000 0 

FCW 0 0 0 0 -0.7979 -0.0884 0.7979 0 
SCW 0 0 0 0 -1.5958 -0.1875 1.5958 0 
LW 0 0 0 0 -1.2247 -0.1442 1.2247 0 

Note: HA=Haar wavelet, FCW= first Chebyshev wavelet, SCW= second Chebyshev wavelet, LW= Legendre wavelet. 
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Figure 3.4 shows the first 8 scales of Haar and Chebyshev families. It can be seen from 

Figure 3.4(a) that, for the 8th scale of Haar family, the simple basis function has been just 

compressed and afterward has been delayed from the first position. In contrast, Figure 3.4(b) 

shows the broad-band frequency function of the 8th scale of Chebyshev that will be moved 

along the time axis. 

         

Figure 3.4: Comparison of the first 8th scales of wavelet functions, (a) 2D Haar family, 

(b) 3D Chebyshev polynomial. 

Additionally, the shortcoming of Haar wavelet is shown in Figure 3.4(a) at the point of 

0.5, which the continuity is not satisfied at this point. According to a mathematical rule, the 

second derivation will not exist at the point of 0.5. As a result, it is just possible to implement 

an indirect formulation for solving the second-ordered differential equation of motion. 

Consequently, as will be shown in this chapter, large values of errors have been computed 

by using free-scaled Haar wavelet functions through the direct practice of the proposed 

scheme. However, with far lesser CPU time taken (analysis cost) that will be discussed later. 

3.2.1.6.2 Functional approximation 

Fundamentally, optimum structural dynamics can be achieved through a wavelet-based 

approach involving two parts of numerical analysis. Firstly, the external loading is accurately 

approximated according to its frequency contents simultaneously with numerical time 
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integration procedure. Secondly, differential equations are accurately converted to an 

algebraic system by wavelet functions on a corresponding set of collocation points, even with 

a long time step. Consequently, it is inferred that accuracy of results are directly dependent 

on accurate approximation of equations. 

         

Figure 3.5: Approximation of F(t) and wavelet coefficients for the first 8th scale of (a) 

FCW, (b) Haar wavelet, at the first second of F(t) and 𝝎=8 rad/sec (CH_CW= 

coefficients of FCW, HA_CW= coefficients of Haar wavelet, App. of F(t)_CH/HA= 

approximation of F(t) using Chebyshev/Haar wavelet). 

         

Figure 3.6: Approximation of F(t) and wavelet coefficients for the first 8th scale of (a) 

FCW, (b) Haar wavelet, for the first second of F(t) and 𝝎=15 rad/sec (CH_CW= 

coefficients of FCW, HA_CW= coefficients of Haar wavelet, App. of F(t)_CH/HA= 

approximation of F(t) using Chebyshev/Haar wavelet).    

In order to evaluate the accuracy of approximation by using wavelet functions, the first 

8th scale of Haar wavelet and FCW are exemplified for three different frequency-content 
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signals, accordingly. For this purpose, a sinusoidal function of 𝐹(𝑡)= sin (𝜔𝑡) is examined 

for 𝜔 equal to 8, 15 and 500 rad/sec, at the first second of excitation, respectively. 

Figure 3.5 shows that the accuracy of approximation for 𝜔=8 rad/sec through the 

calculated coefficients of FCW (designated by CH_CW) is more than Haar wavelet. The 

corresponding function is also examined to be almost accurate with Haar wavelet 

(coefficients of Haar wavelet are designated by HA_CW). Additionally, Figure 3.6 illustrates 

the capability of 8th scale of 3D FCW which is a low scale of this wavelet, compared with 

acceptable decomposition by using the same-scaled 2D Haar wavelet. Despite the 

undesirable approximation of Haar wavelet for 𝜔=15 rad/sec, from its optimization point of 

view the results could be interpreted as acceptable approximation. Finally, Figure 3.7(b) 

shows the rejected results through the 8th scale of Haar wavelet, encountering with a high 

frequency-content signal with 𝜔=500 rad/sec. It is clearly shown in the figure that the 128th 

scale of Haar wavelet gave sufficient accuracy of approximation. However, with a very long 

computation time involved. Overall, figures demonstrate the efficiency of low-scaled FCW; 

although, for the case of 𝝎=500 rad/sec higher scales shall be utilized in order to obtain 

accurate results. 
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Figure 3.7: Approximation of F(t) and wavelet coefficients for the first 8th scale of (a) 

FCW, (b) Haar wavelet, for the first second of F(t) and 𝝎=500 rad/sec (CH_CW= 

coefficients of FCW, HA_CW= coefficients of Haar wavelet, App. of F(t)_CH= 

approximation of F(t) using FCW, App. of F(t)_HA(2M8/128)= approximation of F(t) 

using the first 8/128th scale of Haar wavelet).    

3.2.2 The proposed method for dynamic analysis of SDOF structures 

Generally, the linear dynamic equilibrium (ordinary differential equation) governing the 

SDOF system of mass (𝑚), damping (𝑐) and stiffness (𝑘) is expressed as follows (Hughes, 

2012): 

 (𝑚)�̈�(𝑡) + (𝑐)�̇�(𝑡) + (𝑘)𝑢(𝑡) = 𝐹(𝑡) (3.28) 

where, �̈�(𝑡), �̇�(𝑡) and 𝑢(𝑡) denote acceleration, velocity and displacement vectors of 

response to the external dynamic load of 𝐹(𝑡), respectively. Using Equation (3.12) for 2D 

wavelets or Equation (3.19) for 3D wavelets, acceleration vectors can be decomposed on 2𝑀 

adaptive (SM) points of analysis corresponding to Haar wavelet, FCW, SCW or LW as: 
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 �̈�(𝑡) ≅ ∑ ∑ 𝑐𝑛,𝑚𝜓𝑛,𝑚(𝑡) = 𝐶𝑇Ψ(𝑡)

𝑀−1

𝑚=0

2𝑘
′−1

𝑛=1

 (3.29) 

In addition, Ψ(𝑡) represents the operation vector of FCW, SCW or LW, which can be 

replaced by ℎ(𝑡) for Haar wavelet. Subsequently, using Equation (3.25) the first and second 

orders of integration vectors, namely, velocity and displacement vectors are approximated as 

(let �̇�𝑛 = 𝑣𝑛initial velocities and 𝑢𝑛 initial displacements): 

 �̇�(𝑡) = 𝐶𝑇𝑃Ψ(𝑡) + 𝑣𝑛 (3.30) 

 𝑢(𝑡) = 𝐶𝑇𝑃2Ψ(𝑡) + 𝑢𝑛 (3.31) 

It is to be noted that, 𝑢𝑛and 𝑣𝑛are a constant initial value in global time interval of 𝑑𝑡 =

𝑡𝑖+1 − 𝑡𝑖. Furthermore, the numerical algebraic equation in Equations (3.30) or (3.31) is 

satisfied by decomposition of unity for 2𝑀 adaptive points of FCW, SCW and LW as 

follows: 

 1 ≅ 𝐼∗Ψ(𝑡) ≅ 𝐷[11,1, 0,0, … , 11,𝑀+1, 0,0, … ]Ψ(𝑡) (3.32) 

where, D=√𝜋 4⁄ , √𝜋 8⁄  and √1 2⁄  for FCW, SCW and LW, respectively.  

It should be emphasized that, the size of vector in 𝐼∗ is 1 × 2𝑀. For FCW, SCW and LW, 

the first component and (2𝑀/2)+1 are one. Similarly, for Haar wavelet it is also determined 

as: 

 1 ≅ 𝐼∗ℎ(𝑡) ≅ [11,1, 0,0, … ,0,0,0, … , 01,2𝑀]ℎ(𝑡) (3.33) 

Therefore, the constant values of initial displacement and velocity (calculated from 

previous step) are approximated by corresponding wavelets as (designated by 𝑆2
𝑇Ψ(𝑡) and 

𝑆1
𝑇Ψ(𝑡)): 
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𝑆1
𝑇Ψ(𝑡) = 𝑣𝑛 × 1 ≅ 𝑣𝑛𝐼

∗Ψ(𝑡)

≅ 𝑣𝑛𝐷[11,1, 0,0, … , 11,𝑀+1, 0,0, … ]Ψ(𝑡) 
(3.34) 

 𝑆2
𝑇Ψ(𝑡) = 𝑢𝑛 × 1 ≅ 𝑢𝑛𝐼

∗Ψ(𝑡)

≅ 𝑢𝑛𝐷[11,1, 0,0, … , 11,𝑀+1, 0,0, … ]Ψ(𝑡) 

(3.35) 

Quantities of velocity and displacement vectors are numerically developed on 2𝑀 points 

by substituting Equations (3.34) and (3.35) into Equations (3.30) and (3.31) as follows: 

 �̇�(𝑡) = 𝐶𝑇𝑃Ψ(𝑡) + 𝑆1
𝑇Ψ(𝑡) (3.36) 

 𝑢(𝑡) = 𝐶𝑇𝑃2Ψ(𝑡) + 𝑆1
𝑇𝑃Ψ(𝑡) + 𝑆2

𝑇Ψ(𝑡) (3.37) 

On the other hand, the external excitation 𝐹(𝑡), which most of the time (in actual cases) 

is a wide-band frequency content signal, can be decomposed with Haar wavelet, FCW, SCW 

or LW as follows: 

 𝐹(𝑡) = 𝑓𝑇Ψ(𝑡) (3.38) 

The applied signal known as external loading of 𝐹(𝑡) may be constructed by several sets 

of discrete 1× 2𝑘
′−1𝑀-dimensional vectors corresponding to 2𝑀 points of global time. Thus, 

coefficients vector of 𝑓𝑇is obtained for each separate vector as follows: 

  𝑓
1×2𝑘

′−1𝑀

𝑇 = 𝐹
1×2𝑘

′−1𝑀
𝜙
(2𝑘

′−1𝑀)×(2𝑘
′−1𝑀)

⁄  (3.39) 

Substituting Equations (3.36), (3.37) and (3.39) into Equation (3.28), the dynamic 

equilibrium is numerically developed as: 

 

(𝑚)[𝐶𝑇Ψ(𝑡)] + (𝑐)𝑑𝑡[𝐶
𝑇𝑃Ψ(𝑡) + 𝑆1

𝑇Ψ(𝑡)]   

+   (𝑘)𝑑𝑡
2[𝐶𝑇𝑃2Ψ(𝑡) + 𝑆1

𝑇𝑃Ψ(𝑡) + 𝑆2
𝑇Ψ(𝑡)]

=   𝑑𝑡
2𝑓𝑇Ψ(𝑡) 

(3.40) 
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In addition, quantities of the dynamic system are transformed from the alternative domain 

of analysis (2𝑀 local times of wavelets) into the setting domain (2𝑀 global times) by 

multiplying 𝑑𝑡 to each operation of derivative. This implementation makes the proposed 

scheme applicable for analysis of time domains larger than unity. Eventually, Ψ(𝑡) is omitted 

from the both sides of Equation (3.40), and the algebraic system is improved as follows:  

 

(𝑚)[𝐶𝑇] + (𝑐)𝑑𝑡[𝐶
𝑇𝑃 + 𝑆1

𝑇]   +   (𝑘)𝑑𝑡
2[𝐶𝑇𝑃2 + 𝑆1

𝑇𝑃 + 𝑆2
𝑇]

=   𝑓𝑇𝑑𝑡
2
 

(3.41) 

Calculating coefficient vectors of wavelets (𝐶𝑇for Haar wavelet, FCW, SCW or LW) from 

Equation (3.41) and substituting into Equations (3.30) and (3.31), quantities of displacement 

and velocity vectors are computed corresponding to 2𝑀 global points for each wavelet 

function. 

In theory, it is clearly distinguishable that vibration equations are being approximated 

undesirably with 2D Haar wavelets, because of its inherent simple shape function. However, 

in practice to gain the optimal time vibration analysis by taking into consideration the least 

computation time involved, this simple wavelet can  be utilized for initial predictions. 

3.2.3 The proposed method for dynamic analysis of MDOF structures 

In structural dynamic problems, the constant values of mass (𝑚), damping (𝑐) and stiffness 

(𝑘) relevant to a SDOF system are replaced by matrices of mass [𝑀]𝑑×𝑑, damping [𝐶𝑑]𝑑×𝑑 

and stiffness [𝐾]𝑑×𝑑 corresponding to the considered MDOF system with 𝑑 degrees of 

freedom, subjected to the vector of applied forces of  {𝐹𝑡}. Hence, the dynamic equilibrium 

is developed as: 

 [𝑀]𝑑×𝑑�̈�𝑑×2𝑀
𝑡 + [𝐶𝑑]𝑑×𝑑�̇�𝑑×2𝑀

𝑡   +   [𝐾]𝑑×𝑑𝑈𝑑×2𝑀
𝑡 = {𝐹𝑡}𝑑×2𝑀 (3.42) 
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The subscripts of �̈�𝑑×2𝑀
𝑡 , �̇�𝑑×2𝑀

𝑡  and 𝑈𝑑×2𝑀
𝑡  denote 𝑑 × 2𝑀-dimensional acceleration, 

velocity and displacement vectors related to 2𝑀 adaptive collocation points of global time 

corresponding to each degree of freedom (DOF), respectively. Accordingly, the expansion 

of Equation (3.29) is employed for each DOF. Initial conditions corresponding to each DOF 

is also approximated with wavelet functions using Equations (3.34) and (3.35). Moreover, 

nodal forces are also decomposed by using Equation (3.39) on each DOF. Eventually, the 

convertor of local times to global times is executed by multiplying 𝑑𝑡, and therefore Equation 

(3.42) is numerically developed as:  

 

[𝑀] [
𝐶1
𝑇Ψ(𝑡)
⋮

𝐶𝑑
𝑇Ψ(𝑡)

] + [𝐶𝑑]𝑑𝑡 [
𝐶1
𝑇𝑃Ψ(𝑡) + 𝑆1−1

𝑇 Ψ(𝑡)
⋮

𝐶𝑑
𝑇𝑃Ψ(𝑡) + 𝑆1−𝑑

𝑇 Ψ(𝑡)
] +

[𝐾]𝑑𝑡
2 [
𝐶1
𝑇𝑃2Ψ(𝑡) + 𝑆1−1

𝑇 𝑃Ψ(𝑡) + 𝑆2−1
𝑇 Ψ(𝑡)

⋮
𝐶𝑑
𝑇𝑃2Ψ(𝑡) + 𝑆1−𝑑

𝑇 𝑃Ψ(𝑡) + 𝑆2−𝑑
𝑇 Ψ(𝑡)

]=𝑑𝑡
2 [
𝑓1
𝑇Ψ(𝑡)
⋮

𝑓𝑑
𝑇Ψ(𝑡)

] 

(3.43) 

Eliminating Ψ(𝑡) from the both sides, Equation (3.43) is represented as a vector for each 

row corresponding to each DOF (1-𝑑) and 𝑗 = 1,2, … , 𝑑 we have:  

 
∑[𝑀]𝑗𝑖𝐶𝑖

𝑇

𝑑

𝑖=1

+ 𝑑𝑡∑[𝐶𝑑]𝑗𝑖(𝐶𝑖
𝑇𝑃 + 𝑆1−𝑖

𝑇 ) + 𝑑𝑡
2

𝑑

𝑖=1

∑[𝐾]𝑗𝑖(𝐶𝑖
𝑇𝑃2

𝑑

𝑖=1

+ 𝑆1−𝑖
𝑇 𝑃 + 𝑆2−𝑖

𝑇 ) = 𝑑𝑡
2𝑓𝑗

𝑇 

(3.44) 

Assumption of 𝐼2𝑀×2𝑀 as an identity matrix, Equation (3.44) is simplified as follows: 

 

𝐶𝑖
𝑇([𝑀]𝑗𝑖𝐼 + 𝑑𝑡[𝐶𝑑]𝑗𝑖𝑃 + 𝑑𝑡

2[𝐾]𝑗𝑖𝑃
2)

= 𝑑𝑡
2𝑓𝑗

𝑇

−∑[𝑑𝑡[𝐶𝑑]𝑗𝑖𝑆1−𝑖
𝑇 + 𝑑𝑡

2[𝐾]𝑗𝑖(𝑆1−𝑖
𝑇 𝑃 + 𝑆2−𝑖

𝑇 )]

𝑑

𝑖=1

 

(3.45) 
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Calculating coefficients vectors of wavelet 𝐶𝑖
𝑇  (𝑖 = 1,2, … , 𝑑) for each DOF in Equation 

(3.45), and therefore using Equations (3.31) and (3.30), velocity and displacement vectors 

are obtained corresponding to each DOF. 

Note that in large-scaled linear systems, due to the sequence in the node numbering, the 

coefficient matrix on the left side of Equation (3.45) is nearly singular. Thus, it is 

recommended to solve the coefficients of wavelet in the above algebraic system using 

singular value decomposition (SVD) method. However, for many applications, simple 

decomposition techniques are applicable, i.e., the Choleski factorization method. The step-

by-step algorithm of the proposed method is tabulated in Table 3.3. 

To achieve an optimum analysis, it is recommended to determine 𝑑𝑡 = ∆𝑡 ≤ 2 × 𝑇𝑚𝑖𝑛 

(𝑇𝑚𝑖𝑛= minimum period of system), as long as the stability of results is satisfied. For this 

reason, the stability analysis is essential for the proposed method. The statement of optimum 

analysis refers to an accurate analysis with lesser computation time involved, and therefore 

lesser amounts of storage capacity (namely, the optimum cost of analysis). It is to be noted 

that, the sampling rate of external loading shall be considered as another important criteria to 

specify 2𝑀 and 𝑑𝑡. 
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Table 3.3: Step-by-step algorithm to calculate the response of MDOF systems using the 

proposed method for Haar wavelet, FCW, SCW and LW. 

A. Initial calculations: 

(1) Form stiffness matrix [K], damping matrix [Cd] and mass matrix [M] of the system. 

(2) Specify wavelet basis function, number of adaptive collocation points 2M, the 

considered order of wavelet 𝒎=(2M/2)-1. 

(3) Select an appropriate time step 𝒅𝒕.  
(4) Specify vectors of applied forces on each DOF of system, in each 𝒅𝒕 corresponding to 

collocation points. 

(5) Form coefficients wavelet matrix corresponding to collocation points for free-scaled 

orders of wavelet function 𝝓(𝒕). 
(6) Form operation matrix of integration corresponding to collocation points for each 

particular wavelet function 𝑷. 

(7) Calculate square operational matrix 𝑷𝟐.  

(8) Approximate unity, with related coefficient of wavelets. 

- D=√𝜋 4⁄ , √𝜋 8⁄  and √1 2⁄  for FCW, SCW and LW, 

respectively. 

(9) Initialize 𝒖𝟎 and 𝒗𝟎 as initial displacement and velocity vectors. 

(10) Form 𝟐𝑴× 𝟐𝑴 identity matrix of 𝑰. 
 

B. For each time step: 

(1) Form initial vectors for velocity and displacement of 𝑺𝟏
𝑻 and 𝑺𝟐

𝑻. 

(2) Calculate 𝒖𝒏𝟎 and 𝒗𝒏𝟎using: 

𝑣𝑛0 = 𝑆1
𝑇Ψ(𝑡) 

𝑢𝑛0 = 𝑆2
𝑇Ψ(𝑡) 

(3) Calculate vectors of unknown coefficients of 𝑪𝒊
𝑻 for each DOF (i=1,2,…,d). 

(4) For each DOF calculate displacement, velocity and acceleration vectors, 

simultaneously by: 

𝑢(𝑡) = 𝐶𝑇𝑃2Ψ(𝑡) + 𝑢𝑛0 

�̇�(𝑡) = 𝐶𝑇𝑃Ψ(𝑡) + 𝑣𝑛0 

�̈�(𝑡) = 𝐶𝑇Ψ(𝑡) 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

72 

 

3.3 Stability analysis of the wavelet-based method 

As was shown in previous sections, the robustness of the proposed method is revealed 

while the quantities of the dynamic system (i.e., displacements, velocities and accelerations) 

have been transferred from 𝑡th step to the (𝑡+𝑑𝑡)
th step using a set of compatible collocation 

(SM) points. Subsequently, details (e.g., frequency contents) of either dynamic responses 

(left side of Equation (3.42)) or externally applied loadings (right side of Equation (3.42)) 

are precisely captured by adaptive collocation SM points. Consequently, it provides the 

possibility of using longer time intervals of 𝑑𝑡. However, different sets of collocation points 

may be utilized, relating to the diverse details of considered problem. For this reason, the 

stability analysis of calculated results using the proposed scheme is concerned in this section 

for the least number of 2𝑀=2 collocation points. The relationship between dynamic 

quantities of the current state (�̂�𝑡+∆𝑡) and the previous state (�̂�𝑡) is presented as (Bathe, 2006; 

Bathe and Wilson, 1973): 

 {�̂�𝑡+∆𝑡} = [𝐴]{�̂�𝑡} + [𝐿
′]{𝑓𝑡+𝜐∆𝑡} (3.46) 

where, 𝐿′ and 𝐴 denote the load operator and amplification matrix, respectively. 𝑓𝑡+𝜐 

indicates external loads which are related to the current quantities (𝜐 = 0,1,2,…). Note that, 

𝑓𝑡+𝜐 , 𝐿′ and 𝐴 can be obtained for any numerical integration method, i.e., explicit or implicit 

schemes. For the purpose of stability analysis, dynamic equilibrium of a SDOF structure in 

Equation (3.28) is considered when there is no external load (𝑓𝑡+𝜐∆𝑡) applied. Firstly, the 

representation of Equation (3.28) is changed from damping (𝑐) and stiffness (𝑘) to the 

damping ratio (𝜉) and natural frequency (𝜔) as follows: 
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 �̈�𝑡(𝑡) + 2𝜉𝜔�̇�𝑡(𝑡) + 𝜔
2𝑢𝑡(𝑡) =

𝐹(𝑡)

(𝑚)
 (3.47) 

The subscript �̈�𝑡(𝑡) indicates the relevant quantities at the current state of 𝑡. To calculate 

amplification matrix of 𝐴, relatively with terms of accelerations, the third ordered derivative 

of displacement with respect to time �⃛�(𝑡) is approximated by using the expansion of Equation 

(3.29). Employing the operation matrix of integration P, quantities of acceleration, velocity 

and displacement are obtained as follows:  

 

�⃛�𝑡(𝑡) = 𝐶𝑇Ψ(𝑡) 

�̈�𝑡(𝑡) = 𝑑𝑡. 𝐶
𝑇𝑃Ψ(𝑡) + �̈�𝑡−Δ𝑡 

�̇�𝑡(𝑡) = 𝑑𝑡
2. 𝐶𝑇𝑃2Ψ(𝑡) + �̇�𝑡−Δ𝑡 

𝑢𝑡(𝑡) = 𝑑𝑡
3. 𝐶𝑇𝑃3Ψ(𝑡) + 𝑢𝑡−Δ𝑡 

(3.48) 

where, initial accelerations �̈�𝑡−Δ𝑡 is also approximated as: 

 

𝑆𝑜
𝑇Ψ(𝑡) = �̈�𝑡−Δ𝑡 × 1 ≅ �̈�𝑡−Δ𝑡. 𝐼

∗Ψ(𝑡)

≅ �̈�𝑡−Δ𝑡. 𝐷[11,1, 0,0, … , 11,𝑀+1, 0,0, … ]Ψ(𝑡) 
(3.49) 

where, 𝐷 is defined in Equations (3.33) and (3.34) for FCW, SCW and LW. The subscripts 

of �̈�𝑡−Δ𝑡, �̇�𝑡−Δ𝑡 and 𝑢𝑡−Δ𝑡 denote acceleration, velocity and displacement which were 

calculated at the previous state, respectively. In addition, initial quantities in Equation (3.49) 

are numerically developed by Equations (3.33) and (3.34) corresponding to Haar wavelet, 

FCW, SCW and LW, substituting in Equation (3.47), after omitting Ψ(𝑡) yields:  

 

𝐶𝑇𝑃 + 𝑆𝑜
𝑇 + 2𝜉𝜔Δ𝑡[𝐶𝑇𝑃2 + 𝑆𝑜

𝑇𝑃 + 𝑆1
𝑇]

+ 𝜔2Δ𝑡2[𝐶𝑇𝑃3 + 𝑆𝑜
𝑇𝑃2 + 𝑆1

𝑇𝑃 + 𝑆2
𝑇] = 0 

(3.50) 
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After a set of algebraic simplification, coefficients vector of 𝐶𝑇is derived from Equation 

(3.50). Substituting 𝐶𝑇in Equation (3.46), the amplification matrix of 𝐴 which shows the 

relationship between quantities of the current state (i.e., �̈�𝑡(𝑡)) and the previous state (i.e., 

�̈�𝑡−Δ𝑡) is derived for FCW, SCW or LW (for corresponding 𝜙(𝑡), 𝐷 and 𝐼∗) as:   

 [

�⃛�𝑡
�̈�𝑡
�̇�𝑡
𝑢𝑡

] = [

0 𝑎𝜙(𝑡) 𝑏𝜙(𝑡) 𝑐𝜙(𝑡)
0 𝑑𝜙(𝑡) 𝑒𝜙(𝑡) 𝑓𝜙(𝑡)

0 𝑔𝜙(𝑡) 𝑖𝜙(𝑡) 𝑗𝜙(𝑡)
0 𝑞𝜙(𝑡) 𝑟𝜙(𝑡) 𝑧𝜙(𝑡)

] [

�⃛�𝑡−Δ𝑡
�̈�𝑡−Δ𝑡
�̇�𝑡−Δ𝑡
𝑢𝑡−Δ𝑡

] (3.51) 

where; 

 

𝑎 = 𝜅 𝜇−1  , 𝑏 = 𝜂 𝜇−1  , 𝑐 = Υ 𝜇−1 

𝑑 = 𝐼∗ + 𝜅 𝜇−1𝑃 , 𝑒 = 𝜂 𝜇−1𝑃  , 𝑓 = Υ 𝜇−1𝑃 

𝑔 = 𝐼∗𝑃 + 𝜅 𝜇−1𝑃2   , 𝑖 = 𝐼∗ + 𝜂 𝜇−1𝑃2 , 𝑗 = Υ 𝜇−1𝑃2 

𝑞 = 𝐼∗𝑃2 + 𝜅 𝜇−1𝑃3     , 𝑟 = 𝐼∗𝑃 + 𝜂 𝜇−1𝑃3  ,

𝑧 = 𝐼∗ + Υ 𝜇−1𝑃3 

(3.52) 

where; 

 

𝜅 = − 𝐼∗ − 2𝜉𝜔(Δ𝑡) 𝐼∗𝑃 − 𝜔2(Δ𝑡)2𝐼∗ 𝑃2 

𝜂 = −2𝜉𝜔(Δ𝑡) 𝐼∗ −𝜔2(Δ𝑡)2  𝐼∗𝑃 

Υ = −𝜔2(Δ𝑡)2  𝐼∗ 

𝜇 = 𝑃 + 2𝜉𝜔(Δ𝑡) 𝑃2 + 𝜔2(Δ𝑡)2 𝑃3 

(3.53) 

where, 𝜇 is a 2𝑀 × 2𝑀-dimensional matrix; 𝜅, 𝜂  and Υ are 1 × 2𝑀-dimensional vectors. 

Accordingly, the amplification matrix of 𝐴 is decomposed into its eigen vectors [Φ] and 

diagonal eigenvalue matrix of [λ] by 𝐴 = [Φ][𝜆][Φ]−1, and therefore stability of the 

proposed method is satisfied provided that the maximum norm of elements [𝜆], namely, 

spectral radius being less than unity as follows (Bathe, 2006; Bathe and Wilson, 1973): 

 𝜌(𝐴) = max (‖𝜆1‖, ‖𝜆2‖, ‖𝜆3‖,… ) ≤ 1 (3.54) 
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In Equation (3.54), 𝜌(𝐴) is obtained as a function of  Δ𝑡 and denotes the spectral radius 

of the amplification matrix 𝐴. This value is calculated and plotted in Figure 3.8 for several 

time integration methods (damping ratio equal to zero), including, central difference, family 

of Newmark-β, Wilson-θ and the proposed scheme using the second scale of FCW, SCW and 

LW. 

It should be noted that, for 2D Haar wavelet an alternative way is proposed for stability 

analysis and it is concluded that 2D Haar wavelet lies on unconditionally stable method 

(Mahdavi and Razak, 2015a).   

         

Figure 3.8: Comparison of spectral radius for the proposed method and another four 

integration schemes. 

Figure 3.8 illustrates that, the proposed procedure as an explicit integration method and 

indirect scheme is unconditionally stable even at the first two scales of FCW, SCW and LW. 

Therefore, no requirements are made on the time step ∆𝑡 used in the analysis. In addition, the 

explicit schemes of linear acceleration of Newmark- 𝛽 family and central difference are 

conditionally stable. In contrast, the spectral radius of Δ𝑡/𝑇 shows that Wilson-𝜃 and average 

acceleration method of Newmark- 𝛽 family, as two implicit schemes are also unconditionally 

stable with no restraints (such as ∆𝑡 critical value) placed on time step ∆𝑡. 

-2

-1

0

1

2

3

4

5

6

7

8

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

S
p

ec
tr

al
 R

ad
iu

s

∆t/T

Wilson(θ=1.4) Linear Acceleration Average Acceleration
Central Difference FCW LW
SCW

Univ
ers

ity
 of

 M
ala

ya



 

76 

 

         

Figure 3.9: Comparison of spectral radius calculated for the second scale of FCW, 

SCW and LW. 

3.4 Accuracy analysis of the wavelet-based scheme 

In general, errors are inherent characteristic of numerical approaches (Bathe, 2006). Thus, 

in the following section, accuracy of the proposed method is investigated corresponding to 

free scales of Haar wavelet, FCW, SCW and LW. For this purpose, three operations are 

considered, i.e., implementation of the first and second operation of integration and accuracy 

analysis of functional approximation. 

3.4.1 First ordered operation of integration 

In order to investigate the accuracy of results calculated after the first ordered operation 

of integration, the first-ordered ordinary differential equation of 0.25�̇�(𝑡) + 𝑢(𝑡) =

1, 𝑢(0) = 1 with the analytical solution of 𝑢(𝑡) = 1 − 𝑒(−4𝑡) is considered. For an accurate 

comparison, the measurement of percentile total average relative errors (PTARE) is 

compared, when free scales of FCW, SCW and LW are employed. Assumption of ∝̂ for the 

measurement of exact results and �̂�  related to the responses calculated by each numerical 

integration scheme (relative errors corresponding to each �̂� = time increments), PTARE is 

obtained as follows: 
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 𝑃𝑇𝐴𝑅𝐸 = (∑
( �̂� −∝̂) × 100

∝̂

�̂�

𝑖=0

)/�̂�  (3.55) 

As mentioned earlier, from the optimization point of view, the CPU computation time 

involved is also considered for different operations. These values are computed and depicted 

in Figure 3.10 for FCW, SCW and LW using 2𝑀 =4, 6 and 64 of adaptive collocation points. 

It is to be emphasized that, this evaluation is carried out on the long time interval of ∆𝑡 = 1 

sec. 

 

Figure 3.10: PTARE corresponding to the considered first-ordered differential equation 

and relative computational time of FCW, SCW and LW using the first 4th, 6th and 64th 

SM collocation points related to the scales of wavelets (M=SM points/2). 

As illustrated in Figure 3.10, the cost-effective results were computed by the various 

scales of LW. In referring to Equations. (3.26) and (3.27) and Table 3.1 (emphasizing the 

simple weight function of unity for Legendre polynomials), the calculation of corresponding 

matrices is faster than other wavelets, the emphasis is on using larger scales regarding to the 

more adaptive collocation points. In addition, it is shown that the SCW gave the least value 

of PTARE using the lower scales (2𝑀 < 20) of wavelets. However, for the higher scales 

(2𝑀 > 20) or shorter time intervals of ∆𝑡 ≤ 0.01sec, it is observed that, the accuracy of 
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FCW is better than SCW or LW. It should be noted that, at current assessment of accuracy 

there is no consideration on the frequency components.  

3.4.2 Second ordered operation of integration 

In order to evaluate the accuracy of results employing the second-ordered operation of 

integration, the linear and second-ordered ordinary differential equation governing a free 

vibrating and undamped SDOF system with constant circular frequency of 𝜔 is considered 

as: 

 �̈�(𝑡) + 𝜔2𝑢(𝑡) = 0  (3.56) 

  Analytically, with the initial conditions of �̈�0= −𝜔2, �̇�0 = 0 and 𝑢0 = 1, the closed-

form solution of Equation (3.56) is 𝑢(𝑡) = cos (𝜔𝑡). In addition, the natural undamped period 

is obtained by 𝑇0 = 2𝜋/𝜔 sec. The considered SDOF system has a cyclic response with a 

constant maximum amplitude of |𝑢(𝑡)|𝑚𝑎𝑥 = (𝑢0
2 + (�̇�0 𝜔⁄ )2)0.5. In general, the accuracy 

analysis can be achieved by presenting two kinds of error measurement; (a) period elongation 

PE and (b) amplitude decay AD. Accordingly, PE measures the extension in the time interval 

it takes to complete each cycle of harmonic response (Figure 3.11). While, AD is the absolute 

error of the calculated results for 𝑢 (displacement) by each numerical scheme (shown in 

Figure 3.11). However, AD is also known as algorithmic damping which is obtained by 𝐴𝐷 =

2𝜋𝜉. Eventually, the explained SDOF system is solved using some of the common numerical 

integration procedures such as average acceleration (AA), linear acceleration (LA) from 

Newmark-β family, central difference and Wilson-θ. Accordingly, two kinds of error are 

measured, and therefore compared with the responses calculated using the proposed method 

of FCW, SCW and LW on 2𝑀 = 2, SM points (in referring to the scale of the wavelets). The 

PE and AD measurements are plotted in Figure 3.11 for the variations of Δ𝑡/𝑇0. 
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Figure 3.11: Error measurment. (a) Period elongation (PE=(T-T0)/T0). (b) Amplitude 

decay (AA= average acceleration, LA= linear acceleration of Newmark-β family). 

As can be seen from Figure 3.11(a), the accuracy of the proposed method using only two 

points (the lowest scale of 2𝑀 = 2 for FCW, SCW and LW) was constant for the error 

measurement of PE. However, the lowest accuracy is observed in Figure 3.11(b) for LW 

compared with FCW and SCW regarding to the error measurement of AD. This is because 

of the weight functions of the first and second Chebyshev polynomials, in which the end 

point errors are lesser than those of Legendre polynomials. Consequently, it is deduced that 

the most precise results are ascertained by the implementation of the second-ordered 

operation of SCW for solving the considered SDOF through the proposed method. It is to be 

pointed out that, frequency contents are considered at this evaluation in contrast to the 
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previous assessment. It is to be noted that the same procedure is reported for Haar wavelet 

and the accuracy of results were compared with only FCW  (Mahdavi et al., 2015). 

3.4.3 Functional approximation 

Basically, dynamic analysis is accomplished by approximation of several sets of second-

ordered differential equations introduced in Equation (3.28) through the proposed method. 

This decomposition is simultaneously executed on both sides of aforementioned equations, 

i.e., approximation of differential equations as well as the external loadings. Furthermore, in 

actual engineering applications either the applied load or the response of structure (due to 

various natural frequencies), are mostly constructed with wide-band frequency content.  

Accordingly, parts of high or low frequencies are approximated using adaptive SM 

collocation points of FCW, SCW and LW. Thus, in this section the accuracy of the proposed 

method for approximation of functions (is designated by App-F(t) in Figure 3.12) with 

different frequency components is evaluated. For this purpose, a sinusoidal function of 

𝐹(𝑡) = 100sin (𝜔𝑡) is examined by the first 8th and 32nd (2𝑀=8 and 32) scales of FCW, 

SCW and LW for 𝜔 equal to 5 and 30 rad/sec. Moreover, the coefficients of FCW, SCW and 

LW are derived and comparatively plotted in Figure 3.12 (using bar charts). It is to be noted 

that, the comparison of 3D wavelets and 2D wavelets was presented before, and the only 3D 

wavelets are considered here. In addition, the previous evaluation of wavelet functions may 

be extended in the current form. 
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Figure 3.12: Comparison of the approximation of F(t)=100sin(𝝎t) for 

𝝎=5 and 30rad/sec (App-F(t)), the original F(t) and the scaled wavelet 

coefficients corresponding to the first 8th and 32nd scales of FCW, SCW 

and LW. 
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As shown in Figure 3.12, the similarity of the original F(t) to the decomposed version of 

F(t) is confirmed by the lowest scaled wavelet coefficients (shown with bar charts 

corresponding to the 8th and 32nd scales). Significantly, the rate of this similarity is more clear 

when 32nd scales of FCW, SCW or LW is applied. However, for the low frequency of 𝝎=5, 

there are minor differences observed on different SM points. In other words, high frequency 

contents of a function are accurately captured by using larger scales of corresponding 

wavelets. On the other hand, calculated coefficients of SCW (even using the 8th scale for F(t) 

of 𝝎=30, referring to the higher frequencies) demonstrate the appropriate accuracy of this 

wavelet function compared with LW and FCW. Although, it is observed that, for 𝝎=5, SCW 

coefficients were more precise; for lowest frequencies the accuracy evaluation of SCW may 

be interpreted the same as FCW and LW. It is deduced that, despite the accurate results of 

FCW for error measurement of AD (Figure 3.11(b)), details of frequency components are 

precisely captured with LW (more accurate approximation of the both sides of Equation 

(3.42)). As shown later, errors measured at current step (functional approximation) diversely 

affect the accuracy of previous assessments. Overall, an engineering decision to use SCW, 

LW or FCW shall be made based on several factors, i.e., the existing frequencies from either 

inherent characteristic of the structure or applied loading, number of adaptive collocation 

points (given scale of wavelets) and computation time involved (an optimization point of 

view).   

3.5 The proposed method for operation of derivative 

In this section, an efficient approach is proposed for approximation of derivatives using 

free-scaled wavelet functions. The proposed method is applicable for various wavelet basis 

functions, since the product matrix of integration and wavelet coefficient vectors are 
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available. For this purpose, integral functions are numerically developed from local 

coordinates to global system. For a differentiable function of 𝑓(𝑡): 𝑥 ∈ [𝑡𝑛, 𝑡𝑛+1], indefinite 

formulation of Equation (3.57) is considered based on Newton theorem as follows: 

 𝑓(𝑡) = 𝑓(𝑡𝑛) + ∫ 𝑓′(𝑡)𝑑𝑡
𝑡

𝑡𝑛

 (3.57) 

Initializing 𝑡𝑛+1 = 𝑡𝑛 − 𝑓(𝑡𝑛) 𝑓
′(𝑡𝑛)⁄  for definite form of Equation (3.57), let 𝑑𝑛 =

𝑡𝑛+1 − 𝑡𝑛. Using Equation (3.25) the derivative function is approximated on global 

coordinates as follows: 

 𝑓′(𝑡) = 𝐶𝑇 . Ψ(𝑡) (3.58) 

Substituting into Equation (3.57) we have: 

 𝑓(𝑡𝑛+1) = 𝑓(𝑡𝑛) + ∫ 𝐶𝑇 . Ψ(𝑡)  𝑑𝑡
𝑡𝑛+1

𝑡𝑛

 (3.59) 

Multiplying by operational matrix 𝑃 of integration and adding initial constant of 

integration, gives: 

 𝑓(𝑡𝑛+1) = 𝑓(𝑡𝑛) + 𝑑𝑛. 𝐶
𝑇 . 𝑃. Ψ(𝑡) + 𝑓′(𝑡0) (3.60) 

where,  𝑑𝑛 is operated for mapping local characteristics of wavelets to global ones. To 

simplify this equation, constant quantities are approximated by Haar, Legendre or Chebyshev 

wavelets in each step using the idea presented in Equation (3.32).  

 𝑓′(𝑡0) = 𝑓′(𝑡0)𝐼
∗Ψ(𝑡) (3.61) 

 𝑓(𝑡𝑛+1) = 𝑓(𝑡𝑛+1)𝐼
∗Ψ(𝑡) (3.62) 

 𝑓(𝑡𝑛) = 𝑓(𝑡𝑛)𝐼
∗Ψ(𝑡) (3.63) 

Substituting Equations (3.61), (3.62) and (3.63) into Equation (3.57) yields: 
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 𝑓(𝑡𝑛+1)𝐼
∗Ψ(𝑡)   = 𝑓(𝑡𝑛)𝐼

∗Ψ(𝑡) + 𝑑𝑛. 𝐶
𝑇 . 𝑃. Ψ(𝑡) + 𝑓′(𝑡0)𝐼

∗Ψ(𝑡) (3.64) 

Subsequently, eliminating Ψ(𝑡) from the both sides of Equation (3.64) and after algebraic 

calculations, 𝐶𝑇 is being calculated. Using Equation (3.61), 𝑓′(𝑡) is approximated on 2𝑀 

global points. The same approach is employed on 𝑓′(𝑡) to compute the second derivative of 

𝑓′′(𝑡). The proposed method is implemented on 𝑓(𝑥) = sin(𝑥2) ;  𝑥 ∈ [0,2], in which that, 

its definite 𝑓′(𝑥) = 2𝑥. cos (𝑥2) and 𝑓′′(𝑥) = 2[cos(𝑥2) − 2𝑥2sin (𝑥2)] existed. The first 

and second derivatives are calculated for 2𝑀=8 collocation points of FCW and SCW and 

have been compared with exact values (designated by original df/dx or d(df/dx)) in Figures 

3.13 and 3.14, respectively. The approximated results for the first and second derivatives of 

𝑓(𝑥) are designated in figures by App(df/dx) and App(d(df/dx)), respectively. 

 

        

Figure 3.13: The approximated results using the proposed operation of derivative of 

FCW on 𝟐𝑴=8 collocation points for calculation of (a) the first, (b) the second 

derivative. 

The schematic view of results in Figures 3.13 and 3.14 lies on better accuracy of SCW, 

when 2𝑀=8 is applied. For the purpose of detailed comparison, various 2𝑀 adaptive 

collocation points are employed through the proposed method corresponding to diverse 

scales of FCW and SCW to calculate the first and second derivative of considered 𝑓(𝑥). The 

-4

-3

-2

-1

0

1

2

0 0.5 1 1.5 2

(a)

App(df/dx) on 2M=8

Original df/dx

F(x)

-10

-8

-6

-4

-2

0

2

4

0 0.5 1 1.5 2

(b)

App (d(df/dx))

on 2M=8
Original d(df/dx)

F(x)

Univ
ers

ity
 of

 M
ala

ya



 

85 

 

comparison of results are depicted in Figures 3.15 and 3.16 with regards to the FCW and 

SCW, respectively. Accordingly, the percentile total average error (PTARE) measurement is 

presented for the purpose of comparison. 

        

Figure 3.14: The approximated results using the proposed operation of derivative of 

SCW on 𝟐𝑴=8 collocation points for computation of (a) the first, (b) the second 

derivative. 

The measured PTARE data shown in Figures 3.15 and 3.16 illustrate that free scales of 

SCW approximate the first and second derivatives more accurate than that of FCW. For 

instance, PTARE= 89.49% is measured for the second scale of FCW, while this value is 

considerably decreased to 9.32% for the same scale of SCW. As it is shown in Figure 3.16, 

the accuracy of the second derivative is more than the first one. This is most likely due to the 

fact that, the oscillatory shape of the results coincide with the exact result for the second 

derivative, in contrast to the calculated results by SCW for the first derivative. Significantly, 

the error measurement of the proposed method using higher scales of SCW demonstrate the 

superiority of this wavelet. Finally, it is apparent from the figures that, end point errors 

diversely affect on the accuracy of results for the higher order approximations shown for 

2𝑀=64 collocation points. 
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It should be noted that, the third ordered derivative of displacement, namely, the quantity 

of jerk will be computed using the proposed procedure corresponding to adaptive collocation 

points. For this aim, initial 𝑓(𝑡) will be replaced by the displacement vector which may be 

acquired (measured) independent from structural materials and behaviors on discrete time 

points. 

       

 

Figure 3.15: PTARE measurement corresponding to different scales (𝟐𝑴 collocations) 

of FCW. 

 

       

 

Figure 3.16: PTARE measurement corresponding to various scales (𝟐𝑴 collocations) of 

SCW. 

In addition, the proposed scheme is applicable in problems with several unknowns, where, 

the tangent line becomes a tangent (hyper) plane. For instance, Equation (3.59) is developed 

for a function of two variables 𝑓(𝑥, 𝑦) as follows: 
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 𝑓(𝑥, 𝑦 = 𝑦0) = 𝑓(𝑥𝑛, 𝑦 = 𝑦0) + ∫ 𝑓𝑥
′(𝑥, 𝑦 = 𝑦0)𝑑𝑥

𝑥

𝑥𝑛

 (3.65) 

where, 𝑥 and 𝑦 = 𝑦0 represent the first variable and the constant point for the second 

variable, respectively. 𝑓𝑥
′(𝑥, 𝑦 = 𝑦0) indicates the derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥 

while 𝑦 = 𝑦0 and the subscripts 𝑥 and 𝑦 are changed for the next variable as: 

 𝑓(𝑥 = 𝑥0, 𝑦) = 𝑓(𝑥 = 𝑥0, 𝑦𝑛) + ∫ 𝑓𝑦
′(𝑥 = 𝑥0, 𝑦𝑛)𝑑𝑦

𝑦

𝑦𝑛

 (3.66) 

Consequently, 𝑓𝑥
′ and 𝑓𝑦

′ are calculated, and therefore the normal vector (�⃗� ) to the plane 

at 𝑥0 and 𝑦0is derived as: 

 �⃗� =< 𝑓𝑥
′(𝑥0, 𝑦0) , 𝑓𝑦

′(𝑥0, 𝑦0) , −1 > (3.67) 

3.6 Numerical verifications 

In the following subsections, the validity and effectiveness of the proposed method is 

examined by considering different structural systems. For this purpose, MDOF structural 

systems involving, a set of mass-spring system, a shear building under complex base 

excitation and two double-layer 3D space structures under impact loadings (very large scale 

as well as small scale structures) are considered. In addition, in order to compare the 

computational efficiencies, computation time involved is recorded for each example, which 

was computed using the same hardware for all the cases. Eventually, the percentile total 

average errors are also calculated in order to evaluate the accuracy of different numerical 

methods. 

3.6.1 A set of mass-spring system 

Figure 3.17 shows a 21 degree of freedom linear mass-spring system. A concentrated 

dynamic load is applied at all degrees of freedom. The characteristics of the considered 

Univ
ers

ity
 of

 M
ala

ya



 

88 

 

system as well as time dependent loading are shown in the figure. In order to calculate time- 

history of responses, including horizontal displacements, the minimum period associated 

with the last degree of freedom by 𝑇𝑚𝑖𝑛= 0.177 sec and thus ∆𝑡 ≤0.55𝑇𝑚𝑖𝑛= 0.05 sec (Bathe 

and Wilson, 1973) shall be utilized as the time increment of analysis so as to satisfy the 

stability of conditionally stable methods. In addition, the friction between wheels and basic 

surface is neglected. 

        

Figure 3.17: 21 DOF mass spring system vibrated by sinusoidal load (load 

frequency=8𝝅 Hz), ∆𝐭=0.05 sec. 

This example is analyzed using five numerical methods, including linear acceleration 

(LA), central difference (CD), Wilson (𝜃=1.4), proposed method using 16th scale of Haar and 
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the first kind of Chebyshev wavelet (designated by 2M16) and piecewise modal Duhamel 

integration. The responses obtained by Mode Superposition method using all modes are 

implied as Duhamel or modal exact solution. Eventually, the results, including time-history 

displacement of 7th degree of freedom and total amount of errors have been plotted in the 

figures below, respectively. Figure 3.18 shows the first 10 sec time-history displacements of 

the 7th mass, which are also calculated by the first 16 scale of Haar and FCW. It can be seen 

from the figure that the result of the proposed method (particularly, using a comprehensive 

wavelet function such as Chebyshev) is closer to the exact result than central difference and 

linear acceleration method. On the other hand, this figure shows that accuracy of results, 

which are calculated even by large scales of Haar is not acceptable, compared with other 

results.  

        

Figure 3.18: The first 10 sec horizontal displacement time-history of 7th mass, shown in 

Figure 3.17. 

Table 3.4 compares the percentile error of time-history of displacements between 1 to 1.35 

sec. It can also be seen that the result of the Haar wavelet solution gave the highest value of 

76.08%, whereas for the first kind of Chebyshev wavelet at 1.05sec, the peak value was only 

16.95%. Moreover, data on this table show some fluctuations on the results of other 

numerical methods with large amplitude, in comparison with the result of Chebyshev 
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wavelet, which remained almost unchanged. Meanwhile, compared with solution errors after 

central difference, linear acceleration or Wilson-𝜃 method only minor error was apparent for 

the first kind of Chebyshev wavelet and proves the capability of the proposed method using 

this wavelet. Finally, the total average error and computation time involved have been plotted 

in Figure 3.19. Subsequently, this figure comparatively illustrates errors and time 

consumption of relative numerical integration schemes. As mentioned earlier, the results 

calculated by Haar wavelet, significantly gave the highest value of 64% (total average). In 

contrast, the computation time involved gave the lowest value of 0.0083 sec compared with 

0.0127 sec for the first kind of Chebyshev wavelet or 0.0336 sec for Wilson-𝜃 method. For 

this reason, the responses calculated with Haar wavelet are being considered in this thesis as 

comparison for optimization. In the case of large-scaled continuum structures, time-history 

analysis is a time-consuming procedure. Thus this basis wavelet will be more applicable for 

rough and initial approximation of the dynamic responses in order to achieve an optimized 

scheme.  

   

Figure 3.19: Total average errors in displacement of 7th mass, shown in Figure 3.17 and 

relative computation time involved (CH= First kind of Chebyshev wavelet, CD= central 

difference, LA=linear acceleration). 
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3.6.2 MDOF shear building 

Figure 3.20 illustrates a thirty–story shear building under a complex base excitation. Shear 

building and complex excitation state the only one DOF existed for each story and wide-band 

frequency content loading, respectively. The structural characteristics as well as mass and 

stiffness of each story are shown in the figure. The damping is presumed proportional to 0.01 

of stiffness. In addition, 𝑇𝑚𝑖𝑛=0.3167 sec (the minimum period), hence ∆𝑡 ≤0.55𝑇𝑚𝑖𝑛= 0.05 

sec shall be utilized as time increment, so as to satisfy conditional stability of the numerical 

procedures, e.g., central difference method, whereas, large time step of ∆𝑡=0.1 sec is utilized 

for the proposed method. It should be pointed out that, the time-history of applied 

acceleration (El-Centro) is acquired on time increment of ∆𝑡=0.0001 sec. 

 

Figure 3.20: A thirty story shear building under El-Centro acceleration. 

The first 10 sec time-history of displacements of the 5th story is plotted in Figure 3.21. 

Dynamic responses calculated with common integration methods of Wilson-θ, central 
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difference (CD) and linear acceleration (LA) methods are compared with the proposed 

method using 16 scales of FCW, SCW and LW (designated by 2M16) and Duhamel 

integration method as analytical solution when all structural modes are included. It should be 

noted that, because of the complexity of the external load 2𝑀=16 is considered. The emphasis 

is on the precise decomposition (on adaptive collocation points) of the right side of Equation 

(3.42) at a long time step of the analysis, and therefore gaining very optimum solution. 

   

Figure 3.21: Displacement time-history of story 5, shown in Figure 3.20. 

Figure 3.21 shows the results calculated by the proposed scheme of SCW are very close 

to the exact responses than those of LW, FCW or common numerical approaches. In addition, 

it is shown that, LW gave better accuracy of results than FCW (because of the accurate 

approximation of external load). In referring to Figure 3.12, in order to achieve the most 

accurate responses of FCW, the larger scales may be employed. However, the computed 

accuracy of 2𝑀=16 is still better than other numerical schemes. Furthermore, it is observed 

that calculated responses of Wilson-θ procedure (known as an implicit time integration 

approach), almost for the entire time of the analysis gave the least accurate results. 
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For the purpose of a precise comparison, the value of PTARE is computed and compared 

in Figure 3.22 for different numerical methods. Furthermore, computation time involved 

which was recorded with the same hardware for all numerical integration schemes is also 

provided in this figure. 

 

  

Figure 3.22: PTARE in time-history displacement of story 5, shown in Figure 3.20 and 

corresponding computational time (CD=central difference, LA=linear acceleration). 

As can be seen from Figure 3.22, the minimum computational time recorded with a value 

of 0.056 sec was for LW compared with 0.077 sec for SCW or 0.092 sec for FCW. This is 

because of the fast computation of operational matrix of integration (P) of LW. Moreover, 

Figure 3.22 demonstrates the capability of SCW to handle the broad-band frequency content 

loading. It gave the minimum value of 3.74% PTARE, while it was 14.99% for the implicit 

numerical procedure of Wilson-θ, 14.83% for linear acceleration method (known as an 

explicit time integration scheme) or 13.71% for the explicit central difference method when 

conditional stability is satisfied. In agreement with Figure 3.3, the second Chebyshev 

polynomials of order 8 (2𝑀/2), covers the major amplitude of y-axis (frequency) rather than 

the first Chebyshev or Legendre polynomials (Figure 3.3). It is concluded that, details of the 

external loading (i.e., wide-band frequencies) are accurately captured on adaptive collocation 

points using the proposed method even for the long time interval of ∆𝑡=0.1 sec. 
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Consequently, the optimum analysis is accomplished with lesser computational time, storage 

usage capacity and therefore minimum cost of the analysis. PTARE for time-history 

displacements of the 5th story is tabulated and compared in Table 3.5. The error measurement 

is between 1.2 and 1.5 second of loading corresponding to linear acceleration (LA), central 

difference (CD), FCW, SCW and LW numerical integration methods. It can also be seen that, 

errors reached the highest value of 26.35% for the linear acceleration method at 1.3 sec, 

whereas, the peak percentile error due to SCW at the same time, slightly reached the value 

of 6.44%. Table 3.5 shows that the lowest value of percentile error for the proposed method 

was obtained for SCW at 1.2 sec by 0.73%. However, it is 1.48% for LW or 3.88% for FCW. 

3.6.3 A double layer Barrel truss structure 

Figure 3.23 describes a complex and double layer space structure composed of 209 pinned 

connections, 768 truss elements and 579 degrees of freedom. Details of the structural 

members are shown in Figure 3.23, which include the geometry, cross-sectional area, mass 

per length and modulus of elasticity. In order to calculate modal damping ratios the Rayleigh 

damping is computed corresponding to different modes. The structure is restrained by fixed 

supports located all around the bottom joints shown in the figure. In addition, this system is 

subjected to two impact loadings of 40kN which strike two middle bottom nodes, highlighted 

in the figure. The complex geometry of this system is formulated in FORMIAN using Formex 

Algebra (Nooshin and Disney, 1991) and then nodal coordinates transferred to MATLAB to 

form the stiffness, damping and mass matrices prior to the implementation of the numerical 

approaches. Referring to the complexity of this large-scaled structure, high natural 

frequencies existed, i.e., the minimum period of 𝑇𝑚𝑖𝑛=0.0057 sec is computed. The shortest 

time increment of ∆𝑡=0.001 sec is utilized for the common integration methods, in contrast 

to the long interval of ∆𝑡=0.01 sec used for the proposed method of FCW, SCW and LW. 
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Figure 3.23: Double layer and pin-jointed Barrel space structure under two concentrated 

impacts. 

This example is mostly concerned with the highly irregular dynamic responses of a 

complex system to impact loadings, which is to emphasize on the accuracy and optimum 

approximation of the left side of Equation (3.42) using a set of adaptive collocation points. 

Subsequently, the first 2 sec time-history vertical displacements of the node under impact 1 

shown in the figure have been calculated and plotted in Figure 3.24. Results computed by the 

8th scale of (designated by 2M8) SCW, FCW and LW are compared with those from Wilson-

θ and central difference (CD) method. 
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Table 3.4: Percentile errors in displacement of 7th mass in the mass spring system, shown in Figure 3.17. 

Time   Modal(Ex) LA Error% CD Error% HA(16) Error% CH(16) Error% WI Error% 

Displacement(cm) 

 
          

1 0.60157 0.5293 7.22 0.5131 8.83 0.10829 49.32 0.56822 3.33 0.79650 19.49 

1.05 0.7826 0.6367 14.58 0.5729 20.96 0.17341 60.91 0.61304 16.95 1.03676 25.41 

1.1 1.07495 0.7442 33.07 0.7786 29.63 0.37103 70.39 1.10716 3.22 1.28102 20.60 

1.15 1.43050 1.0583 37.22 1.0954 33.51 0.67933 75.11 1.28895 14.15 1.7325 30.20 

1.2 1.79217 1.3724 41.97 1.4720 32.01 1.03134 76.08 1.64067 15.15 1.16438 62.77 

1.25 2.10285 1.6977 40.51 1.8484 25.44 1.3918 71.10 2.09593 0.69 1.41708 68.58 

1.3 2.31447 2.0238 29.13 2.1654 14.90 1.6837 63.06 2.25856 5.59 2.15614 15.83 

1.35 2.39503 2.1643 23.07 2.3737 2.12 1.87921 51.58 2.37134 2.36 2.05929 33.57 

Note: CD=central difference, LA=linear acceleration, WI=Wilson (𝜃=1.4), CH(16)=Chebyshev wavelet (2M16), HA(16)=Haar wavelet 

(2M16). 

 

Table 3.5: PTARE in displacement of the 5th story, shown in Figure 3.20. 

Time Modal(Ex) LA Error% CD Error% FCW(16) Error% SCW(16) Error% LW Error% 

Displacement(cm) 

 
         

1.2 0.241 0.226 5.92 0.222 7.44 0.231 3.88 0.238 0.73 0.236 1.48 

1.25 0.253 0.202 20.33 0.217 13.93 0.235 7.19 0.250 1.06 0.248 2.07 

1.3 0.258 0.190 26.35 0.209 19.12 0.219 15.03 0.242 6.44 0.225 12.63 

1.35 0.256 0.199 22.07 0.213 16.77 0.222 13.27 0.243 5.31 0.233 9.22 

1.4 0.246 0.191 22.10 0.208 15.23 0.215 12.65 0.237 3.92 0.226 8.14 

1.45 0.229 0.187 18.57 0.204 10.84 0.202 12.04 0.222 3.18 0.215 6.09 

1.5 0.209 0.241 14.99 0.192 8.387 0.185 11.73 0.203 3.13 0.201 4.09 

Note: LA=linear acceleration, CD=central difference, FCW (16)=first Chebyshev wavelet (2M16), SCW(16)=second Chebyshev wavelet 

(2M16) and LW(16)=Legendre wavelet (2M16). 
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Figure 3.24: Vertical time-history of displacements of the node under impact 1, at the 

bottom layer shown in Figure 3.23. 

As illustrated in Figure 3.24, central difference scheme computed the unacceptable results, 

in which conditional stability of this method is not satisfied for the selected time increment 

of ∆𝑡=0.001 sec. Finally, CPU time consumption for each numerical scheme is tabulated in 

Table 3.6. Data in this table show that from optimization point of view SCW and FCW 

recorded almost the same time consumption. The optimum value recorded was for the use of 

LW. The efficiency and capability of the SCW is confirmed in Figure 3.24 and Table 3.6, 

compared with LW, FCW and other numerical methods. 

Table 3.6: Computation time involved (min) related to the example 3. 

LW(2M8) 4.02 

SCW(2M8) 5.58 

FCW(2M8) 5.53 

Wilson-𝜃 9.06 

Linear acceleration 10.29 
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As demonstrated through this numerical application, the advantage of wavelet functions 

may be to develop an adaptive numerical approach for tracking details of highly varying 

structural responses. Aforementioned applicability of the proposed scheme is carried out by 

less computational time, and therefore the optimum cost of the analysis, particularly for large-

scaled structures under complex and wide-band frequency content.  

3.6.4 Large scaled 3D spherical truss structure subjected to impact 

A complex and double layer space frame with 463 pinned connections, 1760 aluminum 

bar elements and 1353 degrees of freedom (Poisson’s ratio=0.33) is shown in Figure 3.25. 

To generate the geometry of this system, as mentioned before, relevant program code has 

been codified in FORMIAN using Formex algebra. The overall dimensions of the structure 

are given in Figure 3.25 as well as the geometry, cross-sectional area, mass per length and 

modulus of elasticity which are constant for all members. It is restrained by fixed supports, 

located at the nodes of the base. Furthermore, this structure is subjected to a 50kN 

concentrated impact load, which strikes two internal nodes at the bottom layer highlighted in 

the figure. In addition, damping value is calculated proportional to 0.01 percent of stiffness. 

It should be noted that, in order to calculate time-history of responses, ∆𝑡=0.005 sec and a 

fairly long time step of ∆𝑡=0.01 sec have been selected as the computational time increment 

for common numerical schemes and the proposed method, respectively. However, the 

minimum period of the considered system is 𝑇𝑚𝑖𝑛=0.00731 sec. Univ
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Figure 3.25: A double layer and spherical space structure (bar elements) subjected to two 

shock loadings. 

Subsequently, the first 2 sec time-history vertical displacements of node 1 as shown in the 

figure have been calculated and plotted in Figure 3.26. In addition, results calculated by 4th 

scale of the second kind of Chebyshev wavelet (designated by SCW, 2M4) have been 

compared against 32nd scale of Haar wavelet (designated by 2M32) and common integration 

approaches, including linear acceleration family of Newmark-𝛽 (LA), Wilson-𝜃 and Hilber-

Hughes-Taylor (HHT-𝛼). The HHT-𝛼 implicit scheme is an alternative approach for the 

Newmark-𝛽 that is more applicable for large-scaled and flexible structures. 
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Figure 3.26: Vertical time-history displacement of node 1 shown in Figure 3.25, (a) the 

first 2 seconds after impact, (b) 0.5-1sec after impact (LA=linear acceleration, HHT-α
=Hilber-Hughes-Taylor). 

Figure 3.26 shows the closeness of the results computed by HHT (-0.33<𝛼<0) and 4th 

order of SCW. Furthermore, results obtained using Wilson-𝜃 and linear acceleration gave the 

second level of accuracy. It can also be seen from Figure 3.26(b) that, the stability and 

accuracy of responses calculated by the 32nd order of Haar wavelet are reasonably acceptable. 

The main reason for this is that, details of highly varying transient response of such a complex 

system is precisely and optimally captured by a high scale of the simple Haar wavelet. It is 

very important to keep in mind that, from computational time point of view, implementation 

of such high scales of Haar wavelet is impractical. Finally, it is concluded that, the 4th scale 
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of 3D SCW wavelet is more appropriate for capturing the details than high scale of Haar 

wavelet.    

For comparison purpose, computation time involved and percentile total average errors 

are given in Figure 3.27. Although it was anticipated that results calculated by the second 

order of Haar wavelet exhibited the least accuracy, it gave the minimum computational time. 

  

Figure 3.27: Percentile total average errors in vertical displacement of node 1, shown in 

Figure 3.25 and relative computation time involved. (CH(2Mµ)= µ scale of SCW, 

LA=linear acceleration, HHT-α=Hilber-Hughes-Taylor). 

It is clearly shown in Figure 3.27 that, the proposed scheme computed the optimum 

responses. Particularly, for applications where impact loadings have been applied on complex 

structures, wherein the unique features of wavelet bases are used to track the highly varying 

transient response of systems, i.e. complex and 3D Chebyshev wavelet of the second kind or 

simple and 2D Haar wavelet. Consequently, it is demonstrated that, the proposed method is 

an adaptive numerical scheme capable of capturing details in the vicinity of highly varying 

structural responses. 

3.7 Chapter Summary 

In this chapter the numerical evaluation of structural dynamics problems (direct analysis) 

using free scales of Haar wavelet, Chebyshev of the first (FCW) and second kind (SCW), 

and Legendre wavelets (LW) has been presented. For this purpose, an explicit and indirect 
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procedure has been proposed capable of using different wavelet basis functions. It was shown 

that, the second-ordered differential equation of motion in the setting domain of time is 

transferred into the alternative domain of frequency using adaptive collocation points. This 

transformation was also carried out through the proposed scheme for the broad-band 

frequency content external loading, simultaneously.  

The solution of structural dynamics problems by using the proposed algorithm has 

advantages at two stages of analysis. Firstly, a compatible numerical approach was improved 

by being capable of capturing details in the vicinity of highly varying structural responses, 

and secondly, the external loading is accurately decomposed for its frequency components 

on compatible collocation points of wavelets.  

The stability analysis of the proposed approach of using Haar wavelet, FCW, SCW and 

LW lies on an unconditionally stable method. The simple calculations for large scales LW 

generated the fastest operations of this basis functions compared with SCW and FCW. In 

addition, free scales of simple and 2D Haar wavelet gave the fastest results. However, the 

most accurate responses were computed by the free scales of SCW.  

Consequently, from the optimization point of view, dynamic analysis is accomplished 

using the proposed scheme with less computation time involved and reliable cost of analysis 

(emphasizing on the best computational efficiency), particularly for the large-scaled 

problems subjected to complex loadings. This feasibility demonstrates the value of the 

proposed scheme for structural health monitoring, structural identification, structural damage 

detection or active control problems. 

Finally, based on results obtained for structural dynamics problems in this chapter, it is 

anticipated that the application of the proposed method through an inverse problem can 

develop a very robust strategy to achieve a reliable structural identification and damage 

detection algorithm. For this purpose, the measured acceleration data can initially be 
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decomposed with adaptive wavelet functions, and the velocity and displacement data will be 

optimally developed using free-scaled adaptive wavelet functions. The application of wavelet 

transforms for such problems not only provides pattern recognition, but also reduces input 

noise.  
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CHAPTER 4: INVERSE PROBLEMS 

4.1  Introduction   

Over the past two decades, structural health monitoring has been the area of great technical 

and scientific interests. Structural health monitoring is a coincidence of the well-known 

structural identification concept approaching damage detection algorithms. In general, 

structural identification aims to create or update a model of structure based on experimental 

measurements or observations. This popular paradigm has been utilized for identification of 

various problems in civil and mechanical engineering. In fact, the structural identification 

targets to bridge the gap between the simulated model and the real structure by solving the 

corresponding inverse problems. 

In this chapter, the proposed wavelet-based approach in Chapter 3 is extended to identify 

simple single-degree-of-freedom (SDOF) systems, initially. The proposed procedure is 

implemented directly as the identification of only one unknown parameter (stiffness) is 

considered. Later, for structural identification of multi-degrees-of-freedom (MDOF) systems 

where the number of unknown parameters to be identified are increased, the genetic 

algorithms are adopted capable of using the proposed wavelet-based strategy using adaptive 

wavelets. To be more practical, the identification of input force is developed by using 

adaptive wavelets applicable to output-only (O-only) measurements. Subsequently, the 

wavelet-based genetic algorithm is employed to develop an efficient damage detection 

strategy. Finally, the effectiveness of the proposed method is evaluated by three numerical 

applications, involving input-output (I/O) and O-only measurements. In order to solve the 

inverse problem governing to all numerical cases considered, the proposed scheme have been 

also operated on incomplete measurements as the real and practical measurements.     
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4.2  Stiffness identification of SDOF systems     

In order to illustrate the solution of inverse problem, structural identification of simple 

SDOF systems is firstly considered. In general, a linear dynamic equilibrium governing on 

SDOF mechanical systems of mass (𝑚), damping (𝑐) and stiffness (𝑘) can be expressed as: 

 (𝑚)�̈�(𝑡) + (𝑐)�̇�(𝑡) + (𝑘)𝑢(𝑡) = 𝐹(𝑡)   (4.1) 

where,  �̈�(𝑡), �̇�(𝑡) and 𝑢(𝑡) represent measured acceleration, velocity and displacement 

response of the SDOF oscillator. Furthermore, 𝐹(𝑡) shows the measured input force. The 

mass (𝑚) and the damping (𝑐) are assumed as known parameters and the aim is to determine 

the unknown parameter of the stiffness (𝑘). As there is only one unknown, the proposed 

wavelet-based method in Chapter 3 can be adopted to identify time-history of stiffness, 

directly. 

4.2.1  Optimum measurement of displacement and velocity from acceleration 

Practically, dynamic measurements are usually obtained using accelerometers and 

installation of extra tools for displacement or velocity measurements are most of the time either 

inaccessible or very expensive (i.e., laser sensors). In addition, numerical error is the inherent 

characteristic of numerical integration methods to measure displacement and velocity from 

acceleration. It is therefore essential to use an accurate and optimum integration scheme to 

achieve the computationally efficient identification strategies. In contrast to Chapter 3.2.2 

where the forward dynamic analysis was carried out, the vector �̈�(𝑡) is assumed as known 

accelerometer data (e.g., acquired by piezoelectric sensors embedded on SDOF system). 

Thus, the unit of input data coincides the unit of acceleration (m/sec2). To numerically 

approximate the first-ordered (velocity) and the second-ordered integration (displacement), 

we first start to decompose the output data �̈�(𝑡) on the 2𝑀 local collocation points of the 
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wavelet basis, emphasizing on the scale of wavelet corresponding to the required accuracy 

of frequency decomposition of input data 𝐹(𝑡). In referring to Equation (3.29) and 

assumption of the first two transition (𝑘′ =2), known vector of measured accelerations is 

numerically decomposed using the family of Chebyshev wavelets (FCW and SCW), 

Legendre (LW) or Haar wavelets corresponding to the local fixed 2𝑀 collocation points as 

follows: 

 �̈�(𝑡) = 𝐶𝑇Ψ(𝑡)   (4.2) 

To be noted that, Ψ(𝑡) designates the corresponding wavelet coefficients matrix. 

Subsequently, the coefficient vector corresponding to the decomposed accelerations is 

calculated as: 

  𝐶
1×2𝑘

′−1𝑀

𝑇 = �̈�(𝑡)
1×2𝑘

′−1𝑀
𝜙
(2𝑘

′−1𝑀)×(2𝑘
′−1𝑀)

⁄  (4.3) 

Operating the product matrix of integration 𝑃 (Equation (3.25)), quantities of relative 

velocity are then approximated on global time as follows (𝑑𝑡 = 𝑡𝑖+1 − 𝑡𝑖): 

 �̇�(𝑡) = 𝑑𝑡𝐶
𝑇𝑃Ψ(𝑡) + 𝑣𝑛  (4.4) 

Eventually, relative displacements are numerically expanded as: 

 𝑢(𝑡) = 𝑑𝑡
2𝐶𝑇𝑃2Ψ(𝑡) + 𝑢𝑛   (4.5) 

In Equations (4.4) and (4.5), 𝑣𝑛 and 𝑢𝑛 indicate initial conditions (velocity and 

displacement) calculated from previous interval for considered wavelet basis function as was 

clarified in Equations (3.33), (3.34) and (3.35), respectively. To transfer numerical 

calculations from 2𝑀 local fixed points of wavelet window to 2𝑀global points of considered 

time interval, 𝑑𝑡is operated as the coefficient of aforesaid transformation. In other words, 

quantities of dynamic system are modified corresponding to the local times as: 
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 �̇�(𝑡) = 𝑑𝑡. 𝑣   (4.6) 

 �̈�(𝑡) = 𝑑𝑡. 𝐹(𝑡𝑛 + 𝑑𝑡. 𝜏 , 𝑢 , 𝑣)   
(4.7) 

 As was shown in Chapter 3, it is anticipated that numerical computations will be 

optimally satisfied on two steps of calculations. Firstly, the quantities of the first and second 

order of integration are independently approximated from mass, damping, stiffness and 

applied loadings. Secondly, details of the broad-frequency content accelerometer data are 

accurately captured using free scales of considered wavelets. 

4.2.2  Optimum measurement of acceleration derivatives 

In physics, the quantity of jerk �⃛�(𝑡) describes the derivative of acceleration with respect 

to time (namely, the sensitivity of accelerations). The efficient operator of derivative using 

adaptive wavelets was presented in Chapter 3.5. In this subsection, the proposed operator of 

derivative is extended to calculate the first derivative of measured acceleration with respect 

to time (namely, jerk). For the vector of measured accelerations �̈�(𝑡), Equation (3.57) can be 

rewritten as follows: 

 �̈�(𝑡) = �̈�(𝑡𝑛) + ∫ �⃛�(𝑡)𝑑𝑡
𝑡

𝑡𝑛
   (4.7) 

Using Equation (3.29) to expand the derivative function on global times yields: 

 �⃛�(𝑡) = 𝐶𝑇Ψ(𝑡)   (4.8) 

Substituting into Equation (4.7): 

 �̈�(𝑡𝑛+1) = �̈�(𝑡𝑛) + ∫ 𝐶𝑇Ψ(𝑡)  𝑑𝑡
𝑡𝑛+1

𝑡𝑛
   (4.9) 

Accordingly, operational matrix of integration (𝑃) is operated to numerically simplify 

(4.9) as: 

 �̈�(𝑡𝑛+1) = �̈�(𝑡𝑛) + 𝑑𝑡𝐶
𝑇𝑃Ψ(𝑡) + �⃛�(𝑡0)     (4.10) 
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Calculating 𝐶𝑇 (corresponding to the global times) and considering initial condition of 

�⃛�(𝑡0) and substituting into Equation (4.8), the first-ordered derivative of acceleration with 

respect to time (namely, acceleration sensitivity) is numerically approximated. The quantity 

of jerk is one of the very sensitive dynamic quantities to the small changes in measured 

outputs (that mostly are accelerations). Thus, it will be shown later that our proposed method 

for structural damage detection also concerns with the evaluation of this quantity rather than 

acceleration itself. However, to enhance the computational efficiency of the proposed 

procedure in this research, the very optimum computation of jerk is developed by using 

adaptive wavelet functions on longer time intervals. To clarify the aforementioned concept, 

a simple example is given in Figure 4.1. Figures 4.1(a) and 4.1(b) show an arbitrary 

displacement and relative acceleration time-history, respectively. An impact is imposed to 

the system (i.e., due to the loss in stiffness) at the third second of evaluation. The 

effectiveness of the proposed idea for optimum analysis of jerk using various scales of 

wavelet functions (shown in right-hand column) is compared with the normal incremental 

computation of derivatives (illustrated in the left-hand column). For each case (each row of 

c to g in the figure), the same sampling rate (or time interval of ∆𝑡) is investigated. However, 

for a detailed comparison, the number of colocation points considered for wavelet functions 

varies with respect to the different time intervals. To be noted that, LW is considered as the 

wavelet basis function to evaluate this example. 

It was anticipated that, for the purpose of an accurate evaluation of the quantity of jerk, 

the maximum sampling rate of 1000 sampling points should be considered e.g., ∆𝑡=0.001, 

shown in Figure 4.1 row (c). Although, using such sampling rates diversely affects the 

computational efficiency of the evaluation strategy. Significantly, this figure demonstrates 

the effectiveness of the proposed method to optimally compute the sensitivity with the 
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considerable lesser sampling rates of only 2 points e.g., ∆𝑡=0.5 on the compatible collocation 

points of wavelet e.g., 2𝑀=4 or 8 shown in Figure 4.1 rows (f) or (g). It is apparent from the 

figure that, the proposed method magnificently detect the sudden changes in output signal 

through the very optimum computations. However, it will be shown later that the choice of 

sampling rate and number of adaptive collocation points should be accurately decided for 

integrating the broad frequency contents of the measured (output) signal. It should be pointed 

out that, the large-scaled structural systems and correspondingly measured data are the focus 

of interest in the most practical cases. In other words, the computational performance of 

identification strategy will be considerably enhanced by using an optimum operation for 

evaluation of very excessively large data. 

4.2.3  Stiffness identification 

The optimum measurements of responses were discussed for SDOF mechanical systems, 

emphasizing on only the measurement of one DOF. However, the proposed strategies are 

applicable for MDOF systems where the measurement of dynamic responses of each DOF 

may be considered. Accordingly, assumption of known mass and damping, the time-history 

of stiffness in Equation (4.1), is determined by solving Equation (3.40). For this purpose, 

quantities of measured acceleration, displacement and velocity are acquired from Equations 

(4.2), (4.4) and (4.5). To be noted that, the only one natural frequency of (𝜔 = √(𝑘) (𝑚)⁄ ) 

is obtained for the proposed SDOF oscillator in Equation (4.1). Consequently, the 

distinguishable influence of the proposed wavelet-based procedure of structural 

identification is efficiently capturing the broad-frequency contents of external loading 𝐹(𝑡). 

Eventually, fast and accurate computations constitute the main advantage of the proposed 

method for online health monitoring.   
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Figure. 4.1: The magnificent sensitivity of jerk using the wavelet operators on optimum 

collocations compared with the normal incremental procedure. 
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4.3  Structural identification of MDOF systems using genetic algorithms 

Basically, structural identification of MDOF systems is a more controversial challenge 

rather than SDOF ones. In this regard, there are many unknown parameters should be 

identified corresponding to the number of structural DOFs (for shear structures) or structural 

elements (i.e. identification of structural mass, damping and stiffness). Moreover, it is very 

important to keep in mind that in many practical structural identifications, output-only (O-

only) measurements are available and force identification should also be considered. 

Accordingly, solving the governing optimization problem on the MDOF system with 

measured inputs, is one of the popular options to identify unknown dynamic parameters.  

Over the last two decades, solution of optimization problems has been undergone to the 

significant improvements. Two well-known strategies of genetic algorithms (GAs) and 

neural network (NN) have demonstrated their efficiency in various subjects of science and 

engineering. The basic neural network comprised of three layers, an input, hidden and output 

layer. The inputs may be fed by proper weighting of the connections and using simple 

functions at the neurons to reach at the outputs for linear or non-linear systems. The main 

advantage of NN is the possibility of training the network. However, this also constitutes the 

main drawback of NN where for identification of large-scaled systems, huge amount of data 

are required for the appropriate training. As a consequence, incorrect values will be identified 

if incomplete pattern data is measured.  

The identification procedure utilized in this research for the solution of inverse problems 

lies on genetic algorithms which are inspired by Darwin’s theory of natural selection and 

survival of the fittest. For this purpose, in subsequent sections the employment of simple GA 

is concerned for structural identification, and then the proposed improvement of GAs strategy 
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will be introduced. The core of developed GAs is structured based on using adaptive wavelet 

functions which was discussed in previous chapter and sections. 

Fundamentally, there are two possible aspects can be proposed for time-domain structural 

identification capable of utilizing wavelet analysis through GAs shown in Figure 4.2. 

 

           
Figure 4.2: The proposed approaches capable of using adaptive wavelets through GAs, 

(a) for initial and rough identification, (b) for accurate and reliable identification. 

 

Measure accelerations and input 

forces {�̈�(𝑡) }, {𝑓(𝑡)} 

Define global window width, time 

interval ∆𝑡 and 2𝑀 adaptive 

collocations for each wavelet basis 

function 

Simulate dynamic equilibrium: 

[M] {�̈�(𝑡) } + [C] {�̇�(𝑡)  } + 

[K] {𝑢(𝑡)  } ={𝑓(𝑡)  } 

to calculate wavelet coefficients and 

then computing the simulated {�̈�(𝑡) }. 

Conduct GAs to identify unknown 

parameters [M], [C] and [K]: 

Evaluate simulated and 

measured {�̈�(𝑡) }, to proceed the 

optimizer. 

Extract wavelet coefficients (CW) of 

measured quantities:  {�̈�(𝑡) }
𝑐𝑤

, 

{�̇�(𝑡)  }
𝑐𝑤
, {𝑢(𝑡)  }

𝑐𝑤
, {𝑓(𝑡)  }

𝑐𝑤
. 

Measure accelerations and input 

forces {�̈�(𝑡) }, {𝑓(𝑡)} 

Define global window width, time 

interval ∆𝑡 and 2𝑀 adaptive 

collocations for each wavelet basis 

function 

Decompose measured {�̈�(𝑡) } to 

approximate measured velocities 

{�̇�(𝑡) } and displacements {𝑢(𝑡) } 
(Equations 4.2, 4.3 and 4.4). 

 

Construct new dynamic equilibrium: 

[M]{�̈�(𝑡) }
𝑐𝑤

+ [C]{�̇�(𝑡)  }
𝑐𝑤

+ 

[K]{𝑢(𝑡)  }
𝑐𝑤

= {𝑓(𝑡)  }
𝑐𝑤

. 

Conduct GAs to identify unknown 

parameters [M], [C] and [K]: 

Evaluate simulated and measured 

{�̈�(𝑡) }
𝑐𝑤

to proceed the optimizer. 

(a) (b) 
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As illustrated in Figure 4.2, the first procedure (a) concerns with adopting GAs on the 

wavelet coefficients of responses and input forces which are mostly very small values. As a 

consequence, even by normalizing the unknown parameters to small values to overcome the 

computational difficulties, most of the time the solution of inverse problem lies on ill-

condition problem and the accuracy of approximate solution degrades. In contrast, the second 

procedure (b) concerns with the comparison of simulated responses against measured 

responses to process the GAs strategy. From the preliminary investigation carried out on 

several applications, it is concluded that results of the first approach are not sufficiently 

accurate, and therefore the identification is less reliable. However, the computational process 

is faster than the second procedure especially by using longer time windows. For this reason, 

the first approach (a) may be preferred as initial predictions while for accurate corrections 

and therefore reliable identification the second strategy is strongly recommended. 

4.3.1  Simple GAs 

The major early work on adaption based on GAs was by John H. Holland (Goldberg and 

Holland, 1988). Adaption is regarded as a process of progressive variation of structures, 

leading to an improved performance. He recognized the similarities between natural and 

artificial systems. Recognizing that operators such as crossing over and mutation that act in 

natural systems were also presented in many artificial systems. GAs are search algorithms 

that combine a survival of the fittest mentality with a structured and random one and then 

exchange information in order to explore the search space. Mathematically, it is achieved by 

representing possible solutions as coded strings. Many such strings are created and each 

representing a different location on the given search space. These strings are then evaluated 

according to some criteria, and the fittest are given a higher probability of selection. Parts of 

the selected strings are combined to form new strings and occasionally part of the string is 
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randomly assigned a new value. The method is similar to human search where good solutions 

receive more attention while bad solutions are less favored. The overall layout of a simple 

GA strategy is depicted in Figure 4.3. 

        
Figure 4.3: Overall layout of a simple GA. 

 
 

 
Figure 4.4: Representation and storage of a simple GAs for the identification problems 

comprised of n structural elements.   

Record the output as the best result (global optima) 
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….. 
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As shown in Figure 4.3, a simple GA is based on binary encoding. As a consequence, 

operations of mutation and crossover will be executed only uniformly, however, it will be 

discussed later that to enhance the performance of GAs strategies, implementation of non-

uniform operators of mutation and crossover is essential. Some of the basic features of a 

simple GA is illustrated in Figure 4.4 for structural identification through an inverse problem. 

Figure 4.4 shows the capability of GA with different performances to find the global optima. 

In performing a GA strategy, the reliability and robustness of the solution is very important. 

The population size (number of individuals) involving j number of fixed 2n+2 strings 

(referring to n structural elements) and number of populations in each generation are taken 

after an engineering judgment about the either prescribed convergence of results or 

computational efficiencies. 

It is also possible to influence the search by selecting appropriate crossover and mutation 

rates, however in general, there is a trade-off between exploration (broad search) and 

exploitation (local search). For instance, small crossover and mutation rates help explore the 

domains around the current solutions, and thus are less likely to destroy good solutions. 

Although, it will make it more difficult to explore new possible solutions. On the other hand, 

large crossover and mutation rates help to cover wider domains, however at the expense that 

the desirable solutions are less likely to develop further and thus they find it harder to 

converge. 

4.3.1.1 Fitness evaluation and selection 

Two underlying features of any GAs strategy are the fitness evaluation of possible 

solutions and accordingly selection of good results. For the purpose of fitness evaluation, the 

response of structure i.e., acceleration is numerically simulated using the proposed wavelet-

based approach for the predicted properties of structure (generated in different strings). On 
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the other hand, the actual response of structure have been measured for each existing DOF 

of structure. Consequently, one may evaluate the fitness function as follows (Perry, Koh, and  

Choo, 2006): 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

0.001 +𝑀𝑆
 (4.11) 

where, 𝑀𝑆 is the difference between measured and simulated responses. Thus, this value 

is obtained as follows: 

 𝑀𝑆 =
∑(𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑)2

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝑂𝐹𝑠
 (4.12) 

As it is shown in Equation (4.12), the fitness is evaluated from the total sum of square 

error between the simulated and measured response of the structure at each time step. Finally, 

this value is divided by the total measured DOFs. This function bounds the maximum fitness 

at 1000 showing that, when errors approach zero (𝑀𝑆=0), results have converged. In addition, 

final selection will be carried out using roulette wheel procedure based on the maximum 

probability of selection for fitted individuals. The step-by-step algorithm of simple GA using 

adaptive wavelet functions is tabulated in Table (4.1). 

It should be emphasized that according to the simple GA, the rate of crossover and 

mutation can be reduced from the initial populations to the later ones in a single generation. 

Therefore, the exploration (global search for promising solutions) and exploitation phases 

(local search around optima) of GA strategy will be proceeded much more properly.   
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Table 4.1: Step-by-step algorithm of simple GA using adaptive wavelet functions. 

C. Initial calculations: 

(11) Define upper and lower limits for unknown variables (mass: Mi, damping ratio: 

Di, stiffness: Ki). i refers to the i th DOF. 

(12) Define the required precision for each variable. 

(13) Define the crossover and mutation rate. 

(14) Define the geometry of structure. 

(15) Define the number of required populations in a single generation as well as the 

population’s size. 

(16) Specify the location of each variable on corresponding strings. 

(17) Randomly generate the initial population (0 or 1 due to binary encoding). 

(18) Specify wavelet basis function, number of collocation points, the considered 

order of wavelet based on the sampling rate of the measured responses. 

(19) Select an appropriate time step 𝒅𝒕 (concerning an efficient solution). 

(20) Form coefficients wavelet matrix corresponding to collocation points for free-scaled 

orders of wavelet function 𝝓(𝒕). 
(21) Form operation matrix of integration corresponding to collocation points for each 

particular wavelet function 𝑷. 

(22) Calculate square operational matrix 𝑷𝟐.  

(23) Approximate unity, with related coefficient of wavelets. 

(24) Form identity matrix of 𝑰 on collocation points. 

 

D. For each iteration: 

(5) Convert binary strings to real value for each individual. 

(6) For each individual form the properties matrices (predicted mass: M, damping ratio: 

D, stiffness: K) using the known geometry and structures behavior (i.e., MDOF shear 

building, 2D pin-jointed truss, 3D truss and so on). 

(7) Use the proposed method of time integration (wavelet-based method) to solve 

simulated responses of dynamic equilibrium: 𝐌 �̈�(𝑡) + 𝐂 �̇�(𝑡) + 𝐊 𝑢(𝑡) = 𝐹(𝑡)  
(8) For each DOF or member, corresponding to each individual, calculate displacement, 

velocity and acceleration vectors at each time interval, simultaneously by: 

𝑢(𝑡) = 𝐶𝑇𝑃2Ψ(𝑡) + 𝑢𝑛0 

�̇�(𝑡) = 𝐶𝑇𝑃Ψ(𝑡) + 𝑣𝑛0 

�̈�(𝑡) = 𝐶𝑇Ψ(𝑡) 

(9) Evaluate the fitness function using Equation (4.11). 

(10) Investigate the rate of convergence of responses. If results are converged then 

exit iteration and record the identified values as the actual values; if not, continue to 

next step.  

(11) Perform the roulette wheel selection method. 

(12) Rearrange and sort the whole population’s individuals from the best fit to the 

worst. 

(13) Pair individuals. 

(14) Operate crossover and mutation to paired individuals. 

(15) Go to step B. (1). 
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4.3.2  Modified multi-species GAs 

Over the past two decades, there are diverse forms of GAs have been widely improved. A 

fundamental coding was using binary representation for simple GAs and set of operators i.e., 

crossover, mutation and reproduction. More recently, much efforts have also been made to 

alter the architecture of GA to be practical for solving complex problems. One of the popular 

modified GA (MGA) utilizes migration and artificial selection for real encoding variables. 

The underlying components that distinguish this strategy are not only inclusion of multi-

species (sub-populations) but also a rank based selection and a new tagging procedure to 

ensure diversity in the best solutions (Michalewicz, 2013). In contrast to the simple GAs, the 

proposed multi-species strategy here is real encoded and as such adopts non-uniform 

operators. Floating point representation allows the focus of the search to vary, not just across 

species, but also over time. Therefore, the main advantage of performing multi-species is that 

various GA-based operators can be implemented to complement one another.  

4.3.3  Wavelet-based MGAs 

The proposed wavelet-based MGAs (WMGA) strategy in this research is benefitted by a 

computationally efficient scheme for fitness evaluation using adaptive wavelet functions. 

This enables using more sub-populations within a population and increasing the convergence 

of results and therefore improving computational competency and robustness of structural 

health monitoring strategies. The proposed procedure is developed in order to provide a 

reliable identification algorithm for large-scaled structures that simultaneously explores the 

search domain and focuses on promising individuals. The construction of the proposed 

WMGA strategy utilized in this research is depicted in Figure 4.5. 
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Figure 4.5: The construction of the proposed multi-species population capable of using 

WMGA. 

 

  

Accordingly, the adopted WMGA strategy to identify unknown dynamic parameters is 

discussed in detail as following subsections.     

4.3.3.1 Modification of multi-species populations 

As shown in Figure 4.5, each population involves 6 species with different GA-based 

operators. In this section the corresponding features of each species 1 to 6 are elaborated. 
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 The first species: 

Essentially, there is no GA-based operators are employed on this species so as this sub-

population is solely designed to store the best results. The tagging procedure (designated by 

string T in Figure 4.5) prevents saturating this species by selecting a same individual many 

times. For this purpose, all individuals are initially assigned 0 as tag number and if an 

individual being selected for species 1 the tag is changed to 1. This tag follows individual 

wherever it goes until this individual being altered by any GA-based operator, in this case 

the tag will be changed back to 0, denoting a new individual and making it available to be 

selected as the best solutions for species 1.        

 The second species 

The crossover operators utilized for species 2, 3 and 6 lies on the simple and multi-points 

operators of crossover. Assumption of 𝑃𝑐𝑠 and  𝑃𝑐𝑚 for the probability of simple and multi-

point crossover operations, the total crossover rate 𝑃𝑐𝑡 which shows the effective probability 

rate of an individual being involved in at least one crossover is as follows (Perry et al., 2006):  

 𝑃𝑐𝑡 = 1 − (1 − 𝑃𝑐𝑠)(1 − 𝑃𝑐𝑚) (4.13) 

Furthermore, species 2 is designed for a wide and random search for possible optima 

within the search limits prescribed for unknowns. To randomly generate new possibilities, a 

random real number is generated as 𝑟 ∈ [0 1] and the random mutation is developed by: 

 𝑥𝑖 = 𝐿𝐿𝑖 + 𝑟 × (𝑈𝐿𝑖 − 𝐿𝐿𝑖) (4.14) 

In Equation (4.14), 𝑥𝑖, 𝐿𝐿𝑖 and 𝑈𝐿𝑖 indicate the ith altered unknown (parameter), the ith 

lower and upper limits of the search domain, respectively. 
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 The third species 

Mathematically, it is demonstrated that the accuracy and convergence rate of optimization 

problems are influenced by operating the so-called non-uniform mutation. This is because of 

the reduction of the average magnitude of mutations during the procedure of optimization 

(Michalewicz, 2013). The mutation operator designated for species 3 lies on the cyclic non-

uniform mutation. The underlying principal is to slightly reduce the number of mutations as 

the optimizer proceeds. Logically, this operator will increase again after the regeneration, to 

allow a broad search for possible solutions. Assumption of a random real number 𝑟1 ∈ [0 1] 

and random integer 𝑟2 ∈ [0 1], the operator of cyclic non-uniform mutation is obtained as 

follows (Perry et al., 2006):   

 

𝑥𝑖 = 𝑥𝑖 + (𝑈𝐿𝑖 − 𝑥𝑖) × (1 − 𝑟1
(1−

0.9𝑀𝑂𝐷(𝑔,𝑅)
𝑅

)
)    𝑖𝑓 𝑟2 = 0 

𝑥𝑖 = 𝑥𝑖 + (𝐿𝐿𝑖 − 𝑥𝑖) × (1 − 𝑟1
(1−

0.9𝑀𝑂𝐷(𝑔,𝑅)
𝑅

)
)    𝑖𝑓 𝑟2 = 1 

 

(4.15) 

 In Equation (4.15), 𝑔 and 𝑅 denote the generation number and the number of generations 

between regenerations, respectively. In addition, 𝑀𝑂𝐷 represents the operation of reminder. 

 The forth species 

The Average and Bound crossover (ABX) is proposed as the crossover operator of this 

species. This operator was adopted by Ling and Leung (2007). However, they did not concern 

with the improvement of fitness evaluation (FE), as this operator requires inner FE and from 

the computational cost point of view is inherently a costly operator, especially for large-

scaled structures with the numerous unknowns to be identified. Based on this method, four 
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offspring (𝑜1 − 𝑜4) are obtained from two parents (𝑝1and 𝑝2) in new generation, including 

two of the average (𝑜1and 𝑜2) and two of the bound (𝑜3and 𝑜4) crossover as follows: 

 

𝑜1 =
𝑥𝑖
𝑝1 + 𝑥𝑖

𝑝2

2
 

𝑜2 =
(𝑈𝐿𝑖 + 𝐿𝐿𝑖)(1 − 𝜔𝑎) + (𝑥𝑖

𝑝1 + 𝑥𝑖
𝑝2)𝜔𝑎

2
 

𝑜3 = 𝑈𝐿𝑖(1 − 𝜔𝑏) + max(𝑥𝑖
𝑝1 , 𝑥𝑖

𝑝2)𝜔𝑏 

𝑜4 = 𝐿𝐿𝑖(1 − 𝜔𝑏) + min(𝑥𝑖
𝑝1 , 𝑥𝑖

𝑝2)𝜔𝑏 

(4.16) 

   Ling and Leung (2007) suggested that however the weight factor 𝜔𝑎 could be selected 

1, the range of [0.5 1] is reasonable. In addition, they adopted 𝜔𝑏 ∈ [0 1] for several 

numerical investigations. The FE of  𝑜1 − 𝑜4 will be carried out and the fitted offspring will 

be selected. Subsequently, the mutation operator of species four is a wavelet-based mutation 

(WM) proposed by Ling et al. (2007). Assumption of 𝑈𝐿𝑖
𝑚𝑎𝑥 and 𝐿𝐿𝑖

𝑚𝑖𝑛 as the maximum 

and the minimum value for upper and lower limits of unknowns in an individual, the WM 

mutation is obtained as follows:  

 

𝑥𝑖 = {
𝑥𝑖 + 𝛿(𝑈𝐿𝑖

𝑚𝑎𝑥 − 𝑥𝑖)   𝑖𝑓 𝛿 > 0

𝑥𝑖 + 𝛿(𝑥𝑖 − 𝐿𝐿𝑖
𝑚𝑖𝑛)   𝑖𝑓 𝛿 ≤ 0

 

𝛿 =
1

√𝑎
𝑒
−(𝜑/𝑎)2

2 cos (5 (
𝜑

𝑎
)) ; 𝜑 ∈ [−2.5,2.5]  

𝑎 = 𝑒− log(𝛾)(1−𝑔 𝐺⁄ )𝜁+log(𝛾) 

(4.17) 

In Equation (4.17), 𝑔, 𝐺 and 𝜁 represent the generation counter, the total number of 

generations and the shape parameter of the monotonic increase (𝜁 ∈ [0.2,5]). 𝛾 is the upper 

limit of parameter a and could be assigned 10000. To be noted that, this operator behaves as 

a local search mutation, however it just designed to locally search around the promising 

random results in only species four and not for fine-tuning search on the best results of the 
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whole population. To overcome this issue, the presented WMGA strategy in this research 

complemented with the sixth species, as well.      

 The fifth species 

The crossover operator designed for this species is the Simulated Binary crossover (SBX) 

adopted by Deb and Agrawal (1994). Assumption of 𝜂𝑐=2 (Deb and Gulati, 2001) as a 

parameter to control the spread, SBX is derived as follows: 

 

𝑜1 = 0.5[(𝑥𝑖
𝑝1 + 𝑥𝑖

𝑝2) − 𝛽|𝑥𝑖
𝑝2 − 𝑥𝑖

𝑝1|] 

𝑜2 = 0.5[(𝑥𝑖
𝑝1 + 𝑥𝑖

𝑝2) + 𝛽|𝑥𝑖
𝑝2 − 𝑥𝑖

𝑝1|] 

  

𝛽 =

{
 
 

 
 (2𝑟1)

1
𝜂𝑐+1           𝑖𝑓 𝑟1 ≤ 0.5
1

2(1 − 𝑟1)
1

𝜂𝑐+1

     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(4.18) 

 In Equation (4.18), 𝑟1 is a real random number as introduced earlier. Accordingly, the 

Parametric-based mutation (PM) operator proposed by Deb and Gulati (2001) is considered 

for this species. Basically, it performs a polynomial probability distribution to generate a 

mutated individual in the neighborhood of the original one. Let 𝑟1 a real random ∈ [0 1] for 

problems concerning the upper and lower bounds it is obtained as follows:  

 

𝛿̅ = {
[2𝑟1 + (1 − 2𝑟1)(1 − 𝛿)

𝜂𝑚+1]
1

𝜂𝑚+1 − 1                   𝑖𝑓 𝑟1 ≤ 0.5

1 − [2(1 − 𝑟1) + 2(𝑟1 − 0.5)(1 − 𝛿)
𝜂𝑚+1]

1

𝜂𝑚+1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

𝛿 = min[(𝑥𝑖 − 𝐿𝐿𝑖), (𝑈𝐿𝑖 − 𝑥𝑖)] /(𝑈𝐿𝑖 − 𝐿𝐿𝑖) 

(4.19) 

In Equation (4.19), 𝜂𝑚 is the distribution index for mutation and takes any non-negative 

value. This value regulates the achieved perturbation and may be selected around 100 to gain 

the mutation effect of 1%. To be emphasized that the total number of mutated individuals 

𝑁𝑚for each species is defined and so the species size remains constant after reproductions.  
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 The sixth species 

Species 6 is designed to focus on the local optima (i.e., the local search around the best 

results). For this purpose, small mutations are employed to refine the best solutions by 

operating a non-uniform mutation, whereby the mutation rate is slightly reduced as the 

optimization proceeds. The following mutation operator is considered to accomplish this goal 

(Perry et al., 2006): 

 

𝑥𝑖 = 𝑥𝑖 + 0.5 × (𝑈𝐿𝑖 − 𝑥𝑖) × (1 − 𝑟1
(1−

𝑔
𝐺
))    𝑖𝑓 𝑟2 = 0 

𝑥𝑖 = 𝑥𝑖 + 0.5 × (𝐿𝐿𝑖 − 𝑥𝑖) × (1 − 𝑟1
(1−

𝑔
𝐺
))    𝑖𝑓 𝑟2 = 1 

 

(4.20) 

 In Equation (4.20), 𝐺 denotes the total number of generations to be run. Finally, a periodic 

operator of ring migration is designed to exchange the best results between species 2 to 6 as 

shown in Figure 4.5. This operator is regulated based on two parameters 𝑧1 and 𝑧2. The first 

parameter controls the number of generations between two migrations whereas the second 

one is the fraction of species size involved in the migration. In this study, 𝑧1=5 and 𝑧2=0.1-

0.2 are utilized as the periodicity of the operator and the portion of sub-population to be 

involved in migration, respectively. 

4.3.3.2 Modified search space reduction technique 

Basically, the convergence rate and accuracy of the GA-based identification strategies are 

highly dependent to the width of the search space. As a consequence, by adaptively reducing 

the search limits, a more satisfactory identification is possible with the best computational 

efficiency (Perry et al., 2006). The SSRM strategy implemented in this study is illustrated in 

Figure 4.6. 
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Figure 4.6: The proposed SSRM strategy capable of using adaptive wavelets for 

optimum identification through WMGA. 

 

 

As it is shown in Figure 4.6, the proposed SSRM involves a very fast prediction and 

therefore reduction of initial search limits by using simple and 2D Haar wavelets on optimum 

collocations (2𝑀P). This phase may be interpreted as exploration phase and there is the most 

relevant variations around local optima. It should be emphasized that, initial search limits, in 

fact, lies on a wide limits for unknown parameters. At the second stage of the strategy, the 

search limits have been refined by using 3D LW for fitness evaluation of individuals as the 

same sampling rate as was considered for the first step. To ensure capturing all features of 

I/O signal more collocation points (2𝑀R) are preferred at this stage. Accordingly, this stage 

is adopted for exploitation phase where the small variations around the global optima is 

existed. Finally, employing the accurate SCW for fitness evaluation guarantees the promising 

solutions being selected. In this regards, all details of I/O signals are collectively captured on 

adaptive collocation points (2𝑀C), and therefore the last corrections of unknowns are 

optimally ascertained until the prescribed convergence rate is achieved (namely, the final 
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exploitation phase). The motivation behind the proposed development arises from the fact 

that the overall computational efficiency of the identification strategy for large number of 

unknowns is rigorously dependent on optimally reducing the search limits with the emphasis 

on accuracy of results. 

4.3.3.3 Fitness evaluation and artificial selection 

Eventually, the fitness of each individual in all species proposed in this study are evaluated 

by adding the inverse of total sum of square errors between the measured and simulated time-

history of accelerations for off-line applications and the quantities of jerk for online 

identification problems as follows: 

 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =

1

𝜀 +
∑(𝐴𝑐𝑐𝑚𝑒𝑎𝑠. − 𝐴𝑐𝑐𝑠𝑖𝑚𝑢.)2

𝐷𝑂𝐹𝑚𝑒𝑎𝑠.

+
1

𝜀 +
∑(𝑗𝑒𝑟𝑘𝑚𝑒𝑎𝑠. − 𝑗𝑒𝑟𝑘𝑠𝑖𝑚𝑢.)2

𝐷𝑂𝐹𝑚𝑒𝑎𝑠.

 
(4.21) 

In Equation (4.21), DOF, meas. and simu. represent the total measured DOFs, measured 

and simulated data, respectively. 𝜀 may takes a small value of 0.001 to prevent computational 

difficulties. In this research, the first term in Equation (4.21) is proposed for the fitness 

evaluation due to the analysis of accelerations (designated by Fita) and the second term is the 

fitness due to the jerk analysis (designated by Fitj). Later, the selection procedure is carried 

out by allocating the probability of selection to each individual due to its final fitness. To 

magnify the differences between different fitness values, a ranking procedure is employed to 

obtain the probabilities within each species. In other words, the fitted individual is ranked the 

total number of population size and the rest are descended due to the value of the fitness 

function for both Fita and Fitj. The notable point on the proposed fitness evaluation (FE) lies 

on the sufficiently optimum evaluation of Fitj by wavelet functions for the small sampling 

rates (in referring to Figure 4.1). This significantly improves the fitness values and rapidly 

yields the convergence rate. It will be shown later that in practical and large-scaled 
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applications, whereby there is a loss in stiffness concurrent to the system identification 

(referring to the online damage imposed), by employing the second term of FE in Equation 

(4.21), not only the place of imposed impact on time axis but also the magnitude of the 

reduction in stiffness are confidently detected. In this research, LW(2M4) is performed with 

very small sampling rate of 20 S/s (∆𝑡 = 0.05 sec compared to the acquired ∆𝑡 = 0.001 sec) 

for the effective jerk-based FE of all species. As it was mentioned before, the fast and precise 

computation of LW increases the computational competency of the proposed FE and leads 

the reasonably reliable online identification. 

4.3.3.4 Practical algorithm of WMGA strategy 

The optimum structural identification strategy is achieved by adopting the non-

conventional wavelet-based GA operators (namely, WMGA). The procedure involves 

reintroduction, regeneration and artificial selection of ranked individuals. To guarantee that 

species 6 (designed for the local search around the best results) operates on a set of desirable 

solutions the reintroduction is necessary. This comprises copying individuals from species 1 

(the best solutions) into species 6 at a prescribed period. The number of times that 

reintroduction should be done must consider that the best solutions require to be developed, 

and that species 6 requires some time to improve possible solutions, however, it is found that 

a large number of reintroductions commonly gains the better results. In addition, a common 

issue of GA-based strategy is that the optimization may be converged to the local optima. To 

overcome this issue a regeneration operator is designed for species 2 to 5 and the process will 

be effectively started to find global optima and new possibilities while species 6 focuses on 

refining the previously generated individuals. The schematic flowchart of the proposed 

WMGA is depicted in Figure 4.7.  
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Figure 4.7: The proposed WMGA strategy by using adaptive wavelet functions. 

 

To be noted that the fitness evaluation corresponding to online identification problems 

(referring to the presence of damage concurrent with measurement) contains the jerk 

evaluation (Fitj) by using LW (2M4) at 20 S/s sampling rates. With reference to Figure 4.6, 

three runs are carried out for 3 times of search space reductions corresponding to Haar, LW 

Y  

N  

Y  N  Return the identified results 

from the first row (species 1) as 

the best results 

N  

R
u

n
=

R
u

n
+

1
 

Max 
Gen? 

Start WMGA 

Random generation 

of initial Pop Run=1 

If Run==1 then; select Haar wavelet, proper 2M and 

∆𝑡  If Run==2 then; select LW, proper 2M and ∆𝑡  
If Run==3 then; select SCW, proper 2M and ∆𝑡  

SSRM 
Y  Time for 

SSRM? Random generation 

of species 2-5 
Initialize tagging (T) 

and ranking (Ra , Rj) G
en

=
1
 

Time for 
Regen? 

Y  

FE for ranked fitness values: 

Fitall= Ra Fita + Rj Fitj  

Copy 

individuals 

from species 1 

to 6 

N  

Time for 
Reintro? 

Regeneration of species 

2-5 and update tagging 

and ranking 

Species 2: use the selected basis 

function 

Species 3: use the selected 

basis function 

Species 6: use the selected basis 

function for local search 

Species 5: use the selected basis 

function 

Species 4: use LW (2M4) at 

∆𝑡=0.05 sec for internal 

evaluation of ABX for all Runs 
Fit

j
: use LW (2M4) at ∆𝑡=0.05 

sec for all Individuals.  

Fit
a
: use selected wavelet basis 

and proper 2M collocations to 

ensure broad frequency contents 

are captured   

Y  

N  
Gen=Gen+1 

Max 
Run? End WMGA 

Univ
ers

ity
 of

 M
ala

ya



 

129 

 

and SCW. To be emphasized that, LW(2M4) is optimally adopted for all runs for internal 

fitness evaluation (FE) of species 4. Subsequently, the schematic flowchart for structural 

simulation and relatively fitness evaluation is depicted in Figure 4.8. 

 

 
Figure 4.8: The practical flowchart to optimally simulate dynamic response using 

wavelet functions prior to fitness evaluation (FE) of genetic individuals (Ind). 
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strategy, whereby the FE is being carried out numerous times, this step is strongly 

recommended. We have utilized a GAs procedure based on decimal two-dimensional array 

coding for both optimal node numbering and sensor placement strategies (the brief discussion 

is provided in Appendices B and C). The next key point should be considered for any robust 

identification strategy is that in real cases the measurements of all DOFs are not always 

available. For this reason, the identification will be carried out on only measured DOFs and 

therefore the effect of unmeasured DOFs should be considered in relative characteristics’ 

matrices (i.e., mass, damping or stiffness). Two popular methods are referred to static and 

dynamic condensation methods in order to condensate the characteristics’ matrices from the 

entire DOFs existing in structure to the only measured DOFs (the brief discussion is provided 

in Appendices A).   

4.4  Modification of WMGA strategy for output-only identification 

In reality, measuring input forces in situations outside laboratory is not always feasible. 

In this section, the WMGA strategy proposed in previous sections for structural identification 

is adopted to cases where the input force(s) is not measured and it is so-called output-only 

(O-only) structural identification. Basically, there are many attempts have conducted for 

output-only identification using frequency domain methods. The strength and weakness of 

these methods were discussed in the second chapter. The most significant researches by Ling 

and Haldar (2004) used classical techniques to carry out the identification using an iterative 

approach. In addition, aforementioned iterative procedure, while reasonably efficient for a 

least squares identification, requires considerable computation time involved for a GA due 

to the larger time required for each iteration.  
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In this section, a strategy involving simultaneous evolution of structural parameters and 

input force is introduced. The strategy utilizes WMGA to identify and update input force(s) 

as the search for structural unknown parameters proceeds. For the strategy proposed here, the 

mass of structure is assumed as known parameter since for many real applications this is a 

reasonable assumption as the mass may be predicted with sufficient precision. Furthermore, 

to modify the WMGA identification for output-only measurements, it is assumed that the 

structure is initially at rest and that the location of input force(s) is known. In addition, the 

damping is also assumed to be of Rayleigh damping, where the damping parameters are 

unknown. The major objective will be to identify time-history of input force(s) and stiffness 

parameters. It is to be pointed out that, because of the banded nature of property matrices 

(i.e., stiffness and mass), it is also assumed that the acceleration measurements are available 

at least at the DOF with unknown force and adjacent (coupled) DOFs. 

Fundamentally, the time-history of input force(s) is treated as an unknown component of 

dynamic equilibrium in each iteration of WMGA rather than an unknown variable to be 

identified by WMGA strategy. In the modified procedure the computation of force is 

combined with the wavelet-based algorithm proposed in Chapter 3 for structural simulation. 

In this regards, input force is estimated while the strategy simultaneously is carrying out the 

simulation of response for evaluation with measured acceleration to calculate the fitness of 

the given solution. The proposed WMGA identification strategy lies on a predictor-corrector 

algorithm. An initial prediction of the displacements and velocities at measured DOFs at time 

step 𝑖+1 is first obtained from the measured accelerations at time step 𝑖+1. Accordingly, the 

corrected response at time step 𝑖 is defined as predictor equations of: 

�̈�𝑖+1(𝑡) = 𝐴𝑐𝑐𝑖+1
𝑚𝑒𝑎𝑠.

= 𝐶𝑇Ψ(𝑡)    

�̇�𝑖+1(𝑡) = 𝑑𝑡𝐶
𝑇𝑃𝜓(𝑡) + 𝑣𝑖  (4.22) 

𝑢𝑖+1(𝑡) = 𝑑𝑡
2𝐶𝑇𝑃2𝜓(𝑡) + 𝑢𝑖    
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In Equation (4.22),  𝑑𝑡 is the time step 𝑡𝑖 to 𝑡𝑖+1. 𝑢𝑖  and 𝑣𝑖 represent initial displacement 

and velocity calculated from previous time step and taking into account that structure has 

been initially at rest (𝑢0 = 𝑣0 = 0). The unknown force 𝐹𝑈𝑛 is therefore obtained from the 

known forces 𝐹𝐾𝑛 (may be recorded by available force sensors attached to other DOFs) at 

time step 𝑖+1, measured accelerations, predicted displacements and velocities as follows: 

𝐹𝑈𝑛𝑖+1 = [𝑀]�̈�𝑖+1(𝑡) + [𝐶]�̇�𝑖+1(𝑡) + [𝐾]𝑢𝑖+1(𝑡) − 𝐹
𝐾𝑛

𝑖+1  (4.23) 

The indirect wavelet-based method proposed in Chapter 3 is then performed to re-compute 

the responses at time step 𝑖+1, and thus it is resulting in corrected or revised estimates of 

accelerations, velocities and displacements. The fitness evaluation of WMGA is conducted 

on corrected accelerations compared with those of measured ones. The corrected response 

will then be implemented on the next time step and the procedure is repeated for the whole 

time-history resulting identification of input force(s). It should be emphasized that, the 

corrected responses are being utilized at time step 𝑖 in Equation (4.22) rather than the 

measured or predicted responses. Consequently, there is no effect of accumulation of errors 

due to integration procedure as the corrected (simulated) response is used and the force is not 

computed from the response obtained by integration of measured accelerations. It should be 

kept in mind that, dynamic equilibrium governing to the structure is maintained at the end of 

each time interval as the corrected response have been employed. 

4.5  WMGA strategy for structural damage detection 

The WMGA developed in previous sections is applied to improve an optimum damage 

detection strategy. To be more practical, the proposed scenario of damage detection in this 

research utilizes the previous measurements of undamaged structure. However, the 

alternative for this is to identify unknown parameters and compare with those of theoretical 
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values. Hence, the proposed strategy illustrated in Figure 4.9 deals with the scenario where 

the measurements of the system both before and after damage has taken place are available. 

 

Figure 4.9: The proposed algorithm for damage detection strategy using WMGA. 

 

As shown in Figure 4.9, the proposed strategy for damage detection is performed through 

two main steps. The first involving the calibration of unknown parameters of stiffness by 

providing the possibility of using identified parameters for the undamaged structure as a 

starting point for identification of damaged structure. This constitutes the distinguishable 

merit of the proposed strategy, in which that only changes require to be identified and 

providing the optimizer a desirable initial points, resulting in satisfactorily precise outcomes. 
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and only the first individual of species 1 are initially set as the identified parameters. This 

ensure a good performance of the crossover operation at early stages. The second involves 

the possibility of fixing the mass to simplify the problem as in fact the mass is not altered 

from damaged to undamaged stage. Eventually, the damage index is computed for the 

reduction in stiffness of the element as a percentage of the original undamaged stiffness. 

4.6  Numerical verification study 

The capability and effectiveness of the proposed strategies for structural identification and 

damage detection are numerically evaluated in this section. For this purpose, three numerical 

applications are considered, involving a MDOF shear system composed of three connected 

MDOF structures for structural identification of known and unknown mass problems as well 

as force identification. Additionally, two truss structures are considered for identification and 

damage detection, including a 2D Parker truss structure subjected to El-Centro base 

excitation and a 3D and large-scaled hexagonal space structure under different concentrated 

loading scenarios. For both structures only transitional DOFs are existed so that they are 

modeled as pin-jointed truss structures. Initially, the configuration of each structure is 

modeled in Formex Algebra (FORMIAN) and later the nodal coordinates have been 

transferred to MATLAB. Prior to starting any conventional identification or damage 

detection strategy, the sequence of node numbering should be optimized in order to construct 

the most optimum mass and stiffness matrices (Appendix C).  

For all cases considered, the mass of structures is lumped at each transitional DOF. 

Furthermore, damping is provided as Rayleigh damping by setting damping ratio of λ% for 

the first two modes and using the desirable values for 𝛼 and 𝛽. For this purpose, λ=2 and λ=5 

are selected for identification of example 1 and examples 2 and 3, respectively. In addition, 
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the time-history of nodal accelerations is numerically simulated by the well-known average 

acceleration method of Newmark- 𝛽 family, using the sampling rate of 200 S/s for the first 

example (it will be evaluated as the measured accelerations) and sampling rate of 1000 S/s 

corresponding to the truss structures.  

Moreover, for truss systems where damage detection is conducted, two kinds of damage 

scenarios are considered as damage induced to the structural elements. The first involving 

the offline reduction of the stiffness of structural elements that denotes the measurement of 

damaged structure (designated by Off). The second being online reduction of stiffness that 

represents the damage has taken place on structural elements during the measurement of 

damaged structure (designated by On).  

Fundamentally, the very important step prior to any identification strategy is selecting 

WMGA parameters to be utilized through the strategy. For this purpose, some preliminary 

studies were carried out for each numerical applications in order to determine the most 

reasonable WMGA parameter values. The underlying purpose of these studies was to identify 

balanced WMGA parameters that will give consistently desirable results rather than trying 

to find optimum WMGA parameters. It will be shown later that, for each numerical example, 

different combinations of WMGA parameters will have different effects due to the variations 

across structural systems and external loadings.    

Eventually, the computational efficiencies and the robustness of the proposed WMGA 

strategy have been compared with some of the available methods. For the purpose of a 

comprehensive evaluation, the CPU computational time (as indication of the cost of analysis) 

is comparatively considered for different strategies, which was recorded with a same 

hardware environment (I-5 CPU @3.2GHz, Operation 64 bit). 
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4.6.1  A MDOF shear building 

The computational efficiency and robustness of the proposed WMGA strategy are 

evaluated through the first application regarding to the structural identification of I/O data, 

known and unknown mass problems, initially. Later, the strategy is conducted in order to 

verify the results of output-only identification of known mass problems. Figure 4.10 

illustrates a MDOF shear system consists of three shear structures connected by two link 

bridges. Prior to identification, the simulation step is carried out using the structural 

properties given in the figure. Firstly, the 5 sec of measurement is considered for the only 

central building alone under two sinusoidal and concentrated loadings as illustrated in the 

figure 𝐹1
𝑏(𝑡) and 𝐹2

𝑏(𝑡). This problem is referred to Case (b) in Figure 4.10. The mass, 

stiffness and Rayleigh damping parameters (α and β) are treated as unknown values to be 

identified. The first 5 sec response of the central system is simulated using Newmark-β 

method at 200 sampling rates and the acceleration recorded for feeding into WMGA. 

Second problem involves the output-only identification of the central building shown in 

Case (c) in the figure, when the entire coupled system is subjected to the base excitation. For 

this case, stiffness values of the central building, damping parameters and applied forces due 

to the link bridges (𝐹1
𝑐(𝑡) and 𝐹2

𝑐(𝑡)) are treated as unknown parameters to be identified. Link 

bridges are modelled as linear springs with the axial stiffness of 10e8 (N/m). For 

identification purposes damping parameters α and β are identified along with the unknown 

stiffness and forces. The mass of the system is presumed as known parameter and the seismic 

loading for each level is easily obtained from the ground acceleration multiplying by the mass 

of each level (applied in the inverse direction). Accordingly, the response of the entire system 

to the first 5 sec of north-south component of the El-Centro earthquake is simulated using 

Newmark-β method at 200 sampling rates (time step 0.005 sec). However, further to our 
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preliminary studies on simple systems, it is observed that using a longer time-history analysis 

(longer than 5 sec) and more sampling rates (refers to small time steps) may be beneficial.   

With any GA strategy it is essential to determine balanced parameters to be utilized. To 

identify the appropriate WMGA parameters, the considered problem was solved 10 times for 

known and unknown mass systems. The balanced WMGA parameters that were consistently 

producing good results without requiring excessive computational time are displayed in 

Table 4.2 corresponding to known mass and unknown mass problems considered in Case (b) 

and Case (c). Subsequently, a fairly wide search range, i.e., half to twice the actual values 

(for stiffness, mass) is adopted for identification of both cases. The search limits of damping 

parameters corresponding to the first two modes are set as 0 and 1. The identification is 

conducted 10 times for both cases and results presented for this example lies on the average 

of all results.   

In addition, it is very important to keep in mind that real I/O measurements contain noise 

and the effectiveness of WMGA should be examined in the presence of I/O noise to signal. 

Accordingly, for identification of case (b) the input forces and the simulated accelerations 

(assumed as measured ones or outputs) are also contaminated with 5% and 10% noise levels. 

Applying noise to the both inputs and outputs is a much more real and also difficult case 

compared to the common case of only output noise. For this purpose, the noise level is defined 

as the ratio of standard deviation of the zero-mean white Gaussian noise to the root-mean-

square value of the unpolluted time signals. It should be pointed out that, Case (c) is 

considered as the case of input noise as the noise on the measured ground motions is passed 

directly to the excitation. 

For comparison purpose, implementation of the Newmark-β method is also considered for 

fitness evaluation of all 6 species and designated by MGA strategy. Subsequently, the 

identification of Case (b) is conducted using WMGA and MGA strategies, comparatively. 
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To compare the results calculated by two strategies, there are two possible scenarios that may 

be proposed. The first is to compare the time taken in achieving a given accuracy, 

convergence rate or number of generations to be run. While, the second is to compare the 

accuracy, convergence rate or number of generations that can be achieved in a given time. In 

all examples presented in this research the former scenario is used by fixing the number of 

generations that are being conducted for WMGA and the algorithm of MGA will be stopped 

reaching the fixed value. Accordingly, the time taken after two strategies have been 

compared. 

It should be emphasized here that complete measurements of output data corresponding 

to all DOFs in a structure are somewhat impractical for real applications, and therefore any 

proposed strategy for structural identification such as WMGA should operate on incomplete 

measurements. For this purpose, four different sensor placements (SP) are proposed for 

measurements of Case (b) and Case (c) as are tabulated in Table 4.3. 

As displayed in Table 4.3, SP2 and SP4 correspond to Case (b) for identifying the stiffness 

values of known and unknown mass problems, where I/O data measurements are available. 

Whereas SP1 and SP3 correspond to the O-only identification of Case (c), where the mass is 

known and it is assumed that the measurements of only output data are available. The 

algorithm of incomplete measurement utilized in this research lies on dynamic condensation 

method. It is briefly discussed in Appendix A, and is compared against the static 

condensation scheme. This algorithm involves two steps. The first step is to set two tags to 

the all DOFs. The first tag refers to the master DOFs, those are being measured and are known 

as the available places (DOFs) for embedding sensors (referring to the sensor placement). 

The second tag consists of the omitted DOFs, where the measurements are not available on 

these DOFs.     
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Figure 4.10: MDOF shear building, (a) the entire three connected structures, (b) 

structural identification of the central structure under two known forces, (c) structure 

extracted for force identification. 

Accordingly, the structural property matrices i.e., mass, stiffness and damping are being 

condensed into smaller matrices due to the order of master DOFs and omitted DOFs as the 

second step of the condensation algorithm. For instance, levels 2, 4, 6 and 8 shown in Table 

4.3 for SP2, indicate the numbers of four measured DOFs among the all DOFs. It should be 

noted that, the DOFs corresponding to the external forces are also set as the master DOFs 

and will be considered through the matrix condensation approach. However, it is not 

essentially meaning that the measurements are available on forced DOFs, except for the force 
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Case (b): I/O measurement and fixed base. 

Case (c): O-only measurement and 3 MDOF shear systems are subjected to the base 

acceleration (stories are numbered from the bottom floor of MDOF). 
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identification problems where the measurements of forced DOFs and adjacent DOFs must 

be available.   

Table 4.2: WMGA parameters utilized for structural identification of the first 

numerical application. 

 
Known mass; Case 

(b) and (c) 

Unknown mass; Case 

(b) 

Pop-size 5×10 5×30 

Runs 3 3 

Generations 3×20 3×50 

Conducted SSRM after;   20 50 

Crossover rate 0.6 0.4 

Mutation rate  0.2 0.2 

Periodic migration (z1,z2)  

(z1,z2) 
5, 0.1-0.2 5, 0.1-0.2 

Window width 4 4 

Regeneration 3# 3 

Reintroduction 40 90 

Haar wavelet (2M=2), sampling rate 200 S/s. 

Legendre wavelet (2M=4), sampling rate 50 S/s. 

The second kind of Chebyshev wavelet (2M=8), sampling rate 50 S/s. 

      # Number of times that regeneration or other GA operations are taking place.  

        

Table 4.3: Sensor placement (SP) scenarios for data measurement. 

Sensor placement (SP) Known mass Unknown mass Level 

SP1 (O-only data) Yes No 1, 3, 4, 5, 6, 7, 9 

SP2 (I/O data) Yes Yes 2, 4, 6, 8 

SP3 (O-only data) Yes No Full measurement 

SP4 (I/O data) Yes Yes Full measurement 

 

 Case (b) – I/O Structural identification 

As it was described earlier, Case (b) involves I/O data structural identification of the 

MDOF shear building subjected to the known and concentrated forces 𝐹1
𝑏(𝑡) and 𝐹2

𝑏(𝑡) as 

shown in Figure 4.10. The Eigen value problem governed to the central building is solved 

and the natural frequencies of 1.05, 3.07 and 14 Hz are computed corresponding to the first, 

second and the ninth modes. The first two modal periods are calculated as 0.95 sec and 0.33 

sec, respectively. In addition, actual damping is provided as Rayleigh damping by setting 
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damping ratio of 2% for the first two modes resulting 𝛼=0.4942 and 𝛽=0.0039. Furthermore, 

in order to simulate the responses of the structure and then to obtain the measured 

accelerations the sinusoidal forces are selected as two random and multi-sine forces to have 

an amplitude between [-2000, 2000] N. The random multi-sine forces are being generated 

containing the frequency components of 1-25 Hz to ensure that all modes are being vibrated. 

For the purpose of structural identification of Case (b), firstly the known mass problem is 

considered, namely 11 unknowns are treated as unknown values to be identified including 

𝑘1 − 𝑘9,  α and β. Secondly, the effectiveness of WMGA strategy is evaluated for operating 

on the unknown mass problems. Basically, the problem of identifying both mass and stiffness 

is much more complicated, where 20 unknowns are treated as unknown parameters to be 

identified including 𝑘1 − 𝑘9, 𝑚1 −𝑚9,  α and β. The reason for this is due to the facts that 

not only the number of unknowns is increased but also different combinations of mass and 

stiffness can produce the same natural frequencies and mode shapes. Consequently, similar 

response characteristics will be existed. To clarify this argument, two simple SDOF systems 

can be considered. The first system has the mass of 1 kg and stiffness of 900 N/m, and the 

second one has the mass of 5 kg and stiffness of 4.5 kN/m. It is easily noted that both 

structures have a frequency of 30 rad/s and would display the same vibration characteristics. 

Undoubtedly, only by conducting a reasonably comprehensive forced vibration test these 

contents can be separated and identified. As the unknown mass problems pose a greater 

challenge, it is found that the WMGA parameters utilized for unknown mass problems are 

increased (except for crossover rate). Increasing the WMGA parameters leads to better 

certainty in the mean and a robust solution. The exception for this is the reduction in 

crossover rate of unknown mass problems. It is logical to the crossover rate being decreased 

in unknown mass problems, where many crossovers occurring in the mass portion of an 

individual and will have little effect.  
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Before starting the identification strategy, the sensor placement has to be considered. 

Practically, sensor placement refers to finding the best places for embedding the limited 

number of available sensors, whereby these places provide the optimum and accurate capture 

of the structural responses (Appendix B). In this example the program of sensor placement 

is run for 4 and 7 number of available sensors and the best scenarios are obtained for SP1 

and SP2, respectively.  

The structural identification of Case (b) is carried out for known and unknown mass 

problems using WMGA and MGA using unpolluted signals (noise free). Accordingly, results 

are comparatively plotted in Figure 4.11 regarding to the different sensor placements SP2 

and SP4.                    

 

 
Figure 4.11: Total average error (%) in stiffness values and computation time involved 

for different sensor placements (known and unknown mass identification). 

 

  The first observation from Figure 4.11 lies on the outstanding results identified by 

WMGA strategy, when all DOFs are measured (SP4) for the known mass problem. In 

addition, it is shown that the CPU time consumption after WMGA is remarkably lesser than 

that of MGA. As was mentioned earlier, MGA strategy was adopted using time steps of 0.005 
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sec for the 5 sec of analysis. With reference to Chapter 3 of this study, the optimum fitness 

evaluations, and therefore the cost-effective identification were achieved using adaptive 

wavelets through the proposed WMGA strategy for different sampling rates. In contrast, 

MGA utilized common Newmark-β method at 200 sampling rates to perform fitness 

evaluations of 6 species and resulted in a costly identification approach. However, because 

of the robust construction of the proposed GA strategy (multi-species), the identified 

parameters by implementing WMGA and MGA were sufficiently accurate. On the other 

hand, despite the fact that the unknown mass problems are inherently difficult, this figure 

illustrates the acceptable results for WMGA strategy. Overall, Figure 4.11 demonstrates the 

computational efficiency and robustness of WMGA strategy for I/O identification where the 

most optimum and reliable results were computed with this method. Furthermore, the total 

average error in identified mass values and damping parameters compared with actual ones 

are displayed in Table 4.4 corresponding to known and unknown mass problems of Case (b).    

Table 4.4: Total average error in mass and damping values for Case (b). 

 Known mass Unknown mass 

Error in identified mass values _ 25.63% 

Error in identified damping values 1.85% 1.99% 

 

Results displayed in Table 4.4 are the average of results after ten times running the 

WMGA algorithm. It is seen that, the average error in mass values reached to about 26% for 

unknown mass problems. The identification of unknown mass structure is considered as very 

complicated and as such, the results displayed in the table can be interpreted as excellent 

results. The next step, of course is the quality of identification strategy using contaminated 

signals (noise-to-signal). This is investigated and the results are presented in Table 4.5 

corresponding to the stiffness identification of Case (b) considering different noise levels to 

the I/O signals.     
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Table 4.5: Effect of noise in stiffness identification; Case (b) and SP4. 

 Total average error in identified stiffness (%) 

 WMGA MGA 

Noise level Known mass Unknown mass Known mass Unknown mass 

0% 0.35 7.35 0.48 10.06 

5% 2.79 10.16 8.47 19.73 

10% 5.93 14.22 15.01 25.99 

 

Generally, Table 4.5 shows that noise causes error in identified values to increase 

approximately in proportion to the applied noise level. Nevertheless, the identified stiffness 

values for both known and unknown mass systems are sufficiently accurate (in terms of error 

evaluation). Data in Table 4.5 demonstrate that as even under large 10% noise, stiffness 

values were identified with reasonable precision. This table also illustrates the efficiency of 

WMGA strategy compared with MGA, where the less effect of noise is recorded for the 

proposed wavelet-based method. The reason for this lies on the fact that WMGA strategy 

acts as a filter to de-noise data concurrent with the process of analysis. It is very important to 

keep in mind that, there is no filtering (de-noising) approach is conducted prior to analysis 

and the underlying key point of the proposed strategy is revealed here. In other words, using 

adaptive wavelet functions not only I/O data but also the extracted frequency contents from 

the inherent characteristics of the system are being de-noised due to different scales of 

considered wavelets. As a consequence, the minimum effect of the noise-to-signal is 

achieved. 

 Case (c) – Output-only Structural identification 

This case involves output-only (O-only) identification of Case (c) shown in Figure 4.10, 

where the mass parameters are known as presented in this figure. The responses of the entire 

system are computed to the first 5 sec of El-Centro base excitation using time step of 0.005 

sec. Accordingly, the accelerations corresponding to DOFs prescribed for SP1 and SP3 of 
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the central shear system of Case (c) are extracted for use in identification. The first 5 sec 

time-histories of acceleration and displacement of the 9th, 6th and 4th stories are obtained using 

average acceleration of Newmark-β family and results are depicted in Figure 4.12. 

Practically, the link bridges shown in Figure 4.10 cause coupling between the shear 

buildings which, when considering the only single central building, they cannot be readily 

quantified. The rational for this example is to use the proposed WMGA strategy to identify 

the coupling forces without any information of the other two shear systems. In this regard, 

the stiffness values of the central building, damping parameters, 𝐹1
𝑐(𝑡) and 𝐹2

𝑐(𝑡) as the 

coupling forces from adjacent shear systems are treated as unknown parameters to be 

identified. WMGA parameters utilized for this case are as displayed in Table 4.2 for known 

mass problem. Subsequently, average errors in output-only system identification of Case (c) 

are obtained after 10 times running the program as displayed in Table 4.6. 

Results shown in Table 4.6 demonstrates that the output-only results were outstanding. It 

can be seen that the accomplished mean error in stiffness value was only 1.13% and 0.28% 

for SP1 and SP3, respectively. This arises from the fact that, by identifying unknown forces, 

rather than trying to measure them, the strategy is able to avoid error that would otherwise 

be passed through the simulation. Furthermore, for the identification purpose the WMGA 

strategy obtains the time-history of unknown input data (forces). The time-history of 

identified forces 𝐹1
𝑐(𝑡) and 𝐹2

𝑐(𝑡) are plotted in Figure 4.13 compared to the actual forces. 

Table 4.6: Mean errors in system identification for different sensor 

placements (SP); output-only data measurement of Case (c). 

 Total average error (%) 

 Identified force 

Identified stiffness values SP 𝐹1
𝑐(𝑡) 

 

𝐹2
𝑐(𝑡) 

 SP1 8.67 11.93 1.13 

SP3 1.54 3.09 0.28 
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Figure 4.12: Simulated time-history of acceleration (Acc) and displacement (Disp) 

corresponding to the 9th, 6th and 4th levels; the full measurement of Case (c). 
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Figure 4.13: Force identification of Case (c) shown in Figure 4.10 (O-only and full 

measurement). 

 

It is shown in Figure 4.13 that the identified forces matched the exact forces almost 

exactly. The figure demonstrates that, a reasonable estimate of the input forces is achieved. 

In addition, the wide-band frequency variation shown in the figure is due to the noise in 

measured accelerations that is transferred to the force data through the inertia term in the 

dynamic equilibrium. It should be kept in mind that, this effect can be reduced by filtering or 

re-computing forces using corrected accelerations. Finally, Figure 4.13 and Table 4.6 shows 

that identified 𝐹1
𝑐(𝑡) is more accurate than that of 𝐹2

𝑐(𝑡). This is most likely due to the fact 

that 𝐹1
𝑐(𝑡) is larger and excites the location that causes a larger influence than 𝐹2

𝑐(𝑡) on the 

measured response of the structure. Finally, stiffness identification results for story 1-9 

corresponding to SP1 and SP3 are provided in Appendix E.4.     
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4.6.2  A 2D truss structure 

Figure 4.14 shows a 2D Parker truss structure composed of 12 pin joints, 21 I-shaped truss 

elements and 21 DOFs. All characteristics of this structure as well as cross-sectional area, 

mass density and the modulus of elasticity are kept constant for all members. To calculate 

the effective length of elements, 0.03 m is deducted from axis-to-axis of joints. The natural 

frequencies of 58 and 1039.6 Hz are initially calculated using the stiffness values for intact 

structure corresponding to the first and 21st modes, respectively. For comparison purpose, 

results of WMGA have been compared with those calculated from only the first 3 species 

considered by employing Newmark method for the fitness evaluation and referred to MGA 

in this example. It is anticipated that MGA strategy used here requires more generations to 

be conducted for gaining the prescribed convergence rate. It is to be emphasized that, the 

large sampling rate of 1000 S/s (∆𝑡=0.001 sec) is utilized for accurate FE of MGA by using 

Newmark method. Additionally, the small sampling rates of 100 S/s (∆𝑡=0.01 sec) and 20 

S/s (∆𝑡=0.05 sec) are utilized to simulate accelerations (Fita) and jerk (Fitj) using the proposed 

wavelet-based scheme for structural simulation, respectively. For instance, considering the 

total time of 10 sec measurements of noise-free I/O responses, relatively 10000, 1000 and 

only 200 points have been evaluated for FE of each genetic individual. The WMGA 

parameters utilized in this example are tabulated in Table 4.7. 
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Table 4.7: WMGA parameters utilized in Example 4.6.2. 

 Known mass Unknown mass 

Pop-size 5×20 5×30 

Runs 3 3 

Generations 3×20 3×50 

Conducted SSRM after;   20 50 

Crossover rate 0.6 0.4 

Mutation rate  0.2 0.2 

Periodic migration (z1,z2) 5, 0.1-0.2 5, 0.1-0.2 

Window width 4 4 

Regeneration 3 3 

Reintroduction 40 90 

Haar wavelet (2M=2), sampling rate 100 S/s. 

Legendre wavelet (2M=4), sampling rate 100 S/s. 

The second kind of Chebyshev wavelet (2M=8), sampling rate 100 S/s. 

 

 

The theoretical stiffness of elements (E×Area/Length) varies from 12.75e-4 to 21.4e-4 

kN/m, thus the lower and upper limits have been selected as 0.1 and 3 times the theoretical 

stiffness, respectively. It should be pointed out that, for each truss element the axial rigidity 

(E×Area) is treated as unknown stiffness. For the case of the unknown mass identification 

this ranges are also utilized for lower and upper search limits of the mass. In addition, the 

search limits of damping corresponding to the first two modes are set as 0 and 1. 

Subsequently, I/O noise-free signals have been considered for both structural identification 

as well as damage detection in this example. Two different sensor placement scenarios are 

proposed and tabulated in Table 4.8, to facilitate structural identification and damage 

detection strategies. Furthermore, for current test conducted in this example, identification is 

carried out 10 times using fresh input force and noise-free data and results presented here 

stand for the best result.   
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Figure 4.14: A 2D camel back pin-jointed truss structure considered for Example 4.6.2. 

 

 

Table 4.8: Sensor placement (SP) scenarios proposed for Example 4.6.2. 

SP Node number X Y 

SP1 2, 3, 6, 7, 10, 11 Yes Yes 

SP2 Full measurement   

 

The identification of this structure is conducted using the proposed evolutionary process 
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stiffness for all DOFs is computed for theoretical stiffness (KTh) and the identified one (KId) 

as: 100×[ (KTh- KId)/ KTh]/DOFs. This value is plotted in Figure 4.15 for known mass and 

unknown mass identification corresponding to the different sensor placement scenarios. The 

total generations are assigned as in Table 4.7, thus the procedure is stopped achieving the 

total number of generations. Furthermore, for current test conducted in this example, 

identification is carried out 5 times using free signal-to-noise data and results presented here 

stand for the best result.   

 
 

 

 
Figure 4.15: The convergence history of percentile maximum error in identification of 

stiffness for WMGA and MGA. 
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The first notable consideration about the comparison of convergence history of MGA and 

WMGA deals with the highest speed of convergence due to WMGA. Basically, the 

prescribed accuracy of MGA is achieved after roughly 300 generations for this unknown 

mass problem, and for this reason there is a considerable difference between percentile 

maximum errors recorded for these two strategies. It is clear from the figure that for both 

known and unknown mass problems, the exploration phase (using Haar wavelet before the 

first SSRM) is optimally achieved by searching around local optimal solutions. Moreover, it 

is seen that the exploitation phase is widely focused on the second (using LW) and third 

SSRM (using SCW) where the small variations around global optima are existed. 

Significantly, Figure 4.15 illustrates sufficiently desirable convergence of SP1 scenario 

compared with SP2 (treated as the reference), however, only 29% DOFs were measured. 

Furthermore, one has to take into account that, however the evaluation of the convergence 

rate of an evolutionary strategy is necessary; it is not basically sufficient. The complementary 

evaluation should be carried out on the computational efficiency and relatively computational 

cost of the proposed strategy. One of the interesting observations for use of WMGA was 

recording the optimum cost of analysis compared to MGA (similarly, the procedure was 

stopped once it reached to the total generations of WMGA). Subsequently, computational 

time involved and the percentile total average of maximum errors are depicted in Figure 4.16. 
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Figure 4.16: The percentile total average of maximum errors and computation time 

involved for SGA, WMGA and MGA. 
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for the case of unknown mass problem (42 unknowns to be identified) the highest accuracies 

of (in term of errors) about 8.8% (for SP2) and 15.32% (for SP1) were measured by recording 

computational time of 42.51 and 36.38 min, respectively. In view of greater difficulty for 

unknown mass problems, computational cost of about 43 min is surprisingly improved 

compared with that of MGA about 60 min. This arises from the fact that by using accurate 

wavelet functions the wide-band frequency contents are optimally captured on adaptive 

collocation points especially using small sampling rates. Finally, in order to assess the 

performance of the damage detection strategy and to evaluate the effect of wavelet functions 

to detect the location and magnitude of damage, 9 scenarios are proposed for the presence of 

damage on structural elements as tabulated in Table 4.9.  

 

Table 4.9: Damage scenarios (DS) imposed to structural elements highlighted in Figure 

4.14. 

 Scenario 

 1 2 3 4 5 6 7 8 9 

Element 4 4 4 18,4 18,4 18,4 4,10,14,16 4,10,14,16 4,10,14,16 

Stiffness 

reduction 

(%) 

5 10 25 5 10 25 5 10 25 

On/Off off off on off on off on off off 

  

 

Initially, the undamaged structure is treated as unknown mass problem and dynamic 

parameters are identified using WMGA. At the next stage, the identified mass is fixed for 

identification of known mass problem and the location and magnitude of damages are 

detected by the means of damage index in structural elements. The results of damage 

detection are presented in Table 4.10 after 10 times repeats. 
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Table 4.10: Damage detection of 2D truss structure shown in Figure 4.14. 

  Damage scenario 

  1 2 3 4 5 6 7 8 9 

D
et

ec
ti

o
n
 s

u
cc

es
s 

(%
) 

af
te

r 
1
0
 r

ep
ea

ts
 

SP1 

Location 90 100 100 70 70 90 80 70 80 

Magnitude 75 93 100 71 90 97 68 73 98 

           

SP2 
Location 100 100 100 80 100 100 90 80 90 

Magnitude 80 95 100 78 100 100 76 81 98 

            

M
ed

ia
n
 v

al
u
e 

o
f 

ab
so

lu
te

 e
rr

o
r 

in
 

d
am

ag
e 

SP1 0.21 0.16 0.06 0.25 0.12 0.02 0.47 0.25 0.11 

SP2 0.17 0.14 0.03 0.23 0.09 0.01 0.37 0.24 0.09 

  

  

In most of cases, it is observed that one bad result alters the mean value and the values of 

median may provide better indication of predicted efficiency. In addition, it is found that the 

false detection is very probable. In this regards, the damage detection strategy is conducted 

10 times for this structure to be of the practical use, where in actual cases there is no 

information on exact values. The proficiency of WMGA for damage detection of single 

damages even 5% (both for location and magnitude detection) is well demonstrated in Table 

4.10. Significantly, Table 4.10 shows that WMGR accurately detects the location and 

magnitude of up to four damaged elements for online scenarios with even 5% reduction of 

stiffness (damage scenario 7). The reason for this lies on the improved fitness evaluation 

using the optimum quantity of jerk. Our experiences consistently have confirmed that 

applying the same external load for identification of damaged and undamaged structure 

yields more satisfactory results for detection of the location and magnitude of damage. 

Univ
ers

ity
 of

 M
ala

ya



 

156 

 

4.6.3  A large-scaled 3D truss structure 

The identification and damage detection of a large-scaled and double-layered hexagonal 

space structure are considered for this application. The geometry of this structure is shown 

in Figure 4.17. This structure comprises 196 truss elements, 56 pinned joints, 15 fixed 

supports, and therefore 123 DOFs. The exact values of the cross-sectional area A= 0.000662 

m2, mass density of 𝜌=7850 kg/m3 as well as the modulus of elasticity E=210 GPa are kept 

constant for all members. This structure is divided into 8 panel zones for the purpose of better 

indication of sub-structural elements. Panel 𝑇𝐿
𝑁, represents the top layer, northen and left-

hand panel. Similarly, the rest of the structure is assigned relevant to the location of panels 

and elements (shown in Figure 4.17). The natutural frequencies computed for exact values 

are 101.36 and 1310.55 Hz corresponding to the first and 123rd modes of this structure. It is 

to be noted that, the shortest period of this structure is 0.00076 sec, hence the most accurate 

simulation of responses of this structure may be achived by selecting at least 1428 sampling 

rates. This emphasizes the underlying keypoint of the proposed method (WMGA), whereby 

the small sampling rates of 100 S/s (∆𝑡=0.01 sec) and 20 S/s (∆𝑡=0.05 sec) are utilized to 

simulate acceleration (Fita) and jerk (Fitj), respectively. In contrast, the sampling rate of 1000 

S/s (∆𝑡=0.001 sec) is utilized for the reasonable FE of Runge-Kutta algorithm to solve second 

ordered differential equation of motion (using ode45 MATLAB command and is referred to 

RMGA). In referring to the previous chapter, even by selecting long time intervals broad 

frequency components will be collectively captured (integrated) by adaptive collocations of 

wavelet, resulting in a cost-effective procedure for dynamic simulation of large-scaled 

structures. Subsequently, to accomplish reliable results as the resultant of a successful 

identification and damage detection, the total time of 15 sec is considered to either simulate 

responses or evaluate fitness functions. The WMGA parameters utilized in this example are 
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displayed in Table 4.11. The axial rigidity is treated as unknown stiffness and the limits for 

the stiffness of truss elements (E×Area) are set as 0.5-2 times the theoretical stiffness. 

Fundamentally, the proposed strategy requires integration of accelerations, thus it is prefered 

to utilize a regular and smooth random force for this application rather than a very irregular 

and complex one. In this regard, a random multi-sinusoidal loading of 100-1000 cycle per 

second (Hz) with diferent magnitudes is applied as the concentrated nodal loading following 

the loading scenarios tabulated in Table 4.12. As it is shown in Table 4.12, the I/O signals 

are numerically contaminated with noise. 

Structural identification is conducted using WMGA evolutionary strategy with respect to 

the various loading (Lo) and sensor placement (SP tabulated in Table 4.14) scenarios and the 

achieved computational efficiency and convergence rate have been compared with RMGA. 

The value of percentile maximum error and total computation time involved plotted in Figure 

4.18 are considered as the indications of convergence rate and computational compatancy, 

respectively. 

The notable observation on Figure 4.18 lies on the accurate identification strategy of this 

large-scaled structure by WMGA and RMGA, in case that the majority of DOFs are being 

excited. However, this loading scenario (Lo4) is in fact impractical in actual applications. It 

is overtly shown that, the accuracy of results are still desirable (about 20% of maximum error) 

considering SP1 (19.7% measured DOFs) in view of 10% noise imposed. Nonetheless, it is 

observed that according to Lo2 (5% noise) the maximum error returns the worst precision of 

results. This is because of the DOFs considered for this loading scenario. 
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Figure 4.17: The large-scaled hexagonal space structure under concentrated loadings 

considered for Example 4.6.3. 
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Table 4.11: WMGA parameters utilized in Example 4.6.3. 

 Known mass 

Pop-size 5×50 

Runs 3 

Generations 3×70 

Conducted SSRM after;   70 

Crossover rate 0.8 

Mutation rate  0.1 

Periodic migration (z1,z2) 5, 0.1-0.2 

Window width 4 

Regeneration 3 

Reintroduction 120 

Haar wavelet (2M=2), sampling rate 100 S/s. 

Legendre wavelet (2M=4), sampling rate 100 S/s. 

The second kind of Chebyshev wavelet (2M=8), sampling rate 100 S/s. 

 

 

Table 4.12: Loading scenarios (Lo) applied to the 3D truss system. 

Loading 

(Lo) 
Node number Noise ratio (%) Magnitude (kN) Direction 

Lo1 6,9,11,14 10 2 Z 

Lo2 35,12,54,21 5 2 Z 

Lo3 
6,9,11,14,19,53, 

49,17,23,48,22,16 
free 1 Z 

 

Lo4 

19,53,49,17,23,48, 

22,16,35,13,12, 

24,9,6,28,21,14, 

11,45,46,34 

free 0.5 X,Y,Z 
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Figure 4.18: The percentile maximum errors and computation time involved recorded 

for RMGA and WMGA corresponding to different sensor placement (SP) and loading 

(Lo) scenarios. 

 

From computational cost point of view this figure highlights the competency of WMGA, 

where, it generally records much better time consumption than RMGA. This can be 

interpreted as the better computational efficiency of this strategy. However, results depicted 

in this figure illustrate almost similar convergence rate for both strategies. Assumption of 

SP5 as the reference for comparison (100% DOFs are measured), it can be seen that the 

variations in maximum error measurement is not really noticeable. It can be concluded that, 
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from the view of the convergence rate in only structural identification (and not damage 

detection) RMGA can compete with WMGA. Eventually, to assess the applicability and 

effectiveness of WMGA for damage detection of large-scaled structures, two damage 

scenarios (DS) have been proposed as tabulated in Table 4.13. It is observed that, damage is 

imposed on only 3 of 196 elements (about 1.5%) and 3% of all elements due to DS1 and 

DS2, respectively. Moreover, DS1 is proposed on elements placed at the northern and the 

left-hand panel zone, while, elements of DS2 are distributed in the whole structure.  

Table 4.13: Damage scenarios (DS) imposed to the 3D truss shown in Figure 4.17. 

DS 
First 

node 
Element 

End 

node 

Reduction 

(%) 
Top/Bottom/Diag. Off/On 

DS1 

36 68 52 30 Bottom (N,L) Off 

20 33 49 25 Top (N,L) Off 

13 29 53 20 Diag. (N,L) On 

       

DS2 

35 46 50 25 Bottom (N,L) On 

22 37 55 25 Top (S,R) Off 

12 14 17 20 Diag. (N,R) Off 

34 47 48 20 Diag. (S,R) On 

5 8 10 30 Top (N,R) On 

21 39 45 30 Bottom (S,L) Off 

Note: Reduction in stiffness (%) represents the magnitude of damage; north (N) and 

left (L) imply the position of panel zone in structure. 

 

In addition, sensor placement scenarios (SP) that previously utilized for identification are 

tabulated in Table 4.14 corresponding to DS1 and DS2 for damage detection. Finally, damage 

detection is carried out for considered large-scaled structure by implementing WMGA 

(known mass). It should be pointed out that, there are several sub-structure techniques 

available to effectively analysis this system. In this study, reduction of the size of 
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characteristic’s matrices (i.e., stiffness, mass and damping) is governed by the sensor 

placement scenarios (measured and omitted DOFs), initially. Later, damage detection 

strategy proceeds, and by fixing identified parameters for undamaged members, the size of 

matrices is progressively reduced. To overcome the issue of false detection, a higher safety 

factor (threshold) is presumed to distinguish damaged and undamaged members. The 

identification and damage detection strategy are run 5 times and the percentile value of 

success in detecting location as well as the magnitude of damages are comparatively 

described in Figure 4.19 with respect to the various loading (Lo) and damage scenarios (DS).     

  

Table 4.14: Sensor placement (SP) scenarios utilized for identification and damage 

detection of Example 4.6.3. 

DS SP Panel zone 

  𝑇𝐿
𝑁 𝑇𝑅

𝑁 𝑇𝐿
𝑆 𝑇𝑅

𝑆 𝐵𝐿
𝑁 𝐵𝑅

𝑁 𝐵𝐿
𝑆 𝐵𝑅

𝑆 

  Node number (X, Y and Z) 

DS1 

SP1 1,20,53 10,17,26 
7,8,

22 

16,48,

56 

13,24,

50 

6,12, 

32 

14,44,

46 

11,27,

54 

SP2 

1,3,19, 

20,29, 

30,49,53 

10,15,17 2,8 56 

9,13, 

24, 

35,50 

32,6, 

28 
21 27 

          

DS2 

SP3 1,49,53 10,15,17 
7,8,

22 

16,48,

56 

13,24,

50 

6,12, 

32 

14,44,

46 

27,34,

54 

SP4 19,20,29 4,30,53 
2,8,

23 

22,48,

55 

9,13, 

35 

12,28,

32 

21,45,

46 

11,34,

54 

          

DS1,

DS2 
SP5 Full measurement 

Note: 𝑇𝑅
𝑁 represents the top (T) northern (N) and right-hand panel, 𝐵𝐿

𝑆: the bottom (B) 

southern (S) and left (L) side panel, DS: damage scenario and SP: sensor placement 

scenario. 
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In overall, it is observed that the detection of magnitude and especially location of damage 

for online scenarios are remarkably successful. For instance, in Figure 4.19 (a) and (b) in the 

cases where Lo1 (in view of 10% noise imposed) is applied on SP1-SP4 the satisfactorily 

high success is recorded for online damages. This arises from the fact that the optimum 

evaluation of the time-history of jerk considerably improves the proposed value of fitness for 

damages those were imposed online. In addition, Figure 4.19 shows much adequate success 

in detection of diagonal members rather than that of horizontal members on top or bottom 

layer. Consequently, the superiority of WMGA for damage detection is demonstrated in this 

figure, where 80% success in detecting the location and 60 % success in detecting the 

magnitude of damage for about 3% members are achieved by the measurement of only 20% 

DOFs of such large-scaled structures. 

4.7  Chapter summary 

In this Chapter, the wavelet-based strategy introduced in Chapter 3 for structural simulation was 

extended for structural identification and damage detection using enhanced genetic 

algorithms. An optimum operation was presented for sensitivity analysis of accelerations 

capable of using different basis functions (namely, jerk analysis), initially. It was shown that, 

the proposed operation of derivative is very sensitive to small changes of accelerations even 

selecting considerably small sampling rates (long time intervals). It was confirmed that, 

because of the property of unconditional stability, from the computational efficiency point of 

view the fitness evaluation is significantly improved by using the longer time intervals. The 

emphasis was on the precisely capturing broad frequency contents with adaptive collocation 

points of wavelets.  
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Figure 4.19: Damage detection success % (location and magnitude) using WMGA for different sensor placements (SP), loadings 

(Lo) and damage scenarios (DS); (a) DS1, (b) DS2, (c) DS2 (presented in Tables 4.13 and 4.14). 
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Later, the wavelet-based scheme was implemented through a modified GA-strategy for 

structural identification and damage detection. In this regard, the fitness evaluation (known 

as the core of GA) was developed toward the most optimum strategy. As a consequence, a 

combined multi-species GA was adopted through a compatible search space reduction 

algorithm (SSRM) suitable for large-scaled structural identification to identify unknown 

stiffness, mass and damping ratios. In addition, a predictor/corrector approach was proposed 

for output-only identification using WMGA strategy in time domain. The strategy works by 

simultaneously calculating the input forces as the structural parameters (stiffness and 

damping) were identified.  

Eventually, the proposed evolutionary process was extended to the structural damage 

detection through a progressive calibrating algorithm. The analysis of convergence and 

computational efficiency were introduced as the necessary and sufficient criterions to 

evaluate evolutionary procedures. Accordingly, the convergence rate of the proposed strategy 

was examined on three numerical applications. It was inferred that, the GA-based exploration 

and exploitation phases are optimally satisfied by the used of improved SSRM, and therefore 

a great convergence rate is accomplished. In addition, the lesser effect of I/O noise to the 

signal were recorded for the proposed WMGA.  

On the other hand, computational cost (time taken to solve the problems) was investigated 

in the view of computational competency. It was concluded that, especially for large-scaled 

structures the identification of numerous unknowns is optimally achieved by the remarkably 

lesser computation time involved and resulting the very cost-effective strategy compared 

with existing algorithms. Damage detection was conducted and results demonstrated the 

superiority of the proposed method especially for online scenarios. It was also shown that, 

the proposed method gave the minimum false detection for online imposed damages, where 

the jerk evaluation gained the much better indication of damage rather than acceleration 
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itself. Consequently, the proposed algorithm can be considered as a sufficiently reliable 

strategy especially for long time identification and online assessment of large-scaled 

structures.
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CHAPTER 5: EXPERIMENTAL VERIFICATION 

5.1  Introduction   

In order to investigate the effectiveness and capability of the proposed structural 

identification and damage detection strategies in Chapter 4 on more realistic data, three 

structural models have been constructed and tested in the laboratory for different scenarios 

of loading and damages. The first experiment involves the output-only identification of a four 

story MDOF system. The aforesaid system is designed with rigid beams (provided by rigid 

Plexiglas) and relatively flexible aluminum columns (thin aluminum columns) in order to 

invoke shear building behavior. The structure is subjected to base excitation and the force 

identification is also considered along with identification of stiffness values and damping 

parameters. The second structure is also a four story shear building constructed with thick 

aluminum columns and rigid beams. This MDOF system is subjected to different nodal 

excitations, and structural identification of known and unknown mass systems is considered 

on intact structure first. Later, the damage detection strategy proposed in Chapter 4 is 

conducted to detect the location and the magnitude of damages imposed to the structure. 

Eventually, the third experiment involves a 2D steel and pin-jointed truss designed with 

rectangle hollow sections as horizontal and vertical elements and double strips used for 

diagonal members. The structural identification and damage detection of this system are 

considered for different scenarios. Accordingly, for the last two experiments I/O data 

measurements are available. As there is no online damage induced to the structures, the only 

first term of Equation (4.21) is considered for fitness evaluations and the effect of jerk 

evaluation is ignored. Finally, the results obtained from the experiments are presented and 

discussed in subsequent sub-sections.  
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5.2  Experiment 1 - A MDOF shear structure subjected to the base acceleration     

Figure 5.1 illustrates the schematic view of a four story MDOF shear building considered 

in the first experiment. As it is shown in the figure, this structure is constructed with 8 

aluminum columns which are fixed to the 4 rigid beams (provided with Plexiglas). The width 

of columns are taken 50 times the thickness in order to invoke ideal behavior of shear 

building. The dimensions of structural elements are given in the figure in centimeter. This 

structure is fixed at the base for impact test. Moreover, the mass of each floor is estimated by 

lumping the distributed mass of the relevant floor (i.e., the mass of beam, column and 

connecter screws) added with the external mass provided by two different weights at the 2nd 

and 4th levels. Measured values of mass are rounded off to the nearest 10 grams. Accordingly, 

the diagonal mass matrix of the MDOF system is shown in the figure. The beams and beam-

column connections are assumed 100% rigid so that the theoretical stiffness for each story 

may be calculated for the column height (𝐻=centre-to-centre height) as; 𝑘 = 24𝐸𝐼/𝐻3.  In 

addition, the stiffness matrix of the considered MDOF shear building is obtained as follows: 

[𝐾] = [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘3 + 𝑘4 −𝑘4
0 0 −𝑘4 𝑘4

]  
(5.1) 

The response of the considered MDOF system was measured using four ICP 

accelerometers (KISTLER magnetic piezoelectric sensors) attached to each floor. The 

sensors utilized for the first and second experiments are described in Table 5.4. In addition, 

the mass of sensors (4.01-4.19 grams) were ignored. However, as the structure was very 

flexible, hence it was sensitive to the asymmetric mass values, and therefore another four 

sensors were attached to the structure to only balance the actual mass at both sides of structure 

as shown in Figure 5.1(b). 
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Figure 5.1: The schematic view of test setup in lab for output-only identification of the 

flexible MDOF shear system, (a) large shaking MDOF shear system at the base (S(t): base 

acceleration), (b) fixed support at the base for impact test, (c) dimensions (cm). 
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For the purpose of output-only identification, this structure was fixed on a flexible MDOF 

shear building shown in Figure 5.1(a). Subsequently, the time-history of acceleration S(t) 

was measured at the top surface of the base structure and was assumed to be the records of 

base excitation for the main experiment. 

5.2.1  Preliminary measurements and calculations 

As a reference for comparison of the calculated results, and in order to properly perform 

the identification and therefore structural health monitoring tests, a set of preliminary tests 

were first conducted. This sub-section contains static tests to predict the as-built stiffness of 

the structure (static), as well as several impact tests to extract the as-built natural frequencies. 

Taking 𝐸 as 69 GPa for the modulus of elasticity of the aluminum columns, the theoretical 

stiffness value of 𝑘 =3455.09 N/m will be calculated for each story. As there was no 

information available on the actual material and also the as-built stiffness of the considered 

structure, static tests were conducted. The schematic view of static tests performed in the lab 

is shown in Figure 5.2. As apparent in the figure, the first story of the considered system was 

mounted horizontally to a fixed vertical support. Different weights were hung from the first 

story while displacement transducer recorded the displacement. For this purpose, non-contact 

laser sensor (KEYENCE; precision 0.01mm) was utilized to record the displacements due to 

the different weights added. 
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Figure 5.2: The schematic view of static test performed in lab for the first MDOF 

system (O-only identification). 

  

 

Accordingly, the as-built stiffness of one story was determined from the slope of the 

regression line obtained from different load-displacement points measured for several 

different weights applied. In this regard, the stiffness value of 𝑘 =2421.18 N/m was 

measured per story from the static tests. It was recognized that the difference between the 

static and theoretical stiffness was noticeable. This could be due to the fact that the actual 

material properties of considered structure were not available in lab. However, the stiffness 

value obtained from the static tests was logically more accurate than that of the theoretical 

values. 

The impact tests were performed in order to compare stiffness values. Initially, the 

structure was fixed to a rigid base as shown in Figure 5.1(b). Later, the considered MDOF 

shear structure was excited by a hammer and the response recorded with sensors 
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(accelerometers) at each story using a 16 channel digital data analyzer (OROS36) at a 

sampling rate of 2.048 kS/s. In addition, the structural frequencies were extracted by 

implementing the fast Fourier transform (FFT) to convert the response signal from time 

domain into the frequency domain (power spectrum of the signal). The natural frequencies 

obtained from the solution of eigenvalue problems adopted for theoretical and static stiffness 

values and those determined from the power spectrum of response are tabulated in Table 5.1 

corresponding to the four modes of the MDOF system. It was observed that the response at 

other levels and for other impacts, identified almost the same frequencies. However, data in 

Table 5.1 correspond to the response at the 4th story due to impact at the same story.  

         

Table 5.1: Calculated and measured natural frequencies of MDOF shear structure. 

 

Theoretical stiffness = 

3455.09 (N/m) per 

story 

Static stiffness = 

2421.18 (N/m) per 

story 

Measured frequencies 

from power spectrum 

of response 

 f (Hz) Period (s) f (Hz) Period (s) f (Hz) Period (s) 

Mode 1 3.12 0.32 2.61 0.38 2.59 0.38 

Mode 2 7.85 0.13 6.57 0.15 6.55 0.15 

Mode 3 24.81 0.04 20.77 0.05 20.72 0.05 

Mode 4 25.83 0.039 21.63 0.046 21.08 0.047 

Note: The mass is lumped at each story as shown in Figure 5.1 for all 3 cases considered.  

 

 

Table 5.1 shows that, the natural frequencies extracted from the impact test and those 

obtained from the static measurements were reasonably close. Consequently, the stiffness 

value determined from static tests will be considered as the actual stiffness of the structural 

elements and this should form the reference value of stiffness for further comparisons.    
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5.2.2  Main identification test 

The main objective of this experiment is to evaluate the applicability and efficiency of 

WMGA strategy proposed in previous chapter for structural identification problems when 

output-only measurements are available. In other words, the stiffness and damping 

parameters of each story are treated as unknown values to be identified while the 

measurement of input forces is not available. The base structure was excited manually for 5 

sec in the same direction with the attached MDOF shear building (Figure 5.1). As both 

systems are supposed to be shear building structures, it is reasonable to transfer the 

acceleration at the base structure (shaking MDOF system) to the dynamic equilibrium 

governing the top structure in order to determine the actual forces. The response of the top 

MDOF structure as well as the base acceleration were measured using five ICP 

accelerometers (KISTLER magnetic piezoelectric sensors) attached to the base and each 

story, respectively. The measured data of accelerometers are then recorded using a 16 channel 

digital data analyzer (OROS36) at a sampling rate of 5.128 kS/s. Despite the fact that, the 

highest frequency of the structure is only 21.08 Hz (for the 4th mode), selecting such high 

sampling frequency allows for a better capture of excitation and resulting in a more precise 

simulation of the response during identification. Finally, WMGA parameters utilized for 

structural identification of this experiment are given in Table 5.2. It should be emphasized 

here that the fairly broad range of 2.2 and 0.4 times actual values is selected as the search 

limits of unknown stiffness. In addition, the search limits of damping parameters 

corresponding to the first two modes are set as 0 to 3 for α and 0 to 0.0002 for β. 
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Table 5.2: WMGA parameters utilized for force identification (Experiment 1). 

 Known mass 

Pop-size 5×30 
Runs 3 

Generations 3×100 
Conducted SSRM after   100 

Crossover rate 0.6 

Mutation rate  0.2 

Periodic migration (z1,z2) 5, 0.1-0.2 

Window width 4 

Regeneration 3 

Reintroduction 80 

Haar wavelet (2M=2), sampling rate 500 S/s. 

Legendre wavelet (2M=4), sampling rate 200 S/s. 

The second kind of Chebyshev wavelet (2M=8), sampling rate 200 S/s. 

 

5.2.3  Results and discussion  

Figure 5.3 illustrates the first 4000 points of acceleration time-histories recorded for 

corresponding nodes at a sampling rate of 5.128 kS/s. It should be pointed out that, complete 

data measurement is considered for this experiment. In addition, as this experiment involves 

force identification, a known mass problem is considered. As shown in Figure 5.3(e), the 

maximum effect of noise was observed for the recorded accelerations at the base (designated 

by S(t)). However, the noise effect was gradually reduced for the higher levels of the 

considered MDOF shear system. The reason for this comes from the fact that the main 

excitation was applied to the base manually as an ambient excitation with the highest signal-

to-noise ratio. 
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Figure 5.3: Time-history of acceleration (the first 4000 points) corresponding to, (a) 

story 4, (b) story 3, (c) story 2,  (d) story 1, (e) S(t): the base acceleration (g = 9.81 

m/sec2).      

 

Therefore, the uncontrolled excitation to the unknown base structure causes the larger 

effects of the signal-to-noise. The structural identification is conducted using WMGA 

parameters presented in Table 5.2. The time-history of identified force for 250 measured data 
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(between 500-750 acquired points) corresponding to the second and third levels is plotted in 

Figure 5.4.  

       

 

      
 

Figure 5.4: Time-history of identified force (500 to 750 acquired points) 

corresponding to, (a) story 2, (b) story 3.      

 

The actual forces for each level were obtained by multiplying the base acceleration S(t) to 

the actual mass at each level in inverse direction. As shown in Figure 5.4, the proposed 

WMGA force identification strategy acts as a filtering procedure in order to reduce the effect 

of noise. This is most likely due to the various scales of adaptive wavelet functions and 

relatively compatible collocation points utilized for capturing the response of structure. It is 

demonstrated that even with high signal-to-noise ratio data, the force identification is 

reasonably reliable for ambient excitation done manually. It should be emphasized here that, 

in order to implement the proposed procedure of force identification the first underlying 

presumption is that the structure should be at rest condition. Providing such ideal condition 

for this test was either impossible or very difficult. Undoubtedly, the aforementioned 
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difficulty causes errors in identification procedure. Furthermore, this figure shows more 

noticeable errors recorded for identified force at the third level rather than the second one. 

This probably is because of the very light mass at this level in the vicinity of two heavy 

masses corresponding to the second and fourth levels. 

     

 
 

Figure 5.5: The percentile total average error of identified force and the mean error 

(%) in identified stiffness of each story for output-only measurement.     
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identified forces demonstrate the average error of about 48.8% for all levels. This value seems 

undesirable compared to the very accurate numerical results achieved in Chapter 4 for force 

identification. This probably arises from two factors. Firstly, the ambient excitation applied 

to the base is an unrealistically irregular one, while it could be applied with an actual 

instrument in order to be controlled in particular ranges of frequencies or amplitudes. 

Secondly, the effect of high signal-to-noise ratio was not considered in Chapter 4 for force 

identification (especially for irregular distribution of mass at different levels) to accomplish 

the precise results. Furthermore, the effect of rest condition may be another source of error 

measurements. Overall, the structural identification results demonstrate that the proposed 

strategy for output-only data is a very good strategy, especially for real cases of irregular 

ambient data. However, it could be perfected by proper planning in identification. It is very 

important to keep in mind that, one of the main source of errors observed in Figure 5.5 is the 

assumption of lumped mass matrix for structural modeling in this real case. Undoubtedly, 

aforesaid assumption diversely affects the identified stiffness values, especially for ambient 

vibration data.               

5.3  Experiment 2 - A MDOF shear structure under nodal excitation     

The schematic view of the test setup performed in lab for the second experiment is 

illustrated in Figure 5.6. The MDOF shear system considered for this experiment was 

constructed with 8 thick columns (provided with aluminum) and 4 rigid beams (provided 

with Plexiglas). The width of columns are taken 12 times the thickness and allows for the 

assumption of the shear behavior of the MDOF system (existing for only one DOF per story). 

This structure is fixed at the bottom for impact and the main structural health monitoring 

tests. Moreover, the mass of each floor is estimated by lumping the distributed mass of the 
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corresponding story (i.e., the measured mass of beam, column and connecter screws) added 

with the external mass provided by two different weights at the 2nd and 4th levels. Measured 

values of the mass are rounded off to the nearest 10 grams and the diagonal mass matrix of 

this system is shown in the figure. In addition, in this experiment the mass of four 

accelerometers attached to structure is ignored. The beams and beam-column connections 

are assumed 100% rigid. Therefore, stiffness matrix of the system is obtained from Equation 

(5.1). 

  

 
Figure 5.6: The schematic view of the test setup: (a) the laboratory aluminum MDOF 

shear building, (b) dimensions of the frame (m), (c) dimensions of the columns (m), 

(d) dimensions of the rigid beam (m). 
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Accordingly, structural health monitoring of this structure is considered using the 

proposed WMGA strategy in the previous chapter. To examine the performance of the 

strategy, WMGA is conducted for structural identification of intact structure, initially. Later, 

two different magnitudes of damage and locations are utilized in order to evaluate the 

efficiency and capability of the proposed strategy for damage detection.  

5.3.1  Preliminary measurements and calculations 

 Stiffness estimation 

As a basis for comparison of the obtained results, and to properly perform the 

identification and therefore structural health monitoring tests, a set of preliminary tests were 

first conducted. This sub-section contains static tests in order to predict the as-built stiffness 

of the MDOF shear structure, as well as several impact tests to extract the as-built natural 

frequencies. 

Taking 𝐸 = 69 GPa for the modulus of elasticity of the aluminum columns, the theoretical 

stiffness value of 𝑘 =1820.15 kN/m will be calculated for each story. As there was no 

information available on the actual material and also the as-built stiffness of the considered 

structure, static tests were conducted. The schematic view of static tests conducted in the lab 

is illustrated in Figure 5.7. The first story of the considered system was mounted horizontally 

to a fixed vertical support. Different weights were hung from the first story while 

displacements were measured by displacement micrometer (precision 0.01 mm).  

Subsequently, the as-built stiffness of one story was obtained from the slope of the 

regression line determined from the different load-displacement points measured for several 

different weights applied. The stiffness value of 𝑘 =1203.46 kN/m was measured per story 

from the static tests. It was seen that the difference between the static and theoretical stiffness 
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was about 617 kN/m. Subsequently, the impact tests were performed to compare stiffness 

values and select the reference value of stiffness.  

  

 

              

Figure 5.7: The schematic view of static test conducted in lab. 

 

 

As in the previous experiment, the MDOF shear structure was fixed to a rigid base and it 

was excited by a hammer and the response recorded with sensors (accelerometers) at each 

story using a 16 channel digital data analyzer (OROS36) at a sampling rate of 2.048 kS/s. 

Accordingly, the FFT algorithm was then utilized to convert the response signal from time 

domain to the frequency domain and the natural frequencies were determined from the plot 

of power spectrum as illustrated in Figure 5.8 for one of the examples. It should be noted 

that, a frequency band width of 1024, and therefore 2048 data points were utilized for the 

FFT. Thus, the accuracy of measured frequencies was approximately ±0.5 Hz. Figure 5.8 
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shows the power spectrum of the response at fourth story due to the impact at that story. It 

was observed that the response at other stories and for other impacts, identified the same 

frequencies. 

 

Figure 5.8: Power spectrum of response at fourth story due to impact at that story. 

      

The natural frequencies obtained from the solution of eigenvalue problems adopted for 

theoretical and static stiffness values and those determined from the power spectrum of 

response are tabulated in Table 5.3 corresponding to the four modes of the MDOF system.  

         

Table 5.3: Calculated and measured natural frequencies of undamaged MDOF 

shear structure. 

 

Theoretical stiffness 

= 1820.15 (kN/m) per 

story 

Static stiffness = 

1203.46 (kN/m) per 

story 

Measured frequencies 

from power spectrum 

of response 

 f (Hz) Period (s) f (Hz) Period (s) f (Hz) Period (s) 

Mode 1 69.39 0.0144 55.63 0.0179 54.37 0.018 

Mode 2 175.25 0.0057 141.42 0.0070 145.09 0.0069 

Mode 3 538.26 0.0019 398.95 0.0025 390.51 0.0025 

Mode 4 561.85 0.0018 419.68 0.0023 429.93 0.0023 

Note: The mass is lumped at each story as shown in Figure 5.6 for all 3 cases 

considered.  
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Data displayed in Table 5.3 shows the closeness of obtained frequencies from the impact 

test with those calculated based on the stiffness determined from the static test. This table 

shows that especially for the first two modes of the structure results are very close. As a 

consequence, the stiffness value obtained from static tests will be considered as the actual 

stiffness of the structure and this should form the base value of stiffness for further 

comparison. 

 Damage scenarios 

Two different magnitudes of damage and correspondingly two different locations are 

utilized in order to evaluate the capability and performance of the strategy. As it is shown in 

Figure 5.9, damage magnitudes are categorized as small and large while the locations differ 

corresponding to different damage scenarios one to three (DS1-DS3) imposed to the different 

stories. 

Accordingly, DS1, DS2 and DS3 indicate damage scenarios when only small damage is 

induced in story 4, only large damage induced in the first story and the combination of this 

two scenarios, respectively. Controlled damage is created by cutting the columns at the 

proposed locations. As shown in Figure 5.9, small damage is created as partial cuts near to 

the beams (in order to be in an area of high bending), whereas large damage is formed by a 

longer cut at the center of columns. It should be pointed out that, the small and large damages 

are induced on both sides of the structure. In order to predict the reduction in stiffness due to 

the small and large damages, three columns are numerically simulated in a finite element 

(FEM) software (ABAQUS 1998). The FEM models of the intact columns as well as 

damaged columns with one end fixed and the other one free are shown in Figure 5.9. Shell 

elements are used to model all three cases. An arbitrary distributed force of 25 N/cm is 

applied to the top free nodes in the perpendicular direction. For all three cases the resulting 

displacements are compared with the result of intact column and the reduction in column 
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stiffness is presented as the damaged index in Figure 5.9. It is to be noted here that, the 

reduction in story stiffness is the same as the expected reduction in column stiffness e.g., 

42.69% for small damage, as damages are symmetrically applied to the both columns in a 

story. 

 

 
 

 
 

 

Figure 5.9: Damage scenarios and relative finite element models to estimate 

damage index (%), (a) undamaged column, (b) small damage, (c) large damage 

(dimensions are given in cm). 
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5.3.2  Main identification and damage detection test 

 Excitation force 

Basically, the proposed WMGA strategy requires integration of accelerations. Thus it is 

prefered to utilize a regular and smooth random force for this test rather than a very irrigular 

and complex one. In this regard, a random multi-sinusoidal loading of 50-500 cycle per 

second (Hz) with random magnitude of [-20, 20] N is utilized at a sampling rate of 5.128 

kS/s. Accordingly, the force described above is applied through a shaker by roving it at 

different levels of the structure.  

 Test setup  

Figures 5.10 and 5.11 illustrate the test setup utilized in lab and a schematic view of the 

dynamic testing and data acquisition system, respectively. The excitation force was input to 

a 16 channel digital data analyzer (OROS36) and the signal was then passed through a power 

amplifier in order to produce sufficient power for the electromagnetic shaker. The force 

generated by the shaker was transferred to the structure and an ICP force sensor measured 

the applied force (the specification of force sensor is presented in Table 5.4). The force 

transducer (shaker) placement as well as the shaker-sensor-structure connection are shown 

in Figures 5.10(a) and 5.10(b), respectively. The response of MDOF system to 10 sec of 

excitation was measured by 4 ICP accelerometers (KISTLER magnetic piezoelectric sensors) 

attached to each level of the MDOF structure. The classifications of sensors (accelerometers) 

utilized are tabulated in Table 5.4. The signals measured by force sensor and accelerometers 

are recorded by a 16 channel digital data analyzer (OROS36) at a sampling rate of 5.128 kS/s. 

In addition, only the first 5 sec of response starting from just before the application of the 

force are selected and copied to the input file for the damage detection program.   
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Figure 5.10: Test setup and instruments used in lab, (a) main test setup, (b) shaker 

installation, top view, (c) accelerometer installation, side view. 

 

 

 

 

Figure 5.11: The schematic diagram of data acquisition and test setup. 
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Table 5.4: The specification of accelerometers and force transducer. 

Story Transducer Sensitivity 

Range peak  

(acceleration or 

force) 

1 Acceleration 103.9 m(V)/(g) 96 g 

2 Acceleration 106 m(V)/(g) 94.3 g 

3 Acceleration 99.2 m(V)/(g) 101 g 

4 Acceleration 99.4 m(V)/(g) 101 g 

1_4 Force 11.241 m(V)/(N) 890 N 

Note: The gravity acceleration (g) = 9.81 m/sec2. 

 

Accordingly, WMGA parameters utilized for the identification of intact structure and 

damage detection are displayed in Table 5.5. In addition, half and twice the measured static 

stiffness and mass values are used as the initial search limits of stiffness and mass, 

respectively. The search limits of damping parameters corresponding to the first two modes 

are set as 0 to 3 for α and 0 to 0.0002 for β. 

 

Table 5.5: WMGA parameters utilized for Experiment 2. 

 

Undamaged 

Structure (unknown 

mass) 

Damaged 

Structure (known mass) 

Pop-size 5×50 5×30 

Runs 3 3 

Generations 3×180 3×100 
Conducted SSRM after   180 100 

Crossover rate 0.4 0.6 

Mutation rate  0.2 0.2 

Periodic migration (z1,z2) 5, 0.1-0.2 5, 0.1-0.2 

Window width 4 4 

Regeneration 3 3 

Reintroduction 140 80 

Haar wavelet (2M=2), sampling rate 500 S/s. 

Legendre wavelet (2M=4), sampling rate 200 S/s. 

The second kind of Chebyshev wavelet (2M=8), sampling rate 200 S/s. 
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5.3.3  Results and discussion  

Accordingly, for structural damage detection, the unknown mass problem is first 

considered for initial structural identification. Later the identified mass from the initial step 

is fixed as the known mass at each level corresponding to each DOF of structure. As it was 

proposed before, the identified mass values are set as fixed values for all individuals (for 

known mass problems) while the identified stiffness values are set as the initial predictions 

of the first individual of species one and as the half of species 4 and 6 for local searches. This 

resulted in a desirable calibration of the dynamic model using precise initial values. 

Furthermore, the initial (reference) mass values were measured while the initial (reference) 

stiffness values were obtained from the static tests.  

Subsequently, identification of intact MDOF system is first performed in order to perceive 

the changes in the identified values from those estimated from static tests or measurements. 

The search limits are set as the half and twice the actual values. For instance, the search limits 

of mass are set as [0.2-0.78], [1.21-4.84], [0.2-0.78] and [0.67-2.66] kg for the 1st, 2nd, 3rd 

and 4th levels, respectively. 

From our preliminary tests, it was concluded that the dynamic model does not perfectly 

present the structural system, and that the first step of identification in the damage detection 

serves to calibrate the model so damage can be precisely detected. In addition, it was included 

that, for tests applying a same force input (in referring to the same frequency content and the 

same amplitude bandwidth) at a same location, the strategy were consistently achieving better 

detection results rather than applying different forces at different locations for identification 

step and damage detection stage. For this reason, the same force as presented in previous 

chapter is applied for both structural identification and damage detection at the last level of 

MDOF system.  
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For comparison purpose, the modified genetic algorithm composed of 6 species proposed 

in Chapter 4 (designated by MGA) is also adopted for structural identification of current 

experiment. Accordingly, the well-known average acceleration of Newmark-β method is 

performed for fitness evaluations of MGA at a sampling rate of 2000 S/s (time step of 0.0005 

sec) for 10 sec of measured response at a sampling rate of 5.128 kS/s. The percentile total 

average errors and corresponding CPU time consumption for stiffness identification of 

undamaged structure regarding to the known and unknown mass problems are comparatively 

depicted in Figure 5.12 (complete measurement).         

        

 

Figure 5.12: Total average error and computation time involved for stiffness 

identification of undamaged MDOF system shown in Figure 5.6 

(known/unknown mass problems and full measurement).  

 

 

The first observation from Figure 5.12 lies on the computational efficiency of the proposed 

WMGA method where the accurate identification results (in terms of error evaluation) were 

obtained for known mass and unknown mass with less CPU time consumption. It can be seen 

from the figure that the percentile average error reached about 4.33% for known mass 

identification using MGA whereas for the same case it was about only 2.2% for WMGA. 
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However, the convergence rate of results (in terms of accuracy evaluation) after two 

approaches is almost the same; the remarkable finding lies on the worst performance of MGA 

by higher computation time involved. In addition, Figure 5.12 demonstrates the higher error 

measurements for stiffness identification of unknown mass problems where ten unknown 

parameters are considered to be identified and making the problem much more complicated. 

It should be emphasized that one of the main source of errors in both cases may be the 

assumption of lumped mass for real mass matrix of this structure and this resulted in 

modelling errors. 

Subsequently, the next stage is the damage detection of the considered MDOF system due 

to the damage scenarios imposed to the structure as outlined in Tables 5.6 and 5.7. For this 

purpose, the first 5 sec of measured response due to the same force applied at the last level 

was utilized at the same sampling rate by using the given WMGA parameters in Table 5.5. 

To assess the performance of strategy for incomplete measurements the damage detection is 

then carried out for a limited numbers of measured responses of damaged structure (presented 

as sensor placements). It should be pointed out that, the results of identification of undamaged 

structure for complete measurements are set as starting values for damage detection program. 

Two aspects of known mass and unknown mass problems are evaluated through the WMGA 

strategy and represent known or unknown mass identification whereas damage detection is 

only performed by fixing identified mass values as the actual mass. Moreover, success in 

detection of damage magnitudes is plotted in Figure 5.13 corresponding to different damage 

scenarios (presented in Table 5.6) and different sensor placement (measured DOFs).  
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Figure 5.13: Success in identified damage index for different damage scenarios, 

known/unknown mass problems and incomplete measurement (DOFs represents 

measured DOFs).  

 

One of the observations indicates that, the false detection is inevitable for the use of such 

probability based procedures as in the proposed WMGA strategy. In this regard, the program 
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it can be seen that the false detection is still probable. As shown in the figure, the most 

promising result of about 98 % was obtained for damage scenario 2 (large damage at the first 

level) where the measurements of DOFs 1 and 4 were considered for a known mass problem. 

In contrast, only about 49% success was gained for the third damage scenario (both large and 

small damages induced) regarding to the measurements of only DOFs 2 and 3. 

In addition, the CPU time was 25.58 min for structural identification of undamaged 

structure corresponding to an unknown mass problem using the presented WMGA 
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once. As the recorded response due to the only 5 sec of excitation is considered for damaged 

structure, CPU time reached the optimum and fast record of 5.33 min for damage detection 

strategy (known mass problem) on an I-5 CPU, 3.2GHz personal computer. As a 

consequence, damage detection strategy can be conducted on site several times if it is 

essential to check for the damage. 

Moreover, as it was mentioned earlier the planning in identification of undamaged 

structure and then damage detection of damaged structure plays the underlying role in order 

to achieve the best success in damage magnitudes and locations. It is recognized that, for 

damage detection of damaged structures, applying the same input force at the same location 

as was applied for identification of undamaged structures is really beneficial. In this 

argument, the same input force refers to the same frequency content and amplitude domain 

while the same location refers to the same DOFs. Accordingly, to evaluate the effects of 

different excitation scenarios, damage detection of current MDOF shear structure is carried 

out for two different procedures. In this regard, the identification of undamaged system is 

first conducted using the considered multi-sinusoidal force at level four. Later, damage 

detection strategy is performed for the cases that the force is applied at level four and that at 

level 2.  

Results are Tabulated in Tables 5.6 and 5.7 corresponding to applying input force at 

different location of MDOF system for damage detection. As was mentioned before results 

are obtained after 5 repeats of test. The noticeable observation lies on more false detections 

of location of damages for the case that the input force was applied at different DOF (level 4 

for identification and level 2 for damage detection). For instance, Table 5.7 illustrates that 

the success in detection of location was only 3 times of 5 repeats for the third damage scenario 

(DS) when the initial identification was performed for unknown mass problem. In contrast, 

the detection of location was successful 4 times due to the same case in Table 5.6.    
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Table 5.6: Results of damage detection due to the same input force applied at the same location as for undamaged MDOF 

system and full measurement (after 5 repeats). 

  Known mass Unknown mass 

Damage scenarios (DS) 
Ave. for 

small 

Ave. for 

large 
Success (%) 

Ave. for 

small 

Ave. for 

large 
Success (%) 

DS1: Small at story 4 43.91 _ 100 (5/5) 44.78 _ 80 (4/5) 

DS2: Large at story 1 _ 88.37 100 (5/5) _ 85.04 80 (4/5) 

DS3: Small at story 4 and 

         large at story 1 
40.02 87.49 80 (4/5) 38.11 92.37 80 (4/5) 

Note: Ave = average damage index (%) identified except false detections. 

 

Table 5.7: Results of damage detection due to the same input force applied at the different location as for undamaged 

MDOF system and full measurement (after 5 repeats). 

  Known mass Unknown mass 

Damage scenarios (DS) 
Ave. for 

small 

Ave. for 

large 
Success (%) 

Ave. for 

small 

Ave. for 

large 
Success (%) 

DS1: Small at story 4 49.06 _ 80 (4/5) 36.09 _ 60 (3/5) 

DS2: Large at story 1 _ 83.77 80 (4/5) _ 93.15 80 (4/5) 

DS3: Small at story 4 and 

         large at story 1 
51.91 80.47 80 (4/5) 31.68 74.32 60 (3/5) 

Note: Ave = average damage index (%) identified except false detections. 
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In addition, it can be clearly seen in Table 5.6 that the location detections were 

satisfactorily successful, especially for the single damage imposed to the structure. 

Comparing the results of location detection with that of the magnitude detection demonstrates 

sufficiently reliable results for the proposed strategy. With reference to the damage indices 

obtained from FEM modelling (about 42.7% for small damage and about 88% for large 

damage), the data displayed in Table 5.6 shows the promising results of the proposed damage 

detection strategy. Consequently, accuracy of results in Tables 5.6 and 5.7 suggests that for 

damage detection employing the same input force gains considerably reliable results than 

cases where different input forces are implemented.      

5.4  Experiment 3 - A 2D truss structure under nodal excitation     

Figure 5.14 shows the schematic view of test setup for Experiment 3. A 2D pin-jointed 

truss structure is considered for this experiment. As illustrated in the figure, this structure is 

constructed with nine horizontal and vertical bar elements (provided with steel hollow 

sections) and four diagonal bar elements (provided with double steel strips). It is to be noted 

that six stiffeners are utilized in order to stiffen the diagonal elements and preventing 

buckling phenomena in these slim members. All truss elements are connected with 8 pin 

connections so that they are free to rotate. The structure is fixed to a moment free support at 

the left and to a roller support (moment free) placed at the right side. In addition, to limit the 

nodal responses of the structure only in horizontal and vertical directions (namely, x and y 

directions), 4 larger hollow sections (shown by lighter colour frame in the figure) are used to 

fix the perpendicular degree of freedom (z direction). As shown in Figure 5.14, all pin joints 

are supported in z direction so that it is reasonable to assume 2D behavior. The intact structure 

comprise of 13 DOFs indicated by red arrows in the figure.         
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The mass of each structural element is measured and compared with theoretical mass 

value calculated with the mass density of steel 7850 kg/m3 for member sizes shown in Figure 

5.14. It is observed that the measured mass matches the theoretical mass to approximately ± 

20 grams. Eventually, in order to calculate the effective length of the structural members, 2.4 

cm (1.2 cm from each side) is deducted from actual axis-to-axis length of the horizontal and 

vertical members due to the connector plate in the joint. The effective length of diagonal 

members is the actual axis-to-axis of diagonals as they are directly connected to the pin joints. 

It should be emphasized that, the width of hollow sections (in principle direction) is selected 

to about two times of the height in order to ensure 2D behavior.  

5.4.1  Preliminary measurements and calculations 

 Stiffness estimation and structural natural frequencies 

In order to estimate the stiffness of truss members and extract structural natural 

frequencies to employ in the identification strategy, a finite element model of the considered 

structure is modelled in ABAQUS. The FEM is constructed using 13 bar elements and 2 

different cross sectional areas corresponding to horizontal, vertical and diagonal members. 

The mass density of steel 7850 kg/m3 and modulus of elasticity of steel 𝐸 = 207 GPa are 

used for the modeling. Furthermore, at this stage the diagonal members are modelled as only 

couple strip and the effect of internal stiffeners is not considered.  
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Figure 5.14: The schematic view of the test setup for Experiment 3: (a) the laboratory 2D truss, (b) sensor placement, (c) 

dimensions of the truss (cm), node and element numbering, (d) new nodes and elements for the progressive damage detection 

strategy, (e) section details (cm).  
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Figure 5.15: The first six mode shapes and natural frequencies obtained from FE 

model of 2D truss structure. 

 

The natural frequencies obtained from the software corresponding to the first 6 and 13 

modes of the structure are displayed in Figure 5.15 and Table 5.8, respectively. As it is 

displayed in Table 5.8 and Figure 5.15, the natural frequencies obtained from the FE model 

of 2D truss varies from about 202 to 2120 Hz corresponding to the first and thirteen modes 

of the structure. Moreover, impact tests were carried out to extract natural frequencies and 

compare with those from the FE model. One of the clear results was obtained when a hammer 

excited node 4 in y direction and the power spectrum of response at 4-y was taken using FFT 

algorithm. The power spectrum of response is plotted in Figure 5.16.      

 

 

Mode 6: 1198 (Hz) 

  

Mode 5: 685.6 (Hz) 

  

Mode 3: 519.3 (Hz) 

  

Mode 4: 647.9 (Hz) 

  

Mode 2: 355.2 (Hz) 

  

Mode 1: 202.3 (Hz) 

  

x 

  

Y 

  

Univ
ers

ity
 of

 M
ala

ya



 

198 

 

 

            
 

Figure 5.16: Power spectrum of response at DOF 4-y due to impact at 4-y (shown in 

Figure 5.14). 

  

 

 

 

 

 

 

Table 5.8: Natural frequencies (Hz) obtained from FE model of 2D truss. 

 Mode 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

(Hz) 202 355 519 647 685 1198 1234 1397 1518 1588 1771 1823 2120 
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Due to the complexity of the structure, it was anticipated that the extracted natural 

frequencies from the impact test are not obviously distinguishable. Especially, it is observed 

that the natural frequencies corresponding to the higher modes cannot be detected. This is 

most probably due to the local vibrations of structural elements, whereby they produced 

significant energy in 1800-3000 Hz range and diminish at the higher structural frequencies. 

It is very important to keep in mind that, in planning the identification experiments these 

frequencies and relatively these modes are not excited. Accordingly, the peak points shown 

in Figure 5.16 may be considered as the first five natural frequencies. However, the extracted 

values of only the first two modes from the impact test are almost close to the obtained ones 

from the FE model. In addition, it can be deduced from Figure 5.16, the major shortcoming 

of the frequency domain procedures for structural identification, where the structural 

frequencies corresponding to the higher modes cannot be detected in practical and real 

structures. Consequently, the theoretical stiffness values are taken as the predicted ones and 

assumed as the reference values for further comparison. The theoretical stiffness of elements 

is calculated by E×Area/Length. It should be pointed out that, for each truss element the axial 

rigidity (E×Area) is treated as unknown stiffness. 

 Damage scenarios 

To evaluate the performance of the proposed damage detection strategy on a complex and 

a larger scale structure, there are two damage magnitudes used at different locations of the 

considered 2D truss experiment. The large damage magnitude is shown in Figure 5.17(a), 

while Figure 5.17(b) shows the small one.   
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Figure 5.17: Damage scenarios imposed to the 2D truss, (a) large damage on element 4 

shown in Figure 5.14, (b) small damage on element 12, (c) damage index obtained from 

FE model (dimensions are given in cm). 

 

 

Figure 5.17(a) illustrates the location and dimensions of the large damage. Different 
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is induced only for element 4. However, the small damage magnitudes are induced for 

diagonal members. As shown in Figure 5.17, the small damage magnitude is formed by 

removing one of the six internal stiffeners from the actual diagonal members. In order to 

estimate the expected reduction in stiffness due to the large damage magnitude on element 4 

and small damage magnitude on diagonal members the finite element analysis is conducted 
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in the software as one bar element (node 2 to node 4 shown in Figure 5.14) under +800 N 

arbitrary axial force applied to node 4 (shown in Figure 5.14). The first model is considered 

as the basis for further comparison. Secondly, element 4 is modelled using 3 bar elements, 

involving a 10.25 cm bar from node 2 with the intact cross-sectional area, followed by the 

next element (6 cm) as the damaged one with the reduced cross-sectional area and the last 

being 36.75 cm intact bar element. The same axial force is then applied in order to compute 

displacements. The resulting damage index is the expected reduction in stiffness of member 

4 due to the large damage. The same procedure is performed to estimate the reduction in 

stiffness of the new bar element (node 2 to node 9) due to the large damage in this element. 

It is concluded that, when large damage is used for the whole element 4, the damage index is 

estimated as 25.14%, while it is 67.85% when only half of element four is considered. 

Accordingly, the FEM modeling is used to estimate the reduction in stiffness of diagonal 

members due to the small damage (formed by cutting one of the stiffeners as shown in the 

figure). Bar elements are utilized to model couple steel strips subjected to +500 N axial force. 

A damage index of 14.33% was calculated for estimation of reduction in stiffness of 

diagonals when one of the stiffeners is removed. As a consequence, the values obtained for 

damage index corresponding to different damage scenarios are utilized to compare with the 

identified values. 

5.4.2  Main identification and damage detection test 

Generally, there are many scenarios available in order to perform the main identification 

and damage detection in this experiment. As this structure contains 8 nodes with 13 

perpendicular DOFs, therefore planning for identification is the underlying step. The test 

scenario described here refers to the one of the best scenarios, which was consistently 

producing desirable results. In order to proceed for this experiment and recording the 
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response of the structure, complete measurement is considered. However, some of the results 

for incomplete measurements are provided in Appendix E. 

 Excitation force 

As mentioned earlier, the proposed WMGA strategy requires integration of accelerations. 

Thus it is prefered to utilize a regular and smooth random force for this test rather than a very 

irregular and complicated one. For this purpose, a random multi-sinusoidal loading of 150-

1800 cycle per second (Hz) with random magnitude of [-25,25] N is utilized for 15 sec at a 

sampling rate of 5.128 kS/s. Accordingly, the force described above is applied by two shakers 

in the vertical direction at node 4 placed at the center and horizontal direction at node 8 (free 

DOF of the roller support) placed at the right side of the structure. In addition, a weight of 

400 N is gradually hung to the node 5-y in 2 steps during 15 sec and is assumed as externally 

constant load (shown in Figure 5.18). The constant load acts as a complementary force for 

larger influence in response measurements. In other words, using such load helps to remove 

the local vibrations of individual members and correspondingly higher frequencies which 

most of the time appeared in terms of signal-to-noise. From our preliminary experiments, the 

use of this load is worthwhile as the errors in measurements are significantly reduced. 

However, it should be taken into account that, the use of a flexible basis i.e., very soft plastic 

block is essential for applying the above mentioned incremental loads (constant load) in order 

to damp the local vibration of the link member when applying the constant force.      

 Test setup  

The excitation forces explained in previous section were input to a 16 channel digital data 

analyzer (OROS36) and the signal was then passed through a power amplifier in order to 

produce sufficient power for the electromagnetic shaker. The forces generated by the two 

shakers were applied to the structure at node 4 in vertical direction as well as the horizontal 

DOF of node 8 while two ICP force sensors measured the applied forces. The response of 
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2D truss structure to 15 sec of excitation was measured by 13 ICP accelerometers (KISTLER 

magnetic piezoelectric sensors) attached to each DOF of the 2D truss structure i.e., 2-x, 2-y, 

3-x,…8-x. The signals measured by force sensor and accelerometers are recorded by a 16 

channel digital data analyzer (OROS36) at a sampling rate of 5.128 kS/s. In addition, only 

the first 10 sec of response starting from just before the application of the force (constant 

load equal to zero) are selected and copied to the input file for the damage detection program.  

Actually, from the preliminary tests, the initial stiffness of diagonals was assumed as the 

calculated axial rigidity due only to the double strips and the effect of stiffeners was not 

considered. The identification was consistently giving a larger stiffness value for diagonals 

which was constant for all intact diagonals. The results were predictable in presence of the 

internal stiffeners. It should be kept in mind that, theoretically it is not possible to measure 

or calculate the actual stiffness of diagonals due to the internal stiffeners. For this reason, the 

identified stiffness value of intact diagonals including the internal stiffeners is set as the basis 

for presenting the so-called damage index value. The procedure of damage detection is 

carried out through four steps. The first step involving the structural identification of 

undamaged structure. The second stage is identification of damaged structure and detecting 

damaged members. In order to detect damaged members a threshold value of 5% is 

considered. In this regard, the damage indices more than 5% indicated the presence of 

damage in the member. It should be noted here that even for undamaged members, damage 

index of 1 to 5% could be identified. Then the identified stiffness for undamaged members 

is fixed for these members and the damage detection proceeds to the next step, progressively. 

In addition, assumption of identified stiffness values as known parameters for progressive 

steps allows the damage detection strategy to be applied to a broad range of complex and real 

problems (such as this experiment). In fact, the aforementioned assumption resulted in 

desirable calibration of the structural system. Calibrating the structural model simultaneously 
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with identification and damage detection provides a reasonably fair judgment for identified 

stiffness values of members when there is no information on their actual values. Accordingly, 

at the third step of analysis, based on the location of damage identified from the previous step 

i.e., damages detected in elements 4 and 12 shown in Figure 5.14, adding extra nodes and 

therefore extra accelerometers are required for the structure i.e., nodes 9 and 10. It is very 

important to keep in mind that, even though the extra data are supposed to be acquired, the 

current step is much simpler than previous ones as many unknown values have been already 

identified and the number of unknowns is considerably reduced. It is seen that the program 

automatically navigates user towards the location of damages. Subsequently, the last step is 

conducted to finalize the locations and magnitude of damages. For this purpose, new 

unknown stiffness values can be appended to the WMGA strategy due to the identified results 

requiring reconsideration. However, for most of the cases the structural identification and 

damage detection results obtained from the second step were sufficiently accurate and 

reliable. It should be noted that, for the identification and damage detection in this experiment 

it is assumed that the mass is known, since the mass of structure is not altered due to the 

damages. Eventually, WMGA parameters utilized for this experiment are presented in Table 

5.9 corresponding to the different steps of damage detection strategy. 

Finally, half and twice the theoretical axial rigidity (E×Area) for each truss element is 

used as the initial search limits of stiffness. The search limits of damping parameters 

corresponding to the first two modes are set as 0 to 4 for α and 0 to 0.00001 for β. 
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Table 5.9: WMGA parameters utilized in Experiment 3. 

 
Undamaged 

Structure (known mass) 

Damaged 

Structure (known mass) 

Step 1 Step 2 Step 3 

Pop-size 5×40 5×40 5×30 5×20 
Runs 3 3 3 3 
Generations 3×120 3×120 3×90 3×50 
Conducted SSRM after   120 120 90 50 
Crossover rate 0.6 0.6 0.6 0.6 
Mutation rate  0.2 0.2 0.2 0.2 
Periodic migration (z1,z2) 5, 0.1-0.2 5, 0.1-0.2 5, 0.1-0.2 5, 0.1-0.2 
Window width 4 4 4 4 
Regeneration 3 3 3 3 

Reintroduction 90 90 70 40 

Haar wavelet (2M=2), sampling rate 500 S/s. 

Legendre wavelet (2M=4), sampling rate 200 S/s. 

The second kind of Chebyshev wavelet (2M=8), sampling rate 200 S/s. 

  

 

Table 5.10: Damage scenarios imposed to 2D truss shown in Figure 5.14.  

 Damage scenarios (DS) 

Element No. DS1 DS2 DS3 DS4 

4 Large _ Large Large 

12 _ Small Small Small 

1,5,9 _ _ _ Small 

 

5.4.3  Results and discussion  

There are several possible scenarios in planning the structural identification and damage 

detection of this system. The identification of this structure was first evaluated numerically 

in order to accomplish the best strategy for identification. For this purpose, the considered 

2D truss structure was simulated numerically for its actual geometry as well as boundary 

conditions. One of the very important steps of the structural identification is to select the 

characteristics of externally applied excitation(s) and its relative location to be applied in 
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order to achieve the maximum influence in the dynamic response of the structure. However, 

care must be taken in considering the limitations of as-built structure for initial evaluations. 

In other words, for initial assessments the available locations in real structure are considered 

for applying input forces or sensor placements. From several available scenarios the best 

results were consistently obtained for the case of two multi-sinusoidal input forces applied at 

4-y and 8-x shown in Figure 5.18(a). Additionally, an incremental constant load is applied at 

node 5-y. The detailed characteristics of input forces are discussed in previous section. The 

locations of input forces (shaker placement) are shown in Figure 5.18(b). Accordingly, the 

response of the considered system is numerically simulated using average acceleration of 

Newmark-β approach for three input forces at a sampling rate of 5000 for 15 sec of excitation. 

Complete measurements and the known mass problem are considered in order to process 

both the numerical and experimental evaluations. 

  

 
 

 

Figure 5.18: The schematic view of the test setup used for 2D truss, (a) the main layout 

of the test, elements and nodes numbering, (b) loading scenarios.  

Rigid supports to install 

shakers 

 

Shaker 1 

 

Shaker 2 

 

Incremental constant 

loads 

(a) 

  

(b) 

  Univ
ers

ity
 of

 M
ala

ya



 

207 

 

In order to highlight the robustness of the proposed WMGA strategy compared with 

MGA, the fitness value histories of the first individual of each population (refers to the best 

individual and thus the best results) during 360 generations are comparatively depicted in 

Figure 5.19. For the purpose of a comprehensive comparison, the CPU time taken to proceed 

each SSRM step is also presented.      

 

 

Figure 5.19: Fitness value history of the best individual for 2D truss identification 

 (known mass), (a) the history of the best fitness value using WMGA and MGA,  

(b) computational time (min) recorded at each SSRM step (full measurement). 

 

 

Figure 5.19 illustrates the superior performance of WMGA strategy in both exploration 

and exploitation phases of the genetic algorithms. It is shown that before employing the first 

SSRM the accuracy of results obtained from the MGA is more than that of using Haar 

wavelet. However, the time taken to process the exploration phase using Haar wavelet is 
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considerably less than using MGA. It should be emphasized that, the sampling rate of 500 

(sample point per second) was used for Haar wavelet (2M=2) compared with 2000 for MGA. 

It is observed that there is a sharp increase in accuracy of results for WMGA after the first 

SSRM step where 3D Legendre wavelets (2M=4) are used compared with MGA. In contrast, 

the accuracy of simulated response obtained by MGA is gradually increased at this stage. 

Subsequently, the precision of results in exploitation phase which basically involves the 

search on global optima is excellent using the second kind of Chebyshev wavelet (2M=8) at 

a sampling rate of 200. It can be concluded that, even by using larger sampling rates for 

WMGA strategy, the entire frequency content of externally applied forces as well as wide-

band of natural frequencies of the structure are optimally captured, resulting in a very cost-

effective and reliable approach. For instance, the total CPU time of 32.44 min was recorded 

on an I-5 CPU, 3.2GHz PC for used of WMGA whereas this value surged to about 52.07 min 

for MGA. 

 

Table 5.11: Damage scenarios imposed to 2D truss shown in Figure 5.17. 
 

 Damage scenarios (DS) 

Element No. DS1 DS2 DS3 DS4 

4 Large _ Large Large 

12 _ Small Small Small 

1,5,9 _ _ _ Small 

 

 

Accordingly, the same scenarios of input force are applied to the current experiment for 

structural identification and damage detection. Structural identification of undamaged system 

is carried out assuming the known masses as those of measured one. In addition, the 

theoretical stiffness values (axial rigidities) are taken as the initial and the reference values. 
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At this stage, only two cross-sectional areas of double strips were considered to estimate the 

axial rigidity of diagonals. Therefore, identification program achieved larger stiffness values 

for diagonals than the estimated. In referring to the presence of internal stiffeners, obtained 

results were logical, however, there were no way to precisely estimate the actual stiffness of 

diagonals. For this reason, in planning of identification and damage detection it was decided 

to run the program of damage detection 2 or 3 times, progressively. In fact, the strategy acts 

in calibrating the unknown stiffness values during the damage detection several times by 

fixing the identified stiffness values as known parameters for subsequent steps. It is 

anticipated that reliable detections will be achieved at the second or the third steps of strategy. 

Accordingly, damage scenarios (DS) are used step-by-step and results of detections of both 

damage locations and damage magnitudes are depicted in Figure 5.20 corresponding to 8 

repeats of damage detection program.    

 

 

Figure 5.20: Damage detection success % (location and magnitude) after 8 repeats 

for different damage scenarios (DS) through two steps (full measurement).   

 

 

Figure 5.20 demonstrates the excellent results for cases when a single magnitude of 

damage is to be detected. However, for multiple damages the identified magnitudes and 
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locations of large damages are sufficiently accurate. It can be seen from the figure that for 

the cases of detection of a single small damage and a single large damage being considered, 

success in location and magnitude is considerably less than cases when the same magnitude 

of damages are to be detected. In other words, it can be concluded that the damage detection 

is less satisfactory for multiple damages of different damage magnitudes. From several tests 

conducted, it can be deduced that, the large damages often causes false detections on other 

levels of damage. Consequently, detection of small damages will be somehow impossible 

and the damage detection strategy has to be run again. In contrast, for the cases of a single or 

multiple damages of similar magnitude being considered, the detection results are 

exceptional. Finally, it should be emphasized here that one of the main source of error 

detections is assumption of lumped mass for this 2D structure which in fact is not accurate 

assumption for the real structural model. This diversely affects the response simulated 

compared with response measured, resulting in the quality of the fitness evaluation. 

5.5  Chapter summary 

This chapter presented the experimental verification of the proposed WMGA strategy for 

structural identification and damage detection of three real structures. For this purpose, some 

of the promising results obtained from the experimental works were highlighted. Additional 

results are given in Appendix E, accordingly. Basically, experimental evaluations are 

necessary in presenting a realistic assessment of numerical aspects of structural health 

monitoring approaches involving structural identification and damage detection strategies. 

However, there is a lack of investigations on use of various structural models due to the much 

greater difficulties for experimental evaluations rather than numerical studies. 

Aforementioned experimental models were considered for structural identification of output-
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only data as well as structural identification and damage detection of input/output measured 

data. Force identification was carried out on a MDOF shear building subjected to base 

excitation. It was shown that, even though the measurement of input forces was not available, 

the accuracy of identified stiffness values was sufficiently acceptable. Subsequently, the 

proposed strategy was performed for identification and damage detection of a MDOF shear 

building and a 2D pin-jointed truss structure. The approach utilizes measurement and 

identified values of undamaged structure in order to calibrate the structural model prior to 

damage detection. This arises by fixing the identified mass of intact system for detection of 

damaged structure. This provided considerably simpler and fast computations for damage 

detection where it was considered as a known mass problem. In addition, the identified values 

from identification of intact structure helped to initiate the search limits of damage detection 

strategy to be the nearest values to the real ones.  

It was shown that the modelling errors are reduced due to the calibration steps and it is 

very important to use the same forces for both identification and damage detection strategies. 

The damage detection results were impressive, especially when a single damage magnitude 

is to be detected. For detection of damage scenarios involving large and small damages, the 

modelling errors causes more false detections. It was observed that for these cases the large 

damages are more easily detected rather than the small ones. It was demonstrated that by 

using adaptive wavelet functions through an improved search limit reduction strategy, the 

genetic algorithm phases are optimally proceeded, resulting in very cost-effective and 

reasonably accurate results. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1  Introduction   

The main findings of this research are presented in this chapter. These are categorized into 

two main aspects. The first aspect involves the proposed wavelet-based method for structural 

dynamics (forward analysis). Accordingly, the second aspect involves structural health 

monitoring (inverse analysis) using the proposed wavelet-based method. 

6.2  Structural simulation (forward analysis)     

Numerical approaches are the only options for structural simulation because in most cases, 

the applied excitations are not explicit functions. In addition, the technique for a solution of 

general dynamic equilibrium can become very expensive for cases where a complex loading 

is applied on large-scaled structures. It was presented that, orthogonal polynomials can be 

widely implemented as a practical analysis of time dealing problems, particularly in the form 

of wavelet analysis. It was emphasized that the obvious effectiveness from the property of 

orthogonality is that the repeated components with similar characteristics are neglected in the 

analytical process. Consequently, computational calculations are considerably reduced and 

computation time involved is therefore decreased, hence the accuracy of responses will be 

more desirable. One of the popular classifications of wavelet operators is originated from 

orthogonal polynomials. It was recognized that, several attractive mathematical 

characteristics of these wavelets such as efficient multi-scale decompositions, localization 

properties in physical and wave-number spaces and fast wavelet transforms, have obtained 
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the practice of this efficient tool especially for the numerical solution of ordinary differential 

equations (ODEs). 

It is inferred that, the accuracy of responses is directly related to the basis function of 

mother wavelet to be implemented, depending on the kind of problems. Moreover, in 

structural dynamics, the compatibility of a wavelet basis function is related on not only the 

degrees of freedom but also the similarity of basic functions to the lateral loading, 

emphasizing on frequency contents. Remarkably, the cost-effective computations in 

advanced dynamic analysis are obtained for the use of adaptive wavelet functions. This has 

constituted the distinction of the proposed wavelet-based approach over other numerical 

methods. 

In addition, it was shown that wavelet functions are theoretically characterized into the 

two main categories. The first being the two-dimensional (2D) wavelets whereby a definite 

basis function of wavelet is being shifted for all scaled functions. The other category is three-

dimensional (3D) wavelets involving used of an improved wavelet basis function being 

shifted on each new scale of the mother wavelet. Subsequently, a signal with wide-band 

frequency components is evaluated accurately by 3D wavelets rather than 2D ones, where 

scale, transition and time are expressed as dimensions, respectively. In this research, free 

scales of 2D Haar wavelet, 3D Chebyshev wavelets of the first (FCW) and second kind 

(SCW) and 3D Legendre wavelets (LW) were employed in order to construct the 

formulations of the proposed scheme for solving structural dynamics problems. 

It was recognized that, for the purpose of structural simulations, the simple basis function 

of Haar wavelet can be indirectly applied on its own free-scaled functions. It is concluded 

that, because of the inherent simple shape function of Haar wavelet, the accuracy of responses 

is undesirable even employing large-scaled functions. Furthermore, in order to improve 
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inadequacy of Haar wavelet identified as the simplest and 2D wavelet basis function, it is 

indispensable to utilize 3D and adaptive wavelet basis functions. 

It was expressed that, adaptive wavelets are those that grow in three dimensions, referring 

to time, scale and frequency. For instance, Chebyshev and Legender wavelets are presented 

as the cases of adaptive wavelets. In addition, the continuous basis functions of wavelet 

stemmed from Chebyshev and Legendre polynomials have been introduced in contrast to the 

discreet Haar wavelets. It was discussed that, the most popular characteristics of Chebyshev 

wavelets is various weight functions of Chebyshev polynomials that has direct influence on 

the stability and accuracy of responses. However, it is perceived that, the stability of results 

computed by the family of Chebyshev and Legendre wavelets are independent from initial 

accelerations. It can be concluded that, compatibility can be satisfied through the capturing 

the broad frequency of complex excitations by oscillated shape functions of free-scaled 

Chebyshev and Legendre wavelets. However, from the computational time point of view 

(computational efficiency) it is inferred that, the construction of different scales of Legendre 

wavelet is more optimum than that of Chebyshev and will lead to a computationally efficient 

structural simulation strategy.  

Accordingly, it is concluded that the accuracy of results obtained from the first operator 

of integration is perfect for the use of Chebyshev and Legendre wavelets. The accuracy of 

results was assessed with respect to the second operation of integration in terms of different 

error measurements. It can be inferred that, because of the variable weight functions of 

Chebyshev wavelets, and therefore less end point errors of integration, the most accurate 

results are achieved by using the second kind of Chebyshev wavelets and then the first kind. 

However, from the accuracy point of view, the Legendre wavelets are ranked at third place 

after SCW and FCW. Furthermore, the stability analysis demonstrates that the proposed 

method lies on an unconditionally stable procedure. This allows the use of longer time 
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intervals in order to perform the proposed method. It is concluded that, even by using longer 

time steps the entire frequency components are integrated on adaptive collocation points and 

resulting in a very cost-effective procedure for structural dynamic problems, particularly 

structural simulation of large-scaled mechanical systems. 

Besides that, it was shown that the global time interval can be divided into many local 

collocation points, and a set of collocations will collectively and intricately cover the signal 

of externally applied force. Thus, the employed operation on the compatible collocation 

points can be adaptive with the features of the signal, i.e., frequency content of the signal. 

Based on this underlying finding, the application of different wavelet basis functions at 

different collocations is beneficial for structural dynamic problems. Overall, it can be 

concluded that, the principle on the use of the proposed indirect, explicit and unconditionally 

stable method is time domain analysis, however, the numerical approach is not blind on the 

frequency components of both lateral excitations and natural characteristics of the structure.  

6.3  Structural health monitoring (inverse analysis) 

The proposed method has been extended in order to develop an optimum operator of 

derivative with respect to time, initially. It is demonstrated that, aforementioned operators 

(constructed using different wavelets) are capable of calculating the first and the second 

derivatives with reasonably desirable accuracies. The proposed operators of derivative can 

be utilized in variety of science and engineering disciplines such as non-linear analysis of 

highly non-linear problems, numerical interpolation, numerical approximation and so forth. 

Later, the proposed operator of derivative is utilized to optimally measure the sensitivity of 

acceleration data (namely, jerk measurement). It is concluded that, the proposed operation of 

derivative is very sensitive to small changes of accelerations even selecting considerably 
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small sampling rates (long time intervals). Thus, for the cases where online identification is 

considered the fitness evaluation is significantly enhanced towards identifying the unknown 

parameters. It is confirmed that, because of the property of unconditional stability, from 

computational efficiency point of view the fitness evaluation is notably improved by using 

longer time intervals. The emphasis is on precisely capturing broad frequency contents with 

adaptive collocation points of wavelets. 

The proposed wavelet-based strategy for structural simulation has been implemented in 

conjunction with modified genetic algorithms for solving inverse problems. As GA works on 

the basis of natural selection and using only forward analysis, it can readily be employed to 

a broad range of problems without the necessity of developing the equations or auxiliary 

information such as gradients required by some classical methods. It is concluded that, the 

fitness evaluation of GA-based individuals within populations is benefitted by using an 

optimum structural simulation method at longer time steps as proposed before. This allows 

the use of different species with various GA-based operators and resulting in considerable 

enhancement of GAs strategy. It was recognized that the main advantage of performing 

multi-species is that various GA-based operators can be employed to complement one 

another. The multi-species populations are improved for the accurate exploration and 

exploitation of search spaces. An improved search space reduction method (SSRM) is 

proposed using adaptive wavelet functions. It is shown that, by optimally reducing the search 

limits of parameters that converged quickly, the accuracy of not only those identified 

unknowns but also identification of other unknown parameters is significantly increased.  

The analysis of convergence and computational efficiency was introduced as the 

necessary and sufficient criteria to evaluate evolutionary procedures. It is inferred that, the 

GA-based exploration and exploitation phases are optimally satisfied by conducting 

improved SSRM, and resulting in a greater convergence rate. In addition, lesser effect of 
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input-output noise to the signal were recorded for the proposed wavelet-based modified GA 

strategy (WMGA). Finally, it can be concluded that, especially for large-scaled structures the 

identification of numerous unknowns is optimally achieved by the remarkably less 

computation time involved and resulting in very cost-effective strategy compared with 

existing algorithms. The application of wavelet transforms for such problems not only 

provides pattern recognition, but also significantly reduces input signal-to-noise ratio. 

An efficient output-only identification strategy is developed by using the wavelet-based 

modified GAs (WMGA) in time domain. It is concluded that, the procedure lies on a 

predictor/corrector approach. For the use of the proposed method, mass values are supposed 

to be known values and the measurements of all adjacent DOFs to the force should be 

available. The strategy works by the simultaneous prediction/correction of the input forces 

as the structural parameters (stiffness and damping) are being identified. It is demonstrated 

that, planning in force identification is very important as the underlying presumption is that 

the structure is initially at rest. It is also shown that, the proposed scheme is conducted in 

time domain. However, all frequency contents are captured at longer time steps using 

adaptive collocation points. As a consequence the effect of noise is significantly reduced.   

The proposed evolutionary process has been extended to the structural damage detection 

through a progressive calibrating algorithm. The strategy utilizes measurements and 

identified values of undamaged structure in order to calibrate the structural model prior to 

damage detection. By fixing the identified mass of the intact system for damage detection of 

damaged structure the identification can be readily performed. This provides considerably 

simple and fast computations for damage detection so that it can be considered as a known 

mass problem. In addition, the identified values from identification of the intact structure 

helps to initiate the search limits of damage detection strategy to be nearest values to the real 

ones. 
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Numerical results of damage detection demonstrates the superiority of the proposed 

method especially for online scenarios. It is also shown that, the proposed method gave the 

minimum false detection for online imposed damages, where the jerk evaluation gained much 

better indication of damage rather than acceleration itself. Consequently, the proposed 

algorithm can be considered as a sufficiently reliable strategy especially for long time 

identification and online assessment of large-scaled structures. From the experimental works 

it is concluded that, the modelling errors are reduced due to the calibration steps and it is very 

important to use the same forces for both identification and damage detection strategies. The 

damage detection showed perfect results, especially when a single damage magnitude is to 

be detected. For detection of damage scenarios involving large and small damages, the 

modelling errors causes more false detections. It is observed that, for these cases the large 

damages are more easily detected rather than those of small ones. To overcome this issue, 

the program for damage detection may be run several times in site (suitable for practical 

cases) to guarantee the accuracy of damage detection program. Finally, it can be concluded 

that by using adaptive wavelet functions through an improved search limit reduction strategy, 

the genetic algorithm phases are optimally proceeded and resulting in very cost-effective and 

reasonably accurate results. 

6.4  Recommendations     

This research has accomplished its proposed objectives as mentioned in the contribution 

of each objective. Accordingly, this section is devoted to suggest some of the useful 

recommendations based on the findings of this research for future research works.    
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6.4.1  Future work direction 

It could be beneficial for future research works to proceed in the direction outlined below: 

 Investigate the performance of more wavelet basis functions through the proposed method 

for structural simulation and inverse problems. 

 Evaluate the proposed method for structural health monitoring of shell, plate and 

composite structures. 

 Compare the computational efficiency of the proposed method through another heuristic 

optimization strategies such as particle swarm, ant colony, and water cycle optimization 

techniques. 

 Perform an experimental work involving online monitoring in order to detect online 

damages using the proposed fitness function. 

 Implement the proposed strategy for structural identification and damage detection of 

infrastructures.  

 Adopt the proposed strategy of sensitivity evaluation for dynamic identification of 

nanomaterial. 

 Improve impact detection and placement strategies in order to optimally detect the 

location and magnitude of impacts. 
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APPENDICES 

Appendix A: Static and dynamic condensation procedures 

Generally, in many practical structural identification and damage detection problems the 

measurement of entire degrees-of-freedom (DOFs) of a structure is not possible i.e., torsional 

DOFs or due to insufficient number of accelerometers (sensors). Two procedures may be 

preferred in order to ensure that the measured DOFs (coordinates) and modes are the same 

as the calculated ones. The first one involves expanding the experimental data to the same 

number of DOFs as the calculated ones, while the second is reducing the computed results to 

the same number of DOFs as the measured ones. Accordingly, in this research the second 

strategy is applied for the cases of incomplete measurements. Several methods can be 

implemented in order to reduce the size of characteristic’s matrices due to the measured 

DOFs. For instance, Guyan static condensation method and Guyan dynamic condensation 

method are two of the popular and mostly utilized ones. In this study, Guyan dynamic 

condensation approach is utilized as it concerns with the effect of inertia, and hence for 

identification problems seems much more reliable than static condensation method. 

A.1  Guyan static condensation method (GSC)  

Basically, this method involves the reduction of mass and stiffness matrices from the 

existing DOFs to the measured DOFs. Assumption of {𝑢}, {�̈�} and {𝑓} as the vectors of 

displacements, accelerations and externally applied loads, the mass [M] and stiffness [K] 

matrices are divided into two partitions for measured (master, subscript m) and unmeasured 

(omitted, subscript o) DOFs as follows (Friswell and Mottershead, 1995):  
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[
[𝑀𝑚𝑚] [𝑀𝑚𝑜]

[𝑀𝑜𝑚] [𝑀𝑜𝑜]
] {
�̈�𝑚
�̈�𝑜
} + [

[𝐾𝑚𝑚] [𝐾𝑚𝑜]

[𝐾𝑜𝑚] [𝐾𝑜𝑜]
] {
𝑢𝑚
𝑢𝑜
} = {

𝑓𝑚
0
}  (A.1) 

Here, the inertia terms are neglected to derive the main equation of GSC as follows: 

[𝐾𝑜𝑚]{𝑢𝑚} + [𝐾𝑜𝑜]{𝑢𝑜} = [𝑇𝑜]{𝑢𝑚}  
(A.2) 

 In Equation (A.2), 𝑇𝑜 represents the static transformation from full vectors and master DOFs. 

Equation (A.2) is then employed to eliminate the omitted DOFs as follows: 

{
𝑢𝑚
𝑢𝑜
} = [

[𝐼]

−[𝐾𝑜𝑜]
−1[𝐾𝑜𝑚]

] {𝑢𝑚} = [𝑇𝑜]{𝑢𝑚}  
(A.3) 

In Equation (A.3),  [𝐼] is the identity matrix. Accordingly, the reduced mass [𝑀𝑅] and the 

reduced stiffness [𝐾𝑅] obtained from GSC method are derived as follows: 

[𝑀𝑅] = [𝑇𝑜]
𝑇[𝑀][𝑇𝑜] 

[𝐾𝑅] = [𝑇𝑜]
𝑇[𝐾][𝑇𝑜] 

  

(A.4) 

A.2  Guyan dynamic condensation method (GDC)  

Described GSC technique ignores the effects of inertia. In contrast, GDC method concerns 

with the inertia effects by considering a sets of frequencies. Basically, the method lies on an 

iterative method using predicted frequencies to correct the actual reduced model. Similarly, 

the mass and stiffness matrices are divided into two parts due to the master and omitted 

DOFs. The modified transformation matrices corresponding to the master and omitted 

eigenvectors ∅ are obtained as follows (Salvini and Vivio, 2007): 

{
∅𝑚
∅𝑜
} = [

[𝐼]

−([𝐾𝑜𝑜] − 𝜔
2[𝑀𝑜𝑜])

−1([𝐾𝑜𝑚] − 𝜔
2[𝑀𝑜𝑚]

] {∅𝑚} = [𝑇𝐷]{∅𝑚}  
(A.5) 

Univ
ers

ity
 of

 M
ala

ya



 

222 

 

 Subsequently, the reduced mass [𝑀𝑅] and the reduced stiffness [𝐾𝑅] obtained from GDC 

procedure are derived using the dynamic transformation matrix [𝑇𝐷] as follows:  

[𝑀𝑅] = [𝑇𝐷]
𝑇[𝑀][𝑇𝐷] 

[𝐾𝑅] = [𝑇𝐷]
𝑇[𝐾][𝑇𝐷] 

  

(A.6) 

Accordingly, the GDC method is utilized in this research for the cases of incomplete 

measurements to reduce the size of matrices due to different sensor placements. 
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Appendix B: Optimum sensor placement 

The brief description on the utilized strategy for optimum sensor placement is presented 

in this Appendix. Basically, a GA-based decimal two-dimensional array coding is proposed 

for this purpose as tabulated in Table B.1. 

 

Table B.1: Operation process of decimal two-dimensional array strategy for the 

optimum sensor placement. 

Variables (DOFs)       1 2 3 … 

Number of 

available 

sensors 

Individual gene pair 

before crossover and 

forced migration  

Parent 1: 6 19 31 … 69 

Parent 2: 2 69 7 … 19 

   

 

Accordingly, for the optimal sensor placement the fitted genetic individual returns to the 

lesser differences of response simulated for all DOFs compared with those of simulated for 

reduced DOFs. For this aim, the response of structure is first simulated based on externally 

applied forces and complete measurement. The identified values are supposed as the basis 

values for further comparison. With reference to Table B.1, assuming that the total number 

of DOFs available for measurements is 69 DOFs. Accordingly, the total number of strings is 

the total number of available sensors. In addition, the operators of GA strategy i.e., crossover 

and mutation are utilized to process optimization procedure. The new operator of forced 

migration avoid generating same values for parents and correspondingly for offspring 

individuals.    
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Appendix C: Optimum node numbering of large-scaled structures 

This Appendix presents a brief description on the utilized strategy for optimum node 

numbering. Similar to the previous Appendix, a GA-based decimal two-dimensional array 

coding is proposed for this purpose as tabulated in Table C.1. 

 

Table C.1: Operation process of decimal two-dimensional array strategy for the optimum 

node numbering. 

Variables (sequence of 

nodal numbering) 
  

C
o
o
rd

in
at

e 
1
 

C
o
o
rd

in
at

e 
2
 

C
o
o
rd

in
at

e 
3
 

… 

Total number 

of coordinates 

including 

supports  

Individual gene pair 

before crossover and 

forced migration  

Parent 1: 6 19 31 … 69 

Parent 2: 2 69 7 … 19 

   

 

Accordingly, Figure C.1 illustrates a square Nodes× DOFs-dimensional stiffness matrix. 

 
 

 

[𝐾] =

[
 
 
 
 
 
 
 
 

0 0 0 0 0
0 0 0 0 0

0 0
0 0

0 0 0 0
0 0 0 0
0 0
0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 

𝑁𝑜𝑑𝑒𝑠
×

𝐷𝑂𝐹𝑠

 

Figure C.1: The construction of stiffness matrix.  

 

 

The nodal coordinates are fixed here and each node can be placed randomly at a coordinate 

for different genetic individuals. The corresponding stiffness matrix is then modelled for each 

Bandwidth 
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individual based on new nodal coordinates, the characteristics and geometry of the structure. 

The highest fitness of each individual for optimal node numbering returns to the shortest 

bandwidth of stiffness matrix shown in Figure C.1 for structural elements considered. 

Consequently, one may obtain the fitness value =1 / (Bandwidth [K]). 
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Appendix D: Structural simulation results 

This appendix is devoted to the applicability analysis of the proposed wavelet-based 

method for structural simulation of finite element (FE) models. Two examples are: a four 

nodes quadrilateral element subjected to a wide-frequency content excitation and a 2D plane-

stress system discretized into 400 constant-strain-triangular (CST) elements. It should be 

pointed out that for a clear comparison, vibration analysis (the effect of low frequencies) is 

constrained to the considered applications. For this purpose, unrealistic properties have been 

employed to get smooth responses. For considered problems, a sub-function has been 

codified in MATLAB, to simulate stiffness, mass and damping matrix of FE models. 

D.1  A four nodes quadrilateral element  

Figure D.1 shows an 8 degrees of freedom element known as a quadrilateral element, that 

is fully restrained on nodes 1 and 2 by two simple supports in the x and y directions. 

Furthermore, a concentrated dynamic load is applied on node 3 in x direction. The 

characteristics of the considered system as well as time dependent loading and nodal 

coordinates are shown in the figure. In addition, damping ratio is assumed proportional to 

0.01 percent of stiffness. To calculate time-history responses, including horizontal 

displacements, minimum period for the last degree of freedom T_min=1.369 sec thus, 

∆t≤0.55T_min= 0.75 sec shall be utilized as time increment so as to satisfy the numerical 

procedures e.g., central difference method. In addition, nodal shape functions have been 

determined from normal shape function of quadrilateral element (1, s, r, sr). Accordingly, to 

construct element stiffness matrix and the effect of external load, 4 Gauss points have been 

implemented for its isoparametric element. 
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Figure D.1: A four nodes quadrilateral element under a broad-frequency content 

loading. 

This example is analyzed by six numerical methods, including linear acceleration, average 

acceleration, central difference, Wilson (θ=1.4), the proposed method using 16th scale of Haar 

and 2nd, 4th scale of the first kind of Chebyshev wavelet (FCW and designated by 2M16, 2M2 

and 2M4, respectively) and piecewise modal Duhamel integration. The responses being 

analyzed analytically by Mode Superposition method by using all modes are implied as 

Duhamel or modal exact solution. In addition, for an accurate analysis of wide-frequency 

content loading Δt=0.02sec and Δt=0.1sec has been utilized for common numerical 

procedures and the proposed approach, respectively. Eventually, results including time- 

history displacement of 5th degree of freedom (horizontal degree of node 3) and relative 

measurement of errors have been plotted on figures below, respectively. 

Figure D.2 shows the first 10 sec horizontal time-history displacements of node 3, which 

are calculated also by the first 16 scale of Haar and 2nd and 4th scale of Chebyshev wavelet 

(FCW). It can be seen from the figure that the result of the proposed method (using FCW) is 

El Centro-USA (Imperial valley-1940) as the function of F(t). 

 

Node  Coordinates 

x(m) y(m) 
1 -0.04 0 
2 0 -0.03 
3 0.06 0 

4 0 0.05 

 
3 

1 

2 

x 
F(t) 

y 

  

 

  

4 

 

 

 

Mass density (𝜌)=78e8 kN/𝑚3 

E=2.1e8 kN/𝑚2 

Area=0.004 𝑚2, t=0.02 m, 𝜈 =0.3 
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very close to the exact result than central difference, average acceleration or Wilson-θ 

method. 

 

Figure D.2: The first 10 sec horizontal displacement time-history for node 3, shown 

in Figure D.1. 

Finally, total average error and computational time have been plotted in Figure D.3. This 

figure illustrates comparatively, relative errors and time consumption of numerical 

integration schemes. However as mentioned earlier, those results calculated by Haar wavelet 

had the maximum error of 75.5% while, computational time recorded the minimum value of 

10.83sec compared with 28.47sec for accurate scale of FCW or 32.62sec for linear 

acceleration from family of Newmark-β method. 

 

Figure D.3: Total average errors in horizontal displacement of node 3, shown in 

Figure D.1 and relative computational time (CH(2Mµ)= µ scale of the first kind of 

Chebyshev wavelet, CD= central difference, LA=linear acceleration). 
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D.2  A plane stress system discretized into CST elements 

Figure D.4 describes a 456 degrees of freedom (DOF) and plane-stress problem. The case 

considered contains 400 CST elements under a nodal and harmonic dynamic load. In 

addition, damping ratio is assumed proportional to 0.01 percentage of stiffness. The least 

period of this system is T_min=0.106sec thus, making ∆t≤0.55T_min= 0.06sec as time 

increment. It is be noted that, the first 3 polynomials from Pascal triangle (1, x, y) have been 

selected to map the shape functions and nodal forces. 

 

Figure D.4: A plane-stress problem discretized by 400 CST elements under 

harmonic loading. 

The first 10 sec horizontal time-history displacements assigned to node 5, was calculated 

with the proposed method, including 2nd scale of Haar wavelet and 4th scale of the first kind 

of Chebyshev wavelet (designated by 2M4). In addition, common integration procedures, 

including average acceleration family of Newmark-β, Wilson-θ and central difference 

method were computed and plotted in Figure D.5. The time interval of Δt=0.1 sec and Δt=0.2 

sec has been utilized to compute results for common numerical procedures and the proposed 

approach, respectively. 
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Figure D.5: Horizontal displacement of node 5, shown in Figure D.4. 

 

As observed from Figure D.5, the results calculated using the proposed method for most 

of the considered time are closer to the exact results (which was calculated by mode 

supervision method). It is assumed that the 4th scale of FCW is an insufficiently accurate 

scale, even though the results are precise enough. Thus, the proposed method is notable over 

other numerical procedures, particularly in the real and practical cases of dynamic analysis. 

It is obvious from this figure that the results calculated by central difference method is 

unacceptable since conditional stability is not satisfied when Δt=0.1sec. 

 

Figure D.6: Total average errors in horizontal displacement of node 5, shown in 

Figure D.4., and relative computational time. (CH(2Mµ)= µ scale of the first 

Chebyshev wavelet, CD=central difference, AAcc=average acceleration). 
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Finally, total average error and computational time corresponding to the horizontal time 

history displacement of node 5 is plotted in Figure D.6. It can be seen from the figure that 

responses were calculated in 28.69sec by 4th  scale of Chebyshev wavelet, whereas, the time 

taken was 49.02sec for Wilson-θ method; although, the accuracy of results are almost the 

same i.e., 16% error. Figure D.6 also highlights the efficiency of the proposed method, 

particularly when the first kind of Chebyshev wavelet (known as 3D wavelet function) was 

utilized. 
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Appendix E: Structural identification and damage detection results 

This appendix presents some of the additional results (following by results presented in 

Chapters 4 and 5 of this study) on structural identification and damage detection of different 

structural systems. For this purpose, a numerical investigation is first carried out for structural 

health monitoring of a simple SDOF system, numerically. Second, the proposed wavelet-

based scheme for optimum measurement of structural responses is validated for measuring 

the dynamic responses of a SDOF experiment as well as a simulated 2D truss structure. Later, 

some of the complementary results have been presented regarding to the incomplete 

measurement of the third experiment presented in Chapter 5 (2D truss structure). 

E.1  A simulated SDOF system 

Figure E.1 shows an idol SDOF system with the only DOF on X direction (a shear SDOF). 

The system’s characteristics are shown in the figure. This structure is subjected to two 

different impact loads at the first 0-2sec of vibration analysis. The first, impact of 2 (ton) 

strikes the only DOF at t=0.01sec (is shown in Figure E.1(a)) and the structure is freely 

vibrated until the second impact of 4 (ton) at t=1sec (Figure E.1(b)). In addition, β is defined 

as the percentage of reduction (the coefficient of damage) executed on the stiffness of the 

column 2i at t=1sec. Accordingly, the time-history of acceleration known as the measured 

accelerometer data (designated by Original-Acceleration) and displacement (designated by 

Original-Displacement) which were calculated using Newmark method are illustrated in 

Figure E.2. 
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Figure E.1: A SDOF system under impact loads at two stages of (a) 2 (ton) on 

undamaged system at t=0.01sec (b) 4 (ton) on damaged system at t=1sec. 

 

 

Figure E.2: The first two seconds time-history of (a) acceleration (b) displacement 

of the SDOF system shown in Figure E.1. 
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In addition, the approximation of the measured acceleration is performed using different 

scales of wavelet. To highlight the effect of various scales of the first kind of Chebyshev 

wavelet (FCW), coefficients of this wavelet (designated by ChebyW-Coefficients), the 

approximation of accelerations (designated by App-Acc-Cheby) and original accelerometer 

data (designated by Orig-Acc) are depicted and compared in Figure E.3, emphasizing on the 

4th and 32nd  scales of FCW (designated by 2M4 and 2M32) for t=0.98-1.1sec. 

 

Figure E.3: Coefficients of Chebyshev wavelet (FCW) for, (a) the 4th scale (b) the 

32nd scale (ChebyW=Chebyshev wavelet, Acc=acceleration, App=approximation, 

Orig=Original). 
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It is obviously shown in Figure E.3 that, for the purpose of an accurate decomposition in 

achieving a sufficiently precise measurement, larger scales of corresponding wavelet (e.g., 

FCW, SCW or LW) shall be utilized, particularly, for the approximation of wide-frequency 

content accelerometer data. Moreover, measured displacements of the SDOF system are 

plotted in Figure E.4 (t=0.98-1.3sec) using d_t=0.05sec for the 2nd and 8th scales of FCW 

(designated by Disp-Cheby 2M2 and 2M8) and compared with original displacements 

(d_t=0.01sec) known as recorded data (due to the reduction of β=50%). 

 

Figure E.4: The measured time-history of displacement of the SDOF system shown 

in Figure E.1 at t=0.98-1.3sec (Disp-Cheby=measured displacements using 

Chebyshev wavelet (FCW), Orig-Disp=original recorded displacement). 

 

As it was anticipated, the measured displacements using the 8th scale of Chebyshev 

wavelet (FCW) is closer to the originally recorded displacements rather than the 2nd scale. 

Even though,  in order to compare the efficiency of diverse scales of FCW in detail, the 

percentile average and relative error and computation time involved of the measured 

displacements at t=0-2sec, corresponding to different scales are shown in Figure E.5. 
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Figure E.5: Total average error and computational time for the measurement of 

displacements using different scales of the first kind of Chebyshev wavelet 

(Cheby=Chebyshev wavelet). 

Figure E.5 demonstrates that, the complex and accurate scales of FCW (2M32 or 2M64) 

achieved the considerably minimum measurement of errors, e.g., 0.0035% for the 64th scale, 

however, the computation time involved surged the maximum values, e.g., 19.09sec. As a 

noticeable feedback, the practice of such scales yields non-optimum computation, thus, is 

incapable of online measurement. It should be noted that, because of the simple application 

of SDOF and uncomplicated lateral loading, those quantities were slightly changed between 

the first two scales. In other words, for the complex structures subjected to the wide-

frequency component excitation, larger scales shall be implemented.     

Practically, one of the main contributions of the structural measurement is to track the 

time-varying characteristics of mechanical systems, i.e., stiffness or damping of structures. 

For this purpose, the time-history of stiffness for damaged and undamaged phases of 

considered SDOF are plotted in Figures E.6 and E.7, respectively. For the computation of the 

time-history stiffness (K), a controller coefficient was given to track displacement data bigger 

than a known value (K is satisfied for u > u Controller), otherwise, the quantity of flexibility 

(f=1/K) may be considered. 
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Figure E.6: Stiffness (K) evaluation of the SDOF system shown in Figure E.1 

(β=0%), using the measured data (shown displacements) by the 8th scale of 

Chebyshev wavelet (FCW Cheby2M8). 

 

Accordingly, in order to impose the damage scenario on the column 2i shown in Figure 

E.1, β=75% is applied to reduce relevant stiffness at t=1sec. It should be noted that 

d_t=0.05sec has been utilized as the time increment of the proposed measurement approach 

which is appropriate for the online measurement in contrast to d_t=0.01sec for the sampling 

rate of data collection. It can be seen from Figure E.7 that, the reduced stiffness and its 

location on time axis is accurately monitored even by employing a large time increment.  

Furthermore, the time-history of the maximum stress which is placed at the base of the 

SDOF system is illustrated in Figure E.8, in order to obtain the border of elastic behavior, 

and resulting in an optimum integrity and safety analysis of the considered structure.   
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Figure E.7: Stiffness (K) evaluation of the SDOF system shown in Figure E.1 

(β=75%), using the measured data (shown displacements) by the 8th scale of 

Chebyshev wavelet (FCW Cheby2M8). 

 

 

Figure E.8: Time history of maximum stress at the base of the SDOF system 

shown in Figure E.1 using the measured data for (β=75%) by the 8th scale of 

Chebyshev wavelet (FCW Cheby2M8). 
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Consequently, this figure shows the effectiveness of the low scales of Chebyshev wavelet 

(2M8) together with using a long time interval of numerical approximation, which is 

satisfactory optimum for the online measurement of structural responses. 

E.2  Optimum measurement of structural responses of a SDOF model 

A simple SDOF test setup is evaluated under a regular hammer test, experimentally. 

Accordingly, g= 9.81 m/sec2 is presumed as the ground acceleration. As shown in Figure 

E.9, the considered system provided by two narrow aluminum columns and a rigid Plexiglas, 

which are only vibrating in the x direction. In order to invoke only one DOF, the thickness 

of the columns was chosen to be much narrower than its width (≅1/37). The geometry and 

details of the experiment setup are shown in the figure. As illustrated in the figure, a non-

contact laser device was installed on the base in order to identify the accurate time-history of 

displacements (at sampling rate 102.4). 

 

Figure E.9: The ideal SDOF experiment setup and the schematic view, measuring 

displacements by laser sensor. 
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from 1sec after its initial condition. Accordingly, the time-history of the velocity 

corresponding to the SDOF has been computed for the 4th scale of Haar and FCW (designated 

by Cal-Vel-Cheby and Haar) for the time interval of d_t=0.05 sec as depicted in Figure E.10. 

The results were compared against those picked by the non-contact laser sensor for 

d_t=0.009766 sec (designated by Orig-Vel).  

 

Figure E.10: Time history of velocity for SDOF system shown in Figure E.9., (a) 

calculated velocity using the 4th scale of Chebyshev wavelet of the first kind (Cal-

Vel-Cheby), (b) calculated velocity using the 4th scale of Haar wavelet (Cal-Vel-

Haar).   
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To clarify the discrepancy between the computed results through the proposed method, 

approximation of the original acceleration (accelerometer data) is plotted in Figure E.11 

corresponding to the 4th scale of Haar and Chebyshev wavelet (FCW) by illustrating the 

wavelet coefficients for 1 to 1.2 sec. 

 

Figure E.11: Coefficients of wavelet for the 4th scale of (a) ChebyW-

Coefficients=Chebyshev wavelet (FCW), (b) HaarW-Coefficients=Haar wavelet 

(App-Acc= approximation of original acceleration). 
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Figures E.10 and E.11 clearly demonstrate the source of significant errors of Haar wavelet 

(2M=4) for d_t=0.05 sec, while it is shown that details of the acceleration are accurately 

captured by the coefficients of FCW for the same conditions. Therefore, a sufficiently precise 

approximation is satisfied at the first step of the proposed scheme. Furthermore, to evaluate 

the practice of various scale of Haar wavelet in detail, computed responses for the same 

d_t=0.05 sec and 8th, 32nd and 64th scales of simple Haar wavelet (designated by HA(2M)) 

were compared with the 4th scale of complex Chebyshev wavelet (FCW). The results depicted 

in Figure E.12 are from the computational time involved and percentile total average error 

(PTAE) point of view. 

 

Figure E.12: Computational time and PTAE for various scale of Haar (HA) and the 

4th scale of the first kind of Chebyshev wavelet (Cheby). 
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measured by the laser sensor (Orig-Disp) at the sampling rate of 102.4 S/s (shown in Figure 

E.13). 

 

Figure E.13: The first 6 sec time-history displacement of SDOF system shown in 

Figure E.9 (Cal-Disp-Cheby = Calculated displacement using Chebyshev wavelet 

FCW, Orig-Disp=Original displacement). 
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optimally measured through the proposed method which is capable of optimal and online 

measurement of dynamic responses. 

 

Figure E.14: The first 7 sec analysis of the third derivative of displacement (jerk). 

(a) 0-7 sec computed jerk using the 8th scale of Chenyshev wavelet (FCW) vs. 

normal calculation of the derivative with respect to time (d(Acc)/dt). (b) Zooming 

plane on 0.9-1.3 sec. 
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constant and addressed in the figure, as well as mass per length, modulus of elasticity, the 

cross-sectional area and the geometric information. To evaluate a damaged scenario (in 

overall linear behavior), it is assumed that at the 3rd second of excitation, because of a local 

exclusive motivation such as a strong explosion, only two internal members of 1 and 2 

(shown in Figure E.15(a)) are completely collapsed. The current configuration is shown in 

Figure E.15(b), corresponding to t=3-6sec of loading. Equivalently, accelerometer data 

associated on each DOF is recorded using Newmark scheme at the sampling rate of 100 or 

d_t=0.01sec (a schematic view is illustrated in the figure on node 2).   

        

Figure E.15: A 2D and pin-jointed truss under a harmonic loading at 6 sec (a) 

reference configuration; intact system, (b) updated configuration;  elements 1 and 2 

are removed at t=3 sec. 
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measurement of either integration or derivatives of responses in time domain, 

aforementioned data is used. 

 

Figure E.16: The first 6 sec time-history of the acquired accelerometer data for (a) 

DOF=3, (b) DOF=4. 

 

The displacement measurement is accomplished for any DOF, once the corresponding 

accelerometer data is considered. For example, the time-history of displacement for the 

horizontal DOF of node 2 (DOF=1) was measured from t=2.9-6sec using the 4th and the 8th 

scales of Chebyshev wavelet (FCW) and depicted in Figure E.17. It is observed that, 

0 1 2 3 4 5 6
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Acceleration  DOF-3

Time(sec)

A
cc

el
er

at
io

n
(m

/s
ec

2
)

0 1 2 3 4 5 6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Acceleration  DOF-4

Time(sec)

A
cc

el
er

at
io

n
(m

/s
ec

2
)

(a) 

(b) 

Univ
ers

ity
 of

 M
ala

ya



 

247 

 

considerably large computational time increment of d_t=0.1sec (designated by ∆𝑡
𝑤) was 

utilized while, it was d_t=0.01sec (designated by ∆𝑡
𝑠or sampling rate of 100 S/s) for recording 

original data.     

 

Figure E. 17: The measured displacements (Disp) of DOF=1 for t=2.9-6 sec using 

(a) the 8th scale of Chebyshev wavelet, FCW (Cheby2M8), (b) the 4th scale of 

Chebyshev wavelet, FCW (Cheby2M4), (∆𝒕
𝒘= d_t wavelet and ∆𝒕

𝒔= d_t original 

sampling rate). 
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in which that, highly transient structural responses are precisely captured in the vicinity of 

sudden changes of the inherent characteristics. As was mentioned earlier, to achieve a more 

accurate measurement, larger scales of wavelet shall be utilized. However, from the 

optimization point of view it may be unnecessary for simple structures under harmonic 

loadings. Subsequently, the time-history of jerk for the horizontal DOF of node 5 (DOF=6) 

was measured from t=2.9-3.5sec using the 8th scale of FCW and compared to the normal 

incremental calculation of jerk for time instance of  d_t=0.01sec shown in Figure E.18. This 

figure shows that, because of the considered short computational time interval, the normal 

incremental results are still reliable. 

 

Figure E.18: The measured time-history of jerk for DOF=6 and t=2.9-3.5sec, using 

the 8th scale of Chebyshev wavelet, FCW (Cheby2M8) and normal incremental 

derivative for ∆t=0.01sec. 

 

For the aim of damage localization, the jerk measurement is reasonably valuable, while, 

this quantity shows one of the very sensitive dynamic response to the changes of the physical 
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the vertical DOF of node 5). It is clearly distinguishable from the figure that the normal 

incremental computation of jerk is disable to measure this quantity at d_t=0.5sec. In contrast, 

the exact location of damage on time domain is optimally detected by measuring the value 

of jerk using the proposed method. It is clearly observed in Figure E.19(b), there is a 

significant fluctuation on the measured quantity of jerk at undamaged stage. This is most 

likely due to the same direction of the externally applied force with corresponding DOF.   

 

Figure E.19: The measured time-history of jerk for t=0-6 sec, using the 8th scale of 

Chebyshev wavelet, FCW (Cheby2M8) and normal incremental derivative for 

∆t=0.5 sec (a) DOF=1, (b) DOF=7. 
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Consequently, it is shown that the comparison of the optimum measurement of structural 

responses as well as jerk and displacement elaborates the detailed structural durability and 

integrity and resulting in significant enhancement of the proposed strategy for solving the 

governing inverse problem (i.e., using genetic algorithm strategy). The aforementioned 

measurement technique is computationally suitable for transitional and rotational DOFs 

located at near surface or deep elements.  

E.4  Stiffness identification results for Case (c), Ex. 4.6.1, Chapter 4 

 

Figure E.20: Relative errors (%) in identified stiffness value of story 1-9 corresponding to 

SP1 and SP3 shown in Table 4.3. 

E.5  Truss structure considered in Chapter 5 

In this subsection, the effectiveness of the proposed WMGA strategy for structural 

identification of the 2D truss structure considered in Chapter 5 is investigated corresponding 
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Figure E.21: The schematic view of the test setup used for 2D truss; the main layout of 

the test, elements and nodes numbering, (a) intact structure, (b) damage is imposed on 

elements 4 and 12.  

   

In referring to Chapter 5, there are three loadings are governed on this structure at 8-x, 5-

y and 4-y. The identification of intact structure shown in Figure E.21(a) is considered due to 

the incomplete measurement of responses. For this purpose, the program for optimum sensor 

placement is run for the total number of sensors available and representing the sensor 

placement scenarios (SP) and results are shown in Table E.1. 

Table E.1: Optimum sensor placements. 

Total number of 

available 

sensors (SP) 

Preferred measured DOFs 

3 3-y, 4-y, 7-x 

6 3-x, 4-x, 4-y, 5-x, 5-y, 7-x  

9 3-x, 3-y, 4-x, 4-y, 5-x, 5-y, 7-x, 7-y, 8-x 

12 2-y, 3-x, 3-y, 4-x, 4-y, 5-x, 5-y, 7-x, 7-y, 8-x, 6-x, 6-y 

     

Accordingly, the structural identification of intact structure is conducted using WMGA 

strategy corresponding to different sensor placements displayed in Table E.1 and the 

maximum error (%) obtained for identified stiffness of each structural element is depicted in 

Figure E.22. 
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It was anticipated that, the accurate identification is achieved by the most complete 

measurement as SP12 shown in Figure E.22. This figure obviously shows that, for elements 

between two measured DOFs the most reliable identifications are obtained. In contrast, for 

elements that the adjacent DOFs are not measured the maximum error reached to the highest 

value. It should be noted here that, the algorithm of optimum sensor placement compares the 

closeness of results obtained for reduced system and simulated response of the whole 

structure. For this reason, the highest influence of element’s stiffness is seen on its coupled 

DOFs, and therefore for elements that at least one adjacent DOFs is measured the identified 

stiffness is much more accurate.     

 

 

Figure E.22: The maximum error (%) obtained for identified stiffness of each 

structural element shown in Figure E.20, (a) SP3, (b) SP6, (c) SP9, (d) SP12. 
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