BIODEGRADATION OF 2-CHLOROPHENOL USING FREE AND IMMOBILIZED LACCASE FROM *TRAMETES VERSICOLOR*

SWAPNA SAMBRANI

FACULTY OF SCIENCE UNIVERSITI MALAYA

KUALA LUMPUR

APRIL 2009

BIODEGRADATION OF 2-CHLOROPHENOL USING FREE AND IMMOBILIZED LACCASE FROM *TRAMETES VERSICOLOR*

SWAPNA SAMBRANI

DISSERTATION SUBMITTED AS PARTIAL FULFUILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

FACULTY OF SCIENCE UNIVERSITI MALAYA KUALA LUMPUR

APRIL 2009

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Swapna Sambrani

(Passport No.: B2583206)

Registration / Matric No.: SGF 060002

Name of Degree: Master of Biotechnology (coursework + dissertation)

Title of Dissertation ("this Work"): Biodegradation of 2-chlorophenol using free and

immobilized laccase from *Trametes versicolor*

Field of Study: Biotechnology

I do solemnly and sincerely declare that:

- (1) I am the sole author / writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exits was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledge in this work;
- (4) I do not have any actual knowledge nor I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the Universiti Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means

whatsoever is prohibited without the written consent of UM having been first had and obtained;

- (6) I hereby declare that this Work is based on my original work except for quotations and citation which have been duly acknowledge; and
- (7) I also declare that it has not been previously or concurrently submitted for any other degree at UM or other institutions.

Candidate's signature

Date

Subscribed and solemnly declared before,

Witness's signature

Name:

Designation:

Date

ACKNOWLEDGEMENTS

I would like to take this opportunity to extend my sincere appreciation and gratitude to following persons, without whom, the work would not have been possible.

I would like to express utmost gratitude and special appreciations to my supervisor Dr. Mohamad Suffian bin Mohamad Annuar for his encouragement and tremendous effort especially in the area of response surface methodology. I have truly appreciated and enjoyed all the intellectually stimulating, innovative and challenging ideas he has put forth during our progress discussions. His love, passion and instinct for research have encouraged me tremendously in exploring areas of enzymatic catalysis, which I would have never thought of. His encouragement and friendship have thus gone, and will continue to go, a very long way. Thanks for his valuable time and sharing of empirical experience to help me in writing this dissertation.

Secondly, thanks to my co-workers Mr. Alimin and Mr. Naziz for extending their co-operation throughout the experiments.

I am deeply indebted and grateful to my family for their concern, patience and kindness in helping and guiding me throughout this project. Last but no least, I would like to thank everyone who has helped me directly or indirectly in towards completing this research project.

ABSTRACT

Laccase from white rot fungus Trametes versicolor was immobilized in sodium alginate beads using entrapment method. Kinetic parameters (V_{max} and K_m) of both free and immobilized laccase were determined using syringaldazine as substrate. 2chlorophenol was degraded using free and immobilized laccase. An indirect rapid assay method was developed for the assay of degraded products of 2-chlorophenol, wherein the anionic phenoxy radicals, possibly generated during 2-chlorophenol degradation, couples with a cationic dye, Methylene Blue and renders it colorless. The extent of decolorization indicated the extent of product formation and hence the extent of 2-chlorophenol degradation assuming a 1:1 stoichiometric reaction between degraded products of 2chlorophenol and the dye. Factors like pH, temperature and enzyme concentration were optimized for the free enzyme reaction and reaction time, temperature and enzyme concentration were optimized for the immobilized enzyme reaction using a statistical tool The efficiency of viz. Box-Behnken method of Response Surface Methodology. immobilized laccase with respect to 2-chlorophenol degradation was found to be comparable to that of free laccase. External mass transfer was found to have negligible effect on the diffusion of substrate from bulk liquid to the surface of the bead while there was significant limitation posed by internal mass transfer from the surface of the bead to the center of the bead.

ABSTRAK

Laccase dari fungi rot putih Trametes versicolor telah dilumpuhkan di dalam ikatan sodium alginate menggunakan kaedah pemerangkapan. Kedua-dua parameter Kinetic (V_{max} and K_{m}) yang bebas dan laccase yang tidak bergerak telah dikenalpasti menggunakan syringaldazine sebagai substrat. 2-chlorophenol telah didegradasi menggunakan laccase yang bebas dan tidak bergerak. Kepantasan ujian terhadap mutu secara tidak langsung telah terhasil untuk ujian mutu degradasi bahan 2-chlorophenol, sedangkan anionic phenoxy yang radikal, kemungkinan terbentuk akibat dari degradasi 2chlorophenol, bersama-sama dengan pewarna cationic, Methylene Blue dan peluntur warna. Sejauh mana penghilangan warna menunjukkan sejauh mana formasi bahan terbentuk dan yang demikian degradasi 2-chlorophenol menganggap tindakbalas stoichiometric 1:1 antara degradasi bahan 2-chlorophenol dan bahan pewarna. Faktor seperti pH, suhu dan pemekatan enzim adalah dioptimalkan untuk reaksi enzim bebas dan reaksi masa, suhu dan pemekatan enzim adalah dioptimalkan untuk reaksi enzim yang telah dilumpuhkan menggunakan statistical tool *viz*. kaedah Box-Behnken untuk Kaedah Tindakbalas Permukaan (Response Surface Methodology). Keberkesanan laccase yang tidak bergerak dengan degradasi 2-chlorophenol didapati bersesuaian dengan laccase yang bebas. Pemindahan mass luaran dikenalpasti memberi kesan terabai tentang pembelahan substrat dari cecair yang banyak kepada permukaan rantaian dan didapati juga ada signifikan terhad terhasil daripada pemindahan mass dalaman dari permukaan rantaian kepada bahagian tengah

TABLE OF CONTENTS

List of Figures	
List of Tables	
1. Chapter 1- Introduction	1
2. Chapter 2 - Literature Review	5
2.1 Chlorophenols	5
2.2 Laccase	10
2.2.1 Laccase Structure	12
2.2.2 Biotechnological and Industrial Applications of laccase	13
2.3 Chlorophenol degradation by free and immobilized laccase	15
2.4 Enzyme kinetics	16
2.4.1 Free enzyme kinetics	16
2.4.2 Immobilized enzyme kinetics	20
2.5 Enzyme Immobilization	22
2.6 Response surface methodology	26
2.7 Assay methods for 2-chlorophenol degradation by laccase	29
3. Chapter 3 – Materials and Methods	31
3.1 Materials	31
3.1.1 Laccase	31
3.1.2 Phosphate buffer solution	32
3.1.3 2-chlorophenol solution	32
3.1.4 Methylene Blue dye solution	33

3.1.5 Sodium alginate solution	33
3.1.6 Syringaldazine solution	34
3.1.7 Equipments	34
3.2 Methods	34
3.2.1 Linearity assay for laccase enzyme using syringaldazine as substrate	34
3.2.2 Determination of kinetic parameters (V_{max} and K_m) for free laccase using	
syringaldazine as substrate	36
3.2.3 Development of indirect assay method for biodegradation of 2-chlorophenol by	36
laccase	
3.2.4 Determination of 2-chlorophenol concentration to be used in subsequent studies	38
3.2.5 Optimization of pH, temperature and enzyme loading for the reaction of free laccase	
with 2-chlorophenol	39
3.2.6 Enzyme immobilization and immobilization optimization	42
3.2.7 Determination of immobilized enzyme activity using syringaldazine	44
3.2.8 Determination of kinetic parameters (V_{max} and K_m) for immobilized enzyme using	
syringaldazine as substrate	47
3.2.9 Optimization of temperature, enzyme loading and reaction time for the reaction of	
immobilized enzyme with 2-chlorophenol	48
4. Chapter 4 – Results and Discussion	52
4.1 Linearity assay of laccase enzyme using 0.5 mM syringaldazine as substrate	52
4.2 Determination of kinetic parameters (V_{max} and K_m) for free and immobilized laccase	
using syringaldazine as substrate	56
4.3 Development of indirect assay method for biodegradation of 2-chlorophenol by laccase	62

	4.4 Proposed Mechanism of Action of 2-chlorophenol degradation of laccase and its assay	69
	4.5 Determination of 2-chlorophenol concentration to be used in subsequent studies	72
	4.6 Optimization of pH, temperature and enzyme loading for the reaction of free laccase with	
	2-chlorophenol	74
	4.7 Enzyme immobilization and immobilization optimization	85
	4.8 Determination of Immobilized enzyme activity using syringaldazine	91
	4.9 Optimization of temperature, enzyme loading and reaction time for the reaction of	
	immobilized enzyme with 2-chlorophenol	94
	4.10 External and internal mass transfer determination for immobilized laccase	107
5.	. Chapter 5 – Conclusions	113
6.	. References	116

LIST OF FIGURES

Figure 2.1 2-chlorophenol	5
Figure 2.2 Laccase from Trametes versicolor	10
Figure 2.3 Catalytic cycle of laccase during reaction with suitable compounds	13
Figure 2.4 Michaelis-Menten plot	17
Figure 2.5 Lineweaver-Burk plot	18
Figure 2.6 Eadie-Hofstee plot	19
Figure 2.7 Direct linear plot	20
Figure 2.8 Immobilized enzyme systems (a) enzyme non-covalently adsorbed to an insoluble	
particle; (b) enzyme covalently attached to an insoluble particle; (c) enzyme entrapped	25
within an insoluble particle by a cross-linked polymer; (d) enzyme confined within a	
semipermeable membrane	
Figure 2.9 Box-Behnken design on three factors	29
Figure 3.1 Standard curve for protein assay	46
Figure 4.1 Enzyme activity with different laccase concentrations using 0.5mM	
syringaldazine as substrate at 25°C	53
Figure 4.2 Initial reaction rates for various enzyme concentrations	54
Figure 4.3 Calibration plot for the free enzyme activity for the enzyme concentration range	
0.006 to 0.01 Uml ⁻¹	55
Figure 4.4 Calibration plot for the free enzyme activity for the enzyme concentration range	
0.01 to 0.05 U ml ⁻¹	55
Figure 4.5 Free enzyme activity with different syringaldazine concentrations at 0.1 U ml ^{-1}	57

enzyme

Figure 4.6 Immobilized laccase activities with different syringaldazine concentrations at 58 0.003 U ml⁻¹

Figure 4.7 Initial rate of reaction as a function of syringaldazine concentrations for free 59 enzyme system Figure 4.8 Initial rate of reaction as a function of syringaldazine concentrations for immobilized enzyme system 60 Figure 4.9 Methylene Blue spectrum 63 Figure 4.10 Spectra comparison for various interactions 64 Figure 4.11 *t*-test for Runs 1 and 2 66 Figure 4.12 *t*-test for Runs 1 and 3 67 Figure 4.13 Stability of the reaction product between 2-chlorophenol laccase-degraded byproducts and Methylene Blue dye 68 Figure 4.14 The initial reaction of phenolic compound with laccase 70 Figure 4.15 Mechanism proposed by Leontievsky et al., in the degradation of 70 trichlorophenol by laccase Figure 4.16 Mechanism proposed by Schultz et al., in the degradation of chlorinated 71 hydroxybiphenyls by laccase Figure 4.17 Proposed mechanisms for generation of 2-chlorophenol radicals and coupling 72 reaction of the radical(s) with Methylene Blue Figure 4.18 The percentage Δ Methylene Blue concentration with respect to change in 2-73 chlorophenol concentration Figure 4.19 Linear plot for the Δ Methylene Blue concentration with initial 2-chlorophenol

concentration	74
Figure 4.20 Normality plot for experimental data	78
Figure 4.21 Residual plots for the results	79
Figure 4.22 Main effects plot	80
Figure 4.23 Interactions plot	82
Figure 4.24 Contour plots for various interactions	83
Figure 4.25 Comparison of each set of combinations of drying time with 0.5% and 0.75%	
calcium chloride solution	89
Figure 4.26 Activity of different immobilized enzyme concentrations	93
Figure 4.27 Normality plot for experimental data	98
Figure 4.28 normal probability of the residual values	99
Figure 4.29 Main effects' plot	100
Figure 4.30 Interactions plot	102
Figure 4.31 Contour plots for interaction between reaction time and temperature	103
Figure 4.32 Overlaid contour plot showing feasible optimization region (white color) for	
reaction time and temperature	104
Figure 4.33 Determination of apparent first-order rate constant k_1	111
Figure 4.34 Syringaldazine concentration profile in beads with average diameter of 0.003 m	112
	Figure 4.20 Normality plot for experimental dataFigure 4.21 Residual plots for the resultsFigure 4.22 Main effects plotFigure 4.23 Interactions plotFigure 4.24 Contour plots for various interactionsFigure 4.25 Comparison of each set of combinations of drying time with 0.5% and 0.75%calcium chloride solutionFigure 4.26 Activity of different immobilized enzyme concentrationsFigure 4.27 Normality plot for experimental dataFigure 4.28 normal probability of the residual valuesFigure 4.29 Main effects' plotFigure 4.30 Interactions plotFigure 4.31 Contour plots for interaction between reaction time and temperatureFigure 4.32 Overlaid contour plot showing feasible optimization region (white color) forreaction time and temperatureFigure 4.33 Determination of apparent first-order rate constant k_1

LSIT OF TABLES

Table 2.1 Symptoms of 2-chlorophenol poisoning	6
Tabe 2.2 Xenobiotics mineralized by white-rot fungi	8
Table 2.3 Industrial and environmental applications of laccases	14
Table 2.4 Industrially important immobilized enzymes	23
Table 3.1 Experimental runs for free laccase degradation of 2-chlorophenol using Box-Behnken	
design	39
Table 3.2 Optimization of immobilization parameters	43
Table 3.3 Experimental runs for immobilized laccase degradation of 2-chlorophenol using Box-	
Behnken design	48
Table 4.1 Reaction rate data as a function of syringaldazine concentrations	53
Table 4.2 Interaction between Methylene Blue and 2-chlorophenol	65
Table 4.3 Interaction between Methylene Blue and degraded product of 2-chlorophenol	67
Table 4.4 Results of 45 experimental runs for free laccase system	75
Table 4.5 Optimization values	84
Table 4.6 Results of confirmatory test using optimized conditions	85
Table 4.7 Various combinations tested for immobilization optimization	87
Table 4.8 Immobilization efficiency for various combinations of calcium chloride solution and	
drying time	90
Table 4.9 Determination of enzyme immobilization efficiency	92
Table 4.10 Results of 45 experimental runs	95
Table 4.11 Optimization values	105

Table 4.12 Results of confirmatory test using optimized conditions	106
Table 4.13 Comparison between free and immobilized laccase systems under their respective	
optimized reaction conditions	107
Table 4.14 Observable modulus for external mass transfer calculation	109