LIST OF FIGURES

Page

Figure 2.1:	Schematic view of ion diffusion paths (Ono, 2007)	7
Figure 2.2:	Ag ₆ I ₁₀ model cluster (Kowada, 2000)	8
Figure 2.3:	Isosurface of Cu ion at (a) tetrahedral site and (b) octahedral site (Aniya, 2005)	9
Figure 2.4:	The schematic complex ion model $[CuI_8]^{7-}$ (Ida, 2002)	10
Figure 2.5:	Variation of log (σ T) with inverse of temperature (1/T) for the different samples of the system 35()-32.5 -32.5, where $0.05 \le x \le 0.25$ (Murugesan, 2002)	13
Figure 2.6:	Plot of temperature dependence of the d.c conductivity for the Ag $_{1-x}Cu_x I$ solid solutions along with pure AgI. (Kumar et. al., 2003)	14
Figure 2.7:	Plots of conductivity of Ag-rich solid solution (Kumar, 2006).	15
Figure 2.8:	X-ray powder diffraction pattern for the Ag Cu I solid for various compositions (Kumar, 2002).	18
Figure 2.9:	Powder XRD patterns a various temperatures for the Ag-rich $Ag_{0.95}$ Cu _{0.05} I solid solution. (Kumar, 2006).	19
Figure 2.10:	X-ray diffractograms of AgI-CuI solid solutions (Mohan, 2004).	20
Figure 2.11:	X-ray diffraction pattern of AgI-CuI based solid solutions recorded at room temperature (Mohan 2002).	22
Figure 4.1:	Complex impedance plot of pure AgI at room temperature.	32
Figure 4.2:	Complex impedance plot of 0.1 CuI-0.9AgI at room temperature.	33
Figure 4.3:	Complex impedance plot of 0.2CuI-0.8AgI at room temperature.	33
Figure 4.4:	Complex impedance plot of 0.3 CuI-0.7AgI at room Temperature	34
Figure 4.5:	Complex impedance plot of 0.4 CuI-0.6 AgI at room temperature.	34

		List of Figures
Figure 4.6:	Plot of conductivity at room temperature	37
Figure 4.7:	Plots of frequency dependent of conductivity at several temperatures for pure AgI.	38
Figure 4.8:	Plots of frequency dependent of conductivity at several temperatures for 0.1CuI-0.9AgI.	41
Figure 4.9:	Plots of frequency dependent of conductivity at several temperatures for 0.2CuI-0.8AgI.	43
Figure 4.10:	Plots of frequency dependent of conductivity at several temperatures for 0.3CuI-0.7AgI.	45
Figure 4.11:	Plots of frequency dependent of conductivity at several temperatures for 0.4CuI-0.6AgI.	47
Figure 4.12:	Temperature dependence of ionic conductivity for pure Agl	. 49
Figure 4.13:	Temperature dependence of ionic conductivity for 0.1CuI-0.9AgI.	49
Figure 4.14:	Temperature dependence of ionic conductivity for 0.2CuI-0.8AgI.	50
Figure 4.15:	Temperature dependence of ionic conductivity for 0.3CuI-0.7AgI.	50
Figure 4.16:	Temperature dependence of ionic conductivity for 0.4CuI-0.6AgI.	51
Figure 5.1:	Real part of complex permittivity with frequency for AgI-CuI mixture.	54
Figure 5.2:	Imaginary part of complex permittivity with frequency for AgI-CuI mixture.	54
Figure 5.3:	Plots of real part of complex permittivity with frequency at several temperatures for pure AgI.	55
Figure 5.4:	Plots of real part of complex permittivity with frequency at several temperatures for 0.1CuI-0.9AgI.	57
Figure 5.5:	Plots of real part of complex permittivity with frequency at several temperatures for 0.2CuI-0.8AgI.	59
Figure 5.6:	Plots of real part of complex permittivity with frequency at several temperatures for 0.3CuI-0.7AgI.	61

	List of Fi	gures
Figure 5.7:	Plots of real part of complex permittivity with frequency at several temperatures for 0.4CuI-0.6AgI.	63
Figure 5.8:	Plots of imaginary part of complex permittivity with frequency at several temperatures for pure AgI	65
Figure 5.9:	Plots of imaginary part of complex permittivity with frequency at several temperatures for 0.1CuI-0.9AgI.	67
Figure 5.10:	Plots of imaginary part of complex permittivity with frequency at several temperatures for 0.2CuI-0.8AgI.	69
Figure 5.11:	Plots of imaginary part of complex permittivity with frequency at several temperatures for 0.3CuI-0.7AgI.	71
Figure 5.12:	Plots of imaginary part of complex permittivity with frequency at several temperatures for 0.4CuI-0.6AgI.	73
Figure 5.13:	<i>ln</i> ε_i versus <i>ln</i> ω (Hz) at various temperatures for pure AgI.	77
Figure 5.14:	<i>ln</i> ε_i versus <i>ln</i> ω (Hz) at various temperatures for 0.1CuI-0.9AgI.	79
Figure 5.15:	<i>ln</i> ε_i versus <i>ln</i> ω (Hz) at various temperatures for 0.2CuI-0.8AgI.	81
Figure 5.16:	<i>ln</i> ε_i versus <i>ln</i> ω (Hz) at various temperatures for 0.3CuI-0.7AgI.	83
Figure 5.17:	<i>ln</i> ε_i versus <i>ln</i> ω (Hz) at 423 K for 0.4CuI-0.6AgI.	85
Figure 5.18:	s versus T (K) for pure AgI.	88
Figure 5.19:	s versus T (K) for 0.1CuI-0.9AgI.	88
Figure 5.20:	s versus T (K) for 0.2CuI-0.8AgI.	88
Figure 5.21:	s versus T (K) for 0.3CuI-0.7AgI.	89
Figure 5.22:	s versus T (K) for 0.4CuI-0.6AgI.	89
Figure 5.23:	Plots of variation of real (M _r) modulus constant as a function of frequency for AgI-CuI at different compositions.	91

	List of Fi	gures
Figure 5.24:	Plots of variation of imaginary (M_i) modulus constant as a function of frequency for AgI-CuI at different compositions.	91
Figure 5.25:	Plots of real part of modulus with frequency at several temperatures for pure AgI.	93
Figure 5.26:	Plots of real part of modulus with frequency at several temperatures for 0.1CuI-0.9AgI.	95
Figure 5.27:	Plots of real part of modulus with frequency at several temperatures for 0.2CuI-0.8AgI.	97
Figure 5.28:	Plots of real part of modulus with frequency at several temperatures for 0.3CuI-0.7AgI.	99
Figure 5.29:	Plots of real part of modulus with frequency at several temperatures for 0.4CuI-0.6AgI.	101
Figure 5.30:	Plots of imaginary part of modulus with frequency at several temperatures for pure AgI.	103
Figure 5.31:	Plots of imaginary part of modulus with frequency at several temperatures for 0.1CuI-0.9AgI.	105
Figure 5.32:	Plots of imaginary part of modulus with frequency at several temperatures for 0.2CuI-0.8AgI.	107
Figure 5.33:	Plots of imaginary part of modulus with frequency at several temperatures for 0.3CuI-0.7AgI.	109
Figure 5.34:	Plots of imaginary part of modulus with frequency at several temperatures for 0.4CuI-0.6AgI.	111
Figure 5.35:	Normalized modulus M_i spectra for highest conducting sample in the AgI-CuI mixture at different temperatures.	113
Figure 6.1:	X-ray diffraction pattern of pure AgI.	116
Figure 6.2:	X-ray diffraction pattern of 0.1CuI-0.9AgI.	116
Figure 6.3:	X-ray diffraction pattern of 0.2CuI-0.8AgI.	117
Figure 6.4:	X-ray diffraction pattern of 0.3CuI-0.7AgI.	117
Figure 6.5:	X-ray diffraction pattern of 0.4CuI-0.6AgI.	118
Figure 6.6:	Plot of D $\cos \theta$ versus 4 $\sin \theta$ for AgI.	120
Figure 6.7:	Plot of D cos θ versus 4 sin θ for 0.1CuI-0.9AgI.	121

		List of Figures
Figure 6.8:	Plot of D cos θ versus 4 sin θ for 0.2CuI-0.8AgI	121
Figure 6.9:	Plot of D <i>cos</i> θ versus 4 <i>sin</i> θ for 0.3CuI-0.7AgI.	122
Figure 6.10:	Plot of D <i>cos</i> θ versus 4 <i>sin</i> θ for 0.4CuI-0.6AgI.	122
Figure 6.11:	Crystallite size of the binary system with various wt % of C	uI. 123