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CHAPTER 1 

INTRODUCTION 

 

1.1 General Introduction 

In the applications of statistical models, especially parametric ones, to real life 

phenomena, practitioners are confronted by the issues of parameter estimation, testing of 

relevant hypotheses and construction of confidence intervals of these models. For 

parameter estimation, maximum likelihood estimation (MLE) is a popular technique due to 

its efficiency. The statistical literature contains many papers about various aspects and 

applications of MLE. For instance, Kalbfleisch and Sprott (1970) introduced and 

exemplified likelihood methods to deal with some multi parameter problems, in particular 

the elimination of nuisance parameters from the likelihood function so that inferences could 

be made. In this paper, integrated likelihoods, maximum relative likelihoods, conditional 

likelihoods, marginal likelihoods and second-order likelihoods are introduced and 

illustrated in examples. Sprott (1980) discussed further on the various pivotal quantities 

associated with the application of MLE to small samples to estimates a parameter in the 

presence of other nuisance parameters. Next, Sprott (1983) examined the application of 

MLE to some convolution densities (the convolution of a Poisson and a binomial 

distribution, a Poisson and a normal distribution, and so on). The paper claimed that MLE 

of the parameters in the convolution densities is numerically intractable. However, it is 

shown that in a large class of such densities, the number of ML equations can be reduced 

by one. Thus for a two-parameter family of distributions only a single equation needs to be 

solved iteratively.  
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Although MLE is an efficient method of estimation there are many difficulties associated 

with the method: multiples maxima, starting values, convergence criteria and rate of 

convergence of the numerical algorithm. Douglas (1980) discussed the problem of 

inherently high parameter correlation encountered with the MLE for standard contagious 

distributions. The high correlation of ML estimators tends to lead to mathematical 

complexities, and causes difficulty or even errors in their interpretation. Besides, numerical 

difficulties may arise when using numerical procedures to locate the estimates. Orthogonal 

parameterization (reparameterization) is suggested to reduce or even eliminate such 

undesirable feature. Cox and Reid (1987) examined the consequences of parameter 

orthogonality in MLE. The complete literature reviews for orthogonal parameterization are 

given in Section 2.2. The orthogonality of a class of discrete distributions with two 

unknown parameters reparameterized into the mean, ,µ with respect to the remaining 

parameter have been considered by Willmot (1990). Since parameter orthogonality has 

many consequences in statistical inference, we have extended the works of Willmot by 

deriving the orthogonality of µ  for models with more than two parameters, where the 

remaining parameters are regarded as nuisance parameters.  

    ML estimate has to be solved numerically by maximizing the likelihood or log-

likelihood function when its analytical solution is intractable to obtain. There are many 

optimization algorithms have been developed and applied in parameter estimation. Most of 

the optimization methods suffer from the problem of selecting the starting values for the 

optimization. One of the popular choices for MLE is the iteratively re-weighted least square 

method via EM algorithm. Although the EM algorithm is easy to implement, it suffers from 

slow convergence and dependence on the starting values. In our study, we consider the 

simulated annealing, an optimization algorithm which are specially designed to optimize 
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functions that are not smooth and may have multiple local optimum values, in parameter 

estimation. Simulated annealing is guaranteed to converge regardless of the choice of 

starting values although the convergence could be slow. The algorithm has also introduced 

random elements into the iteration process in order for the algorithm to escape from a local 

optimum. Enhancement of optimization by simulated annealing has been examined by 

various authors (see, for example, Brooks and Morgan (1995) and references therein). 

Smyth (2002) discussed the various optimization methods used in parameter estimation. 

    White (1982) has considered the MLE in the presence of model misspecification, which 

is so-called quasi maximum likelihood estimation (QMLE). The major concern of QML 

method is to draw statistical inferences under potential model misspecification. QML 

method is robust to specification errors compared to the traditional ML method. Many 

extension and refinement works have been done for the recent 20 years related to the topics 

of White (see, for example, Fomby and Carter, 2003). In particular, we have derived the 

orthogonality for a class of Poisson-convolution models. For the application of the obtained 

orthogonality results, a uniformly most powerful test of the mean is developed based on the 

asymptotic result under model misspecification. The test of mean is implemented on the 

convolution of Poisson and negative binomial variables.  

    Suppose 1 2, ,...,
n

X X X  are independently and identically observations from a distribution 

( )F x .  One important issue that we considered here is the goodness-of-fit problem. Our 

interest is to determine whether a given random sample can be fitted well by a probability 

model. In order to do so, we have to test 0H  whether the sample 1 2, ,...,
n

x x x  comes from a 

population with distribution function ( ).F x   A useful review on the goodness-of-fit 

problem is given by D’Agostino and Stephens (1986).  In addition, Stuart and Ord (1991) 

and Lehmann (1999) have provided the details of some of the main goodness-of-fit 
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techniques. The classical test for this problem is the chi-square test. It was introduced by 

Pearson (1900). There are some advantages of using the chi-square test; for example, it is 

more versatile and can be used for continuous as well as discrete data, and the test statistic 

is easily adjusted for the case when the parameters have to be estimated. However, the 

power of the test is comparatively low as reported in the literature.      

    There is another class of goodness-of-fit statistics which are widely used and they are 

known as Empirical Distribution Function (EDF) statistics. The practical guide to the use of 

EDF statistics for goodness of fit have been discussed by Stephens (1974). EDF based 

goodness-of-fit tests consider a comparison between the sample EDF ( )nF x  and the actual 

distribution function ( )F x . If the assumed model is correct, we will have ( )nF x  close 

to ( )F x . Generally, EDF statistics are easily calculated and they are shown to be more 

powerful in terms of hypothesis testing.  

    In this thesis, we introduce a goodness-of-fit test based on an information identity matrix 

known as Bartlett’s First Identity which assumes that the model is correctly specified if the 

equality of the outer product and Hessian form of the information matrix is attained. White 

(1982) has used this identity to form the Information Matrix test for model misspecification. 

The proposed goodness-of-fit test is then illustrated using the negative binomial distribution 

and the simulation results are compared with EDF based goodness-of-fit tests.  

    Since there are still some statistical inference problems for the Delaporte distribution 

which do not seem to have been considered in the literature, we shall examine the 

parameter estimation, efficiency of estimation especially the method of moments and the 

maximum likelihood estimation, orthogonal parameters and other related inferences. We 

propose to estimate the parameters using a quadratic distance statistic which has been 

derived based on the Bartlett’s First identity. The advantage of the quadratic distance 
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method is that the global maximum is expected to be attained. Besides, the method can be 

simplified and eases computation if the model parameters are orthogonal. Furthermore, we 

have constructed confidence intervals under misspecification of model and the Delaporte 

distribution is used as an illustrative example. We found that the confidence intervals based 

on White’s approach are more conservative. We have also studied the efficiencies of the 

estimations by the method of moments and maximum likelihood for the Delaporte 

distribution (Ruohenen, 1983).  

 

1.2 Summary of Contributions of Thesis 

    Chapter 1 contains introductory summary on the materials underlying of this thesis. In 

Chapter 2, we give a brief literature review. We have discussed in detail maximum 

likelihood estimation, such as its application in parameter estimation and inference in 

statistics. The consequences of using orthogonal parameters in estimation have been studied 

and we present the procedure for constructing orthogonal parameters based on the paper by 

Willmot (1990). The effects of model misspecification on maximum likelihood estimation 

have also been considered here. We review White’s information matrix test which has 

received much attention currently. An overview on the stochastic optimization method, 

simulated annealing, is given since we have used it to optimize the log-likelihood function 

in maximum likelihood estimation.     

    Chapter 3 proposes a goodness-of-fit test based on the Bartlett’s First Identity. In fact, 

this identity is the basis of White’s (1982) Information Matrix (IM) test for model 

misspecification. However, the proposed test is simplified since we consider it under 

orthogonality of the parameters with bootstrapped critical values. In addition, the direct 

application of Bartlett’s First Identity as a goodness-of-fit test avoids the use of the 
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complicated covariance matrix in White’s IM test. This definitely reduces the difficulties in 

computation. Besides, the consistency and asymptotic normality of the proposed test have 

been derived. The proposed test is useful as an alternative method to determine the 

goodness–of-fit of a given random sample to a specified probability model in terms of 

power.  

    Chapter 4 examines the orthogonality of parameters for probability models with more 

than two parameters. This is an extension of Willmot’s (1990) results. In particular, we 

derive the orthogonality for a class of Poisson-convolution models. This convolution may 

be regarded as a signal-plus-noise model and it is of practical importance. As an application 

of the orthogonality result, a uniformly most powerful test of the mean is developed based 

on an asymptotic result under model misspecification. 

The Delaporte distribution, a Poisson-convolution model, is useful in fitting the number 

of claims in an insurance portfolio. The orthogonal parameters of the Delaporte distribution 

have been derived and discussed in Chapter 4. Since the Delaporte distribution has not been 

studied in detail, Chapter 5 first examines the efficiency of parameter estimation methods, 

such as the method of moments, maximum likelihood estimation and method of zero 

frequency. Furthermore, the confidence interval for Delaporte distribution has been 

constructed under two different conditions: (1) the model is correctly specified where the 

asymptotic variance is computed by inverse of the Fisher information matrix and (2) the 

model is misspecified where the asymptotic variance is computed by the outer product and 

Hessian form of information matrix as in White (1982). The robustness of the confidence 

interval based on the two approaches has been verified using generated random samples. In 

addition, we also propose to estimate the orthogonal parameters of the Delaporte 

distribution by using a quadratic distance statistic which is identical in form to White’s 
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(1982) IM test. This is useful since the global maximum of the (log-) likelihood function is 

expected to be attained with the application of the proposed quadratic distance statistic.    

 

1.3 Organization of Thesis 

    The organization of the thesis is as follows. Chapter 1 gives a general introduction 

including the overview on the topic of parameter estimation, goodness-of-fit test, 

orthogonal parameterization and model misspecification. It also provides a summary of 

contributions of the thesis. 

    Chapter 2 gives a brief literature survey about the background and motivation for the 

work of the thesis. 

    Chapter 3 proposes a new goodness-of-fit test and the method is illustrated using 

negative binomial (NB) distribution. Some empirical distribution function (EDF) statistics 

are considered for comparison purpose. Besides, we compare the proposed test with Jarque-

Bera test which is well known as a goodness-of-fit test for normality. 

    Chapter 4 examines the orthogonality of the mean, µ , for models with more than two 

parameters. In particular, the orthogonal parameters for a class of Poisson-convolution 

models have been derived. 

    Chapter 5 studies on the Delaporte distribution, a model for claim number process. 

Statistical inference for this distribution has been examined exclusively. 

    Chapter 6 concludes the thesis with a summary of the research findings and proposes 

future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Maximum Likelihood Estimation 

    Maximum likelihood estimation (MLE), one of the main tools in modern statistical 

inference, was proposed and developed by Fisher in the 1920s (see Fisher, 1925). Consider 

a random sample of size n, where xi denotes the i-th observation from a population that has 

probability density function or probability mass function ( );P x Θ . The function 

 ( ) ( )
1

;
n

i

i

L P x
=

Θ = Θ∏                                                                                    (2.1) 

is known as the likelihood function, where Θ  represents the vector of unknown parameters. 

The value of Θ  that maximizes (2.1) is the ML estimate. 

    For discrete distributions which take non-negative integers, the likelihood function is 

expressed as 

 ( ) ( )
0

k

t
f

k

L P k
=

Θ = ∏   

where ( )P k  and fk respectively denotes the probability mass function and the frequency of 

k counts for k = 0,1,2,…, t and t is the largest count in the data set. In practice, it is more 

convenient to deal with the log-likelihood function given by 

 ( ) ( )
0

ln ln
t

k

k

L f P k
=

Θ =∑                (2.2) 

bearing in mind that 

 
0 0 1

,
t t n

k k i

k k i

f n kf x
= = =

= =∑ ∑ ∑ .                                                       
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    Hence, from (2.2), the partial derivative of the log-likelihood function is given by 

( ) ( )
( )

( )ln ln 1
k k

k k

L P k P k
f f

P k

∂ Θ ∂ ∂
= =

∂Θ ∂Θ ∂Θ
∑ ∑            

The maximum likelihood estimator Θ̂  is given by 

Θ̂  = 

Θ
maxarg log ( )L Θ . 

MLE has wide application in parameter estimation and inference in statistics. MLE can be 

developed for a large variety of situations. One important aspect of MLE is that the method 

has desirable mathematical and optimality properties. For instance, the large sample theory 

of asymptotic normality, consistency and efficiency for MLE are well established if the 

model is correctly specified. Moreover, one of the most useful properties of MLE is the 

invariance property (see Zehna, 1966 and Casella and Berger, 2002), that is, if θ̂  is the ML 

estimator of θ  and if h is a function, then ( )ˆh θ  is the ML estimator of ( )h θ . The proof of 

invariance property is given by Berk (1967). Therefore, the same MLE solution is obtained 

independent of the parameterization used. Furthermore, there are a number of statistical 

inference methods which are developed using MLE. For example, MLE is the basis for the 

chi-square test, Bayesian methods, inference with missing data, modeling of random effects, 

and model selection criteria such as the Akaike information criterion (Akaike, 1973) and 

the Bayesian information criterion (Schwarz,1973).  

However, one still needs to be aware of the limitations of MLE. One of the problems is 

that ML estimates can be heavily biased for finite (small) sample. Besides, the complexity 

of MLE depends on the form of the likelihood equation which involves the density function 

of the model.  It is often not trivial to find analytical expressions for many problems and we 

must resort to more elaborate techniques. In such situations, it is necessary to use numerical 

methods to evaluate the MLE by successive iteration. There is a variety of numerical 
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methods which are available for locating the root of an equation. For example, Kale (1961) 

has discussed several of these methods (the fixed-derivative Newton, Newton-Raphson and 

‘scoring for parameters’ methods) for obtaining the MLE of a single parameter under the 

usual regularity conditions, from the point of view whether or not they satisfy certain 

desirable probabilistic properties as n → ∞ . In a subsequent paper, Kale (1962) makes a 

similar study for the multi-parameter case. Furthermore, in any practical problem, the 

associated existence of a unique consistent root and regularity conditions are no guarantee 

that a single root of the likelihood equation will exist for a simple sample as above. In fact, 

multiple roots often exist, corresponding to multiple relative maxima of the likelihood 

function, even if the regularity conditions are satisfied. Barnett (1966) has also pointed out 

that there are cases where the likelihood equation may have an unbounded number of roots. 

When this problem occurs, we find that MLE can be sensitive to the choice of starting 

values in order to obtain the global optimum solutions. Kirkpatrick, Gelatt and Vecchi 

(1983) have introduced a stochastic optimization algorithm known as simulated annealing 

(SA). In theory, SA is able to locate the global maximum (see section 2.5 for details). 

However, SA in practice takes a comparative longer time to find the solution and SA does 

encounter problem when the log-likelihood function is ill-conditioned; for example, the 

log-likelihood is “flat” for some parts of the parameter space. Gan and Jiang (1999) have 

proposed a test for global maximum given that the model is correctly specified and claimed 

that the global maximum will be obtained if and only if the following condition (Bartlett’s 

First Identity) is satified, 

 

2 2

2

log log
0,

L L

θ θ

∂ ∂ 
+ ≈ 

∂ ∂ 
 

where L is the likelihood function and θ  is an unknown parameter. 
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Various aspects of MLE have been discussed in the statistical literature. Sprott (1983) 

has examined a large class of convolution and generalized models where the number of ML 

equations may be reduced. Thus, for two-parameter distribution with the sample mean as a 

solution of one of the score function, there is only a single equation to be solved iteratively.  

The problem of high correlation between ML estimators can be solved or reduced by 

orthogonal parameterization (see section 2.2). Habibullah and Katti (1991) have proposed a 

modified procedure to improve the convergence rate of steepest descent method in the 

maximization of the likelihood functions of some widely used generalized distributions. 

Futhermore, Yanagimoto (1991) has studied an estimation problem of a model using 

conditional maximum likelihood estimator.  

In general, ML estimators are not robust and inconsistent when the model is misspecified. 

There are some studies about the behaviour of maximum likelihood estimators under model 

misspecification. Quasi-maximum likelihood estimation (QMLE) in the presence of 

misspecified models has been considered, for instance, by White (1982), and Gourieroux, 

Monfort and Trognon (1984).  

 

2.2 Orthogonal Parameterization 

    Cox and Reid (1987) have studied and summarized some of the desirable properties and 

consequences of parameter orthogonality in maximum likelihood estimation. Parameter 

orthogonality is defined as follows.  Consider a vector of unknown parameters, θ  

partitioned into two vectors 1θ  and 2θ  of length 1p  and 2p  respectively, where 

1 2p p p+ = . 1θ  and 2θ are said to be orthogonal if the elements of the information matrix 

satisfy 
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2
1 1ln ln ln

; ; 0,
s t

s t s t

L L L
i n E n Eθ θ θ θ

θ θ θ θ
− −   ∂ ∂ ∂

= = − =   
∂ ∂ ∂ ∂        

for s = 1, … , p1, t = p1+1, … , p2 and L is the likelihood function.   

The construction of orthogonal parameters has been generalized based on the arguments of 

Huzubazar (1950) and Jeffreys (1961, p.208) (refer to Cox and Reid, 1987, p.3). 

Orthogonal parameters for some well known distributions have been derived. The two 

papers are then examined for the application of orthogonal parameters to conditional 

inference. 

    Orthogonal parameterizations of distributions with two parameters are well reported. For 

examples, Huzurbazar (1956) has considered the orthogonal parameterization for an 

exponential family type of distributions. Huzurbazar (1950) discussed the orthogonal 

parameterization of the negative binomial distribution while for the Poisson-inverse 

Gaussian it has been considered by Stein, Zucchini and Juritz (1987). Willmot (1988) has 

examined orthogonal parameterization for a large family of discrete distributions which 

includes many well-known distributions. The orthogonal parameterization of the mean and 

a shape parameter is derived. Willmot also showed that the problem of inherently high 

correlation of the maximum likelihood estimators for the standard contagious distribution 

given by Douglas (1980) can be solved or reduced by using orthogonal parameterization. 

Willmot (1990) considered orthogonal parameterization involving the mean for 

distributions with two unknown parameters. He has demonstrated a simple construction of 

a parameter orthogonal to the mean and the method is given as follows. Let ( )f x  and 

( ) ( )log tX
C t E e =    be the probability mass function or probability density function and 

the cumulant generating function (cgf) for a two-parameter distribution respectively, where 

X is a random variable. Suppose that ( )f x  has two parameters, µ  and θ , where µ  is the 
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population mean and ( ),σ σ µ θ=  is the population standard deviation. The maximum 

likelihood estimate, µ̂  for the mean µ , is the sample mean under the usual regularity 

conditions. Therefore, as noted by Sprott (1983), one must have the functions ( ),g g µ θ=  

and ( ),h h µ θ=  such that 

 ( ) ( ) ( )ln ln 0,f x g f x h x µ
µ θ

∂ ∂
+ + − =

∂ ∂
                              (2.3) 

or equivalently, 

 ( ) ( ) ( ) 0.C t g C t h C t
t

µ
µ θ

∂ ∂ ∂ 
+ + − = 

∂ ∂ ∂ 
                  (2.4) 

We then define the asymptotic variance-covariance matrix of ( )ˆˆ ,µ θ  as the inverse of the 2 

by 2 Fisher information matrix, ( )ij
A a= ; for example, 

 22a = 2[{ ln ( ) / } ]nE f X θ∂ ∂ .               (2.5) 

By differentiating the identity ( ) ( ) 0x f x dxµ− =∫  with respect to µ , we get 

 1[( ){ ln ( ) / }] 0.
j

E X f Xθ θ θ− ∂ ∂ =               (2.6) 

Thus, from (2.3), (2.5) and (2.6), 

 2 2 2

11 22 ,a g a nh σ= +   12 21 22.a a ga= = −           

where ( )
22

E Xσ µ = −
 

. So we have 

 

2 2 2

22 22

22 22

g a nh ga
A

ga a

σ + −
=  

− 
               (2.7) 

Note that ( ) 2 2 2

11 22 12 22det A a a a nh aσ= − = . By writing ( )1 ijA a− =  and letting µ̂  denote the 

sample mean, (2.7) leads to 

 asvar ( µ̂ ) = 11
a = 2 nσ , ascov ( ˆˆ ,µ θ ) = 12

a  = 2 .g nσ  
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Suppose that ( ),φ φ µ θ=   is the new proposed parameter, we find that 

 ascov ( ˆˆ ,µ φ ) = ascov ( ˆˆ ,µ θ )
φ

θ

∂

∂
 + asvar ( µ̂ )

φ

µ

∂

∂
. 

The parameter φ  will be orthogonal to µ  if ascov ( ˆˆ ,µ φ ) = 0 (Willmot, 1990) and it has to 

satisfy  

 0.g
φ φ

µ θ

∂ ∂
+ =

∂ ∂
  

    The above results are then applied to the construction of orthogonal parameterizations for 

a fairly general class of compound distributions and convolutions. In particular, Willmot 

(1990) first considered the models which may be expressed in compound Poisson form 

with the power series. The cgf is defined by 

 ( )
( )
( )

1

t
A e

C t
A

θ
λ

θ

  
= − 

  

               (2.8) 

where ( )A θ  is the series function. From (2.8), one has 

 ( ) ( )' ,A Aµ λθ θ θ=   ( ) ( ){ }2 1 '' 'A Aσ µ θ θ θ= + . 

It follows that, for the family of distributions with cgf (2.8), the mean ( ) ( )'A Aµ λθ θ θ=  

is orthogonal to  

 
( ) ( )

.
'A A

µ λ
φ

θ θ θ
= =  

    As an illustration, consider the negative binomial distribution with cgf 

 ( ) ( ) ( ){ }ln 1 1 ,t
C t r eθ θ= − −  

which is of the same form as (2.6) with 

 ( )ln 1 ,rλ θ= − −  ( ) ( )ln 1 .A θ θ= − −   
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Intuitively, the mean ( )1rµ θ θ= −  is orthogonal to .rφ =  The result is used in Chapter 3 

in order to simplify the proposed test statistic for the goodness-of-fit problem. 

     Willmot (1990) has also discussed orthogonal parameterization for convolution models 

which involve the convolution of a Poisson and a power series distribution with cgf 

 ( ) ( ) ( ) ( )1 ,t tC t e A e Aλ θ θ= − + −               (2.9) 

where ( ){ }exp A θ  is the series function. One finds from (2.9) that 

 ( )' ,Aµ λ θ θ= +  ( )2 2 '' .Aσ µ θ θ= +  

Hence, the mean ( )'Aµ λ θ θ= +  is orthogonal to  

 ( )'A
µ λ

φ θ
θ θ

= − =  

for the family of distributions with cgf defined by (2.9). 

    Willmot (1988, 1990) has considered the orthogonality for a wide class of discrete 

models with two parameters. Results for distributions with more than two parameters do 

not seem to be well-publicized in the statistical literature. In Chapter 4, we have extended 

the work of Willmot (1990) to models with more than two parameters. The remaining 

parameters after reparameterization are treated as nuisance parameters. In addition, we have 

derived the orthogonal parameters for a class of Poisson-convolution models. 

 

2.3 Maximum Likelihood Estimation under Model Misspecification 

In practice, model misspecification occurs rather frequently. We shall focus on the 

effects of model misspecification on maximum likelihood estimators (MLEs). The 

misspecification of the model would normally lead to the violation of the properties of the 

maximum likelihood estimator. The consistency and asymptotic normality of the estimator 

will need further justification if one does not assume that the probability model is correctly 
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specified. Berk (1966, 1970) has considered the consistency question by using the Bayesian 

approach. Huber (1967) has given a general condition where the MLEs converge to a limit 

although the probability model is not correctly specified. The approach follows Wald 

(1943). Huber has also studied the asymptotic normality of the MLEs. Akaike (1973) 

pointed out that the maximum likelihood estimator is just an estimator for the parameters 

which minimize the Kullback-Leibler Information Criterion (KLIC) when the true model is 

unknown.  

White (1982) has reviewed and studied properties of MLEs in the presence of 

misspecification. Some simple conditions and treatments for consistency and asymptotic 

normality were given. In addition, White has proposed a useful diagnostic test on 

misspecification based on the quasi-maximum likelihood estimator (QMLE) and the 

information matrix. The word “quasi” means that the ML estimators have been obtained 

from the log-likelihood of a misspecified model. When the model is correctly specified, one 

finds that the QMLE is the same as the usual MLE. Based on Assumptions A1 and A2 (see 

Appendix A), the QMLE of the sample is defined as (see White, 1982, p. 2-3), 

 ( ) ( )1

1

ln ; ln ; ,
n

n i

i

L X n f Xθ θ−

=

≡ ∑  

where , 1,..., ,
i

X i n=  is the independent random 1 M×  vectors and a QMLE is denoted as a 

parameter vector ˆ
n

θ  which solves the following condition, 

 ( )max ln ;nL X
θ

θ
∈Θ

. 

   In other words, the QMLE is generally a strongly consistent estimator for the parameter 

vector which minimizes the KLIC. Besides, QMLE is considered as a special case of 

LeCam’s (1953) asymptotic normality result where the asymptotic covariance matrix of the 
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QMLE no longer equal to the inverse Fisher’s information matrix. The more general form 

of the asymptotic covariance matrix which can be estimated consistently is given by 

 ( ) ( ) ( ) ( )
1 1

C A B Aθ θ θ θ
− −

= . 

When the model is correctly specified, ( ) ( )A Bθ θ= − and ( ) ( ) ( )
1 1

C A Bθ θ θ
− −

= − = , 

where ( )A θ−  is the Fisher’s information matrix. White (1982) introduced the IM test, a 

new test for misspecification by using the latter properties of QMLE. The details of the IM 

test are provided in section 2.4. 

White’s results have received much attention from researchers and extensive work has 

been done on the theoretical aspect of misspecification. In addition, many statistical 

techniques that are robust to misspecification have been proposed (see Fomby and Carter 

Hill, 2003 for details) and these techniques are found to be useful in empirical research.    

 

2.4 Information Matrix Test 

    White (1982) introduced the Information Matrix (IM) test as a general test to detect 

model misspecification based on the information matrix equality. According to the 

information matrix equivalence theorem, when the model is correctly specified, the Hessian 

form of the information matrix ( )A θ−  and its outer product form ( )B θ  satisfies 

( ) ( ) 0A Bθ θ+ = . The failure of this equality implies misspecification of the model. 

However, ( ) ( ) 0A Bθ θ+ =  does not imply that the model is correctly specified. 

    In general, if expectations exist, the Hessian matrix ( )A θ  and outer product matrix ( )B θ  

for the information matrix are defined as (see White, 1982) 

( )
( )2 ln ;

,
i j

P x
A E

θ
θ

θ θ

 ∂
=  

∂ ∂  
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( )
( ) ( )ln ; ln ;

. .
i j

P x P x
B E

θ θ
θ

θ θ

 ∂ ∂
=  

∂ ∂  
  

    The formal definition of IM test is given by Theorem 1 (see Appendix A).  Notice that 

the original form of White’s IM test is not easy to compute since it involves analytical third 

derivatives of the covariance matrix. In addition, available evidence showed that the 

asymptotic 2χ  distribution is always a poor approximation to the finite sample distribution 

of the test statistic. Therefore, the true size of IM test in finite samples often differs greatly 

from the nominal size derived from asymptotic theory. This has been shown in Monte 

Carlo experiments as reported by Taylor (1987), Orme (1990), Chesher and Spady (1991), 

Davidson and MacKinnon (1992), and Horowitz (1994). Several methods have been 

advocated to overcome the problem. For instance, Chester and Spady (1991), by using a 

higher-order Edgeworth expansion, improved upon the critical values for the IM test 

statistic of some specific models; but this is algebraically tedious and difficult to implement. 

Davidson and MacKinnon (1992) have developed a variant of the IM test based on the 

double-length artificial regressions while Horowitz (1994) suggested bootstrap-based 

critical values. Recently, Dhaene and Hoorelbeke (2004) have examined a new form of the 

IM test where the sample covariance matrix is estimated by parametric bootstrap. Dhaene 

and Hoorelbeke (2004) stated that their version of the test is easier to compute and requires 

no analytical derivations. However, it can be time consuming if one decides to use 

bootstrap-based critical values because a nested bootstrap is required. Furthermore, Croux, 

Dhaene, Hoorelbeke (2006) have studied the behavior of IM test when the ML estimators 

are replaced by robust estimators in constructing the test. The purpose of this change is to 

reduce the masking effect when the outliers are present and it can also improve the power 

of the test. In short, IM test do play an important role for the detection of misspecification, 
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however, precautions have to be taken in handling the estimation of the covariance matrix.  

We have applied the IM test proposed by Dhaene and Hoorelbeke (2004) in the goodness-

of-fit problem mentioned in Chapter 3 for comparison purpose.  

 

2.5 Simulated Annealing 

    In recent years, many researchers have considered stochastic methods in the numerical 

optimization of an objective function. Simulated annealing (SA) proposed by Kirkpatrick, 

Gelett and Vecchi (1983) is one of these stochastic methods and it makes less assumptions 

compared to the “classical” optimization methods. SA is first developed based on the ideas 

of Metropolis et al. (1953). Its genesis involves the simulation of a system of particles with 

a change in temperature and such system will try to find an equilibrium point that 

minimizes the total energy under perturbation. Metropolis et al. have applied statistical 

thermodynamics in order to estimate the equilibrium points. Hence, Kirkpatrick et al. (1983) 

have implemented these ideas in a more general optimization problem, where the value of 

the objective function represents the energy and Metropolis’ temperature is treated as a 

control parameter in the optimization process. Therefore, SA’s roots are in thermodynamics, 

where one studies a system’s thermal energy. The concept of the algorithm is motivated by 

the cooling of molten metal. The metal reaches a low energy stage after slow cooling 

(annealing). Inherent random fluctuations in energy allow the annealing system to escape 

local energy minima and to achieve the global minimum.  

In fact, many researchers would usually experience the common difficulties (slow rate of 

convergence, run-time execution, etc) when implementing some “classical” optimization 

methods such as Newton-Raphson, fixed derivative Newton, Davidon-Fletcher-Powell, and 

the simplex method for a sophisticated distribution which have multiple roots.  However, 
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SA is specially designed for functions with multiple optima and it makes fewer 

assumptions on the “shape” and nature of the function. SA explores the entire surface of the 

function very roughly, and tries to optimize the function during its uphill and downhill 

moves. Thus, it is much more robust than the classical algorithms. This robustness comes at 

a cost-longer run time. However, in an era of increasingly cheaper computing, this 

substitution of computer time for trial, error, and frustration should be encouraged. 

    We give a brief technical explanation of the SA algorithm. The algorithm at the 

beginning randomly chooses a trial point within the step length v (a vector of length n) of 

the user-selected starting point. The function is evaluated at this trial point, and is compared 

to its value at the initial point. In a maximization problem, all uphill moves are accepted, 

and the algorithm continues from an accepted trial point (note the step length is always 

centered on the trial point and not 0). However, downhill moves may be accepted; the 

decision is made by the Metropolis criteria, which uses temperature, T, and the magnitude 

of the downhill move in a probabilistic manner. That is, the higher the temperature and the 

smaller the downhill move, the more likely that the move will be accepted. If the trial point 

is rejected, then another point is chosen for a trial evaluation. 

    Each element of v, the step length is adjusted periodically so that half of all function 

evaluations in that direction are accepted. A fall in temperature is imposed upon the system 

with the rT variable by Ti+1 = rT · Ti where i denotes the i
th

 iteration. Downhill moves are 

less likely to be accepted, and the percentage of rejections rises as the temperature declines. 

Given the scheme for the selection of the step length, it falls as a result. Thus, as 

temperature declines, the step length falls, and simulated annealing focus upon the most 

promising area for optimization. More details about the algorithm, advantages and 

disadvantages of SA have been reviewed by Fouskakis and Drapper (2002). We have used 
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the SA algorithm in Matlab (see Goffe, 1996) to handle most of the parameter estimation 

problems appeared in the next few Chapters.  

    Bohachevsky, Johnson and Stein (1986) have presented a generalized simulated 

annealing for function optimization and the method is applied to some complicated 

examples. The better and improved optimum is determined. Bertsimas and Tsitsiklis (1993) 

have studied the convergence and behavior of simulated annealing in its applications. 

Furthermore, Brooks and Morgan (1995) have given an overview on the theory of 

simulated annealing. A hybrid approach which combines the simulated annealing and a 

traditional optimization algorithm has been developed. The hybrid approach has performed 

better than the two algorithms if they are used separately. 
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CHAPTER 3 

A GOODNESS-OF-FIT TEST BASED ON AN 

INFORMATION MATRIX IDENTITY 

 

3.1 Introduction 

    Let 1 2, , . . .,
n

X X X be a random sample from a distribution ( )F x . An important issue 

in a statistical analysis is to determine if a given random sample fits a probability model 

well. This is a goodness-of-fit problem and it leads to the consideration of the following 

null and alternative hypotheses for a given distribution ( )G x : 

  H0: ( ) ( ) ,F x G x=  

 Ha: ( ) ( ).F x G x≠                 (3.1)         

    Many goodness-of-fit tests have been proposed and studied. Tests like the Kolmogorov-

Smirnov, Anderson-Darling and Cramér-von Mises based on the empirical distribution 

function (EDF) ( )
n

F x  have been considered (see Stephens, 1974). Here, we consider a 

goodness-of-fit test based on an information matrix identity known as Bartlett’s First 

Identity which states that the outer product and Hessian form of the information matrix are 

equal under correct model specification. This identity is the basis of White’s (1982) 

Information Matrix (IM) test for model misspecification. However, the proposed test differs 

from the IM test in two ways. Firstly, the goodness-of-fit test statistic will be considered 

under orthogonality of the parameters with the bootstrapped critical values adjusted for bias 

by using the bias-corrected accelerated or 
a

BC  method. When parameters are orthogonal, 

the proposed test statistic is simplified and this reduces computation. Willmot (1988, 1990) 
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has derived orthogonal parameters for a wide range of discrete distributions. Secondly, the 

direct application of Bartlett’s First Identity as a goodness-of-fit test avoids the need to use 

the complicated covariance matrix. This also leads to simplification and reduces 

computation. In contrast White’s IM test involves derivatives of the covariance matrix. The 

application of Bartlett’s First Identity for goodness-of-fit does not seem to have been 

widely reported in the statistical literature. The proposed goodness-of-fit test will be 

illustrated with the negative binomial (NB) distribution. 

    The NB distribution is a well-known model which may be formulated as a mixed or 

compound Poisson distribution. There are various parameterizations of the NB (see 

Johnson, Kemp and Kotz, 2005, p.209) and the following parameterization for the 

probability mass function (pmf) will be adopted in this study: 

 

 

1
1 , 0,1,2,...,

( ; , ) 1

0 , otherwise.

x
x

x
P x

φ
φ µ µ

µ φ φ µ φ µ φ

 + −    
− =    = − + +     




          (3.2) 

where 0µ >  and 0φ > are the mean and index parameters respectively. For this 

parameterization, the two parameters are orthogonal, that is, the maximum likelihood 

estimators (MLEs) of µ  and φ  are uncorrelated.  

    Parameter orthogonality is formally defined as follows.  Consider a vector of unknown 

parameters, θ  partitioned into two vectors 1θ  and 2θ  of length 1p  and 2p  respectively, 

where 1 2p p p+ =  (Cox and Reid, 1987). 1θ  and 2θ are said to be orthogonal if the 

elements of the information matrix satisfy 

 
2

1 1ln ln ln
; ; 0,

s t

s t s t

L L L
i n E n Eθ θ θ θ

θ θ θ θ
− −   ∂ ∂ ∂

= = − =   
∂ ∂ ∂ ∂   
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for s = 1, … , p1, t = p1+1, … , p2 and L is the likelihood function.   

    This chapter is arranged as follows. Section 3.2 gives preliminaries on the goodness-of-

fit tests based on the EDF for discrete distributions (see Famoye, 2000). A new test statistic 

based on the Bartlett’s First Identity (BFI) is then proposed in section 3.3. Some asymptotic 

properties of the proposed test are discussed in section 3.3.2. In section 3.3.3 and 3.3.4, the 

procedure for bootstrapping the critical values of the proposed test statistic with corrections 

by the 
a

BC  method is given. Using Monte Carlo simulations, the proposed test is then 

compared with the discrete EDF tests and the IM test (see Section 2.4) as implemented 

recently by Dhaene and Hoorelbeke (2004). The Pearson chi-square goodness-of-fit test has 

not been considered due to its poor power.  The results of the simulations are discussed in 

section 3.3.6. Section 3.4 gives the results of the comparison between BFI Goodness-of-fit 

test and Jarque-Bera test. The conclusion is given in section 3.5. 

 

 

3.2 Empirical Distribution Function based Goodness-of-fit Tests 

    Empirical Distribution Function (EDF) based goodness-of-fit tests consider the 

discrepancy between the sample EDF ( )
n

F x  and the actual distribution function ( ; )F x θ  

where θ  is the vector of parameters. If the assumed model is correct, ( )
n

F x  is expected to 

be close to ( ; )F x θ . If not, one suspects that the hypothetical distribution function ( ; )F x θ  

is not the correct model. 

    For a random sample 1 2, , . . .,
n

X X X  of size n from a discrete distribution, let fx be the 

observed frequencies, where x = 0, 1, 2, …, k, with k being the largest observation and 

 
0

.
k

x

x

n f
=

=∑                    
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The EDF for the sample is given by 

 
[ ]

[ ],

0

1
( ) 0,1, 2,3,..., .

x

n i

i

F x f x k
n =

= =∑    

where [ ]x  denotes the greatest integer that is less than or equal to x (or integer part of x).          

The theoretical distribution function is  

 
( )

0

( ; ) ; , 0,
x

i

F x P i xθ θ
=

= ≥∑
                

where ( );P i θ  is the probability mass function. 

    In order to test the hypotheses in (3.1), we consider the four modified EDF test statistics 

for observed count data, 

 

   (a)  Kolmogorov-Smirnov statistic, Kd 

  
sup ( ) ( ; )

d x n
K F x F x θ= −

�

.                

   (b)  Cramér-von Mises statistic, Wd 

  

2

0

( ) ( ; ) ( ; ).
k

d n

x

W n F x F x P xθ θ
=

 = − ∑
� �

               

    (c)  Anderson-Darling statistic, Ad 

 

2

0

( ) ( ; ) ( ; )
.

( ; ) 1 ( ; )

k
n

d

x

F x F x P x
A n

F x F x

θ θ

θ θ=

 − =
 − 

∑
� �
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    (d)  Watson statistic, Ud 

 

2
2

0

( ) ( ; ) ( ; ) ,
k

d n

x

U n F x F x P x Qθ θ
=

 
 = − −   

∑
� �

           

 0

where ( ) ( ; ) ( ; ).
k

n

x

Q F x F x P xθ θ
=

 = − ∑
� �
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3.3 A Goodness-of-fit Test based on Bartlett’s First Identity 

3.3.1 Introduction 

    White’s IM test has been defined based on Bartlett’s First Identity (BFI). According to 

BFI, when the model is correctly specified, the Hessian form of the information matrix 

( )A θ−  and its outer product form ( )B θ  satisfy ( ) ( ) 0A Bθ θ+ = . The failure of this 

equality implies misspecification of the model.  

    In general, the sample quantities of Hessian matrix ( ) ( )( ),
ij

A A nθ θ=  and outer product 

matrix ( ) ( )( ),
ij

B B nθ θ=  for the information matrix are defined as (see White, 1982) 

( )
( )2

1

0

ln ;
, ,

k

ij x

x i j

P x
A n n f

θ
θ

θ θ
−

=

∂
=

∂ ∂
∑                          (3.3) 

( )
( ) ( )1

0

ln ; ln ;
, . .

k

ij x

x i j

P x P x
B n n f

θ θ
θ

θ θ
−

=

 ∂ ∂
=  

∂ ∂  
∑             (3.4) 

    The proposed BFI goodness-of-fit test statistic, under the assumption of orthogonality of 

parameters, is defined as 

( ) ( ) ,D tr A B= +  θ θ                (3.5)     

where θ is the parameter vector of the model. The trace (tr) of the matrices ( )A θ  and 

( )B θ  are considered because off-diagonal elements of the information matrices are zero 

when parameters are orthogonal.   

    Due to the orthogonality of parameters and direct application of BFI, which dispenses the 

need to use the covariance matrix, the proposed test statistic is of a much simpler form than 

the IM test. We focus on the goodness-of-fit test for NB distribution as given in (3.1). Since 

the probability mass function (3.2) is in terms of orthogonal parameters µ  and φ , where 

the ML estimator µ̂ of the mean µ  is the sample mean X , the test statistic may be based 
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on φ  only, given ˆ Xµ = . In this case, the Hessian and outer products matrices are reduced 

to a scalar. Let ˆ( ) ( ; , )P x P x µ φ= . Therefore, we can rewrite (3.3) and (3.4) as 

( )
( )2

1

2
0

ln
, ,

k

x

x

P x
A n n fφ

φ
−

=

∂
=

∂
∑                      (3.6)   

( )
( ) ( )1

0

ln ln
, .

k

x

x

P x P x
B n n fφ

φ φ
−

=

 ∂ ∂
=  

∂ ∂ 
∑ .             (3.7)   

    The first and second derivatives of the log-likelihood function, with µ  known, are  
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where ( )/ .µ µ φΦ = + For the NB goodness-of-fit problem, the goodness-of-fit test statistic 

is given by 

( ) ( ), ,D A n B nφ φ= + .              
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   The rejection region, R of the test statistic of size α  is given by 

  { },n
R D c α= ≥ , 

where ,n
c α  is a bootstrapped critical value determined from , 0  is true .

n
P D c Hα α ≥ =   

 

3.3.2 Asymptotic Properties  

In this section we summarize some properties of the proposed goodness-of-fit test given in 

section 3.4.1. As in White’s IM test, for the proposed goodness-of-fit test, it is assumed that  

(i) global ML estimates (MLE) are used (consistent estimates). 

(ii) the null hypothesis is that the model is correctly specified. 

    If local ML estimates (which are inconsistent estimates) are used in the proposed 

goodness-of-fit test then Bartlett’s First Identity is not satisfied leading to the conclusion 

that model is not correctly specified even though the model is correct. That is the use of 

local MLE gives rise to model misspecification when the proposed goodness-of-fit is 

applied. Therefore, the BFI goodness-of-fit test is not applicable if global ML estimates are 

not used. 

 

(a)   Consistency of Goodness-of-Fit Test  

    We wish to show that the proposed goodness-of-fit test is consistent, that is, the null 

hypothesis (of correct specification of model) is rejected if the test statistic ( )nD θ  which is 

defined in (3.8) has a value that differs sufficiently from 0.  

    As in White (1982, p.9), we define 

( )
( ) ( ) ( )2 ln ; ln ; ln ;

, . ,
k k k

k

i j i j

P x P x P x
d x

θ θ θ
θ

θ θ θ θ

 ∂ ∂ ∂
= +  

∂ ∂ ∂ ∂  
�

 

1,2, . . ., ( 1) / 2, , 1,2, . . ., , 1,2,3, . . .,p p i j p k n= + = =�  
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and ( ) ( )
1

1ˆ ˆ,
n

n k n

k

D d x
n

θ θ
=

 
=  

 
∑� �

 . Define a 1q × vector 

( ) ( )1 2
ˆ , , . . ., , ( 1) / 2

n n q
D D D D q p pθ ′= ≤ +  

so that  

( ) ( )
1

1ˆ ˆ, ,
n

n n k n

k

D d x
n

θ θ
=

 
=  

 
∑                           (3.8)                              

where ( ) ( )1 2
ˆ, , ,. . .,

k n q
d x d d dθ ′= .  

    Let ( ) ( ) ( )D A Bθ θ θ= +  (see White, 1982, p.5), where 

 ( )
( )2 ln ;

k

i j

P x
A E

θ
θ

θ θ

 ∂
=   ∂ ∂ 

 and ( )
( ) ( )ln ; ln ;

.
k k

i j

P x P x
B E

θ θ
θ

θ θ

 ∂ ∂
=   ∂ ∂ 

. 

    The definitions above are used in the following Proposition. 

 

Proposition 3.4.2.1. Consider a probability space ( ), , PΩ ℑ . Let pRΘ ⊂ be compact and 

{ }nD  be a sequence of measurable functions which are continuous with respect to Θ .  

Suppose { }ˆ
n

θ is a sequence of measurable functions such that *
ˆ
n

θ θ→ in probability 

where *θ ∈Θ  and ( )D θ is a continuous function of θ ∈Θ . Then ( ) ( )*
ˆ

n n
D Dθ θ→ in 

probability. 

 

Proof: By the assumption of the compactness of the parameter space pRΘ ⊂ , there exists a 

unique  maximizer *θ of the log-likelihood function. Hence, by the Weak Law of Large 

Numbers, ( ) ( )nD Dθ θ→  in probability or ( ) ( ) 0n
P

D Dθ θ− →  for .θ ∈Θ  Let 

( ) ( ) ( )n nT D Dθ θ θ= −  and ( ) 0n
P

T θ → .  



 30 

    As in White (1982, p.20), proof of Theorem 4.1, we assume that Assumptions A8 and 

A9 (see Appendix A) hold, Taylor’s expansion (Mean Value Theorem, see Appendix B) 

gives 

( ) ( ) ( ) ( )* *
ˆ ˆ

n n n n n n
T T Tθ θ θ θ θ= + − ∇  

where 
n

θ  is between ˆ
n

θ  and *θ . Thus 

( ) ( ) ( )* *
ˆ ˆ

n n n n n nT T Tθ θ θ θ θ− = − ∇  

    Since ( )n n
T θ∇  is bounded, by Assumption A9 and *

ˆ
n

θ θ→ , we have 

( ) ( )*
ˆ 0

n n n
P

T Tθ θ− → .  

    In fact ( )n n
T θ∇  is stochastically bounded, that is, ( ) ( )1

n n P
T Oθ∇ = .    

    Therefore, by the continuity of ( )D θ , ( ) ( )*
ˆ

n n
D Dθ θ→  in probability, leading to the 

conclusion. Note that in the above Proposition, convergence in probability may be replaced 

by convergence with probability 1 (or almost surely) throughout since *
ˆ
n

θ θ→  with 

probability 1 (see Theorem 2, Appendix A). 

 

Remarks: Note that ( ) 0D θ =  if the model is correctly specified. In White’s Information 

Matrix test (Theorem 1, Appendix A), the test statistic is derived under the assumption that 

the model is correctly specified. In the above proposition, the model is not assumed to be 

correctly specified. If the model is not correctly specified, ( ) 0D θ ≠ , and as n → ∞ , 

( )ˆ
n n

D θ tends to a non-zero ( )*D θ provided *
ˆ
n

θ θ→ . We do not want ( )ˆ
n n

D θ to tend to a 

zero value when the model is not correct. This is intuitive but it has to be proved 

mathematically. 
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(b) Asymptotic normality of ( )nnD θ  

We define ( ) ( )
1

, , 1,2, . . .,
p

n ii

i

nD n D n i pθ θ
=

 
= = 

 
∑ . The asymptotic normality of 

( )nnD θ  is given by Theorem 1 (see Appendix A). The details have been derived by 

White (1982). 

 

3.3.3 The Bootstrap Procedure for Bartlett’s First Identity Goodness-of-

fit Test 

     If the null hypothesis in (3.1) is true, that the model is correctly specified, the finite 

sample distribution of the test statistic is dependent on the parameters of the model tested. 

Parametric bootstrap can be used to test (3.1). Therefore, Monte Carlo simulation is used to 

estimate the exact finite sample critical value of the test statistic from the sample data. For 

the IM test, Horowitz (1994) has shown that the finite sample critical values obtained from 

the bootstrap method are more accurate than the asymptotic 2χ critical values.  

    Let ( )xT f denote the BFI test statistic where 
x

f  is the observed frequency. Let 

( ; , )F t µ φ  denote the distribution function under the null hypothesis when µ  and φ  are the 

true but unknown NB parameter values. For a test at a significance level of ,α  let 

,n
c α denote the 1 α− quantile of ( ; , )F t µ φ  which is the critical value of ( )xT f . The Monte 

Carlo procedure to estimate the bootstrapped critical value is as follows: 

 

1.   Generate a random sample of size n from NB ( ,µ φ ) with observed frequencies 

x
f , x = 0,1,2,…,k. 
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2.   Based on the sample from Step 1, estimate the sample mean µ̂ . Conditional on 

µ̂ , φ̂  is obtained by maximum likelihood estimation. 

3.   Calculate test statistic ( )xT f . 

4.   Replicate bootstrap samples, 
n

B  as follows: 

      (a)  Generate a random sample of size n from NB ( ˆˆ ,µ φ ) with observed 

frequencies
jx

f , x = 0, 1,2,…,k, and 1
n

j B≤ ≤ . 

      (b)    Obtain the bootstrap estimators ˆ
j

µ  and ˆ
jφ , 1

n
j B≤ ≤ . 

      (c)    Calculate the test statistic ( )* * ,
jxj

T f  1
n

j B≤ ≤ . 

      (d)    Arrange * * *

1 2, ,...,
nBT T T  in ascending order to obtain 

    * * *

1: 2: :...
n n n nB B B BT T T≤ ≤ ≤ . 

5.   ,n
c α  (see Baringhaus and Henze, 1992) of *F is given by 

         ( )* * *

, : 1: :1 ,
n n n n n nn B n B B

c T T Tα α α αγ +
 = + − −   

where ( )1
n n n

B Bα α= − +    and ( ) ( )1 1
n n n

B Bγ α α= + − +   . Note that ( )*
F t  is the 

empirical distribution function of  * * *

1 2, ,...,
nBT T T  and [ ]u represent the integer part of u. 

Baringhaus and Henze (1992) have advocated the idea that the bootstrap sample size 

[ ]{ }max , 1/
n

B n α=  is sufficient to ensure that the actual level of the test is close to the 

chosen nominal level.  

6. Reject the null hypothesis at level α  if  ( )xT f  exceeds ,n
c α . 
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    N random samples, each of size n, are generated, and Steps 1-6 are implemented for each 

of them in order to estimate the significance level α . The estimated value of α is the 

proportion of number of times that the null hypothesis is rejected in the N random samples. 

    In Step 2, the NB parameter µ is estimated by the sample mean while the parameter φ  is 

estimated by the ML method. It is known for the NB distribution that the ML estimate has 

small standard errors even for small or moderate sample sizes (n = 100 or 200). The 

optimum solution of ML estimator φ̂  may be obtained by using a stochastic optimization 

algorithm such as simulated annealing (see Kirkpatrick, 1983; Goffe, 1996).  

Even though the bootstrapped critical values can bring the empirical level of the BFI test 

close to its nominal level, errors due to the bootstrap are still encountered. Beran (1988) 

suggested a technique called “prepivoting” to overcome this problem. In general, a nested 

double-bootstrap Monte Carlo simulation is used to refine the approximation of the actual 

significance level of the test. Nevertheless, Horowitz (1994) has pointed out that the Monte 

Carlo experiments are very time-consuming because for each replication of the Monte 

Carlo sample there are many inner replications in which the parameters of the null 

hypothesis are re-estimated from the corresponding bootstrap samples.  Due to the 

connection of hypothesis testing with confidence interval, we propose to reduce the error of 

bootstrapped critical values by the 
a

BC  method (Efron, 1993). The 
a

BC  method is 

described further in the next section. 

 

3.3.4 The Bias Corrected and Accelerated method 

    The bias corrected and accelerated ( )aBC  method is commonly used to correct 

deficiencies of the standard and percentile methods. Efron (1993) has defined the levelα −  

endpoint of the BCa interval as 
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where Ĝ  is the cumulative distribution function of the bootstrap replications *φ̂ , ( )
z

α
 is the 

100 thα percentile point of a standard normal distribution. The bias and acceleration 

adjustment in the BCa method are 0ẑ  and ˆ,a  and Φ  is the standard normal cumulative 

distribution function. The details for the construction of 0ẑ  and â  are given by Efron 

(1993). Efron (1993) has shown that the BCa interval is second order accurate, that is, 

[ ]( ) ( )1ˆ .
aBC

P O nφ φ α α −≤ = +                         

Furthermore, the bootstrap-t endpoint STUDφ̂  and BCa endpoint agree to second order 

accurate (see Efron, 1993, p. 160-162): 

[ ] [ ] ( )3
2
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ˆ ˆ

aBC p
O nφ α φ α −= + .             

These facts can be proven by using Edgeworth expansions as given in Hall (1988). 

    To implement the BCa  method, we have modified step 5 of the Monte Carlo procedure: 

*

, : ,
n nn Bc Tα α=                 

where [ ]n nBα α=  and α  is re-defined as: 
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    The comparative simulation results for the BFI test statistic with and without the BCa 

correction are reported in section 3.3.5. 
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3.3.5 Monte Carlo Experiments and Results 

    In this section, we report the results of a Monte Carlo investigation of the finite sample 

empirical level for the BFI test. Next, we examine the power of the BFI test applied in 

goodness-of-fit problem when the critical values are obtained using the bootstrap procedure 

in Section 3.3.3. The EDF tests and the recent implementation of the IM test (
B

ω  test) by 

Dhaene and Hoorelbeke (2004) are used as comparison. 

 

Table 3.1: Maximum Likelihood estimates for NB, 6.75µ =  and 4.50.φ =  

N ˆ Xµ =  φ̂  

100 7.0300 4.8719 

200 6.8200 4.1269 

500 6.5700 4.5666 

1000 6.6980 4.3909 

5000 6.7830 4.5790 

10000 6.7815 4.5884 

  

 

   In the Monte Carlo investigation the effect of small sample size is considered.  It is well-

known that ML estimates have large biases when the sample size is small. Following 

Famoye (2000), a simulation study indicates that the ML estimates for the NB parameters 

have large biases for a sample size of n = 100. The bias reduces when n increases. As an 

illustration, Table 3.1 displays the simulation results based on 100 replications for the NB 

parameter 6.75µ =  and 4.5φ = . It is observed that the ML estimates approaches the true 

parameters value when n exceeds 1000. Therefore, sample sizes of n = 100 and n = 200 are 

considered small for the NB model. 

 

Table 3.2: Empirical level for the BFI test with and without BCa correction, 0.05α = . 

µ  φ  n Bn 
BFI 

(with BCa) 

BFI 

(without BCa) 

1.0 4.0 100 100 0.005 0.000 

6.0 9.0 100 100 0.019 0.008 

3.15 2.1 100 100 0.051 0.028 

2.0 0.5 100 100 0.050 0.016 

Bn – number of bootstrap samples 
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Table 3.3: Empirical level for the EDF, BFI and 
B

ω tests, 0.05α = . 

µ  φ  n Bn Kd Wd Ad Ud BFI B
ω  

1.11 10.0 100 100 0.053 0.045 0.051 0.053 0.005 0.002 

5.11 46.0   0.062 0.053 0.054 0.063 0.006 0.001 

1.11 10.0 200 200 0.040 0.040 0.036 0.050 0.004 0.001 

5.11 46.0   0.054 0.053 0.054 0.052 0.001 0.001 

1.0 4.0 100 100 0.048 0.049 0.047 0.049 0.011 0.005 

4.0 16.0   0.071 0.057 0.054 0.077 0.012 0.002 

1.0 4.0 200 200 0.045 0.044 0.041 0.044 0.016 0.004 

4.0 16.0   0.054 0.055 0.050 0.081 0.009 0.004 

2.0 3.0 100 100 0.063 0.064 0.070 0.058 0.028 0.025 

6.0 9.0   0.063 0.072 0.072 0.071 0.030 0.019 

2.0 3.0 200 200 0.072 0.071 0.070 0.071 0.029 0.028 

6.0 9.0   0.063 0.066 0.055 0.056 0.030 0.020 

3.15 2.1 100 100 0.045 0.047 0.053 0.065 0.021 0.051 

6.75 4.5   0.065 0.067 0.066 0.063 0.035 0.061 

3.15 2.1 200 200 0.045 0.098 0.093 0.058 0.032 0.067 

6.75 4.5   0.065 0.068 0.069 0.063 0.035 0.080 

2.0 0.5 100 100 0.064 0.068 0.065 0.069 0.050 0.084 

8.0 2.0   0.067 0.063 0.066 0.057 0.032 0.125 

2.0 0.5 200 200 0.050 0.045 0.043 0.045 0.055 0.110 

8.0 2.0   0.073 0.064 0.066 0.071 0.065 0.163 

 

    The simulation study for the EDF test statistics, BFI test statistics and 
B

ω  test statistics 

have been developed for different values of parameters µ  and .φ  To study the effect of tail 

lengths, the combinations of NB parameters are chosen to represent short ( µ φ< ) and long 

tails ( µ φ> ) of the distribution. The empirical levels for the EDF and BFI test are based on 

1000 Monte Carlo samples. Each entry in Table 3.3 and 3.4 represents the proportion of 

1000 Monte Carlo samples declared significant by each test using bootstrapped critical 

values. It is found that the EDF test statistics have estimated significance levels of α  very 

close to the chosen nominal level for n = 100. For BFI test and 
B

ω  test, the empirical levels 

of the tests tend to be smaller than the chosen nominal level for certain parameter values 

where the NB distribution has a shorter tail. However, empirical α − levels of the BFI test 

are closer to the selected nominal level when the NB distribution has a longer tail while the 

B
ω  test has empirical levels exceeding the nominal level. This is due to the use of the 
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Hotelling’s 2T distribution. For example, by bootstrapping critical values, as suggested by 

Horowitz (1994), for the parameters 8.0µ =  and 2.0φ =  gives the empirical level for 
B

ω  

test as 0.063 instead of 0.125. Noted that we have only reported the results of 
B

ω  test for 

0.05α =  which is in Table 3.3 since the test has same performance for other significance 

levels. Table 3.2 gives the empirical level for the BFI test with and without BCa correction 

for some parameter combinations. The empirical level for the BFI test is closer to the 

nominal level with BCa correction. The empirical levels from the simulation study with 

1000 Monte Carlo samples are reported in Tables 3.3 and 3.4. Each entry in the tables 

represents the proportion of Monte Carlo samples rejected by each test using the various 

critical values discussed in section 3.3.3. For 0.05α = , the results of empirical level of the 

EDF and BFI tests are very similar to those for 0.10α = .  

 

Table 3.4: Empirical level for the EDF and BFI tests, 0.10α = .  
µ  φ  n Bn Kd Wd Ad Ud BFI 

1.11 10.0 100 100 0.111 0.109 0.117 0.106 0.010 

5.11 46.0   0.108 0.100 0.098 0.095 0.015 

1.11 10.0 200 200 0.108 0.101 0.097 0.102 0.005 

5.11 46.0   0.108 0.106 0.108 0.104 0.006 

1.0 4.0 100 100 0.085 0.084 0.090 0.087 0.026 

4.0 16.0   0.129 0.137 0.140 0.139 0.013 

1.0 4.0 200 200 0.085 0.087 0.088 0.087 0.030 

4.0 16.0   0.134 0.135 0.143 0.133 0.014 

2.0 3.0 100 100 0.108 0.118 0.121 0.115 0.069 

6.0 9.0   0.107 0.121 0.122 0.127 0.087 

2.0 3.0 200 200 0.116 0.130 0.136 0.124 0.060 

6.0 9.0   0.106 0.109 0.108 0.107 0.060 

3.15 2.1 100 100 0.107 0.112 0.122 0.113 0.101 

6.75 4.5   0.110 0.120 0.125 0.113 0.127 

3.15 2.1 200 200 0.107 0.119 0.115 0.119 0.098 

6.75 4.5   0.115 0.114 0.117 0.114 0.103 

8.0 2.0 100 100 0.114 0.103 0.113 0.104 0.102 

2.0 0.5   0.117 0.107 0.119 0.106 0.103 

8.0 2.0 200 200 0.118 0.116 0.119 0.115 0.119 

2.0 0.5   0.107 0.094 0.094 0.095 0.103 
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    In the next part of the simulation study, the powers of the test statistics are compared for 

two alternative hypotheses 
a

H : 

(a) Neyman type-A distribution with parameters λ  and ,θ  NTA ( ),λ θ . 

(b) Poisson-inverse Gaussian with parameters γ  and β , P-IG ( ),γ β . 

    The NTA has pmf (Johnson, Kemp and Kotz, 2005, p. 404) given by 
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    The pmf of the P-IG distribution (Willmot, 1987) is  
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    The NTA and P-IG distributions have been chosen because they are popular distributions 

in various applications. The P-IG distribution is known to have a behavior similar to the 

NB distribution and has been proposed as its alternative (Willmot, 1987) while the NTA 

distribution can be multimodal. Tables 3.5 and 3.6 show the results of 1000 Monte Carlo 

samples generated from distributions under the alternative hypotheses, for sample sizes of  
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n = 100 and n = 200, and tested for the NB model. The modified Anderson-Darling EDF 

test performs well. When the model is correctly specified (NB), the BFI test performs the 

best. When the samples come from the NTA or P-IG distributions, it is comparable to the 

other tests.  Among the EDF tests, the modified Anderson-Darling test performs well. 

Overall, the BFI test is comparable or more powerful than the other tests. 

Table 3.5: Power comparison for the EDF tests and BFI test when 0.05α =  and n = 100. 
Model Kd Wd Ad Ud BFI 

NB(1.11,10.0) 0.053 0.045 0.051 0.053 0.005 

NB(1.0,4.0) 0.048 0.049 0.047 0.049 0.011 

NB(6.75,4.5) 0.065 0.067 0.066 0.063 0.035 

NB(8.0,2.0) 0.067 0.063 0.066 0.057 0.032 

P-IG(2.50,5.0) 0.202 0.271 0.305 0.239 0.217 

P-IG(4.75,2.0) 0.104 0.104 0.117 0.099 0.152 

P-IG(8.0,7.5) 0.389 0.472 0.481 0.473 0.319 

NTA(2.0,3.5) 0.635 0.540 0.585 0.747 0.549 

NTA(4.75,1.5) 0.114 0.130 0.135 0.103 0.150 

NTA(8.93,0.58) 0.070 0.073 0.072 0.068 0.099 

 

 

Table 3.6: Power comparison for the EDF tests and BFI test when 0.05α =  and n = 200. 

Model Kd Wd Ad Ud BFI 

NB(1.11,10.0) 0.040 0.040 0.036 0.050 0.004 

NB(1.0,4.0) 0.045 0.044 0.041 0.044 0.016 

NB(6.75,4.5) 0.065 0.068 0.069 0.063 0.035 

NB(8.0,2.0) 0.073 0.064 0.066 0.071 0.065 

P-IG(2.50,5.0) 0.423 0.490 0.606 0.633 0.605 

P-IG(4.75,2.0) 0.172 0.159 0.207 0.240 0.190 

P-IG(8.0,7.5) 0.560 0.737 0.750 0.686 0.655 

NTA(2.0,3.5) 0.929 0.972 0.990 0.956 0.872 

NTA(4.75,1.5) 0.144 0.170 0.193 0.141 0.164 

NTA(8.93,0.58) 0.070 0.061 0.064 0.057 0.064 

 

3.4 Comparison between Bartlett’s First Identity Goodness-of-fit Test 

and Jarque-Bera test 

  The Jarque-Bera test (JB) is well known as a goodness-of-fit test for normality. It is a 

particular case of White’s IM test if the distribution is normal and the parameters are 

estimated by maximum likelihood estimation. The objective of this section is to derive the 

BFI test for the normal distribution and compare it with the JB test.  
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    The JB test (Jarque and Bera, 1987) is defined as  
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    Bowman and Shenton (1975) have stated that the JB statistic is the sum of squares of two 

asymptotically independent standardized normal distributions. Therefore, JB is 

asymptotically chi-squared distributed with two degrees of freedom. We reject 0H  at 

α − significant level if  2

1 ,2.JB αχ −≥   

    If we consider the normal distribution and estimate parameters by maximum likelihood 

estimation, then White’s IM test is exactly the JB test. However, it is cumbersome to 

implement White’s IM test since we need to compute the covariance matrix. Therefore, the 

BFI goodness-of-fit test as defined in eq. (3.5) is used for a comparison with JB test. 

Let ˆ ˆ( ) ( ; , )f x f x µ σ= . Since normal random variable is continuous, we have rewritten 

equations (3.3) and (3.4) as  
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    The first and second derivatives of the natural log-likelihood function for the two 

parameters are as given below: 
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    For the normal goodness-of-fit problem, the goodness-of-fit test statistic is given by 

( ) ( )ˆ ˆ ˆ ˆ, ; , ;D tr A n B nµ σ µ σ= +   .             

The rejection region, R of the test statistic is given by , 0  is true
n

R P D c Hα = ≥   

where ,n
c α  is a bootstrapped critical value.  

    We have conducted a simulation study on the empirical level of the test. The results 

based on 1000 Monte Carlo samples are reported in Tables 3.7 and 3.8. To compare the JB 

test and BFI goodness-of-fit test, the empirical values have been computed according to 

different α − significance levels and sample sizes n.   

 

Table 3.7: Empirical level for the BFI test. 

 n 

α  10 20 50 100 200 500 

0.01 0.006 0.007 0.012 0.015 0.013 0.015 

0.02 0.016 0.020 0.023 0.024 0.022 0.021 

0.05 0.046 0.052 0.049 0.052 0.051 0.048 

0.10 0.099 0.108 0.104 0.106 0.099 0.096 

0.20 0.198 0.207 0.213 0.199 0.203 0.201 

 

Table 3.8: Empirical level for the JB test. 

 n 

α  10 20 50 100 200 500 

0.01 0.003 0.008 0.015 0.019 0.026 0.018 

0.02 0.006 0.013 0.019 0.023 0.032 0.022 

0.05 0.009 0.023 0.032 0.048 0.047 0.041 

0.10 0.015 0.040 0.050 0.074 0.076 0.096 

0.20 0.026 0.064 0.084 0.129 0.160 0.172 
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    Overall, we observe that the computed empirical values are quite close to the nominal 

level. In some cases ( 0.05,0.10,0.20α = ) when the sample sizes are small, the empirical 

values of JB test are even smaller than the nominal level. However, the results for the BFI 

test seem to agree with the JB test as the sample size increases.   

 

3.5 Conclusion 

    Based on the simulation study conducted, it appears that the proposed Bartlett First 

Identity test under orthogonality of model parameters, as exemplified by the negative 

binomial distribution, is viable as a goodness-of-fit test. Although the proposed test is 

closely related to White’s Information Matrix test,  parameter orthogonality and obviating 

the need to use the covariance matrix make the proposed test statistic much simpler than the 

information test. The trace of the Hessian and outer product forms of the information 

matrix has been considered. If a simpler goodness-of-fit test statistic is required, the 

modified Anderson-Darling test is to be recommended and this agrees with Famoye’s (2000) 

recommendation in his study of the generalized logarithmic distribution. However, if better 

power is needed, the BFI test can be considered. For the comparison with JB test, the BFI 

test has almost similar performance with JB test. 
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CHAPTER 4 

PARAMETERS ORTHOGONAL TO THE MEAN 

 

4.1 Introduction 

    Two parameters of a distribution are said to be orthogonal if their maximum likelihood 

estimators are asymptotically uncorrelated. Parameter orthogonality has many advantages 

in statistical inference and a good review has been given by Cox and Reid (1987). For 

instance, in maximum likelihood estimation, reparameterization in terms of orthogonal 

parameters speeds up convergence of the numerical method employed (Sprott, 1983). 

Willmot (1990) has considered orthogonality of a class of discrete models with two 

unknown parameters reparameterized in terms of the mean µ with respect to the remaining 

parameter. Here we examine the orthogonality of µ  for models with more than two 

parameters, where the remaining parameters are regarded as nuisance parameters. In 

particular we derive orthogonality for a class of Poisson-convolution models. The Poisson-

convolution is defined as YXZ +=  where X is a Poisson random variable (rv) with mean 

λ  and Y is another nonnegative integer valued rv with X and Y being independent. This 

convolution may be regarded as a signal-plus-noise model and it occurs in many settings 

(see Samaniego, 1976, and references therein) to make it a model of practical importance. 

Examples of applications are aerial prospecting for uranium, synaptic transmission of 

neural impulses, misclassification model and stochastic occupancy model in hospitals 

(Shonick, 1970).  

    As an application of the orthogonality result, a uniformly most powerful test of the mean 

is developed based on the asymptotic result under model misspecification. The test of mean 
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is exemplified for the convolution of Poisson and negative binomial variables. A small 

Monte Carlo power study of the proposed test has been conducted. 

This chapter is organized as follows: In section 4.2, the condition for parameters 

orthogonal to the mean is derived. Section 4.3 proposes the test of mean based upon 

asymptotic normality of the maximum likelihood estimators under model misspecification. 

Section 4.4 discusses a small Monte Carlo power study of the proposed test. 

 

4.2 Parameters Orthogonal to the Mean 

4.2.1 Condition for Orthogonal Parameters 

    Let )(xf be a probability mass or density function which involves r )2(≥  unknown 

parameters ,1θ  … rθ, , among which 1θ  equals the population mean. Willmot (1990) 

considered the case 2=r  and our primary interest lies in the situation .3≥r  We assume 

standard regularity conditions. Let θ = T
r ),...,( 1 θθ , the parameter space for θ  being an 

open set in the r-dimensional Euclidean space. Denote the per observation Fisher 

information matrix by ),( jiaA = where  

jia )(θjia≡ = }]/)(log}{/)(log[{ ji xfxfE θθθ ∂∂∂∂ , rji ≤≤ ,1          (4.1) 

It is supposed that A is positive definite at every θ . Let )(tM  be the moment generating 

function corresponding to )(xf  and )(log)( tMtCC =≡ be the cumulant generating 

function. We assume that for any θ , )(tM  exists finitely for t in an interval in the positive 

part of the real line. 
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    Suppose there exist functions )(θjg )2( rj ≤≤  and )(θh such that 
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The equivalence of (4.2) and (4.3) holds because 

)(tM ×{LHS of (4.3)} = ∫
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Note that det(A) = 2})({ σθh  det )( 22A  so that ,0)( ≠σθh  because A is positive definite. 

Hence writing =−1
A ),( ji

a  from (4.4), we get 

=11
a

2})({ −σθh , .})({),...,( 2112 Tr
ghaa

−= σθ  

Therefore, as in Willmot (1990), a parameterization T
r ),...,( 1 φφφ = , where 11 θφ =  and φ  

is a one to one function of θ , ensures parametric orthogonality with respect to )( 11 θφ =  if 

and only if 
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Equation (4.5) extends the main result of Willmot (1990) to the multiparameter case.  

    There are many models, such as those based on convolutions or compound distributions, 

where the form of )(xf  is complicated and hence an explicit determination of the 

information matrix A is difficult. However, such models often entail a relatively simple 

form of )(tC , so that one can check if (4.3) holds for some )(θjg )2( rj ≤≤  and )(θh . If 

indeed (4.3) holds, then (4.2) also holds and hence an orthogonal parameterization with 

respect to 1θ  can be obtained via (4.5) even without explicit determination of A. In the next 

section we consider parameters orthogonal to the mean for Poisson-convolution models. 

 

4.2.2 Orthogonal Parameters for Poisson-convolution Models 

Consider the convolution of the Poisson distribution with mean λ  and a power series 

distribution with probability mass function of the form 

=)(xψ ),(/);( ρξρξ Bxb
x =x( 0,1,2,…),  where ),( ρξB =∑

∞

=0
.);(

x

xxb ρξ  The unknown 

parameters are λ , ρ andξ ; among these, λ (> 0) and ρ (> 0) are scalar-valued while ξ  is 

possibly vector-valued. Thus altogether there are 2+= sr   parameters, where )1(≥s  is the 

dimension of ξ . Here 

=)(tM  [exp )}1({ −t
eλ ] )},(/),({ ρξρξ BeB

t .                              (4.6) 

Let ),(log),( ρξρξ BQ = , ),( ρξvQ = vv
Q ρρξ ∂∂ /),(  (v = 1,2). Then by (4.6), 

=≡ )(tCC )1( −t
eλ + ),( t

eQ ρξ ),( ρξQ− , and the population mean is given by =µ  

=∂∂ =0}/{ ttC λ ),(1 ρξρQ+ , i.e., λ = −µ ),(1 ρξρQ . One can express C in terms of ρµ,  

and ξ  as 
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=C −µ{ )},(1 ρξρQ )1( −t
e  ),( t

eQ ρξ+ ),( ρξQ− .                                 (4.7) 

Therefore,  

=
∂

∂

µ

C
1−t

e ,    =
∂

∂

ρ
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)},(),({ 21 ρξρρξ QQ +− )1( −t

e ),(1
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=−
∂

∂
µ

t

C
)1( −t
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tt −+ , 

so that 

+
∂

∂

µ

C

),(2
2 ρξρµ

ρ

Q+ ρ∂

∂C

),(

1

2
2 ρξρµ Q+

− =−
∂

∂
)( µ

t

C
0.          (4.8) 

Note that by (4.7), 0
22 }/{ =∂∂ ttC = ),(2

2 ρξρµ Q+ , i.e., ),(2
2 ρξρµ Q+  equals the 

population variance and hence is positive; thus the left-hand side of (4.8) is well-defined. 

Comparing (4.8) with (4.3), it follows from (4.5) that a parameterization T
r ),...,( 1 φφφ = , 

where µφ =1 , ensures parametric orthogonality with respect to )(1 µφ =  if and only if 

+
∂

∂

µ

φk

),(2
2 ρξρµ

ρ

Q+
,0=

∂

∂

ρ

φk  .2 rk ≤≤                        (4.9) 

It is easily seen that the conditions in (4.9) are met by 

µφ =1 , ),,()/( 12 ρξρµφ Q−=  ξφφ =T
r ),...,( 3 .                   (4.10) 

    As a specific application, consider the convolution of the Poisson and negative binomial 

distributions. Then );( ξxb = 






 −+

x

x 1ξ
, ,)1(),( ξρρξ −−=B  10 << ρ  and )0(>ξ  is 

scalar-valued. Consequently, )1/(),(1 ρξρξ −=Q , and by (4.10), an orthogonal 

parameterization with respect to µ  is given by  

µφ =1 ,  =2φ ,
1 ρ

ξ

ρ

µ

−
−  ξφ =3 .                     (4.11) 
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Note that the transformation in (4.11) is one to one because 0/2 <∂∂ ρφ , and for fixed 

,,ξµ  the parameter 2φ  tends to ∞+  or ∞−  as ρ  tends to 0 or 1 respectively.   

 

4.3 Test of the Mean under Model Misspecification 

4.3.1 Uniformly Most Powerful Test of Hypotheses 

    Let 1 2, , ,
n

Z Z Z…  be n rv’s with pmf ( );θp z , parameters ( )1 2, , , .
q

θ θ θ= …θ  Let µθ =1  

be the parameter of interest. 

    The hypothesis to be tested is 00 : µµ ≤H  versus the alternative 1 0: .H µ µ>  A uniformly 

most powerful (UMP) test may be developed based upon the asymptotic distribution of the 

QML estimators derived by White (1982) under the assumption of model misspecification. 

White (1982) called the ML estimators of ( )1 2, , ,θ
q

θ θ θ= … under the misspecified model 

as QML estimators.  Under a correctly specified model it is well-known that ( )θθ −ˆn  

converges in distribution to ( )1,0 −IN  where I  is the information matrix. With model 

misspecification, the QML estimators are also asymptotically normal but the covariance 

matrix 1−I  is replaced by 1 1I R I− −  (Theorem 3.2, White, 1982), where 

[ ]22 /ln θ∂∂−= LEI  (Hessian form) and [ ]2)/ln( θ∂∂= LER  (outer product form). Note 

that if the model is correctly specified, RI =  (Bartlett First Identity). 

   The UMP test for the mean involving the asymptotic normal distribution is given in the 

ensuing result. 

 



 49 

Result 4.3.1: Let nXXX ,..,, 21  be a random sample from a pdf ( )θ;xf  with parameters 

( )1 2, , ,θ
q

θ θ θ= …  and let 1θ  be the parameter of interest. Suppose that ( )11
ˆ θθ −n  

converges in distribution to ( )2ˆ,0 σN . 

A uniformly most powerful test for the hypotheses 010 : θθ ≤H  versus 011 : θθ >H  is given 

by the critical region of size α  

( ) 1 1
1 2

ˆ( )
, , . . ., :

ˆ
n

n
C x x x c

θ θ

σ

 − 
= > 
  

,                 (4.12) 

where c is the critical value determined from ( )( )1 2 0Pr , , . ., ; .nX X X C H α∈ =  

The proof of Result 4.3.1 is straightforward and is given in Appendix C. 

 

4.3.2 Uniformly Most Powerful Test for Mean of Convolution of Poisson 

and Power Series Distributions 

Suppose the parameters of the convolution of Poisson and power series distributions 

are 1 2 3( , , ),φ φ φ  where µφ =1  is the mean, and the remaining nuisance parameters 

),( 32 ξφφ =  are orthogonal to .µ  Under model misspecification, ( )µµ −ˆn  converges in 

distribution to the normal distribution ( )11,0 −− IRIN . The critical region is given by (4.12). 

A UMP test is constructed based on model misspecification because the true model for a 

data generating process is seldom known. As a consequence, this test is expected to be 

robust. In general, we give the formula of 2σ̂  for these convolution distributions. Let  

 

22

2
, ,

nL nL
I E R E

θ θ

  ∂ ∂ 
= − =    

∂ ∂     

� �
  and ( ) ( )1 2 3; , , .kP P X k P x φ φ φ= = =  

where θ  represents the parameters. The log-likelihood function for a given group data with 

sample frequency, 
k

f  where c is the largest count data is defined as 
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1

ln ln
c

k k

k

L f P
=

=∑ , 

and the partial derivative with respect to θ  are 

 
22

2 2

ln lnln ln
, .k k

k k

k k

P PL L
f f

θ θ θ θ

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂
∑ ∑  

   Under model misspecification, 2σ̂  is obtained from the Hessian, I, and outer product 

matrices, where I is expressed as 

 [ ]
22 22

2 2 2

ln lnln 1k k k
k k

k k k k

P P PL
I E E f nP n

Pθ θ θ θ

  ∂ ∂ ∂∂  
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∂ ∂ ∂ ∂  
∑ ∑ ∑ , 

because 
2

2

ln
0.k

k

P
n

θ

∂
=

∂
∑  The expression for R is 

2

lnln 1j jk k
k j k j

k j k j k j

nL
R E

P PP P
E f f E f f

P P

θ

θ θ θ θ

 ∂ 
=   

∂   

 ∂ ∂ ∂ ∂
= =   

∂ ∂ ∂ ∂    
∑ ∑ ∑∑
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1 jk
k j

k j k j

PP
E f f

P P θ θ

∂∂
 =   ∂ ∂

∑∑ .            (4.13) 

    Since ( )0 1, ,..., cf f f  follows a multinomial distribution with parameters ( )0 1, , ,..., cn P P P , 

we have 

 [ ] ( ) ( ) ( ), var 1 ,cov ,
i i i i i i j i j

E f nP f nP P f f nPP= = − = −  

which lead to 

 ( )2 2 2, 1
i j i j i i i i

E f f nPP E f nP P n P   = − = − +    .          (4.14) 

    Eq. (4.14) is substituted into (4.13) to compute R.  

    For comparison, the Monte Carlo simulation study on power of the UMP test given in 

the next section is constructed under two different approaches:  (a) UMP test when the 
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model under misspecification where 2σ̂  is computed from covariance matrix, 1 1,I R I− −  (b) 

UMP test when the model is correctly specified where 2σ̂  is computed from covariance 

matrix, 1I − . 

     Since the Poisson-convolution distributions have many useful applications as signal plus 

noise models, the UMP test may prove useful. For instance, the mean µ may represent the 

average daily arrival of patients at a hospital (Shonick, 1970) and it is of interest to 

determine if this mean exceeds 0µ . 

 

4.4 Monte Carlo Simulation Study on Power of Uniformly Most 

Powerful Test 

    A Monte Carlo simulation study is conducted for the convolution of Poisson and 

negative binomial distributions to study the effect on the power of the test due to the (a) 

finite (small) sample size, and (b) substitution of arbitrary values for the nuisance 

parameters ),( 32 ξφφ = . Note that due to parameter orthogonality, the variance of the ML 

estimator µ̂  is not affected by the estimators of ),( 32 ξφφ = . The robustness of the test due 

to model misspecification is also examined. Note that the UMP test is constructed based on 

two approaches (see Section 4.3.2) and are defined as UMP test under model 

misspecification, UMPW, and UMP test under correctly specified model, UMPIM. 

The results shown here are based on 5000 Monte Carlo samples. The parameters, 
2φ̂  and 

ξ̂  are estimated using the maximum likelihood method.  Table 4.1 gives the results of a 

Monte Carlo study of the effect of finite sample sizes on the empirical level of the UMP 

test. Random samples are generated from the convolution of Poisson and binomial 
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distribution with the value of the parameter, 
0

µ , stated in 
0 0

: ,H µ µ≤  where 
0

µ  is set to 

be 6.15, 7.45, 9.85 and 13.00 respectively as shown in Table 4.1.  

 

Table 4.1: Empirical level for the UMP test for mean,  0.05α = . 

0µ µ=  
2φ  ξ  n UMPW UMPIM 

6.15 1.32 3.65 50 0.062 0.072 

   100 0.060 0.068 

   200 0.048 0.024 

   500 0.034 0.012 

7.45 3.15 2.80 50 0.058 0.194 

   100 0.051 0.100 

   200 0.050 0.061 

   500 0.030 0.011 

9.85 5.17 4.50 50 0.046 0.141 

   100 0.038 0.068 

   200 0.024 0.057 

   500 0.012 0.013 

13.00 5.56 3.50 50 0.054 0.165 

   100 0.032 0.128 

   200 0.036 0.086 

   500 0.026 0.053 

 

 

It is observed that the empirical levels of the UMPW test tend to be closer to the nominal 

level as the sample size increases. When the model is correctly specified, UMPW is more 

conservative in terms of the power of the test compared to UMPIM especially for the case 

when the sample sizes are small, for example, n = 50 and n = 100. The choice of the sample 

size has a significant influence on the power of UMPIM. Table 4.2 reports the simulation 

results on the power study for alternative hypotheses 
a

H  with 6.15µ >  for the convolution 

of Poisson and negative binomial model. Note that 2φ  and ξ  are fixed at 1.32 and 3.65 

respectively for all the tested alternative hypotheses. Monte Carlo samples that are 

generated from distributions with different values of mean µ  under the alternative 

hypotheses for some different sample sizes are tested. When the mean µ  is set to a value 



 53 

far bigger than the mean value under null hypothesis, we find that the UMP test has great 

power even for small sample sizes. The UMPW and UMPIM have similar performances 

when the values of mean, µ  is set greater than the value specified in the null hypothesis. 

 

Table 4.2: Power comparison for the UMP test for mean, 0.05.α =  

µ  2φ  ξ  n UMPW UMPIM 

6.50 1.32 3.65 50 0.080 0.072 

   100 0.132 0.210 

   200 0.224 0.306 

   500 0.404 0.416 

7.50 1.32 3.65 50 0.446 0.418 

   100 0.816 0.936 

   200 0.982 0.994 

   500 1.000 1.000 

9.00 1.32 3.65 50 0.939 1.000 

   100 1.000 1.000 

   200 1.000 1.000 

   500 1.000 1.000 

12.00 1.32 3.65 50 1.000 1.000 

   100 1.000 1.000 

   200 1.000 1.000 

   500 1.000 1.000 

 

 

 

Table 4.3: Empirical level for the UMP test for mean, 0.05α =  and 50n = . 

( *

2φ  and *ξ  are the arbitrary values for the nuisance parameters 
2φ and ξ ) 

*ξ  µ  2φ  ξ  *

2φ  
1.0 2.5 4.0 6.5 

6.15 1.32 3.65 0.8 0.066 0.028 0.014 0.008 

   1.0 0.076 0.032 0.014 0.008 

   3.0 0.064 0.058 0.026 0.004 

   5.0 0.079 0.062 0.036 0.014 

7.45 3.15 2.80 0.8 0.052 0.024 0.008 0.008 

   1.0 0.060 0.024 0.010 0.008 

   3.0 0.055 0.050 0.022 0.008 

   5.0 0.078 0.062 0.032 0.010 

9.85 5.17 4.50 1.0 0.012 0.006 0.006 0.006 

   3.0 0.044 0.010 0.006 0.006 

   5.0 0.030 0.018 0.008 0.006 

   7.0 0.060 0.024 0.008 0.006 

13.00 5.56 3.50 1.0 0.014 0.008 0.008 0.006 

   3.0 0.038 0.014 0.014 0.006 

   5.0 0.064 0.026 0.014 0.008 

   7.0 0.062 0.040 0.016 0.008 



 54 

    Table 4.3 reports the simulation results of the UMP test for UMPW when the two 

nuisance parameters are substituted by some arbitrary values. Each entry in the table 

represents the empirical level for the UMP test on mean. Since the results are quite similar 

for various sample sizes, we only present the results for n = 50. We observed that UMP test 

has the same performance as reported in Table 4.1. This indicates that the values of the two 

nuisance parameters do not have significant influence on the UMP test. To examine the 

robustness of the test due to model misspecification, random samples from the Neyman 

type-A distribution with orthogonal parameters µ  and ,φ  NTA ( ),µ φ  are generated and 

the mean value is stated in 0H . The simulation results are shown in Table 4.4. For 

illustrative purpose, we have fixed the null hypothesis, 0 : 7.45H µ = , in our study. It is 

seen that the UMP test for mean is robust to model misspecification if we perform the test, 

UMPW. UMPIM does not seem to perform well under model misspecification for small 

sample sizes. 

 

Table 4.4: Empirical level for the small sample UMP test for mean when 0.05α = . 

Model µ
 φ

 n UMPW UMPIM 

NTA 7.45 1.30 50 0.019 0.188 

   100 0.012 0.118 

   200 0.008 0.032 

   500 0.002 0.005 

NTA 7.45 3.15 50 0.020 0.163 

   100 0.028 0.073 

   200 0.016 0.026 

   500 0.008 0.010 

NTA 7.45 5.56 50 0.023 0.151 

   100 0.012 0.060 

   200 0.008 0.010 

   500 0.002 0.003 
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4.5 Conclusion 

    Based on the simulation study, we observed that the UMP test for the mean under model 

misspecification, UMPw, performs well even when the sample sizes are small. Nevertheless, 

the power of the test increases with an increase in sample size. The test tends to be more 

conservative when the sample size becomes larger. Moreover, the simulation results have 

shown that the power of the test increases once the random sample is generated with the 

parameter µ  larger than the value stated in 0H . The implementation of orthogonal 

parameterization in UMP test for mean has reduced or eliminated the effects of the 

nuisance parameters in constructing the UMP test. The robustness of the test due to the 

model misspecification has been justified in the Monte Carlo study as well.    
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CHAPTER 5 

THE DELAPORTE DISTRIBUTION 

 

5.1   Introduction 

    In this chapter, we consider applications of the results obtained in the previous chapters 

to a discrete distribution known as the Delaporte distribution arising in actuarial studies. 

Delaporte (1959, 1960, 1972a, b) and Ruohenen (1988) have considered a mixed Poisson 

distribution with a Gamma mixing distribution. The density function of the mixing 

distribution is given as 

 ( )
( )

( )
1

,f e
υ

υ βγβ
γ γ λ

υ

− −= −
Γ

       

where , 0; 0.υ β γ λ> > ≥  This leads to a three-parameter mixed Poisson distribution with 

probability generating function (pgf), see Johnson, Kemp and Kotz (2005), p.242, 

 ( ) ( ) ( )1z
G z e f d

γ

λ
γ γ

∞ −
= ∫  

           = ( ) ( )1 1z ze
υλ β

β β

−− + − .             

A further parameterization that has received much attention is ( )1 1ρ β= + , giving 

  ( ) ( )1 1

1

z
G z e

z

υ

λ ρ

ρ
−  −

=  
− 

.                   (5.1) 

The distribution with this pgf is known as the Delaporte distribution. It has been proposed 

as an alternative model in the insurance claim problem to the usual negative binomial 

distribution, another two-parameter gamma mixture. Willmot (1989) has studied on the tail 

behavior of this distribution and some of the asymptotic results are given in Willmot and 

Sundt (1989). Willmot and Sundt (1989) have developed the recursive algorithm for the 



 57 

purpose of evaluating Delaporte distribution. The Delaporte distribution has probability 

mass function 

 ( )
( )
( )

( )
( )0

; , , 1 , 0,1,2,...
! !

x rx
r

r

r e
P x x

r x r

λ
υυ λ

λ ρ υ ρ ρ
υ

− −

=

Γ +
= − =

Γ −
∑              (5.2)      

    The Delaporte distribution can be viewed as the convolution of the Poisson and negative 

binomial distributions. Ruohonen (1988) has studied the data fitting of the Delaporte 

distribution by the method of moments, moments and zero frequency, and maximum 

likelihood.  

    Parameters of the Delaporte distribution orthogonal to the mean have been derived in 

section 4.2.2. Orthogonal parameters have desirable properties as mentioned in Chapter 4; 

one of the important consequences is that they are not correlated and this would speed up 

convergence in an iterative method of estimation (Willmot, 1988, 1990).  The efficiency of 

estimation is considered in section 5.2 since it does not seem to have been reported in the 

statistical literature. The comparative study of interval estimation for correctly specified 

and misspecified models is also discussed and illustrations using the Delaporte distribution 

are given in section 5.3. Section 5.4 gives some computational results of parameters 

estimation for the Delaporte distribution by using a proposed quadratic distance statistic.  

 

5.2 Efficiency of Estimation 

5.2.1 Introduction 

    Ruohonen (1988) has considered the method of moments and the maximum likelihood 

estimation in fitting the Delaporte distribution to real data. However, the maximum 

likelihood estimators for the parameters are calculated by optimizing the likelihood 
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function numerically since they do not exist in a closed form. The objective of this section 

is to study the efficiencies of the methods discussed in Ruohonen’s paper.  

 

5.2.2 Evaluation of the Information Determinant 

    The efficiency of estimators can be computed by the formula (see, for instance, Katti and 

Gurland, 1962) 

 
var(ML estimate)

var(other estimate)
E =  

For multi-parameter estimation, the formula above is modified and given by, 

 1
(Generalized Variance Information Determinant)

E =
×

             (5.3) 

    The information determinant is given by 
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         (5.4) 

where , 1,2,3
i

iθ = , are the parameters of the distribution (see Shenton, 1949). 

    Let ( ) ( ); , ,kP P X k P x λ ρ υ= = = . The derivatives of ln
k

P  for the Delaporte Distribution 

are needed in order to evaluate I  and they are given by 
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   We evaluate I  by summing each entry of (5.4), which is an infinite series with a relative 

error of 10
-20

. 

 

5.2.3 Efficiencies of the Methods of Estimation 

    Let G be the generalized variance of ,λ ρ� �  and ν� . Then G is defined in terms of the 

variance-covariance matrix and Jacobian matrix, 

 
2

2

3G ( , , )V X S m J=  

    The variances and covariances of sample moments and proportions (Griffiths, 1977) are 

2
22 4 22

var( ) , var( ) ,X S
n n

κ κ κ+
= =  

2 3

6 2 4 3 2 0 0
3 0

9 9 6 (1 )
var( ) , var( ) ;

P P
m f

n n

κ κ κ κ κ+ + + −
= =  

2 3 4
3cov( , ) , cov( , ) ,X S X m

n n

κ κ
= =  

2 5 2 3 0 1
3 0

6
cov( , ) , cov( , ) ,

P
S m X f

n n

κ κ κ κ+ −
= =  

where 2

3 0, , ,  and jX S m f κ  are the sample mean, variance, third moment, proportion of 

zeros, and j
th

 population cumulant respectively. 

    The first cumulant (mean) for the Delaporte distribution is given by 

 1 ,
1

νρ
κ µ λ

ρ
= = +

−
 

    The cumulants for the Delaporte distribution are easily obtained as the sum of the 

cumulants for the Poisson and NB distributions. The cumulants for the Poisson distribution 

are rκ λ=  for all 1.r ≥  Since NB distribution is a power series distribution with series 

parameter ,ρ the cumulants satisfy (see Johnson et al., 2005, p. 216),  
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Thus the cumulants for Delaporte distribution are given by 
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    By direct computation, we have 
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The efficiency of estimation for method of moments is computed using (5.3). 

Similarly, the variance-covariance matrix of moments and proportion is given by  
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    The efficiencies of the two methods of estimations are given in Tables 5.1 and 5.2 for the 

case where all three parameters are unknown. 

 

Table 5.1: Efficiency of Moments estimation.  
υ  λ  

ρ
 0.2 0.5 1.0 2.0 5.0 10.0 

0.2 0.1 0.9203 0.9860 0.9958 0.9834 0.9653 0.9647 

 0.3 0.7887 0.7236 0.6924 0.2334 0.7373 0.8270 

 0.5 0.3803 0.3431 0.1654 0.2838 0.4509 0.5594 

 0.7 0.1087 0.0720 0.1301 0.1577 0.3043 0.4414 

 0.9 0.0067 0.0107 0.0187 0.0472 0.0798 0.0015 

0.5 0.1 0.8665 0.9248 0.9682 0.9946 0.9963 0.9877 

 0.3 0.9146 0.9262 0.3990 0.8425 0.8276 0.8591 

 0.5 0.5469 0.3600 0.5092 0.4154 0.3126 0.3097 

 0.7 0.1933 0.2157 0.1475 0.1868 0.2994 0.4402 

 0.9 0.0179 0.0164 0.0247 0.0535 0.0792 0.0014 

1.0 0.1 0.9082 0.9283 0.9513 0.9768 0.9981 0.9988 

 0.3 0.8030 0.9399 0.9744 0.7330 0.2910 0.6087 

 0.5 0.7926 0.7555 0.3796 0.4863 0.6399 0.7369 

 0.7 0.3407 0.2411 0.2213 0.2481 0.3517 0.4367 

 0.9 0.0312 0.0280 0.0346 0.0622 0.0783 0.0014 

2.0 0.1 0.9488 0.9540 0.9615 0.9727 0.9902 0.9986 

 0.3 0.6798 0.8378 0.9384 0.4777 0.5979 0.9368 

 0.5 0.8103 0.8534 0.6347 0.4694 0.6517 0.7559 

 0.7 0.4949 0.4642 0.3191 0.3016 0.3905 0.4557 

 0.9 0.0617 0.0488 0.0522 0.0778 0.0761 0.0013 

5.0 0.1 0.9784 0.9793 0.9806 0.9829 0.9884 0.9939 

 0.3 0.7447 0.8035 0.8670 0.2395 0.9955 0.9961 

 0.5 0.6099 0.6914 0.8870 0.6354 0.5252 0.6856 

 0.7 0.6609 0.7404 0.6581 0.5337 0.4608 0.5050 

 0.9 0.1426 0.1096 0.0993 0.1166 0.0679 0.0012 

 

 

 

    From Table 5.1, we observe that efficiency of Moments estimation is generally low for 

small ρ  ( )0.5<  but improves as λ  increases compared to method of Maximum likelihood 

estimation. However, Moments estimation is not efficient when the value of ρ  approaches 



 63 

1 even with the greater value of λ . Next, we have presented the results of efficiency of 

Moments and Zero Frequency estimation in Table 5.2. Notice that the efficiency of 

Moments and Zero Frequency estimation is high for most of the combination values of the 

parameters. We see that the efficiency increases significantly as λ  increases. 

 

Table 5.2: Efficiency of Moments and Zero Frequency estimation.  
υ  λ  

ρ
 0.2 0.5 1.0 2.0 5.0 

0.1 0.1 0.0997 0.1132 0.1435 0.2083 0.3969 

 0.3 0.2038 0.2426 0.3054 0.4372 0.1967 

 0.5 0.3572 0.3785 0.3286 0.5819 0.5705 

 0.7 0.4191 0.3643 0.6569 0.6510 0.2470 

 0.9 0.2852 0.4342 0.6130 0.5827 0.0088 

0.2 0.1 0.2153 0.2027 0.2231 0.2826 0.4481 

 0.3 0.2040 0.2590 0.3314 0.1546 0.6145 

 0.5 0.3561 0.4033 0.2310 0.4508 0.4608 

 0.7 0.4536 0.3369 0.6219 0.6144 0.2214 

 0.9 0.3214 0.5012 0.6349 0.5512 0.0079 

0.5 0.1 0.4726 0.4502 0.4428 0.4610 0.5335 

 0.3 0.2311 0.2967 0.1685 0.4836 0.5700 

 0.5 0.2735 0.2690 0.5071 0.5004 0.2475 

 0.7 0.4129 0.6267 0.4895 0.5377 0.1662 

 0.9 0.4699 0.5045 0.5981 0.4614 0.0058 

1.0 0.1 0.4970 0.4995 0.5033 0.5103 0.5207 

 0.3 0.2185 0.2917 0.3618 0.3372 0.1464 

 0.5 0.2438 0.3489 0.2419 0.3841 0.3334 

 0.7 0.3352 0.3729 0.4284 0.4398 0.1220 

 0.9 0.3880 0.4645 0.4922 0.3259 0.0035 

2.0 0.1 0.3844 0.3851 0.3857 0.3849 0.3725 

 0.3 0.1388 0.1879 0.2344 0.1336 0.1606 

 0.5 0.1269 0.1932 0.1913 0.1696 0.1487 

 0.7 0.1662 0.2615 0.2373 0.2111 0.0530 

 0.9 0.2367 0.2740 0.2676 0.1510 0.0013 

5.0 0.1 0.1133 0.1120 0.1099 0.1057 0.0933 

 0.3 0.0405 0.0440 0.0474 0.0126 0.0388 

 0.5 0.0151 0.0213 0.0323 0.0240 0.0101 

 0.7 0.0178 0.0315 0.0351 0.0251 0.0037 

 0.9 0.0278 0.0320 0.0266 0.0117 0.0001 

 

 

5.3 Interval Estimation 

    In most of the standard classical estimation methods, we always assume that the 

probability model is “correctly specified”. However, if the model is misspecified, the 



 64 

standard tests are invalid. Two issues that are to be considered in the presence of 

misspecification will be the consistency and the asymptotic normality properties of the 

estimators. White (1982) had treated the asymptotic normality question and some 

assumptions are given in order to obtain consistency. The asymptotic covariance matrix of 

his proposed method is no longer equal to the inverse of the information matrix in general 

but it can be estimated consistently. In the absence of misspecification, the suggested 

asymptotic covariance matrix will simplify to the usual form. The proposed estimator is 

expected to be more “robust” even if the model is not correctly specified.  

    This section is organized as follows. Section 5.3.1 discusses about the confidence 

interval under the assumption that the probability model is a true model. White’s results are 

exploited to construct the confidence interval under model misspecification in section 5.3.2. 

For illustrative purpose, we compute the confidence interval based on the two approaches 

for Delaporte distribution. Some random samples are generated from NB model to compare 

the robustness of the two approaches in the presence of misspecification. The results of the 

comparison are reported in section 5.3.3. 

 

5.3.1 Confidence Interval for Correctly Specified Model 

    The confidence interval is obtained based upon the following asymptotic normality 

property. 

Theorem 5.3.1.1. (Hogg, Craig and McKean, 2005) Assume 1,..., n
X X  are iid with pdf 

( )0;f x θ  for 0θ ∈Ω  such that the regularity conditions are satisfied. Suppose further that 

Fisher information satisfies ( )00 I θ< < ∞ . Then any consistent sequence of solutions of the 

mle equations satisfies 
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  ( )
( )0

0

1ˆ 0,
D

n N
I

θ θ
θ

 
− →   

 
 

    Based on Theorem 5.3.1.1, an approximate ( )1 100%α−  confidence interval for ,θ  
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n n

n n

z z
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θ θ

 
 

− + 
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where ˆ
n

θ  is the ML estimator and ( )ˆ
n

I θ  for count data is given by 

 ( ) ( ) ( )
( )

2 2

0

ln lnˆ
ˆ ˆn

xn n

P x P x
I E P xθ

θ θ

∞

=

    ∂ ∂
 = =       ∂  ∂    

∑ . 

   

5.3.2 Confidence Interval for Misspecified Model 

    In White’s approach, the Hessian and outer product forms for the information matrix as 

given in equations (3.3) and (3.4) have been used. The asymptotic normality property is 

given by the following theorem, 

Theorem 5.3.2.1. (White, 1982, p. 6) Given Assumptions A1-A6 (see White, 1982) 

  ( ) ( )( )* *
ˆ 0, .

D

n N Cθ θ θ− →  

Moreover, ( ) ( )
. .

*
ˆ ˆ

a s

n n
C Cθ θ→  element wise. 

    Thus, an approximate ( )1 100%α−  confidence interval for θ is given by 

( ) ( )( )
2 2

ˆ ˆ ˆ ˆ,n n n n n nz C z Cα αθ θ θ θ− +  

where ( ) ( ) ( ) ( )
1 1

ˆ ˆ ˆ ˆ
n n n n n n n n

C A B Aθ θ θ θ
− −

=  , ( )ˆ
n n

A θ  and ( )ˆ
n n

B θ  are defined as in equations 

(3.3) and (3.4) respectively. 
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5.3.3 Results and Discussions 

    To compare between the two approaches, we have generated five random samples and 

obtained the confidence intervals. All the random samples are generated by the inverse 

transform method and using the uniform random number generator of Matlab. The results 

are labeled as IM if the asymptotic variance is computed based on the inverse of Fisher 

Information Matrix and WH if the asymptotic variance is computed using White’s 

approach given in section 5.3.2. The results are tabulated in Table 5.3. The first three 

random samples are generated from the Delaporte distribution with different values of 

parameters, ,λ ρ  and .υ  In order to construct the confidence intervals for the three 

parameters, ,λ ρ  and υ  are estimated using the ML method. From the simulation results, 

the WH confidence intervals have wider expected length. Next, we generate a random 

sample from the Delaporte distribution with outliers to examine the robustness of White’s 

method. We found that the confidence interval is more robust to outliers. A random sample 

is generated from the negative binomial distribution, a special case of Delaporte 

distribution when 0λ = . Note that the WH confidence interval for λ  contains the value 

zero while the IM interval does not. This implies that the WH confidence interval is able to 

indicate particular case of the more general model.   
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Table 5.3: 95% confidence interval for parameters of Delaporte distribution based on IM 

and WH approaches. 

(The maximum likelihood estimators, λ̂ , ρ̂  and υ̂  in bracket)  

95% Confidence Interval for 
Model n λ  

ρ
 υ  IM WH 

Delaporte 500 
4.0 

(4.3154) 

0.6 

(0.6345) 

4.0 

(3.4587) 

( )

( )

( )

0.6294, 0.6397

4.0979, 4.4328

3.3182,3.5991

ρ

λ

υ

=

=

=

 

( )

( )

( )

0.4906, 0.7785

0.5454,7.4627

0.9668, 7.6639

ρ

λ

υ

=

=

=

 

Delaporte 1000 
4.0 

(4.0559) 

0.6 

(0.5967) 

4.0 

(4.0541) 

( )

( )

( )

0.5932, 0.6001

3.9787, 4.1330

3.9472, 4.1610

ρ

λ

υ

=

=

=

 

( )

( )

( )

0.5702, 0.6232

3.1651, 4.9466

3.1651, 4.8454

ρ

λ

υ

=

=

=

 

Delaporte 1000 
3.0 

(3.1058) 

0.4 

(0.3952) 

4.0 

(3.9627) 

( )

( )

( )

0.3990, 0.4188

3.1399,3.3530

3.2195,3.8609

ρ

λ

υ

=

=

=

 

( )

( )

( )

0.3807,0.4370

2.5400,3.9529

2.7318, 4.3485

ρ

λ

υ

=

=

=

 

Delaporte 

(Conta-

minated  

with 

outliers) 

1000 
4.0 

(5.2577) 

0.6 

(0.6682) 

4.0 

(2.4056) 

( )

( )

( )

0.6657,0.6707

5.2097,5.3057

2.3562, 2.4550

ρ

λ

υ

=

=

=

 

( )

( )

( )

0.5622, 0.7741

3.2062, 7.3093

0.2888, 4.5225

ρ

λ

υ

=

=

=

 

Negative 

Binomial 
1000 

 

(0.5673) 

0.6 

(0.6167) 

4.0 

(3.4043) 

( )

( )

( )

0.6147,0.6191

0.5274,0.6073

3.3494,3.4591

ρ

λ

υ

=

=

=

 

( )

( )

( )

0.5499, 0.6838

0.5840,1.7186

1.7728,5.0357

ρ

λ

υ

=

= −

=

 

 

5.4 Parameter Estimation via a Quadratic Distance Statistic 

5.4.1 Introduction 

    White’s IM test has been derived based on Bartlett’s First Identity (BFI) which states 

that when the model is correctly specified the Hessian form of the information matrix 

( )A θ− and its outer product form ( )B θ  satisfy ( ) ( ) 0A Bθ θ+ = . The failure of this 

equality implies misspecification of the model.  



 68 

    In general, the Hessian matrix ( ) ( )( ),
n ij

A A nθ θ= and outer product 

matrix ( ) ( )( ),
n ij

B B nθ θ=  for the information matrix for grouped frequency data are 

defined as (White, 1982) 
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nP x
A n n f

θ
θ

θ θ
−

=

∂
=
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∑

�
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0

; ;
, . .

k

ij x
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nP x nP x
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θ θ
θ

θ θ
−

=

 ∂ ∂
=  

∂ ∂  
∑

� �
  

Suppose that , 1,2,3, . . .,i j p= . Consider the quadratic distance statistic 

( ) ( ) ( )1

n n n
Q nD V nDθ θ θ−′= ,              (5.5) 

where ( ) ( )
1

, , 1,2, . . .,
p

n ii

i

nD n D n i pθ θ
=

 
= = 

 
∑ , ( ) ( ) ( ), , ,ij ij ijD n A n B nθ θ θ= +  and 

V I= is the p p×  identity matrix. In defining (5.5), we have only considered ( )nD θ as 

a 1p × vector of diagonal elements of ( ) ( )n nA Bθ θ+ . Statistic (5.5) is identical in form to 

White’s information matrix test statistic (White, 1982, Eq. (4.1)) but differs in two respects 

(1) V is not a covariance matrix but an identity matrix; (2) elements of ( )nD θ are selected 

from the diagonal of ( ) ( )n nA Bθ θ+ , whereas in White’s statistic they are selected from the 

( )1 / 2p p + elements in the upper triangular part of ( ) ( )n nA Bθ θ+ . Of course if model 

parameters are orthogonal, we have a diagonal matrix. 

    Equation (5.5) may be written as 

( ) ( )( )
2

n nQ n Dθ θ=                 (5.6) 

In fact, equation (5.6) is in the form of an estimating equation in M-estimation. Therefore, 

the basic theory and results in M-estimation applies. Since ( )nD θ  is the trace of the 
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diagonal matrix, we have to solve for the roots for each of the 1p × vector of diagonal 

elements of ( ) ( )n nA Bθ θ+  in order to satisfy (5.6). The roots found will be the estimated 

parameters.  

    Gan and Jiang (1999), based on the assumption that the model is correctly specified, 

gave a criterion to determine whether the global maximum has been achieved in maximum 

likelihood estimation of the model. This criterion essentially says that Bartlett’s First 

Identity, BFI, (information matrix equality) holds asymptotically at the global maximum. 

Therefore, the global maximum is expected to be attained with the application of the 

proposed quadratic distance statistic.  

    For illustration, the estimation procedure is applied to the Delaporte distribution with 

orthogonal parameters (see Eq. 4.11). Let ( ) ( )2; , , .kP P X k P x µ φ ξ= = =  The first and 

second derivatives of the probabilities with respect to the three orthogonal parameters of 

Delaporte distribution are obtained as follows with the help of Mathematica: 
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5.4.2 Results and Discussions 

   For parameter estimation based on the proposed quadratic distance statistic (5.6), we 

consider two simulated random samples from the Delaporte distribution and the data on 

Malayan butterflies, which was fitted with the Poisson-lognormal distribution by Blumer 

(1974). The data has also been fitted to Poisson-negative binomial distribution by Gupta, 

Gupta and Ong (2004) using  maximum likelihood estimation. Table 5.4 has reported 

some results regarding parameter estimation by using the proposed quadratic distance 

statistic (
n

Q ) and the results are compared to the method of maximum likelihood estimation 
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(MLE).  We observe that MLE and 
n

Q  give similar parameter estimates for the three data 

sets. However, the value of BFI for 
n

Q  is very small and closer to zero compared to MLE.  

 

Table 5.4: Parameter estimation for Delaporte distribution based on MLE and 
n

Q . 

MLE 
n

Q  BFI 

Model 
µ̂

 2φ̂
 

ξ̂
 

µ�
 2φ�

 
ξ�

 
MLE n

Q  

Delaporte 

(n = 1000, 4.15,µ =  

2 2.69,φ = 0.5ξ = ) 

4.1060 2.4999 0.5220 3.8816 2.6412 0.5643 -0.0522 2.473E-4 

Delaporte 

(n = 1000, 13.0,µ =  

2 5.56,φ = 3.5ξ = ) 

12.8910 3.5807 4.7137 13.3680 5.3221 3.4628 6.975E-3 5.927E-4 

Distribution 

Of Corbet’s 

Butterflies 

with zeros. 

(Blumer,1974) 

10.2159 0.1550 0.2623 11.1350 0.0923 0.2880 -0.1974 1.865E-7 

 

   Specifically, we have considered the data fitting on Malayan butterflies by Poisson-

lognormal (Blumer, 1974), Poisson-negative binomial (Gupta, Gupta and Ong, 2004) and 

Delaporte models. The fits of the models is given by Table 5.5.  It is known that the 

additive Poisson-negative binomial model has comparable better fit (see Gupta, Gupta and 

Ong, 2004, p. 563). We observe that the chi-square value for the fits by the Delaporte and 

Poisson-negative binomial distributions are almost the same. 

  

5.5 Conclusion 

In this Chapter, some statistical inferences for the Delaporte distribution have been 

studied. First, the efficiency of the methods of estimation has been reported. Besides, we 

have considered the confidence interval under model misspecification for Delaporte 

distribution; some examples are given as illustration purpose. We have proposed to 
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estimate the parameters using the statistic 
n

Q  based on Bartlett’s First Identity which is 

identical in form to White’s information matrix test statistic. The advantage of the proposed 

quadratic distance statistic is that the global maximum of the estimation of model 

parameters can be achieved. Furthermore, the statistic is easier to compute after 

orthogonalization of parameters. We have compared the two estimation methods, MLE and 

n
Q  by using generated random samples and a real data set. We found that the two methods 

give similar performance but the BFI’s value for 
n

Q  is much smaller. Lastly, we have 

considered the goodness of fit of the Delaporte model to the Malayan butterfly data.  
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Table 5.5: Data fitting for distribution of Corbet’s Butterflies with zeros (Blumer, 1974). 

 Observation 
Poisson-lognomal 

(Blumer) 

Additive Poisson-

negative binomial 

(Gupta and Ong) 

Delaporte 

0 304 295.0 303.10 303.14 

1 118 127.4 123.28 123.29 

2 74 74.6 62.83 62.83 

3 44 50.7 43.29 43.29 

4 24 37.5 33.73 33.74 

5 29 29.3 27.77 27.77 

6 22 23.7 23.61 23.61 

7 20 19.7 20.51 20.51 

8 19 16.7 18.10 18.10 

9 20 14.4 16.16 16.16 

10 15 12.6 14.57 14.57 

11 12 11.1 13.23 13.23 

12 14 9.9 12.10 12.09 

13 6 8.9 11.10 11.10 

14 12 8.1 10.24 10.24 

15 6 7.3 9.49 9.49 

16 9 6.7 8.81 8.81 

17 9 6.2 8.21 8.21 

18 6 5.7 7.67 7.67 

19 10 5.3 7.19 7.19 

20 10 4.9 6.74 6.74 

21 11 4.6 6.34 6.34 

22 5 4.3 5.97 5.97 

23 3 4.0 5.63 5.63 

24 3 3.8 5.32 5.32 

25+ 119 131.3 118.99 118.95 

Total 924 923.7 923.98 923.99 

Chi.sq.  36.8 19.46 19.47 

df  23 22 22 
df – degree of freedom 
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CHAPTER 6 

CONCLUSION AND FURTHER RESEARCH WORK 

 

This thesis proposed a goodness-of-fit test based on Bartlett’s First Identity. The 

application of Bartlett’s First Identity for goodness-of-fit test does not seem to have been 

widely reported in the statistical literature. This identity is the basis of White’s (1982) 

Information Matrix (IM) test for model misspecification. However, the proposed test 

differs from the IM test as follows. The goodness-of-fit test statistic has been considered 

under orthogonality of the parameters with the bootstrapped critical values adjusted for 

bias by using the bias-corrected accelerated (
a

BC ) method. When parameters are 

orthogonal, the proposed test statistic is simplified and this reduces computation. Besides, 

the direct application of Bartlett First Identity as a goodness-of-fit test avoids the 

evaluation of the complicated covariance matrix in the IM test. The consistency and 

asymptotic normality properties of the proposed goodness-of-fit test have been proved. 

The empirical distribution function tests have been considered for comparison purpose. 

For future work, we will consider the proposed goodness-of-fit test for the class of 

distributions with orthogonal parameters.  

    The consequences of orthogonal parameters in statistical inference have been 

examined by Cox and Reid (1987). One of the important roles of orthogonal 

parameterization is to speed up the convergence of the numerical method employed in 

maximum likelihood estimation. This is especially significant for models that have 

complicated probability functions with many parameters. Willmot (1988, 1990) have 
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presented some results of orthogonal parameterization for a class of discrete models with 

two unknown parameters. We have extended the work of Willmot by examining the 

orthogonality of the mean µ  for models with more than two parameters, where the two 

remaining parameters are regarded as nuisance parameters since they are orthogonal to µ . 

We considered orthogonality for a class of Poisson convolution models and since this 

convolution can be treated as a signal-plus-noise model that is of practical importance. 

The condition for orthogonal parameters has been derived. In particular orthogonal 

parameters have been derived for the Delaporte distribution, a model which is commonly 

used in actuarial studies. A uniformly most powerful test for mean has also been 

developed as an application of the orthogonality results. Future study may consider 

orthogonality between the two nuisance parameters as well. We will also consider other 

applications of this result in statistical inference. 

Since the Delaporte distribution is of independent interest, some statistical inference 

and practical applications has been considered. The efficiency of the method of moments 

and moment and zero frequency relative to maximum likelihood estimation has been 

examined. Further work on other recent methods of parameter estimation and a 

comparative study will be of interest. A conservative interval estimation method under 

model misspecification for Delaporte model has also been presented. Besides, we have 

proposed a quadratic distance statistic for parameter estimation. The estimation results of 

the newly proposed statistic are compared to the maximum likelihood estimation. For 

further work a Monte Carlo simulation study will be conducted on the performance and 

property of the quadratic distance estimation. 
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APPENDIX A 

WHITE’S (1982) RESULTS 
 

The following assumptions and theorems have been directly abstracted from White (1982) 

for easy reference. 

 

Assumption A1: The independent random 1 M×  vectors , 1,..., ,
t

X t n=  have common 

joint distribution function G on Ω , a measurable Euclidean space, with measurable 

Radon-Nikodym density .g dG dv=  

 

Assumption A2: The family of distribution functions ( ),F x θ  has Radon-Nikodym 

densities ( ) ( ), ,f x dF x dvθ θ=  which are measurable in x for every θ  in Θ , a compact 

subset of a p-dimensional Euclidean space, and continuous in θ  for every u in Ω . 

 

Assumption A3: (a) ( )( )ln tE g X  exists and ( ) ( )ln ,f x m xθ ≤  for all θ  in Θ , where 

m is integrable with respect to G; (b) ( ) ( ) ( )( ): , ln ,
t t

I g f E g X f Xθ θ≡     has a 

uniques minimum at *θ  in Θ . 

 

Assumption A4: ( )ln , , 1,..., ,if x i pθ θ∂ ∂ =  are measurable functions of u for each θ  in 

θ  in Θ  and continuously differentiable functions of θ  for each x in Ω . 

 

Assumption A5: ( )2 ln ,
i j

f x θ θ θ∂ ∂ ∂  and ( ) ( )ln , ln , ,
i j

f x f xθ θ θ θ∂ ∂ ∂ ∂  i, j = 

1,…, p, are dominated by functions integrable with respect to G for all x in Ω  and θ  in 

Θ .  

 

Assumption A6: (a) *θ  is interior to Θ ; (b) ( )*B θ  is nonsingular; (c) *θ  is a regular 

point of ( )A θ . 
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Assumption A7:  ( ) ( ), . , , , 1,..., ,
i j

f x f x i j pθ θ θ θ∂ ∂ ∂ ∂ =    are dominated by 

functions integrable with respect to v for all *θ  in Θ , and the minimal support of ( ),f x θ  

does not depend on θ . 

 

Given ( ) ( ) ( ) ( )2, ln , . ln , ln , ,l i j i jd x f x f x f xθ θ θ θ θ θ θ θ= ∂ ∂ ∂ ∂ + ∂ ∂ ∂  

    ( )( )1,..., 1 2; 1,..., ; ,..., .l p p i p j i p= + = =  

 

Assumption A8: ( ), , 1,..., , 1,..., ,l kd x l q k pθ θ∂ ∂ = =  exist and are continuous functions 

of θ  for each x. 

 

Assumption A9: ( ) ( ) ( ), , , , ,
l m l k

d x d x d xθ θ θ θ∂ ∂  and ( ) ( ), . ln , ,
l k

d x f xθ θ θ∂ ∂  k = 

1,…, p, , 1,..., ,l m q=  are dominated by functions integrable with respect to G for all x 

and θ  in Θ .     

 

Assumption A10: ( )*V θ  is nonsingular. 

 

Theorem 1: (Information Matrix Test), (White, 1982, p.11) Given Assumptions A1-

A10, if ( ) ( )0,g u f u θ=  for 0θ  in Θ , then (i) ( ) ( )( )0
ˆ 0, ;

A

n n
nD N Vθ θ∼  (ii) 

( ) ( )
a.s.

0
ˆ ,

n n
V Vθ θ→  and ( )ˆ

n n
V θ  is nonsingular almost surely for all n sufficiently large; (iii) 

the information matrix test statistic 

( ) ( ) ( )
' 1

ˆ ˆ ˆ
n n n n n n n

nD V Dς θ θ θ
−

=  

is distributed asymptotically as 
2.qχ   
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Theorem 2: (Consistency), (White, 1982, p.4) Given Assumptions A1-A3, *
ˆ
n

θ θ→  as 

n → ∞  for almost every sequence (
t

X ); i.e., 
a.s.

*
ˆ
n

θ θ→ . 
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APPENDIX B 

MEAN VALUE THEOREM 
 

Mean Value Theorem: Suppose : pf R R→ is defined on an open convex set 

pRΘ ⊂ and is continuously differentiable in Θ . Let ∇ denote the 1p × vector of 

derivatives (gradient).  Then there exists 
*θ on a segment formed by any two points θ and 

0θ in Θ so that 

( ) ( ) ( ) ( )*

0 0f f fθ θ θ θ θ′= + ∇ − . 
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APPENDIX C 

PROOF OF RESULT 4.3.1 
 

    The proposed UMP test is developed based on Theorem 2, Section 3, page 68, of 

Lehmann (1959) which asserts that if the probability density ( )µ;xf  has a monotone 

likelihood ratio in ( )xT , then there exists a UMP test for testing 00 : µµ ≤H versus 

01 : µµ >H . The monotone likelihood ratio is defined as follows: 

 

Definition: The real-parameter family of probability density function (pdf) ( )θ;xf  is 

said to have a monotone likelihood ratio if there exists a real-valued function ( )xT  such 

that ( ) ( )12 ;/; θθ xfxf  is a non-decreasing function of ( )xT  for 21 θθ < . 

 

It suffices to show that the );ˆ( 11 θθf  pdf of 1θ̂  has a monotone likelihood ratio. 

Let ( ) 1θ̂=xT , ( )
























 −
−=

2

11
11

ˆ2

ˆ
exp

2ˆ

1
;ˆ

σ

θθ

πσ
θθf  where 2σ̂  is the variance of the 

estimator 1θ̂ . If ''

1

'

1 θθ <  consider the ratio 

( ) ( )'

11

''

11 ;ˆ/;ˆ θθθθ ff ( ) ( )






 





 −−−−= 2

2
'

11

2
''

11
ˆ2/ˆˆexp σθθθθ  

      ( ){ }2'

1

''

11
ˆ/ˆexp σθθθκ −=  , 

where ( ){ }22'

1

2''

1
ˆ2/)()(exp σθθκ −−= . 

This ratio is a monotone increasing function in 1θ̂  when ''

1

'

1 θθ < .  The result then follows 

from Theorem 2, Section 3, page 68, of Lehmann (1959).    

 

 


