List of Figures

Figure 1.1:	Typical structure of (a) multilayer and (b) single-layer	3
	OLEDs. The organic active layer are consist of electron	
	injection layer (EIL), electron transporting layer (ETL),	
	emissive layer (EML), hole transporting layer (HTL) and hole	
	injection layer (HIL). The arrow indicates the direction of	
	light emission from the OLED devices.	
Figure 1.2:	Several commercialize device based on OLED technology	6
Figure 1.3:	Flexible Active Matrix OLED (AMOLED)	8
Figure 1.4:	Samsung AMOLED laptop with transparent display	8
Figure 1.5:	Comparison of image destruction between other display and	8
	OLED display	
Figure 1.6:	OLED Lighting Manufacturing Participant Roadmap	9
Figure 1.7:	Research flow for this work	12
Figure 2.1:	Typical molecular structure of polymers (top) and small	17
	molecules (bottom) used in organic electronic devices.	
Figure 2.2:	Molecular structure of benzene and its orbitals system	18
Figure 2.3:	Franck-Condon transitions	20
Figure 2.4:	Energy diagram for singlet and triplet excited state	22
Figure 2.5:	Schematic diagram of electroluminescence mechanism in	26
	organic device where 1) injection, 2) transportation, 3)	
	recombination, and 4) emission process.	
Figure 2.6:	Comparison of thermionic injection and F-N tunneling	29
	mechanisms. Φ hole and Φ electron are energy barrier for hole	
	and electron injection, respectively.	
Figure 2.7:	Equivalent circuit of impedance in space-charge-limited-	37
	current condition in organic semiconductor.	
Figure 2.8:	Molecular structure of organic materials used in this work	39
Figure 3.1:	Diagram of patterned ITO	49
Figure 3.2:	Laurell WS-400B-6NPP/LITE spin coater system	51

Figure 3.3:	Thin film fabrication processes using spin coating technique	52
Figure 3.4:	OLED fabrication processes	53
Figure 3.5:	Typical thermal evaporation deposition system	55
Figure 3.6:	Typical construction of layers of OLED devices fabricated in	55
	this work. (a) side view and (b) top view of the fabricated	
	OLED device.	
Figure 3.7:	Schematic diagram of optical path in FTIR measurement	56
Figure 3.8:	Light path of the UV-Vis-NIR spectrometer	59
Figure 3.9:	Optical path of photoluminescence spectrometer	62
Figure 3.10:	Typical measurement of thickness using step height difference	63
	method.	
Figure 3.11:	(a) Konica Minolta CS-200 and (b) experimental setup for	66
	electrical and luminescence characteristic of the device.	
Figure 3.12:	Schematic diagram of the device holder.	67
Figure 4.1:	Molecular structure of Alq ₃ used in this work	71
Figure 4.2:	Schematic structure of a single layer Alq ₃ based OLED	72
	fabricated in this work.	
Figure 4.3:	FTIR transmittance spectrum of Alq ₃ thin film	73
Figure 4.4:	XRD pattern of Alq ₃ thin film	74
Figure 4.5:	Normalized UV-Vis absorption spectra of Alq3 thin film	75
Figure 4.6:	Tauc plot of Alq ₃ thin film	76
Figure 4.7:	Typical molecular orbital level of Alq ₃	77
Figure 4.8:	Normalized photoluminescence spectra of Alq ₃ thin film	78
Figure 4.9:	Current density -voltage-luminance (J-V-L) relationship of the	80
	Alq ₃ based OLED	
Figure 4.10:	F-N plot of Alq ₃ -OLED	80
Figure 4.11:	Log J-Log V plot of the Alq ₃ based OLED	81
Figure 4.12:	Dependency of current efficiency with driven voltage of the	82
	Alq ₃ based OLED	
Figure 4.13:	Impedance Cole-Cole plots for Alq ₃ OLED with different	84
	driven voltage. The insert show the plot at low impedance	
	range.	
Figure 4.14:	Z versus frequency for Alq ₃ OLED with different driven	84
	voltage	

- **Figure 4.15:** Equivalent circuit of Alq₃ OLED
- Figure 4.16: Simulated of impedance data for Alq_3 device at different 86 voltage. The insert shows the simulated result at low impedance range.
- Figure 4.17: (a) Frequency dependent real (circle) and imaginary (square 88 box) part of the impedance of Alq₃ device. (b) Bias voltage dependence of the peak frequency and dielectric relaxation time.
- Figure 5.1: Normalized UV-Vis absorption of TPD and PBD in thin film 97 form. The spectra were normalized with respect to the highest absorption intensity for each material. Figure 5.2: $(\alpha hv)^2$ vs E plot of TPD and PBD 98 Molecular energy level of TPD and PBD 98 Figure 5.3: 100 Figure 5.4: Normalized PL spectra of TPD and PBD in thin film form excited at 280 nm excitation energy. 101 Figure 5.5: FTIR spectrum of small molecules and their blends in the wavenumber range from 800 to 2000 cm⁻¹ XRD pattern of Alq₃, TPD, PBD and blend of TPD:Alq₃ and 102 Figure 5.6: TPD:PBD:Alq3 in thin film form Figure 5.7: Normalized UV-Vis absorption of blend in thin film form 103 $(\alpha hv)2$ vs E plot of blend thin film 104 Figure 5.8: Figure 5.9: PL intensity of blend in thin film form with excitation 105 wavelength of 312 nm **Figure 5.10:** J-V characteristic of single layer OLED 107 Figure 5.11: F-N plot for devices with different dopant system 107 109 **Figure 5.12:** Log J-Log V plot of single layer OLED **Figure 5.13:** Schematic diagram of carrier pathways in TPD:PBD:Alq₃ 110 OLED Figure 5.14: L-V characteristic of single layer OLED 112 Figure 5.15: Luminance-current characteristic of single layer OLED 112 Figure 5.16: CIE plot of single layer OLED 114 **Figure 5.17:** Current efficiency-voltage plot of different blends OLED 114 **Figure 5.18:** Impedance Cole-Cole plots for OLED fabricated with 116 different blends system at (a) large and (b) smaller scale

86

- Figure 5.19: Simulated Cole-Cole plots of OLED device fabricated with 118 different blends system at large (above) and low (below) impedance scales
- Figure 5.20: (a) Frequency dependent of real and imaginary part of the 119 impedance and (b) relation between the resonance frequency and the relaxation time of OLED device fabricated with different blends system.
- Figure 6.1: FTIR spectrum of TPD:PBD:Alq₃ thin film with different 130 annealing process at range of (a) 2000 to 800 cm⁻¹, (b) 1400 to 1300 cm^{-1} and (c) 1200 to 1000 cm⁻¹
- **Figure 6.2:** XRD pattern of TPD:PBD:Alq₃ thin film with different 131 annealing time
- **Figure 6.3:** UV-Vis absorption of blend thin film with different annealing 133 time
- **Figure 6.4:** $(\alpha E)^2$ vs E plot of blend thin film at different annealing time 134
- Figure 6.5:PL of blend thin film with different annealing time with135excitation wavelength of 312 nm.
- Figure 6.6: Absorption and PL intensity of annealed films with respect to 135 annealing time.
- Figure 6.7: AFM images of blend thin film with different annealing time 138 measured at 2000 nm (left) and 300 nm (right) heights
- Figure 6.8: Microscopic image of as-cast and annealed device at different 138 annealing time
- **Figure 6.9:** Roughness and thickness of blend thin film with different 140 annealing time
- **Figure 6.10:** J-V characteristic of blend thin film with different annealing 141 time
- **Figure 6.11:** F-N plot of blend thin film with different annealing time 142
- **Figure 6.12:** Log J-Log V plot of single layer OLED annealed with various 144 annealing time
- Figure 6.13: L-V characteristic of blend OLED with different annealing 146 time
- Figure 6.14:Maximum luminance and current efficiency of single layer147OLED with respect to annealing time

- Figure 6.15:CIE plot of the blend OLED with different annealing time149
- **Figure 6.16:** L-J characteristic of the blend OLED with different annealing 149 time

List of Tables

Page

Table 3.1:	Summary of solution preparation parameters	50
Table 3.2:	Parameter of the FTIR measurement	57
Table 3.3:	Setup of XRD measurement	57
Table 3.4:	Scanning parameter for PL measurement	61
Table 4.1:	Impedance parameter used to simulate the measured absolute impedance plot of Fig. 4.16	87
Table 5.1:	Summary of optical and PL properties of blend film.	105
Table 5.2:	Performance of single layer OLED	115
Table 5.3:	Impedance parameter used to simulate the measured impedance plot of Fig. 5.19	120
Table 6.1:	Thickness measured of annealed blend thin film.	132
Table 6.2:	Performance of annealed blend OLED	148