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ABSTRACT 

 

Numerous energy crises have been confronting the world due to excessive utilization of 

the world's depleting oil reserves by the ever-increasing human population. Concerns 

such as deteriorating health standards and environmental degradations have led to the 

search for sustainable biofuel alternatives. However, the recent nose-diving of the Brent 

crude oil price makes the search for sustainable catalysts more arduous. Consequently, 

the present study investigated two distinct catalytic routes for producing biodiesel from a 

cheap feedstock, which could have competitive edge with fossil diesel. Firstly, the study 

explored the potentials of converting wastes from oil palm biomass such as empty fruit 

bunch (EFB), palm frond (PTF), spikelet (PTS) and waste fruit (WPF) into sulfonated 

mesoporous solid acids via carbonization-sulfonation method. Brunauer-Emmet-Teller 

(BET), powder X-ray diffraction (XRD), Energy dispersive X-ray (EDX), and field 

emission scanning emission microscopy (FE-SEM) analyses elucidated the structural and 

textural properties of the catalysts. Further, Fourier transform-infrared (FT-IR) 

spectroscopy and titrimetric analyses measured the strong acid value and acidity 

distribution of the materials. These evidenced large mesopore volumes, large surface 

areas, uniform pore sizes, and high acid densities on the catalysts. The catalytic activity 

exhibited in esterifying used frying oil (UFO) containing high (48%) free fatty acid (FFA) 

further confirmed these properties. Interestingly, sEFB/300 and sPTS/400 converted 

more than 98% FFA into fatty acid methyl esters (FAMEs). This is outstanding 

considering the lower reaction parameters of 3 h, 5:1 methanol-to-oil ratio, and moderate 

temperature range between 100 and 200 °C.  

 

Equally, the study delved into a process considered to have attained state-of-the art status; 

sulfated zirconia (SZ), which has been the subject of numerous reports since its discovery 

in 1979. The catalytic activity of SZ in esterifying FFA and transesterifying triglycerides 
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(TG) simultaneously from high-FFA containing feedstocks into biodiesel has led to 

claims that SZ are superacids, or at least very strong acids. However, SZ has some 

inherent limitations such as slow reaction rates. Similarly, despite the numerous 

advantages of zeolite catalysts, microporosity hinders their industrial applicability for 

biodiesel production. Evidently, several reports on optimal preparative conditions that 

produced superacidic materials abound via carefully controlled procedures. Nonetheless, 

to date, no study has reported the effect of grafting zeolite on SZ for biodiesel production. 

Further, there is no information from open literature regarding biodiesel production over 

SZ doped with ytterbium, Yb. Consequently, this study investigated the prospects of 

combining mesoporous zeolite and SZ; and effect of doping SZ with Yb for biodiesel 

production. The study synthesized different composite catalysts that have potential to 

maximize activity and minimize adsorbate-induced surface reconstruction, with 

consequent reduction in net energy consumption. Remarkably, large mesoporosity, high 

amount, and dispersion of active sites on Yb-doped SZ ensured significant activity despite 

low specific surface area that was due to short aging period. However, different sulfation 

methods showed marginal effect on SZ. Interestingly, the catalyst achieved more than 

99% conversion under moderate conditions. These findings will definitely help to further 

the biofuel central policy of replacing petrodiesel in the possible near future. 
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ABSTRAK 

 

PEMBANGUNAN PEMANGKIN ACID PEPEJAL UNTUK PENGELUARAN 

BIODIESEL DARI BAHAN MENTAH ASID LEMAK BEBAS YANG TINGGI 

 

Pelbagai krisis tenaga telah dihadapi dunia disebabkan oleh penggunaan berlebihan 

simpanan minyak dunia yang semakin berkurangan dan peningkatan populasi manusia. 

Kebimbangan terhadap tahap kesihatan yang semakin merosot dan kemusnahan alam 

sekitar telah membawa kepada pencarian alternatif biofuel yang mampan. 

Walaubagaimanapun, harga minyak mentah Brent yang menurun secara mendadak baru-

baru ini menjadikan pencarian pemangkin yang mampan menjadi lebih sukar. Oleh itu, 

kajian ini dijalankan melalui dua kaedah yang berbeza untuk menghasilkan biodiesel 

yang mempunyai daya saing dengan diesel fosil. Salah satu kaedah kajian adalah 

mengeksplorasi potensi menukar sisa biomas kelapa sawit seperti tandan kelapa sawit 

kosong (EFB), pelepah sawit (PTF), spikelet (PTS) dan sisa buah (WPF) kepada 

pemangkin mesoporous Sulfonated melalui kaedah karbonisasi-sulfonation. Analisis 

melalui Brunauer-Emmet-Teller (BET), powder X-ray diffraction (XRD), Energy 

dispersive X-ray (EDX), dan field emission scanning emission microscopy (FE-SEM) 

telah dilakukan untuk mengenal pasti ciri-ciri struktur dan tekstur pemangkin. FT-IR dan 

analisis titrimetric mengukur nilai asid kuat dan serakan keasidan bahan tersebut. Analisis 

ini menunjukkan bahawa pemangkin mempunyai sejumlah besar mesopore, luas 

permukaan yang tinggi, saiz liang yang seragam, dan ketumpatan asid yang tinggi. 

Aktiviti pemangkin yang dipamerkan oleh esterifying minyak goreng yang telah 

digunakan (UFO) mengandungi asid lemak bebas (FFA) yang tinggi (48%) mempunyai 

ciri-ciri tersebut. Lebih menarik, sEFB/300 dan sPTS/400 menukar lebih daripada 98% 

FFA kepada fatty acid methyl esters (FAMEs). Ini memberangsangkan jika diambilkira 
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parameter reaksi lebih rendah iaitu 3 jam dengan nisbah 5:1 untuk metanol-minyak, dan 

julat suhu sederhana antara 100 dan 200 °C.  

 

Kajian ini turut menjurus kepada satu proses yang boleh dianggap mempunyai status 

pembangunan yang tinggi (state-of-art), di mana Sulfated Zirkonia (SZ) merupakan 

subjek yang kerap dilaporkan sejak penemuannya pada tahun 1979. Aktiviti memangkin 

SZ dalam proses serentak untuk esterifying FFA dan transesterifying trigliserida (TG) 

daripada bahan mentah yang mengandungi FFA yang tinggi kepada biodiesel telah 

membawa kepada dakwaan bahawa SZ merupakan superacids atau asid yang sangat kuat. 

Walaubagaimanapun, SZ mempunyai beberapa kelemahan seperti keasidan lemah dan 

kadar tindak balas yang perlahan. Walaupun mempunyai kelebihan pemangkin zeolite, 

mikrokeliangan mereka menghalang perindustrian bersesuaian bagi pengeluaran 

biodiesel. Terdapat beberapa laporan mengenai keadaan persiapan optimum yang 

menghasilkan bahan-bahan superacidic banyak terdapat melalui prosedur terkawal. 

Namun begitu, sehingga kini tiada lagi kajian melaporkan kesan cantuman zeolite pada 

SZ bagi pengeluaran biodiesel. Di samping itu, tiada maklumat daripada kajian lepas 

mengenai pengeluaran biodiesel lebihan SZ digabungkan dengan ytterbium, Yb. Oleh itu, 

kajian ini menyiasat prospek penggabungan mesoporous zeolite dan SZ dan kesan 

gabungan SZ dan Yb terhadap pengeluaran biodiesel. Pemangkin komposit berbeza yang 

mempunyai potensi untuk memaksimum dan meminimumkan aktiviti bahan terjerap 

yang disebabkan oleh pembinaan semula permukaan dengan mengurangkan penggunaan 

tenaga bersih telah dihasilkan. Kajian ini mengenalpasti cantuman, kelembapan yang 

baru jadi dan teknik sol-gel dalam proses menghasilkan pemangkin komposit. Kaedah 

sulfation berbeza mempunyai kesan yang sangat sedikit terhadap SZ yang dihasilkan. 

Seperti jangkaan, semua pemangkin menghasilkan penukaran lebih daripada 98% dalam 
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keadaan sederhana. Penemuan ini akan dapat membantu untuk mencapai dasar biofuel 

pusat bagi menggantikan petrodiesel dalam masa terdekat. 
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CHAPTER 1: GENERAL INTRODUCTION 

This chapter gives the overall perspective of the research problem and explains why the 

problems are worth investigating. It sets out the aim and objectives of the study and it 

serves as orientation for the reader. The chapter gave general introduction to the field of 

study, as well as to the present study. The increasing prices on the limited petroleum 

reserves exacerbate the growing public concerns on human and animal health, and the 

environmental impact caused by petroleum exploration and excessive utilization. These 

issues compelled researchers to explore energy alternatives, which are cheaper, 

“greener”, and sustainable. In this regard, biodiesel is receiving great attention because 

of its renewability, cheap feedstock sources, and its promising potential to replace 

petroleum-based diesel. Vegetable oils, animal fats, or other sources such as used cooking 

oil, grease, algae, etc. containing triglyceride, TG serve as the primary building block for 

long-chain fatty acid methyl esters, FAME known as “biodiesel”. Biodiesel is defined as 

fuel obtained from reacting alcohols such as methanol or ethanol with TGs derived from 

vegetable oils or fats in a (trans)esterification reaction catalyzed by acid, base, or enzyme. 

Esterification is the chemical reaction in which two reactants (typically, an alcohol and 

an acid) form an ester. On the other hand, transesterification is the transformation of an 

ester into another ester via interchange of the alkoxy moiety. In other words, it involves 

the exchange of the alkoxy groups of an ester with an alcohol often catalyzed. 

 

Further, pollution caused from combusting biodegradable liquid biodiesel fuel is less than 

petroleum diesel combustion. This is because biodiesel is sulfur- and aromatic-free, and 

it has high oxygen content. Moreover, it is possible to apply directly in diesel engines 

without modifications or mixed in any proportion with petroleum diesel (Hassan, et al., 

2015). Consequently, this chapter presents a detailed overview of the current state-of-the-

art on biodiesel production, the challenges current development, and the need for newer 
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advances. Subsequent chapters present detailed discussions and analyses on catalyst 

synthesis from palm biomass, and advances in the activity of zirconia-based catalysts. 

The numerous challenges such as cost of feedstock, separation problems, wastage of 

reagents, disposal, and environmental issues posed by corrosive mineral acids such as 

HF, H2SO4, AICl3, etc. in the industry have become the driving force for developing 

environmentally benign solid acid catalysts. These promising alternatives have the 

potential to minimize the large volumes of acids utilized as catalysts and waste generated 

from such harmful acids from neutralization and decomposition processes. Further, 

substituting such liquid acids and bases, and heterogeneous bases with solid acid catalysts 

for organic reactions will serve as the prime requisite in ensuring preserved environments. 

This is because solid acid catalysts have high activity advantage and good selectivity, 

which suppresses unwanted side reactions. Other major advantages of solid acid catalysts 

include: (a) higher selectivity of desired product, (b) product yield maximization, (c) 

environmentally benign and non-stoichiometric catalysts replaces stoichiometric 

reagents, (d) ease of separation and handling of final products from the reaction mixture, 

(e) fast and efficient catalyst recovery, (f) minimized waste disposal and associated costs, 

and (g) enhanced reusability and recycling options. 

 

Evidently, solid acid catalysts are efficient in producing biodiesel from feedstocks with 

high FFA contents. However, the scarcity of licensed processes is an indication that solid 

acid catalysis needs new advances via comprehensive experimentations. These will help 

to establish the numerous potentials of these catalysts as well as ensuring biodiesel 

prominence. Despite these challenges, last century witnessed catalysis as the major 

backbone for most industrial processes such as petrochemistry (especially, petroleum 

catalytic refining) and bulk chemistry. However as earlier highlighted, recent 

environmental and socioeconomic challenges have brought about new demands that 
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require novel catalytic solutions. Inherent with these new challenges are the potentials for 

greater efficiency and sustainability of such systems (Reddy, et al., 2006). Moreover, the 

searches for newer solutions have led experts to explore in minute details, the attributes 

of different materials, systems and devices (Garcia, et al., 2008). One key task is in 

achieving phase-homogeneous solids with uniform morphological and chemical 

properties. This challenge is a fundamental prerequisite to any rational catalyst design.  

 

Conventionally, selection of catalytic performance is from a large library of synthesized 

catalytic materials under predefined conditions. One consequence of such method is that 

the resulting materials possess complex phase mixtures. Further, the desired outcome is 

only a small and mostly unidentified fraction, while most of the solid is only spectator or 

even of detrimental function. Moreover, deactivation could easily occur on the catalytic 

sites because of the structural conversion they facilitate. These may limit the existence of 

high-energy sites that are essential for the performance of the solid acids. Hence, a way 

out of this key obstacle is the use of in situ observation techniques. This is because the 

high-energy sites of a catalyst cannot be predetermined via synthesis because their 

formation occurs only during the catalytic process. Consequently, the era of catalysis 

research, characterized primarily by trial-and-error, is becoming history (Reddy, et al., 

2006). Techniques such as quantum mechanics calculations, density functional theory 

simulation, solid-state nuclear magnetic resonance, in situ fluorescence microscopy and 

computational-real-time technology aid in deciphering the in-depths of heterogeneous 

catalysis and surface science (Mitchell, et al., 2013; Holewinski, et al., 2013; Gladden, 

2013; Al-Rifai, et al., 2013; Garcia, et al. 2008; Dutch National Research School, NRSC-

Catalysis, April 2009).  
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Achieving these fundamental insights into the mechanisms of catalysis via breakthroughs 

in theoretical insights and computational methods will enhance predicting catalysts 

performance under real reaction conditions. These important tools will in turn, be utilized 

in the design of novel solid acid catalysts and the control of catalytic processes (Hara, et 

al. 2004). These will have tremendous applications in unraveling the challenges 

encountered in synthesizing efficient catalysts. Further, these facilitate the determination 

of the active sites of surface reactions, the barrier(s) encountered in such reactions and 

the rate at which they occur even within picoseconds. These might involve combining 

such techniques and utilizing probe molecules augmented with multifarious nuclei such 

as 1H, 13C and 31P for investigating surface acidities of the solid acid catalysts (Dal Santo, 

et al., 2010) which is outside the scope of this study. 

 

1.1 Importance of the present study 

Homogeneous acid catalysts received wide acceptability because of their fast reaction 

rates. However, postproduction costs incurred from aqueous quenching, wastewater and 

loss of catalysts led to the search for alternatives. Until recently, heterogeneous base 

catalyzed-biodiesel production also gained the attention of most researchers. This was 

because the process minimized the problems of homogeneous catalysis in terms of 

catalyst regeneration and recycling in continuous processes. However, despite these 

advances, the ultimate aim of producing biodiesel at affordable cost is yet to be realized. 

Further, the process requires refined feedstocks which account for as high as 88% of the 

final production costs. Thus, the focus of many research efforts is towards the rational 

design and development of solid acid catalysts aimed at reducing biodiesel production 

costs. Therefore, there is a need to exploit the activities and advantages of solid acid 

catalysts for efficient biodiesel production.  
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Recently, many researchers reported the use of several catalysts such as zirconia, titania, 

zeolites and other mesoporous materials in transforming oils and fats into fatty acid 

methyl esters, FAME. However, most of the acid catalyzed reactions require very higher 

reaction conditions such methanol-to-oil ratio and temperature (Sani, et al., 2015a). 

Incidentally, cheap and abundant biomass that could form a highly versatile class of 

catalytic material because of the ease with which their properties are amenable to desired 

properties. On the other hand, despite the wide acceptability of zirconium as efficient 

catalysts for transesterification reactions, numerous challenges await the ingenuity of the 

research community (Sani, et al., 2015). Consequently, the underlying theme of this study 

is to develop two different sets of active catalytic materials; first set from waste palm 

biomass and the second via process variables modification of zirconium-based catalysts.  

 

(i) Sulfonated mesoporous carbon catalyst 

The production of most biodiesel fuels is currently from the transesterification reaction 

of virgin or refined vegetable oils and expensive catalysts. However, this has proved 

uneconomical because feedstock cost remains the overriding factor when compared with 

7% capital cost from the total production cost of biodiesel. It is imperative to formulate 

cheaper biodiesel production procedures. Incidentally, several cheaper feedstocks and 

sources for catalyst synthesis abound. These include, but not limited to used frying 

oils/fats and palm fatty acid distillate (PFAD) and biomass. These low-quality resources 

are gaining popularity due to their abundance, low production cost, benign nature, as well 

as reusability. Moreover, wastes such as waste oils and factory by-products and wastes 

generated from palm plantations constitute a major problem. The utilization of these 

wastes and by-products is one appropriate means of reducing pollution as well as 

production costs.  
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The discovery of sugar catalysts showed that carbon-based solid acids are promising 

alternatives to homogeneous alkaline and liquid acid catalysts (Toda et al. 2005). 

Recently, the incorporation of -SO3H into carbon biomass sources such as cellulose, corn 

straw, starch, glucose, and sucrose (Zhang et al. 2015; Lou et al. 2008), via carbonization-

sulfonation method exhibited significant performances (Toda et al., 2005; Takagaki et al., 

2006; Budarin et al., 2007; Zong et al., 2007; Agulló et al., 2010; Dehkhoda et al., 2010; 

Maciá-Liu et al., 2013). This is in spite of their low surface area and porosity, which limit 

reactant diffusion to active sites (Zhang et al., 2015).  

 

However, numerous groups have recently synthesized sulfonated, ordered, mesoporous 

carbons via nanocasting with SBA-15 as a template and phenolic resol and Pluronic F127 

self-assemblies under acidic conditions, respectively (Wang et al. 2007; Xing et al. 2007; 

Liu et al. 2008; Peng et al. 2010; Janaun and Ellis 2011; Suganuma et al. 2011; Geng et 

al. 2012). Similarly, Peng et al. (2005) and Yu et al. (2008), describe how to prepare 

catalysts for esterification via the high temperature sulfonation of carbon nanotubes. The 

acidity, large pore size, and high surface area of these materials ensure accessibility of 

long-chain FFA molecules and high catalytic activity. However, a literature survey 

revealed that no reports are available regarding acid-catalyzed reactions using palm tree 

biomass.  

 

Developing efficient solid catalysts from low-value biomass is essential to making the 

process ecologically friendly and economical. Malaysia, the world’s second largest 

producer and exporter of palm oil, generates a deluge of biomass from oil palm 

production. According to Sulaiman et al. 2012, oil palm production generates 85.5% of 

the total biomass produced from a variety of crops, including but not limited to rubber, 
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rice, and oil palm. This accounts for the highest percentage with little to no economic 

value.  

 

(ii) Zirconium-based catalyst 

A catalyst that has remained in the research realm is zirconia. However, zirconia has weak 

activity for transesterifying triglycerides into methyl esters in its normal state. The first 

report on sulfated zirconia (SZ) was in 1979 by Hino, et al. in 1979. The authors reported 

SZ as an active catalyst for the low-temperature isomerization of isobutane. This triggered 

numerous investigations. Expectedly, since then, several reports abound on this 

promising catalyst. For instance, Yamaguchi et al. (1990) and Tanabe et al. (1991) 

reviewed a wide range of reactions catalyze by SZ. Similarly, (Arata and Hino, 1990; 

Moles, 1992; Morterra et al., 1993, 1995; Ward and Ko, 1994; Corma et al., 1994a, and 

1994b) reported the importance and dependence of acidity and catalytic properties of SZ 

on preparative variables such as precursor type and concentration, sulfation procedure, 

and sulfate concentration and activation temperature. Further, Sani et al. (2014) reviewed 

the activity of solid acid catalysts such as SZ for producing biodiesel.  

 

However, despite the numerous reports, scholars in this field are yet to address the weak 

acidity and slow reaction rate of SZ adequately. This is because despite the presence of 

sulfate anions, the hydroxyl groups on the SZ surface are less acidic than bridged 

hydroxyls in zeolites. Moreover, in addition to Lewis sites, the surface of zirconia 

contains basic sites in the form of coordinated unsaturated oxygen atoms. This explains 

the rationale of viewing the interaction between zirconia and H2SO4 as acid-base reaction 

as posited by Haase and Sauer (1998). Therefore, this study investigated the combined 

advantages of mesoporous zeolite and superacidic zirconium by synthesizing a catalyst 

that has the potential to maximize activity and minimize adsorbate-induced surface 
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reconstruction with reduced net energy consumption. This chapter also discussed in 

details how the preparation method and prevailing reaction conditions affect the catalytic 

activity of the catalyst. To achieve the biofuel central policy, the study also developed 

green catalysts from palm tree biomass and suggested way forward from the traditional 

trial-and-error method to a rational means of determining catalytic activities. 

 

1.2.1 Research background 

It is not surprising that numerous researches tailor their catalytic synthesis towards 

resolving the energy crisis confronting the world for several decades due to the excessive 

utilization of the world's depleting oil reserves (Agrawal, 2007). On one hand, the world's 

economy is largely dependent on the transportation of goods and services (Sarkar, et al., 

2012; Jothiramalingam & Wan, 2009); while on the other hand, transportation is mainly 

dependent on energy from petroleum. In fact, the transportation sector is 96% dependent 

on fossil fuels with an annual worldwide fuel consumption of 62% (Piriou & 

Vaitilingoma, 2013). This is despite other sources of energy such as coal, natural gas, 

hydroelectricity and nuclear power (Clark & Macquarrie, 2002; Luque, et al., 2010). 

Apart from the ever-increasing prices of petroleum fuels, more worrying issues associated 

with utilizing these fuels include deteriorating health standards and environmental 

degradations. These concerns have led to the search for sustainable biofuel 

alternatives (Knothe, 2010). These researches aimed at curbing the menace of climate 

changes while sustaining a stable world economy with reduced health problems.  

 

A renewable and sustainable fuel currently receiving renewed interests and intensive 

experimentations since the work of Rudolf Diesel is biodiesel (Cheng & Timilsina, 2011; 

Zhang, et al., 2012; Giarola, et al., 2012; Karatepe, et al., 2012; Zabeti, et al, 2009). It is 

increasingly becoming attractive as an alternative to petrodiesel. It is worthy to note that 
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biodiesel is considered the fastest growing industry worldwide (Lam, et al. 2010; Luque, 

et al., 2010). This is evident from the deluge of publications available from both the open 

and patent literature (Karatepe, et al., 2012; Luque, et al., 2010; Borges & Díaz, 

2012; Lou, et al., 2008; Di Serio, et al., 2008; Loreto, et al., 2005). Nonetheless, achieving 

the central policy of biodiesel in replacing petrodiesel is still a challenge (Nigam & Singh, 

2011; Sani, et al., 2012). This is notwithstanding the tax reliefs and subsidies (Knothe, 

2010) the biodiesel industry enjoys from governmental agencies. Evidently, to achieve 

this target, certain technological advancements and sustained governmental policies are 

essential (Atadashi, et al., 2011). These include:  

(1) Affordable biodiesel feedstocks produced in vast quantities via the establishment 

of proficient production and distribution systems.  

(2) Greater yields obtained under shorter time and lesser refining difficulties 

catalyzed by novel catalysts with higher activities.  

(3) Efficient processes for separating and refining crude biodiesel via radical 

innovations.  

(4) Enacting new policies that will favor sustained biodiesel production.  

(5) Implementing the excellent findings from the research communities for 

minimizing costs, energy and water usage. 

 

In line with these, several attempts are ongoing to improve biodiesel production 

processes (McNeff, et al., 2008). Prominent amongst them is the prospects of solid acid 

catalysts for the simultaneous esterification and transesterification of feedstocks 

especially those containing high amounts of free fatty acids (FFAs). Report by West et 

al. (2008) showed that solid acid-catalyzed process is more economical than supercritical 

processes, homogeneous acid, and alkali catalysis. The study also highlighted it as having 

the least capital investment with the highest return on investment, while technically being 
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a simple process. Consequently, to overcome the disadvantages of heterogeneous alkaline 

catalysts currently used in the industries, last decade witnessed the synthesis of several 

solid acid catalysts. The challenging feat however is in attaining a breakthrough on the 

mechanism of fatty acids (FAs) esterification by solid acid catalysts. This is because it is 

more difficult to develop suitable solid acid catalysts for esterifying long-chain acids 

compared to the shorter acids such as acetic acids (McNeff, et al., 2008; Hideshi, 2010). 

Accordingly, the aim of numerous recent research efforts is to develop novel solid acid 

catalysts. Certainly, these catalysts must be active, selective, reusable, stable, and 

reproducible via simple economically viable procedures (López, et al., 2007; Carrero, et 

al., 2011). 

 

1.2.2 Statement of the research problem 

Though some of the biodiesel central policy of protecting the environment and protecting 

and/or creating jobs have become reality, the aim of replacing petroleum diesel 

economically is facing some challenges. To overcome challenges such feedstock cost and 

catalytic activity, fundamental understanding of catalysis is required for the development 

of novel, robust, and affordable catalysts. Usually, turnover frequency (TOF), strength, 

and concentration of the catalytic sites, surface area, Brønsted/Lewis acidity, and porosity 

(morphology) of the catalyst and its support are the variables used in describing solid acid 

catalysts. Manipulating these properties can lead to enhanced activity and product 

selectivity (Clark, 2002; Wilson, et al., 1999). The best description of heterogeneous 

catalysts is ‘non-equilibrium’ or ‘dynamic’ catalysts. This is due to the intimate 

dependency of the catalytic structures on the prevailing reaction conditions. 

Consequently, small changes in the reaction medium may result in large or complete 

morphological changes on the catalyst surface structure because of the adsorbate-induced 

surface-reconstruction relationship. These have the possibility of affecting the 
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performance of the catalyst significantly. Thus, the assertion that the active state of a solid 

acid catalyst is solely predominant during the catalytic process becomes plausible. Hence, 

the usual assumption that the state and number of active sites remain constant under 

varying reacting conditions becomes inadequate (Topsøe, 2003). Therefore, it is pertinent 

to decipher the optimal factors regarding the adsorbate-induced surface-reconstruction 

relationship that will aid in developing robust catalysts with better activities on cheaper 

feedstocks, which contains high FFA.  

 

1.2.3 Justification for the study 

Processing alternative cheaper feedstocks with solid acid catalysts under fast reaction 

rates and less expensive processes will no doubt, improve biodiesel production 

economics. Therefore, synthesis of novel solid catalysts that possess high activity and 

selectivity will ensure cheaper biodiesel production and commercialization against 

petrodiesel. Interestingly, the traction gained by published articles from the present study 

is receiving wider readership and increasing citations. Further, two of the articles received 

recognition as the “most downloaded articles”, while one is the “most cited” for more 

than two years, and counting. These justifies the rationale behind present study. A list of 

publications, and papers presented at conferences is provided at the end of the thesis. 

 

1.2.4  Aim and objectives of the research 

The aim of this study is twofold: first, is to synthesize solid acid catalysts, while the 

second, is to investigate the activities of the synthesized catalysts for biodiesel production. 

The synthesis of robust catalysts with interconnected system of mesopores and fast 

transesterification reaction rates (i.e., shorter reaction time; lower alcohol-to-oil molar 

ratio at moderate temperature), at acceptable cost (high FFA feedstock) would ascertain 

the novelty of this study.  
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The main research objectives of this study are as follows: 

1. To synthesize and characterize solid acid catalysts from palm tree biomass as 

environmentally benign alternative for biodiesel production. 

2. To investigate the effect of different precursors on activating active sites of sulphated 

zirconia. 

3. To synthesize and characterize new composite zirconia/zeolite catalysts by 

combining precipitation, impregnation and sol-gel techniques for simultaneous 

transesterification and esterification process in biodiesel synthesis. 

 

The specific activities underlying the research objectives of the study include: 

a. To synthesize, characterize and evaluate the use of sulfonated mesoporous catalysts 

from palm frond and spikelets in the esterification of free fatty acids for biodiesel 

production. 

b. To synthesize, characterize and evaluate the use of sulfonated mesoporous catalysts 

from palm empty fruit bunch and palm waste fruits in the esterification of free fatty 

acids for biodiesel production. 

c. To synthesize and modify sulfated zirconia and compare the effect of doping SZ with 

ytterbium, and the variation in preparatory methods on acidity and catalytic activity 

for simultaneous esterification and transesterification reactions in biodiesel 

production. 

d. To synthesize and characterize sulfated Zr/ZSM-5 with improved Brønsted acidity 

and compare its activity over SZr/Ag, SZr/Ti, and SZr/W for the transesterification 

reaction of used frying oil to form its methyl ester. 
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1.2.5  Scope of the research 

The present study is limited to the synthesis of catalytic materials from waste palm 

biomass and investigating their activity in esterifying used cooking oil, which contains 

high free fatty acids. The aim is to reduce the overall biodiesel production costs. The 

major theme of the present research is synthesis of solid acid catalysts majorly for cheaper 

biodiesel production. Thus, the study also investigated the possibility of improving the 

acceptability of sulfated zirconia (SZ) by enhancing its activity. It is an established fact 

that a solid catalyst that has being receiving a lot of research is SZ. This is due to its high 

activity and selectivity for hydrocarbon transformation. Moreover, it is also eco-friendly 

especially with regard to heterogeneous acid catalysts. Addition of a promoter to SZ 

achieves high initial activity. However, rapid deactivation of the active sites often follows 

this high activity.  

 

Some researchers studied other metal oxides with higher stability under oxidizing and 

reducing conditions such tungstated zirconia as alternatives to SZ in ameliorating this 

shortcoming. Nonetheless, these did not yield the desired catalytic activity compared to 

SZ. Despite numerous advances on catalysis, industrial biodiesel production is yet to 

surpass petrodiesel economically. This is majorly due to limited fundamental 

understanding of the mechanism for the structure-activity relationship during catalysis. 

In this study, the simultaneous esterification and transesterification of high free fatty acid 

(FFA) containing feedstock helped to assess the catalytic performance of the catalysts. 

The acidic sites on the surface of the material were prominent in catalyzing the reaction. 

Consequently, the present study investigated the relationship between catalytic 

performance and material properties, with emphasis on the influence of promoters in the 

structure of the material and its catalytic properties.  
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1.2.6  Outline of the thesis 

The general layout of the present thesis follows the University of Malaya’s Article Style 

Format comprising of articles written as separate chapters in a cohesive manner with 

logical and coordinated progression. A consortium of catalysts synthesized from different 

precursors and under different conditions converted waste feedstock, used frying oil 

obtained from household in Malaysia. Figure 1.1 puts the cohesion of the different s into 

perspective. 

 

Chapter 1 

The initial chapter consists of a general introduction that gave a detailed research 

overview including the research objectives, novelty, as well as questions addressed by the 

research.  

 

Chapter 2 

Chapter 2 presents a review of literature surrounding biodiesel production with solid acid 

catalysts, including but not limited to vegetable oil composition, challenges limiting 

direct use of vegetable oils in diesel engines, methods for reducing viscosity of vegetable 

oil for diesel engines, and oil yields of various feedstocks. Others reviewed aspects 

include energy balance of biodiesel, performance, handling, storage and usage 

comparisons – biodiesel and diesel, issues surrounding conventional processes for 

biodiesel production, current status, future challenges and prospect of solid acid catalysts 

in achieving biodiesel prominence, and biodiesel production via solid acid catalysis.  

 

 

 

 



15 
 

Chapter 3 

This chapter described the study of sulfonated mesoporous catalysts from palm frond and 

spikelets in the esterification of free fatty acids for biodiesel production. The Chapter is 

available as a reproduced Article 1. This chapter and the next, addressed the general 

research objective number 1: to develop solid acid catalysts from palm tree biomass as 

environmentally benign alternative for biodiesel production.  

 

Chapter 4 

The chapter describes the superiority of of sulfonated mesoporous catalysts from palm 

empty fruit bunch and palm waste fruits in the esterification of free fatty acids for 

biodiesel production compared to existing sulfonated carbon catalysts.  

 

Chapter 5 

Apparently, the options available for promoting sustainability are not mutually 

exclusive. Therefore, aside biomass-derived catalysts, the present study investigated the 

possibility of improving the status of sulfated zirconium-based catalysts for the same 

purpose. Chapter 5 presents Article 3, which investigated the effect of doping SZ with 

Ytterbium and further showed how preparative procedures affected catalytic activity and 

acidity of SZ.  

 

Chapter 6 

Chapter 6 described the synthesis and characterization of a new sulfated Zr/ZSM-5 with 

improved Brønsted acidity and compared its activity over SZr/Ag, SZr/Ti, and SZr/W for 

the transesterification reaction of used frying oil to form biodiesel. This is chapter is a 

representation of Article 4. This article investigated an innovative approach of enhancing 

acidity of SZ composite catalysts that could withstand unfavorable constituents 
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highlighted above. The basis of the interplay between metal function of modified oxo-

anions and pore structure of zeolites and its strong acidic properties premised this 

research. Each article (Chapter) consisted of its own different sections; namely 

Introduction, Literature Review, Results and Discussion, and Conclusion.  

 

Chapter 7 

Finally, Chapter 7 presents the Conclusions and Recommendations. The chapter 

summarized the overall research findings from all the four articles and offered 

recommendations for future research. 
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Figure 1.1: Diagrammatical representation of the logical and coordinated progression of 
chapters 3 to 6 
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1.2.7 Synopsis, findings and contributions of the study  

a) The novel aspect of this research is synthesis of robust catalysts with interconnected 

system of mesopores and fast transesterification reaction rates (i.e., shorter reaction 

time; lower alcohol-to-oil molar ratio at moderate temperature), at acceptable cost 

from feedstock containing high FFA. 

b) This is timely because the main issue challenging biodiesel production is the rational 

design and development of affordable and efficient catalysts for low-value feedstocks.  

c) Evaluating green precursors, unconventional promoters, and supports for the catalyst 

synthesis are some of the crucial research decisions taken. The study put into 

cognizance that research involves thinking out-of-the-box, and doing the 

‘unconventional’ though backed with plausible philosophical and technical-know to 

achieve novelty. We also considered alternative procedures for investing the same 

synthesis technique. These exhibited positive impacts on the activities of the catalysts.  

d) The findings of this research compared favorably with peer-reviewed data from the 

open-literature. The aspect that sets the outcomes of this study apart from others is 

faster reaction rates from cheaper precursors. 

e) The research outcomes indicate the possibility of synthesizing the desired catalysts that 

could ensure a cheaper biodiesel production, which translate to a profitable and 

sustainable biodiesel industry in the long run. However, despite the successes of this 

study, it is pertinent to highlight that there is need for improvement. This is especially 

in the aspect of in situ analysis of the catalytic reactions (i.e., the precise determination 

of activity and reactivity of the catalyst during catalysis.), and acid recovery.  

f)  Expectedly, the results obtained from this study would remain innovative for a couple 

of years. However, this brilliance would diminish in the next 5 years specifically due 

to advances that will emerge.  



19 
 

g) It is our conviction that the recommendations given at the end of this thesis are 

appropriate for future researches.  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

CHAPTER 2: LITERATURE REVIEW 

This chapter presents a comprehensive review of literature surrounding biodiesel 

production with solid acid catalysts, including but not limited to vegetable oil 

composition, challenges limiting direct use of vegetable oils in diesel engines, methods 

for reducing viscosity of vegetable oil for diesel engines, and oil yields of various 

feedstocks. Others reviewed aspects include energy balance of biodiesel, performance, 

handling, storage and usage comparisons – biodiesel and diesel, issues surrounding 

conventional processes for biodiesel production, current status, future challenges and 

prospect of solid acid catalysts in achieving biodiesel prominence, and biodiesel 

production via solid acid catalysis.  

 

2.1 Overview 

Industrialization and transportation are two indicators used in reflecting the global 

civilization status (Serrano-Ruiz, et al., 2012; Haung, et al., 2012). Human civilization 

transformed from using animal forces (which relied on biomass from plants) to external 

combustion engines (which relied on solid coal). After steam engines, internal 

combustion engines (ICE) which relied on liquid diesel and gasoline, revolutionized 

transportation (Zhang, 2008). Currently, ICE and liquid fuels such as jet fuel, diesel, and 

gasoline propel jet planes, trains, ships, and vehicles. However, the lower price advantage 

that made these fuels popular (Zhang, 2009) is becoming history. The current scenario is 

an inverse relationship with petroleum becoming depleted and more expensive (Luque, 

et al., 2010; Kafuku and Mbarawa, 2010). Concomitantly, it is estimated that the world 

would require 50% more energy in 2030 than it does today (Shahid and Jamal 2011; IEA, 

2007). Besides, environmental degradation due to the emissions of CO2 is becoming 

increasingly worrisome. In 2007 and 2008, the transportation sector alone accounted for 

22% and 23% of the total CO2 emissions respectively. About 50% of this greenhouse gas 
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(GHG) emission comes from road transport (Zhang, 2009; JFS, 2010). The panacea to 

these challenges confronting the world today is the provision of alternative renewable 

fuels (Lee & Wilson 2015). These fuels will ensure a global energy security with reduced 

environmental impacts as well as compete favorably with petroleum diesel (Atadashi, et 

al., 2011). 

 

Concerns for the environment and biodiversity have made biofuels the most attractive 

sources of alternative energy (Metcalfe, et al., 2010; Koberg and Gedanken, 2012). Other 

factors that contributed to their acceptability against other sources are sustainability, 

seasonal fluctuations, and geographical locations (Shahid and Jamal, 2011). Combustible 

renewables and wastes have the highest potentials to supply the global energy 

requirements. They accounted for more than three quarters of the global energy supply in 

2007 and 2008 (Figure 2.1) (Kafuku and Mbarawa, 2010). From the several energy 

alternatives identified, biodiesel is the most promising due to its similar properties to 

petrochemical diesel. Producing biodiesel in large quantities will no doubt help to meet 

the increasing global energy demands. 

 

Figure 2.1: Total renewable energy supply (Mtoe) in year 2008. 

Total: 100 million tonnes of oil equivalent (Mtoe). 
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The concept of producing fuel from bio-resources is fascinating, and achieving a 

sustainable one at an affordable cost is compelling. To date, the most appropriate option 

to these requirements is biodiesel. Biodiesel have been produced from used oil and high-

yield non-edible oil crops such as Jatropha from non-arable (arid) and dispensable lands. 

Recent studies are exploring a much-conceived sustainable alternative from microalgae. 

Biodiesel production from algal oil is eliminates the completion of land-use and food-for-

fuel. Generally, biodiesel is a clean renewable source of energy produced both locally and 

commercially. It has a high considerable production capacity and energy output ratio. 

These factors made exploring biodiesel production methods attractive, interesting and a 

worthy proposition.  

 

Biodiesel is a mixture of fatty acid alkyl esters produced from vegetable oils or animal 

fats usually via transesterification reaction. Triglyceride esters react with alcohol 

(methanol or ethanol) in the presence of a catalyst producing glycerol as the by-product 

(Ma and Hanna, 1999). The structure and properties of the produced methyl and ethyl 

esters are similar to petroleum diesel. This accords biodiesel suitability for direct use in 

present day diesel engines or as a blend with petroleum diesel (Ma and Hanna, 1999). 

Therefore, the need to modify engines for the utilization of biodiesel is not necessary. In 

fact, it is worthy of mention that the engine specifications designed by Rudolf Diesel was 

meant to combust peanut oil. Recent report by the USDA showed that the cost of biodiesel 

is approximately 50 to 70 cents to gasoline prices (NREL; Shay, 1993). The current 

skyrocketing prices of gasoline will serve as catalyst for the research of biodiesel 

(Agrawal and Das, 2001). 
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However, there is need for advancement to the current methods of biodiesel production. 

Presently, the popular approach of producing biodiesel is via soluble alkali catalysts (Ma 

and Hanna, 1999). The alkali reacts with the acids from the free fatty acids (FFAs). This 

consequently leads to tedious problem of separation after the transesterification reaction. 

Furthermore, there is need for repeated washing with water to the purify product from 

dissolved catalyst and soap. This generates about 8 gallons of wastewater for every gallon 

of biodiesel produced, which leads to unwanted environmental impact. The costs 

implications from separation, purification environmental impact, batch process, and loss 

of catalyst have hindered the commercial production of biodiesel from this approach. 

Currently, researches are ongoing in search for alternative methods. Solid acid catalysts 

have received renewed interests in this regards. The acidic and heterogeneous nature 

eliminates the separation and purification steps. Additionally, the catalysts are reusable, 

amenable to regeneration many times without loss in activity, and suitable for continuous 

processes (Lam, et al., 2010). The processes for development of heterogeneous acid 

catalysts for biodiesel production are vast and there is lot of scope for work in this area. 

 

2.2 Composition of vegetable oil 

Oils and fats from natural biological sources are generally comprised of a mixture of fatty 

acid (FA) glycerol esters (Sonntag, 1979). The compositions of FA vary in carbon chain 

length and number of double bonds (Balat and Balat, 2008). Typical examples of these 

natural oils and fats are palm oil, soybean oil, corn oil, rapeseed oil, castor oil, sunflower 

oil, jatropha oil, beef tallow, coconut oil chicken fat, and algae oil. The compositions of 

fatty acid vary with different sources (Table 2.1).  
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                       Table 2.1: Fatty acid composition of common oils and fats 
Fatty acid,  

%* Soybean Palm Lard Corn Tallow Coconut Cottonseed Rapeseed Linseed  
Yellow 
grease 

Olive  

Lauric 
  (12.0) 

0.1 0.1 0.1  0.1 46.4      

Myristic 
  (14.0) 

0.1 1.0 1.4 1-2 2.8 19.2 0-2   2.43  

Palmitic 
  (16.0) 

10.2 42.8 23.6 8-12 23.3 9.8 20-25 3.0 4-7 23.24 9-10 

Stearic 
  (18.0) 

3.7 4.5 14.2 2-5 19.4 3.0 1-2 0.8 2-4 12.96 2-3 

Oleic 
  (18.1) 

22.8 40.5 44.2 19-49 42.4 46.9 23-35 13.1 25-40 44.32 73-84 

Linoleic 
  (18.2) 

53.7 10.1 10.7 34-62 2.9 2.2 40-50 14.1 35-40 6.97 10-12 

Linolenic 
  (18.3) 

8.6 0.2 0.4 trace 0.9 0.0 trace 9.7 25-60 0.67 trace 

Arachidic 
(20.0) 

 0.2      7.4    

*Number of carbons and double bonds in parentheses 

 

2.3 Reasons why vegetable oil is not suitable for direct usage in diesel engines 

Over the years, diesel engine has developed to suit petroleum fuel-combustion engines 

perfectly. However, direct utilization of vegetable oils encountered some problems 

because of difference in the composition of hydrocarbons. Petroleum diesel consists of 

non-branched hydrocarbon molecules with 12 to 18 carbon atoms. Vegetable oil 

molecules on the other hand, comprises of triglycerides having carbon atoms three times 

greater in number (Agarwal and Das, 2001). Consequently, vegetable oil has higher 

viscosity than that of petroleum diesel oil. Agarwal and Das (2001) reported that at 40 

°C, the viscosity of vegetable oil is 35 to 45 centistokes as compared to 4.0 centistokes of 

petroleum diesel oil. The internal combustion engine (ICE) finds it difficult during 

pumping and atomization in the injection system. Apart from these difficulties, there is 

incomplete combustion that leads to high carbon deposits and emission of heavy smokes.  

 

Additionally, because of its high molecular weight, vegetable oil has low volatility. This 

makes it easy for the oil to stick to the cylinder and injector walls (Krawczyk, 1996). The 

sticky layer polymerizes into a films, which continues to trap more oil forming more 

deposit formation. This obstruct smooth combustion that leads to carbonization of injector 
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tips, ring sticking, and lubricating oil dilution and degradation. Incomplete combustion 

becomes the result of the limited access and inefficient mixing of air in the combustion 

unit. Other problems as result of low volatility and high viscosity are poor cold engine 

start-up, misfire, and ignition delay (Balat and Balat, 2008). 

 

2.4 Methods of reducing viscosity of vegetable oil for diesel engines 

The methods for minimizing the viscosity of vegetable oils for practical applications in 

internal combustion engines include pyrolysis, micro-emulsification, blending (diluting), 

and transesterification (Ma and Hanna, 1999; Agarwal and Das, 2001). 

 

2.4.1 Direct use and blending (dilution) 

This involves blending vegetable oil with diesel fuel in varying quantities. This is 

generally unsatisfactory for use in diesel engines. Blending is not a production process. 

It involves mixing vegetable oil with existing diesel fuel. This method is good in 

minimizing viscosity problems in biodiesel. The Caterpillar Co., Brazil used a blend of 

10% vegetable oil and diesel fuel in 1980 in the pre-combustion chamber engine. Two 

years later, a fleet of diesel engines used a blend of 5% diesel and 95% waste cooking oil 

(Pramanik, 2003). Narayan (2002) reported the optimum blend to be 80% diesel and 20% 

oil. B100 stands for pure biodiesel while B20 is fuel containing 20% biodiesel. The 

minimum standard blend that meets the of the federal EPA minimum requirements for 

clean air is B20. B20 is also the highest recommended blend for best performance in 

diesel engines. Blending prevents the biodiesel from gelling in extreme cold weather. 

However, blending is not suitable for commercial production. BX represents the 

percentage blend in biodiesel. Other problems associated with direct and indirect use 

include high viscosity, FFAs, carbon deposits and gum formation because of oxidation. 

Polymerization also occurs during combustion and storage (Ramadhas, et al., 2004). 
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2.4.2 Thermal cracking (pyrolysis) 

It is possible to process vegetable oil, fats, and soap in a technique similar to thermal 

cracking of petroleum. Pyrolysis is heating of organic matter in the absence of air to 

produce gas, a liquid, and a solid (Uzun, et al., 2006). Heat or a combination of heat and 

catalyst break the heavy molecules from vegetable oils and animal fats into smaller 

constituents. This produces olefins and paraffins with similar properties to petroleum 

diesel, where such products derived the name “diesel-like-fuel” (Sonntag, 1979). Other 

molecules found in the product include water, particulate matter, sulfur, alkanes, alkenes, 

and carboxylic acids (Sharma, et al., 2008; Pinto, et al., 2005). Consequently, it is difficult 

to characterize fuel obtained from pyrolysis because of its heterogeneity (Sonntag, 1979). 

This process is energy consuming, inefficient, and needs expensive distillation units. 

Moreover, the sulfur and ash contents make it less eco-friendly (Lotero, et al., 2005).  

 

Sensoz, et al., (2000) researched the effect of rapeseed particle size (range from 0.224 

mm to 1.8 mm) on the yield of biodiesel. Their report and a similar conclusion by Uzun 

et al., (2006) showed the product yield is independent of the rapeseed and soybean particle 

size. Report by Senzos and co-researchers (2000) confirmed 400 °C to 450 °C to be the 

maximum temperature range for conversion of bio-oil. Rapid devolatilization of cellulose 

and hemicellulose occur at this temperature. They also showed that heating rate and 

temperature have significant effects on bio-oil yields, char, and gas released from olive. 

When 150 cm3/min flow rate of nitrogen heated at 10 °C min-1, 37.7 % was the maximum 

yield obtained at 500 °C (Sensoz, et al., 2006). The viscosity, flash and pour points and 

equivalent calorific values of the oil are lower than diesel fuel. However, the pyrolyzate 

has increased cetane number, which is lower than diesel oil. Apart from reducing the 

viscosity of the vegetable oil, pyrolysis enables de-coupling of the unit operation 
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equipment in shorter time, place, and scale. It produces clean liquids, which needs no 

additional washing, drying, or filtering. 

 

2.4.3 Micro-emulsion or co-solvency 

One of the potential solutions in resolving the viscosity problem of vegetable oil is micro-

emulsions (or co-solvency). It addresses the high viscosity problem to some extent. 

Mixture of alcohol, surfactants, and cetane improvers or vegetable oil as ester and 

dispersant (co-solvent), and additives in suitable proportions, with or without diesel fuels 

produces micro-emulsion. Under vigorous stirring, the oil disperses into the solvent such 

as methanol to produce the emulsions. These become transparent solution dispersed with 

thermodynamically stable colloids. The diameters of the droplets range from 100 to 1000 

Å, which easily passes through fuel filters. The additives used for reducing the fuel 

viscosity as well as increasing its cetane number are alcohols such as methanol, ethanol, 

and propanol (Lotero, et al., 2005). The surfactants for improving the cetane number 

include higher alcohols and alkyl nitrates (Ranganathan, et al., 2008). Ma and Hanna, 

(1999) reported that biodiesel micro-emulsions produce carbon deposits because of the 

incomplete combustion, while injector needle sticking occurs after prolong usage due to 

high viscosity. Fukuda and co-researchers (2001), reported incomplete combustion of 

biodiesel micro-emulsions after a 200 h endurance test. 

 

2.4.4 Transesterification or alcoholysis 

This is the most preferred method. It transforms the vegetable oil into fatty methyl esters 

biodiesel or (FAMEs) for efficient utilization in diesel engines. Transesterification is the 

most widely employed process for commercial production of biodiesel. It involves 

heating the oil to a designated temperature with alcohol (often methanol or ethanol) and 

a catalyst, thereby restructuring its chemical structure. This conversion reduces the high 
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viscosity of the oils and fats. Transesterification of TG molecule requires three 

consecutive reactions where the triglyceride from the alcohol neutralizes the free fatty 

acid. Figure 2.1 depicts esterification while Figure 2.2 depicts the transesterification 

reaction where all types of glyceride species take part. A completion net reaction produces 

one mole of glycerol and three moles of alkyl esters for each mole of TG converted. These 

separate into three layers, with glycerol at the bottom, a middle layer of soapy substance, 

and biodiesel on top (Lotero, et al., 2005). Transesterification is a reversible reaction. To 

obtain reasonable conversion rates therefore, it requires a catalyst. The nature of the 

catalyst predetermines the reaction conditions, feedstock compositional limits, and post-

separation requirements. Currently, base catalysts are preferred over other catalysts 

because of their ability to enhance faster reaction rates (Freedman, et al., 1984). This is 

because they are readily available at affordable prices. 

 

 
Figure 2.2: Esterification reaction 

 

 

 

Figure 2.3: Transesterification of triglyceride with methanol in the presence of catalyst; 
where k1-8 are rate constants. 

 
 

R-C-OCH + CH3OH                       R-C-OCH3 + H2O
carboxylic acid     alcohol                                      ester                  water

OO
catalyst

TG + CH3OH                          DG + R1COOCH3
k1

k2

DG + CH3OH                          MG + R2COOCH3

MG + CH3OH                          GL + R3COOCH3

k3

k4

k5

k6

Overall reaction:
    TG    +   3CH3OH                      3RCOOCH3   +   GL
 triglycerol         methanol                              esters of fatty acids      glycerol

k7

k8
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2.5 Oil yields of various feedstocks 

Figure 2.4 shows the world’s liquid fuel supply by type, while Table 2.2 lists the estimated 

oil content yields, and required land foe different biodiesel feedstocks. Microalgae, which 

require the minimum land for cultivation, have the highest oil yield. Though it does not 

thrive well in all geographic locations, palm tree has the highest yield amongst oil crops. 

Jatropha that thrives in arid and marginal land requiring minimal irrigation produces 

inedible oil. Economically, some of the most favorable where Jatropha thrives are Africa, 

India, Pakistan, Carribbean, and the Philippines. Soybean has lower yield compared to 

rapeseed, but its fertilizer requirements are considerably less than that of rapeseed since 

it can fix nitrogen.  

 

 
Figure 2.4: Liquid fuel supply by type (Millions of oil-equivalent barrel per day) 

Source: http://www.exxonmobil.com/Corporate/files/news_pub_eo.pdf 
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2.6 Energy balance of biodiesel 

Sheehan, et al. (1998) estimated the ratio of the energy output of biodiesel as 3.2:1. This 

is the quantity of fuel energy per unit of energy used in producing biodiesel. This ratio of 

biodiesel energy output is high when compared to that of bioethanol, estimated at 1.05:1 

to 1.25:1 (Shapouri, et al., 2002; Hill, et al., 2006). 

 

Table 2.2: Estimated oil content, yields and required land of different biodiesel 

feedstocks (Chisti, 2007) 

Microalgae 
Oil content (% 

dry wt) 
Oil yield 
(g.L-1) 

Biomass 
(g.L-1) 

 

Schizochytrium sp. 50 to 77    

Botryococcus braunii 25 to 75    

Chlorella sp. 28 to 32    

Nitzschia sp. 45 to 47    

Nannochloropsis 31 to 68    

Cylindrotheca sp.  16 to 37    

Trichosporon 
fermentans 

35.3 12.8 36.4  

Lipomyces starkeyi 68.0 6.4 9.4  

Mortierella 36.0 3.7 10.4  

Isabellina 24.0 2.0 8.4  

Cunningamella 28.0 3.8 13.5  

Echinilata 10.0 0.4 4.1  

Microalgae/Plant 
Oil yield 

(L/ha/year) 
Oil content  

(% wt in biomass) 
Required land 

(M ha-a) 
Biodiesel productivity 
(kg biodiesel/ha/year) 

Microalgaeb 136,900 70 2 121,104 
Microalgaec 58,700 to 

97,800 
30 to 50 4.5 51,927 to 85,515 

Oil palm 5,950 30 to 60 45 4,747 

Jatropha C. 1,892 
Seed: 35 to 40 
Kernel: 50 to 60 

140 656 

Canola/Rapeseed 1,190 38-46 223 862 
Soybean 446 15-20 594 562 
Corn (Germ) 172 48 1540 152 
aTo meet 50 % of all current US transport consumption.  
b70 % (W/W) oil yield in biomass.  
c50-30 % (W/W) oil yield in biomass 

 

2.7 Present scope of biodiesel production 

The advancement of biofuels as energy source for industrial and transport sectors 

encountered serious criticisms from some scientific and policy communities. Some of the 

arguments emanated based on priority in using food crops as energy sources for biofuels. 

These biofuels include bioethanol from fermentation of sugar and starch-based feedstocks 
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and biodiesel from transesterification of vegetable oil TGs. This issue raised the questions 

of food availability and prices, land-use, environmental degradation and related socio-

economic implications. The preliminary data obtained from biofuels produced from 

biomass and wastes provided leeway to this argument. The results indicated reduced 

environmental degradation, especially GHG emissions and deforestation. (Luque, 2010; 

Luque, et al., 2008; Antizar-Ladislao and Turrion-Gomez, 2008; Antizar-Ladislao and 

Turrion-Gomez, 2010) The major key players that attracted the attention of many 

researchers from these biofuels are algal and lignocellulosic fuels. This is because these 

fuels are readily available, and easily processed. While lignocellulosic biomass is 

currently the frontrunner, the great potential for mass production of biofuel that 

microalgae have, has attracted the attention of many researchers (Luque, et al., 2008; Yan, 

et al., 2010).  

 

Concerns over diminishing oil reserves, skyrocketing crude oil prices, increase in GHG 

emissions and associated environmental impact have made biodiesel emerged as the 

fastest growing industries worldwide. It is the second most abundant combustible 

renewable fuel. Biodiesel is a non-toxic, clean-burning fuel, regarded as a viable 

alternative (or additive) to petrochemical diesel (Luque, et al., 2010; Lam, et al., 2010; 

Armaroli and Balzani, 2007). Yet, to remain sustainable, it is necessary to produce 

biodiesel from non-food crops that require minimal cultivation, without competing with 

the traditional arable land or cause deforestation. However, Jatropha curcas, Miscanthus, 

switch grass and non-edible plant parts such as husks, stems, leaves, and used cooking 

oils are good sources in this regards, a more reliable and efficient source is yet to be 

established. The potential to produce biodiesel yields > 100 times those attainable per 

hectare from plant feedstock has attracted current growing interests for algal oil (Mata, et 

al., 2010; Luque, 2010).   
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2.8 Performance, handling, storage, and usage comparisons – biodiesel and diesel 

Compared to diesel, biodiesel has poor cold-weather properties and higher cloud point 

(soy biodiesel: 2 °C against No. 2 diesel: -23 °C). Consequently, it forms gel at a lower 

temperature during cold weather. Blending with diesel or kerosene or the use of anti-

gelling agents minimizes this problem. Agarwal and Das (2001) reported that B20 has the 

same cloud point as diesel. Due to its higher molecular weight, the lubricity of biodiesel 

is better than that of diesel. Blending biodiesel with diesel improves its lubricity. For 

instance, diesel blended with as low-level blends of biodiesel as 1% or 2% exhibited high 

lubricity. This is particularly important for diesel oils with poor lubricating properties 

such as ultra-low sulfur content. Diesel has 8% more energy content than biodiesel 

(Pacheco, 2006). B100 degrades gaskets and hoses made of nitrile, buna N or rubber. To 

prevent this, materials which are resistant to degradation such as VitonTM were designed 

(NREL, 2006). The cetane number of biodiesel (48-65) is better than that of petroleum 

diesel (40 to 55). This also implies better engine performance because of efficient 

combustion and better cold start properties. The tail pipe of biodiesel and petroleum diesel 

emits lesser (50%) particulate matter. CO2, partially burned hydrocarbons were 50% and 

50% less respectively for biodiesel than petroleum diesel. However, due to high 

temperature in the ICE, biodiesel has 15 % higher emissions of NOx than petroleum 

diesel. Catalytic converters designed to reduce the NOx into oxygen and nitrogen 

minimizes this problem (EPA, 2002; Schwab, et al., 1987).   

 

2.9 Issues surrounding conventional processes for biodiesel production 

The use of soluble alkaline catalyst (NaOH, KOH) is the major limitation with the 

conventional process. Apart from the high amount of glycerol as by-product, other 

impurities contaminate the biodiesel produced at the end of the reaction. Soluble base 

methoxide in the presence of water produced by the reaction saponifies a fraction of the 
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triglycerides. Repeated water washing separates the soap and sodium methoxide from the 

product mixture. Catalysts consumption at the end of the reaction is another economic 

challenge aside these tedious and cumbersome tasks. It is very uneconomical to try 

regenerating the catalyst. Therefore, fresh catalysts are required for each 

transesterification. Furthermore, the wash water also constitutes environmental impact 

from waste disposal. Each kilogram of biodiesel produced generates about 8 kg of 

wastewater. Unfortunately, water is one of the most expensive resources employed in 

biodiesel production plants. Additional heating is required to remove any trace water from 

the biodiesel. After all these extra processing steps, the product proceeds to the final 

polishing unit. All these incur unnecessary costs and thereby hindering the economic 

competitiveness of biodiesel to petroleum diesel (Ma and Hanna, 1999). Extra processing 

units such as FFA pretreatment and catalyst-alcohol pre-mixing units help in minimizing 

these problems. However, the overall production costs are high. Apart from a neat, 

efficient, and robust process for commercial production, a simple process affordable to 

the subsistent farmer especially in developing countries is also required. The purity of the 

by-product of the transesterification reaction is only about 80% pure. This is because it 

contaminated with water, soluble catalyst, and soap. The purification of such product 

requires expensive equipment such as vacuum distillation units. This depreciates its 

market value while disposal of unwanted impurities and wastewater incur strict 

legislations and extra charges. However, numerous researches are exploring means of 

valorizing such products into value-added products such as organic synthesis, food, 

medicine, personal care, pharmaceuticals and cosmetics. 
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2.10 Solid acid catalysts 

The focus of most recent advances is towards the use of recyclable heterogeneous acid as 

alternative to the solid base catalysts and unrecyclable homogeneous acid and base 

catalysts. Heterogeneous acid catalysts are heterogeneous; hence, they are analogous to 

their base counterparts. This helps in eliminating the costs of product separation while 

ensuring the advantage of regeneration and reusability. Furthermore, acid catalysts are 

less susceptible to FFAs. The support matrix of solid acid catalyst sterically hinders 

solvation of the active sites by water. Thus, deactivation of the catalyst is comparatively 

lower than liquid catalyst. Consequently, cheaper and readily available feedstock could 

be employed (Nusterer, et al., 1996; Veljkovic, et al., 2006; Smith, et al., 2003; Clark, et 

al., 2002; Misano, et al., 2000).  

 

2.10.1 The concept of acidity 

Arrhenius (1880 to 1890) defined acids as substances that dissociate in water to yield H+. 

In 1923, J.N. Brønsted modified this definition to include all species that have the 

capability of donating H+ while he referred to bases as species with the capacity to accept 

the proton. This proton donor (often OH-group) became the Brønsted-Lowry concept. 

However, G.N. Lewis postulated the electron acceptor concept. He defined acids as 

substances that can accept electrons while he regarded those capable of donating as bases. 

Consequently, electron deficient ions or molecules became Lewis acids, otherwise called 

carbocations. Similarly, Lewis bases are substances having readily available non-bonded 

electron pairs such as ethers and amines. Interestingly, James Bryant Conant coined the 

term “superacids” in 1927 to denote materials with acid strength higher than strong 

mineral acids (107 to 1019), such as H2SO4 and Lewis acids such as AlCl3. Superacids are 

capable of protonating certain weak bases such as carbonyl compounds. The initial 

discoveries of carbocation, acidic halonium ions, and halogen cations on these materials 
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indicated their electron deficiency, stability, and longevity. The concept of acidity is 

viewed as the hydrogen nucleus with the 1s orbital empty (H+). Within this concept, the 

nucleus has a powerful polarizing effect because it is not prone to electronic repulsion. 

Further, it is always associated with one or more molecules because of its strong electron 

affinity that makes it impossible to exist freely in condensed state. However, free “naked” 

proton exists in gas phase. Solid acid catalysts are gaining the attention of researchers 

because of the inherent limitations of liquid acids and heterogeneous bases (Table 2.3). 

 

Table 2.3: Main advantages and disadvantages of solid acid catalysts 
Advantages Disadvantages 
Highly selective (specific activity) Heterogeneity makes acidity measurement difficult 
Suitable for continuous operation  Acidity measurement not always accurate 
Ease of separation at end of reaction Acidity measurement are difficult to interpret 
Fully recoverable at the end of reaction Mostly, well-known acid catalyzed reaction estimates acidity  
Easily regenerated for recycling Requires higher temperature to achieve activity 
Reutilization of catalyst Requires enhancers such as treatment with suitable co-acid or binding a liquid 

acid physically or chemically on the otherwise inert surface to activate the 
intrinsic acidity    

 

Theoretically, high surface area gives the highest activity. However, materials with high 

surface areas are (a) difficult to prepare, (b) difficult to maintain because of their 

susceptibility to sintering and, (c) associated with high porosity. This makes them prone 

to mass transfer limitations that subsequently render them into weaker catalysts. In some 

cases, high porosity enhances faster reaction rates. Consequently, it is instructive to factor 

out the desirable factors when developing catalytic materials for specific targets (Figure 

2.5). 
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Figure 2.5: Determinants for selecting a particular catalyst 

 

Theoretically, high surface area gives the highest activity. However, materials with high 

surface areas are (a) difficult to prepare, (b) difficult to maintain because of their 

susceptibility to sintering and, (c) associated with high porosity. This makes them prone 

to mass transfer limitations that subsequently render them into weaker catalysts. In some 

cases, high porosity enhances faster reaction rates. Consequently, it is instructive to factor 

out the desirable factors when developing catalytic materials for specific targets (Figure 

2.5). Solid acids include acidic clays (Campanati, et al., 2003; Vaccari, 1998 and 1999), 

mixed oxides such as silica-alumina, oxides such as SO4, sulfonated polystyrene ion 

exchange resins and sulfated zirconia, (Sharma, 1995; Chakrabarti and Sharma, 1993). 

Others include zeolites (van Bekkum, et al., 1991; Corma, 2003), polyoxometalates acids 

(Sheldon and van Bekkum, 2008), and hybrid organic-inorganic materials such as 

mesoporous oxides containing suspended organic sulfonic acid moieties (Valkenberg and 

Hölderich, 2002; Sheldon and van Bekkum, 2001).  

 

   High activity and selectivity Effect on chemical activity    Mechanical properties    Reactor dynamics 
 
 
 

   

     1. Chemical nature of the components    1. Is bifunctionality required?            1. Optimum shape 1. Good contacting 
     2. Effect of additives    2. Porosity            2. Mechanical strength 2. Good control 
     3. Thermal & Hydrothermal stability    3. Surface area            3. Mass & heat transfer 3. Correct flow 
    4. Stability            4. Stability  
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Usually, the strength and concentration of catalytic sites, the surface area and porosity 

(morphology) of the support and Brønsted/Lewis acidity are the variables used for 

describing solid acids. Manipulating these properties enhances higher product selectivity 

(Clark, et al., 1994). Pore constraints influences product selectivity because the sizes of 

the reacting species, intermediates, or the products formed determine accessibility and 

adsorption (Clark, 2002). The various types of solid acid catalysts are subdivided into 

three classifications. Amorphous mixed oxides (typified by acidic clays), solid acids 

having sulfonic acid groups on their surfaces (typified by the sulfonated polystyrene ion 

exchange resins), heteropoly acids, zeolites, and zeotype materials (Sheldon and van 

Bekkum, 2001).  

 

2.10.2 Amorphous mixed oxides 

(i) Acidic montmorillonite (pillared) clays 

Clays are naturally occurring amorphous, pillared, or layered aluminosilicates produced 

in huge quantities for various processes. Solid acid catalysts extensively catalyzed oil 

refining during the period from 1930s to the mid-1960s. It was the higher selectivity and 

activity exhibited by zeolites that brought about the replacement of acid clay catalysts. 

Polymerization between the basic building blocks (i.e., tetrahedral SiO4 and octahedral 

MO6 where M = Al3+, Mg2+, Fe3+, Fe2+, Sn4+, Ti4+, Sc3+) produces two-dimensional sheets. 

Octahedral sheet is sandwiched by these tetrahedral silicate sheets (Sheldon, et al., 2007; 

Sheldon and van Bekkum, 2001; Smith, et al., 2003; Misano, et al., 2000; Izumi and 

Onaka, 1992).  

 

The clay’s Brønsted and/or Lewis acidity and catalytic properties are dependent on the 

electronegativity of interlamellar exchangeable cations attached to the negatively charged 

aluminosilsicate sheets. More electronegative cations produce stronger acidic catalysts. 
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Consequently, cation exchange or acid treatment enhances the amount and strength of 

Brønsted and Lewis acid sites. The synthesis of active and commonly used KSF and K-

10 acid catalysts developed from natural montmorillonite by Fluka and Sud-Chemie 

respectively, was after treatment with sulfuric acid. Usually, the octahedral sheets consist 

typically of oxygen atoms attached to multivalent metal cations with lower valency such 

as Mg2+. The difference in electronic configuration gives the overall sheets a net negative 

charge. Presence of hydrated cations in the interlamellar spaces compensates for this 

negative charge. As a result, the clay swells when immersed in water and exposes the 

intercalated cations. This phenomenon makes the exchange of cation in clays easily 

accessible.  

 

Brønsted acids (or acidic protons) are produced when water molecules dissociates from 

the hydration sphere. Consequently, multivalent metal cations exchanged clay can exhibit 

both Brønsted and Lewis acidity depending on the nature of the reacting species 

(Kawabata, et al, 2005; Shimizu, et al., 2005; Clark, et al., 1994). It is worthy to mention 

that the activity of catalysts treated with concentrated sulfuric acids in promoting acid-

catalyzed reactions does not surpass that of Al3+-exchanged montmorillonite. The ester 

yields obtained from transesterified crude oils are usually lower. This is because of 

extraneous constituents such as gums present in the oil (Sheldon, et al., 2007; Kaneda, et 

al., 2006; Clark and Macquarrie, 1996; Izumi and Onaka, 1992). These typified lower 

yields are majorly because of the interference of the clay’s interlamellar acid activity by 

these extraneous materials. 
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(ii) Mixed metal oxides 

Metal oxides consist of Lewis acids (cations) and Brønsted (anions). This provides the 

required catalytic sites for methanol during methanolysis. O-H bond rupture forms 

hydrogen cations and methoxides readily. TG molecules react with methoxide anions to 

form FAMEs (Chorkendorff & Niemantsverdriet, 2003; Yan, et al., 2009). Numerous 

studies elucidated the effects of various transition metal oxides for heterogeneous acid 

transesterification of TG to FA alkyl esters. These include titanium oxides, zirconium 

oxides, and zinc oxides. Among these oxides, sulphated or tungstated zirconia stands out 

as prominent. Zirconia is a well-known industrial catalyst (Clark, et al., 2000). It is 

thermally stable and possesses strong acidic sites. This catalyst minimizes diffusional 

limitations because it has large pores that accommodate fatty acid molecules 

(Damyanova, et al., 2008; Ni and Meunier, 2007). Despite the fact that it leaches in water, 

sulphated zirconia does not leach during esterification. It is also not susceptible to side 

reactions such as dehydration or etherification (Kiss, et al., 2006a).   

 

Depending on the treatment, it acts as a superacid or highly acidic when modified with 

sulphate ions (Sun, et al., 2005; Ardizzone, et al., 2004; Furuta, et al., 2004). The 

esterification of fatty acids from 2-ethylhexanol with methanol and SZ exhibited high 

selectivity and activity. Chorkendorff and Niemantsverdriet (2003), reported a good 

correlation between acidity and high activity of SZ. However, higher conversion requires 

higher temperatures, and higher catalyst concentrations. Although the activity, 

robustness, and reusability of the catalyst dropped to 90 % after five runs, there was no 

need for treatment in between the runs. A different study by Furuta et al., (2004) showed 

that tungstated zirconia remained stable after 100 h of use. A 40:1 alcohol/oil molar ratio 

after 8 h converted 94 % of the feedstock. Calcination restores the activity of the catalyst 

to almost 100 % (Di Serio, et al., 2007; Kiss, et al., 2006a). Jitputti et al. (2006), compared 
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the catalytic performance of zirconium oxide and zinc oxide in transesterification of palm 

kernel oil to that of sulfated zirconia. The yields obtained were 64.5%, 86.1%, and 90.3% 

respectively. The sulfonic acid on the surface of the zirconia provided higher acidic 

strength and hence, increased yield (Zabeti, et al., 2009).  

 

Studies by López, et al., in 2005, showed that active site concentration and specific 

surface area have significant influence on catalytic activity of super acid catalysts such as 

ZrO2/WO3
2−and ZrO2/SO4

2−. SZ showed surface area of 134 m2/g and 94 µmol/g active 

site concentration, while tungstated zirconia had 89 m2/g and 54 µmol/g. The results 

showed that the activity of sulfated zirconia was higher towards transesterification of 

triacetin. It gave a conversion of 57% against 10% of the tungstated zirconia after 8 h. 

However, another study showed sulfated titanium oxide has more specific surface area 

(99.5 m2/g) than sulfated zirconia (91.5 m2/g). The methyl ester yields obtained in the 

transesterification of cottonseed oil from sulfated titanium oxide was 90% against 85% 

by sulfated zirconia after 8 h. Though these catalysts are active for both esterification and 

transesterification, they require higher calcination temperature (500 °C to 800 °C) to 

attain high Brønsted acidic sites (Ramu, et al., 2004; López, et al., 2007). Furthermore, 

conversions with these catalysts require long reaction time (López, et al., 2007; He, et al., 

2007). Another promising heterogeneous acid catalyst is vanadium phosphate. Methyl 

ester yield of 80% was obtained with 0.2 wt.% loading and 1:1 alcohol/oil molar ratio 1 

hour transesterification reaction. Any attempt to increase the yield by raising the 

temperature result in the reduction of vanadium from V5+ to V3+. This causes a slow 

deactivation of the catalyst as it reacts with methanol (Di Serio, et al., 2007). This is 

despite the mild reaction parameters and a low specific surface area of 2 to 4 m2/g. 
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2.10.3 Catalysts with sulfonic acid groups 

Of the ion exchange family, the ion-exchange resin Nafion and Amberlyst are most 

common. Nafion resin is non-porous, while large pores characterize Amberlyst. The 

polymer chain governs the hydrophobicity of these catalysts. Conversely, the polymer 

backbone has strong affinity towards the tails of the alcohol and fatty acid. This enhances 

the catalytic activity of these catalysts. Besides, these catalysts have sulphonic acid 

groups grafted on their polymer chain. These strong sulphonic acids have better acid sites 

when compared to the hydroxy groups on metal oxides or zeolites. These properties make 

resins good catalytic candidates for biodiesel production. However, their poor thermal 

stability is limiting their industrial applications (Kiss, et al., 2006b). 

 

2.10.4 Heteropoly acids and polyoxometalates (isopoly and heteropoly anions) 

A promising field of growing significance in catalysis is the use of polyoxometalate 

compounds and heteropoly acids (HPAs). The incorporation of polyoxometalate anions 

forms complex proton acids otherwise known as HPA. The basic structure of these acids 

comprises of a XO4 central tetrahedron surrounded by octahedra of metal-oxygen 

(Maksimov, 1995; Tsigdinos, 1978; Keggin, 1934). The first characterized HPA was the 

keggin heteropoly anion. It is yet the best of these polyoxometalates represented as 

XM12O40
x-8. X denotes the central atom such as Si4+ and P5+, e.g., H4SiW12O40 and 

H3PW12O40. M represents the metal ions usually W6+ or Mo6+ which are easily substituted 

by other metal ions such as Co2+, Zn2+, and V5+.  

 

The strength of these catalysts approaches that of superacids in the Brønsted acidity 

region. The release of water of hydration on heating increases this strength as exhibited 

by ionic structure of solid HPAs (Kozhevnikov, 1998). The discrete structure is 

comprised of heteropoly anions and counter-cations (e.g., H+, H3O+, H5O2+) which are 
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fairly mobile. This property gives the HPAs great proton mobility and a reacting medium 

resembling highly concentrated solutions termed “pseudoliquid phase”. Almost all the 

mobile protons partake in the catalysis. Adsorption of polar molecules is thus easy, while 

catalytic activity occurs on both the surface and bulk of the crystalline network.  

 

High density of substrate adsorption reduces the high temperature requirement of solid 

acid catalyst. However, nonpolar molecules such as hydrocarbons, which are excluded 

from the HPA crystalline bulk network, interact only on the catalyst surface. This 

enhances the unique selectivity of HPA catalysts. Furthermore, the pseudoliquid phase 

uniformity facilitates online study of the catalytic progression (Misano, et al., 2000; Lee, 

et al., 1992; Misano, 1987). HPAs have also showed fair thermal stability. Stabilization 

of organic intermediates by polyanions, the absence of side reactions, and the 

pseudoliquid phase increases reactivity of HPAs. Solubility of HPAs in polar medium, 

low surface area (5-10 m2/g) and low thermal stability are their major limitations. 

Supporting them on appropriate promoter solves these limitations (Caetano, et al., 2008; 

Sunita, et al., 2008; Xu, et al., 2008; Pizzio, et al., 1998; Blanso, et al., 1998; Dupont and 

Lefebve, 1996; Rocchiccioli-Deltcheff, et al., 1990). However, a setback deserving 

further research is the effect of promoters on HPAs. Interactions between the structure 

promoter and HPA usually results in weaker acidic strength on the supported HPA 

(Kozhevnikov, 1998 and 2002). It is therefore necessary to evaluate the reactivity of these 

catalysts and compare them with other hydrophobic solid catalysts. Such data will provide 

a proper perspective concerning the catalysts (Helwani, et al., 2009).  
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2.10.5 Zeolites and zeotype materials 

Zeolite is a naturally occurring crystalline aluminosilicate interlinked by oxygen atoms. 

It has a three-dimensional framework structure with molecular pores and channels of 

uniform sizes. These pores (maximum pore diameter = UTD-1 with 1.0 × 0.75 nm) absorb 

molecules that fit into them while preferentially excluding larger ones; thus, acting as 

molecular sieves. Al3+ replaces Si4+ within the crystalline silica (SiO2) framework. This 

gives a negative charge to the framework. Zeolites are able to maintain electroneutrality 

from the loosely held and exchangeable cations present in their cavities. Polar molecules 

interact reversibly with these cations. These properties allow the synthesis of synthetic 

zeolites and recently discovered zeotypes (silicoaluminophosphates). Crystalline 

structures of zeotypes are synthesized with coordinated Al, Si, P, transition metals and 

other elements such as Fe, Ti, B, Mn, Zn, Co, Be, Cu, etc. (Corma, 2003; Maesen and 

Marcus, 2001).  

 

Examples of zeotype molecular sieves include SAPO, ALPO4, MeAPSO, and MeAPO 

(Corma, 2003; Maesen and Marcus, 2001). The loosely held cations create robust electric 

field with the framework making it possible to fine-tune adsorption. These properties and 

the ability to introduce active sites within the pores and channels enhance the activity and 

selectivity of zeolites and zeotypes. Other special properties that make these materials to 

be termed as catalytic microreactors include pores of molecular dimensions with high 

surface area. They have high adsorption capacity and ability to confine products from the 

reacting species. In addition, they have the ability of pre-activate molecules by 

modulating the strong electric fields. However, conversions from reactions catalyzed by 

zeolites are of minimal increase (1 to 4%) when compared with noncatalyzed reactions. 

This is because of diffusion limitations by the bulky reactants. These species suppress 

reactions within the pores while only few reactions take place on the external surface of 
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the catalyst (Okuhara, 2002; Zhang, et al., 2001; Lobo, et al., 1997; Freyhardt, et al., 

1996).  

 

Zeolites with larger pores (Y530 and Y756) exhibited higher activity that increases with 

increasing temperature. Brito, et al. (2007) reported poor activity for zeolites with high 

aluminium contents, such Y307 and Y411. Advancements in zeolitic design with larger 

channels and pores are requirements for better yields. In addition, optimal performance 

requires a tradeoff between hydrophobicity and acid strength of the zeolite. This is 

because at higher ratios of SiO2/Al2O3, hydrophobicity of the catalyst increases. On the 

other hand, lower ratios of SiO2/Al2O3, increases the acidic strength (Rahimi, & 

Karimzadeh 2011; Okuhara, 2002; van de Waal and van Bekkum, 2001). Conversely, 

chemical equilibrium is the limiting factor for achieving maximum conversion during 

esterification (Kiss, et al., 2006b). 

 

2.11 Biodiesel production via solid acid catalysis 

The enhancements of many industrial reactions in the last decade became possible with 

solid acid catalysis (Clark, 2002; Harmer and Sun, 2002). One major advantage these 

catalysts have is the diversity of acid cites in contrast to the definite acidic properties 

possessed by liquid acids (Wilson, et al., 2000). In principle, the mechanism of reaction 

is similar for both homogeneous and heterogeneous acid-catalyzed esterification (Koster, 

et al., 2001). However, the interaction between the activity of the catalyst and its surface 

hydrophobicity makes heterogeneous acid-catalyzed esterification distinct from the 

homogeneous one (Kiss, et al., 2006a; Sreeprasanth, et al., 2006).  
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Omota, et al. (2003a & 2003b) proposed a continuous method for producing biodiesel by 

a catalytic reactive distillation. However, deactivation of the solid catalyst by the aqueous 

phase became a major limitation. This is because of the phase segregation that occurs in 

nonideal mixtures. Catalysts that possess many hydrophilic acidic sites are more prone to 

the effect of phase separation. Water sorption inhibits the catalytic activities of these sites. 

One way of avoiding this problem is designing a water-tolerant catalyst (Okuhara, 2002). 

Another possible way is by using excess alcohol. This is because alcohol mixes better 

than the acid in the esterification reaction. Accordingly, a monophasic solution favors 

maximum conversion (Kiss, et al., 2006a).  

 

2.11.1. Effect of preparation and structure promoters 

The method of preparation and type of support employed has significant effect on the 

physiochemical properties and activity of a solid acid catalyst. Catalyst support minimizes 

lower reaction rates caused by mass transfer (diffusion) limitations. These supports 

provide more pores and channels, and hence more specific surface area. These increase 

the activity of the catalysts especially in liquid phase reactions. Tanabe and Yamaguchi 

(1994) studied the effect of calcination on ZrO2/WO3
2-, SnO2/SO4

2- and ZrO2/SO4
2- for 

transesterification of soybean oil and esterification of n-octanoic acid. The results 

indicated these catalysts as good structure promoters (Table 2.4). The acid strength of 

tungstated and sulfated zirconia (superacid) catalysts corresponds more than 100% H2SO4 

which is stronger than Hammett acidity function, H0 = -12. 

Table 2.4: Catalytic effect of superacids on esterification and transesterification as 
function of calcination temperature 

Catalyst 
Calcination 
temperature  

(°C); Time (h) 

Conversion, % (n-octanoic 
acid) – Esterification 

Conversion, % 
(Soybean oil) - 

Transesterification 175 °C 200 °C 
ZrO2/WO3

2- 800; 1 94 100     > 90 
SnO2/SO4

2- 500; 3 99 100    > 78 
ZrO2/SO4

2- 675; 1.5 100 100    > 66 
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The authors observed an inverse relationship is between calcination temperature, time, 

and conversion of n-octanoic acid. The plausible explanation for this is the formation of 

oxides on the catalytic sites of the catalysts at higher calcination temperature. The study 

conducted by López, et al. (2007 and 2008) confirmed this observation. Their results 

indicated a decrease in surface area of ZrO2/WO3
2- with increase in calcination 

temperature. WOx are formed which significantly inhibit the surface area of the catalyst.  

 

Other properties also affected include acid site density and strength, and the metal oxide 

molecular and crystalline structure. After calcination at 900 °C, the catalyst surface area 

reduced to about 20% (58 m2/g) of the initial catalyst precursor (325 m2/g). The 

monomeric oxide deposited on the surface of the catalyst transformed into polymeric 

species. Ramu et al. (2004), investigated the catalytic performance of ZrO2/WO3
2− as a 

heterogeneous acid catalyst during methanolysis of palmitic acid. A phase transformation 

occurs during the calcination as shown on Table 2.5. 

 

Table 2.5: Effect of calcination temperature on catalytic activity of ZrO2/WO3
2− during 

esterification 

Calcination temperature, °C Phase Conversion, % 
500 Tetragonal 98 
900 Monoclinic 8 

 
 

The findings by Kiss, et al., (2006a) corroborated these phase transformational change in 

the surface structure of sulfated zirconia. The report also showed that temperature of 

calcination plays significant role in the activity of the catalyst. Optimum temperature 

reported for ZrO2/WO3
2− esterification of FAs is between 600 and 700 °C. In a similar 

report, López, et al. (2008), compared the catalytic activities of three modified zirconia 

catalysts in the esterification of carboxylic acids (FFAs) and transesterification of TGs 

with ethanol. Each catalyst had different optimum calcination temperature. The optimum 
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calcination temperatures reported were titanium zirconia (400 to 500 °C), sulfated 

zirconia (500 °C), and tungstated zirconia (800 °C).  

 

Despite higher calcination temperature, tungstated zirconia showed higher catalytic 

activity and ease of in situ regeneration in a fixed bed reactor. This is probably because 

the high calcination temperature had minimal effect on the Brønsted acid sites, or the 

residual water vapour caused re-hydration of the catalyst surface during cooling. Re-

impregnation with H2SO4 makes the reusability of SZ expensive. This leads to leaching 

which hinders biodiesel production. On the other hand, although titanium zirconia showed 

good catalytic activity, FFAs easily poisoned its active basic sites. Consequently, it is 

unsuitable for catalyzing feedstocks with high FFA content. However, mesoporous and 

macroporous structures (pore diameter > 2 nm) were exhibited by all the catalysts. Mass 

transfer limitations because of bulky TG molecules (2 to 4 nm) are significantly 

minimized (López, et al., 2008). 

 

Garcia, et al., (2008) investigated the effect of preparation method on the activity of 

sulfated zirconia. Solvent-free precipitation method gave the highest conversion when 

compared to precipitation and impregnation methods. Alcoholysis with methanol and 

ethanol gave conversion of 98.6% and 92% respectively, at 120 °C after 1 hr from 

soybean oil. The presence of 0.44% water was attributed to the lower conversion obtained 

with ethanol. Extending the reaction time to 6.5 h increased the conversion to 96%. 

However, catalysts prepared by precipitation and impregnation methods gave 8.5 ± 3.8% 

conversions under the same reaction conditions. This report also highlighted the sulfate 

ion leaching effect and the significant poisoning of the catalyst after regeneration.  
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Various catalyst supports have the ability to reduce pore diffusion limitations by 

providing higher surface area. Silicates and alumina have received greater attention in 

this regard. Lin and Radu, (2006), and Delfort, et al. (2006) independently patented the 

activity of functionalized mesoporous silicates and titanium zinc oxide and titanium 

oxide-bismuth, respectively. Furuta, et al., (2006), also reported the comparative 

promoter catalytic performance of Al2O3/ZrO2/WO3 solid acid catalyst (Table 2.6). 

Higher density of sulfonic acid group enhances the activity of the mesoporous silicates 

significantly. This improved performance is observed from SBA-15-SO3H-P123 because 

of higher acidic activity (H+) and pore diameter (Dp).  

 

Table 2.6: Catalyst reactivity supported on alumina and functionalized mesoporous silicates 

Catalyst 
Preparation 

method 

Calcination 
temp (°C); 

time (h) 

Textural 
properties of 

support 

Reaction 
conditions 

Performance Oil Ref 

CDAB-SO3H-C12a CDAB - 

H+ = 0.6 meq/g 
BET = 778 m2/g 
Vp = 0.39 cm3/g 
Dp = 2.8 nm 

85 °C, 3 h,  
10 wt%, 
20:1 

55 % 
conversion 

Palmitic 
acid 

Lin and 
Radu, 
2006 

SBA-15-SO3H-L64 Pluroinc L64 - 

H+ = 0.84 meq/g 
BET = 820 m2/g 
Vp = 0.58 cm3/g 
Dp = 2.7 nm 

85 °C, 3 h,  
10 wt%, 
20:1 

Not 
reported 

- 
Lin and 
Radu, 
2006 

SBA-15-SO3H-P123 
Pluronic 
L123 

- 

H+ = 1.44 meq/g 
BET = 735 m2/g 
Vp = 0.67 cm3/g 
Dp = 3.5 nm 

85 °C, 3 h,  
10 wt%, 
20:1 

85 % 
conversion 

- 
Lin and 
Radu, 
2006 

SBA-15-ph-SO3H-
P123 

Pluronic 
L123 

- 

H+ = 0.92 meq/g 
BET = 540 m2/g 
Vp = 0.71 cm3/g 
Dp = 5.0 nm 

85 °C, 3 h,  
10 wt%, 
20:1 

Not 
reported 

- 
Lin and 
Radu, 
2006 

Alumina supported 
titanium zinc oxide 

Co-mixing 600;3 SSA = 62 m2/g 
200 °C,  
50 bar, 8 h 

94 % 
yield 

Colza oil 
Delfort, et 
al, 2006 

Alumina supported 
titanium oxide-bismuth 

Co-mixing 600;3 SSA = 54 m2/g 
200 °C,  
50 bar, 7 h 

88 % 
yield 

Colza oil 
Delfort, et 
al, 2006 

Al2O3/ZrO2/WO3 Co-precipitation 800;1 - 
175 °C, 4g, 
40:1 

100 % 
conversion 

Soybean 
oil 

Delfort, et 
al, 2006 

aCDAB = cetthyldimethylammonium bromide 

 

Interestingly, polyaniline supported carbon carrier, as heterogeneous acid catalyst 

possesses all the features lacking on sulfated zirconia such as simple preparation and easy 

handling. It does not swell in methyl esters and methanol and it is insoluble in most 

inorganic solvents. It has thus exhibited minimal leaching. However, its characteristic low 
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surface area requires high molar ratio (29:1) of acid for high conversion. The catalyst also 

has regeneration and reusability limitations (Zieba, et al., 2010). 

Table 2.7 highlights the summary of the literature review on activity and reaction 

conditions for various types of heterogeneous acid catalysts used in esterification and 

transesterification. It recapitulates the current challenges facing the commercial 

utilization of solid acid catalysts and serves as the theoretical framework for this study.   

 

Table 2.7: Problems and potential solutions for using solid acid catalysts for biodiesel 
production 

Problem Possible cause Possible solution(s) 
1. Deactivation of solid 
acid catalyst 

a) Phase segregation as a result of 
non-ideal nature of mixture 
b) Impurities present in unrefined 
feedstocks 

a) Water-tolerant catalyst 
 

2. Mass transfer 
(diffusion) limitation 

Formation of three phases with 
oil, water and alcohol 

a) Use of catalyst support with more 
specific surface area and interconnected 
system of larger pore sizes 
b) Use of co-solvents, e.g. dimethyl 
sulfoxide (DMSO), Tetrahydrofuran 
(THF), n-hexane 

3. High catalyst 
concentration required     
and larger reacting 
vessels 

By-product water from 
esterification adsorbed onto 
catalyst surface 

a) Water-tolerant catalyst 
 

4. High temperature 
requirement 

Catalytic site covered by 
adsorbed by-product water from 
esterification reaction (organic 
reaction in water) 

a) Water-tolerant catalyst 
c) Use of catalysts with pseudoliquid 
phase ability 

5. Lower reaction rates catalysis occurs on the external 
surface of the pores (reaction 
suppressed by diffusion 
limitation as a result of bulky 
alcohol molecules) 

a) Use of catalyst support with more 
specific surface area and interconnected 
system of larger pore sizes 
b) catalysts with high concentration of 
strong acid sites 

6. Leaching and product 
contamination 

Ionic group hydrolyzed by water Ensure good catalyst preparation method 

7. Formation of side 
reactions such as 
alcohol dehydration or 
ether formation 

Use of excess alcohol Use minimal acid-to-alcohol ratio 
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This chapter is available as been published articles in:  

a) The Journal of Applied Catalysis A: General 470, 140-161 (Sani, Abdul Aziz & Daud, 
2014). 

 

b) The Journal of Environmental Chemical Engineering 1 (3), 113-121 (Sani, Abdul 
Aziz & Daud, 2013). 

 

c) Biodiesel - Feedstocks, Production and Applications, Prof. Zhen Fang (Ed.), ISBN: 
978-953-51-0910-5, InTech, DOI: 10.5772/52790. (Sani, Abdul Aziz & Daud, 2013). 
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CHAPTER 3: PALM FROND AND SPIKELET AS ENVIRONMENTALLY 

BENIGN ALTERNATIVE SOLID ACID CATALYSTS FOR BIODIESEL 

PRODUCTION 

 

This chapter describes the study of sulfonated mesoporous catalysts from palm frond and 

spikelets in the esterification of free fatty acids for biodiesel production. Article 1 

represents Chapter 3 as Palm frond and spikelet as environmentally benign alternative 

solid acid catalysts for biodiesel production. This chapter and the next, addressed the 

general research objective number 1: the synthesis of solid acid catalysts from palm tree 

biomass as environmentally benign alternative for biodiesel production. This chapter is 

available as a published research article in: Sani, Y. M., Raji, A. O., Alaba, P. A., Abdul 

Aziz, A. R. and Daud, W. M. A. W. (2015). Palm frond and spikelet as environmentally 

benign alternative solid acid catalysts for biodiesel production. BioResources 10(2), 

3393-3408. 

 

3.1 Introduction 

Despite the recent fall in the price of Brent crude oil, the search for a sustainable and 

ecologically benign alternative persists. This is due to the pollution caused by crude oil 

exploration and the combustion of refined oil products (Sani et al., 2013; Hassan et al., 

2015), coupled with weaker demand for petroleum fuels. The transesterification of 

triglycerides (TG) with methanol into biodiesel or fatty acids methyl esters is an 

alternative under aggressive evaluation (Ghadge and Raheman, 2006). However, 

feedstocks for this process containing large amounts of free fatty acids (FFAs), such as 

used frying oil (UFO), animal fats, and vegetable oils, usually incur postproduction costs 

in soap separation after alkali-catalyzed transesterification. This substantially decreases 

the biodiesel yield (Park et al., 2010). Reducing the FFA content of these feedstocks to 
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approximately 1% (acid value of less than 2 mg KOH/g) is necessary before 

transesterification (Lotero et al., 2005; Zhang and Jiang, 2008).  

 

Similarly, there are several drawbacks to the two-step process of acid-catalyzed pre-

esterification of FFA into esters with H2SO4 followed by alkali-catalyzed 

transesterification (Ramadhas et al., 2005; Ghadge and Raheman, 2006; Veljkovic et al., 

2006; Wang et al., 2006; Berchmans and Hirata, 2008; Zhang and Jiang, 2008). These 

include equipment corrosion, difficulty in product separation from homogeneous 

mixtures, non-recyclability of the catalysts, and high-energy consumption during 

purification (Sani et al., 2012). These highlight the increasingly urgent need for affordable 

acid catalysts with good catalytic performance that could alleviate the mentioned issues. 

The discovery of sugar catalysts showed that carbon-based solid acids are promising 

alternatives to homogeneous alkaline and liquid acid catalysts (Toda et al., 2005).  

 

The incorporation of -SO3H unto carbon biomass sources such as cellulose, corn straw, 

starch, glucose, and sucrose via the carbonization-sulfonation method (Zhang et al., 2015; 

Lou et al., 2008) exhibited good catalytic performance during esterification (Toda et al., 

2005; Takagaki et al., 2006; Budarin et al., 2007; Zong et al., 2007; Agulló et al., 2010; 

Dehkhoda et al., 2010; Maciá-Liu et al., 2013). This is in spite of their low surface area 

and porosity, which limit reactant diffusion to active sites (Zhang et al., 2015). However, 

numerous groups have recently synthesized sulfonated, ordered, mesoporous carbons via 

nanocasting with SBA-15 as a template and phenolic resol and Pluronic F127 self-

assemblies under acidic conditions, respectively (Wang et al., 2007; Xing et al., 2007; 

Liu et al., 2008; Peng et al., 2010; Janaun and Ellis, 2011; Suganuma et al., 2011; Geng 

et al., 2012). Similarly, Peng et al. (2005) and Yu et al. (2008), describe how to prepare 

catalysts for esterification via the high temperature sulfonation of carbon nanotubes. The 



53 
 

acidity, large pore size, and high surface area of these materials ensure accessibility of 

long-chain FFA molecules and high catalytic activity. However, a literature survey 

revealed that no reports are available regarding acid-catalyzed reactions using palm tree 

biomass.  

 

Developing efficient solid catalysts from low-value biomass is essential to making the 

process ecologically friendly and economical. Malaysia, the world’s second largest 

producer and exporter of palm oil, generates a deluge of biomass from oil palm 

production. According to Sulaiman et al. (2012), oil palm production generates 85.5% of 

the total biomass produced from a variety of crops, including but not limited to rubber, 

rice, and oil palm. This accounts for the highest percentage with little to no economic 

value.  

 

These include palm trunks, palm mesocarp fibre (PMF), empty fruit bunches (EFB), palm 

fronds, spikelets, and kernel shells (PKS) (Hassan et al., 1997; Aziz et al., 2011). 

Incidentally, agricultural residues from renewable sources, which are both abundant and 

inexpensive, can serve as remarkable feedstocks for fuel production and catalyst 

development (Prauchner and Rodríguez-Reinoso, 2012). Incidentally, the availability of 

oil palm frond and spikelets is increasing. According to data obtained from 

http://www.bfdic.com/en/Features/Features/79.html, 75 to 80% of emptied fruit bunch is 

spikelets while the main stalk makes up the remaining 20 to 25%. An estimated average 

of 2.856 million tones (dry basis) of empty fruit bunches will be produced per year from 

2007 to 2020 from the current and expanding planting area of ca. 4.0 million hectares. 

Similarly, an estimated 10.4 tons.ha-1 of fronds equates to an average of 6.97 and 54.43 

million tons per year during pruning activity and replanting process respectively, within 

the same period. Further, it is important to highlight that despite the mass production, 
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only ca. 10% of the total biomass produced is made of oil. It is therefore necessary to 

transform the remaining large amount of waste biomass to useful resources. This chapter 

demonstrates the synthesis of sulfonated, mesoporous carbon catalysts with concentrated 

H2SO4 (98%) as the sulfonating reagent and palm tree frond and spikelet from oil palm 

(Elaeis guineensïs) as the carbon precursors. The study investigated the effects of the 

resultant catalysts in simultaneously esterifying FFA into FAME. 

 

3.2 Literature review 

Basiron, et al. (2000), reported that oil palm tree (Elaeis guineensïs) was initially 

introduced to Indonesia (Bogor Botanical Garden) in 1848 and later in 1871 to Malaysia 

as ornamental plant from the indigenous West African tropical forests. Since then, oil 

palm tree plantation is on the rapid increase. For instance, the planting area expanded to 

4.85 x 106 ha in 2010 from 3.37 x 106 ha in 2005, making Malaysia one of the largest 

exporter of palm oil in the world. The tree is currently amongst the most valuable cash 

crops in Malaysia. However, such large oil palm tree plantations generate significant 

amount of biomass that constitutes environmental challenges. During pruning or 

harvesting time (i.e., replanting time), oil palm fronds are made available in excess. 

Though their weights vary, (Chan, et al., 1980) reported annual pruning of up to 24 fronds 

of 82.5 kg/palm. Efforts in utilizing all the co-products obtained from the oil palm 

industry paved way for zero-waste policy (Gurmit, et al., 1999). Some researchers have 

converted some of the biomass, such oil palm trunk into cheaper lignocellulosic feedstock 

compared to wood (Sulaiman, et al., 2012).  

 

However, in spite of the relatively high activities exhibited by the numerous solid acid 

catalysts, newer advances are required for the catalysts to be applicable for industrial 

production. These should necessarily include cheaper, readily available, and sustainable 
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feedstock sources such as waste biomass and used frying oil, non-edible oils such as 

grease, and byproduct of vegetable oil refinery (soapstock). This is especially because of 

the environment concerns caused by the exploration and combustion of, fluctuating prices 

and finite nature of fossil fuels. In this regard, mesoporous sulfonated carbon catalysts 

have promising activity for reducing free fatty acid in the esterification reaction from low-

grade feedstocks. Aside their promising catalytic performances, sulfonate carbon 

catalysts have the potential of ameliorating the environmental impact and reduction in 

catalyst and production costs. Carbon-based solid acids are ideal catalysts for many 

reactions because they are thermally inert, have good thermal and mechanical stability. 

Further, they resolve the inherent problems associated with some heterogeneous acid 

catalysts, viz.:  

(a) Low acid site density, 

(b) Microporosity, 

(c) Hydrophilicity, and 

(d) Leaching of active sites. 

 

The prospects of these new class of sulfonated carbon-based solid acid catalysts has 

opened new vistas for synthesizing highly active solid acid catalysts for the efficient 

production of biodiesel at (Toda, et al., 2005; Takagaki, et al., 2006). This is premised on 

the simple procedure involved in their synthesis, which could be from sulfonating a 

carbonized inorganic/organic compound, or via carbonizing sulfopolycyclic aromatic 

hydrocarbons such as the sulfonate derived from reacting concentrated with H2SO4 

naphthalene (Nakajima, et al., 2007, Hao, et al., 2008; Liu et al., 2008).  
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Two widely accepted methods for incorporating -SO3H groups on the structure of the 

catalytic material during the preparation of incomplete carbon-based materials are:  

i. Sulfonating incompletely carbonized organic materials such as starch, D-glucose, 

sucrose, and cellulose (see Figure 3.1) (Toda, et al., 2005; Okamura, et al., 2006); 

and  

ii. Incomplete carbonization of sulfo-aromatic compounds (Hara, et al., 2004).  

 

 
Figure 3.1: Molecular structures of carbohydrate derivatives. 

 
 

The process of incompletely carbonizing carbohydrate and subsequent sulfonating with 

strong acid generates a robust structure with high surface area (200 to 1500 m2/g) on the 

sulfo-polycyclic aromatic hydrocarbons (see Figure 3.2). Carbonization temperature is 
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crucial during the process. For instance, the optimal temperature for ensuring the 

formation of stable polyaromatic carbon ring must not exceed 200 °C during the 

carbonization. This is because according to Nakajima and Hara (2012), above this 

temperature, the sulfo-aromatic compound carbonizes. Contrarily, for direct incomplete 

carbonization of carbohydrate organic materials in inert environment, the optimal 

temperature is 400 °C. The inert environment such as in flowing N prevents the carbon 

precursor from burning to ash (Zong, et al., 2007). Slow pyrolysis between 400 to 600 

°C, facilitates the synthesis of multi-ringed aromatic structure anchor, which is highly 

cross-linked. The slow carbonization also enhances the functionalization of catalytic 

material with active acidic or basic groups. However, hydrolysis, dehydration, partial 

decomposition, and molecular rearrangement occur and transforms the carbon material 

into a polycyclic aromatic structure under prolong pyrolysis (Kastner, et al., 2012). 

   

 

Figure 3.2: Diagrammatic representation of amorphous polycyclic carbon sheets with -OH -
COOH, and -SO3H, groups bonded on the carbon precursor (Nakajima and Hara, 2012) 
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Shu, et al. (2010), investigated the effect of carbonization temperature on the structure of 

a carbon-based catalyst. The same researcher group (Shu, et al., 2009) synthesized strong 

recoverable solid acid catalyst that exhibited high activity for transesterification of 

vegetable oil asphalt via carbonization-sulfonation method. Highly dispersed sulfonic 

acid groups decked the material of the flexible carbon-based framework. The authors 

ascribed the high performance to large mesopores, loose irregular network, high acid site 

density and the electron-withdrawing force exerted by polycyclic aromatic hydrocarbon, 

HC. Furthermore, the catalyst withstood 270 °C without denaturing nor losing its active 

acid sites, while its hydrophobicity prevented the –OH hydration. Incidentally, most acid-

catalyzed transesterification requires these attributes for efficient conversion at high 

reaction temperatures 

 

3.3  Materials and catalyst preparation 

Room temperature drying for one week ensured steady moisture loss from the oil palm 

residues (fronds and spikelets). This was measured using the oven-dry basis mass, OD 

(Eq. 3.1) before oven drying at 120 °C for 24 h followed by milling and sieving (mesh 

size, 0.5 mm). Catalyst preparation was done according to a modified procedure 

previously documented (Toda et al., 2005; Dawodu et al., 2014). Low-temperature, 

incomplete carbonization induced polycyclic aromatic carbon ring formation from 

cellulosic palm residues. Heating the dried powder in a tubular furnace at 400 °C, with 

temperature increasing at 2 °C/min, for 24 h under a nitrogen (N2) atmosphere produced 

incompletely carbonized materials. Treatment with concentrated sulfuric acid introduced 

sulfonite groups (-SO3H) into the material. This was done by heating the solids (20 g) in 

200 cm3 of concentrated H2SO4 (98%) at 150 °C. Adding distilled water (1000 cm3) after 

heating for 10 h and then cooling the mixture to room temperature yielded a black 

precipitate. Washing the precipitate with hot distilled water (temperature above 80 °C) 
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ensured the absence of impurities such as sulfate ions. The material was then oven dried 

at 70 °C before it was homogenized with succinic acid (SA). Mixing the carbon material 

(10 g) with 5 g of succinic acid and 40 cm3 of de-ionized water, then heating at 150 °C 

for 5 h, achieved proper sulfonation. After filtering and washing with distilled water and 

methanol, oven drying the resulting product at 100 °C for 5 h produced rigid carbon 

materials. The sulfonated palm fronds were designated sPTF/SA/T, where T denotes the 

carbonization temperature (300 or 400 °C). A non-homogenized reference material, 

designated sPTF/400, was synthesized to evaluate the effects of SA addition. Catalyst 

prepared from palm tree spikelet was designated sPTS/T without SA addition. These 

differences in reaction conditions helped to create the optimum sulfonated catalyst 

synthesized from oil palm residues for esterification.   

Moisture content (%; OD basis) = 
������ �� ����� 

��� ������ �� ����
  x 100   (3.1) 

3.4 Methods 

Esterification reaction was employed to obtain biodiesel designated B100 or a fuel made 

up of mono-alkyl esters of long chain fatty acids which meets the ASTM D 6751 

specifications derived from feedstock containing high (48 wt%) free fatty acid; used 

frying oil. Table 3.1 presents selected properties of B100 and typical No. 2 diesel fuels. 

Methanol (Molecular Weight - 32.04, Density - 0.792 g/cc, Boiling Point - 64.7 °C) was 

use for the solid acid-catalyzed methanolysis of the direct esterification of free fatty acids 

from the high FFA feedstock. 

 

 

 

 

 

 



60 
 

         Table 3.1: Selected properties of B100 and typical No. 2 diesel fuels. 

Fuel Property  Biodiesel Diesel 
Fuel Standard  ASTM D6751 ASTM D975 
Composition FAME (C12 to C22) HC (C10 – C21) 
Lower Heating Value, Btu/gal  ca. 118,170 ca.129,050 
Kinematic Viscosity, (mm2/s) @ 40 °C  4.0 to 6.0 1.3 to 4.1 
Specific Gravity kg/l @ 60 °F  0.88 0.85 
Density, lb/gal @ 15 °C  7.328 7.079 
Water and Sediment, vol%  0.05 max 0.05 max 
Carbon, wt %  77 87 
Hydrogen, wt %  12 13 
Oxygen, by difference wt %  11 0 
Sulfur, wt %  0.0 to 0.0024 0.05 max 
Boiling Point, °C  315 to 350 180 to 340 
Flash Point, °C  100 to 170 60 to 80 
Cloud Point, °C   -3 to 12 -15 to 5 
Pour Point, °C   -15 to 10 -35 to -15 
Cetane Number  48 to 65 40-55 
Lubricity SLBOCLE*, grams   >7,000 2000 to 5000 
Lubricity HFRR*, microns  <300 300 to 600 

*SLBOCLE = scuffing load ball on cylinder lubricity evaluator  
*HFRR = high frequency reciprocating rig test 

 

3.4.1  Catalyst characterization 

A FEI QUANTATM 450 FEG type 2033/14 (Czech Republic) unit with 30 kV 

accelerating voltage (Figure 3.3) was used for field emission scanning electron 

microscopy (FE-SEM) to analyze the surface morphology and topology of the catalysts. 

An energy dispersive X-ray spectrometer (EDX) from the same unit revealed the surface 

elemental composition of the catalysts. Further, X-ray diffraction (XRD) and BET 

analyses were used to determine the structural and textural properties of the catalysts. The 

XRD patterns were analyzed with a Phillips X’pert diffractometer (The Netherlands) 

using CuKα radiation (λ = 1.54056 Å) at a scanning speed of 0.05°/s within a 2θ range of 

5 to 70° at 40 mA and 40 kV. Micromeritics TriStar II (USA) with accelerated surface 

area porosity (ASAP)-3020 at minus 196.15 °C was used to determine the specific surface 

area of the catalytic materials using liquid nitrogen. Degassing the catalysts at 120 °C for 

3 h under a vacuum eliminated any physisorbed volatiles and impurities. Rapid (scan 

speed 3 velocities, 2.2 to 20 kHz) identification and quantification of the catalysts was 

performed with a Bruker Fourier transform infrared (FT-IR) Tensor 27 IR (Germany). 
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The apparatus has a spectral range of 7500 to 370 cm-1 with more than 1 cm-1 apodized 

resolution and a standard KBr beam splitter. 

 

 
Figure 3.3: Field emission scanning electron microscope 

 

3.4.2 Production of fatty acid methyl esters 

The catalysts were heated at 150 °C for 1 h before the reaction to evacuate adsorbed water 

and other volatiles. Methanol, with the aid of the catalyst, was used to transesterify used 

frying oil (UFO) at 100 to 200 °C in a 100 mL autoclave (250 °C, 100 bar) reactor 

supplied by AmAr Equipment Pvt., Ltd. Mumbai (Figure 3.4). Constant stirring ensured 

contact between the catalyst and the reaction mixture. A water bath attached to the 

autoclave maintained the reaction temperature in the range of 190–200 °C during the 

reaction. Preliminary optimization showed that a 5:1 methanol-to-oil molar ratio and 1 

wt.% catalyst loading are optimal reaction conditions. Simple decanting was done to 

recover the FAME at the end of the 3 to 15 h reaction. Drying, methanol washing, and 

heating at 120 °C for 1 h regenerated the catalyst. The catalyst retained its activity after 

regeneration for up to 8 recycles. 
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Figure 3.4: Double 100 mL stainless steel autoclave (250 °C, 100 bar) reactor. 

 
  
 
3.4.3 Acid density analysis 

Exchanging Na+ with H+ in the form of -SO3H by mixing 0.1 g of sulfonated material 

with 30 mL of 0.6-M NaCl solution for 2 h facilitated determination of the acid strength 

of the catalysts. The filtrate from this mixture was titrated with 0.1001 M NaOH standard 

solution and methyl orange indicator to indicate when the NaOH was consumed. A 

change from slightly red to bright yellow maintained for 30 s was defined as the end-

point. To determine the initial, unconsumed volume of the NaOH standard solution, a 

blank titration was performed. Equation 3.2 was used to accurately calculate the strong 

acid (-SO3H) density. 

������ = 
���� × [�����]

����.
    (3.2) 
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The strong acid (-SO3H) density of the catalyst (in mmol/g) and the concentration of 

standard NaOH solution are represented by D-SO3H and COH-, respectively. The volume of 

NaOH standard solution consumed during the blank and catalyst titrations are represented 

by V0 and V1, respectively; mcat represents the mass of catalyst used for the acid density 

analysis. 

 

3.3.4 Determination of acid value 

The oil’s acid value was determined by titration analysis according to DIN EN ISO 660 

(2009) while Table 3.1 presents other methods usually employed for the analyzing oil 

samples (Nakpong, & Wootthikanokkhan, 2010). The expected acid value of used frying 

oil is between 15 and 75 mg KOH/g. The titrant, 0.1 M KOH, neutralizes the solvent 

mixture comprised of 50 mL of ethanol-diethyl ether (1:1 ratio, v/v) mixed with 0.5 g of 

catalyst sample. Equations 3.3, 3.4, and 3.5 were used to calculate the titre value, acid 

value, and FFA conversion, respectively: 

Titre value = 
��

���� × �(���) × ��
      (3.3) 

Acid value = 
���� × � × �(���) × ��

��
     (3.4) 

FFA conversion, % = 
���� × � × �(���) × ��

�� × ��
     (3.5) 

where ����
 represents the titrant consumed at end of the first equivalent point in mL, 

�(���) represents the concentration of KOH titrant (0.1 M), �� represents the molecular 

weight of the analyte (112.12 g/mol), � represents the correction factor obtained from the 

titre value, MA represents the molecular weight of palmitic acid (256 g/mol), and ms 

represents the sample size in g. 
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Table 3.2: Methods for analyzing vegetable oils (Nakpong & Wootthikanokkhan, 
2010). 

Analysis Method Analysis Method 
Fatty acid composition AOAC (2000), 963.22, 969.33 
Saponification value AOAS (1997) 
Density ASTM D 4052-96 
Kinematic viscosity ASTM D 445-06 
Acid value AOAC (2000), 940.28 
Water content AOAC (1990) 984.20 (for coconut oil) 
Total acid number ASTM D 664-01 
Carbon residue ASTM D 4530-00 
Iodine value EN 14111 
Gross heat of combustion ASTM D 240 
Oxidation stability EN 14112 
Mono-, di-, and tri-glycerides EN 14105 

 

3.4 Results and discussion 

A previous study (Aziz et al. 2011) described the approximate oil palm biomass 

composition from oil palm (Elaeis guineensïs) as 45 to 50% carbon, 43 to 48% oxygen, 

0.5% nitrogen, 5% hydrogen, and 0.4% sulfur. Similarly, proximate analysis revealed that 

the oil palm biomass consisted of 72 to 75% volatile matter, 14 to 16% fixed carbon, 6 to 

8% moisture, and 2 to 5% ash. Specifically, petiole, leaflets, and rachis are the three main 

parts of the palm fronds. The petiole consists of about 70% of the dry matter in the palm 

fronds, while the leaves and rachis make up the remaining percentage. The dry matter 

content of palm fronds is about 31% (Ishida and Abu Hassan, 1992). Depending on age, 

a palm frond contains ca. 15 to 26% hemicellulose. It also contains 4.7 MJ/kg crude 

proteins, 38.5 MJ/kg crude fibre, 2.1 MJ/kg ether extract, 78.7 MJ/kg neutral-detergent 

fibre, and 3.2 MJ/kg ash (Wong and Wan Zahari, 1997; Wan Zahari et al., 2000). 

Similarly, (Rabumi, 1998) reported 70.9 to 90.1 C/N ratio, 25.0 to 29.9% lignin, 16.2 to 

21.3% cellulose, 1.52 to 2.46% soluble polyphenols, as the chemical composition of 

spikelets.  
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A previous report by Chen et al. (2010) identified 2θ peaks ranging from 22° to 23° as 

the major diffraction peaks for cellulose crystallography. Figure 3.5 shows the XRD 

pattern for all the samples. The figure displays one broad XRD peak at about a 2θ value 

of 24° with d value, calculated using the Bragg equations, of 3.86 nm. The noticeable 

peak confirmed the presence of crystallinity within the amorphous structure of the 

cellulosic constituents (Lai and Idris 2013). Further, Liu et al. (2012) posited the 

prominent I002 peak with the maximum intensity of 002-lattice diffraction as the primary 

as well as crystalline.  

 

Figure 3.5: XRD patterns of sPTS/400, sPTF/400, sPTF/SA/300, and sPTF/SA/400 

 

The broad nature of the peak is reflective of the cellulosic molecular hydrogen bond 

transformation during heat treatment. However, the low crystallinity indicated the 

presence of larger amounts of amorphous cellulose in the catalytic materials (Kuo and 

Lee, 2009). Certainly, from the representation on Figure 3.5, one may recognize the 

correlation between the good performance of sPTS/400 and the crystal structure. The 

material exhibited a spike at 2θ value of 24°, which falls within the range reported for 
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cellulose crystallography by Chen et al. (2010). The next in line after sPTS/400 is 

sPTF/400 with a spike at 2θ value of 25.44° and a d-spacing of 3.498Å. Evidently, 

crystallinity and the total acid (-SO3H) density of these materials facilitated their observed 

catalytic performances over sPTF/SA-300 and sPTF/SA-400. 

 

The N2 adsorption results presented in Table 3.3 and Figure 3.6, confirmed the presence 

of mesopores (2 < dp < 50 nm) on the prepared catalytic materials, consistent with 

aromatic sheets of amorphous carbon orientation. The clear nitrogen condensation steps 

on Figure 3.6 evidenced this. Further, the figure shows the N2 adsorption-desorption 

isotherm and pore size distribution curves of mesoporous carbon obtained at 400 °C 

carbonization temperature. The pore size distribution curves of the two materials (with 

and without SA) show similar shapes with high pore size uniformity with a highly 

uniform pore diameter centered at about 17.8 nm. The large mesopores are advantageous 

because they minimize diffusion limitation and facilitate easier access to the reacting 

molecules to the active sites within the materials. Additionally, the large mesopores 

enhance the stability of the ordered mesoporous carbon framework (Zhang et al., 2015).  

 

The adsorption isotherm of all samples followed a type-IV IUPAC classification for 

mesoporous materials with capillary condensation taking place at higher pressures of 

adsorbate depicting a hysteresis loop (Sing et al., 1985). At higher pressures, the slope 

showed increased uptake of adsorbate as pores become filled, with the inflection point 

typically occurring near completion of the first monolayer. The H4-type hysteresis loop 

fit well to the inkbottle pores expected for the voids between the materials. At lower 

pressures, an adsorbate monolayer forms on the pore surface, which leads to a multilayer 

formation. However, it is interesting to note that mesoporosity alone did not determine 
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the extent of catalytic activity or turnover. Other factors, such as acid sites and type, acid 

density, carbon precursor and crystal structure, all played significant roles.  

 

Titrimetric, structural, and surface analyses revealed strong acid (-SO3H) densities (Table 

3.3) and amorphous carbon sheets bearing hydroxyl (-OH) and carboxyl (-COOH) 

groups. Interestingly, the carbon catalysts remained insoluble even above the boiling 

temperatures of water, methanol, oleic acid, benzene, and hexane (Toda et al., 2005). 

Furthermore, the presence of low crystallinity also indicates the catalysts’ affinity for 

anchoring -SO3H groups. 

 

Table 3.3:  Surface properties and total acid (-SO3H) density of the catalysts 

Catalyst 
Surface Area  

(m2/g) 
Pore Size  

(nm) 
Pore Volume 

(cm2/g) 
Total Acid (-SO3H) Density 

(mmol/g)  

sPTF/SA/400 28.1057 10.1712 0.033078 0.7851 
sPTF/SA/300 27.7805 10.0154 0.030178 1.1283 
sPTF/400 17.8048 9.1975 0.028308 1.0873 
sPTS/400 12.7037 5.1565 0.019907 1.2974 
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Figure 3.6: N2 adsorption-desorption isotherm and pore size distribution of 

sPTF/SA/400 and sPTF/400 

 

Figure 3.6 also highlights the effect of adding SA to the surface properties of the 

mesoporous carbon materials. Both materials showed similar N2 adsorption-desorption 

isotherm and pore size distribution curves. However, sPTF/SA/400 exhibited a larger 

hysteresis loop than sPTF/400 because of the thermal exchange with the SA. This could 

reduce the performance of sPTF/SA/400 by giving rise to complex pore structure and 

network effects. Conversely, the smaller hysteresis exhibited by sPTF/400 confirms the 

effect of only internal friction in the absence of SA. Consequently, the resultant large 

hysteresis loop of the material could limit the catalytic activity of sPTF/SA/400. Further, 

the FE-SEM analysis revealed large pores, sharp edges, and agglomeration on the surface 
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of the catalysts. Figure 3.7a illustrates the surface microstructure of the sulfonated 

sPTF/SA-400 carbon catalyst as studied using FESEM. The different constituents appear 

to have been homogeneously processed into solid particles of varying dimensions. The 

EDX analysis of the surface elemental composition revealed the presence of carbon, 

oxygen, and sulfur (Figure 3.7b; Appendix F).  

 

 
Figure 3.4: (a) Results of the surface microstructural analysis of the sPTF/SA/400 via 

FE-SEM, and (b) surface elemental composition of the sPTF/SA/400 determined via 

EDX analysis 

 

Similarly, Fig. 3.8a illustrates the surface microstructure (size and shape of topographic 

features) of the sulfonated sPTF/SA-300 as studied using FE-SEM. The surface 

morphology appears to have been heterogeneously processed into solid particles into 

which succinic acid was not fully incorporated. The surface elemental composition (Fig. 

3.8b) revealed the presence of carbon, oxygen, nitrogen, and sulfur. Further, FE-SEM 

analysis revealed large pores with sharp edges on the agglomerated catalyst surface. 
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Figure 3.8 (a) Results of the surface microstructural analysis of the sPTF/SA/300 via 

SEM, and (b) surface elemental composition of the sPTF/SA/300 determined via EDX 

analysis 

 

Figure 3.9a presents the surface microstructure of the sulfonated sPTS-400 carbon 

catalyst studied using FE-SEM. Figure 3.9b shows a cross-sectional surface composition 

and the distribution of elements on sPTS-400. The result also revealed the presence of 

carbon, oxygen, and sulfur (Appendix F). However, large pores with sharp edges were 

not evident in the FE-SEM images. The analysis indicated an agglomerated, amorphous 

solid with nearly uniform protrusions on its surface. 

 

   
Figure 3.9: (a) Results of the surface microstructural analysis of the sPTS-400 via 

SEM, and (b) surface elemental composition of the sPTS-400 determined via EDX 

analysis 
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Sulfonating cellulosic materials resulted in the production of highly stable solids with 

strong acid density and many active sites. This is because sulfonating the carbonized 

organic or inorganic compounds facilitates the formation of rigid carbon material is 

comprised of small, three dimensional sp3-bonded polycyclic aromatic carbon sheets. 

Such an approach can simplify the synthesis of highly active catalysts from inexpensive, 

naturally occurring molecules. Figure 3.10 presents the FT-IR spectra of unsulfonated 

mesoporous carbon from palm tree spikelet and sulfonated catalysts. These results 

confirm the findings of Zhang et al. (2015) and Peng et al. (2010). Successful 

incorporation of -SO3H groups onto the sulfonated catalysts was observed in the form of 

FT-IR spectrum bands in the stretching mode at 1008 cm-1. This vibration, attributed to 

symmetric S=O bonds, is absent in the spectra of unsulfonated material.  

 

 

 
Figure 3.10: FT-IR spectra of sPTF/300 catalysts, sPTS/400 catalysts, and 

unsulfonated-PTS/400 mesoporous carbon  

 

It was observed that the S=O bond, represented by the peak at 1080 cm-1, is asymmetric. 

The FT-IR spectra also reveal symmetric O=S=O bonds, as shown by the vibration bands 

Wavenumber (cm-1) 
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at 1027 and 1167 cm-1 and those for -OH bonds at 3424 and 3429 cm-1. The node 

stretching at 3440 cm-1 was assigned to the O-H stretching mode of phenolic -OH and -

COOH groups. Similarly, node stretching at 1719 cm-1 is representative of C=O bonds 

due to -COO- and -COOH group stretching vibrations. The aromatic C=C stretching 

mode, similar to graphite-like, polyaromatic materials, was ascribed to the broad, intense 

bands centered at 1610 cm-1. The effect of carbonization was observed from the 

disappearance of C-H stretching peaks at 675 cm-1, 700 to 900, and 3046 cm-1, ascribed 

to polycyclic aromatic and aromatic hydrocarbons, respectively. High carbonization 

temperatures dehydrogenate and graphitize the mesoporous carbon skeleton. Low 

carbonization temperature thus appears favorable in synthesizing sulfonated carbon 

catalysts rich in C-H bonds. This is evident from the gradual disappearance of C-H 

stretching peaks and the difference in the -SO3H incorporated on sPTF/SA/400 (0.7851 

mmol/g) and sPTF/SA/300 (1.1283 mmol/g).  

 

3.4.1 Catalytic performance of the solid acid catalysts in biodiesel production 

This section sets out its purpose, viz. to evaluate the catalytic activity of the catalysts 

synthesized from palm frond and spikelet. The study employed 1 wt.% catalyst loading 

and a methanol-to-oil molar ratio of 5:1 within a temperature range of 100 to 200 °C. The 

mesoporous sulfonated solid acid catalysts exhibited high activity compared to 

conventional solid acid catalysts. They were able to convert a high-FFA content (48%) 

UFO feedstock obtained from a household in Malaysia to more than 98.51% FAMEs. 

Figures 3.11a to 3.11d show the catalytic activity of the sulfonated solid acid catalysts 

prepared under different conditions. Figure 3.12 shows the reaction mechanism of 

esterification catalyzed by mesoporous sulfonated carbon catalyst. Despite the low 

alcohol molar ratio, this procedure achieved more than 80% conversion with each catalyst 
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after 5 h reaction time. This is encouraging, considering that Zhang et al. (2015) used an 

18:1 molar ratio in a study, though at lower temperature.  

 

This trend was similar for all reactions, with equilibrium achieved after 5 h reaction time. 

The catalyst, sPTS/400 with 1.2974 mmol/g total -SO3H acid density produced the 

highest catalytic activity (98.51% FAME) the reaction. Next in performance to sPTS/400 

was sPTF/SA/300, with 1.1283 mmol/g total -SO3H acid density. Interestingly, despite 

proper sulfonation and higher surface area and pore size (27.78 m2/g and 10.02 nm), the 

performance of sPTF/SA/300 was slightly less than what was obtained from sPTS/400. 

However, it is interesting to note that mesoporosity alone does not determine the extent 

of catalytic activity or turnover.  

 

Figure 3.12: Mechanism of esterification catalyzed by mesoporous sulfonated carbon 
catalyst (Zeng et al. 2012) 

 

Other factors such as acid sites and type, acid density, carbon precursor, and crystal 

structure all play significant roles. This plausibly explains the reason behind the slightly 

lower activity of sPTF/SA-300 and sPTF/SA-400 against sPTS/400 is sPTF/400 despite 

possessing larger surface area, SBET. Another plausible explanation is that chemical 

equilibrium limits the extent of esterification in isolating SA in the form of esters formed 
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with sPTF/SA/300 (Orjuela et al. 2012). This probably disrupts the usual five-step 

Fischer-Speier esterification mechanism (Hernández-Montelongo et al., 2015; Aguilar-

Garnica et al., 2014) in the presence of SA and -SO3H acid catalysts. These steps include 

(Larock 1989):  

(a) Transfer of proton to carbonyl oxygen from acid catalyst increases the 

electrophilicity on carbonyl carbon.  

(b) Nucleophilic oxygen atom from the methanol attacks the carbonyl carbon.  

(c) Formation of activated complex molecule as proton transfers to the second alcohol 

from the oxonium ion. 

(d) A new oxonium ion formed from the protonation of a hydroxyl group within the 

activated complex.  

(e) Loss of water from the oxonium ion produces ester with consequent 

deprotonation.  

 

To solve this problem, it is necessary to remove the product from the reacting vessel. 

However, the batch system employed for this study does not permit efficient product 

separation without further complications. Furthermore, hydroxyl groups formed during 

esterification and the low solubility and volatility of SA in methanol, which requires fast 

esterification kinetics to avoid precipitation or accumulation in the reactor, exacerbate 

this situation (Orjuela et al. 2011). Similarly, Yu et al. (2011) suggested a stepwise 

addition of alcohol with excess acid during the synthesis of polyester polyol. However, 

the performance of sPTF/SA/300 exceeded those without SA after regeneration. This 

signifies the beneficial effects of SA homogenization after elimination of many of the 

hydroxy groups. It also implied that both acids neither inhibit each other’s rate nor 

compete for active sites during esterification. Again, this highlights that successful 
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incorporation of surface strong acid density, combined with well-ordered mesoporosity, 

are essential for FFA conversion. 

 

  

 

Figure 3.11: Catalytic activities of mesoporous (a) sPTF/SA/400 and (b) sPTS/400 

catalysts prepared under different conditions 
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Figure 3.11(cont’d): Catalytic activities of mesoporous (c) sPTF/400, and (d) 

sPTF/SA/300 catalysts prepared under different conditions 

 

Further, the catalyst retained most of its activity after 8 recycles without significant 

leaching of its strong (-SO3H) groups (Figure 3.12). Evidently, incorporation of strong 

sulfonite groups, mesoporosity, and high stability ensured the good reusability of the 

synthesized catalysts. Deactivation sets in as the active sites loose the strong sulfonite 

groups from the material after several cycles. Simple decantation, washing, and drying 

regenerated the catalyst. This highlights the potential to produce alternative, 

environmentally benign catalysts from waste palm biomass.  
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Figure 3.12: Activity of sPTS/400 after regeneration and recycling for esterification 

reaction 

 

Converting feedstocks of low economic value into high yield methyl esters shows the 

superiority of solid acid catalyst. In this regard, the present process is economical, as it 

employed moderate reaction conditions such as relatively low catalyst-loading, low 

temperature (100 °C), and a 5:1 alcohol-to-oil ratio to convert more than 98% high FFA 

feedstock. Furthermore, the deluge of waste generated from palm tree cultivation and 

palm oil production could be easily converted into alternative catalysts, with potential 

wide ranges of applications in other acid-catalyzed reactions. This is interesting when 

compared with other carbon-bearing solid acid catalysts. For instance, Dawodu et al., 

(2014) synthesized catalyst from the cake of C. inophyllum and converted 96.6 wt% of 

the oil extracted therefrom, which contained 18.9 wt.% FFA. This was achieved with a 

30:1 methanol-to-oil molar ratio at 180 °C for 5 h and a catalyst loading of 7.5 wt.%. 

Similarly, Dehkhoda et al., (2010) obtained 92% conversion from 12.25 wt.% FFA-

containing feedstock with 5 wt.% sulfonated pyrolysis biochar catalyst after 3 h under 

18:1 methanol-to-oil molar ratio. It is noteworthy to mention the close to 100% 

conversion obtained with Ph-SO3H-modified mesoporous carbon by Geng et al. (2012) 
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with 66 times more methanol than oleic acid. For a comprehensive comparison on 

biodiesel production from palm oil, Jatropha curcas, and Calophyllum inophyllum, the 

reader is referred to an article by Ong et al. (2011). 

 

3.4 Conclusions 

1. Sulfonated, mesoporous carbon catalysts prepared from waste biomass from palm 

tree with concentrated H2SO4 (98%) as the sulfonating reagent converted more 

than 98.51% of FFA into biodiesel.  

2. This study employed 400 and 150 °C carbonization and sulfonation temperatures, 

respectively, to avoid destroying the well-ordered mesostructure of the carbon 

materials, ensuring good catalytic activity by retaining high acid density on the 

catalysts. The catalysts in this study functioned well at the moderate process 

conditions of 100 °C, 5 h reaction time, 5:1 methanol-oil ratio, and 1 wt.% catalyst 

loading. 

3. The sPTS/400 catalyst, with specific surface area 12.7037 m2/g, average pore size 

10.02 nm, mesopore volume 0.02 cm3/g, and 1.2974 mmol/g total -SO3H acid 

density, exhibited the highest activity (98.51%). Further, it converted more than 

90% of FFA after 8 consecutive regeneration cycles.  

4. The observed high catalytic performance is attributed to the large pores, uniform 

pore size, good surface area, large mesopore volume, high -SO3H density, and 

hydrophobic surface of the sulfonated catalysts. The large mesostructure 

effectively accommodated the long FFA chains. In addition, the catalysts’ 

mesostructure hinders water molecules from both the UFO feedstock and those 

formed during the reaction from accessing the interior of the catalysts.  
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The catalysts generated from palm waste biomass in this study have the potential for 

application as solid acid catalysis with good prospects in other related acid-catalyzed 

reactions. 
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CHAPTER 4: OIL PALM BIOMASS AS CHEAP PRECURSOR TO EFFICIENT 

MESOPOROUS SOLID ACID CATALYSTS FOR ESTERIFYING USED 

FRYING OIL CONTAINING HIGH FREE FATTY ACIDS 

    

This chapter sets out its purpose, viz. the continuation of Chapter 3. It presents the study 

as an article, which described the superiority of sulfonated mesoporous catalysts 

synthesized from palm empty fruit bunches and palm waste fruits in the esterification of 

free fatty acids for biodiesel production compared to existing sulfonated carbons. The 

study is currently under consideration for publication by RSC Advances. 

 

4.1 Introduction 

High production costs accruing from cost of purchasing feedstock as well as catalyst 

development hamper the establishment of biodiesel as commercial alternative to 

petroleum diesel (Sani et al, 2013; Hassan et al., 2015). Incidentally, deluge of 

agricultural waste materials such as biomass, which are potential feedstock for catalyst 

synthesis and energy source, end up dumped in landfills at avoidable costs. A promising 

source of renewable energy is biomass, and it falls under the following categories: (a) 

agricultural residues, (b) dedicated energy crops, (c) wood residues, and (d) municipal 

solid wastes. Agricultural residue constitutes the third largest primary source of energy 

after oil and coal. Thus, developing efficient solid catalyst from low-value biomass is 

essential in making biodiesel production process fully ecologically friendly and 

economical. Malaysia being the world’s second largest producer and exporter of palm oil 

generates deluge amount of biomass with little or no economic value from oil palm 

production (Sulaiman et al., 2012). These include palm trunks, mesocarp fibre (PMF), 

empty fruit bunches (EFB) and kernel shells (PKS) (Aziz et al., 2011; Hassan et al., 1997). 

Oil palm production alone generates about 85.5% of the total biomass produced from a 
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variety of crops, including but not limited to rubber, rice, and oil palm in Malaysia. In 

this regard, agricultural residues from renewable sources which are both abundant and 

inexpensive will come-in handy as remarkable feedstocks for fuel production and catalyst 

development (Prauchner and Rodríguez-Reinoso, 2012).  

 

However, to achieve high activity, the catalyst should possess high density of well-

dispersed active phase and provide channels for faster diffusion of the reactants and 

products (Sani et al, 2014). New heterogeneous materials based on their stable 

sulphonated amorphous carbon from inexpensive biomass have attracted much research 

interest. This recent method incorporates -SO3H into biomass carbon; thereby producing 

efficient alternative solid acid catalysts with good catalytic performances (Zhang et al., 

2015). These materials exhibited high acidity, large pore size, and high BET area. These 

attributes ensure accessibility of long-chain FFA molecules and high catalytic activity. 

The prospects of these materials have opened new vistas for synthesizing highly active 

solid acid catalysts. This is premised on the benign and economic aspect of the starting 

materials. Expectedly, these materials provide promising opportunity for ensuring a 

sustainable bioenergy (Toda et al., 2005, Takagaki et al., 2006, Budarin et al., 2007, 

Dehkhoda et al., 2010, Maciá-Agulló et al., 2010 and Liu et al., 2013). Studies showed 

the prospects of effectively replacing mineral acids in several catalytic reactions with 

sulfonic acid functionalized porous carbons. Among the sulfonating agents reported for 

synthesizing these stable, reusable, and environment-friendly solid acid catalysts include 

H3PO2, conc. H2SO4, 4-benzene-diazoniumsulfonate, hydroxyethylsulfonic acid, and p-

toluenesulfonic acid (TsOH). 
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Carbonization-Sulfonation method facilitates high surface area with interconnected 

porosity, which reduces diffusion limitation of reactants to active sites (Zhang et al., 

2015). Hou et al. (2012) synthesized sulfonated ordered mesoporous carbons under acidic 

condition from self-assembly phenolic resol and Pluronic F127. Similarly, (Xing et al., 

2007; Wang et al., 2007; Liu et al., 2008; Peng et al., 2010; Suganuma et al, 2011; Janaun 

and Ellis, 2011; Geng et al, 2012) employed nanocasting synthesizing sulfonated ordered 

mesoporous catalysts with SBA-15. Dawodu et al. (2014) produced biodiesel (96.6 wt.%) 

C. inophyllum oil with catalyst derived from its residue. Chen and Fang (2011) obtained 

90% biodiesel after 12 h from waste cottonseed oil (FFA 55.2 wt.%) with glucose and 

corn powder (ratio 1:1) solid acid catalyst. Similarly, Poonjarernsilp et al. (2014) 

respectively obtained high-grade biodiesel from esterifying oleic acid and stearic acid 

(vegetable oil) with sugar by Toda et al. (2005) and palmitic acid with single-walled 

carbon nanohorns. However, limitations such as high alcohol-to-oil molar ratio from 

these encouraging results prompted the motivation for this study. For instance, Dawodu 

et al. (2014) employed a 30:1 methanol-to-oil molar ratio in synthesizing catalyst from 

the cake of C. inophyllum.  

 

Similarly, Dehkhoda et al. (2010) utilized 18:1 methanol-to-oil molar ratio to obtained 

sulfonated pyrolysis biochar catalyst. It is also noteworthy to mention the close to 100% 

conversion obtained with Ph-SO3H-modified mesoporous carbon by Geng et al. (2012) 

with 66 times more methanol than oleic acid. Recently, we reported the catalytic 

performance via preliminary characterization of palm fronds and spikelets for biodiesel 

production from feedstock containing higher fatty acids (Sani et al., 2015). To the best of 

knowledge, aside this preliminary report, no study reported in detail, the valorization of 

low quality waste frying oils into biodiesel with solid acid catalysts derived from palm 

tree wastes. Consequently, the present study illustrated prospects of converting 
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inexpensive palm biomass wastes into highly efficient, benign, and recyclable solid acid 

catalysts for producing biodiesel under moderate conditions such as 5:1 methanol-to-oil 

molar ratio. This was achieved by investigating the effect of carbonizing and sulfonating 

empty fruit bunches (EFB) and waste palm fruit (WPF) in esterifying FFA into FAME. 

 

4.2 Literature review 

Despite the importance of solid acid catalysts in cracking processes and fine chemicals 

production, and their employment in about 180 industrial processes (Misono, and Nojiri, 

1990; Armor, 1991 and 2001), conventional acids such as AlCl3and H2SO4 are still 

employed for numerous acid-catalyzed reactions, such as esterification, hydrolysis, 

hydration, and Friedel–Crafts reactions (Tanabe & Hölderich, 1999). However, problems 

such as large amounts of catalyst requirement, separation and recovery difficulty, catalyst 

waste, corrosion, high toxicity, costs and environmental concerns associated with 

conventional acids made the search for alternatives imperative (Sani et al., 2015). 

Incidentally, solid acids are replacement of these liquid acids because they are easily 

separated, recovered and regenerated, environmentally friendly with respect to safety and 

corrosiveness. Further, industrial processes in the chemical industry generate less waste 

with solid acids. Nonetheless, to meet the desired challenge of substituting fossil fuels, 

advances are required in enhancing the acidity, activity, and durability of solid acid 

catalysts. This is especially true considering the problem of the high cost of feedstock. 

 

Several approaches such as replacing refined vegetable oil with refurbished oils and fats, 

used frying oil, and animal fats which contains varying amount of FFAs from 3 to 50% 

addressed the high cost of feedstock. This is because high FFA-containing feedstocks are 

readily available, inexpensive, and are obtained from renewable resources. These 

highlight the promising potentials of such feedstocks for biodiesel production. Moreover, 
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traditional homogeneous base catalysts are not suitable for transesterification when the 

amount of FFA in the feedstock exceeds 0.5%. This is because saponification reaction 

consumes the alkaline catalyst and FFA raw material. The significance of solid acid 

catalyst lies majorly in resolving this particular problem because of its insensitivity to 

FFA. 

 

Another strategy currently gaining prominence is the synthesis of solid acid catalysts from 

wastes and low-value biomass such as corn straw, vegetable oil asphalt, starch, glucose, 

naphthalene and other carbon-bearing materials via incomplete carbonization-sulfonation 

procedure (Lou et al., 2008). Hou et al. (2012) synthesized sulfonated ordered 

mesoporous carbons under acidic condition from self-assembly phenolic resol and 

Pluronic F127. Similarly, (Maciá-Agulló, et al., 2010, Peng, et al.s, 2010, Poonjarernsilp, 

et al., 2014, Prauchner and Rodríguez-Reinoso, 2012, Rabumi, 1998, Sani, et al., 2013 

and 2014) employed carbonization-sulfonization method in synthesizing sulfonated 

ordered mesoporous catalysts. Dawodu et al. (2014) produced biodiesel (96.6 wt.%) from 

oil extracted from C. inophyllum with catalyst derived from its residue. 

 

Similarly, the preparation and activity studies of amorphous carbon with sulfonic (-SO3H) 

groups as a solid Brønsted acid catalyst by Nakajima and Hara (2012). The small 

polycyclic aromatic carbon sheets of the catalyst were covalently bonded to the sulfonite 

(-SO3H) groups. The sulfonite groups ensured efficient esterification of high FFA 

feedstocks while the carbon rings provided strength and stable structure to the insoluble 

solid acid material. Interestingly, such catalysts remained active even after more than 50 

cycles (Zong, et al., 2007) after regeneration. This evidenced the highly stable structure 

of carbon-derived solid acid catalysts. Furthermore, aside having no toxicity or corrosion 
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effect and low cost of preparation, the catalysts exhibited strong acid site density, high 

hydrophobic surface area, and large pores (Lotero, et al., 2005).  

 

4.3 Materials and methods 

4.3.1 Preparation of mesoporous carbon catalysts from palm empty palm fruit 

bunches (EFB) and waste palm fruits (WPF) 

The oil palm residues obtained from Sime Darby Plantation in Malaysia, initially dried at 

room temperature for one week. The steady moisture loss was measured using the oven-

dry basis mass, OD (Eq. 4.1) before oven drying at 120 °C for 24 h followed by milling 

and sieving (mesh size: 0.5 mm). The catalysts were prepared following a modified 

procedure (Toda et al., 2005 and Dawodu et al., 2014). Heating the dried powder in 

tubular furnace at 300 °C and 400 °C, 2 °C/min for 12 h under N2 produced incomplete 

carbonized material. This facilitated the formation of polycyclic aromatic carbon rings on 

the cellulosic palm residues. The brown-black solid (20 g) was heated in 200 cm3 conc. 

H2SO4 (98%) at 150 °C. This acid treatment incorporates sulphonite groups (-SO3H) into 

mesopores of the carbon material. After heating for 10 h, and cooling to room 

temperature, 1000 cm3 distilled water was added to form a black precipitate. To ensure 

the absence of impurities and sulfate ions, the precipitate was washed with hot (> 80 °C) 

distilled water. The resulting product was oven dried at 100 °C for 5 h. To ensure 

reproducibility, all the catalysts were prepared in replicates. The sulfonated palm empty 

fruit bunch (EFB) and waste palm fruit (WPF) were designated sEFB/T and sWPF/T, 

respectively; where T stands for carbonization temperature (300 or 400 °C). To compare 

the activity of the materials, different esterification reaction conditions were investigated.  

 

Moisture content (%; OD basis) = 
������ �� ����� 

��� ������ �� ����
 x 100  (Eq. 4.1) 
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4.3.2 Catalyst characterizations 

A FEI QUANTATM 450 FEG type 2033/14 (Czech Republic) unit with 30 kV 

accelerating voltage was used for field emission scanning electron microscopy (FE-SEM) 

to analyze the surface morphology and topology of the catalysts. An energy dispersive X-

ray spectrometer (EDX) from the same unit revealed the surface elemental composition 

of the catalysts. Further, X-ray diffraction (XRD) and BET analyses were used to 

determine the structural and textural properties of the catalysts. The XRD patterns were 

analyzed with a Phillips X’pert diffractometer (The Netherlands) using CuKα radiation 

(λ = 1.54056 Å) at a scanning speed of 0.05°/s within a 2θ range of 5 to 70° at 40 mA and 

40 kV. Micromeritics TriStar II (USA) with accelerated surface area porosity (ASAP)-

3020 at minus 196.15 °C was used to determine the specific surface area of the catalytic 

materials using liquid nitrogen. Degassing the catalysts at 120 °C for 3 h under a vacuum 

eliminated any physisorbed volatiles and impurities. Rapid [scan speed of 20 spectra/sec 

(8 cm-1 resolutions, expandable to 100 spectra/sec, with 16 computer selectable mirror 

velocities between 0.055 and 10 cm/sec, 16-bit-200kHz)] identification and 

quantification of the catalysts was performed with a Bruker Fourier transform infrared 

(FT-IR) IFS 66/S (Germany) equipped with OPUS/IR software for data acquisition and 

manipulation. The apparatus has a spectral range of 7500 to 370 cm-1 (standard) with 

more than 0.25 cm-1 apodized resolution and a Ge multilayer coating on KBr beam 

splitter. 

 

4.3.3 Acid density analysis 

Exchanging Na+ with H+ in the form of -SO3H by mixing 0.1 g of sulfonated material 

with 30 mL of 0.6-M NaCl solution for 2 h facilitated determination of the acid strength 

of the catalysts. The filtrate from this mixture was titrated with 0.1001 M NaOH standard 

solution and methyl orange indicator to indicate the consumption of NaOH. A change 
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from slightly red to bright yellow maintained for 30 s defines the endpoint. A blank 

titration determined the initial, unconsumed volume of the NaOH standard solution. 

Equation 4.2 was used to accurately calculate the strong acid (-SO3H) density. 

 

������ = 
���� × [�����]

����.
   (4.2) 

 

The strong acid (-SO3H) density of the catalyst (in mmol/g) and the concentration of 

standard NaOH solution are represented by D–SO3H and COH-, respectively. The volume of 

NaOH standard solution consumed during the blank and catalyst titrations are represented 

by V0 and V1, respectively; mcat represents the mass of catalyst used for the acid density 

analysis. 

 

4.3.4 Production of free fatty methyl esters from FFA-containing feedstock 

The catalysts were heated at 150 °C for 1 h before the reaction to evacuate adsorbed water 

and other volatiles. Methanol, with the aid of the catalyst, was used to transesterify used 

frying oil (UFO) at 100 to 200 °C in a 100 mL autoclave (250 °C, 100 bar) reactor 

supplied by AmAr Equipment Pvt., Ltd. (Mumbai). Constant stirring ensured contact 

between the catalyst and the reaction mixture. A constant-flow water bath attached to the 

autoclave maintained the temperature during the reaction. Preliminary optimization 

showed that a 5:1 methanol-to-oil molar ratio and 1 wt.% catalyst loading are optimal 

reaction conditions. Simple decanting recovered the FAME at the end of the 3 to 15 h 

reaction. Drying, methanol washing, and heating at 120 °C for 1 h regenerated the 

catalyst. The catalyst retained its activity after regeneration for up to 8 recycles. 
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4.3.5.  Determination of acid value 

The oil’s acid value was determined by titration analysis according to DIN EN ISO 660 

(2009). The expected acid value of used frying oil is between 15 and 75 mg KOH/g. The 

titrant (0.1 M KOH), neutralizes the solvent mixture comprised of 50 mL of ethanol-

diethyl ether (1:1 ratio, v/v) mixed with 0.5 g of catalyst sample. Equations 4.3, 4.4, and 

4.5 were used to calculate the titre value, acid value, and FFA conversion, respectively. 

 

  Titre value = 
��

���� × �(���) × ��
     (4.3) 

  Acid value = 
���� × � × �(���) × ��

��
    (4.4) 

FFA conversion, % = 
���� × � × �(���) × ��

�� × ��
    (4.5) 

 

where ����
 represents the titrant consumed at end of the first equivalent point in mL, 

�(���) represents the concentration of KOH titrant (0.1 M), �� represents the molecular 

weight of the analyte (112.12 g/mol), � represents the correction factor obtained from the 

titre value, MA represents the molecular weight of palmitic acid (256 g/mol), and ms 

represents the sample size in g. 

 

4.4 Results and discussion  

4.4.1 Characterization of palm biomass and catalysts 

Proximate analysis of oil palm (Elaeis guineensïs) biomass by Aziz et al. (2011) revealed 

the composition as carbon (45-50%), oxygen (43-48%), hydrogen (5%), nitrogen (0.5%) 

and sulfur (0.4%). The petiole consists of about 70% of the dry matter in the palm fronds, 

while the leaves and rachis make up the remaining percentage. The dry matter content of 

palm fronds is about 31% (Ishida and Abu Hassan, 1992). Depending on age, palm fronds 

contain ca. 15 to 26% hemicellulose. It also contains 4.7 MJ/kg crude proteins, 38.5 
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MJ/kg crude fibre, 2.1 MJ/kg ether extract, 78.7 MJ/kg neutral-detergent fibre, and 3.2 

MJ/kg ash (Wong and Wan Zahari, 1997; Wan Zahari and Mohd Ariff, 2000). Similarly, 

Rabumi (1998) reported 70.9 to 90.1 C/N ratio, 25.0 to 29.9% lignin, 16.2 to 21.3% 

cellulose, and 1.52 to 2.46% soluble polyphenols, as the chemical composition of 

spikelets. 

 

A previous report by Chen et al. (2010) identified 2θ peaks ranging from 22° to 23° as 

the major diffraction peaks for cellulose crystallography. Figure 4.1 shows XRD patterns 

for sEFB/400 and sWPF/400. The figure displayed one broad XRD peak at 2θ value of 

25.33° and 25.20° with d values calculated from Bragg equations as 3.51 and 3.53 Å for 

the 2 materials respectively. The lower reflection intensities exhibited by the materials 

highlights the amount of amorphous impurities contained in them. However, XRD pattern 

for sWPF/400 revealed other peaks absent from sEFB/400 at 2θ values of 10, 18, 21, and 

30. These peaks are indicative of low crystallinity from the palm kernel shell. This agrees 

to Liu et al. (2012) who posited the prominent I002 peak with the maximum intensity of 

002-lattice diffraction as the primary as well as crystalline. The broad nature of the peak 

is reflective of the cellulosic molecular hydrogen bond transformation during heat 

treatment. However, the low crystallinity indicated the presence of larger amounts of 

amorphous cellulose in the catalytic materials (Kuo and Lee, 2009). However, the general 

absence of crystallinity indicates the affinity for anchoring -SO3H groups.   
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Figure 4.1: XRD pattern of sEFB/400 and sWPF/400. 

 

Certainly, from the representation on Fig. 4.1 and Table 4.1, one may recognize the 

correlation between the catalytic performance of the synthesized materials and their 

crystal structures. sEFB/400 exhibited no spikes, but had SBET of 236.37 m2/g. However, 

sWPF/400 exhibited spike at 2θ value of 25.20° and a d-spacing of 3.53 Å, which falls 

within the range reported for cellulose crystallography by Chen et al. (2010). However, 

the SBET, 28 m2/g of the material was comparatively lower than that of sEFB/400. 

Consequently, despite the observed crystallinity, the total surface area available for acid 

(-SO3H) groups is limited. Evidently, this will affect the overall catalytic performance. 

 

The N2 adsorption results presented in Table 4.1 and Figure 4.2 further confirmed the 

presence of mesopores on the prepared catalytic materials, which are consistent with 

aromatic sheets of amorphous carbon orientation. The clear nitrogen condensation steps 

highlighted in Figure 4.2 evidenced this. Further, the figure shows the N2 adsorption-

desorption isotherm and pore size distribution curves of mesoporous carbon obtained at 

300 and 400 °C carbonization temperatures. The pore-size distribution curves of the two 

materials show similar shapes with high pore size uniformity with a uniform pore 

diameter centered at about 17.8 nm. The large mesopores are advantageous because they 
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minimize diffusion limitation and facilitate easier access to the reacting molecules to the 

active sites within the materials. Additionally, the large mesopores enhance the stability 

of the ordered mesoporous carbon framework (Zhang et al., 2015). Expectedly, because 

of the higher temperature employed, sEFB/400 exhibited lower SBET and amount of 

sulfonate groups (236.37 m2/g; 1.8579 mmol/g) than sEFB/300 (2.3373 mmol/g; 246.46 

m2/g). Similarly, Figure 4.2 shows the comparatively much lower BET surface area 

exhibited by the catalyst synthesized from the waste palm fruits, sWPF/400 against 

sEFB/400. This is probably because of the homogenization of the different constituents 

such as mesocarp fibre, kernel, and kernel shell. These noticeable peaks confirmed the 

presence of crystallinity within the amorphous structure of the cellulosic constituents. 

Further, FE-SEM analysis revealed large pores, sharp edges, and agglomeration on 

surface of the catalysts. 

 

The adsorption isotherms of all the samples followed the type-IV IUPAC classification 

for mesoporous materials with capillary condensation taking place at higher pressures of 

adsorbate depicting a hysteresis loop (Sing et al., 1985). At higher pressures, the slope 

showed increased uptake of adsorbate as gas fills the pores, with the inflection point 

typically occurring near completion of the first monolayer. The H4-type hysteresis loop 

fit well to the inkbottle pores expected for the voids between the materials. At lower 

pressures, an adsorbate monolayer formed on the pore surface, which leads to a multilayer 

formation. However, it is interesting to note that mesoporosity alone did not determine 

the extent of catalytic activity or turnover. Other factors, such as acid sites and type, acid 

density, carbon precursor and crystal structure, all played significant roles. Titrimetric, 

surficial and structural analysis (Table 4.1, Figures 4.2 and 4.3) revealed high strong acid 

(-SO3H) densities and amorphous carbon sheets bearing carboxyl (-COOH) and hydroxyl 

(-OH) groups. Interestingly, even at boiling temperatures of water, methanol, oleic acid, 
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benzene, and hexane, the mesoporous carbon catalysts remained insoluble as observed by 

(Toda et al., 2005).  

 

Table 4.1: Surface properties and total acid density (-SO3H) of the tested catalysts 

Catalyst 
Surface area  

(m2/g) 
Pore size  

(nm) 
Pore volume 

(cm3/g) 
Total  acid (-SO3H) 
density (mmol/g)  

sEFB/400 236.37 4.1511 0.113332 1.8579 
sEFB/300 246.46 4.1835 0.115955 2.3373 
sWPF/400 28.11 10.0893 0.033078 1.5460 

 

 
Figure 4.2: N2 adsorption–desorption isotherms for sEFB/300, sEFB/400 and 

sWPF/400 

 

0

10

20

30

40

50

60

70

80

0.0 0.2 0.4 0.6 0.8 1.0

A
d

so
rp

ti
on

 v
ol

u
m

e,
 c

m
3
/g

 S
T

P

Relative pressure, P/P0

sEFB/300

sEFB/300

sEFB/400

sEFB/400

sWPF/400

sWPF/400



93 
 

 

Figure 4.3: Pore size distribution curves for sEFB/300, sEFB/400 and sWPF/400 

  

Figure 4.4a presents the FE-SEM analysis highlighting the surface microstructure of 

sulfonated sEFB/400 carbon catalyst. The different constituents appeared homogeneously 

processed into solid particles of varying dimensions. The figure also shows the presence 

of large uniform mesopore longitudinally along the fibre. The surficial elemental 

composition by EDX analysis confirmed earlier reports by revealing the presence of 

carbon, oxygen, and sulfur (Figure 4.4b; Appendix A).  

 

 
      Figure 4.4: (a) Results of the surface microstructural analysis of the sEFB/400 via 
FE-SEM, and (b) surficial elemental composition of the sEFB/400 via EDX analysis   
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Similarly, Figure 4.5(a) presents the surface microstructure (size and shape of 

topographic features) of sulfonated sEFB/300 carbon catalyst studied using FE-SEM. The 

surface morphology appeared heterogeneously processed into solid particles. Further, 

hexagonal large mesopores appear intact compared to sEFB/400 indicating the preference 

of milder carbonization temperature. However, the presence of carbon, oxygen 

(Appendix A), and sulfur revealed surficial elemental composition by EDX analysis 

(Figure 4.5b) are similar to that of sEFB/400.  

  

 
    Figure 4.5: (a) Results of the surface microstructural analysis of the sEFB/300 via 

SEM, and (b) surficial elemental composition of the sEFB/300 via EDX analysis  

 
 

Figure 4.6(a) presents the surface microstructure (size and shape of topographic features) 

of sulfonated sWPF/400 carbon catalyst studied using FE-SEM. High carbonization 

temperature opened the pore structure of the carbon material. However, the presence of 

large pores and sharp edges were not evident from the FE-SEM analysis. The analysis 

only revealed agglomerated amorphous solid with almost uniform protrusions on the 

catalyst surface. Figure 4.6(b) presents a cross-sectional surficial composition and 

distribution of elements on sWPF/400 by EDX analysis. The result also revealed the 

presence of carbon, oxygen, (Appendix A), and sulfur.  
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  Figure 4.6: (a) Results of the surface microstructural analysis of the sWPF/400 via 

SEM and (b) surficial elemental composition of the sWPF/400 via EDX analysis  

  

The process of sulfonation produces stable solids with strong acid density constituting 

high active sites on the cellulosic materials. This opens a vista for synthesizing highly 

active catalytic materials from waste biomass with little or no economic value and 

inexpensive naturally occurring molecules. For comparison, Figure 4.7 shows the FT-IR 

spectra of unsulfonated palm tree empty fruit bunch and sulfonated catalysts evaluated 

for this study and our previous report. The spectra revealed successful incorporation of -

SO3H groups on the mesoporous catalysts via sulfonation. This is evident from the FT-

IR spectrum bands stretching mode at 1040 cm-1.  

 

The observed S=O bond represented by the 1080 cm-1 spectra appears asymmetric while 

the vibration attributed to symmetric S=O is absent from the unsulfonated material. This 

confirms the presence of sulphonite (-SO3H) groups on the sulfonated catalysts. Further, 

the symmetric O=S=O bonds were revealed by the FT-IR spectra from vibration band at 

1031 and 1162 cm-1 while those of -OH bond at 2924 and 2855 cm-1 stretch respectively. 

On the other hand, the assigned O-H stretching mode of phenolic OH and -COOH groups 

to the node stretch at 3440 cm-1. Correspondingly, C=O bonds due to -COO- and -COOH 

groups stretching vibrations are assigned to the node stretching at 1693 cm-1.  
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Figure 4.7: FT-IR spectra for sWPF/300, sEFB/300, sEFB/400 mesoporous carbon 
catalysts, and unsulfonated EFB. 

 

The broad and intense bands centered at 1610 cm-1 are representative of the aromatic C=C 

stretching mode similar to graphite-like polyaromatic materials. Evidently, carbonization 

temperature affects the structure of the mesoporous material and the subsequent -SO3H 

incorporation. This is because relatively high carbonization temperature dehydrogenates 

and graphitizes mesoporous carbon skeleton. The disappearance of C-H peaks stretching 

at 670 cm-1 and 700 to 900 cm-1 ascribed to polycyclic aromatic and aromatic 

hydrocarbons respectively evidenced this. This means that low carbonization temperature 

is preferable for synthesizing sulfonated carbon catalysts rich in C-H. This is manifest 

from the difference in -SO3H incorporated on sEFB/400 (1.8579 mmol/g) and sEFB/300 

(2.3373 mmol/g) and the gradual disappearance of C-H stretching. 
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4.4.2 Catalytic performance of the catalysts in esterifying feedstock containing high 

FFA 

 

The acidic function of the catalysts synthesized from palm empty fruit bunch and waste 

(whole) fruit were evaluated in esterifying UFO with methanol. Reaction conditions 

employed by the study were 5:1 methanol-to-oil molar ratio, 1 wt.% catalyst loading 

within a temperature range of 100 to 200°C. All the sulphonated solid acid catalysts 

exhibited mesoporosity and high activity comparable to conventional solid acid catalysts. 

The UFO feedstock containing 48% FFA obtained from household in Malaysia was 

converted to more than 98% FAMEs. Figures 4.8(a) to (c) present the catalytic activity 

of the sulfonated solid acid catalysts investigated at different conditions. A similar trend 

is observed for all the reactions with equilibrium setting in after 3 h reaction time. It is 

instructive to note that all the catalysts except sEFB/300 achieved more than 60% 

conversion. This is encouraging considering the 3 h reaction time and low alcohol molar 

ratio. A study by Zhang et al. (2015) employed a molar ratio of 18:1 but at lower 

temperature than the present report.  

 

Mesoporous sEFB/300 displayed the highest catalytic activity by catalyzing a 98.72% 

FAME conversion. The catalyst showed the fastest rate in esterification reaction from the 

materials investigated. This is plausibly because the material possessed the strongest total 

-SO3H acid density of 2.3373 mmol/g. Further, the catalyst exhibited the highest surface 

area (246 m2/g), pore volume and pore size (4.1835 nm). Similarly, sEFB/400 exhibited 

high catalytic activity though not as high as sEFB/300. This is evident from the slightly 

lower total -SO3H acid density of 1.8579 mmol/g and surface area (236 m2/g). However, 

sEFB/400 was carbonized at a higher temperature. This is probably the reason for the 

lower activity. It is therefore logical to state that milder carbonization temperature is more 
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effective than carbonizing at higher temperatures in producing efficient solid acids from 

biomass.  

 

Interestingly, sWPF/400 also displayed high catalytic activity by producing 94.32% 

conversion despite its low surface area (28 m2/g). Intriguingly however, the pore size of 

sWPF/400 (10.0893 nm) is twice that of sEFB/300 (4.1835 nm) and sEFB/400 (4.1511). 

Furthermore, sWPF/400 showed comparative total -SO3H acid density of 1.5460 mmol/g. 

Again, this highlights that successful incorporation of surface strong acid density 

combined with well-ordered mesoporosity are essential for FFA conversion.  

 

Figure 4.7(a): Comparative catalytic activity of mesoporous sEFB/400 under different 
reaction conditions 
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Figure 4.7 Cont’d: (b) Comparative catalytic activity of mesoporous sEFB/300 
catalysts under different reaction conditions 

 

 
Figure 4.7 Cont’d: (c) Comparative catalytic activity of mesoporous sWPF/SA/400 

catalysts prepared under different conditions. 

 
 
 

Further, the catalyst retained most of its activity after 8 recycles without significant 

leaching of its strong (-SO3H) groups (Fig. 4.8). Evidently, incorporation of strong 

sulfonite groups, mesoporosity, and high stability ensured the good reusability of the 

synthesized catalysts. Deactivation sets in as the active sites loose the strong sulfonite 
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regenerated the catalyst. This highlights the potential to produce alternative, 

environmentally benign catalysts from waste palm biomass.  

 

Figure 4.8: Activity of sEFB/300 after regeneration and recycling for esterification 

reaction 

 

Consequently, this study highlights the prospects of producing efficient and 

environmentally benign alternative catalysts from waste palm biomass. Further, lower 

reaction conditions such as 1% catalyst loading, 100 °C, and 5:1 alcohol-to-oil ratio 

indicate the economic potential of the process. Converting feedstocks of low economic 

value into high yield methyl esters shows the superiority of solid acid catalyst. 

Furthermore, the deluge of waste generated from palm tree cultivation and palm oil 

production could be easily converted into alternative catalysts, with potential wide ranges 

of applications in other acid-catalyzed reactions. This is interesting when compared with 

other carbon-bearing solid acid catalysts. For instance, Dawodu et al. (2014), synthesized 

catalyst from the cake of C. inophyllum and converted 96.6 wt% of the oil extracted 

therefrom, which contained 18.9 wt.% FFA. This was achieved with a 30:1 methanol-to-

oil molar ratio at 180 °C for 5 h and a catalyst loading of 7.5 wt.%. Similarly, Dehkhoda 

et al. (2010), obtained 92% conversion from 12.25 wt.% FFA-containing feedstock with 

5 wt.% sulfonated pyrolysis biochar catalyst after 3 h under 18:1 methanol-to-oil molar 
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ratio. It is noteworthy to mention the close to 100% conversion obtained with Ph-SO3H-

modified mesoporous carbon by Geng et al. (2012), with 66 times more methanol than 

oleic acid. Additionally, the process is “green” because it has potential of converting the 

deluge of waste generated from cultivating palm trees and the subsequent palm oil 

production, as well as UFO. The mesoporous catalyst also has the possibility of wider 

applications in other acid-catalyzed reactions.  

 

4.6    Conclusions 

The interesting implication of the study is the interrelationship between sustainable 

development and environmental concerns ways of alleviating the barriers to economic 

competitiveness of biodiesel by utilizing cheaper resources. Catalysts synthesized from 

waste biomass showed promising results in the application of solid acid catalysis with 

good prospects in other acid-catalyzed reactions. In spite of transforming wastes into 

wealth especially in regional sustainable development, the following specific conclusions 

could be drawn from the synthesis and application of a new family of mesoporous carbon 

catalysts developed via simple carbonization-sulfonation process.  

 

1. Carbonization temperature determines the strength of the sulphonite groups (-SO3H) 

incorporated onto the carbon material. Moderate carbonization temperature (300 °C) 

is preferable because higher temperature affects the well-ordered mesostructure of the 

carbon. 

2. It is instructive to highlight low process parameters such as 1 wt.% catalyst loading, 3 

h reaction time, 100 °C and 5:1 methanol-oil molar ratio employed by the study against 

similar results by other authors. For instance, [8] employed 18:1 methanol-oil molar 

ratio to obtain ca. 80% conversion after 3 h. 
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3. The highest activity of 98.72% conversion was exhibited by sEFB/300 with specific 

surface area of 246.4616 m2/g, average pore size of 4.1835 nm, mesopore volume of 

0.12 cm3/g and 2.3373 mmol/g total -SO3H acid density. Further, it converted more 

than 90% FFA after regenerating for 8 consecutive cycles. The observed high catalytic 

performance is attributed to the large and uniform pore size, high surface area, large 

mesopore volume, high -SO3H density and hydrophobic surface of sulfonated catalyst. 

The large mesostructure effectively accommodated the long FFA chains. Additionally, 

the mesostructure of the catalysts hindered any water molecules from the UFO 

feedstock or formed in the course of reaction from accessing the active sites. The 

catalyst from waste biomass is promising in the application of solid acid catalysis with 

good prospects in other acid-catalyzed reactions. 
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CHAPTER 5: ACIDITY AND CATALYTIC PERFORMANCE OF Yb-DOPED 

���
��/Zr IN COMPARISON WITH ���

��/Zr CATALYSTS SYNTHESIZED via 

DIFFERENT PREPARATORY CONDITIONS FOR BIODIESEL 

PRODUCTION 

 

Apparently, the options available for promoting sustainability are not mutually 

exclusive. Therefore, aside biomass-derived catalysts, Chapter 5 sets out its purpose, viz. 

to elucidate the possibility of improving the status of sulfated zirconium-based catalysts 

for transforming low-value feedstock. This chapter therefore, presents Article 3 as Acidity 

and catalytic performance of Yb-doped ���
��/Zr in comparison with ���

��/Zr catalysts 

synthesized via different preparatory conditions for biodiesel production. It investigated 

the effect of doping SZ with Ytterbium and further showed how preparative procedures 

affected catalytic activity and acidity of SZ. This was achieved by exploring how slight 

changes in incipient wetness and co-precipitation method affect acidity and activity of SZ 

in biodiesel production. This study is available as a research article published by the 

Journal of the Taiwan Institute of Chemical Engineers. 

 

5.1 Introduction 

The potency of public concern in the 21st century forces decision makers to enact policies 

not primarily based on science and technology. Concerns such as environmental impacts 

and socioeconomical challenges help to shape public opinion towards new demands that 

require novel catalytic solutions (Hassan, et al., 2015; Guldhe, et al., 2014). Inherent with 

these new challenges are the potentials for greater efficiency and sustainability of such 

systems (Xie and Wang, 2013). Moreover, the searches for newer solutions have led 

experts to explore in details, the attributes of different materials, systems and devices 

(Farooq, et al., 2013). One key task is in achieving phase-homogeneous solids with 
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uniform morphological and chemical properties. This challenge is a fundamental 

prerequisite to any rational catalyst design. Further, the current dwindling price of crude 

oil is an indication that catalysis needs extensive experimentation to give biofuel the 

needed competitive edge. Consequently, it is necessary to devise catalytic processes with 

ca. 100% yields. These will help to establish the potentials of catalysts as well as ensure 

the prominence of biofuels such as biodiesel.  

 

Despite these challenges, last century witnessed catalysis as the major backbone for most 

industrial processes such as petrochemistry (especially, petroleum catalytic refining) and 

bulk chemistry. Incidentally, the high activity of sulfated zirconia (SZ) attracted 

substantial attention for converting triglycerides (TGs) into biodiesel at moderate to high 

temperatures. SZ is the subject of numerous reports since its discovery in 1979 (Furuta, 

Matsuhashi, & Arata, 2004). It is therefore, plausible to assert that SZ has reached a ‘state-

of-the-art’ status considering reports too numerous to mention available in the open 

literature. Further, most reports considered SZ as superacids because of their catalytic 

activity in simultaneously esterifying free fatty acids (FFA) and transesterifying 

triglycerides (TG) from high-FFA containing feedstocks into biodiesel.   

 

However, despite numerous encouraging results, some aspects of SZ catalytic activity 

and physicochemical properties remain debatable. Some authors (Park, et al., 2008, 

Refaat, 2011, and Shu, et al., 2007) argue that despite the presence of sulfate anions, the 

hydroxyl groups on the SZ surface is less acidic than the bridged hydroxyls in zeolites. 

They further claimed that besides Lewis sites, the surface of zirconia contains basic sites 

in the form of coordinated unsaturated oxygen atoms. They attributed this rationale by 

viewing the interaction between zirconia and H2SO4 as acid-base reaction. Contrarily, 

proponents (Chung, & Park, 2009, Danuthai, et al., 2009; Kiss, et al., 2006) to its acidity 
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provided evidences that showed superacidity of SZ contains two types of acid sites. A 

strong acidic site (24 µmol) with up to 31.2 kcal/mol strength and a weaker site (52 µmol) 

having a strength of 25.8 kcal/mol. The latter explains the claim by the opponents to the 

acidity of SZ. This is because 25.8 kcal/mol is lower than 34 kcal/mol and 41 kcal/mol 

that represent the acidity of HY and HZSM-5 respectively. The latter acidity explains the 

observation reported by the opposing authors. However, these conflicting reports are not 

surprising because heterogeneity and site accessibility of solid acid catalysts render direct 

measurement elusive. Moreover, acidity of SZ is sensitive to preparatory conditions and 

preparation method employed (Hassan, et al., 2015).   

  

Two decades ago, a detailed report by Breck (1984), evidenced the negligible effect that 

sulfation procedure has on the final SZ product. Despite this and the extensive attention 

on the factors affecting the acidity of SZ, there is no information from open literature 

regarding biodiesel production over SZ doped with ytterbium. Consequently, the present 

contribution aims to demonstrate the superior acidity and catalytic activity of SZ doped 

with ytterbium over SZ catalysts prepared by varying preparative procedures. To achieve 

this, the study evaluated how slight changes during incipient wetness and co-precipitation 

methods, and sulfate dispersion on SZ affect its acidity and performance in biodiesel 

production. The report aims at providing insight to the arduous task of making biodiesel 

economically competitive via transesterifying UFO containing 48 wt.% FFA. It is 

instructive to highlight the significance of employing UFO especially with current 

dwindling price of crude oil. Rather than dump the waste material into landfills, UFO 

simultaneously eliminates the food-for-fuel competition (Lotero, et al., 2005) and reduces 

the cost of biodiesel production (Narasimharao, et al., 2007). The cooking process causes 

the vegetable oil, TGs, to breakdown to form, DGs, MGs, and free fatty acids (FFAs).   
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5.2 Literature review 

High-resolution spectroscopic techniques that are surface sensitive reveal indirect 

information on the structure of the sulfur surface species. For instance, Yamaguchi et al. 

(1986), and Jin et al. (1986), employed X-ray photoelectron spectroscopy (XPS) and IR 

studies to proposed that zirconia surface (bidentate) is doubly coordinated to surface 

sulfate species containing a O=S=O moiety (Figure 5.1). Bensitel, et al. (1988), postulated 

the possibility of the existence of two structures residing on different crystal planes at 

moderate coverage. The authors showed that SZ surface is attached to both species, each 

containing only one S=O bond via three S-O bonds (See Figure 5.1a). Interestingly, 

however, Morterra et al. (1995), showed that samples used by Bensitel et al. (1988) 

contained mainly monoclinic crystal phase. Unfortunately, sulfated monoclinic zirconia 

has no practical activity in isomerization of hydrocarbons. Nonetheless, (Riemer et al., 

1994) accepted the suggestion by Bensitel et al. with slight modification. They observed 

the sulfate-free material has no O-H stretching band at 3650 cm-1. This prompted the 

authors to suggest the presence of a HSO4
- group on the surface (Figure 5.1b). 

 

5.2.1 Structure and chemistry of sulfated zirconium 

White, Sikabwe, Coelho, & Resasco (1995), suggested a different possibility where the 

zirconia tetragonal (001) plane adsorbs SO3 molecule with only one S=O bond. In this 

scenario, five different oxygen atoms interact with the sulfur atom (Figure 5.1d). 

Similarly, depending on the dehydration state of the material, Babou, Coudurier, & 

Vedrine (1995), postulated as many as four (SO3, H2SO4, HSO4
- and SO4

2-) different 

surface species on the surface of SZ. Finally, Haase, & Sauer (1998), provided a 

perspicuous structure representation of the surface sulfur species on SZ. The authors 

applyed periodic plane wave pseudo-potential calculations based on density functional 

theory (DFT) to achieve this feat as well as proved that two Zr sites react differently with 

adsorbed molecules (Figures 5.2 to 5.4).  
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Figure 5.1: Two structures of SZ at moderate coverage with possibility of residing on 
different crystal planes. 

 

Figure 5.2 presents the evidence depicting the equilibrium position of two structures after 

adsorbing water at the two possible Zr sites. Chemisorbed water restores 8-fold of the 

surface Zr sites by coordination and bonds to the strong site with an interaction energy of 

-194 kJ/mol (bottom of Figure 5.2). However, contrary to the strong (short) Zr-O bond 

restored by the chemisorbed molecules, only a weak (long) Zr-O bond is facilitated by 

physisorbed molecules (bottom of Figure 5.2). An interaction energy of -105 kJ/mol 

bonds the physisorbed complex and water together. Consequently, length (2.30 Å) of Zr-

O bond in the physisorption complex obtained by Haase, & Sauer (1998) was 

commensurate to that of the long Zr-O bond in bulk zirconia (2.37 Å). Consequently, the 

H-bond interaction elongates the O-H bond of water that is between the one of the protons 
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and Zr surface oxygen atom. However, the strong bond of Zr-OH2 dissociates the water 

molecule on the strong adsorption site and consequently, transfers H+ to ajacent surface 

oxygen atom in its vicinity. This generates a ZrO-(H)Zr hydroxyl bridging group and 

leaves a terminal hydroxyl group (Haase, & Sauer, 1998). 

 

 

Figure 5.2: Equilibrium structures of the H2O/ZrO2 (101) complexes for the two 

possible Zr sites with selected bond lengths given in angstroms. The figure shows only 

the first two ZrO2 layers. 
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Figure 5.3 illustrates some selected equilibrium bond lengths together with the adsorption 

complex. The figure depicts the three Zr-O bonds that hydrogen sulfate ion forms with 

the surface which contains one S=O double bond and three S-O single bonds. Evidently, 

the electrostatic interaction is very strong because the interaction energy of the bare ZrO2 

(101) surface and the isolated sulfuric acid molecule is -243 kJ/mol. Moreover, the 

evidence that supports this conclusion is the fact that length of the long Zr-O bonds in the 

bulk ZrO2 system is proportionate to the Zr-O bond lengths of the adsorbed anion. 

Nevertheless, the complete dissociation of the H2SO4 molecule in the second adsorption 

structure formed two surface hydroxyl groups and a sulfate anion. Pauling (1960), used 

the information regarding the second acid constant of H2SO4 (strong polyprotic acid) 

being ca. 100,000 times smaller than the first one to calculate the first and the second 

deprotonation energies to be 1316 kJ/mol and 3,200 kJ/mol respectively. The loss of both 

protons from H2SO4 onto the surface of ZrO2 indicates the remarkably strong interaction 

of the surface Zr atoms with sulfate ion as well as the base strength of the surface oxygen 

atoms. 
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Figure 5.3: Equilibrium structure of the (H+, HSO4-)/ZrO2 (101) adsorption complex 

showing bond lengths in angstroms and the two outermost ZrO2 layers. 

 

Interestingly, the length of the only “free” S-O bond is comparable to that of the S=O 

double bond (1.44 Å) as depicted from the structure of the resulting adsorption complex 

(Figure 5.5). Similarly, the calculated bond lengths of the isolated SO4
2- gas-phase anion 

(1.52 Å) were virtually equal to the remaining three S-O bonds attached to surface Zr 

atoms (1.53 Å). This adsorption complex is far more stable than the hydrogen-sulfate 

surface complex because its adsorption energy is -322 kJ/mol.  
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Figure 5.4: Equilibrium structure of the (2H+, SO4
2-)/ZrO2 (101) complex with selected 

bond lengths in angstroms. The unit cell is translated in the +x and –x directions, and 

the c vectors (z-axis) are indicated by two perpendicular lines. 

 

5.3  Materials and methods 

Sigma-Aldrich supplied all the reagents for this study. To ensure better comparative 

analyses, the study synthesized three different batches of catalytic materials. These are 

(a) catalysts prepared via incipient method, (b) ytterbium doped catalysts and doping 

method, (c) materials synthesized via co-precipitation. The required amount of ZrO2 (5 

µm, 99%) was soaked in excess 0.5-M H2SO4 (≥ 98%) and stirred for 120 min. Fritted 

glass filtered the resultant solution prior to drying of the solid for 20 h in open-air inside 

a fume cupboard; and at 130 °C for 16 h in an oven. Calcination was for 4 h at 500 °C. 

The acronym SZr-T-t/x represents the synthesized materials. Where T denotes calcination 

temperature, t signifies time, while x denotes sufficient soaking (s), soaking in excess (e), 

or aging period (days). These preparatory variables were varied (see Table 1) to elucidate 

their effects on acidity and activity.  
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Further, homogeneous co-precipitation was the route employed for synthesizing the 

second batch of catalytic materials. Aqueous solutions of 1:2 wt.% of ZrOCl2. 8H2O (≥ 

99.5%) and TiO2 (ReagentPlus®, ≥ 99%, 4.26 g/mL at 25 °C) were thoroughly mixed 

with urea. The mixture was heated at 95 °C under vigorous stirring for 12 h. Repeated 

washing of the precipitate with distilled water after filtering ensured negligible Cl- 

concentration. The solid was initially oven-dried for 12 h at 120 °C, and then stored in 

dry N2 atmosphere. Immersing 6 g of Zr-Ti composite in 0.5-M H2SO4 facilitated 

sulfation, while water bath evaporated the excess moisture. The resultant solid was oven-

dried at 130 °C for 16 h and calcined at 500 °C for 4 h. This sample was designated as 

SZr-Ti-500-4/e. To investigate the effect that transition metal has on activity, Ytterbium 

(III) nitrate pentahydrate, Yb(NO3)3.5H2O (crystals and lumps; 99.9% trace metals basis) 

was added to the third batch of catalysts. NH4OH (≥ 99.99% trace metals basis; 28% 

NH3 in H2O) was added to aqueous mixture of Zr and Ti and stirred for 2 h. The resultant 

solid was oven-dried at 110 °C for 24 h and ground into powder. A thorough mixing of 

the samples with aqueous 0.5-M H2SO4 incorporated sulfate ions, while heating at 110 

°C for 12 h prior to calcination at 500 °C for 4 h ensured stability on the materials. The 

material was designated SZr-Ti-Yb-500-4/s.  

 

Table 5.1: Variable parameters employed for synthesizing mesoporous sulfated zirconia 

Sample ID 0.5-M H2SO4 pH Aging (h) 
SZr-500-4/e Excess - 2 
SZr-500-4/s Sufficient - 2 
SZr-500-1/e Excess - 0.25 
SZr-Ti-500-4/e Excess - 0.25 
SZr-Ti-500-4/s sufficient - 0.25 
SZr-Ti-Yb-500-4/s 0.323 - 2 
SZr-500-5/7 0.034 1.25 168 
SZr-500-5/7R 0.039 2 168 
SZr-500-5/14 0.071 5 336 
SZr-500-5/10 0.038 4 240 
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The third batch of catalytic materials was prepared according to a modified procedure 

previously documented by (Suharto, 2009). Distilled water and continuous stirring for 5 

min, dissolved the required amount of ZrOCl2.8H2O to 0.34-M concentration. Adding 

urea in drop-wise manner to the required pH, precipitated the active species from the 

solution. While adding 0.5M (NH4)2SO4 produced a gel-like acidic solution. This was 

aged for 1 to 14 days in closed polyethylene (PE) bottles at 90 °C. The solution underwent 

filtration after cooling to room temperature, and subsequent washing with excess distilled 

water (6 times, each with 200 ml). Calcination of the solid in air at 500 °C for 5 h followed 

drying in open-air for 20 h, and heating at 90 °C for 4 h in a fume cupboard. These samples 

were designated as SZr-500-5/7. To evaluate the effect strong acid sites, a portion of SZr-

500-4/7, designated SZr-500-4/7R underwent a re-sulfation procedure again.  

 

After drying, kneading, mixing with 0.5M-H2SO4 for 2 h, filtering through fritted glass, 

and drying at 130 °C for 16 h, the solids were calcined at 500 °C for 4 h. The procedure 

was repeated for sample SZr-500-5/14 except that required amount of ZrOCl2.8H2O was 

dissolved in distilled water before adding urea to a pH value of 5. Similarly, the procedure 

was repeated for SZr/500-5/10 except required amount of ZrO(NO3)2.xH2O was 

dissolved in 400 ml distilled water before adding urea to pH value of 3 and mixing with 

required amount Al(NO3).9H2O. Continuous stirring under 210 rpm at 50 °C for two 

hours aided homogeneity. Adding ammonia solution and stirring for 40 min preceded 

aging at room temperature for 10 days. Subsequently, after filtering, drying in fume 

cupboard at 90 °C for 24h, and calcining at 500 °C for 5 h, the catalysts were stored in 

airtight vials inside a desiccator. All catalysts and experimental runs were prepared in 

replicates to ensure repeatability.  
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5.3.1  Catalyst characterization 

Analyzing isolated catalytic materials, precursors, or intermediates facilitates 

circumventing the high complexities of catalytic systems. It provides important 

information regarding the reaction mechanism and structure/activity relationships 

of the catalyst. Further, ex situ approach also enables the researcher to work with 

simplified systems under predefined conditions. Consequently, surface morphology 

and topology were analyzed with field emission scanning electron microscopy (FE-

SEM) FEI QUANTATM 450 FEG type 2033/14 (Czech Republic) unit with 30 kV 

accelerating voltage. An energy dispersive Xray spectrometer (EDX) from the same 

unit revealed the surface elemental composition of the catalysts.  

 

XRD and BET analyses elucidated the structural and textural properties of the catalysts. 

Phillips X’pert diffractometer (The Netherlands) with CuKα radiation (λ= 1.54056 Å) at 

a scanning speed of 0.05° s-1 within 2θ range of 5 to 70° at 40 mA and 40 kV analyzed 

the XRD patterns. A Micromeritics TriStar II (USA) with accelerated surface area 

porosity (ASAP) 3020 at -196.15 °C was used to determine the specific surface area of 

the catalytic materials using liquid nitrogen. Degassing the catalysts at 120 °C for 3 h 

under a vacuum eliminated any physisorbed volatiles and impurities. Rapid (scan speed 

3 velocities, 2.2 to 20 kHz) identification and quantification of the catalysts was 

performed with a Bruker Fourier transform infrared (FT-IR) Tensor 27 IR (Germany). 

The apparatus has a spectral range of 7500 to 370 cm-1 with more than 1 cm-1 apodized 

resolution and a standard KBr beam splitter. Ammonia temperature programmed 

desorption (NH3-TPD) by AutoChem 2920 (Micromeritics) evaluated the acidic profiles 

on the catalysts. To ascertain the exact amount of gas consumed during the experiment, 

the equipment was calibrated by 10% NH3 in He before the analysis. After placing 0.10 

g in a quartz U-tube, N2 flow (50 mL/min) at 110 °C for 1 h degassed the synthesized 
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material. After cooling to 60 °C, the samples were saturated with NH3 by the (20 mL/min) 

flow of 10% NH3 in He for 40 min. N2 gas flowing at 50 mL/min for 30 min over catalyst 

purged the physisorbed NH3. Raising the temperature from 60 to 700 °C with a ramp of 

10 °C/min under N2, flowing at 50 mL/min revealed the TPD profile. TCD detector 

revealed the amount of NH3 consumed which determines the Brønsted and Lewis acid 

sites in the catalyst.  

 

5.3.2  Production of fatty acid methyl esters from used frying oil 

Heating the catalysts at 150 °C for 1 h before the reaction to evacuates adsorbed water 

and other volatiles. With the aid of catalyst, 23.40 ml of used frying oil, UFO (866 g/mol) 

was esterified and transesterified simultaneously with methanol at 100 to 220 °C, while 

the pressure varied according to the process temperature inside the reactor. The reactors 

employed for conducting the reaction were a 100 mL autoclaves (250 °C, 100 bar) 

supplied by AmAr Equipment Pvt., Ltd. (Mumbai). Constant stirring ensured contact 

between the catalyst and the reaction mixture. A reflux condenser attached to the 

autoclave maintained the temperature during the reaction. Preliminary optimization (Fig. 

1) showed that a 6:1 methanol-to-oil molar ratio and 2 wt.% catalyst loading are optimal 

reaction conditions. However, this study employed a molar ration of 5:1 because the 

difference in conversion was minimal. This minimizes the use of resource, energy, and 

cost. Simple decanting and centrifugation recovered the FAME at the end of the 5 h 

reaction time.  

 

The study employed GC-MS (Serial # CN10946045; Model 7890A; US), and EN 

14103:2003 (E) analytical method in determining methyl ester contents with 100-mg neat 

mixture (Supelco® No. 18919) containing 37 components (C4 to C24 FAMEs; 2 to 4% 

relative concentration) as reference standard. This was dissolved in 99% heptane at 0.01 
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to 0.10% (w/v) concentration. Then, 1 mL hexane place in vials with screw caps having 

PTFE-faced septa dissolves an accurately weighed 10 mg sample, prior to the addition of 

10 µL of 2 N KOH in methanol.  

 

                                    
Figure 5.5: Preliminary optimization on (a) temperature, (b) time and (c) methanol-to-

oil molar ratio. 
 

After vortex for 30 s, and centrifugation, one µL of the supernatant was transferred into 

TSP micro vial. The GC analyzer has the following working conditions: DB 23 column 

(L = 0.30 mm × ID = 0.32 mm × 0.25 µm film thickness of 5% diphenyl, 95% dimethyl 

polysilanoxane) and methyl heptadecanoate, C17 (99% minimum purity; 14 min retention 

time) as the internal standard; 210 °C injection temperature and helium as carrier gas. 

Equation 1 facilitated the determination of the ester content (C), expressed as a mass 

fraction in percentage. 
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∁ =  
(∑ �) � ���

���
 ×  

��� × ���

�
 ×  100%    (5.1) 

 

Where: ∑A is the total peak area from the methyl ester in C14 to that in C24:1  

AE1 is the peak area corresponding to methyl heptadecanoate 

CE1 is the concentration of the methyl heptadecanoate, in mg/mL 

VE1 is the volume of the methyl heptadecanoate, in mL 

 m is the mass of the sample, in mg  

 

5.4 Results and discussion  

5.4.1  X-ray diffraction analysis 

The XRD diffractograms (Figures 5.6 and 5.7) of synthesized SZ catalysts revealed a 

tetragonal-monoclinic phase transition. The XRD patterns also show the significant 

impact of calcination temperature and precursor concentration on the crystal phase and 

crystallite size. Further, tetragonal phase exhibited more prominent characteristic peak 

areas than its monoclinic phase counterpart. In addition, the intensity of the peaks 

reflected both adsorption and amount of phase in the synthesized materials. Usually 

tetragonal phase transition occurs at above 1170 °C. However, according to (Osendi et 

al., 1985; Tangchupong et al., 2010), SZ precipitation preparation method produces 

monoclinic-tetragonal phase transformation of zirconia at lower temperature.  

 

Therefore, the low temperature employed during synthesis in this study facilitated the 

transition of monoclinic phase to tetragonal phase, which retards crystallization of 

zirconia support (Fa et al., 1997; Vishwanathan et al., 2008). Furthermore, the higher 

surface energy of the monoclinic phase compared to that of tetragonal phase ensures the 

metastable tetragonal phase transformation (Tangchupong et al., 2010). All the XRD 

patterns displayed presence of monoclinic and tetragonal phases except SZr-Ti-Yb-500-
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4/s (Figure 5.6b). This is despite the variance in the preparatory methods and precursor 

types utilized. The amount and chemical composition of the latter material was different 

from all other samples. This explains the differences observed from the crystallographic 

structures. Expectedly, the tetragonal phase (111) reflection at 2θ = 31.02° XRD patterns 

of the SZ broadens with higher pH. However, the (111) reflection of the monoclinic phase 

at 2θ = 28.18° especially for the sample prepared at higher pH indicated unstable 

tetragonal phase because probably the crystallite size were not small enough (Pacheco & 

Fripiat, 2000). Conversely, SZ prepared at higher pH exhibited lower monoclinic phases. 

Further, SZr-Ti-Yb-500-4/s that was synthesized with repeated addition of ammonium 

hydroxide exhibited lower crystalline structures with major anatase titania. The sample 

however, displayed similar pore size distribution to SZr-500-4/s but with 20 fold higher 

SBET (Table 5.2). The two materials were both soaked for 2 h in sufficient H2SO4.   

 

Consequently, the difference in sintering process, which causes higher SBET (Table 5.1), 

confirmed the phase transformation exhibited by the XRD pattern of SZr-Ti-Yb-500-4/s. 

Interestingly, the materials processed in sufficient, but under longer soaking period 

exhibited higher acidity and pore diameter. For instance, entries 2 and 3 (Table 5.1) 

showed higher pore sizes and active site dispersion than those soaked in excess. This 

informed the preparation of SZr-Ti-Yb-500-4/s, which despite its lower width/height SZ 

peak ratio and crystallite size exhibited the highest SBET and acidity. Similarly, the sample 

in entry 9, displayed higher SBET and acidity than the one in entry 10 Table 5.1. Therefore, 

it is plausible to assert that higher SO�
�� concentration in SZr-Ti-Yb-500-4/s, facilitated 

the retardation of tetragonal phase transforming into monoclinic phase.  
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Figure 5.6: X-ray diffraction patterns for SZr-Ti-Yb-500-4/s, SZr-500/e, SZr-500-4/s,  

SZr-Ti-500-4/e, and SZr-Ti-500-4/s.  

 
 

It is also evident from the peak intensities that reflectance of adsorption and amount of 

phase in the mixture of SZr-Ti-Yb-500-4/s were lower than for the other materials. SZr-

Ti-500-4/e, SZr-Ti-500-4/s and SZr-500-5/7 displayed zirconia predominantly in 

monoclinic phase with little tetragonal phase with respect to intensity. The monoclinic 

phase had highest intensity at 2θ = 28.16 (61.21%) while that of the tetragonal is at 2θ = 

50.09 (13.27%). In contrast, SZr-500-4/e, SZr-500-4/s, SZr-500-5/14 and SZr-500-5/10 

exhibited zirconia predominantly in tetragonal phase with little monoclinic phase with 

respect to intensity. The tetragonal phase has the highest intensity at 2θ = 30.19 (81.74%) 

while that of the monoclinic was at 2θ = 28.17 (64.43%). Figures (5.2a and 5.2b) also 

highlight the effect that slight modification in catalyst preparatory conditions has on the 

morphology of the material. These morphological changes could be favorable or 

detrimental to the catalytic activity of the catalysts. Such alterations affected the domain 

sizes and lattice strains (i.e., the contribution from crystalline sizes and strains) displayed 

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80

In
te

n
si

ty
 (

a.
u

.)
 

2θ (°)

SZr-Ti-Yb-500/s

SZr-Ti-500/e

SZr-Ti-500/s

SZr-500/e

SZr-500/s



120 
 

by the peaks. The peaks also revealed the concentrations of active metal in the different 

modified catalysts. The intensity of monoclinic phase ZrO2 (Baddeleyite) appeared in 

XRD patterns of all the materials except SZr-Ti-Yb-500-4/s. This evidenced the better 

selectivity and activity performances influenced by the high SBET, which reflects small 

crystallite size. However, monoclinic phase was more prominent on SZr-500-4/10 than 

for others (Figure 5.6a) though with minimal effect. 

 

 
2θ (°) 

Figure 5.7: X-ray diffraction patterns for (a) SZr-500-5/7, (b) SZr-500-5/14, and  

(c) SZr-500-5/10. 

 
 
A good system of channeled pores for diffusion, and enhanced textural properties are 

some essential requirements for zirconia and ZrO2 mixed oxides heterogeneous catalysis. 

Interestingly, the XRD shoulder with the maximum intensity was centered at 27.78°, and 

situated at the same peak position that exhibits Bragg’s diffraction angle graphically. 

Further, the position matches what is expected for the strongest Bragg reflection of the 

crystalline monoclinic ZrO2 phase (baddeleyite). Similarly, the XRD peak centered at 

31.58 is in consonance with the expected position for the second strongest Bragg 

reflection of baddeleyite. These facts suggest that incipient ordered structure at 27.78 and 
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the associated shoulder at 31.58 are responsible for activity and stability of the modified 

zirconia.   

 

5.4.2 Surface physical property measurements 

Table 5.2 presents the textural properties and acidity of the mesoporous SZ catalysts. The 

difference in chemical composition of the catalytic materials plausibly explains the 

significant variations in textural and catalytic activities. Thus, for instance, the SBET of 

SZr-500-5/10 was 15.0543 m2/g while SZr-500-5/7 had 7.6917 m2/g SBET value. 

However, the pore size distribution (2 < dp < 50 nm) of all the synthesized catalysts 

revealed mesoporous structure which permits the TG molecule access to the active sites 

within the materials (Table 5.2 and Figure 5.8).  

 

      Table 5.2: Textural properties and acidity of synthesized sulfated zirconia 

Sample ID  
Surface area 

(m2/g) 
Pore vol. 
(cm3/g)  

Pore size 

(nm)  
Acidity 

(x 10-3 mmol/g) 

SZr-500-4/e  5.30 ± 0.5  0.020  21.21  20 ± 0.02 
SZr-500-4/s  3.43 ± 0.2 0.017  37.04  40 ± 0.02 
SZr-500-1/e  3.84 ± 0.3 0.018  20.35  10 ± 0.01 
SZr-Ti-500-4/e  8.12 ± 1.3 0.043  24.98  50 ± 0.03 
SZr-Ti-500-4/s  8.33 ± 1.4 0.047  28.52  70 ± 0.03 
SZr-Ti-Yb-600-4/s  60.33 ± 2.3 0.323  21.38  330 ± 0.05 
SZr-550-5/7  7.69 ± 1.4 0.034  21.44  80 ± 0.03 
SZr-550-5/7R  9.05 ± 1.3 0.039  20.27  40 ± 0.03 
SZr-550-5/14  41.22 ± 1.9 0.071  6.83  280 ± 0.04 
SZr-550-5/10  15.05 ± 1.7 0.038  9.65  70 ± 0.03 

 

Figures 5.8a and 5.8b shows nitrogen sorption isotherms of the SZ obtained after 

calcination in air at 500 °C. The isotherms followed the type III of the IUPAC 

classification with pores in the range of 1.5 to 100nm. This indicates the mesoporous 

nature of the synthesized materials, which are typical of materials with weak fluid-wall 

attractive forces. The slopes show increased adsorbate uptake at higher pressures as gas 

the fills pores, while inflection point occurs typically near completion of the first 
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monolayer. Expectedly, the voids between the zirconia nanocrystals showed a H2 type 

hysteresis loop befitting of inkbottle pores. The isotherms of SZr-500-5/7, SZr-500-5/7R, 

SZr-500-5/10, and SZr-500-5/14 shifted to higher adsorbed volumes with increasing 

aging and pH. This indicated increase in specific surface area, SBET of the materials (Table 

5.2). For instance, the SBET for the materials aged for 7, 10, and 14 days produced 9, 15, 

and 41 m2/g, respectively. This corroborated the report by Cassiers et al. (2003) that large 

specific surface area needs higher post-treatment of ca. pH 12.   

 

Figure 5.8(a): N2 adsorption-desorption isotherms of mesoporous SZ synthesized under 

different conditions. 
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 Figure 5.8(b): N2 adsorption-desorption isotherms of mesoporous SZ synthesized under 

different conditions. 

 

Intriguingly, the study obtained inverse correlations from the pore size distributions 

(Figures 5.9a and 5.9b) which shifted to smaller diameters with increasing aging and pH 

(Table 5.2). Materials aged for 7 days (pH 1.25) produced about 21 nm, against 7 nm for 

materials aged for 14 days (pH 5). Interestingly, impregnating 5 wt.% titanium into the 

zirconium hydroxide had a pronounced effect on the SBET of the SZ. However, this 

modification had negligible effect on the pore size distribution of the calcined materials 

(Table 5.2; Figure 5.9a, and 5.9b). Similar shifts were observed in the pore size 

distributions and the isotherms from both Ti-free materials and those impregnated with 

titania.  
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Figure 5.9: Pore size distribution curves of mesoporous SZ prepared from different 
preparatory conditions. 

   

To further evaluate the effect of incorporating transition-metal on the structural and acidic 

properties on activity of SZ, 1.5 wt % ytterbium (III) nitrate hydrate was used in preparing 

SZr-Ti-Yb-500-4/s. The corresponding material exhibited the highest SBET of 60 m2/g and 

a high pore size distribution (21 nm) comparable to the other materials (Figure 5.10). 

Further, this SZ exhibited the highest acidity of 33 x 10-2 mmol/g. These observations 

suggest that longer aging period of the precipitating agent within aggregates of 

nanocrystals in the interparticle voids leads higher SBET and lower crystal size. The pore 

system of the resulting material was significantly higher than the samples without Yb; 

whereas at relative pressures < 0.8, the nitrogen sorption isotherm remained similar 

(Figures 5.3 to 5.5). The higher sorption capacity of SZ doped with Yb at higher relative 

pressures confirmed the existence of mesopores with a broad size distribution. Similarly, 

this is evident from the pore size distribution (Figure 5.5) which instead of the expected 

3-8 nm, it revealed a broad distribution of mesopores of 3-60 nm. The authors attributed 

this observation to volumes between the interparticle voids and nanocrystal aggregates. 

Consequently, Yb incorporation narrows the pore size distribution because of even crystal 
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size distribution and even Zr aggregate size (Figure 5). An earlier study by Cassiers et al. 

(2003) showed the effect that scaffolding DDA support has on mesoscale of zirconia. 

 

 
 

 
   

Figure 5.10: Pore size distribution curves of mesoporous SZ prepared from different 
preparatory conditions. 

 

A notable increase in the number of acid sites was observed in the Zr-Ti mixed oxide 

catalysts compared to SZ without titania. This is despite the shorter aging period of the 

former (15 min) against the latter (120 min). These observations are in complete 

accordance with previous reports (Manríquez et al., 2004) that mixed oxides generate 

more acid sites than single oxides. One of two mechanisms premised this hypothesis: (a) 
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zirconium atoms substituting some of the titanium atoms or (b) large dispersion effect on 

the surface of the mixed oxide by the ZrO2 or TiO2. To investigate the activity of the 

surface acid sites on the SZ further, see discussion on the catalytic results (Section 5.4.4). 

Simultaneous esterification of FFA and transesterification of TG was validated the acid 

catalytic activity of the synthesized SZ.  

 

Figure 5.11a illustrates the surface microstructure of SZr-500-4/e as studied using 

FESEM, showing solid particles of uniform dimensions homogeneously processed from 

different constituents. The EDX analysis of the surface elemental composition revealed 

the presence of zirconium (99.63 wt.%) and sulfur (0.16 wt.%; see Appendix A) (Fig. 

5.11b).   

  

 
Figure 5.11: (a) Results of the surface microstructural analysis of the SZr-500-4/e via 

FE-SEM and (b) surface elemental composition of the SZr-500-4/e determined via EDX 

analysis   

  

Similarly, Fig. 5.12(a) presents the surface microstructure (size and shape of topographic 

features) of sulfonated SZr-500-4/s catalyst studied using FE-SEM. The surface 

morphology has been homogeneously processed into solid particles. The surficial 

elemental composition by EDX analysis (Fig. 12b) also revealed the presence of 98.14 

wt.% zirconium and 0.10 wt.% sulfur. The surficial appearance of SZr-500-4/e revealed 

a lesser dispersion of surface elements than SZr-500-4/s. Interestingly, the acid site 
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density of the latter was also higher than that of the former. However, the catalyst calcined 

for one hour (SZr-500-1/e) revealed a similar surficial micrograph (Fig. 5.13)  

         

 
Figure 5.12: (a) Results of the surface microstructural analysis of the SZr-500-4/s via 

SEM and (b) surficial elemental composition of the SZr-500-4/s via EDX analysis 

  

   

 
Figure 5.13: (a) Results of the surface microstructural analysis of the SZr-500-1/e (15 

min) via SEM and (b) surficial elemental composition of the SZr-500-1/e (15 min) via 

EDX analysis 

 
Fig. 5.14(a) presents the surface microstructure (size and shape of topographic features) 

of S/Zr-Ti/500/e catalyst. Calcination incorporated and stabilized the titanium oxide into 

crystal lattices of zirconium oxide structure. Fig. 5.14(b) presents a cross-sectional 

surficial composition and distribution of elements on SZr-Ti-500/e via EDX analysis. 

However, the micrograph of the catalyst prepared with sufficient acid revealed more 

dispersed surficial metal elements (Figure 5.15a). Expectedly, micrograph representing 

SZr-Ti-Yb-500-4/s displayed a somewhat amorphous phase (Fig 5.16a).   
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Figure 5.14: (a) Results of the surface microstructural analysis of the SZr-Ti-500/e (15 

min) via SEM and (b) surficial elemental composition of the SZr-Ti-500/e via EDX 

analysis 

 

 
Figure 5.15: (a) Results of the surface microstructural analysis of the SZr-Ti-500/s (15 

min) via SEM and (b) surficial elemental composition of the SZr-Ti-500/s via EDX 

analysis 

 
      

 
Figure 5.16: (a) Results of the surface microstructural analysis of the SZr-Ti-Yb/500-

4/s via SEM and (b) surficial elemental composition of the SZr-Ti-Yb/500-4/s via EDX 
analysis 

  

As expected, the differences between the micrographs of SZr-500-5/7 (Figure 5.17a) and 

SZr-500-5/7R (Figure 5.18a) were hardly noticeable. Intriguingly however, the surficial 
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structures of SZr-500-5/14 and that of SZr-500-5/10 (Figure 5.19a) were markedly 

dissimilar.   

 

      

  
Figure 5.17: (a) Results of the surface microstructural analysis of the SZr-500-5/7 via 

SEM and (b) surficial elemental composition of the SZr-500-5/7 via EDX analysis 

   

     

  
Figure 5.18: (a) Results of the surface microstructural analysis of the SZr-500-5/7R via 

SEM and (b) surficial elemental composition of the SZr-500-5/7R via EDX analysis  
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Figure 5.19: (a) Results of the surface microstructural analysis of the SZr-500-5/10 via 

SEM and (b) surficial elemental composition of the SZr-500-5/10 via EDX analysis 

 

5.4.3 Ammonia temperature-programmed desorption 

Impregnating zirconium with Ti and Yb as described in Section 5.3 above aimed at 

synthesizing catalytically active materials. The acid strength of the SZ was 

experimentally investigated by temperature-programmed ammonia desorption (NH3-

TPD) shows representative NH3-TPD profiles of some of the SZ calcined at 500 to 600 

°C. A low-temperature desorption peak with a maximum around 400 °C was detected. 

Except for SZr-Ti-Yb-500-4/s, the NH3-TPD thermograms revealed flat and broad NH3 

desorption peaks. These indicate the presence of broad acid sites distribution on the 

synthesized catalysts. The shapes of the NH3-TPD profiles were consistent with those 

reported for comparable mesoporous zirconium-titanium oxide nanospheres (Rezaei et 

al., 2007 and 2008; Guan et al., 2013). All synthesized materials except SZr-Ti-Yb-500-

4/s, exhibited predominantly weak Lewis acids property (Barthos et al., 1996) because 

Brønsted sites are desorbed at temperatures higher than 400 °C (Zou and Lin, 2004; Das 

et al., 2003). These authors assigned broad peaks at temperatures below 600 °C as a 

conglomerate of overlapping component peaks.  
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The peaks may include ammonia desorption from bound strong Lewis acid sites, NH4
+ 

ions decomposition and those released from weak Lewis acid sites. The latter desorption 

may also include coordinately unsaturated titanium and zirconium ions. The low-

temperature peak desorption of bulk titanium oxide is assigned to the weak support 

interaction which corroborated report by (Mile et al., 1990; Manríquez et al., 2004). 

However, SZr-Ti-Yb-500-4/s generated strong Lewis and Brønsted acidity from its 

sulfate groups (Figure 5.20). Evidently, this material possessed more acid sites than the 

other materials because of its available protons for donation. Table 5.2 presents the 

strength of the acid sites calculated from the ammonia thermodesorption curves.   

 

 
Figure 5.20: NH3-temperature-programmed desorption profiles for the synthesized 

catalysts. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

50 150 250 350 450 550 650

T
C

D
 S

ig
n

a
l 

(a
.u

.)

Temperature (°C)

SZr-500-4/e

SZr-500-4/s

SZr-500-1/e

SZr-Ti-500-4/e"

SZr-Ti-500-4/s

SZr-Ti-Yb-500-4/s

SZr-500-5/7

SZr-500-5/7R



132 
 

5.4.4 Activity of mesoporous SZ catalysts in transesterifying high FFA-containing 

feedstock 

It is instructive to note that impregnating sulfate onto zirconium oxide produces acidic 

solid catalysts. The high conversions (Figures 5.21) displayed by the synthesized 

materials reflect the role of this incorporation. This is despite the moderate SBET values of 

the synthesized catalysts (Table 5.2). The study attributed acidity of the SZ to the SO�
�� 

ions on surface acid sites of the materials. This further affirmed the presence of sulfate 

active sites within the surface structure of the catalysts as reported by Hino et al., (2006). 

However, the zirconia support provided the essential acid sites (Viinikainen et al., 2009). 

It is therefore plausible to assert that acidity of materials synthesized in this study have 

direct correlation to surface hydroxyl groups. Soaking for the same period (15 min) in 

excess 0.5-M H2SO4 led to a decrease in acidity from (70 to 50) x 10-3 mmol/g and 

average pore diameter from about 29 to 25 nm.  

 

However, the SBET remained essentially unaffected at 8.33 m2/g for sample (SZr-Ti-500-

4/e) prepared in excess acid and 8.12 m2/g for SZr-Ti-500-4/s synthesized in sufficient 

0.5-M H2SO4. Similarly, both materials exhibited negligible change in pore volumes 

(Table 5.2). Expectedly, a TG molecule requires a critical diameter or the smallest access 

cylinder of 2 to 4 nm (Kiss et al., 2007). Srilatha et al. (2011), reported severe internal 

diffusion resistance while (López, Goodwin, Bruce, & Lotero, 2005) obtained 57% 

conversion from SZ with SBET of 134.4 ± 5.3 m2/g.  

 

Premised on underlying difficulty of TG molecules to access inner pores of the catalysts, 

it is plausible to assert that amount and dispersion of active sites, which are reflective of 

acidity, are responsible for transesterification activity reported in this study. Furthermore, 

variation in titanium loading by an order of magnitude did not have significant effect on 
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the acid site density. These findings agreed with those reported by Viinikainen et al. 

(2009). Incidentally, SBET increases with aging period (Table 5.2, Figure 5.8). This 

ensures consequent stabilization and high dispersion of the nano-particles into tetragonal 

phase. Hence, the observed lower sintering and coking from the catalysts despite their 

low specific surface area.  

 

 

Figure 5.12: Different activity of SZ employed at 200 °C for 5 h (1 = Unsulfated Zr; 2 

= SZr-500-4/e; 3 = SZr-500-4/s; 4 = SZr-500-1/e; 5 = SZr-Ti-500-4/e; 6 = SZr-Ti-500-

4/s; 7 = SZr-Ti-Yb-500-4/s; 8 = SZr-500-5/7; 9 = SZr-500-5/7R, 10 = Zr-500-5/14, 11 = 

SZr-500-5/10) 

 

Though all the samples exhibited good performances when evaluated for 

transesterification of UFO (Figure 5.21), SZr-Ti-Yb/500-4/s displayed higher activity 

compared to others. We ascribed this to its superior acidity. However, interaction between 

the tetragonal phase of the zirconia support (facilitated by highly dispersed nanoparticles) 

and higher mesopores determines the acidity and activity of the SZ. Further, we attributed 

the high acid-catalyzed activity of the other catalysts to a combination of acidity and the 

dominant presence of tetragonal phase as shown by the XRD patterns. This indicates that 
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monoclinic phase does not favor transesterification of UFO as much as tetragonal phase 

of the evaluated materials. This is in consonance with the report of Ramu, et al. (2004).  

 

Interestingly, the presence of ytterbium facilitated higher specific surface area and acidic 

sites on the catalysts. However, loading titanium onto zirconia decreases the density of the 

surface acid sites. Thus, the activity of SZr-Ti-500-1/e, SZr-Ti-500-4/e, and SZr-Ti-500-

4/s were comparatively lower than were obtainable from the other catalysts. The difference 

in chemical composition of the catalytic materials plausibly explains the significant 

variations in textural and catalytic activities. Incidentally, SZr-Ti-500-1/e displayed the 

lowest acid density. Thus, for instance, the SBET of SZr-500-5/10 was 15.05 m2/g (97.98% 

conversion) while SZr-500-1/e with 3.84 m2/g SBET value had a lower conversion of 

85.55%. The catalysts were regenerated by decantation, methanol washing, drying, and 

calcining. Expectedly, compared to the others the catalyst, SZr-Ti-Yb-500-4/s retained 

most of its activity and displayed better performance after 5 recycles (Figure 5.22). 

Evidently, Yb-doped SZ ensured the high stability, and good reusability of the synthesized 

catalyst. This is despite the presence of Ti, which decreases the surface acid sites density. 

However, as the surface loses its sulfate ions after several cycles, deactivation sets in on 

the materials.  

 

Transforming feedstocks of low economic value into high yield FAMEs with increased 

desired product selectivity, and enhanced recycling and reusability opportunities 

demonstrates the advantage of solid acid catalysts. Incidentally, the strategy of doping SZ 

with Yb proves economical. It employed moderate reaction conditions such as relatively 

low catalyst loading, and a 5:1 alcohol-to-oil ratio to convert more than 99% high FFA 

feedstock. This is interesting when compared with other SZ solid acid catalysts employed 

under similar condition and feedstock. 
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Figure 5.12: Performance of regenerated SZ employed at 200 °C for 5 h (1 = 
Unsulfated Zr; 2 = SZr-500-4/e; 3 = SZr-500-4/s; 4 = SZr-500-1/e; 5 = SZr-Ti-500-4/e; 
6 = SZr-Ti-500-4/s; 7 = SZr-Ti-Yb-500-4/s; 8 = SZr-500-5/7; 9 = SZr-500-5/7R, 10 = 

Zr-500-5/14, 11 = SZr-500-5/10) 
 

For instance, Park et al. (2008), obtained 70% conversion with WO3/ZrO2 (SBET = 40 

m2/g; pore size = 11 nm). Despite the high SBET of 258 m2/g, Peng et al. (2008), achieved 

90% conversion with SZr-Ti-Si. This was achieved with a 9:1 methanol-to-oil molar ratio 

at 200 °C for 4 h and a catalyst loading of 3 wt.%. Conversely, it is noteworthy to mention 

the result by Feng et al. (2010). The authors achieved 90% conversion cation exchange 

resin (SBET = 77 m2/g; pore size = 56 nm) under a low temperature of 64 °C from FFA-

containing feedstock. However, the study employed 20 wt.% catalyst after 4 h and 6:1 

methanol-to-oil molar ratio.  

 

5.5    Conclusion  

In summary, this study demonstrated a facile route for synthesizing efficient solid acid 

catalysts for transesterifying UFO. Doping SZ with ytterbium is a key feature of this 

synthesis strategy. The process stabilizes the mesostructured channels and 

crystallographic phase, and produces high amount and good dispersion of the active sites 

that ensures higher catalytic performance. The excellent results obtained from this study 
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highlight the need for further research in this area. Other significant findings include: (1) 

slight modification in catalyst preparation condition yields different catalytic activity. 

Such modifications affected the domain size and lattice strain of the material. (2) The 

observed low specific surface area was probably due to shorter precipitating period. 

However, the encouraging conversions obtained suggest that activity for 

transesterification does not depend solely on textural property of the catalytic material. 

(3) Amount and dispersion of active sites, which are reflective of acidity of SZ, play 

significant role in facilitating higher conversion of TG into biodiesel. (4) The study also 

showed how to achieve a flexibility of properties from unlimited number of possible 

manipulations from one catalyst precursor. These observations highlight the possibility 

of improving on the reported formulations to facilitate higher intrinsic efficiency in 

biodiesel production.   
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CHAPTER 6: FACILE SYNTHESIS OF SULFATED MESOPOROUS Zr/ZSM-5 

WITH IMPROVED BRØNSTED ACIDITY AND SUPERIOR ACTIVITY OVER 

SZr/Ag, SZr/Ti, AND SZr/W IN TRANSFORMING USED FRYING OIL INTO 

BIODIESEL 

 

This chapter describes the synthesis and characterization of a new sulfated Zr/ZSM-5 

with improved Brønsted acidity. It compared its activity with SZr/Ag, SZr/Ti, and SZr/W 

for the transesterification of used frying oil to biodiesel. This was presented as Article 4: 

Facile synthesis of sulfated mesoporous Zr/ZSM-5 with improved Brønsted acidity and 

superior activity over SZr/Ag, SZr/Ti, and SZr/W in transforming UFO into biodiesel. 

This study investigated an innovative approach of enhancing acidity of SZ composite 

catalysts that could withstand unfavorable constituents such as high percentage of high 

free fatty acid. This was premised on the basis of the interplay between metal function of 

modified oxo-anions and pore structure of zeolites and its strong acidic properties. The 

Journal of Taiwan Institute of Chemical Engineers has accepted this study for publication 

as a research article. 

 

6.1  Introduction 

As the price of Brent oil plummeted below USD40/barrel in the third quarter of 2015, the 

prominence, and sustenance of biofuels in general, and biodiesel in particular, faces 

greater challenges. The heavily footed subsidy that fossil fuels enjoy from governmental 

agencies exacerbates this problem further. Consequently, for biodiesel to maintain 

its indomitability as sustainable energy alternative beyond the 21st century, urgent and 

concerted efforts must be initiated from reactor engineering and catalysis (Hassan, Sani, 

Abdul Aziz, Sulaiman, & Daud, 2015). From materials chemistry perspective, many 

studies have investigated the performances of a wide range of bifunctional solid acids 
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catalysts such as WO3/ZrO2 (Guldhe et al., 2014), WO3/SnO2 (Xie and Wang, 2013), Mo-

Mn/Al2O3-15 wt% MgO (Farooq et al., 2013), WO3/ZrO2 (Furuta et al., 2004; Park et al., 

2008), and SO�
��/TiO (Refaat, 2011) designed to incorporate synergetic effect in catalysis. 

However, despite the capability of converting different feedstock oils to FAME, there is 

need for improvements.  

 

For instance, WO3/SnO2 required 43 methanol-to-oil ratio to achieve a 78% yield (Xie & 

Wang, 2013), WO3/ZrO2 gave ~ 100% conversion after 20 h at 200 °C (Furuta et al., 

2004) and 70% conversion from used frying oil, UFO (Park et al., 2008). Similarly, the 

difficulty in synthesis and high production cost of SO�
��/TiO hinder its industrial 

application (Refaat, 2011). WO3/ZrO2 converted more than 90% soybean oil during 

transesterification at 250 °C (Furuta et al., 2004) while SO�
��/TiO, SO�

��/ZrO and 

WO3/ZrO2 converted 100, 99, and 94% n-octanoic acid respectively during esterification 

at 175 °C. In addition, longer reaction time (2047 min) was necessary for obtaining 50% 

conversion with tungstated zirconia with the acid site densities exhibiting ca. 95% of the 

original values. The long duration promoted adsorption of intermediates and products 

with subsequent deactivation. 

 

Conversely, some results obtained from transesterification with zeolites were not as 

encouraging. For instance, despite high alcohol-to-oil molar ratio (14.5:1), Shu et al. 

(2007), reported only 48.9 wt.% conversion into fatty acid methyl esters, FAME after 4 h 

with zeolite beta modified with La3+. Equally, Mordenite (HMOR) and H+ ion exchanged 

ZSM-5 (HMFI) zeolite catalysts (Chung and Park, 2009) converted 80% of oleic acid 

with > 0.06 mmol/g acid amount to biodiesel. High reaction temperature of 500 °C was 

necessary to achieve ca. 100% conversion over H-ZSM5 [SBET = 377 m2/g, acidity density 

= 382 µmol/gcat] after 20 min (Danuthai et al., 2009). Consequently, Kiss, et al. (2006), 
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posited that lower catalytic activity of zeolites is due to the small pores that limits 

diffusion of large fatty acid molecules. However, (Dasari et al., 2003) obtained 95% 

conversion without catalyst, albeit at high pressures of 45 – 65 MPa and high 

temperatures of 350 – 500°C. Nonetheless, (Sasidharan and Kumar, 2004) were able to 

obtain 85% and 80% conversion from beta-keto esters with solid acid La-Beta and H-Y 

zeolites respectively. Evidently, the nature of the oil employed by (Sasidharan and 

Kumar, 2004) also contributed to the encouraging results. Moreover, the high-silica in 

Zeolite Socony Mobil-5, ZSM-5 [Mordenite framework inverted (MFI) type and a 

member of the pentasil family] gives it special properties. Depending on the Si/Al ratio, 

ZSM-5 is moderately hydrophilic to highly hydrophobic unlike types A, X and Y zeolites, 

which are very hydrophilic. Another important factor that ensures this desirable property 

is the type and number of cations compensating the lattice charge. Further, the hydrogen 

form is obtainable without losing significant Al directly via zeolite exchange in dilute 

acid because of its acid (down to pH = 3) and temperature (> 1000°C) stability.  

 

Further, the acidity of crystalline aluminosilicate zeolites may be fine-tuned by 

appropriate manipulation of SiO2/Al2O3 molar ratio. Such manipulations have significant 

effect on the activity (i.e. the hydrophobicity and acidity of the zeolite), performance, and 

its affinity for water. Interestingly, the structure of ZSM-5 also allows the introduction of 

alternative T-atoms such B, Be, Al, Si, Ga, Fe, Ge, etc. during synthesis (Breck, 1974). 

The nature of positive simple counter-ions from these T-atoms also determines the acidic 

catalytic power of the zeolite. Thus, its catalytic properties are amenable to adjustments 

for the desired catalytic process, which include interchanging other elements within the 

framework constituents, or by modifying the zeolitic material. These intriguing attributes 

of ZSM-5 explain its acceptability as efficient catalytic material with wide range of 

applications in the laboratory as well as the industry. However, these advantages do come 
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with attendant problems. These include deactivation and a drop in conversion from 

reaction of organic species catalyzed by zeolite with lower Si/Al ratio, which causes 

higher affinity towards water.  

 

However, despite the numerous encouraging results highlighted above, attendant 

viscosity and poor miscibility of light alcohols with low-grade oil feedstocks hampers the 

use of new heterogeneous catalysts. This explains why to date, the wide range of 

commercially available polymeric and inorganic solid acids have lower activity when 

compared with their base-catalyzed routes (Lotero et al., 2005). This necessitates the 

application of higher reaction temperatures to achieve appreciable conversions. Other 

limitations include rapid on-stream deactivation because of impurities in high 

concentrations, such as moisture, acid, and heavy metals.  

 

Aside these arduous challenges, regional availability is another contending issue that 

determines the quest and cost for utilizing non-edible, low grade oil sources. 

Notwithstanding their comparable lower activity, solid acids are less susceptible to FFA 

contaminants common with unrefined feedstocks than their solid base equivalents (Lotero 

et al., 2005). Moreover, they are able to simultaneously esterify free fatty acids, FFA into 

esters and transesterify triglycerides, TG into FAME without pretreatment, and 

saponification; thus minimizing the processing steps in biodiesel production 

(Narasimharao et al., 2007; Suwannakarn, et al., 2009; Kouzu, et al., 2011). Intriguingly, 

zirconium is active at lower temperatures than zeolite catalysts, while zeolite is generally 

more acidic than zirconia. Notwithstanding this and the extensive research on the factors 

affecting the acidity of sulfated zirconia, SZr there is no information in open literature 

that concerns biodiesel production with mesoporous SZr dispersed over ZSM-5. 

Consequently, the present contribution aims to demonstrate the superiority of mesoporous 
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sulfated zirconia comprised of Brønsted acid sites dispersed on ZSM-5 over Ag, Ti and 

W supports. To achieve this, the present study investigated an innovative approach of 

enhancing acidity of sulfated, robust bifunctional composite catalysts that could 

withstand unfavorable constituents highlighted above. This was premised on the basis of 

the interplay between metal function of modified oxo-anions and pore structure of zeolites 

and its strong acidic properties.  

 

6.2 Literature review 

Seemingly, depending on which factors one considers, the debate surrounding the super 

acidity or otherwise of SZ is unending. This is because it is not possible to exclude the 

presence of other planes or defects sites from the structure. However, the complete 

dissociation of strong H2SO4 on a strong zirconia basic surface to produce sulfate ions 

should not be surprising. 

 

6.2.1 Superacidity of SZ and other modified aluminosilicate catalysts 

Consequently, deprotonation will always occur within accessible basic sites, producing 

the very strong surface acids (hydroxyl groups) on the surface of the zirconia. Yet, Haase 

and Sauer (1998) showed from the Brønsted site deprotonation energies that zeolite is 

more acidic than these sites. This was the reason Fărcaşiu et al. (1996) concluded that the 

exceptional catalytic activity of SZ stems from its redox properties rather than its acidity. 

Thus, the debate persists. On the other hand, Ward and Ko (1994), proposed structures of 

both Brønsted and Lewis acid sites on sulfated zirconia as shown in Figure 6.1.  
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Figure 6.1: Presence of Bronsted and Lewis acid sites on SZ (Ward and Ko, 1994). 

 

Wang and Mou (2008), classified SZ species into three:  

1) Based on the number of directly bonded oxygen, Lewis acid sites with most 

electron deficiency exhibit the highest binding energy. These are species type-1.  

2) These species have middle value of binding energies similar to the binding energy 

of Zr-O-Zr because they are located at Zr center bonded to a sulfate or Al-O-. 

They are termed as species type-2.  

3) The species type-3 possesses lesser binding energy. Consequently, Brønsted acid 

sites Zr-OH are species 3 because of the presence of acidic H in Zr-OH. Thus, 

neighboring Zr-OH and sulfate groups serve as good points for the formation of 

Brønsted acid sites. 

 

Therefore, the sum of specie 2 and 3 determines the amount of Brønsted acid sites on the 

surface. This is because alumina loading decreases the ratio of Lewis acid to Brønsted 

acid sites as Al substitution of Zr-OH sites eliminates Lewis acid sites as well as generates 

stronger Al-OH Brønsted acid sites. 
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A threefold consequence is possible with alumina addition: 

(1) Al-content facilitates only moderate increase in the amount of surface acid as 

revealed from NH3-TPD results. This implies that change of acidic properties 

causes the increased activity. 

(2) Type of acidity distribution changed despite the moderate increase on the amount 

and strength of acidity upon Al-loading. For instance, the formation of more 

Brønsted acid sites because of the elimination of Lewis acids by Al3+ and surface 

binding of Al to zirconia enhances the activity of catalysts (Kim et al., 2006). 

Similarly, Cerrato et al. (2006), independently, derived the same conclusion on 

Ga-promoted sulfated zirconia system. 

(3) High Al-loading affects the degree of dispersion of zirconia. Highly dispersed 

zirconia monolayer may be less active in catalysis. 

 

The weakening of the O–H bond by the neighboring sulfate group produces Brønsted acid 

sites on sulfated zirconia-alumina, SZA. Contrarily, the electron-withdrawing by the 

neighboring sulfate group, which coordinates deficient Zr(IV) center produces Lewis acid 

sites (Ward and Ko, 1994). The summary of the foregoing observations is that activity 

enhances as sulfur content increases because of the initial Al-loading. Nevertheless, the 

initial favorable formation of carbenium ions (high activity) with increased Brønsted acid 

sites formation could turn out unfavourable with extensive Al-loading. This is because 

excessive dispersion of monolayer zirconia reduces the activity to a lesser value compared 

to the sulfated tetragonal zirconia nanoparticles (Wang and Mou, 2005). It is therefore 

worthy to mention the findings of Kim et al. (2006). The authors found that average 

residence time of the reaction intermediate increases significantly upon adding Al with 

consequent increase in activity. Zalewski et al. (1999) posited the possibility that Al-

loading causes surface defects, which facilitates the adsorption of butane intermediates. 
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Furthermore, the hydrogen environment enhances the catalytic stability while carbene 

fragments accumulating on the surface aids catalyst deactivation. The implication of this 

is the need for adjusting the hydrogen partial pressure to achieve optimum stability. 

 

6.2.3 Sulfated zirconia supported on zeolite – the way forward? 

Sulfated zirconia (���
��/ZrO2, abbreviated as SZ) is gaining considerable attention more 

than most other solid acid catalysts. This is because the activity and selectivity of SZ in 

transforming hydrocarbons at low-temperature is higher than what is obtainable from its 

counterparts (Song and Sayari, 1996; Davis et al., 1994). Further, sulfated zirconia is 

more environmental friendly compared to liquid acid catalysts such as HF and H2SO4. 

However, controlling the textural properties of SZ synthesized via conventional routes is 

difficult. This explains the observation by (Corma et al., 1994) that surface area of active 

SZ in the tetragonal crystalline phase is less than 100 m2/g. Further, available specific 

surface area and degree of surface sulfation limit the concentration and number of active 

sites of SZ. Moreover, the degree of dispersion is one of the most important factor that 

affects the performance of the solid acid catalysts. This is because it affects the density 

and number of active sites on the catalytic material. Large surface area on ordered 

mesoporous materials facilitates the dispersion and decomposition of a large amount of 

zirconium sulfate to form tetragonal sulfated zirconia nanoparticles. Consequently, the 

nanochannels of ZSM-5 could restrict large zirconia nanoparticles. Therefore, 

synthesizing ZSM-5 supported on SZ without stearic limitation is a feat worth exploring. 

 

6.3 Materials and methods 

The following describes the easy, and undemanding catalyst preparation employed for 

this study. Sigma-Aldrich, Germany supplied all chemical reagents. To ensure 

reproducibility, all sample preparations were carried out in replicates. 
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6.3.1  Catalyst preparation 

A required amount of ammonium hydroxide solution precipitated the active constituents 

from zirconium oxynitrate hydrate (99%) at pH of 10 under vigorous stirring. 

Subsequently, the filtrate was washed with de-ionized water to minimize the nitrate ion 

concentration. For comparison and optimization, about 2.5 to 25% each of AgNO3 (≥ 

99.0%), titanium nitride (TiN; < 3 μm), ammonium metatungstate hydrate, 

(NH4)6H2W12O40·xH2O (99.99% trace metals basis), and ZSM-5 (Si/Al = 20.01) were 

separately soaked in the precipitated zirconium solution at ambient conditions for 4 h. 

The solution contained exact amount of liquid which filled the pore volume of the 

support. This facilitated good contact (impregnation) between the metal precursors and 

the porous support. The supernatant was decanted after proper saturation and infusion of 

the metal elements. Thereafter, sufficient (not in excess) 0.5-M H2SO4 was added to the 

impregnated mixed oxides, and kept at room temperature to ensure the incorporation of 

appropriate doubly charged sulfate oxo-anions. After drying in an oven at 120 °C for 24 

h, the samples were calcined separately at 550 °C for 4 h. This process was optimized and 

catalytic materials were designated SZr/Ag, SZr/Ti, SZr/W, and SZr/ZSM-5. The 

following discussion would mainly be regarding these four samples, and in some 

instances, in comparison with the ZSM-5. 

 

6.3.2  Catalyst characterization 

Field emission scanning electron microscopy (FE-SEM) FEI QUANTATM 450 FEG type 

2033/14 (Czech Republic) unit with 30 kV accelerating voltage analyzed the surface 

morphology and topology. An energy dispersive X-ray spectrometer (EDX) from the 

same unit revealed the surface elemental composition variation of the catalysts. The 

samples were evenly distributed on a double sided, black carbon tape glued on an 

aluminum stub and put under vacuum for 10 min prior to the analysis. Similarly, powder 
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XRD and BET analyses elucidated the structural and textural properties of the catalysts 

respectively. Phillips X’pert diffractometer (The Netherlands) with CuKα radiation (λ= 

1.54056 Å) at a scanning speed of 0.05° s-1 within 2θ range of 5 to 70° at 40 mA and 40 

kV analyzed the XRD patterns, the crystal phase and structure of the samples. A 

Micromeritics TriStar II (USA) with accelerated surface area porosity (ASAP) 3020 at -

196.15 °C in liquid nitrogen, determine the specific surface area, pore size and the pore 

volume of the catalytic materials. Degassing the catalysts at 120 °C for 3 h under a 

vacuum eliminated any physisorbed volatiles and impurities. These were kept in liquid 

nitrogen temperature for nitrogen adsorption.  

 

An AutoChem 2920 (Micromeritics) evaluated the acid density profiles via ammonia 

temperature-programmed desorption (NH3-TPD). Calibrating the equipment with 10% 

NH3 in He before the analysis guarantees ascertaining the exact amount of gas consumed 

during the experiment. For each analysis, He flow (20 mL/min) for 1 h at 700 °C degasses 

about 0.10 g of the synthesized material housed in a quartz U-tube. After cooling to 80 

°C, 10% NH3 in He flowing at 20 mL/min for 40 min saturates the sample. A steady 

temperature ramp of 120 °C ensured proper NH3 adsorption. Changing the gas flow to 

He at 20 mL/min for 30 min over the catalyst removed the physisorbed NH3. Elevating 

the temperature ramp from 80 °C to 700 °C at 10 °C/min under flowing He at 20 mL/min 

after the baseline stabilizes produces distinct TPD profile. Similarly, the TCD detector 

revealed the amount of NH3 consumed, which determines the acid strength of the 

Brønsted and Lewis acid sites on the catalysts. IR spectra of adsorbed pyridine were taken 

on a Bruker Fourier transform infrared (FT-IR) Tensor 27 spectrometer (Germany). The 

apparatus has a spectral range of 7500 to 370 cm-1 with more than 1 cm-1 apodized 

resolution and a standard ATr beam splitter. The samples were outgassed at 300 °C for 4 
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h under vacuum, and cooled to room temperature. Pyridine was then admitted into the 

samples and the IR spectra of adsorbed pyridine were recorded at room temperature. 

 

6.3.3  Production of fatty acid methyl esters 

Heating the catalysts at 200 °C for 1 h before the reaction ensured activation by 

evacuating any adsorbed water and other volatiles. Thereafter, the catalytic activity of the 

catalysts in simultaneous esterification and transesterification of UFO (FFA = 48 wt.%) 

with methanol was determined in a 100 mL autoclave stainless-steel reactor supplied by 

AmAr Equipment Pvt., Ltd. (Mumbai). Constant stirring at 550 rpm ensured good contact 

between the catalyst and the reaction mixture. A water bath attached to the autoclave 

maintained the reaction temperature in the range of 190 – 200 °C during the reaction. 

Preliminary optimization showed that a 5:1 methanol-to-oil molar ratio and 2 wt.% 

catalyst loading were optimal for the reaction. At the end of the 5 h reaction time, it took 

more than 6 h for the product [ester or oil phase (biodiesel) and the upper aqueous phase 

(glycerol)] to settle into two distinct layers because of the initial translucent nature of 

biodiesel. The two distinct phases were separated by simple decanting. Centrifugation, 

water washing, and drying with anhydrous sodium sulfate facilitated the recovery of the 

FAME by purifying it from excess methanol and other impurities such as residual 

catalyst. 

 

The study employed GC-MS (Serial # CN10946045; Model 7890A; US), and EN 

14103:2003 (E) analytical method in determining methyl ester contents with 100-mg neat 

mixture (Supelco® No. 18919) containing 37 components (C4 to C24 FAMEs; 2 to 4% 

relative concentration) as reference standard. This was dissolved in 99% heptane at 0.01 

to 0.10% (w/v) concentration. Then, 1 mL hexane place in vials with screw caps having 

PTFE-faced septa dissolves an accurately weighed 10 mg sample, prior to the addition of 
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10 µL of 2 N KOH in methanol. After vortex for 30 s, and centrifugation, one µL of the 

supernatant was transferred into TSP micro vial. The GC analyzer has the following 

working conditions: DB 23 column (L = 0.30 mm × ID = 0.32 mm × 0.25 µm film 

thickness of 5% diphenyl, 95% dimethyl polysilanoxane) and methyl heptadecanoate, C17 

(99% minimum purity; 14 min retention time) as the internal standard; 210 °C injection 

temperature and helium as carrier gas. Equation 6.1 facilitated the determination of the 

ester content (C), expressed as a mass fraction in percentage.   

  

∁ =  
(∑ �) � ���

���
 ×  

��� × ���

�
 ×  100%    (6.1) 

 

Where: ∑A is the total peak area from the methyl ester in C14 to that in C24:1;  

AE1 is the peak area corresponding to methyl heptadecanoate; 

CE1 is the concentration of the methyl heptadecanoate, in mg/mL; 

VE1 is the volume of the methyl heptadecanoate, in mL; 

m is the mass of the sample, in mg. 

 

6.4 Results and discussion 

The following discussion concerns the various characterization such as NH3-TPD, IR 

spectroscopy, and structural analyses performed on the catalysts to ascertain which 

properties have significant influence in converting the UFO into FAMEs. 

 

6.4.1  Results of catalyst characterization 

6.4.1.1   Surface acid density measurement via NH3-TPD 

Temperature-programmed ammonia desorption, NH3-TPD revealed information 

regarding the distribution and type of acid sites on the catalysts (Table 1). Figures 1(a) 

and 1(b) show representative NH3-TPD profiles of the parent ZSM-5, and SZr/W, 
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SZr/Ag, and SZr/Ti modified catalysts calcined at 550 °C for 4 h. We classified the acid 

sites corresponding to base desorption at 100-240 °C, 240-340 °C, and 340-500 °C as 

weak, intermediate, and strong acid sites, respectively. The peak pattern of modified 

SZr/ZSM-5 reveals similar profile as the parent ZSM-5. Expectedly, the parent ZSM-5 

contained 5-fold more acid number than the composite SZr/ZSM-5, and even more than 

the other mixed oxides. The probable explanation for the significant decrease in the 

acidity of the SZr/ZSM-5 is the combining effect of the hydroxyl Al(OH)Si bridging 

groups with ZrO2 species (Kaeding & Butter, 1980). However, SZr/ZSM-5 exhibited 

higher acidity than the other materials because of its available protons for donation. 

Notably, SZr/W generated strong Brønsted and Lewis acidity because of the extensive 

polymerization of W species from its sulfate groups. This explains the difference between 

SZr/W and SZr/Ag, SZr/Ti. However, SZr/W, SZr/Ag, and SZr/Ti have comparable 

acidity. Except for SZr/Ti (flat and broad), the NH3-TPD curves revealed sharp NH3 

desorption peaks. This indicated the presence of broad acid sites distribution on the 

synthesized catalysts. The shapes of the NH3-TPD profiles were consistent with those 

reported for comparable mesoporous zirconium titanium oxide nanospheres (Zou and 

Lin, 2004; Rezaei et al., 2007 and 2008; Guan et al., 2013). 

 

Table 6.1: Textural properties and acidity of synthesized sulfated zirconia revealed by 
BET and NH3-TPD methods respectively. 

Sample ID 
Surface area 

(m2/g) 
Pore vol. 
(cm3/g) 

Pore size 

(nm) 
Acidity 

(mmol/g) 
ZSM-5 385.20 0.154 3.04 3.71176 
SZr/ZSM-5 107.25 0.116 5.10 0.75187 
SZr/Ag 15.97 0.080 20.11 0.13572 
SZr/Ti 12.90 0.046 14.53 0.08604 
SZr/W  72.13 0.097 5.37 0.04783 

 

The source compounds that supply aluminum during the synthesis of zeolites determine 

the acidity of mesoporous zeolites. Similarly, zeolite type, Si/A1 ratio, and metal loading 

have significant effect on both total acidity (mmol/g) and the acid strength distribution of 
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the catalyst. This explains the high acidity (3.71 mmol/g) of the source ZSM-5 employed 

in the present study. Incidentally, (Čejka, et al., 1995) reported higher acidity of 4.99 

mmol/g for H-ZSM-5 (Si/A1 ratio = 36; average crystal size = 6 µm). Further, (Song et 

al., 1996) obtained similar total acidity (2.42, 1.53, 2.90, and 3.12 mmol/g) from [sodium 

aluminate (Si/A1 ratio = 49), H-mordenite (Si/A1 ratio = 21.0), HY-2 (Si/A1 ratio = 5.0), 

and HY-2 (Si/A1 ratio = 5.0)] respectively. Markedly, all synthesized materials, except 

SZr/Ag and SZr/W, predominantly exhibited the weak Lewis acid property. This is 

because Brønsted sites get desorbed at temperatures higher than 400 °C. Zou and Lin 

(2013), and Das et al., (2003) assigned broad peaks at temperatures below 600 °C to a 

conglomerate of overlapping component peaks. These peaks may include ammonia 

desorption from bound strong Lewis acid sites, NH4
+ ions decomposition and those 

released from weak Lewis acid sites. The latter desorption may also include coordinately 

unsaturated titanium and zirconium ions.  

 

A notable increase in the number of acid sites was observed in the mixed oxide catalysts 

compared to single oxide SZr. The low-temperature peak desorption of bulk titanium 

oxide is representative of the weak support interaction, which corroborated a report by 

Manríquez et al., 2004 that mixed oxides generate more acid sites than single oxides. This 

is premised on one of two mechanisms; (a) zirconium atoms substituting some of the 

oxide atoms or (b) large dispersion effect on the surface of the mixed oxide by the ZrO2 

or the other oxide. The strength of the acid site density was in the following order: ZSM-

5 > SZr/ZSM-5 » SZr/Ag > SZr/Ti > SZr/W. This sequence highlights the natural acidity 

of ZSM-5 in comparison to the generated Brønsted acid sites on the other mixed oxides 

introduced by sulfate anions on the surface of the catalysts. The discussion in the results 

section further illustrated the effect of acid strength on the activity of the simultaneous 

esterification of FFA and transesterification of TG. Mostly, infrared adsorption 
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experiments with basic probe molecules such as ammonia, pyridine, and acetonitrile 

differentiate Brønsted or Lewis acid sites.  

 

 

Figure 6.1: (a) NH3-temperature-programmed desorption profiles for the parent ZSM-5, 

and (b) SZr/Ag, SZr/Ti, SZr/W, SZr/ZSM-5 synthesized catalysts. 

 
 

However, the measurement conditions employed such as desorption temperature, 

determine the results of the analysis. Further, the adsorption of ammonia is not specific 

to Brønsted sites. These highlight the possibility of non-Brønsted sites adsorbing more, 

and hence exhibiting stronger acidity than Brønsted sites. Hence, TPD results are helpful, 

but with careful interpretation of data. Evidently, no single method can give all the details 

of the acidity of solid acid catalyst. For example, (Jacobs and Von Ballmoos, 1982) 

distinguished the Brønsted sites in H-ZSM-5 by a well-defined stretching frequency, 3605 

cm-1 while (Ward, 1969; Angell and Schaffer, 1965) distinguished those in H-Y by 3640 

and 3540 cm-1 stretching. Nonetheless, it is difficult to quantify the concentrations of 

these sites because of the overlapping features in the spectra. Evaluating the concentration 

of the protonated bases in the solid is one way of circumventing this challenge. The 
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characterization of pyridine adsorption by infrared spectroscopy is one most popular 

application of this technique (Parry, 1963). Therefore, this study employed NH3-TPD and 

IR – Spectroscopy of chemisorbed pyridine to get accurate picture about the acidity of 

the synthesized catalysts. 

 

6.4.1.2 Acid density probed by IR – spectroscopy of chemisorbed pyridine 

Pyridine adsorption measured by IR spectroscopy revealed the strength and types of acid 

sites of catalysts. The formation of stoichiometric adsorption complex on the acid sites 

by pyridine makes this acid measurement distinctive. Pyridine accepts proton to form 

pyridinium ion on the Brønsted sites whereas an adduct forms at the Lewis sites by 

donating lone pair of electrons. Partial hydrolysis of some framework aluminum atoms 

occurs after steam treatment at 300 °C to form non-tetrahedral symmetric aluminum 

atoms. These act as strong electron withdrawal centers for the remaining tetrahedral 

framework aluminum atoms that facilitate the formation of stronger Brønsted acids. 

Further, the technique exploits the modification in chemical nature of the adsorbed 

species. Moreover, the pyridine adsorbed on Brønsted sites and Lewis sites have different 

wavenumbers because of difference in bonding nature. The ring stretching vibration at 

ca. 1540 (1515–1565 cm-1) and 1450 cm-1 (1435–1470 cm-1) to protonated pyridine, i.e. 

pyridinium cation (Brønsted acid sites) and coordinated pyridine (Lewis acid sites) 

appear, respectively. Figure 2 presents the acidity distribution (variation of IR bands in 

1400–1700 cm-1 region) of ZSM-5, SZr/ZSM-5, SZr/Ag, SZr/Ti, and SZr/W.  

 

Expectedly, the parent ZSM-5 exhibited stronger sites of both Brønsted and Lewis acids 

than the remaining four samples. The profiles of synthesized catalytic materials reveal 

similar patterns as the parent sample. The trend of the Brønsted acid site strength was 

similar to the one obtained by NH3-TPD in the following order: ZSM-5 > SZr/ZSM-5 > 

SZr/Ti > SZr/Ag > SZr/W. However, the trend was different for the Lewis acid site 
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strength in the following order: ZSM-5 > SZr/ZSM-5 > SZr/Ag > SZr/Ti > SZr/W. The 

three prominent bands in the 1425–1575 region are representative of: (a) the C–C stretch 

at ~1450 cm-1 arising from a coordinatively bonded pyridine complex that designates the 

presence of Lewis sites. (b) The C–C stretching vibration of the pyridinium ion at ~1540 

cm-1 that is typically used for identifying Brønsted sites. (c) The peak at ~1490 cm-1 

formed from the interaction of pyridine species with both Brønsted and Lewis acid sites. 

All the samples exhibited the IR bands due to hydrogen-bonded pyridine at 1447 cm-1, 

but only the parent ZSM-5 and modified SZr/ZSM-5 showed peaks at 1599 cm-1. This is 

because of the difference in the Si/Al ratios of the samples. Similarly, the peaks at 1455 

and 1623 cm-1 exhibited by all the samples indicate pyridine adsorbed on Lewis acid sites, 

while those at 1533 and 1647 cm-1 highlight pyridine adsorbed on Brønsted acid sites. 

Pyridine associated with both Lewis and Brønsted acid sites appear at 1490 cm-1. 

Previously, Jin and Li, 2009; Emeis, 1993 reported similar analysis on the distribution of 

acid sites (Table 6.2). 

 

Table 6.2: Wave number frequencies and extinction coefficients of IR absorption 
spectra designated to typical probe molecules adsorbed on acid sites (Emeis, 1993; 

Suzuki et al., 2007) 

  Brønsted Lewis 

Ammonia 
Frequency (cm-1) 1460 1620 
IR mode δ(NH�

�)asym. δ(NH�)asym. 
Extinction coefficient (ɛ) 14.7 m2 mol-1 2.2 m2 mol-1 

Pyridine  
(C5H5N) 

Frequency (cm-1) 1540 1450 
IR mode Ring stretch (PyH+) Ring stretch (Py) 
Extinction coefficient (ɛ) 0.72 m2 mol-1 2.23 m2 mol-1 

D3-cetonitrile  
(CD3CN) 

Frequency (cm-1) 2297 2325, 2310 

IR mode �(C≡N)-B �(C≡N)-Lstrong, weak 

Extinction coefficient (ɛ) 2.05 cm µmol-1 3.60 cm µmol-1 

  

Evidently, the acidity of the materials determined by NH3-TPD supersedes that of their 

counterparts determined by the pyridine adsorbed IR method. This is plausibly because 

of the differences in the molecular size of the basic probe molecules. Ammonia molecule 

penetrates through more pores because of its smaller molecules than the larger molecules 
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of pyridine (Lu et al., 2003). Table 2 presents a summary of the frequencies and reported 

extinction coefficients assigned to adsorbed species on acid sites. 

 
 

Figure 2. Room-temperature infrared spectra of adsorbed pyridine on ZSM-5, SZr/ZSM-5, 
SZr/Ag, SZr/Ti, and SZr/W after outgassing at 300 °C for 4 h. 

 

6.4.1.3 Powder X-ray diffraction analysis 

The highly crystalline characteristic peaks at 2θ value of 7.87, 8.81, 23.09, 23.86, 24.34, 

29.20 and 29.88 confirmed ZSM-5 support according to the JCPDS Card No. 00-044-

0002 (Pan et al., 2014). The powder X-ray pattern peaks of the ZSM-5 showed typical 

MFI topology, whereas the modified SZr/ZSM-5 patterns indicated retained ZrO2 

crystallinity and novel crystalline phases (Figure 6.2). The loss of intense ZSM-5 peaks 

was due to the effects of acid treatment, ZrO2 and ZSM-5 inter-particle interaction and 

calcination during the synthesis stage as earlier noted. This indicates that ZrO2 species 

were not merely dispersed on the zeolite, but might have replaced some of the alternative 
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T-atoms. This interaction resulted in the almost disappearance of peaks with high 

intensities around 2θ = 7°, 8°, 23° and 24°, and emergence of typical zirconium peaks at 

28°, 30°, 50° and 60°. This further confirmed that ZrO2 particles were not merely 

dispersed but rather, caused changes in the lattice structure of the zeolite. 

 

Figure 6.2: X-ray diffraction patterns for the parent ZSM-5 and the optimized SZr/Ag, 

SZr/Ti, SZr/W, SZr/ZSM-5 catalysts synthesized under the same conditions. 

 

The XRD diffractograms of all the samples revealed a tetragonal-monoclinic phase 

transition. The XRD patterns also showed the significant impact of calcination 

temperature and precursor concentration on the crystal phase and crystallite size. The 

formation of the monoclinic phase (peaks at 2θ = 28.21° and 2θ = 31.51°) because of the 

increase of the crystallite size as function of temperature lowers the content of tetragonal 

phase (2θ = 30°). This is in agreement with the Garvie Theory (Santos et al., 2008). 

Further, except for SZr/Ti, it is evident that characteristic tetragonal peak at 2θ = 30° was 

more prominent than those of the monoclinic phases were. However, the remaining 

monoclinic peaks were more prominent than the reduced tetragonal phases. In addition, 

the intensity of the peaks reflected both adsorption and the amount of phase in the 
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synthesized materials. For instance, the monoclinic phase present on the parent TiN at 2θ 

= 37°, 43°, 62°, 75° and 79° disappeared after the modification with zirconia. Tetragonal 

phase typical of zirconia at 2θ = 24°, 28°, 34°, and 50° replaced these phases. 

Furthermore, the lower surface energy of the tetragonal phase when compared to 

monoclinic phase ensured transformation of the metastable tetragonal phase (Osendi et 

al., 1985).  

 

6.4.1.3 Measurement of physicochemical properties 

The measurement of the specific surface area, SBET was according to the BET method 

from the nitrogen adsorption isotherms obtained at -196.15 °C. Table 6.1 presents the 

textural properties and acidity of the mesoporous mixed oxide catalysts. Figure 3a 

presents the nitrogen sorption isotherms of all the samples. The parent ZSM-5 sample 

exhibited a characteristic monolayer formation at lower relative pressure followed by few 

molecular layers typical of Type I isotherm. This is because at higher pressures, adsorbate 

fills the micropores and restricts additional adsorption as represented by the plateau on 

Figure 4(a). However, the BET surface area, all synthesized samples decreased 

significantly compared to the parent ZSM-5. Conversely, the pore size, which facilitates 

diffusion benefits, was in the following order: SZr/Ag > SZr/Ti > SZr/W > SZr/ZSM-5 > 

ZSM-5. All the synthesized catalysts revealed mesoporous (2 < dp < 50 nm) structures 

that permits the TG molecule (which requires a critical diameter of 2 to 4 nm) access to 

the active sites within the materials (Table 6.1, Figure 6.3). The difference in chemical 

composition of the catalytic materials plausibly explains the significant variations in 

textural and catalytic activities (Figures 6.3a and 6.3b). Thus, for instance, the pore size 

of SZr/ZSM-5 (5.10 nm) is lower than those of the other mixed oxide catalysts are (Sani 

et al., 2015c). These results suggest that the channels of SZr/ZSM-5 could get occluded 

easily and may result in mass transfer limitation. This is because a TG molecule requires 
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a critical diameter or the smallest access cylinder of 2 to 4 nm (Kiss et al., 2006; 

Fernández et al., 2007). 

 
Figure 6.3: (a) N2 adsorption-desorption isotherms for SZr/Ag, SZr/Ti, SZr/W, 
SZr/ZSM-5, and ZSM-5 respectively, synthesized under the same conditions. 
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Figure 6.3: (b) Pore size distribution curves for mesoporous SZr/Ag, SZr/Ti, SZr/W, 

SZr/ZSM-5, and ZSM-5 respectively, synthesized under the same conditions. 

 

The adsorption isotherm of all samples with exception of ZSM-5, followed type-IV 

IUPAC classification for mesoporous materials with capillary condensation taking place 

at higher pressures of adsorbate depicting a hysteresis loop (Sing et al., 1985). The steep 

N2-uptake emphasized crystalline agglomeration of the plate-like, nano-sized particles 

containing slit-shaped pores. This resulted from inter-particle interaction and voids 

formed by the agglomeration that are typical of H3 hysteresis loop during the catalyst 

synthesis. This observation is in accordance to the IUPAC classification, which is 

generally observed for mesoporous solids, thereby confirming the enhanced textural 

properties of SZr/ZSM-5 as seen in Table 6.1.  

 

Conversely, the low P/P0 region for ZSM-5 revealed distinct increase in adsorbate 

volume with a tight hysteresis loop in the high P/P0 region. This highlighted the 

occurrence of micropores evident from Figure 3(b). Provided the effect of thermal or acid 

treatments were not excessive to destroy the alumino-silicate structural template, 
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amorphorization via morphological variation of erstwhile crystalline material, usually 

facilitates textural property enhancement (Sato et al., 1999). However, the pattern of 

parent ZSM-5 was apparently destroyed after the modification that produced SZr/ZSM-

5. Consequently, we attributed the superior properties observed on SZr/ZSM-5 from 

Table 1, BET results (Figure 4) and SEM analysis (Figures 5 to 7) in comparison to other 

materials on the acidity of SZr/ZSM-5. This is because despite the destruction of 

crystallographic phase of ZSM-5 from SZr/ZSM-5, the process stabilized the 

mesostructure channels, and ensured higher catalytic performance on SZr/ZSM-5 than 

that of SZr/Ti, SZr/Ag, and SZr/W synthesized under similar conditions. These outcomes 

bring to light the effect that hydrogen H+ has on Brønsted acidity and their influence on 

their ability to catalyze the transesterification reaction.  

 

The compared acidities of the other catalysts evidenced the observation regarding the 

acidic catalytic power of the zeolite influenced by nature of the cations. Provided the 

effect of thermal or acid treatments were not excessive to destroy the alumino-silicate 

structural template, amorphorization via morphological variation of erstwhile crystalline 

material, usually facilitates textural property enhancement. These improvements are 

obvious from results on Table 6.1, the BET result (Figure 6.3) and SEM analysis (Figures 

6.4 to 6.6). The enhanced surface area is considered an advantage for transesterification 

of feedstock containing high FFA value. This is because higher effective surface area, 

guarantees high dispersion of active ZrO2 which complements the high acid density 

(Table 6.1). 
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6.4.1.4 Scanning electron microscopy 

Scanning electron micrographs, SEM (Figures 6.4 to 6.11) illustrates the surface 

microstructure of all the catalysts and the morphology of parent ZSM-5 as studied via 

FE-SEM. The FE-SEM micrographs (Figure 6.4a to 6.6b) revealed a change in the 

morphology of parent ZSM-5 and zirconia upon modification with species of both 

components and sulfate ions. Similarly, the variations in elemental compositions are 

vividly noticeable from the EDX graphs. The morphology of ZSM-5 suggested 

agglomerates of micro-sized hexagonal crystal prisms. However, Zr incorporation, acid 

treatment and calcination, caused large degree of morphological variation in the 

SZr/ZSM-5 (Figure 6.6). This is probably because of the combined effects H2SO4 attack, 

inter-particle interraction with Zr and calcination during the synthesis stage that decreased 

the Si/Al ratio from 1.00 to 0.45 as observed from the EDX results. 

 

 
Figure 6.4: (a) Results of the surface microstructural analysis of the ZrO2 via FE-SEM 

and (b) surface elemental composition of the ZrO2 determined via EDX analysis 
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Figure 6.5: (a) Results of the surface microstructural analysis of the ZSM-5 via FE-

SEM and (b) surface elemental composition of the ZSM-5 determined via EDX analysis 

 

 

 
Figure 6.6: (a) Results of the surface microstructural analysis of the SZr/ZSM-5 via FE-

SEM and (b) surface elemental composition of the SZr/ZSM-5 determined via EDX 

analysis 

 

The different constituents were homogeneously processed into solid particles of uneven 

dimensions. The EDX analysis of the surface elemental composition (Fig. 6.7b) revealed 

the presence of zirconium (87.17 wt.%), silica (9.72 wt.%), aluminium (1.49 wt.%) and 

sulfur (1.26 wt.%). Fissures and faults appeared on the surface of SZr/ZSM-5 which were 

absent from the parent ZSM-5 and zirconium micrographs. These confirmed secondary 

pores formation that are beneficial in minimizing diffusion associated with zeolites (Sato, 

Nishimura, & Shimada, 1999).  
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Further, agglomeration or the adhesion of particles to each other because of van der Waals 

forces of attraction is significantly higher in nanoparticles. Fine particles, particularly 

nanoscale particles have characteristic large surface areas. These often agglomerate to 

form either secondary particles or lumps that minimize the interfacial energy or total 

surface area of the system. Figure 7(a) evidenced such agglomeration. Similarly, Figures 

6.7a and 6.8a revealed the surface microstructure of AgNO3 and SZr/Ag as studied via 

FE-SEM. The different constituents were homogeneously processed into solid particles 

of uniform dimensions. The EDX analysis of the surface elemental composition (Fig. 

6.7b and 6.7b) revealed the presence of zirconium (99.63 wt.%) and sulfur (0.16 wt.%). 

Cracks were evident on the surface of the composite catalyst mainly because of its 

stronger acidity. This clarified the higher mesoporosity and activity of SZr/Ag when 

compared with that of SZr/Ti and SZr/W. 

 

 
Figure 6.7: (a) Results of the surface microstructural analysis of the AgNO3 via FE-

SEM and (b) surface elemental composition of the AgNO3 determined via EDX analysis 
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Figure 6.8: (a) Results of the surface microstructural analysis of the SZr/Ag via FE-

SEM and (b) surface elemental composition of the SZr/Ag determined via EDX analysis 

 

Similarly, Fig. 6.8(a) presents the size and shape of topographic features of SZr/Ti 

catalyst studied via FE-SEM. The surface morphology was also homogeneously 

processed into solid particles. The surficial elemental composition by EDX analysis (Fig. 

6.8b) also revealed the presence of 92.92 wt.% zirconium, 6.45 wt.% and 0.36 wt.% sulfur 

(Appendix A).  

 

 
Figure 6.9: (a) Results of the surface microstructural analysis of the SZr/Ti via FE-SEM 

and (b) surface elemental composition of the SZr/Ti determined via EDX analysis 

 

Figures 6.10a and 6.11a present the surface microstructure of the parent 

(NH4)6H2W12O40.xH2O and SZr/W catalyst. High calcination temperature made the 

zirconium oxide structure to incorporate fully into the crystal lattices of the tungstate 

oxide. Fig. 6.10b presents a cross-sectional surficial composition and distribution of 

elements on SZr/W via EDX analysis. However, the micrograph of the catalyst prepared 
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with sufficient acid revealed more dispersed surficial metal elements (Figure 11a). 

Expectedly, a somewhat amorphous phase of the parent material transformed into 

crystalline phase as displayed by the micrograph representing SZr/W (Figure 6.11b). 

 

 
Figure 6.10: (a) Results of the surface microstructural analysis of the 

(NH4)6H2W12O40.xH2O via FE-SEM and (b) surface elemental composition of the 

(NH4)6H2W12O40.xH2O determined via EDX analysis 

 

 
Figure 6.11: (a) Results of the surface microstructural analysis of the SZr/W via FE-

SEM and (b) surface elemental composition of the SZr/W determined via EDX analysis 

 

6.4.2 Comparative transesterification activity over the composite sulfated zirconia 

catalysts 

The preferential adsorption of TG and FFA on the Brønsted acid sites of sulfated zirconia 

facilitates the simultaneous transesterification and esterification reaction and explains the 

poorer performance exhibited by SZr/W. Hence, the reaction investigated in this study 

follows the Langmuir-Hinshelwood mechanism (scheme 6.1) (Rattanaphra et al., 2010). 
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This mechanism (sequence of actual events that occur in transforming reactant molecules 

into products) harnesses the activation of the adsorbed reactants. Under this mechanism, 

the adsorbed atoms or “adatoms” are highly reactive even though they are not free 

radicals. Consequently, the mechanism facilitates the interchange of atoms from a second, 

different molecular species when adsorbed onto the same surface.   
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Scheme 6.1: The Langmuir-Hinshelwood mechanism (Rattanaphra et al., 2010) 

 

Thus, Brønsted acid protonates the hydroxyl group on the methanol while carbocation 

results from the protonation of TG and FFA from the adjacent site on catalyst surface. A 

nucleophile emerges from the deprotonation of methanol oxygen that generates a 

tetrahedral intermediate from attacking the carbocation. Consequently, during 

esterification, the tetrahedral intermediate eliminates water to form ester. Similarly, it 

generates a new ester during transesterification by eliminating glycerol. The same 

mechanism aided by the highly hydrophobic SZr/ZSM-5, applies to di- and tri-glycerides. 
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Morterra, et al. (1995) posited a linear relationship between increased acidity and the 

feedstock conversions. Figure 6.12 presentes the activity of catalysts in the simultaneous 

transesterification of UFO. The study revealed an order of conversion (SZr/ZSM-5 > 

SZr/Ag > SZr/Ti > SZr/W » ZSM-5) that showed significant correlation to the acidity and 

structure of the materials. This further affirms the presence of sulfate active sites within 

the surface structure of the catalysts as reported by (Hino, Kurashige, Matsuhashi, & 

Arata, 2006). However, the pore size of SZr/ZSM-5 might have minimized conversion 

beyond expectation because of possible occlusion. This is because the catalyst possesses 

5.10 nm pore size.  

 

However, a TG molecule requires a critical diameter or the smallest access cylinder of 2 

to 4 nm (Fernandez et al., 2007; Kiss et al., 2006). Srilatha et al. (2011), reported 

severe internal diffusion resistance, while López et al. (2005) obtained 57% conversion 

with SZ, which exhibited 134.4 ± 5.3 m2/g SBET. Premised on the underlying difficulty of 

the TG molecules to access the inner pores of the catalysts for efficient contact, it is 

plausible to assert that amount and dispersion of active sites, which is reflective of acidity, 

was responsible for transesterification activity reported in this study. It is also instructive 

to note that infusing sulfate onto zirconium oxide produces acidic solid catalysts. 

However, doping zirconia with acidic ZSM-5 further increases its acidity. Hence, the high 

conversions displayed by the synthesized material reflect the role of this incorporation. It 

is therefore plausible to assert that acidity of materials synthesized in this study have 

direct correlation to surface hydroxyl groups.  
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Figure 6.12: Catalytic activities of 2 wt.% mesoporous SZr/Ag, SZr/Ti, SZr/W, 

SZr/ZSM-5, and ZSM-5 catalysts at 5:1 methanol-to-oil ratio and 200 °C 

 

6.4.3 Palmitic acid transesterification kinetics SZr/ZSM-5 

Both Brønsted (proton donor) and Lewis acids (electron pair acceptor) have the capability 

to esterify free fatty acids (Brown, 2000; Cardoso et al., 2008). Contrary to the initiation 

of the reaction mechanism of esterification in homogeneous systems by protonation of 

the carbonyl group, there exists a remarkable difference in the reaction mechanism over 

Brønsted and Lewis acids. As mentioned earlier, the transesterification of palmitic acid 

with methanol on SZr/ZSM-5 obeyed Langmuir-Hinshelwood mechanism kinetics with 

palmitic acid and methanol adsorbed on the active sites respectively. The rate-

determining step was the adsorption reaction between methanol and palmitic acid in the 

bulk fluid. This implies the equilibrium condition between the adsorption and desorption 

reactions and the possibility of achieving ca. 100% conversion.  
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A gas chromatography equipped with a Cotrun GC9800N flame ionization detector and 

OV-17 (30 m x 0.25 mm x 0.25 µm) capillary tube analyzed the biodiesel yield (Table 

6.3) quantitatively under injector, oven, and detector temperatures of 280, 250, and 250 

°C respectively. The biodiesel yields were calculated from Equations 6.3 to 6.5.  

��  =
������

��
               (6.3) 

�� =  
������

�� × �������
 × 100%   (6.4) 

   ���������� =  ∑ ��                  (6.5)  

 

Where Ms, and As represents the mass and peak area of the internal standard respectively. 

Mi, Ai and fi represent the mass, peak area, and the correction factor of each component 

(methyl palmitate, f = 1.089; methyl oleate, f = 1.018; methyl strearate, f = 1.044; linoleic 

acid methyl ester, f = 0.9584 and linolenic acid methyl ester, f = 0.8532) in the sample. Yi 

and Msample represents the yield of each component and mass of sample respectively; 

while Ybiodiesel denotes the total biodiesel yield. The calculated mean molecular weight of 

fatty acids was 276 g/mol while that of the oil was 866 g/mol respectively. 

 

Table 6.3: Working conditions for the GC analyzer 
Column  DB 23 (L = 0.30 mm × ID = 0.32 mm × 0.25 µm film thickness of 5% 

diphenyl, 95% dimethyl polysilanoxane) 

Guard column 0.5 m with same phase as the analytical column connected to the injector 
(volume = 0.5 µL) 

Gas flow   
        He, carrier gas 2 µL/min 
        air  374 mL/min 
        H2  27 mL/min 
Injection temperature  210 °C 
Flame ionization detector 
temperature  

250 °C 

Oven temperature program  50 to 200 °C for 5 min at 15 °C/min; 200 to 240 °C for 18 min at 3 
°C/min) 
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Similarly, the turnover frequency, TOF (see Table 6.4) was calculated from Equation 6.5. 

��� =  
���������

����×��×�
  = 

������ �� ��������� �� � ����� �������

(������ �� ������ �����) × (�����)
  (6.5) 

Where molactual denotes the amount in moles of the biodiesel; mcat represents the mass of 

catalyst; fm denotes the surface amounts of acid sites while t represents the reaction time. 

Turnover frequency expresses the efficiency of a catalyst. It is a chemical reaction rate 

and not a rate constant. TOF represents the number of times the overall catalytic reaction 

in question takes place per catalytic site per unit time (usually in sec). Hence, TOF holds 

only for a fixed set of reaction conditions (e.g., form and structure of the catalyst, 

temperature, pressure, ratio, and concentration of the reacting species and time). Thus, it 

is necessary to specify all the prevailing conditions of the catalytic reaction used in 

calculating a particular TOF. Table 6.4 presents the physical properties and yield of 

biodiesel obtained from UFO compared to diesel. 

 

Table 6.4: Physical properties and biodiesel yield obtained from UFO compared to 
diesel 

Quality Unit EN14214 UFO Diesel Encinar et al. Centinkaya et al. This study TOF 

Acid number mg KOH/g  146.67 0.11     

Iodine number mg KOH/g  13.20 -     

Saponification No.  mg KOH/g  268.20 -     

Density @15 °C g/cm3 0.86 to 0.90 0.92 0.83 0.890 @ 25 °C 0.8823 to 0.8874 0.88  

Flash point °C >101 269 69 177 176 176  

Cloud point °C - 21.00 0 4.7 9 5.2  

Pour point °C - 18.00 < −12 −3.9 −3 -3  

Viscosity @40 °C mm2/s 3.5 to 5.0 30.05 3.53 4.8 5.29 to 6.46 4.56  

Acid value, max mg KOH/g 0.5   - 0.289   

Water content, max ppm 500   - 480.07   

FFA compositiona  wt%        

   Palmitic (C16:0)   11.8    12.13  

   Palmitoleic (C16:1)   4.4    6.34  

   Stearic (C18:0)   4.6    4.55  

   Oleic (C18:1)   49.5    55.92  

   Linoleic (C18:2)   25.3    20.61  

Mean molecular wt  g/mol     866       

Conversion; Yield %       x 10-3s-1 

   Zr/ZSM-5       99.12; 91 39.2 
   SZr/Ag       94.84; 89 38.0 
   SZr/Ti       93.21; 85 23.4 
   SZr/W       91.01; 84 15.1 
   ZSM-5       54.76; 42 9.62 

aOther fatty acids [Myristic (C14:0), Linolenic(C18:3), Arachidic (C20:0), Eicosenic (C20:1), Behenic (C22:0), Erucic (C22:1), 
Tetracosanic (C24:0)] were present in amounts ca. < 1%. 
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Further, the facile process employed in present study is encouraging considering the 

lower reaction parameters employed (200 °C, 5 h, 5:1 molar ratio and 2 wt.% catalyst 

loading). It eliminates the yield loss and chemical costs associated with acid-catalyzed 

esterification pretreatment and caustic stripping (Table 6.5) alluded to by Chai et al., 

(2014). This lowers the energy consumption and chemical costs. Against the backdrop of 

affordability and sustainability, it is important to highlight some reports related to the 

present study for comparison. Danuthai et al., (2009), converted ca. 100% methyl 

octanoate over H-ZSM-5 at a very high temperature of 500 °C for 5 h. Whereas, Chung 

et al. (2009), obtained 80% conversion from Soybean oil mixed with oleic acid over H+ 

ion exchanged ZSM-5 at 60 °C for 6 h. Moreover, the deactivation limitation associated 

with sulfated zirconia due to leaching of sulfate ions was not observed from this study.  

 

Further, it is worthy of note that conventional zirconia produced negligible conversion 

under the same conditions. The encouraging conversion of 95% obtained with SZr/Ti 

from the present study corroborated the findings by (López et al., 2008). This is despite 

the employed calcination temperature of 550 °C. Kiss et al. (2006), reported 500 °C and 

400 to 500 °C as optimum calcination temperature for SZ and TiZ respectively, with 

subsequent loss of activity at higher temperature due to loss of sulfate ions and decreased 

catalyst’s surface area. However, the material showed poor reusability because of active 

basic sites poisoning from carboxylic acids. This hinders its suitability for 

transesterification especially with feedstocks containing higher acid values such as UFO. 

In comparison also, WO3/ZrO2 gave ~100% conversion from 4.5:1 methanol-to-soybean 

oil at 200 °C after 20 h (Furuta et al., 2004). In a different study similar to the current 

report, Park et al. (2008) obtained 70% conversion from UFO over WO3/ZrO2.  
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Table 6.5: Comparative FFA pretreatment cost (López, et al., 2005) 

FFA % in oil  2.5% 5% 10% 15% 
Caustic stripping Yield loss 2.5% 5% 10% 15% 
 Cost ($/gal) 0.119 0.238 0.476 0.715 
 Cost ($/L) 0.031 0.063 0.126 0.189 
Acid esterification Yield loss 1% 1% 1% 1% 
 Cost ($/gal) 0.040 0.080 0.160 0.240 
 Cost ($/L) 0.011 0.021 0.042 0.063 

Notes: All chemical costs (H2SO4 = $5/gal, methanol = $1.6/gal, sodium methylate = $4/gal) and biodiesel selling price ($4/gal after 
various local and federal tax credit and other incentives) were based on recent industrial scale values with 80% assumed efficiency 

for methanol recovery. 

 

Though all the samples exhibited good performances when evaluated for 

transesterification of UFO after 5 h (Figure 6.12), SZr/ZSM-5 exhibited highest activity 

than the other catalysts. This is despite possessing smaler pore size. We attributed this to 

enhanced acid strength imparted on SZr/ZSM-5 by the zeolite, as well as its suitable SBET 

when compared to its counterparts. The NH3-TPD and IR spectra of pyridine adsorption 

analyses showed lower acid density for SZr/Ti and SZr/W than that of SZr/ZSM-5. 

Consequently, the interaction between the zirconia (facilitated by highly dispersed 

nanoparticles) and higher mesopores of the zeolite support determined the observed 

acidity and activity. This is because acidity, which arises from electron deficiency of the 

supported catalysts to a combination of acidity (0.14, 0.09, and 0.05 mmol/g) and the 

good SBET (20.11, 14.53, and 5.37 nm) exhibited by SZr/Ag, SZr/Ti, and SZr/W 

respectively.  

 

6.5 Conclusion 

This study developed a facile route for synthesizing efficient solid acid catalysts for 

transesterifying UFO-containing high FFA under moderate reaction conditions. Albeit, 

doping SZ with SZr/ZSM-5 is a key feature of this synthesis strategy, which proved 

superior to prior formulations. This is because despite the destruction of ZSM-5 

crystallographic phase, the process stabilized the mesostructure channels, and ensured 

higher catalytic performance on SZr/ZSM-5 such as 99.12% conversion, 91% yield, and 
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a TOF of 39.2 x 10-3s-1. Interestingly, the activity of SZr/ZSM-5 was markedly higher 

than that of SZr/Ti, SZr/Ag, and SZr/W synthesized under similar conditions. The process 

provided solutions to the economic concerns associated with accessing fossil fuel reserves 

via simultaneous transesterification and esterification of waste oil into low cost and 

readily implementable biodiesel as sustainable alternative source of energy for 

transportation. Furthermore, the use of waste oil is essential in solving the contending 

issue of regional availability. Interestingly, the activity of SZr/ZSM-5 was markedly 

higher than that of SZr/Ti, SZr/Ag, and SZr/W. Other significant findings include:  

 

1) Factors essential for efficient transesterification include acidic site, sufficient 

surface area with mesoporous channels and tetragonal phase of zirconia.  

2) The interplay between metal species of modified oxo-anions and pore structure of 

acidic zeolites and its strong properties enhances acidity of sulfated composite 

catalysts.  

3) The encouraging conversions obtained suggested that activity for 

transesterification does not depend solely on textural property of the catalytic 

material.  

4) Amount and dispersion of active sites, which are reflective of acidity of the 

catalysts, play significant role in facilitating higher conversion of TG into 

biodiesel.  

5) The study also showed how to achieve a flexibility of properties from unlimited 

number of possible manipulations from one catalyst precursor. These encouraging 

observations highlighted the possibility of improving on the reported formulations 

to facilitate higher intrinsic efficiency in biodiesel production. The catalysts 

synthesized from the present study have potential applications in other acid-

catalyzed reactions such as selective catalytic reactions, SCR for abating 
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environmentally harmful NOx emissions from mobile or stationary power 

sources. This is because of the presence of sulfate ions and their resistance to H2O, 

which are inevitable components of diesel exhaust gas. 
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CHAPTER 7: OVERALL CONCLUSION 

Finally, this chapter summarizes the overall research findings from all the four articles 

with their respective implications. The chapter also offers recommendations for future 

research. Agueably, biodiesel as an alternative fuel for diesel engines is produceable from 

virtually any fat or oil feedstock via a simple chemical process. However, the choice of 

technology adopted for the production is dependent on feedstock type and cost, catalyst 

activity and recovery, quality and desired capacity, and alcohol recovery. Feedstock cost 

is the dominant factor in the production process; gulping up to 88% of the production 

cost, while capital cost contributes only ca. 7%. The availability of cheap and abundant 

feedstocks such as microalgal and used frying oils reduces the overall cost of production. 

However, these cheap sources come with inherent challenges that incur other costs in 

maintaining product quality. Accordingly, catalysis provides the required panacea 

because chemical reaction kinetics is the major factor that has direct effect on weak 

acidity, incomplete and slow reactions vis-à-vis the high contents of FFA from such 

feedstocks. Evidently, to increase biodiesel yield and lower the operational costs, certain 

technological advancements and sustained governmental policies are essential. These 

include:  

(i) Establishing proficient systems for the production of vast quantities of feedstocks at 

affordable costs.  

(ii) Developing novel catalysts with higher activities that could facilitate greater yields 

in shorter time with lesser refining difficulties.  

(iii) Radical innovations for separating and refining crude biodiesel.  

(iv) Enacting new policies that will favor sustained biodiesel production.  

(v) Minimizing costs, energy and water usage by implementing the excellent findings 

from the research communities. 
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Consequently, this study argued that points (i), (ii), and (v) above are achievable within 

the period of the study, and available facilities. Thus, the study highlighted that:  

1. It is possible to synthesize and characterize solid acid catalysts from palm tree 

biomass as cheap and environmentally benign alternatives for biodiesel production. 

2. It possible to enhance the activity of sulphated zirconia despite its attaining state-of-

the-art status by investigating the effect of different precursors in activating the active 

sites of the material. 

3. The combined catalytic attributes of zirconia and zeolite have the potential of 

reducing the challenges associated with other solid acid catalysts. 

  

The study subsequently addressed the foregoing issues thus: 

a. Synthesized, characterized and evaluated the use of sulfonated mesoporous catalysts 

from palm tree biomass such as palm fronds, spikelets, empty fruit bunches and palm 

waste fruits in esterifying the high free fatty acids of used frying oil into biodiesel. 

Interestingly, all the catalysts exhibited high activity, with sEFB/300 and sPTS/400 

converting more than 98% FFA into FAMEs. This is outstanding considering the 

lower reaction parameters of 5 h, 5:1 methanol-to-oil ratio, and a moderate 

temperature range between 100 and 200 °C. It is instructive to highlight these against 

similar reports by other authors, such as 80% conversion from 18:1 methanol-oil 

molar ratio after 3 h. The present study further illustrates the prospect of converting 

wastes into highly efficient, benign, and recyclable solid acid catalysts; especially 

when compared against the backdrop of the sustainability issue of fossil oil. Further, 

the implication of utilizing these wastes and by-products highlights appropriate means 

of reducing pollution as well as production costs. 
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b. Synthesized and modified sulfated zirconia and compared the effect of doping SZ 

with ytterbium, and the variation in preparatory methods on acidity and catalytic 

activity for simultaneous esterification and transesterification reactions in biodiesel 

production. Double sulfation ensured sulfate incorporation while minor precursor 

amounts enhanced activity of the materials. Despite the low specific surface area, 

which was due to short aging period, large mesoporosity, high amount, and dispersion 

of the active sites ensured remarkable activity. SZr-Ti-Yb/500-4/s catalyst converted 

> 99 % used frying oil containing ca. 48 wt.% FFA. Consequently, this highlights the 

prospect of producing biodiesel at lower cost. 

 

c. Synthesized and characterized sulfated Zr/ZSM-5 with improved Brønsted acidity 

and compared its activity over SZr/Ag, SZr/Ti, and SZr/W for the transesterification 

reaction of used frying oil to form methyl ester. For the first time, this study explored 

the effect of dispersing zirconium on ZSM-5 for the simultaneous esterification and 

transesterification of used frying oil for biodiesel production. The material exhibited 

moderate to strong acidic sites and a system of interconnected system of large pores. 

The study manipulated the interplay between the metal function of the modified oxo-

anions and pore structure of zeolites and its strong acidic properties as an innovative 

approach for enhancing acidity of sulfated zirconia. Albeit, doping SZ with SZr/ZSM-

5 is a key feature of this synthesis strategy, which proved superior to prior 

formulations. This is because the process stabilizes the mesostructure channels, 

crystallographic phase, and ensured higher catalytic performance such as 99.12% 

conversion, 91% yield, and a TOF of 39.2 x 10-3s-1. 

 
The study evidenced a notable increase in the acid strength from the mixed oxide 

catalysts compared to single SZ oxide. Compared to prior arts, Zr/ZSM-5 converted 

> 95% of used frying oil (48 wt.% FFA) under lower reaction parameters (5 h, 5:1 
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methanol-to-oil ratio and 200 °C). The catalytic activity of the materials was directly 

dependent on the amount and dispersion of Brønsted acid active sites, which are 

reflective of SZ acidity. This implies that change of acidic properties causes the 

increased activity. Hence, the high conversions displayed by the synthesized materials 

reflect the role of this incorporation. It is therefore plausible to assert that acidity of 

materials synthesized in this study have direct correlation to surface hydroxyl groups. 

The performances of the synthesized catalysts (Table 7.1) have answered some important 

questions regarding SZ solid acid catalysis such as higher reaction conditions, methanol-

to-oil ratio, and temperature requirements. Further, it opened up new areas regarding 

inherent limitations such as weak acidity, and slow reaction rates; that hitherto were 

deemed saturated.  

Table 7.1: Summary of the different catalysts and their respective performances 
 

Catalyst 
Surface Area  

(m2/g) 
Pore Size  

(nm) 

Pore 
Volume 
(cm2/g) 

Total Acid (-SO3H) 
Density (mmol/g)  

Conversion @  
100 °C, 15 h (%) 

E
st

er
if

ic
at

io
n

 sPTF/SA/400 28.11 10.17 0.03 0.79 87.39 
sPTF/SA/300 27.78 10.02 0.03 1.13 87.87 
sPTF/400 17.80 9.20 0.03 1.09 83.27 
sPTS/400 12.70 5.16 0.02 1.30 91.26 
sEFB/400 236.37 4.15 0.11 1.86 86.27 
sEFB/300 246.46 4.18 0.12 2.34 91.64 
sWPF/400 28.11 10.09 0.03 1.54 86.50 

      Conversion @  
200 °C, 15 h (%) 

T
ra

n
se

st
er

if
ic

at
io

n
 

SZr-500-4/e 5.30 21.21 0.02 20 x 10-3 96.03 

SZr-500-4/s 3.43 37.04 0.02 40 x 10-3 97.24 

SZr-500-1/e 3.84 20.35 0.02 10 x 10-3 89.23 

SZr-Ti-500-4/e 8.12 24.98 0.04 50 x 10-3 90.44 

SZr-Ti-500-4/s 8.33  28.52 0.05 70 x 10-3 85.54 

SZr-Ti-Yb-500-4/s 60.33  21.38 0.32 330 x 10-3 99.96 

SZr-500-5/7 7.69  21.44 0.03 80 x 10-3 97.01 

SZr-500-5/7R 9.05  20.27 0.04 40 x 10-3 95.90 

SZr-500-5/14 41.22  6.83 0.07 280 x 10-3 97.88 

SZr-500-5/10 15.05  9.65 0.04 70 x 10-3 96.99  

ZSM-5 385.20 3.04 0.15 3.71 54.76 

SZr/ZSM-5 107.25 5.10 0.12 0.75 99.12  

SZr/Ag 15.97 20.11 0.08 0.14 94.84  

SZr/Ti 12.90 14.53 0.05 0.09 93.21  

SZr/W  72.13 5.37 0.10 0.05 91.01 
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SZ doped with Yb (60.33 m2/g, 330 x 10-3 mmol/g) and the one supported on ZSM-5 

(107.25 m2/g, 0.75 mmol/g) gave conversions of ca. 100%. Plausibly, the carbenium ions, 

which require very strong acid sites in all the catalysts, outnumbered the carbonium ions 

that require high temperature for the reaction to reach completion. This evidenced the 

short residence time and low reaction temperature observed from the work. The study 

also showed how to achieve a flexible set of properties from unlimited number of possible 

manipulations using one catalyst precursor. These observations highlight the possibility 

of improving on the reported formulations to facilitate higher intrinsic efficiency in 

biodiesel production.  

 

7.1 Recommendations for future works 

Though this work articulately reported a compelling advancement of knowledge on the 

complex realms of solid acid catalysis, it is nonetheless imperative to pre-empt inevitable 

critiques on some recommendations worthy of investigating. These include:  

i. Devicing a technique to minimize or recover the concentrated sulfuric acid utilized in 

sulfonating carbon-based mesoporous catalysts. 

ii. Utilizing probe molecules techniques augmented with multifarious nuclei such 

as 1H, 13C and 31P for investigating surface acidities of the solid acid catalysts. 

iii. Utilizing computational and real-time in situ observation techniques to predict 

catalytic performances under real reaction conditions. 

iv. Studies on how to determine the most suitable turn over frequency, TOF calculations, 

and the adsorbate-induced surface-reconstruction relationship for solid acid-catalyzed 

biodiesel production. 
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These will lead to compressive understanding of the factors that influence activity during 

catalysis. Location of acidic sites and types, concentrations, strengths of Brønsted and 

Lewis acid during a chemical reaction could be precisely determined and characterized. 

Advances required for the rational design of catalysts with interconnected system of large 

pores that will minimize diffusional effects of the long alkyl molecules will thus, be 

achieviable. Further, develop catalysts that can preferentially exclude polar by-products 

and prevent deactivation of the catalytic sites. 
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APPENDIX 

Appendix A: Energy dispersive X-ray, EDX analysis 

SZr-500-4/e 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.01 0.00010 0.27 0.18 0.85 

Si K 
series 

0.01 0.00006 0.13 0.20 0.39 

S K 
series 

0.09 0.00079 2.50 0.40 6.73 

Zr L series 3.56 0.03563 97.11 0.48 92.02 
Total:    100.00  100.00 

SZr-500-1/e 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.17 0.00120 2.31 0.15 7.18 

Si K 
series 

0.00 0.00000 0.00 0.00 0.00 

S K 
series 

0.09 0.00078 1.85 0.30 4.83 

Zr L series 4.64 0.04637 95.84 0.33 87.99 
Total:    100.00  100.00 

SZr-500-5/7 

Element Line 
Type 

Apparent 
Concentration 

k Ratio Wt% Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.04 0.00027 1.10 0.31 3.51 

Si K 
series 

0.00 0.00001 0.02 0.33 0.07 

S K 
series 

0.04 0.00031 1.60 0.59 4.32 

Zr L series 2.22 0.02218 97.28 0.73 92.10 

Total:    100.00  100.00 
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SZr-500-5/7R 

Element Line 
Type 

Apparent 
Concentration 

k Ratio Wt% Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.01 0.00008 0.33 0.29 1.10 

Si K 
series 

0.00 0.00002 0.06 0.32 0.20 

S K 
series 

0.00 0.00002 0.08 0.59 0.23 

Zr L series 2.30 0.02303 99.53 0.73 98.47 

Total:    100.00  100.00 

SZr-500-5/10 

Element Line 
Type 

Apparent 
Concentration 

k Ratio Wt% Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.03 0.00023 0.61 0.19 1.97 

Si K 
series 

0.01 0.00012 0.27 0.22 0.84 

S K 
series 

0.04 0.00034 1.10 0.36 3.00 

Zr L series 3.55 0.03551 98.03 0.46 94.19 

Total:    100.00  100.00 

SZr-500-5/14 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.04 0.00028 0.46 0.12 1.54 

Si K 
series 

0.00 0.00002 0.03 0.14 0.11 

S K 
series 

0.00 0.00000 0.00 0.00 0.00 

Zr L series 5.71 0.05713 99.50 0.18 98.35 

Total:    100.00  100.00 

ZSM-5 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.38 0.00271 6.24 0.19 6.49 

Si K 
series 

4.93 0.03907 93.42 0.26 93.22 

S K 
series 

0.01 0.00011 0.34 0.19 0.29 

Zr L series 0.00 0.00000 0.00 0.00 0.00 

Total:    100.00  100.00 
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ZrO2 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.00 0.00001 0.04 0.25 0.15 

Si K 
series 

0.00 0.00000 0.00 0.00 0.00 

S K 
series 

0.00 0.00002 0.08 0.48 0.23 

Zr L series 2.28 0.02280 99.87 0.54 99.62 

Total:    100.00  100.00 

sEFB/400 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

C K 
series 

5.28 0.05283 70.57 0.43 78.44 

O K 
series 

2.95 0.00993 22.25 0.40 18.57 

S K 
series 

0.96 0.00826 7.18 0.21 2.99 

Total:    100.00  100.00 
 
sPTS/400 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

C K 
series 

4.09 0.04090 65.85 0.68 72.16 

O K 
series 

2.88 0.00969 33.53 0.68 27.59 

S K 
series 

0.05 0.00041 0.62 0.19 0.25 

Total:    100.00  100.00 

sPTF/SA/400 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

C K 
series 

5.12 0.05122 58.26 0.33 66.14 

O K 
series 

6.19 0.02082 37.74 0.32 32.16 

S K 
series 

0.55 0.00476 4.00 0.13 1.70 

Total:    100.00  100.00 
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sPTF/SA/300 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

C K 
series 

5.25 0.05245 59.22 0.33 67.03 

O K 
series 

5.97 0.02009 36.85 0.32 31.31 

S K 
series 

0.54 0.00468 3.93 0.12 1.67 

Total:    100.00  100.00 

WO3 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

O K 
series 

3.84 0.01292 23.60 0.28 77.40 

Al K 
series 

0.04 0.00029 0.27 0.06 0.52 

Si K 
series 

0.00 0.00000 0.00 0.00 0.00 

S K 
series 

0.00 0.00000 0.00 0.00 0.00 

Ti K 
series 

0.00 0.00000 0.00 0.00 0.00 

Zr L series 0.08 0.00084 1.21 0.34 0.70 

Ag L series 0.00 0.00002 0.02 0.28 0.01 

W M 
series 

6.13 0.06128 74.89 0.43 21.37 

Total:    100.00  100.00 

SZrAg 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.02 0.00013 0.16 0.08 0.55 

Si K 
series 

0.00 0.00000 0.00 0.00 0.00 

S K 
series 

0.07 0.00063 0.88 0.16 2.51 

Zr L series 6.71 0.06706 84.73 0.54 84.88 

Ag L series 0.92 0.00924 14.23 0.53 12.05 

Total:    100.00  100.00 
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SZrTi 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.02 0.00018 0.24 0.09 0.71 

Si K 
series 

0.00 0.00000 0.00 0.00 0.00 

S K 
series 

0.02 0.00020 0.32 0.17 0.80 

Ti K 
series 

1.06 0.01059 13.78 0.46 23.10 

Zr L series 6.02 0.06021 85.26 0.60 75.08 

Ag L series 0.02 0.00024 0.41 0.41 0.30 

Total:    100.00  100.00 

SZrWO3 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.01 0.00010 0.13 0.10 0.45 

Si K 
series 

0.00 0.00000 0.00 0.00 0.00 

S K 
series 

0.09 0.00079 1.26 0.20 3.71 

Ti K 
series 

0.00 0.00000 0.00 0.00 0.00 

Zr L series 6.05 0.06050 86.86 0.64 89.81 

Ag L series 0.00 0.00000 0.00 0.00 0.00 

W M 
series 

0.76 0.00760 11.75 0.61 6.03 

Total:    100.00  100.00 

SZrZSM-5 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.07 0.00051 0.69 0.09 1.89 

Si K 
series 

0.88 0.00699 8.56 0.20 22.55 

S K 
series 

0.08 0.00066 1.10 0.18 2.53 

Ti K 
series 

0.03 0.00029 0.40 0.29 0.61 

Zr L series 5.95 0.05952 89.26 0.38 72.41 

Ag L series 0.00 0.00000 0.00 0.00 0.00 

W M 
series 

0.00 0.00000 0.00 0.00 0.00 

Total:    100.00  100.00 
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AgNO3 

Element 
Line 
Type 

Apparent 
Concentration 

k Ratio Wt% 
Wt% 
Sigma 

Atomic 
% 

Al K 
series 

0.05 0.00038 0.63 0.12 2.48 

Si K 
series 

0.01 0.00007 0.10 0.11 0.37 

S K 
series 

0.01 0.00006 0.08 0.12 0.26 

Zr L series 0.03 0.00030 0.48 0.36 0.55 

Ag L series 6.48 0.06479 98.71 0.41 96.33 

Total:    100.00  100.00 

 


