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Abstract

We study the νe − e annihilation from low to ultrahigh energy in the frame-

work of Higgs Triplet Model (HTM). We add the contribution of charged

Higgs boson exchange to the total cross section of the scattering. We obtain

the upper bound hee/MH± . 2.8 × 10−3GeV −1 in this process from low

energy experiment. We show that by using the upper bound we obtained, the

charged Higgs contribution could give enhancements to the total cross section

with respect to the SM prediction at s ≈M2
H±.

Furthermore, at the energy above the W pole, we compareW−H1,W+H−−,

H+H−−, H2H
− and W−Z0 production. We compare the total cross section

of νe − e and W−Z0 at resonance energy , in which a charged Higgs boson

is exchanged. We discuss the possibilities of the Higgs search through the

products of Higgs bosons decay at large Higgs lepton coupling constant.
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Abstrak

Kami mengkaji penghapusan νe−e daripada tenaga rendah ke tenaga lampau

tinggi dalam rangka Model triplet Higgs (HTM). Kami menambah sumban-

gan pertukaran Higgs boson kepada keratan rentas. Kami menganggarkan

batasan atas hee/MH± . 2.8 × 10−3GeV −1 dalam proses ini pada eksperi-

men tenaga yang rendah. Kami menunjukkan bahawa dengan menggunakan

batasan atas yang didapati, sumbangan Higgs boleh memberi peningkatan

kepada jumlah keratan rentas dengan merujuk kepada ramalan SM pada s ≈

M2
H± .

Tambahan pula, pada tenaga melebihi kutub W, kami bandingkan peng-

hasilan W−H1, W+H−−, H+H−−, H2H
− dan W−Z0. Kami memband-

ingkan keratan rentas νe−e danW−Z0 pada tenaga resonans, di mana Higgs

boson ditukar. Kami membincangkan kemungkinan pencarian Higgs melalui

produk reputan Higgs pada nilai coupling Higgs lepton yang besar.
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Chapter 1

Introduction

In the Standard Model (SM) of particles physics, the neutrino is massless. The neutrino is

one of the elementary particles which can adequately be accounted for by the weak inter-

action. Furthermore, the masslesness of the neutrino makes the SM as complete and no

further improvement is necessary for the SM. In this model, there are only three flavours

or generation of massless neutrinos [see Table 2.1], namely electron neutrino, muon neu-

trino and tauon neutrino in addition to their respective antineutrinos. However, the studies

of the solar neutrino problem (Bahcall & Davis, 1976) had led physicists to suspect that

one type of neutrino may transform into another type during propagation from the sun to

the earth. The flavour changing or so called neutrino oscillation is later known to be pos-

sible if the neutrinos are massive. The existence of small neutrinos masses have motivated

the study of neutrinos to the physics beyond the standard model. In particular, the Higgs

Triplet Model (HTM) (T. P. Cheng & Li, 1980; Schechter & Valle, 1980). This model pro-

vides us an alternative way to introduce and explain the smallness of the neutrinos masses

through type-II seesaw mechanism (Fileviez Pérez, Han, Huang, Li, & Wang, 2008) and

enables one to estimate the parameters in the lepton violation processes. The introduction
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of singly and doubly charged Higgs bosons in this model have opened many phenomeno-

logical studies in hunting for them at energy frontier accelerators (Fileviez Pérez et al.,

2008; Akeroyd & Aoki, 2005; Akeroyd & Chiang, 2010) particularly at the CERN1 LHC2

with center-of-mass energy of 14 TeV. Besides, the coupling of charged leptons and neu-

trinos to singly charged Higgs bosons in this model is particular interesting to the leptonic

processes. Thus, the νe − e annihilation does not only proceed through charge current

(CC) and neutral current (NC) but also with charged Higgs boson exchange. Further-

more, the coupling of charged Higgs bosons to the gauge bosons has opened wide variety

of final states to νe − e annihilation.

In this thesis, we investigate the possibilities of the Higgs triplet production at ul-

trahigh energy (1012eV − 1020eV ) through neutrino electron annihilation at tree level.

However, this energy is beyond the reach of the energy frontier accelerator and only be

possible from cosmic rays. A large-scale neutrino telescope such as IceCube (Halzen,

2006) is likely to observe these events. The flux of ultrahigh energy νe may get en-

hanced through the neutrino oscillation from νµ produced at the atmosphere (p+ + γ →

π++n, π+ → µ++ νµ, µ
+ → e++ νµ+ νe, n→ p++ e−+ νe). The study of ultrahigh

energy particles interaction would be one of the possible ways to probe the feasibility of

physics beyond the standard model.

The thesis is organized as follow:

Chapter 2 gives a compact introduction on the SM to provide the understanding on how

the particles interact and how do they obtained their masses while the neutrinos remain

massless.

Chapter 3 introduces some physics and experimental evidences that lead to the massive

1The European Organization for Nuclear Research, located at Geneva on the France−Swiss border.
2Large Hadron Collider
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neutrino concept. The behaviours of the massive neutrinos in medium and electromag-

netic field are briefly introduced. The discussion about the HTM is included in the end of

this chapter.

Chapter 4 is the calculation of the differential cross section and total cross section for the

processes:

νe(q⃗) + e−(p⃗) → νe(q⃗
′) + e−(p⃗ ′)

νe(q⃗) + e−(p⃗) → W−(k⃗) +H1(k⃗
′)

νe(q⃗) + e−(p⃗) → W+(k⃗) +H−−(k⃗′)

νe(q⃗) + e−(p⃗) → H+(k⃗) +H−−(k⃗′)

νe(q⃗) + e−(p⃗) → H2(k⃗) +H−(k⃗′)

νe(q⃗) + e−(q⃗) → W−(k⃗) + Z0(k⃗′)

The discussions on the cross section are presented at the end of each process.

Chapter 5 discusses the numerical results obtained from Chapter 4 and the possibilities of

the Higgs decay.

Conclusions are given in Chapter 6.
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Chapter 2

Theoretical Background

2.1 Standard Model

The Standard Model (SM) of particle physics is completely described by the electroweak

and Quantum Chromodynamics (QCD) theories (Griffiths, 2008). These mechanics are

able to describe the three of the four known forces in the nature, namely electromagnetic,

strong and weak forces, using mediating gauge bosons. These gauge bosons are gluon,

W+, W−, Z0 and photon. This leaves the gravity to be described by the General Theory

of Relativity (Foster & Nightingale, 2006). The present state of affairs makes the theories

of physics unsatisfactory in the light of the unification. In fact, the ultimate goal of the

theory of physics is the unification of all theories of physics into a single theory, called the

Theory of Everything (TOE), which can explain all the four forces known presently in the

nature. The unification of the quantum field theory and the General Theory of Relativity

are being pursued by physicists throughout the world that results in the birth of fields of

research area such as Quantum Gravity, String Theory (Zwiebach, 2004), M-theory and

loop Quantum Gravity (Kaku, 1993, 1999). The validity of these theories can be tested

4



2.1 Standard Model

at Planck scale, a scale of about 10−35 meters or 1019 GeV, that can only be achieved

by accelerators operating at more than 1 TeV. Several research laboratories which oper-

ate high energy accelerators, such as Tevatron in USA and LHC in Europe, are pushing

their operating energies towards this scale. The mathematical formulations of strong and

electroweak interaction are described by gauge quantum field theory (T. Cheng & Li,

1984; Mandl & Shaw, 2009; Peskin & Schroeder, 1995; Lahiri & Pal, 2005). Gauge

theory is a type of field theory in which the Lagrangian or equation of motion is invariant

under some continuous group of local transformation. Such a transformation is called

gauge transformation and form a Lie group which refers to the symmetry group (Tung,

1985) of the theory. Each symmetry group is associated with group generators. A cor-

responding vector field or gauge field arises for each of the generators. A gauge field is

necessary to be imposed into the theory to ensure that the Lagrangian is invariant under

the local gauge transformation. Upon the quantization of the gauge fields, the quanta of

the gauge fields are called gauge bosons. In particular, the quantum version of classical

electrodynamics, Quantum Electrodynamics (QED) is the abelian gauge theory based on

the gauge group U(1) with one gauge field, the electromagnetic field where the photon

being the gauge boson so that the Dirac Lagrangian is invariant under local gauge trans-

formation. An abelian group is a group in which the group elements commute, otherwise

is called non-abelian. The extension of the abelian gauge theory to non-abelian gauge

theory was first constructed by Yang and Mills into a famous Yang-Mills theory (Yang

& Mills, 1954). The SM is the non-abelian symmetry gauge theory with gauge group

SU(3)C × SU(2)L × U(1)Y . The gauge group that describes the strong interaction is

SU(3)C . There are 8 generators correspond to 8 gauge fields with 8 gluons being the

gauge boson. The QCD requires color charge for the quarks to interact among themselves

5



2.1 Standard Model

via gluon exchange, which is in contrast to QED with only one charge for the interaction

among electrons via photon exchange. The quarks carry three colors (red, green, blue)

1 and gluons carry the combination of color-anticolor (neutral, no color). The compos-

ite particles that are made up of quarks come in three quarks or two quarks combination

where these combinations give no resultant color charge. A particle with 3 quarks combi-

nation is called baryon while two quarks combination called meson. No free quarks have

been observed and the effort to search for them in the high energy accelerator always give

negative results. The fermions and bosons of SM are present in Table 2.1 and Table 3.1.

Table 2.1: The fermions of the Standard Model. The up type quarks (u, c, t) and e, µ, τ
are mass eigenstates (with definite mass) while the down type quarks (d′, s′, b′) are weak
eigenstates (with non definite mass). The weak eigenstates of quarks are related to their mass
eigenstates through Cabibbo-Kobayashi-Maskawa (CKM) matrix (Cabibbo, 1963; Kobayashi
& Maskawa, 1973). The neutrinos are massless in the SM. The subscript L and R is the left-
handed PL = 1

2(1 − γ5) and right-handed PR = 1
2(1 + γ5) projection operator respectively.

There are no right-handed neutrinos in the model.

Fermions 1st 2nd 3rd SU(3)C SU(2)L U(1)Y

Quark

(
u
d′

)
L

(
c
s′

)
L

(
t
b′

)
L

3 2 1
3

uR cR tR 3 1 4
3

dR sR bR 3 1 -2
3

Lepton

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

1 2 -1

eR µR τR 1 1 -2

Table 2.2: The bosons of the Standard Model. The gauge fields carry spin-1 while the Higgs
field carries spin-0.

Bosons Fields SU(3)C SU(2)L U(1)Y

SU(3)C gauge fields G1, ..., G8 8 1 0
SU(2)L gauge fields W 1,W 2,W 3 1 1 0
U(1)Y gauge field B 1 1 0

Higgs fields ϕ+, ϕ0 1 2 1

1The colors refer here are quantum parameter which is unrelated to the visible colors in everyday life.
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2.2 Standard Electroweak Model

2.2 Standard Electroweak Model

Just as the unification of electricity and magnetism by Maxwell into four Maxwell Equa-

tions of electromagnetism, the standard electroweak model is the unified description of

electromagnetism and weak interaction. It was proposed by Weinberg, Glashow and

Salam (Weinberg, 1967; Glashow, 1961; Salam & Ward, 1964). This unification is based

on the gauge group SU(2)L × U(1)Y (T. Cheng & Li, 1984; Mandl & Shaw, 2009;

Peskin & Schroeder, 1995). There are four gauge bosons in the gauge group, namely

W µ
i (i = 1, 2, 3) for SU(2)L and Bµ for U(1)Y , with the coupling constants g and g′

respectively. The weak hypercharge, Y , electric charge, Q and weak isospin, T3 as a set

of quantum numbers satisfy the relation Q = T3 +
Y
2

. In analogy to the classification of

the proton and neutron with their isospin (Krane & Halliday, 1987), the fermions can be

classified as shown in Table 2.1. The left-handed fermions (Weinberg, 1967)

ψiL =

 νl

l


iL

,

 u

d′


iL

(2.1)

transform as doublet under SU(2)L while the right-handed fermions ψiR = liR, uiR, d
′
iR

transform as singlet under U(1)Y . The equation of motion of the fermions and gauge

bosons are given by the Euler-Lagrange equation through minimizing the action integral,

S involving the Lagrangian density (Mandl & Shaw, 2009) [see Appendix B]

S =

∫
d4xL(ϕ, ∂ϕ)

δS = 0

∂L

∂ϕ
− ∂

∂x

(
∂L

∂(∂ϕ)

)
= 0 (2.2)
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2.2 Standard Electroweak Model

where ϕ is an arbitrary field. The Lagrangian density, L(ϕ, ∂ϕ) will be referred as La-

grangian afterwards. Thus, the kinetic energy terms for quarks, leptons and gauge bosons

in the electroweak Lagrangian is

LEW = iψlL /DψlL + iψlR /DψlR + iψνR /DψνR

−1

4
F µν
i F i

µν −
1

4
BµνBµν (2.3)

where /D is γµDµ. The first three terms are the Dirac Lagrangian which describe the

spin−1
2

fermions while the last two terms are the Proca Lagrangian that describe spin-1

vector bosons. The forces (gauge fields) that experienced by different particles (as well

as different chirality) are added into the derivative through the minimal substitution in

order to preserve the invariant of Lagrangian under the SU(2)L and U(1)Y local gauge

transformation (T. Cheng & Li, 1984). The modified derivatives or covariant derivatives

take the form (Mandl & Shaw, 2009)

DµψlL = [∂µ + ig
σi
2
W i

µ + ig′
Y

2
Bµ]ψlL,

DµψlR = [∂µ + ig′
Y

2
Bµ]ψlR,

DµψνR = ∂µψνR. (2.4)

The field strength tensor F i
µν and Bµν of the gauge bosons are

F µν
i = ∂νW µ

i − ∂µW ν
i

Bµν = ∂νBµ − ∂µBν (2.5)
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2.3 Spontaneous symmetry breaking

which is in analogy of the electromagnetic field strength tensor. The Pauli matrices σi

2
and

Y
2

are the generators of the group SU(2)L and U(1)Y respectively. The addition of mass

terms into Equation (2.3) violate both SU(2)L and U(1)Y gauge invariance. Therefore,

the mass generation mechanism is required in order to give the mass to the gauge bosons

and also fermions without violating the gauge invariance.

2.3 Spontaneous symmetry breaking

The generation of the mass of gauge fields proceed through Higgs mechanism (Higgs,

1964; Englert & Brout, 1964; Guralnik, Hagen, & Kibble, 1964) after spontaneous sym-

metry breaking (Nambu, 2009). In the spontaneous symmetry breaking the particles at

high energy behave similarly, however, at low energy they are found to be the same type

of particles but only in different states (Hawking, 1998). In order to introduce the spon-

taneous symmetry breaking break SU(2)L × U(1)Y → U(1)EM , where U(1)EM is the

electromagnetic interaction gauge group, a simple Lagrangian with a weak isospin dou-

blet scalar field is introduced into Equation (2.3) [see Appendix B].

LHiggs = (Dµϕ)
†(Dµϕ)− V (ϕ)

= (Dµϕ)†(Dµϕ)− µ2ϕ†ϕ+ λ(ϕ†ϕ)2, (2.6)

ϕ =

 ϕ+

ϕ0

 . (2.7)

For µ2 > 0, the minimum of the potential occurs at [see Figure 2.1]
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2.3 Spontaneous symmetry breaking

Figure 2.1: The Higgs potential after spontaneous symmetry breaking.

⟨ϕ⟩ =

 0

υ√
2

 . (2.8)

The vacuum state does not correspond to zero but a particular choice around the circular

minimum and ⟨ϕ⟩ is the vacuum expectation value (vev). The field, ϕ can be parameter-

ized in four real fields

ϕ =
1√
2

 η1(x) + iη2(x)

υ +H(x) + iη3(x)

 = exp[i
ηj(x)τ

υ
]
1√
2

 0

υ +H(x)

 (2.9)

where H(x) is the fluctuation in the radial plane. On the other hand, the fields ηj(x) are

the fluctuation along the circular minimum where the potential is constant so that upon

quantization, the ηj(x) bosons are massless. These fields have zero vev, ⟨0 | ηj(x) | 0⟩ =

⟨0 | H(x) | 0⟩ = 0. The ηj bosons are called Goldstone bosons that do not exist in nature
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2.3 Spontaneous symmetry breaking

and should be eliminated from the Lagrangian by gauge transformation.

ϕ′ = exp[−iηj(x)τ
υ

]ϕ

=
1√
2

 0

υ +H(x)

 (2.10)

The gauge transformation which the transformed field has this form is called unitary

gauge. A massless vector field carries two degrees of freedom (transverse polariza-

tion), when it acquires mass, it picks up a third degree of freedom (longitudinal po-

larization) which correspond to the ηj(x) fields that have been eliminated. Therefore,

η1(x), η2(x), η3(x) are said to be absorbed by W+,W−, Z0 to acquire mass. This mech-

anism is the famous Higgs mechanism. From the kinetic term in Equation (2.6) and the

covariant derivative in Equation (2.4), the mass of the gauge bosons evaluated at the scalar

field vev are

|
(
ig
σi
2
W i

µ + ig′
Y

2
Bµ

)
ϕ|2

(
1

2
gυ

)2

W+
µ W

−µ +
1

8
υ2
(
W 3

µ Bµ

) g2 −gg′

−gg′ g′2


 W 3

µ

Bµ

 . (2.11)

The mass of the W± is

m2
W =

1

4
υ2g2 (2.12)

with

W±
µ =

W 1
µ ∓ iW 2

µ√
2

. (2.13)
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2.3 Spontaneous symmetry breaking

Since the mass is the eigenvalue and should be diagonal in a matrix, therefore the second

term in Equation (2.11) should be diagonalized. One obtains

1

8
υ2
(
Zµ Aµ

) g2 + g′2 0

0 0


 Zµ

Aµ


where Aµ and Zµ are the physical fields that mixed W 3

µ and Bµ with tan θW = g′/g,

Zµ = W 3
µ cos θW −Bµ sin θW

Aµ = W 3
µ sin θW +Bµ cos θW (2.14)

The field Aµ being the massless photon and Zµ being the Z0 boson with mass

m2
Z =

1

4
υ2(g2 + g′2). (2.15)

In order to generate the mass of the fermions, the gauge invariant Yukawa Lagrangian is

included into the theory.

− LY ukawa = glψiLψiRϕ+ g∗l ϕ
†ψiRψiL (2.16)

The second term is the hermitian conjugate of the first term and will be denote as H.c.

afterward. The charged leptons obtain their masses after ϕ acquire the vev,

− LY ukawa =
glυ√
2
lLlR +H.c., ml =

glυ√
2

(2.17)

while the neutrinos remain massless. Here gl is the dimensionless coupling constant.
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Chapter 3

Neutrino Physics

3.1 Neutrino Oscillation

Neutrinos are produced from beta decay process and propagate in vacuum at almost the

speed of light and pass through matter at almost no interaction. Lepton quantum numbers

such as electron lepton number, Le, muon lepton number, Lµ and tauon lepton number,

Lτ are assigned to each generation of lepton, as shown in Table 3.1. It is required that

these lepton numbers should be conserved (Mandl & Shaw, 2009). However, the exper-

imental study (Davis, Harmer, & Hoffman, 1968) of the solar neutrinos from the Sun

found that the flux was significantly smaller than that predicted by the Standard Solar

Model (Bahcall, Bahcall, & Shaviv, 1968). The studies of this discrepancy or solar neu-

trino problem (Bahcall & Davis, 1976) had led physicists to suspect that one flavour of

neutrino may transform into another flavour during propagation from the Sun to the Earth,

since the detector was not sensitive to all flavours of neutrino. Such a phenomena is called

neutrino oscillation. Neutrino oscillation is possible if the neutrinos are massive. Thus,

the flavour changing process implies that the lepton numbers are necessarily violated and
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3.1 Neutrino Oscillation

the SM is no longer adequate to describe neutrinos.

Table 3.1: Lepton numbers Le, Lµ, Lτ of three generation leptons. The lepton numbers of
-1 are assigned for their respective anti particles. The lepton number is zero for quarks and
gauge bosons

νe e νµ µ ντ τ

Le 1 1 0 0 0 0

Lµ 0 0 1 1 0 0

Lτ 0 0 0 0 1 1

However, the theory to describe the neutrino oscillation in vacuum was pursued vig-

orously by Bilenky and Pontecorvo (Pontecorvo, 1957; Bilenky & Pontecorvo, 1978) in

the framework of quantum theory in analogy with K0 − K0 oscillation (Gell-Mann &

Pais, 1955). In the standard theory of neutrino oscillation, the neutrino flavour states that

were produced in the decay W+ → l+α + να are the superposition of three neutrino mass

eigenstates (Bilenky & Pontecorvo, 1978; Gonzalez-Garcia & Nir, 2003)

| να⟩ =
∑
k

U∗
αk| νk⟩ (3.1)

where α = e, µ, τ ; k = 1, 2, 3 and U is the 3 × 3 mixing matrix1. The neutrino flavour

states are assumed to have a definite momentum p⃗ and the mass eigenstates have different

energies where the relativistic energy approximation is

Ek =
√
p⃗2 +m2

k ≈ p⃗+
m2

k

2p⃗
(3.2)

1Also called Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix), Maki-Nakagawa-Sakata ma-
trix (MNS matrix), lepton mixing matrix, or neutrino mixing matrix
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3.1 Neutrino Oscillation

such that the massive neutrino states |νi⟩ are eigenstates of Hamiltonian

H| νk⟩ = Ek| νk⟩ . (3.3)

The mass eigenstates satisfy the Schrödinger-like equation

i
∂

∂t
| νk(t)⟩ = H| νk(t)⟩ (3.4)

and have a plane wave solution

| νk (t)⟩ = e−iEkt| νk⟩ . (3.5)

Thus, the flavour states evolve in time as

|να(t)⟩ =
∑
k

e−iEktU∗
αk|νk⟩. (3.6)

The mass eigenstates can be expressed in terms of flavour states by inverting Equation

(3.1) and Equation (3.6)

|να(t)⟩ =
∑
β

(
U∗
αke

−iEktUβk

)
|νβ⟩. (3.7)

The probability for the neutrino oscillation is therefore

P (να → νβ; t) = | ⟨νβ|να(t)⟩ |2 =
∑
k,j

U∗
αkUβkUβkU

∗
αje

−i(Ek−Ek)t. (3.8)

15



3.1 Neutrino Oscillation

For two neutrinos case, the mixing matrix takes the form [see Equation (D.1)]

U =

 cos θ sin θ

− sin θ cos θ

 (3.9)

and the conversion probability is (Mohapatra & Pal, 2004)

Pνe→νµ =
1

2
sin2 2θ12

[
1− cos

(
m2

1 −m2
2

2E

)
L

]
(3.10)

where sin2 2θ12 and m2
1 −m2

2 are the neutrino mixing angle and the mass splitting of the

neutrino mass eigenstates ν1 and ν2 respectively. The first direct measurement of the total

flux of 8B neutrinos arriving from the Sun at SNO1 provided an evidence to the neutrino

flavour changing (Ahmad et al., 2001, 2002). The neutrino oscillation phenomena were

further confirmed from different sources of neutrino. In particular, the reactor antineutrino

disappearance by KamLAND2 (Eguchi et al., 2003), the accelerator generated νµ disap-

pearance by K2K3 (Ahn et al., 2006, 2003) and the atmospheric neutrino4 oscillation

by Kamiokande (Hatakeyama et al., 1998). On the other hand, the probability of neu-

trino flavour oscillation is affected when the neutrinos travel through matter (Wolfenstein,

1978). In analogy to the photons that develop effective masses in a medium, the neutri-

nos are similarly developing their effective masses by the influence of the weak potential.

Different flavours of neutrinos will experience different interaction with matter, which

comprise of electrons and nucleus. Thus, the modified probability of neutrino conversion

1Sudbury Neutrino Observatory
2Kamioka Liquid Scintillator Anti-Neutrino Detector
3KEK to Kamioka. KEK is a Japanese high energy physics research organization
4Neutrino created by the interaction of cosmic rays with the nuclei in the atmosphere
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3.1 Neutrino Oscillation

is (Mohapatra & Pal, 2004)

Pνe→νµ =
1

2
sin2 2θM

[
1− cos

(
m̃2

1 − m̃2
2

2E

)
L

]
(3.11)

which has the same structure as Equation (3.10) with the neutrino mixing angle in vac-

uum and the mass splitting are replaced by effective mixing angle and effective neutrino

mass splitting. A further modification was done in order to take into account the neu-

trino oscillation in non-uniform matter (Halprin, 1986; Kim, Sze, & Nussinov, 1987).

There is a resonant oscillation region in the medium with varying density in which the

possibility of total transition between two flavours of neutrino is maximum. Such a

mechanism is the famous Mikheyev-Smirnov-Wolfenstein (MSW) effect (Mikheyev &

Smirnov, 1986; Wolfenstein, 1978). In addition, the neutrino spin-flavour oscillation in a

medium with magnetic field was considered in connection to the solar neutrino problem

(Egorov, Likhachev, & Studenikin, 1995; Egorov, Lobanov, & Studenikin, 2000). Since

the neutrino is neutral, the difference between particle and its antiparticle is difficult to

distinguish. So, the term Dirac neutrino refers to that the particle and antiparticle are

different while Majorana neutrino refers to that the particle and antiparticle are the same.

However, the nature of Dirac-Majorana neutrino is still an open question. Furthermore,

the zero charge neutrino can undergo loop interaction with the photon to induce the elec-

tromagnetic properties of neutrino (Nieves, 1982; Vogel & Engel, 1989; Degrassi, Sirlin,

& Marciano, 1989). For instance, the Dirac neutrino can have four electromagnetic form

factors while the Majorana neutrino has only one electromagnetic form factor (Kayser,

1982). The magnetic moment of Dirac neutrino obtained is proportional to its mass (Lee
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3.2 Neutrino Mass in SU(2)L × U(1)Y model

& Shrock, 1977).

µν =
3GFmemν

4
√
2π2

= 3.2× 10−19
( mν

1eV

)
(3.12)

Thus, the neutrino mass with lepton number violation have to be incorporated into the SM

so that the neutrino oscillation and their electromagnetic properties can be explained.

3.2 Neutrino Mass in SU(2)L × U(1)Y model

In order to obtain non-vanishing neutrino mass, the most straight forward way is to intro-

duce a right-handed neutrinos into the SM (Mohapatra & Pal, 2004). A SU(2)L singlet

right-handed neutrino with Y = 0 is added that corresponds to each generation of charged

lepton. These neutrinos have no interaction with the gauge bosons as they are not observed

experimentally. The new gauge invariant Yukawa Lagrangian is

− LY ukawa =
∑
l,l′

fll′ψlLϕ̂νl′R +H.c. (3.13)

where ϕ̂ = iσ2ϕ
∗. After spontaneously symmetry breaking,

− Lmsss =
∑
l,l′

fll′
υ√
2
νlLνl′R +H.c. (3.14)

with

mll′ = fll′
υ√
2

(3.15)

as the neutrinos masses in weak eigenstate. Hence, the neutrino mass eigenstates are

obtained by diagonalizing Equation (3.14). As a result, the neutrino flavour eigenstates
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3.2 Neutrino Mass in SU(2)L × U(1)Y model

are a mixture of the mass eigenstates.

νlL =
∑
i

UlανiL

νlR =
∑
i

UlανiR

mi = U †mll′V

−Lmsss =
∑
i

miνiLνiR +H.c. (3.16)

The mass of neutrino arises as the other fermions in the model. However, this method

does not provide explanation to the smallness of neutrino mass. On the other hand, the

coupling constants are completely determined through experiment. In a sense, the model

is incomplete. A new model with extended Higgs sector is suggested. In particular, the

Higgs Triplet Model (HTM).

3.2.1 Higgs Triplet Model

In this model, a I=1, Y = 2 complex SU(2)L scalar triplet is included to the SM La-

grangian to explain the smallness of neutrino mass (T. P. Cheng & Li, 1980; Schechter

& Valle, 1980) without requiring the addition of extra right-handed neutrinos. The La-

grangian with the addition of the Higgs triplet is

L = (Dµϕ)†(Dµϕ) + Tr(Dµ∆)†(Dµ∆) + LY ukawa − V (ϕ,∆). (3.17)

The SU(2)L × U(1)Y gauge invariant Yukawa Lagrangian for the Higgs leptons inter-

action are written as (Fileviez Pérez et al., 2008; Akeroyd & Aoki, 2005; Akeroyd &

Chiang, 2010)

LY ukawa = hαβψ
T
αLCiσ2∆ψβL +H.c. (3.18)
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3.2 Neutrino Mass in SU(2)L × U(1)Y model

where hαβ(α, β = e, µ, τ) is the coupling constant matrix, C is the charged conjugation

matrix, σ2 is a Pauli matrix, ψαL = (να, lα)
T
L is left-handed lepton doublet and ∆ is 2×2

representation of the Y = 2 complex triplet field,

∆ =

 ∆+/
√
2 ∆++

∆0 −∆+/
√
2

 . (3.19)

The Higgs triplet potential is

V (ϕ,∆) = −m2
Hϕ

†ϕ+M2
∆Tr∆

†∆+
λ

4
(ϕ†ϕ)2 +

(
µϕT iσ2∆

†ϕ+H.c.
)

+λ1(ϕ
†ϕ)Tr∆†∆+ λ2(Tr∆

†∆)2 + λ3Tr(∆
†∆)2

+λ4ϕ
†∆∆†ϕ. (3.20)

The neutrinos obtain their masses after ∆0 acquire the vacuum expectation value, υ∆,

mαβ = 2hαβ⟨∆0⟩ =
√
2hαβυ∆;

υ∆ =
µυ20√
2M2

∆

(3.21)

where the neutral component of Higgs doublet and triplet are expressed as

ϕ0 =
υ0 + h0 + iξ0(x)√

2
,

∆0 =
υ∆ + δ0 + iη0(x)√

2
. (3.22)
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3.2 Neutrino Mass in SU(2)L × U(1)Y model

The ground state of a system where it is at the most stable state can be obtained by

minimization of the global minimum of the potential

∂V

∂ϕ ϕ=⟨ϕ⟩,∆=⟨∆⟩
= 0,

∂V

∂∆ϕ=⟨ϕ⟩,∆=⟨∆⟩
= 0. (3.23)

and

−m2
H + λ

υ20
4

−
√
2µυ∆ + (λ1 + λ4)

υ2∆
2

= 0,

M2
∆υ∆ − µυ20√

2
+

1

2
(λ1 + λ4)υ

2
0υ

2
∆ + (λ2 + λ3)υ

3
∆ = 0. (3.24)

By considering the lowest order processes, the λi parameters are set to zero where λ have

their usual meaning. Thus we have

υ∆ =
µυ20√
2M2

∆

, m2
H =

(
λ

4
− µ2

M2
∆

)
υ20.

The first relation is referred to as type II seesaw mechanism (Fileviez Pérez et al., 2008)

for M2
∆ >> υ20 , as one component is large, the other component appears to be very

small. From the Higgs potential one finds the masses of two CP-even, one CP-odd (charge

conjugation and parity) and two singly charged Higgs bosons which are mixed of weak

isospin doublet and triplet. Meanwhile, the doubly charged Higgs bosons are composed

of triplet alone. The mass-squared matrix for CP-even states are

1

2

(
h0 δ0

)
λυ2

0

2
−
√
2µυ0

−
√
2µυ0 M2

∆


 h0

δ0

 . (3.25)
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3.2 Neutrino Mass in SU(2)L × U(1)Y model

Upon diagonalization, the two physical CP-even states are

H1 = cos θ0 h0 + sin θ0 δ0

H2 = − sin θ0 h0 + cos θ0 δ0 (3.26)

with the masses

M2
H1 ≈

λυ20
2

− 2
√
2µυ∆, M

2
H2 ≈M2

∆ + 2
√
2µυ∆ (3.27)

and mixing angle

tan 2θ0 = − 4M2
∆υ∆

υ0(M2
H1

+M2
H2

− 2M2
∆)
. (3.28)

The CP-odd states are

1

2

(
ξ0 η0

) 2
√
2µυ∆ −

√
2µυ0

−
√
2µυ0 M2

∆


 ξ0

η0


1

2

(
G0 A0

) 0 0

0 M2
∆ + 2

√
2µυ∆


 G0

A0

 (3.29)

with

G0 = cosα ξ0 + sinα η0 (3.30)

A0 = − sinα ξ0 + cosα η0 (3.31)

and

M2
A0

=M2
∆ + 2

√
2µυ∆, M

2
G0

= 0
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3.2 Neutrino Mass in SU(2)L × U(1)Y model

cosα =
υ0√

υ20 + 4υ2∆
, sinα =

2υ∆√
υ20 + 4υ2∆

. (3.32)

Meanwhile, the mass-squared matrix of the singly charged Higgs bosons are

(
ϕ+ δ+

)
√
2µυ∆ −µυ0

−µυ0 M2
∆


 ϕ+

δ+


(
G+ H+

) 0 0

0 M2
∆ +

√
2µυ∆


 G+

H+

 (3.33)

with

G± = cos θ± ϕ
± + sin θ± δ

± (3.34)

H± = − sin θ± ϕ
± + cos θ± δ

± (3.35)

and

M2
H± =M2

∆ +
√
2µυ∆, M

2
G± = 0

cos θ+ =
υ0√

υ20 + 2υ2∆
, sin θ+ =

√
2υ∆√

υ20 + 2υ2∆
. (3.36)

The doubly charged Higgs bosons are

H±± = ∆±±, M2
H±± =M2

∆. (3.37)

The G0 and G± are being the Goldstone bosons that absorbed by Z0 and W± to acquire

mass. The upper bound of υ∆/υ0 is set by the ratio of the mass of W± to Z0, ρ =

1.0008+0.0017
−0.0007 (Nakamura et al., 2010) to be υ∆/υ0 . 0.02. The lower bound of the
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3.2 Neutrino Mass in SU(2)L × U(1)Y model

charged Higgs boson mass in this model is (Fileviez Pérez et al., 2008)

MH± & 110 GeV. (3.38)

The Feynman rules are included in Appendix C.
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Chapter 4

Annihilation of νee

4.1 Introduction

The problems of the neutrino mass to the SM have been discussed in Section 3.1 and

one of the many models proposed to explain the smallness of neutrino mass were briefly

covered in Subsection 3.2.1. The hunting of Higgs bosons in the framework of HTM have

received much attention recently (Fileviez Pérez et al., 2008; Akeroyd & Aoki, 2005;

Akeroyd & Chiang, 2010) particularly at the CERN LHC with center-of-mass energy of

14 TeV. However, the Higgs production from νe − e annihilation is beyond the reach

of any high energy accelerator and one would require the neutrino source from cosmic

rays. Our works were motivated by (Mikaelian & Zheleznykh, 1980) which study the SM

particles production from νee annihilation.

4.2 νe + e− → νe + e−

The νee− scattering process at low energy have been well tested theoretically and ex-

perimentally (Deniz et al., 2010). The high energy behaviour of this process in SM has
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4.2 νe + e− → νe + e−

also been considered by (Mikaelian & Zheleznykh, 1980; Butkevich, Kaidalov, Krastev,

Leonov-Vendrovski, & Zheleznykh, 1988; Gandhi, Quigg, Reno, & Sarcevic, 1996).

However, the coupling of electrons and neutrinos to the singly charged Higgs bosons

may play an important role to the νee− scattering process at high energy. This process

is represented by Feynman diagrams as shown in Figure 4.1. We would concentrate on

the flavour conserving part and estimate the bound of the coupling. In the calculation, the

mixing between Higgs doublet and triplet is assumed negligible. For the process at high

energy, we drop the electron mass. The charged current and neutral current Lagrangian

are [Equation (C.36)]

LCC = − g

2
√
2
νeγ

α(1− γ5)eWα +H.c.

LNC = − g

4 cos θW
[νeγ

α(1− γ5)νe − eγα(1− 4 sin2 θW − γ5)e]Zα +H.c. (4.1)

where g2 = 8m2
WGF/

√
2. Following the convention in (Mikaelian & Zheleznykh, 1980),

t is the square of the momentum transferred between incoming νe and outgoing singly

charged particle. Thus, the Z boson exchange would be denoted as u channel. The νe − e

scattering cross section involve two s channels and one u channel (Z exchange). The s

channels come from the W− and H− exchange as shown in Figure 4.1.

4.2.1 W boson exchange

The amplitude for the W exchange diagram is

MW = ν̄r(q⃗)

[
−ig
2
√
2
γα(1− γ5)

]
ur(p⃗)

−igαβ
s−m2

W

ūr(p⃗
′)

[
−ig
2
√
2
γβ(1− γ5)

]
νr(q⃗

′)

=
−ig2

8(s−m2
W )

[ν̄r(q⃗)γ
α(1− γ5)νr(q⃗

′)][ūr(p⃗
′)γα(1− γ5)ur(p⃗)]. (4.2)
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4.2 νe + e− → νe + e−

(a) W− exchange (b) Z0 exchange

(c) H− exchange

Figure 4.1: The Feynman diagrams for νe(q⃗) + e−(p⃗) → νe(q⃗
′) + e−(p⃗ ′) scattering. The

Feynman diagrams throughout this thesis are created by using JaxoDraw (Binosi & Theuβl,
2004).

Multiplying with the complex conjugate,

|MW |2 =
g4

64(s−m2
W )2

[ν̄r(q⃗)γ
α(1− γ5)νr(q⃗

′)][ν†r(q⃗
′)(1− γ5)γ

β†γ0νr(q⃗)]

×[ūr(p⃗
′)γα(1− γ5)ur(p⃗)][u

†
r(p⃗)(1− γ5)γ

†
βγ

0ur(p⃗
′)]

=
g4

64(s−m2
W )2

[ν̄r(q⃗)γ
α(1− γ5)νr(q⃗

′)][ν̄r(q⃗
′)γβ(1− γ5)νr(q⃗)]

×[ūr(p⃗
′)γα(1− γ5)ur(p⃗)][ūr(p⃗)γβ(1− γ5)ur(p⃗

′)]. (4.3)

Average over initial polarization states and sum over all final polarization states,

⟨∣∣M2
W

∣∣⟩ =
g4

64(s−m2
W )2

1

2
Tr

[
(/q −mν)γ

α(1− γ5)(/q
′ −mν)γ

β(1− γ5)

2mν2me

]

×Tr
[
(/p′ +me)γα(1− γ5)(/p+me)γβ(1− γ5)

2mν2me

]
. (4.4)
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4.2 νe + e− → νe + e−

The trace can be evaluated by using the trace identity in Appendix A.3.

Tr
[
(/q −mν)γ

α(1− γ5)(/q
′ −mν)γ

β(1− γ5)
]

= 2Tr
[
/qγ

α
/q
′γβ(1− γ5)

]
= 2qµq

′
νTr

[
γµγαγνγβ(1− γ5)

]
= 8qµq

′
ν

[
gµαgνβ − gµνgαβ + gµβgαν − iεµανβ]

= 8
[
qαq′β − qq′gαβ + qβq′α − iqµq

′
νε

µανβ
]

= 2qµq
′
νTr

[
γµγαγνγβ(1− γ5)

]
× 2p′σpτTr [γσγαγτγβ(1− γ5)]

= 64
[
qαq′β − qq′gαβ + qβq′α − iqµq

′
νε

µανβ
] [
p′αpβ − p′pgαβ + p′βpα − ip′σpτεσατβ

]
= 64

[
2(qp′)(q′p) + 2(qp)(p′q′)− εµανβεσατβqµq

′
νp

′σpτ
]

= 64 [2(qp′)(q′p) + 2(qp)(p′q′) + 2(gµσg
ν
τ − gµτ g

ν
σ)qµq

′
νp

′σpτ ]

= 64 [2(qp′)(q′p) + 2(qp)(p′q′) + 2(qp′)(q′p)− 2(qp)(p′q′)]

= 64 · 4(qp′)(q′p) (4.5)

The momentum can be written in terms of Mandelstam variables, [see Appendix A.4]

t = (p− q′)2 = (q − p′)2

= p2 + q′2 − 2pq′ = p2 + q′2 − 2p′q,

t ≈ −2pq′ ≈ −2p′q. (4.6)

Thus we have, ⟨∣∣M2
W

∣∣⟩ = g4

64(s−m2
W )2

1

2

64t2

16mνme

. (4.7)
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4.2 νe + e− → νe + e−

The differential cross section is [see Equation (A.19)]

dσW
dt

=
G2

Fm
4
W

πs2
t2

(s−m2
W )2

, (4.8)

t = −2p′q

= −2(E ′
pEq − |p⃗′| |q⃗|) cos θ

= −2
1

2

√
s
1

2

√
s(1− cos θ)

= −1

2
s(1− cos θ), (4.9)

where θ is the angle of scattered electron with respect to the incident neutrino. The dif-

ferential cross section is integrated over all angles, cos θ = −1 to cos θ = 1 correspond to

tmin = −s to tmax = 0 [see Equation (A.21)].

σw =
G2

Fm
4
W

πs2
1

(s−m2
W )2

∫ max

min

t2dt

=
G2

Fm
4
W

πs2
1

(s−m2
W )2

∫ 0

−s

t2dt

=
G2

Fm
4
W

3π

s

(s−m2
W )2

(4.10)

4.2.2 Z boson exchange

The amplitude for Z0 exchange is

MZ = ūr(p⃗
′)

[
−ig

2 cos θW
γα(gV − gAγ5)

]
ur(p⃗)

−igαβ
u−m2

W

ν̄r(q⃗)

[
−ig

4 cos θW
γβ(1− γ5)

]
νr(q⃗

′)

=
ig2[ūr(p⃗

′)γα(gV − gAγ5)ur(p⃗)][ν̄r(q⃗)γα(1− γ5)νr(q⃗
′)]

8 cos θW (u−m2
Z)

,

(4.11)
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4.2 νe + e− → νe + e−

where gV = 2 sin2 θW − 1
2

and gA = 1
2
. The procedures are the same as W exchange.

|MZ |2 =
g4

64 cos θW

[ūr(p⃗
′)γα(gV − gAγ5)ur(p⃗)][u

†
r(p⃗)(gV − gAγ5)γ

β†γ0ur(p⃗
′)]

(u−m2
Z)

2

×[ν̄r(q⃗)γα(1− γ5)νr(q⃗
′)][ν†r(q⃗

′)(1− γ5)γ
†
βγ

0νr(q⃗)] (4.12)

Average over initial polarization states and sum over all final polarization states,

⟨∣∣M2
Z

∣∣⟩ =
g4

64 cos4 θW (u−m2
Z)

2

1

2

×Tr

[
(/p′ +me)γ

α(gV − gAγ5)(/p+me)γ
β(gV − gAγ5)

2mν2me

]

×Tr
[
(/q −mν)γα(1− γ5)(/q

′ −mν)γβ(1− γ5)

2mν2me

]
(4.13)

Tr
[
(/p′+me)γα(gV −gAγ5)(/p+me)γβ(gV −gAγ5)

2mν2me

]

= Tr
[
/p
′γα/pγ

β(g2V + g2A − 2gV gAγ5)
]

= 4
{
[g2V + g2A](p

′αpβ − p′pgαβ + p′βpα) + 2igV gAε
µανβ

}

Tr
[
(/q−mν)γα(1−γ5)(/q′−mν)γβ(1−γ5)

2mν2me

]

= 2Tr
[
/qγα/q

′γβ(1− γ5)
]

= 8
[
qαq

′
β − qq′gαβ + qβq

′
α + iεµανβ

]
= 64

[
(gV + gA)

2(p′q)(pq′) + (gV − gA)
2(p′q′)(pq)

]
(4.14)
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4.2 νe + e− → νe + e−

Thus

⟨∣∣M2
Z

∣∣⟩ =
g4 [(gV + gA)

2(p′q)(pq′) + (gV − gA)
2(p′q′)(pq)]

2 cos4 θW (u−m2
Z)

216mνme

=
g4

8 cos4 θW (u−m2
Z)

2

1

16mνme

[
(gV + gA)

2t2 + (gV − gA)
2s2
]
.

(4.15)

The differential cross section [see Equation (A.19)]

dσZ
dt

=
G2

Fm
4
Z

4πs2(u−m2
Z)

2

[
(gV + gA)

2t2 + (gV − gA)
2s2
]
, (4.16)

σZ =

∫ 0

−s

G2
Fm

4
Z

4πs2(u−m2
Z)

2

[
(gV + gA)

2t2 + (gV − gA)
2s2
]
dt, (4.17)

∫ 0

−s

t2

(s+ t+m2
Z)

2
dt =

s

m2
Z

[
(s+ 2m2

Z)−
2m2

Z

s
(s+m2

Z) ln(1 +
s

m2
Z

)

]
,∫ 0

−s

s2

(s+ t+m2
Z)

2
dt =

s3

m2
Z(s+m2

Z)
. (4.18)

The total cross section [see Equation (A.21)]

σZ =
G2

Fm
2
Z

4πs

[
(gV + gA)

2

{
(s+ 2m2

Z)−
2m2

Z

s
(s+m2

Z) ln(1 +
s

m2
Z

)

}
+(gV − gA)

2 s2

m2
Z(s+m2

Z)

]
. (4.19)

4.2.3 W and Z interference

The superposition of Figure 4.1a and Figure 4.1b

MWM
∗
Z =

g4[ν̄r(q⃗)γ
α(1− γ5)νr(q⃗

′)][ν̄r(q⃗
′)γβ(1− γ5)νr(q⃗)]

64 cos2 θW (s−m2
W )(u−m2

Z)
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4.2 νe + e− → νe + e−

×[ūr(p⃗
′)γα(1− γ5)ur(p⃗)][ūr(p⃗)γβ(gV − gAγ5)ur(p⃗

′)], (4.20)

2 ⟨MWM
∗
Z⟩ =

2g4

64 cos2 θW (s−m2
W )(u−m2

Z)

1

2

×Tr

[
(/q −mν)γ

α(1− γ5)(/q
′ −mν)γ

β(1− γ5)

2mν2me

]

×Tr
[
(/p′ +me)γα(1− γ5)(/p+me)γβ(gV − gAγ5)

2mν2me

]
=

−g4(gV + gA)t
2

2 cos2 θW (s−m2
W )(u−m2

Z)16m
2
νm

2
e

, (4.21)

dσWZ

dt
=

−G2
Fm

4
W (gV + gA)t

2

πs2 cos2 θW (s−m2
W )(u−m2

Z)
, (4.22)

σWZ =
−G2

Fm
4
W (gV + gA)

πs2 cos2 θW (s−m2
W )

∫ 0

−s

t2

−(s+ t)−m2
Z

dt, (4.23)

∫ 0

−s

t2

−(s+ t)−m2
Z

dt = −
∫ 0

−s

t2

(s+ t) +m2
Z

dt

= m2
Zs+ (m2

Z + s)2 lnm2
Z − (m2

Z + s)2 ln(m2
Z + s) +

3

2
s2, (4.24)

σWZ =
G2

F s

π

m2
W

(s−m2
W )

m2
Z

s
(gV + gA)

[
3

2
+
m2

Z

s
− (1 +

m2
Z

s
)2 ln(1 +

s

m2
Z

)

]
. (4.25)

4.2.4 Singly charged Higgs boson exchange

The interaction Lagrangian for the H− exchange is

L = − hij√
2

(
lTi CPLνj + νTi CPLlj

)
cos θ+H

+. (4.26)

The Feynman rules are listed in Appendix C. The mixing between triplet and doublet

is neglected as υ∆ << υ0 and by using the approximation vertex listed in Table C, the
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4.2 νe + e− → νe + e−

amplitude for H− exchange in Figure 4.1c is

MH = ν̄r(q⃗)

[
−ihee√

2
(1− γ5)

]
ur(p⃗)

−i
s−M2

H±

ūr(p⃗
′)

[
−ihee√

2
(1− γ5)

]
νr(q⃗

′)

=
ih2ee
2

[ν̄r(q⃗)(1− γ5)νr(q⃗
′)][ūr(p⃗

′)(1− γ5)ur(p⃗)]

s−M2
H±

, (4.27)

|MH |2 =
h4ee

4(s−M2
H±

)2
[ν̄r(q⃗)(1− γ5)νr(q⃗

′)][ν†r(q⃗
′)(1− γ5)γ

0νr(q⃗)]

×[ūr(p⃗
′)(1− γ5)ur(p⃗)][u

†
r(p⃗)(1− γ5)γ

0ur(p⃗
′)]

=
h4ee

4(s−M2
H±

)2
[ν̄r(q⃗)(1− γ5)νr(q⃗

′)][ν̄r(q⃗
′)(1 + γ5)νr(q⃗)]

×[ūr(p⃗
′)(1− γ5)ur(p⃗)][ūr(p⃗)(1 + γ5)ur(p⃗

′)], (4.28)

⟨∣∣M2
H

∣∣⟩ =
h4ee

4(s−M2
H±

)2
1

2
Tr

[
(/q −mν)(1− γ5)(/q

′ −mν)(1 + γ5)

2mν2me

]
×Tr

[
(/p′ +me)(1− γ5)(/p+me)(1 + γ5)

2mν2me

]
=

h4ee
4(s−m2

H±
)2
1

2

4

16m2
νm

2
e

Tr
[
/q/q

′]
×Tr

[
/p
′
/p
]

=
2h4ee

(s−M2
H±

)2
t2

16m2
νm

2
e

. (4.29)

The differential cross section is [see Equation (A.19)]

dσH
dt

=
h4eet

2

8πs2(s−M2
H±

)2
. (4.30)
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4.2 νe + e− → νe + e−

The total cross section for H− exchange is therefore [see Equation (A.21)]

σH =
h4ee

8πs2(s−M2
H±

)2

∫ 0

−s

t2dt

=
h4ee
24π

s

(s−M2
H±

)2
. (4.31)

4.2.5 Singly charged Higgs, W, Z interference

The interference of H− exchange with W and Z0 exchange

MWM
∗
H =

g2h2ee
16(s−m2

W )(s−M2
H±

)
[ν̄r(q⃗)γ

α(1− γ5)νr(q⃗
′)][ν̄r(q⃗

′)(1 + γ5)νr(q⃗)]

×[ūr(p⃗
′)γα(1− γ5)ur(p⃗)][ūr(p⃗)(1 + γ5)ur(p⃗

′)], (4.32)

2 ⟨MWM
∗
H⟩ =

g2h2ee
8(s−m2

W )(s−M2
H±

)

1

2

×Tr
[
(/q −mν)γ

α(1− γ5)(/q
′ −mν)(1 + γ5)

2mν2me

]
×Tr

[
(/p′ +me)γα(1− γ5)(/p+me)(1 + γ5)

2mν2me

]
=

g2h2ee
16(s−m2

W )(s−m2
H±

)

4

2

1

16m2
νm

2
e

Tr
[
/qγ

α
/q
′(1 + γ5)

]
×Tr

[
/p
′γα/p(1 + γ5)

]
= 0, (4.33)

MZM
∗
H =

g2h2ee[ūr(p⃗
′)γα(gV − gAγ5)ur(p⃗)][ūr(p⃗)(1 + γ5)ur(p⃗

′)]

16 cos2 θW (s−m2
W )(s−M2

H±
)

×[ν̄r(q⃗)γα(1− γ5)νr(q⃗
′)][ν̄r(q⃗

′)(1 + γ5)νr(q⃗)], (4.34)
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2 ⟨MZM
∗
H⟩ =

g2h2ee
16 cos2 θW (u−m2

Z)(s−M2
H±

)

1

2

×Tr
[
(/p′ +me)γ

α(gV − gAγ5)(/p+me)(1 + γ5)

2mν2me

]
×Tr

[
(/q −mν)γα(1− γ5)(/q

′ −mν)(1 + γ5)

2mν2me

]
= 0. (4.35)

The superposition of H− exchange with W and Z0 exchange vanishes due to the trace

of odd number gamma matrices [see Appendix A.3]. The total cross section is then [see

Equation (A.21)]

σνee =
G2

F s

π

[
m4

W

3(s−m2
W )2

+
h4ee

24G2
F (s−M2

H±
)2

+
1

4

(
m2

Z

s

)2

[(2 sin2 θW − 1)2
[
2 +

s

m2
Z

− 2

(
1 +

m2
Z

s

)
ln

(
1 +

s

m2
Z

)]
+(2 sin2 θW )2

s2

m2
Z(s+m2

Z)
]

+
m2

Wm
2
Z

s(s−m2
W )

(2 sin2 θW − 1)

[
3

2
+
m2

Z

s
−
(
1 +

m2
Z

s

)2

ln

(
1 +

m2
Z

s

)]]
.

(4.36)

The first, third and fourth term in Equation (4.36) comes from CC, NC and their interfer-

ence respectively. In contrast to CC and NC, the vertex of l−ν−H coupling only contain

γ5 in the left-right projection operator. Therefore, due to the trace of odd number of Dirac

matrices in their amplitude, the H− exchange in the second term does not interfere with

the CC and NC . This imply that the H− exchange do not occur simultaneously with CC

and NC. In other word, the CC, NC and H− exchange are mutually exclusive.
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4.3 Bosonic final state

4.3 Bosonic final state

Besides the reaction νe + e− → νe + e−, there are a rich variety of final bosonic states

available in νee− annihilation in analogy with e+e− annihilation. In particular, the pro-

duction of W−, Z0 and photon (Mikaelian & Zheleznykh, 1980). On the other hand,

there are some possibilities for the Higgs search beyond the standard model. At the en-

ergy above the W− pole, the production of supersymmetry Higgs is available. However,

we would like to concentrate in the production of Higgs in the HTM. We consider the

processes νe + e− → W− + H1, νe + e− → W+ + H−−, νe + e− → H+ + H−−

and νe + e− → H2 + H−. The last two processes are motivated by (Akeroyd & Aoki,

2005; Fileviez Pérez et al., 2008) in the search of triplet scalar of the processes qq′ →

H++H−−/H2+H
− at CERN LHC. We are also interested in the production of W− and

Z0 through the charged Higgs meditation at the vicinity of the resonance energy.

4.3.1 νe + e− → W− +H1 and νe + e− → W+ +H−−

(a) (b)

Figure 4.2: Feynman diagrams for (a) νe(q⃗)+e−(p⃗) → W−(k⃗)+H1(k⃗
′), (b) νe(q⃗)+e−(p⃗) →

W+(k⃗) +H−−(k⃗′).

The interaction Lagrangian for the process in Figure 4.2a is [see Equation (C.6)]

L =
ig

2
(
√
2 cos θ+ sin θ0 − sin θ cos θ0)

[(
∂µH

+
)
H1W

−
µ + (∂µH1)H

−W+
µ

]
(4.37)
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4.3 Bosonic final state

while Figure 4.2b is [see Equation (C.6)]

L =
g2υ∆√

2

[
H−−W µ+W+

µ +H++W µ−W−
µ

]
. (4.38)

We again neglect the mixing between triplet and doublet due to υ∆ << υ0. The calcula-

tion of these two processes are similar. The amplitude for Figure 4.2a is

M = −iν̄r(q⃗)
[
−ig
2
√
2
γα(1− γ5)

]
ur(p⃗)

gαβ
s−m2

W

i
1

2
g2υ0gµνε

∗
rν(k⃗)

= −ig
3υ0

4
√
2

ν̄r(q⃗)γβ(1− γ5)ur(p⃗)

s−m2
W

εµ∗r (k⃗). (4.39)

Multiplying the complex conjugate

|M |2 =
(
g3υ0

4
√
2

)2
[ν̄r(q⃗)γβ(1− γ5)ur(p⃗)][ūr(p⃗)γα(1− γ5)r(q⃗)]

(s−m2
W )2

ε∗rµ(k⃗)ε
µ
r (k⃗). (4.40)

Average over initial polarization states and sum over all final polarization states. The

vector boson polarization sum is

3∑
r=1

ε∗rµ(k⃗)ε
µ
r (k⃗) = −gαβ + kαkβ

m2
W

(4.41)

and

⟨
|M |2

⟩
=

(
g3υ0

4
√
2

)2
1

(s−m2
W )2

1

2
Tr

[
/qγβ(1− γ5)/pγα(1− γ5)

2mν2me

] 3∑
r=1

ε∗rµ(k⃗)ε
µ
r (k⃗)

=
g6υ20

32(s−m2
W )2

8

8mνme

[qαpβ + qβpα − qpgαβ + iεγατβ]

[
−gαβ + kαkβ

m2
W

]
=

256G3
Fm

6
Wυ

2
0

32
√
2(s−m2

W )2mνme

[
pq +

2(qk)(pk)

m2
W

]
. (4.42)
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4.3 Bosonic final state

The Mandelstam variables are

s = (p+ q)2 = p2 + q2 + 2pq ≈ 2pq

t = (k − q)2 = k2 + q2 − 2kq ≈ m2
W − 2kq

u = (p− k)2 = p2 + k2 − 2pk ≈ m2
W − 2pk, (4.43)

⟨
|M |2

⟩
=

4G3
Fm

6
Wυ

2
0√

2(s−m2
W )2mνme

[
2s−m2

H1
+

ut

m2
W

]
. (4.44)

The differential cross section [see Equation (A.19)]

dσH1

dt
=

G3
Fm

6
Wυ

2
0√

2πs2(s−m2
W )2

[
2s−m2

H1
+

ut

m2
W

]
. (4.45)

The energy and momentum of the W+ boson final state can be expressed in terms of their

own mass and the Higgs mass,

∣∣∣⃗k∣∣∣ =
1

2
√
s

√
s2 − 2(m2

W +m2
H1
)s+ (m2

W −m2
H1
)2

=
s

2
√
s

[
1−

2(m2
W +m2

H1
)

s
+

(mW −mH1)
2(mW +mH1)

2

s2

] 1
2

=
s

2
√
s

[
1− (mW +mH1)

2

s

] 1
2
[
1− (mW −mH1)

2

s

] 1
2

=
s

2
√
s
βH1

|q⃗| =
1

2
√
s

√
s2 − 2(m2

ν +m2
e)s+ (m2

ν −m2
e)

2

mν → 0, me → 0

=
1

2

√
s

E2
k =

∣∣∣⃗k∣∣∣2 +m2
W

=
1

4s

[
s2 − 2(m2

W +m2
H1
)s+ (m2

W −m2
H1
)2 + 4sm2

W

]
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=
1

4s

[
s+ (m2

W −m2
H1
)
]2

Ek =
1

2
√
s

[
s+ (m2

W −m2
H1
)
]

Eq = |q⃗| . (4.46)

Thus, the Mandelstam variable t is therefore

t = k2 + q2 − 2kq ≈ m2
W − 2kq

= m2
W − 2

[
EkEq −

∣∣∣k⃗∣∣∣ |q⃗| cos θ]
=

1

2

[
m2

W +m2
H1 − s(1− βH1 cos θ)

]
. (4.47)

The total cross section is [see Equation (A.21)]

σH1 =
G3

Fm
6
Wυ

2
0√

2πs2(s−m2
W )2

sβH1

12m2
W

[
3s2 − s2β2
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− 6sm2
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+ 3m4

H1

+18sm2
W − 6m2

H1
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W + 3m4
W

]
=

G3
Fm

6
Wυ

2
0√

2πs2(s−m2
W )2

s3βH1

12m2
W
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3− β2
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− 6
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+m2
W

s
+

24m2
W

s

+
3[m4
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− 2m2

H1
m2

W +m4
W ]

s2

]
=

G3
Fm

6
Wυ

2
0√

2πs2(s−m2
W )2

s3βH1

12m2
W

[
3

(
1− 2

(m2
H1

+m2
W )

s
+

[m2
H1

−m2
W ]2

s2

)
−β2

H1
+

24m2
W

s

]
=

G3
Fm

6
Wυ

2
0√

2πs2(s−m2
W )2

s3βH1

12m2
W

[
3β2

H1
− β2

H1
+

24m2
W

s

]
,

σH1 =
G3

Fm
4
Wυ

2
0sβH1

6
√
2π(s−m2

W )2

[
β2
H1

+
12m2

W

s

]
. (4.48)

By assuming υ20 ≈ (υ0 + 2υ∆)
2 (υ∆ very small) and make use of the W boson mass in
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Equation (C.7) the total cross section reduced to

σH1 =
G2

Fm
4
W sβH1

12π(s−m2
W )2

[
β2
H1

+
12m2

W

s

]
(4.49)

which is the same with the production of the SM Higgs boson (Mikaelian & Zheleznykh,

1980) where H1 contributed mostly from the Higgs doublet. On the other hand, the total

cross section for the doubly charged Higgs boson production is

σH−− =
G3

Fm
4
Wυ

2
∆sβH−−

6
√
2π(s−m2

W )2

[
β2
H−− +

12m2
W

s

]
. (4.50)

The procedure to obtain Equation (4.50) is the same as for Equation (4.49) except for the

vertex factor. Equation (4.50) is proportional to υ2∆ which is in contrast to Equation (4.49).

If the value of υ2∆ is small enough, the doubly charged Higgs production associated with

W boson is almost negligible.

4.3.2 νe + e− → H+ +H−− and νe + e− → H2 +H−

(a) (b)

Figure 4.3: Feynman diagrams for (a) νe(q⃗) + e−(p⃗) → H+(k⃗) + H−−(k⃗′), (b) νe(q⃗) +
e−(p⃗) → H2(k⃗) +H−(k⃗′).
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4.3 Bosonic final state

The interaction Lagrangian for the process in Figure 4.3a is [see Equation (C.6)]

L = ig cos θ+
[(
∂µH

−)H−−W+
µ +

(
∂µH

++
)
H+W−

µ

]
(4.51)

while Figure 4.3b is [see Equation (C.6)]

L =
ig

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)

[(
∂µH

+
)
H2W

−
µ + (∂µH2)H

−W+
µ

]
. (4.52)

After the mixing between triplet and doublet is neglected, the Feynman amplitude is there-

fore

M = ν(q⃗)

[
−ig
2
√
2
γα(1− γ5)

]
u(p⃗)

−igαβ
s−m2

W

[
ig(p+ q − 2k)β

]
=

−ig2

2
√
2

ν(q⃗)γβ(1− γ5)u(p⃗)(p+ q − 2k)β

s−m2
W

|M |2 =
g4

8

[ν(q⃗)γβ(1− γ5)u(p⃗)] [u(p⃗)(1 + γ5)γαν(q⃗)]

(s−m2
W )

2 (p+ q − 2k)β(p+ q − 2k)α

=
g4

8

[
ν(q⃗)(/p+ /q − 2/k)(1− γ5)u(p⃗)

] [
u(p⃗)(1 + γ5)(/p+ /q − 2/k)ν(q⃗)

]
(s−m2

W )
2 ,

(4.53)

⟨
|M |2

⟩
=

g4

8 (s−m2
W )

2

1

2
Tr

[
/q(/p+ /q − 2/k)(1− γ5)/p(/p+ /q − 2/k)(1− γ5)

2mν2me

]
=

g4

8 (s−m2
W )

2Tr

[
/q(/p+ /q − 2/k)/p(/p+ /q − 2/k)(1− γ5)

2mν2me

]
. (4.54)

The electron and neutrino masses are too small and can be approximated to zero, /p/p =

p2 = m2
e −→ 0, /q/q = q2 = m2

ν −→ 0. Thus we have

⟨
|M |2

⟩
=

g4

8 (s−m2
W )

2

16

4mνme

[
2(qk)(pk)−M2

H±(pq)
]
. (4.55)
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4.3 Bosonic final state

The Mandelstam variables in this process are

s = (p+q)2 ≈ −2pq, t = (q−k)2 ≈M2
H± −2qk, u = (p−k)2 ≈M2

H± −2pk. (4.56)

We then get

⟨
|M |2

⟩
=

g4

8 (s−m2
W )

2

16

4mνme

[
(M2

H±
− u)(M2

H±
− t)

2
+
M2

H±
s

2

]
. (4.57)

By using the properties of Mandelstam variables

s+ u+ t =M2
H± +M2

H±± , (4.58)

we obtain

⟨
|M |2

⟩
=

g4

(s−m2
W )

2

1

4mνme

[
(s+ t−M2

H±±)(M
2
H± − t) +M2

H±s
]
. (4.59)

The differential cross section is [see Equation (A.19)]

dσH+,H−−

dt
=

2G2
Fm

4
W

πs2 (s−m2
W )

2

[
2M2

H±(s+ t)− (s+ t)t−M2
H±M

2
H±±

]
. (4.60)

The Mandelstam variable t in this process is

t =M2
H± − 2(EqEk − |q⃗|

∣∣∣k⃗∣∣∣ cos θ) (4.61)

with the energy

Ek =
1

2
√
s

[
s+M2

H± −M2
H±±

]
(4.62)
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and the momentum of the singly charged Higgs

∣∣∣⃗k∣∣∣ =
1

2

s√
s

[
1−

(
MH± +MH±±

)2
s

] 1
2
[
1−

(
MH± −MH±±

)2
s

] 1
2

=
1

2

s√
s
βH+,H−−

then

t =M2
H± − 1

2

[
M2

H± −M2
H±± + s(1− βH+,H−− cos θ)

]
. (4.63)

The total cross section is then [see Equation (A.21)]

σH+,H−− =
α2π

12 sin4 θW

sβH+,H−−

(s−m2
W )

2

[
12M2

H±

s
− β2

H+,H−− + 3

−
3(M2

H±±
−M2

H±
)2(M2

H±±
+ 3M2

H±
)2

s2

]
. (4.64)

The total cross section of the process in Figure 4.3b is

σH−,H2 =
α2π

24 sin4 θW

sβH+,H−−

(s−m2
W )

2

[
12M2

H2

s
− β2

H−,H2
+ 3

−
3(M2

H−
−M2

H2
)2(M2

H−
+ 3M2

H2
)2

s2

]
. (4.65)

The procedure to obtain Equation (4.64) is the same as for Equation (4.65) except the

vertex factor. If the λi parameters in Equation (3.20) is set to zero, the masses of H±, H2

and H±± differ by an amount proportional to µυ∆ . Therefore, due to the smallness of

the value υ∆,

M2
H± ≈M2

H2
≈M2

H±± (4.66)

then

σH+,H−− = 2σH−,H2 . (4.67)
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4.3 Bosonic final state

4.3.3 νe + e− → W− + Z0

Figure 4.4: Feynman diagram for νe(q⃗) + e−(q⃗) → W−(k⃗1) + Z0(k⃗2).

The interaction Lagrangian of this process is [see Equation (C.6) and Equation (C.10)]

L = − hij√
2

(
lTi CPLνj + νTi CPLlj

)
cos θ+H

+

L =
g2 cos θW

2

[
sin θ+υ0g

′2 −
√
2υ∆ cos θ+(2g

′2 + g2)
]
W+

µ H
−Zµ

+H.c. (4.68)

The Feynman amplitude is

M = i
g2 sin2 θW
cos θW

(
µυ20
M2

∆

−
√
2
(
2 + cot2 θW

)
υ∆

)
gµνheeϵ

∗
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∗
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√
2
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)
+ iMH−Γ

] .

(4.69)

Multiplying the complex conjugate

|M |2 = |hee|2C2
WZν(q⃗)(1− γ5)u(p⃗)u(p⃗)(1 + γ5)ν(q⃗)

2

[(
s−M2
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)2
+M2
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Γ2
t

] ϵ∗µ(k1)ϵα(k1)g
µνϵ∗ν(k2)ϵβ(k2)g

αβ.

(4.70)

Average over initial lepton polarization states and sum over final vector bosons polariza-
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tion states.

⟨
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⟩
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(4.71)

where

s = (k1 + k2)
2 = k21 + k22 + 2 (k1 · k2)

= m2
W +m2

Z + 2 (k1 · k2) . (4.72)

We obtain the differential cross section [see Equation (A.19)]

dσ
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=

|hee|2C2
WZs

64πm2
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2
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[(
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)2
+M2
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s
+

(m2
W +m2
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2
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2
W

s2

]
. (4.73)
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The variable t is written as

t = (q − k1)
2 = q2 + k21 − 2(qk1)

= m2
Z − 2(EqEk − |q⃗|

∣∣∣⃗k1∣∣∣ cos θ)
=

1

2

[
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Z +m2
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]
(4.74)

where
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s

2
√
s
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Thus, the total cross section obtained is [see Equation (A.21)]

σ =
|hee|2 s2βWZG

2
F sin2 θW

πm2
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[(
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)2
+M2

H−
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] (µυ20
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−
√
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×
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1− 2 (m2

W +m2
Z)

s
+

(m2
W +m2

Z)
2

s2
+

8m2
Zm

2
W

s2

]
. (4.76)

At the energy s ≈M2
H−

, the total cross section can be written as

σres = 32π
Γ(H− → νee)Γ(H

− → W−Z0)(
s−M2

H−

)2
+M2

H−
Γ2
t

, s ≈M2
H− (4.77)

where we have used the expression (Fileviez Pérez et al., 2008)

Γ(H− → νee) =
|hee|2MH−

16π
, (4.78)
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Γ(H− → W−Z0) =
βWZG

2
F sin2 θWM

3
H−

2πm2
W

(
µυ20
M2

∆

−
√
2
(
2 + cot2 θW

)
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×

[
1− 2 (m2

W +m2
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+
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W +m2
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2

M4
H−

+
8m2

Zm
2
W

M4
H−

]
. (4.79)

Equation (4.78) and Equation (4.79) are the decay widths for the decay processes

H− → νe + e, H− → W− + Z0 (4.80)

respectively. Equation (4.77) is the cross section at the resonance energy s ≈M2
H−

where

Γt is the total decay width of H−.
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Chapter 5

Result and Discussion

Before we discuss the angular distribution and the cross section, we would like to estimate

the limit of hee in this process at low energy. One might expand terms in Equation (4.36)

in series. The total energy of the process is much smaller than the mass of the gauge

bosons so that we are allowed to take the approximation s ≪ m2
W , s ≪ m2

Z , s ≪ M2
H−

in order to obtain the total cross section that is linear at low energy, and reduces to

σtot =
G2

F s

π

{
1

3
+

(2 sin2 θW − 1)2

12
+

(2 sin2 θW )2

4
+

(2 sin2 θW − 1)

3
+

h4ee
24G2

FM
4
H

}
.

(5.1)

The experimental result from the TEXONO collaboration (Deniz et al., 2010) gives

σexp
σSM

= 1.08± 0.21± 0.16. (5.2)

By setting σexp = σtot, one gets

hee/MH± . 2.8× 10−3GeV −1 (5.3)
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which is consistent with the limit estimated by Corasa et al (Coarasa, Mendez, & Sola,

1996) using the νe scattering process. Since the W exchange and charged Higgs exchange

proceed through s channel, we compare their contribution to the incoming neutrino en-

ergy. In analogy to the ratio Rν = σν
NC/σ

ν
CC , (Adams et al., 2009) we define

RW =
σ(νee→ H− → νee)

σ(νee→W− → νee)

=
h4ee

8G2
Fm

4
W

(s−m2
W )2 + Γ2

Wm
2
W

(s−M2
H±)2 + Γ2

H±M
2
H±

(5.4)

where ΓH± is the decay width of H− and ΓW = 2.085 GeV (Nakamura et al., 2010).
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Figure 5.1: The ratio of H− to W− exchange in νe − e scattering with hee = 0.24, MH± =
120 GeV and ΓH± = 0.99 GeV ; hee = 0.32, MH± = 160 GeV and ΓH± = 2.37 GeV ;
hee = 0.36, MH± = 180 GeV and ΓH± = 3.36 GeV ; hee = 0.40, MH± = 200 GeV and
ΓH± = 4.62 GeV.

In Figure 5.1 we plot the ratioRν against the incoming neutrino energy for hee = 0.24,

MH± = 120 GeV and ΓH± = 0.99 GeV ; hee = 0.32, MH± = 160 GeV and ΓH± = 2.37

GeV ; hee = 0.36, MH± = 180 GeV and ΓH± = 3.36 GeV ; hee = 0.40, MH± = 200
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GeV and ΓH± = 4.62 GeV. Since in all cases hee/MH± = 2.0 × 10−3 GeV−1, then the

conditions MH± &110 GeV [See Equation (3.38)] and Equation (5.3) is fulfilled. We

have set mW = 80.399 GeV, mZ = 91.1876 GeV and sin2 θW = 0.23116 (Nakamura et

al., 2010) (Appendix A). Further, we restrict ourselves to take MH± ≤ 200 GeV so that

hµµ <1.0 (hµµ/MH± ∼ 5.0 × 10−3GeV −1) (Godfrey, Kalyniak, & Romanenko, 2002).

We assume only the leptonic decay channel of H− and the total decay width in Equation

(4.78) is the sum of two flavours (electron and muon). The decay into tau leptons are not

considered due to no strict constraints on the corresponding coupling hττ . At s ≈ m2
W

(s = 2meE,E ≈ a few 106 GeV) the ratio RW is very small as can be easily seen from

Equation (5.4). In other words, the H− contribution is negligible at W resonance energy

but dominant at s ≈M2
H± . Furthermore, at very large energies s >> m2

W , s >> M2
H± ,

RW → h4ee
8G2

Fm
4
W

(5.5)

converge to a finite value. As the mass of the charged Higgs boson increases, the finite

value is larger. On the other hand, when the neutrino energy is increased up to the scalar

resonance energy the scalar exchange will play a major contribution and one can test

the SU(2)L triplet more precisely in νe − e scattering. The ratio σH−/σSM is presented

in Figure 5.2 for hee = 0.24, MH± = 120 GeV and ΓH± = 0.99 GeV ; hee = 0.32,

MH± = 160 GeV and ΓH± = 2.37 GeV ; hee = 0.36, MH± = 180 GeV and ΓH± = 3.36

GeV ; hee = 0.40, MH± = 200 GeV and ΓH± = 4.62 GeV.
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5.1 νe − e scattering
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Figure 5.2: The ratio σH±/σSM in νe − e scattering with hee = 0.24, MH± = 120 GeV
and ΓH± = 0.99 GeV ; hee = 0.32, MH± = 160 GeV and ΓH± = 2.37 GeV ; hee = 0.36,
MH± = 180 GeV and ΓH± = 3.36 GeV ; hee = 0.40, MH± = 200 GeV and ΓH± = 4.62
GeV

5.1 νe − e scattering

5.1.1 Angular distribution

The angular distributions of νe − e scattering as the function of cos θ are plotted in Fig-

ure 5.3, Figure 5.4 and Figure 5.5 with hee = 0.308 and MH± = 110 GeV. The scattering

at forward direction is small but not zero due to none vanishing of the right handed cou-

pling term multiplying s2 in Equation (4.36). As the energy increases, the forward and

backward scattering shift towards higher angular distribution as shown in Figure 5.4. As

the energy goes beyond M2
H±, the total cross section converges to a finite value in Fig-

ure 5.9. Hence, the angular distributions shift towards the backward (t = −s) direction

while the forward (t = 0) direction is suppressed to preserve the total cross section. The

51



5.1 νe − e scattering

area under the curves in Figure 5.9 are the total cross section.
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Figure 5.3: The angular distribution of νe − e scattering for E = 1 GeV, 10 GeV, 100 GeV,
with hee = 0.308 and MH± = 110 GeV.
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Figure 5.4: The angular distribution of νe − e scattering for E = 1000 GeV, 106 GeV,
109 GeV, with hee = 0.308 and MH± = 110 GeV.
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5.1 νe − e scattering

E = 1 TeV

MH± = 110 GeV
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Figure 5.5: Angular distribution of νe − e scattering at 1 TeV with MH± = 110 GeV. The
solid line is the SM and dash-dotted line is the contribution of H− exchange.
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Figure 5.6: Angular distribution of νe − e scattering at 107 eV with MH± = 110 GeV. The
solid line is the SM and dash-dotted line is the contribution of H− exchange.
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5.1 νe − e scattering

5.1.2 Total cross section
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Figure 5.7: Total cross section for νe − e scattering at 0-150 GeV. The solid line is the SM
and the dash-dotted line is the contribution of H− exchange of Equation (5.1) for different
combination of hee and MH± . The background fluctuations are the result of Equation (4.36)
at low energy.
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Figure 5.8: Total cross section for νe − e scattering at 2-14 TeV. The solid line is the SM and
the dash-dotted line is the contribution of H− exchange for different combination of hee and
MH± .

54



5.1 νe − e scattering
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hee=0.40, MH±=200 GeV, GH±=4.62 GeV

hee=0.36, MH±=180 GeV, GH±=3.36 GeV

hee=0.32, MH±=160 GeV, GH±=2.37 GeV

hee=0.24, MH±=120 GeV, GH±=0.99 GeV

SM

Figure 5.9: Total cross section for νe − e scattering at 1015 eV ≤ E ≤ 1020 eV. The solid
line is the SM and the dash-dotted line is the contribution of H− exchange for hee = 0.24,
MH± = 120 GeV and ΓH± = 0.99 GeV ; hee = 0.32, MH± = 160 GeV and ΓH± = 2.37
GeV ; hee = 0.36, MH± = 180 GeV and ΓH± = 3.36 GeV ; hee = 0.40, MH± = 200 GeV
and ΓH± = 4.62 GeV.

Figure 5.7, Figure 5.8 and Figure 5.9 show the total cross section at different energy

range. The total cross section for νe − e scattering at low energy is fluctuated around its

average position due to the termsm2
Z/s and (m2

Z/s)
2 multiplying the left-handed coupling

of Z boson to the electron in Equation (4.36). At the energy near to zero, the cross section

is fluctuating with negative value which is not physical. In our interpretation, the standard

electroweak theory is not capable to describe neutrinos interaction at very low energy

[Equation (4.36)]. One has to approximate to the four-Fermi interaction (Mohapatra &

Pal, 2004). The average line in Figure 5.7 corresponds to the low energy approximation

of the process as in Equation (5.1). As the energy increase to the TeV region in Figure 5.8,

the charged Higgs exchange have very small contribution to the total cross section with

respect to SM. The resonance of production of W− and H− are expected at the energy
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5.2 Higgs production

above 1015 eV. The first peak in Figure 5.9 correspond to the Glashow resonance and

following peaks are H− boson resonance for different cases. Two peaks may be clearly

distinguished if both of the W− and H− masses are not too close.

5.2 Higgs production

5.2.1 Angular distribution

108 GeV

109 GeV

1010 GeV

-1.0 -0.5 0.0 0.5 1.0

0.01

0.02

0.05

0.10

0.20

0.50

cosΘ

1

Σ
H

1

dΣ
H

1

d
Hc

os
Θ
L
L

Figure 5.10: Angular distribution of νe + e− → W− + H1 for E = 108 GeV, 109 GeV,
1010 GeV, with MH1 = 100 GeV.

In Figure 5.10 and Figure 5.11, we plot the normalized angular distribution of the Higgs

production processes at different energy. We do not show the angular distribution for

H−H2 and W+H−− production since they would have the same distribution but with

smaller intensity. The angular distribution for both processes shown are approaching flat

near their threshold energy where s ≈ (mW +MH1)
2 and s ≈ (MH−− +MH+)

2. At

higher energy, the angular distribution for both W−H1 and H+H−− production is zero at

00 and 1800.
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5.2 Higgs production
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Figure 5.11: Angular distribution of νe + e− → H+ + H−− for E = 109 GeV, 1010 GeV,
1011 GeV, with MH± = MH±± = 200 GeV.

5.2.2 Total cross section
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Figure 5.12: Total cross section for W−H1,H
+H−−,H−H2 and W+H−− production with

MH1 = 100 GeV, MH2 = MH± = MH±± = 200 GeV and υ∆ = 1 GeV
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5.2 Higgs production

The plot of the total cross section of these four processes are shown in Figure 5.12. As

the discussion in Fileviez Perez et al., (2008), the vev of the triplet is 1 eV. υ∆ .1

GeV. Thus, for simplicity, we constraint the vev of triplet scalar as υ∆ = 1 GeV. The

total cross section for the W−H1 production is the highest among the four processes due

to its coupling to the doublet vev υ20 ≈ (246 GeV)2. However, the W+H−− production

is suppressed by triplet vev and thus less phenomenology important. The production of

H+H−− is almost close to W−H1 at the energy above 2.0 × 1017 eV. The production

of H−H2 is half of H+H−− as in Equation (4.67). All of the Higgs production cross

section reaches their maximum value very soon after threshold. There is no resonance

production in these processes due to the mass of the W boson is smaller than the Higgs

mass. These processes are allowable above the W pole. The flux of such high energy

of the neutrino is only possible to reach by cosmic rays and requiring a large detector

such as neutrino telescope (Halzen, 2006; Chiarusi & Spurio, 2010). Natural ice at the

south pole or deep sea are normally utilized as a medium to track the charged particles

produced by the neutrino interaction with nucleon through the detection of Cherenkov

radiation (Nakamura et al., 2010). Therefore, it is also able to detect the charged fermions

that are produced through the Higgs decay. Consider for large coupling hij , the triplet

Higgs decay is dominated by the leptonic channels as pointed out by Fileviez Perez et al.,

(2008). The production of W−H1 will decay as W−H1 → l−νW+W− → l−l+l−ννν.

One can detect two like sign leptons while the neutrinos are experimentally hard to be

detected. However, this decay channel can mix up with the decay of the H+H−− above

2.0 × 1017 eV which decay as H+H−− → l−l+l−ν unless the doubly charged Higgs

decay to two different flavours leptons. Since the coupling of Higgs is proportional to the

mass of the neutrino, hττ would be the largest among the three flavours and the charged
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5.3 Resonance production of H− in νee→ νee and νee→ Z0W−

Higgs boson would decay dominantly into tau. On the other hand, if the coupling hij is

small, the charged Higgs bosons will be more favourable to decay into gauge bosons and

further decay into more leptons. The production of H−H2 will result in single charged

lepton with three neutrinos.

5.3 Resonance production of H− in νee→ νee and νee→

Z0W−

ΥD = 1 GeV
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Figure 5.13: Resonance production of H− in νee → νee and νee → Z0W− with hee = 0.56,
MH− = 200 GeV, Γt = 4.5 GeV and υ∆ = 1 GeV.
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5.3 Resonance production of H− in νee→ νee and νee→ Z0W−
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Figure 5.14: Resonance production of H− in νee → νee and νee → Z0W− with hee = 0.70,
MH− = 250 GeV, Γt = 4.5 GeV and υ∆ = 1 GeV.
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Figure 5.15: Resonance production of H− in νee → νee and νee → Z0W− with hee = 0.84,
MH− = 300 GeV, Γt = 4.5 GeV and υ∆ = 1 GeV.
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5.3 Resonance production of H− in νee→ νee and νee→ Z0W−
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Figure 5.16: Resonance production of H− in νee → νee and νee → Z0W− with hee = 2.8,
MH− = 1000 GeV, Γt = 4.5 GeV and υ∆ = 1 GeV.

The H− have several possibility of decay channels after the production at the resonance

energy. We compare the νee and W−Z0 channels with hee = 0.56, MH− = 200 GeV ,

hee = 0.70, MH− = 250 GeV, hee = 0.84, MH− = 300 GeV, hee = 2.8, MH− = 1000

GeV at υ∆ = 1 GeV. The νee channel increases as the coupling constant increases since

the cross section depends quartically on hee. However, the W−Z0 channel does not in-

crease as rapid as the former due to the suppression from υ∆ even it depends quadratically

on hee. The cross section for W−Z0 channel is only physical for MH
2
− ≥ (mW +mZ)

2.

This ensures that the charged Higgs do not contribute to the decay width of the Z boson

which is measured precisely and available in K. Nakamura et al., (2010).
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Chapter 6

Conclusion

As a conclusion, the Higgs Triplet Model (HTM) provides us a rich variety of final states

to νee annihilation particularly at energies beyond W pole. We only consider the processes

with two final states. We have not yet considered the possibilities of WW fusion, WZ

fusion and ZZ fusion. The possibilities of the Higgs search through νee annihilation

at the neutrino telescope have been investigated. The production of the charged Higgs

bosons can be distinguished from νµ+N → µ+x reaction through their decay products.

In the optimistic situations, at large hαβ , one may test the processes by looking for flavour

violation charged leptons production. If the coupling hαβ is small, the Higgs bosons

will decay into SM gauge bosons where the decays with flavour violation are suppressed.

The flux of such high energy νe is probably very small. However, the flux of electron

antineutrinos may get enhanced if they are generated through neutrino oscillation.

We hope our calculation could help to determine the feasibility of such experiments

to discriminate between SM and HTM at current available neutrino observatory.
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Appendix A

Convention, useful formulae and

physical constants

A.1 Pauli and Dirac Matrices

ur (p) = u†r (p) γ
0, [γµ, γν ]+ = 2gµν , γµ† = γ0γµγ0, [γµ, γ5]+ = 0 (A.1)

(γ5)2 = 1, γ5† = γ5, σµν =
i

2
[γµ, γν ] , [σi, σj] = 2iϵijkσk (A.2)

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 (A.3)

αk =

 0 σk

σk 0

 , γk = βαk, β = γ0 =

 I 0

0 −I

 (A.4)
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A.2 Contraction identity

γ5 =

 0 I

I 0

 , I =

 1 0

0 1

 (A.5)

Λ+
αβ (p) =

2∑
r=1

urα (p)urβ (p) =

(
γµpµ +m

2m

)
αβ

Λ−
αβ (p) =

2∑
r=1

vrα (p) vrβ (p) =

(
γµpµ −m

2m

)
αβ

(A.6)

A.2 Contraction identity

γµγµ = DI, γµγαγµ = −(D − 2)γα, γµγαγβγµ = (D − 4) γαγβ + 4gαβ (A.7)

γµγαγβγγγµ = −2γγγβγα, γµγαγβγγγδγµ = 2(γδγαγβγγ + γγγβγαγδ) (A.8)

εαβµνεαβστ = −2 (gµσg
ν
τ − gµτ g

ν
σ) , ε

αβγνεαβγτ = −6gντ , ε
αβγδεαβγδ = −24 (A.9)

A.3 Trace Identity

Tr (UV ) = Tr(V U), T r
(
γµγνγδ

)
= 0, γµ − odd#, T r

(
γαγβ

)
= f(D)gαβ (A.10)

Tr σαβ = 0, T r
(
γαγβγγγδ

)
= f(D)(gαβgγδ − gαγgβδ + gαδgβγ) (A.11)

Tr
(
γ5
)
= Tr

(
γ5γα

)
= Tr

(
γ5γβγβ

)
= Tr

(
γ5γαγβγγ

)
= 0 (A.12)

Tr
(
γ5γαγβγγγδ

)
= −4iεαβγδ, for 4th − dimension, D = 4, f(D) = 4 (A.13)
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A.4 Cross-section

A.4 Cross-section

The differential cross section in the center of mass (CoM) frame is

(
dσ

dΩ′
1

)
CoM

=
1

64π2(E1 + E2)2
|p⃗ ′

1|
|p⃗1|

(∏
l

(2ml)

)
|M |2. (A.14)

It is convenient to define the Lorentz invariant Mandelstam variables

s = (p1 + p2)
2 = (p′1 + p′2)

2

t = (p1 − p′2)
2 = (p2 − p′1)

2

u = (p1 − p′1)
2 = (p2 − p′2)

2, (A.15)

and

s+ u+ t = m2
1 +m2

2 +m2
1′ +m2

2′ (A.16)

where the outgoing particles are denoted by parameters with prime. The variable s is the

total energy in the CoM frame. Following the convention in (Mikaelian & Zheleznykh,

1980), t is the square of the momentum transferred between incoming νe and outgoing

singly charged particle. The scattering angle θ refers to the angle between incoming

νe and outgoing singly charged particle in the center-of-mass frame. The variable t is

depended on the scattering angle cos θ

t = m2
1 +m2

2′ − 2E1E
′
1 + 2|p⃗1||p⃗ ′

1| cos θ

dt = 2|p⃗1||p⃗ ′
1|d cos θ (A.17)
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A.4 Cross-section

where

|p⃗1| =
1

2
√
s

√
s2 − 2(m2

1 +m2
2)s+ (m2

1 −m2
2)

2

|p⃗ ′
1| =

1

2
√
s

√
s2 − 2(m2

1′ +m2
2′)s+ (m2

1′ −m2
2′)

2. (A.18)

The differential cross section express in Mandelstam variables is

dσ

dt
=

1

64πs|p⃗1|2

(∏
l

(2ml)

)
|M |2, (A.19)

dσ

dt
=

dσ

d cos θ

1

2 |p⃗ ′
1| |p⃗1|

dσ

d cos θ
= 2 |p⃗ ′

1| |p⃗1|
dσ

dt

=
1

32πs

|p⃗ ′
1|

|p⃗1|

(∏
l

(2ml)

)
|M |2 . (A.20)

The total cross section is therefore

σ =

∫ tmax

tmin

dσ

dt
dt. (A.21)
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A.5 Physical Constant

A.5 Physical Constant

Table A.1: Physical and conversion constants that used in the calculation (taken and adapted
from (Nakamura et al., 2010)).

Planck constant ~ 6.58× 10−25 GeV·s

Conversion constant ~c 1.973× 10−14 GeV·cm

Fermi coupling constant GF 1.166× 10−5 eV−2

Fine-structure constant α 1/137

Weak mixing angle sin2θW 0.23116

Electron mass me 0.511 MeV

W± mass mW 80.399 GeV

Z0 mass mZ 91.1876 GeV
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Appendix B

Lagrangian

B.1 Variational Principle

In the study mechanics and dynamics of particle, the Lagrangian is more preferable due to

its invariance under Lorentz transformation rather that the Hamiltonian which transform

as time component of the energy momentum four vector. A field is defined as the physical

quantity associated to each point of spacetime. The field is called scalar or vector base on

the physical quantity associated to it. In field theory, the Lagrangian is written in term of

fields and their derivatives as (Mandl & Shaw, 2009)

L(t) =

∫
d3x⃗L(ψ(x), ∂µψ(x)) (B.1)

where L(ψ(x), ∂µψ(x)) is referred as Lagrangian density. The x is the space time coor-

dinate and ∂µψ(x) are the space time derivatives with µ = 0, 1, 2, 3.

∂µ = (∂0, ∂1, ∂2, ∂3)

= (
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z
). (B.2)
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B.1 Variational Principle

From the Hamilton’s variational principle, the path taken by a particle from one point to

another point in a given time should be the minimized path. Thus, the action or path is

defined as

S =

∫
dtL(t) =

∫
dt

∫
d3x⃗L(ψ(x), ∂µψ(x)) =

∫
d4xL(ψ(x), ∂µψ(x))

δ

∫
d4xL(ψ(x), ∂µψ(x)) = 0.

From the chain rule

∫
δL(ψ(x), ∂µψ(x))d

4x =

∫ (
∂L

∂ψ(x)
δψ(x) +

∂L

∂(∂µψ(x))
δ∂µψ(x)

)
d4x

and partial integration

=

∫ (
∂L

∂ψ(x)
δψ(x) + ∂µ

(
∂L

∂(∂µψ(x))

)
δψ(x) + ∂µ

(
∂L

∂(∂µψ(x))
δψ(x)

))
d4x.

(B.4)

The third term is the surface term and vanish. This lead to the Euler Lagrange Equation

∂L

∂ψ(x)
− ∂µ

(
∂L

∂(∂µψ(x))

)
= 0. (B.5)

The momentum conjugate to the field ψ(x) is written as

π(x) =
∂L

∂(∂µψ(x))
(B.6)

which is in analogy to the classical Lagrangian in the generalized coordinates

pi(t) =
∂L

∂q̇i(t)
. (B.7)
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B.1 Variational Principle

From the equation of motion like Klein-Gordon equation, Dirac equation and Proca equa-

tion, one can track the form of the Lagrangian. For example the Klein-Gordon equation

(
∂µ∂

µ +
m2c2

~2

)
ϕ = 0. (B.8)

The conjugate momentum in comparison to Euler-Lagrange equation is then

∂µϕ =
∂L

∂(∂µϕ)
,
m2c2

~2
= −∂L

∂ϕ
. (B.9)

By integrating the equation above one obtains the Klein-Gordon Lagrangian in the fol-

lowing form

L =
1

2
(∂µϕ) (∂

µϕ)− 1

2

m2c2

~2
ϕ2 (B.10)

which is in anology to the classical Lagrangian for harmonic oscillator

L =
1

2
mẍ2 − 1

2
kx2. (B.11)
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Appendix C

Feynman rules

The interaction of Higgs bosons with the gauge bosons are determined by the Higgs ki-

netic Lagrangian in Equation (3.17) (T. P. Cheng & Li, 1980; Schechter & Valle, 1980;

Fileviez Pérez et al., 2008)

L = (Dµϕ)†(Dµϕ) + (Dµ∆)†(Dµ∆) (C.1)

where

Dµϕ = ∂µϕ+ ig
σi
2
.W i

µϕ+ i
g′

2
Bµϕ (C.2)

and

Dµ∆ = ∂µ∆+ igTi.W
i
µ∆+ ig′Bµ∆ (C.3)

where σi

2
are the 2×2 representation of SU(2) doublet generators while T µ are the 3×3

representation of SU(2) triplet generators.
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T1 =
1√
2


0 1 0

1 0 1

0 1 0

 T2 =
1√
2


0 −i 0

i 0 −i

0 i 0

 T3 =


1 0 0

0 0 0

0 0 −1

 (C.4)

The 3×3 representation of Y = 2 complex triplet field can be written as

∆ =


∆0

∆−

∆−−

 (C.5)

L =

(
∂µϕ+ ig

σµ
2
.W µϕ+ i

g′

2
Bµϕ

)†(
∂µϕ+ ig

σµ

2
.Wµϕ+ i

g′

2
Bµϕ

)
+(∂µ∆+ igTµ.W

µ∆+ ig′Bµ∆)
†
(∂µ∆+ igT µ.Wµ∆+ ig′Bµ∆)

≡ 1

4
g2υ0W

µ−W+
µ +

1

8

(
g2 + g′2

)
υ20Z

µZµ +
1

2

(
g2 + g′2

)
υ2∆Z

µZµ

+
1

2
g2υ∆W

µ−W+
µ +

ig

2

(
∂µϕ

+
)
h0W−

µ +
ig

2

(
∂µh

0
)
ϕ−W+

µ

+
ig√
2

(
∂µ∆

+
)
δ0W−

µ +
ig√
2

(
∂µδ

0
)
∆−W+

µ ++ig
(
∂µ∆

+
)
∆−−W+

µ

+ig
(
∂µ∆

++
)
∆−W−

µ + g2υ∆δ0W
µ−W+

µ +
g2

2
υ0h0W

µ−W+
µ

+
g2υ∆√

2

[
∆−−W µ+W+

µ +∆++W µ−W−
µ

]
+

g2

cos θW

[
1√
2
ϕ−ϕ0 sin2 θW −∆−∆0(1 + sin2 θW )

]
W+

µ Zµ

=
1

4
g2(υ0 + 2υ∆)W

µ−W+
µ +

1

2

1

4

(
g2 + g′2

) (
υ20 + 4υ2∆

)
ZµZ

µ

+
ig

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)

(
∂µH

+
)
H2W

−
µ

+
ig

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0) (∂µH2)H

−W+
µ
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+
ig

2
(
√
2 cos θ+ sin θ0 − sin θ cos θ0)

(
∂µH

+
)
H1W

−
µ

+
ig

2
(
√
2 cos θ+ sin θ0 − sin θ cos θ0) (∂µH1)H

−W+
µ

+ig cos θ+
(
∂µH

++
)
H+W−

µ + ig cos θ+
(
∂µH

−)H−−W+
µ

+
g2 cos θW

2

[
sin θ+υ0g

′2 −
√
2υ∆ cos θ+(2g

′2 + g2)
]
W+

µ H
−Zµ

+
g2

2
(2υ∆ sin θ0 + υ0 cos θ0)H1W

µ−W+
µ

−g
2

2
(υ0 sin θ0 − 2υ∆ cos θ0)H2W

µ−W+
µ

+
g2√
2

[
H−−W µ+W+

µ +H++W µ−W−
µ

]
(C.6)

where

m2
W =

1

4
g2(υ20 + 2υ2∆) (C.7)

and

m2
Z =

1

4

(
g2 + g′2

) (
υ20 + 4υ2∆

)
(C.8)

with

ρ =
m2

W

m2
Z cos2 θW

=
1 + 2

υ2
∆

υ2
0

1 + 4
υ2
∆

υ2
0

= 1−
2
υ2
∆

υ2
0

1 + 4
υ2
∆

υ2
0

= 1− 2ϵ2

1 + 4ϵ2
≈ 1. (C.9)

The Yukawa Lagrangian for Higgs leptons interaction

L = hαβψ
T
αLiσ2∆ψβL +H.c.

=
hαβ√
2
[υ∆ν

T
αCPLνβ + νTαCPLνβδ0 + iνTαCPLνβη0

−
(
lTαCPLνβ + νTαCPLlβ

)
∆+ −

√
2lTαCPLlβ∆

++] +H.c.

=
hαβ√
2
[υ∆ν

T
αCPLνβ + νTαCPLνβ [sin θ0H1 + cos θ0H2]

+iνTαCPLνβ [sinαG0 + cosαA0]

−
(
lTαCPLνβ + νTαCPLlβ

) [
sin θ+G

+ + cos θ+H
+
]
−

√
2lTαCPLlβ∆

++] +H.c.
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≡ hαβ√
2
[υ∆ν

T
αCPLνβ + νTαCPLνβ [sin θ0H1 + cos θ0H2] + iνTαCPLνβ cosαA0

−
(
lTαCPLνβ + νTαCPLlβ

)
cos θ+H

+ −
√
2lTαCPLlβ∆

++] +H.c.

=
hαβ
2

[
√
2υ∆ν

T
αCPLνβ +

√
2νTαCPLνβ [sin θ0H1 + cos θ0H2] + i

√
2νTαCPLνβ cosαA0

−
√
2
(
lTαCPLνβ + νTαCPLlβ

)
cos θ+H

+ − 2lTαCPLlβ∆
++] +H.c. (C.10)

From the neutrino mixing,

να = U∗
αiνi (C.11)

where i = 1, 2, 3, the neutrinos masses and Yukawa coupling are

Lν =
1

2
[
√
2υ∆hαβν

T
αCPLνβ] +H.c.

=
1

2
[
√
2υ∆(U

†hαβU
∗)ijν

T
i CPLνj] +H.c. (C.12)

with

hαβ =
1√
2υ∆

[Udia(m1,m2,m3)U
T ]αβ. (C.13)

Table C.1: The vertex factors for Higgs boson interaction with W boson and lepton. The
approximation is taken based on υ∆ << υ0 and M∆ > MH1 . p1(p2) refers to the first
(second) gauge boson listed in the table below.

Vertices Vertex factors Approximation
H+H2W

−
µ −ig

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)(p1 − p2)µ −i g√

2
(p1 − p2)µ

H+H1W
−
µ −ig

2
(
√
2 cos θ+ sin θ0 − sin θ+ cos θ0)(p1 − p2)µ −ig

2
µυ0
M2

∆
(p1 − p2)µ

H++H−W−
µ −ig cos θ+(p1 − p2)µ −ig(p1 − p2)µ

H1W
−
µ W

+
ν ig

2

2
(2υ∆ sin θ0 + υ0 cos θ0) gµν ig

2

2
υ0gµν

H2W
−
µ W

+
ν −ig2

2
(υ0 sin θ0 − 2υ∆ cos θ0) gµν −ig2

2

(
µυ2

0

M2
∆
− 2υ∆

)
gµν

H++W−
µ W

−
ν i

√
2g2υ∆gµν i

√
2g2υ∆gµν

H−W+
µ Zν

ig2 cos θW
2

[
sin θ+υ0g

′2 −
√
2υ∆ cos θ+(2g

′2 + g2)
]
gµν iCWZ

νTα νβH2 i
√
2hαβCPL cos θ0 i

√
2hαβCPL

νTα νβA0 −
√
2hαβCPL cosα −

√
2hαβCPL

lTανβH
+ −ihαβ

√
2CPL cos θ+ −ihαβ

√
2CPL
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C.1 Vertex factors

CWZ =
g2 sin2 θW
2 cos θW

(
µυ20
M2

∆

−
√
2(2 + cot2 θW )υ∆

)
gµν (C.14)

C.1 Vertex factors

The first order term in the S-matrix expansion is used to obtain the vertex factor for the

interaction of Higgs bosons with other particles.

S1 = i

∫
d4xLint (C.15)

The charged leptons, neutrinos, charged Higgs and neutral Higgs fields can be written in

the term of creation and annihilation operators.

lα(x) =
∑
rp

(
ml

V Ep

) 1
2 [
cr(p⃗)ur(p⃗)e

−ipx + d†r(p⃗)νr(p⃗)e
ipx
]

(C.16)

H++(x) or H+(x) = H†(x) =
∑
k

(
1

2V ωk⃗

) 1
2 [
b†r(k⃗)e

ikx + fr(k⃗)e
−ikx

]
H−−(x) or H−(x) = H(x) =

∑
k

(
1

2V ωk⃗

) 1
2 [
br(k⃗)e

−ikx + f †
r (k⃗)e

ikx
]

(C.17)

H1(x) or H2(x) =
∑
k

(
1

2V ωk⃗

) 1
2 [
ar(k⃗)e

−ikx + a†r(k⃗)e
ikx
]

(C.18)

C.1.1 H+(p⃗1)H2(p⃗2)W
−
µ (k⃗) vertex factor

For H+(p⃗1)H2(p⃗2)W
−
µ (k⃗) interaction, the lagrangian is

L =
ig

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)

[(
∂µH

†)H2W
−
µ + (∂µH2)HW

+
µ

]
. (C.19)
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C.1 Vertex factors

Figure C.1: Feynman diagram for H+H2W
−
µ .

The first order S-matrix expansion is

S1 = i

∫
d4x

ig

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)

[(
∂µH

+
)
H2W

−
µ + (∂µH2)H

−W+
µ

]
= −

∫
d4x

g

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)

∑
p1

(
1

2V ωp⃗1

) 1
2 ∑

p2

(
1

2V ωp⃗2

) 1
2

[
(∂µ[b

†
r(p⃗1)e

ip1x + fr(p⃗1)e
−ip1x])[ar(p⃗2)e

−ip2x + a†r(p⃗2)e
ip2x]W−

µ

+(∂µ[ar(p⃗2)e
−ip2x + a†r(p⃗2)e

ip2x])[br(p⃗1)e
−ip1x + f †

r (p⃗1)e
ip1x]W+

µ

]
= −

∫
d4x

g

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)

∑
p1

(
1

2V ωp⃗1

) 1
2 ∑

p2

(
1

2V ωp⃗2

) 1
2

[
∂µb

†
r(p⃗1)e

ip1xar(p⃗2)e
−ip2xW−

µ + ∂µar(p⃗2)e
−ip2xb†r(p⃗1)e

ip1xW+
µ

]
= −i(p1 − p2)µ

g

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)

×
∫
ei(p1−p2−k)xd4x

[
b†r(p⃗1)ar(p⃗2)W

−
µ + ar(p⃗2)b

†
r(p⃗1)W

+
µ

]
+ ....

(C.20)

The transition amplitude is

⟨
p⃗2|S1|p⃗1, k

⟩
= −i(p1 − p2)µ

g

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)(2π)

4δ4(p1 − p2 − k)

×
∑
p1

(
1

2V ωp⃗1

) 1
2 ∑

p2

(
1

2V ωp⃗2

) 1
2 ∑

k

(
1

2V ωk⃗

) 1
2
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C.1 Vertex factors

×
⟨
0|br(p⃗1)b†r(p⃗1)ar(p⃗2)a†r(p⃗2)ar(k⃗)a†r(k⃗)

+ar(p⃗2)a
†
r(p⃗2)br(p⃗1)b

†
r(p⃗1)br(k⃗)b

†
r(k⃗)|0

⟩
εαr (k⃗)

= −i(p1 − p2)µ
g

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)(2π)

4δ4(p1 − p2 − k)

×
∑
p1

(
1

2V ωp⃗1

) 1
2 ∑

p2

(
1

2V ωp⃗2

) 1
2 ∑

k

(
1

2V ωk⃗

) 1
2

M = −i(p1 − p2)µ
g

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0)ε

α
r (k⃗). (C.21)

The vertex factor is therefore

− i(p1 − p2)µ
g

2
(sin θ+ sin θ0 +

√
2 cos θ+ cos θ0). (C.22)

C.1.2 H++W µ−W υ− vertex factor

For the H++W µ−W υ− interaction, the Lagrangian is

L =
g2√
2

[
H−−W µ+W+

µ +H++W µ−W−
µ

]
. (C.23)

The first order S-matrix expansion is

S1 = i

∫
d4x

g2υ∆√
2

[
H−−W µ+W+

µ +H++W µ−W−
µ

]
= i

g2υ∆gµν√
2

∫
d4x

[
H−−W µ+W υ+ +H++W µ−W υ−] . (C.24)

The vertex factor is

i
g2υ∆gµν√

2
(C.25)

77
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and multiplying by the factor of 2! for two indentical W bosons we obtain

i
√
2g2υ∆gµν . (C.26)

C.1.3 lανβH
± vertex factor

On the other hand, the lανβH± interaction Lagrangian is

L = −hαβ
√
2
(
lTαCPLνβ + νTαCPLlβ

)
cos θ+H

+ (C.27)

where α, β = e, µ, τ . The first order S-matrix expansion is

S1 = −i
∫
d4xhαβ

√
2
(
lTαCPLνβ + νTαCPLlβ

)
cos θ+H

+

= −ihαβ
√
2 cos θ+

∫
d4x

(
lTαCPLνβ + νTαCPLlβ

)
H+

= −ihαβ
√
2 cos θ+

∫
d4x

∑
rp

(
ml

V Ep

) 1
2 [
cr(p⃗)ur(p⃗)e

−ipx + d†r(p⃗)νr(p⃗)e
ipx
]T
CPL

×
∑
rq

(
ml

V Eq

) 1
2 [
ar(q⃗)ur(q⃗)e

−iqx + a†r(q⃗)νr(q⃗)e
iqx
]
H+ + ...

= −ihαβ
√
2 cos θ+

∫
e−i(p+q−k)xd4x

∑
rp

(
ml

V Ep

) 1
2 ∑

rq

(
ml

V Eq

) 1
2 ∑

k

(
1

2V ωk⃗

) 1
2

×cr(p⃗)uTr (p⃗)CPLar(q⃗)ur(q⃗)b
†
r(k⃗) + ...

= −ihαβ
√
2 cos θ+(2π)

4δ4(p1 − p2 − k)cr(p⃗)u
T
r (p⃗)CPLar(q⃗)ur(q⃗)b

†
r(k⃗)

×
∑
rp

(
ml

V Ep

) 1
2 ∑

rq

(
ml

V Eq

) 1
2 ∑

k

(
1

2V ωk⃗

) 1
2

. (C.28)

The transition amplitude is

⟨
k⃗|S1|p⃗, q⃗

⟩
= −ihαβ

√
2 cos θ+(2π)

4δ4(p1 − p2 − k)cr(p⃗)u
T
r (p⃗)CPLar(q⃗)ur(q⃗)b

†
r(k⃗)
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×
∑
rp

(
ml

V Ep

) 1
2 ∑

rq

(
ml

V Eq

) 1
2 ∑

k

(
1

2V ωk⃗

) 1
2

uTr (p⃗)CPLur(q⃗)

×
⟨
0|br(k⃗)cr(p⃗)ar(q⃗)c†r(p⃗)b†r(k⃗)a†r(q⃗)|0

⟩
(C.29)

M = −ihαβ
√
2 cos θ+u

T
r (p⃗)CPLur(q⃗). (C.30)

Thus the vertex factor is

− ihαβ
√
2 cos θ+CPL. (C.31)

In this model, the neutrino is Majorana neutrino. The Majorana neutrino field

ν(x) =
∑
rq

(
ml

V Eq

) 1
2 [
ar(q⃗)ur(q⃗)e

−iqx + a†r(q⃗)νr(q⃗)e
iqx
]

(C.32)

is self conjugate which satisfy

νC(x) = Cν(x)C−1 = ν(x) (C.33)

with (Denner, Eck, Hahn, & Kblbeck, 1992)

uT (p⃗) = ν(p⃗)CT , vT (p⃗) = u(p⃗)CT (C.34)

where C is the charge conjugation matrix

C† = C−1, CT = −C. (C.35)

The charge conjugation matrix imply that the interaction vertices with lepton number

violation are allowed. In particular, the neutrino can be treated as either particle or an-

tiparticle.
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C.2 Standard Model charged current and neutral current Lagrangian

C.2 Standard Model charged current and neutral cur-

rent Lagrangian

From Equation (2.3), Equation (2.4), Equation (2.13) and Equation (2.14), we have

L ≡
(
νl l

)
L

γµ
[
−g
2
σi ·W i − g′

2
Y Bµ

] νl

l


L

− lRγ
µ g

′

2
Y BµlR

=
−g
2

(
νl l

)
L

γµ


 0 W 1 − iW 2

W 1 + iW 2 0

+

 W 3 0

0 W 3



 νl

l


L

−
(
νl l

)
L

γµ
g′

2
Y Bµ

 νl

l


L

− lRγ
µ g

′

2
Y BµlR

=
−g√
2

[
lLγ

µνlLW
− + νlLγ

µlLW
+
]
− g

2

[
νlLγ

µνlL + lLγ
µlL
]
W 3

−g
′

2

[
νlLγ

µνlL + lLγ
µlL
]
Y Bµ − lRγ

µ g
′

2
Y BµlR

=
−g√
2

[
lLγ

µνlLW
−
µ + νlLγ

µlLW
+
µ

]
− g

2 cos θW
νlLγ

µνlLZµ

+
g

4 cos θW
lγµ(1− 4 sin2 θW − γ5)lZµ (C.36)

which are the charged current and neutral current interaction Lagrangian of electrons and

neutrinos with gauge bosons.

We list some Feynman rules that are used in the calculation (Mandl & Shaw, 2009;

Peskin & Schroeder, 1995; Lahiri & Pal, 2005). The following factors are written for

each external line:

1. For each incoming lepton, l−, νl : ur (p) ,

2. For each outgoing lepton l−, νl : vr (p)

3. For each incoming antilepton, l+, νl : ur (p) ,
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C.2 Standard Model charged current and neutral current Lagrangian

4. For each outgoing antilepton l+, vl : vr (p)

5. For each incoming vector boson, εrα(k),

6. For each outgoing vector boson, ε∗rα(k),

7. For each internal fermion line,

iSF (p) = i
1

γµpµ −m+ iε
(C.37)

8. For each internal photon line,

iDFµν (k) =
−igµν

k2 + iε
(C.38)

9. For each internal W and Z line,

iDFµν (k,m) =
−i

k2 −m2 + iε

[
gµν −

(1− ξ) kµkν

k2 − ξm2

]
(C.39)

10. For each internal scalar boson line,

i∆F (k,mH) =
i

k2 − ξm2
H + iε

(C.40)

where ξ =1 is Feynman-’t Hooft gauge, ξ = 0 is Landau gauge. In our calculation,

we use the Feynman-’t Hooft gauge.
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Appendix D

Group theory

The group theory is a study of transformation. A system on some specific coordinate sys-

tem is transformed to another new coordinate system by rotation, translation or reflection.

The first postulate of special relativity states that the law of physics should be invariant in

any frame of reference. This imply that the transformation under rotation, translation and

reflection should leave the equation of motion to be invariant. For instant, the Lagrangian

of a system should be invariant under such transformation. Each of the transformation

would imply some conservation law. For example, the system under rotation lead to the

conservation of angular momentum. The symmetry and conservation law under continu-

ous transformation is summarized as Neother’s Theorem (T. Cheng & Li, 1984; Mandl &

Shaw, 2009; Peskin & Schroeder, 1995; Lahiri & Pal, 2005). Thus, the group theory is

an essential tools in describing the symmetry of physics.

D.1 Elements of group theory

In order for a set {G : a, b, c...} to be classify as a group, these elements should satisfy the

following properties (Tung, 1985; Elliot & Dawber, 1979).
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D.1 Elements of group theory

1. The the product of any elements in the set, e.g. ab, should itself an element in the

set for all a, b ∈ G.

2. The elements in the set satisfy the closure relation, e.g. a(bc) = (ab)c for all

a, b, c ∈ G.

3. There is an identity, e in the set such that ea = ae = e for all a ∈ G.

4. There is an inverse for every elements in the set such that a−1a = e where a ∈ G

and a−1 ∈ G.

If the elements of the group satisfy the relation ab = ba for all a, b ∈ G, such group

is called abelian group. Otherwise, it is call non-abelian. The number of the elements

of the group is the order of the group. The subset {H : a, b...} which satisfy the same

multiplication rule with G where a, b ∈ G is said to be the subgroup of G. If the group ele-

ments carry continuous parameters they are called continuous group. A set of permutation

elements form a group called permutation group or symmetry group.

If the elements of two subgroups H1 and H2 commute, (h1h2 = h2h1, for all h1 ∈ H1

and h2 ∈ H2) and every element g of G can be written as g = h1h2 where h1 ∈ H1 and

h2 ∈ H2, the group G is said to be the direct product of H1 and H2. The example of direct

product group in particle physics is SU(2) × U(1). If there exist one-to-one correspon-

dence between the elements of two groups which preserve the group multiplication rules,

these group are said to be isomorphic. For instant, if gi ∈ G ↔ g′i ∈ G′ and g1g2 = g3

in G, then g′1g
′
2 = g′3 in G′ and vice versa. However, a mapping from a group to another

group which preserves group multiplication and not necessarily one-to-one, is called ho-

momorphism. For example, if gi ∈ G → g′i ∈ G′ and g1g2 = g3 in G, then g′1g
′
2 = g′3 in

G′.
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If there exist a set of matrix that is homomorphic to a group, i.e. g ∈ G−→U(g), the set

of matrix forms a representation of that group. Let this matrix be a representation of G in

the vector space V , and V1 be the subspace of V , which satisfy the property U(g)|x⟩ ∈ V1

for all x ∈ V1 and g ∈ V1, V1 is said to be the invariant subspace. If the subspace in

not invariant under transformation of a group representation, that representation is called

irreducible representation. Lie group is an important example of application of group

representation in physics. A unitary group, U(n), is a set of n × n matrices that satisfy

U †U = 1. If the matrices of the unitary group consists of unity determinant, detU = 1, it

is called special unitary group, SU(n). An orthogonal group is a set of n × n matrices

satisfy OTO = 1. Thus, SO(n) is the special orthogonal group with unity determinant.

Consider a simple coordinate system with x and y axis. Suppose one transform the

coordinate system under rotation which fix at the origin to a new coordinate x′ and y′.

The representation of the rotation can be written in matrix form as (Tung, 1985; Elliot &

Dawber, 1979)

x⃗′ = Ux⃗

U =

 cos θ sin θ

− sin θ cos θ

 . (D.1)

Since the transformation in quantum mechanics is unitary so that the norm is invariant

under inner product space, we write U in the exponential form.

U =

 1 0

0 1

 cos θ + i

 0 −i

i 0

 sin θ

= exp[iσ2θ] (D.2)
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where σ2 =

 0 −i

i 0

 is the Pauli matrix. Such a matrix that transform the group

representation to unitary representation is called the generator of the group. The rota-

tion in 2-dimensional space is called SO(2) group. This rotation can be generalized to

3-dimensional space as SO(3) group. The generator of SO(3) group is the angular mo-

mentum operators, J1, J2 and J3. These generators satisfy the commutation relation (Lie

algebra)

[Jj, Jk] = iεjklJl (D.3)

where εjkl is the antisymmetric Levi-Civita symbol. εjkl is equal to 1 for cyclic permuta-

tion of jkl, while −1 for anti cyclic permutation of jkl and 0 for j = k, k = l, l = j. The

SU(2) group, however, is isomorphic to the 3-dimensional rotation group.
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