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ABSTRACT 

 

 

 

The main aim of this work is to establish a technique to prepare the image of 

nuclear track detector in the form of thin film, LR 115 Type 2. This research also aims 

to develop the image processing scripts using SDC Morphology toolbox and Image 

Processing toolbox in conjunction with MATLAB as a programming platform. The 

scripts were applied to find the segmentation limit of over-lapping nuclear tracks, 

nuclear tracks counting and granulometry (area and diameter determination) in the 

images obtained. We finally compare the toolboxes capability in processing the image. 

The research found that the SDC Morphology toolbox is more precise than Image 

Processing toolbox when the exposed time of radiation to track detector is less than 30 

hours. Then, the segmented over-lapping objects were obtained if the over-lapping area 

is less than the segmentation limit of over-lapping area.   

 

Keywords: Morphology Image Processing; MATLAB; SDC Morphology Toolbox 
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ABSTRAK 

 

 

 

Matlamat utama penyelidikan ini adalah untuk menentukan teknik penyediaan 

imej pengesan jejakan nuklear menggunakan filem nipis LR 115 Type 2. Penyelidikan 

ini juga bertujuan untuk membangunkan skrip pemprosesan imej dengan menggunakan 

perisian SDC Morphology dan perisian Image Processing toolbox bersama bersama 

MATLAB sebagai perisian utama. Skrip-skrip ini telah diaplikasikan untuk menentukan 

had pembahagian jejakan nuklear yang bertindan, pengiraan bilangan dan penentuan 

luas jejakan nuklear pada paparan dalam imej. Hasil daripada ini, penyelidikan ini telah 

membandingkan kebolehan kedua-dua perisian pemprosesan imej. Penyelidikan ini 

mendapati perisian SDC Morphology lebih tepat berbanding perisian pemprosesan imej 

semasa dedahan daripada sinaran radioaktif ke atas pengesan jejakan yang kurang 

daripada 30 jam. Daripada ini, pembahagian objek bertindan berjaya diperolehi jika luas 

kawasan bertindan adalah kurang daripada had pembahagian luas kawasan bertindan.  
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Chapter Overview 

Image analysis is not just important for the applications in science and engineering. It is 

also very significant for the clarification and understanding of the images taken by 

satellites, medical imaging tools such as X-ray tomography, magnetic resonance 

imaging (MRI) and microscopy; which involves image processing, some being much 

more sophisticated than others (Michielsen & Raedt, 2001). In microscope images of 

materials such as polymer mixtures and ceramics, the main purpose of image analysis is 

to provide a quantitative characterisation of the shape, structure and connectivity of the 

objects image. The purpose of this study is to investigate an easy-to-use and versatile 

method to compute the morphological properties of such images. 

 

1.2 Research Background 

Image processing is a technique to improve and enhance the raw image. There 

are two methods which are the Digital Image Processing and the Analog Image 

Processing. Digital Image Processing (DIP) is the method using computer to analyse 

and enhance the image (Gonzalez & Woods, 2002). It was developed at 1960s at the 

Massachusetts Institute of Technology, Bell Laboratories, and the University of 

Maryland. The processing uses image as a two-dimensional signal or input data and 

apply to it the standard techniques of image processing in order to get the specific 

output (Rosenfeld, 1969).  

After three decades, the techniques of DIP have been developed by researchers 

in order to get the best output required. These are image representation, image 
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enhancement, image restoration, image analysis, image reconstruction and many more. 

The developments of these DIP techniques actually are based on using computer 

algorithms, where the noise and signal distortions can be avoided. The examples of the 

computer algorithm application techniques in DIP are; Feature Detection, Microscope 

Image Processing, Remote Sensing and Morphological Image Processing. 

Image processing algorithm in Morphological Image Processing was developed based 

on the Mathematical Morphology (MM). MM is not just a theory but also a technique 

for the analysis and processing of geometrical structures, derived from the set theory, 

lattice theory, topology, and random functions. Generally MM is applied to digital 

images, and can be engaged on graphs, surface meshes, solids, and other spatial 

structures (Serra, 1982; Serra, 1988; Dougherty, 1992).  

Image Processing Toolbox is a tool in MATLAB program. It is a set of 

reference-standard algorithms including MIP operator and graphical tools for image 

processing, analysis, visualization, and algorithm development. Application of the 

MATLAB program and image processing toolbox can be used in detecting an object in 

an image if the object has sufficient contrast from the background. As an example, the 

cancer cell can be detected by applying edge detection and basic morphology operations 

(MathWorks, 2011). 

Besides Image Processing Toolbox, there is a toolbox which is known as SDC
1
 

Morphology Toolbox for MATLAB. It is a collection Morphological Image Processing 

that provides morphological tools that can be applied to image segmentation, non-linear 

filtering, and pattern recognition and image analysis (SDC, 2011).  

MIP is also used in processing nuclear track detector image. This processing is 

able to present granulometry and nuclear track counting results (Eghan, Buah-Bassuah, 

& Oppon, 2007), which is it can be used as reference in this work.  

                                                 
1
 SDC Morphology Toolbox is a product from a company named SDC Information System.  There’s no 

further information about the name of ‘SDC’ abbreviation.  
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1.3 Mathematical Morphology (MM) 

Mathematical Morphology is a nonlinear image processing technique that is 

engaged in the properties analysis of materials and material textures. It is a set of 

mathematical derivations that can be used as texture analysis. It has been developed 

almost 4 decades ago and produces many of the image processing applications. MM 

signifies a special method that is supported by classical linear processing. Furthermore, 

it improves the application of various mathematical developments of the processing and 

analysis of images. These areas include medical image segmentation, non-linear 

statistics, logic, geometry, geometrical probability, topology and various algebraic 

systems such as lattice and group theories. The disciplines that have been used in the 

classical image processing techniques normally come into view within the context of 

mathematical morphology, based on its development and application. There have been 

vast growths of interest in mathematical morphology over the past few years, which 

were developed by Georges Matheron (Matheron, 1975). As a result, many research 

approaches ranging from noise analysis to image analysis are currently being explored. 

Even though it was developed based on binary images, morphological applications are 

expanding into different fields beyond the image analysis field. For instance, lattice 

image processing (Maragos, 2005) and symmetry groups (Roerdink, 1993). 

The application of Mathematical Morphology in image processing is a concept 

for operating shapes of objects in images quantitatively. All morphological methods are 

reduced to only two basic operations called erosion and dilation. Logical Operations 

also is one of the basic morphological methods (Refer to Chapter 2 for detailed 

information on the subject of Mathematical Morphology). 
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1.4 Introduction to Nuclear Track 

The basics of the nuclear track operations are based on the fact that a heavy 

charge particle will cause extensive ionisation of the material if it passes through a 

medium. Some nuclear particles will be ionised along the path it takes. The path that has 

been made by a nuclear particle is a zone enriched area with free chemical radicals and 

other chemical elements. This damaged zone is the track of a nuclear, which is known 

as latent track (Nikezic & Yu, 2004). 

If a piece of material or thin film that is sensitive to radioactivity is exposed to 

radioactive source for a certain period of time, the nuclear particles that passes through 

it will ionise the film and create the latent track. Theoretically, the number of this 

nuclear latent track produced from a radioactive source is proportional to time. 

However, the thin film containing latent tracks needs to be exposed to some chemically 

aggressive solution, where chemical reaction will occur extensively along the latent 

tracks. This chemical solution is required to form the ‘track’ of the particle, which may 

be seen under an optical microscope. This procedure is known as detector etching or 

track visualization. 

The thin film that is used in the nuclear track processing is called track detector. 

They are three common types of track detectors that are used in nuclear track. They are 

CR-39 detector which is based on polyallyldiglycol carbonate, cellulose nitrate, and the 

well-known LR 115, which will be used in these studies.  

In order to continue with the track analysis and image processing procedure, the 

nuclear track detector requires conversion to an image. As an image, granulometry 

analysis and nuclear tracks counting can be succeeded (Eghan, Buah-Bassuah, & 

Oppon, 2007).  

 



Chapter 1: Introduction 

 5 

1.5 Motivation 

We know there are many image processing problems that can be solved using 

certain techniques, which is suitable with their problems characteristic. We also know 

that image processing can be run or processed using many types of software. For that 

reason, the main motivation for conducting this research is to find out the capability of 

the combination between MATLAB program and also a MATLAB toolbox developed 

by third party (SDC Morphology Toolbox) in processing the images. 

There are various problems in the field of image processing, which can be 

solved through certain techniques and algorithms based on the types of problems. Based 

on this known problems, we would like to apply an image processing method known as 

the Morphological Image Processing in order to find more efficient approaches or 

techniques to deal with the problems. In addition, the SDC Morphology Toolbox was 

built based on Morphological Image Processing principle. 

 

1.6 The Purpose and Objective of the Research 

The main goal of this research is to study Morphology Image Processing (MIP) 

and its application to nuclear track images by comparing the results obtained from using 

Image Processing toolbox and SDC Morphology toolbox application. This thesis has the 

following objectives; 

i. To study the capability of SDC Morphology Toolbox as a morphology image 

processing tool in conjunction with the MATLAB platform, regardless whether the 

image is real or artificial (Pritchard, 2002; Marshall, 1992; Quadrades & Sacristán, 

2001).  

ii. To use these toolboxes to perform dot counting (nuclear track counting) profile at 

arbitrarily set areas and compare with result from simple particle (nuclear track) 

counting simulation. We also use these toolboxes to perform granulometry (area 



Chapter 1: Introduction 

 6 

measurement) to obtain the average of the mean area profile of exposed nuclear 

track over various exposure times and thus obtain the diameter of the mean area.  

iii. To study how the toolboxes perform nuclear track counting on images of nuclear 

tracks in which some of the tracks are over-lapping with each other. We then 

separate the over-lapping tracks based on how much the objects overlap and with 

different object shapes to obtain the segmentation limit value. 

iv. To compare the SDC Morphology Toolbox and the Image Processing Toolbox and 

determine which toolbox gives the more precise and accurate nuclear track counting 

and granulometry (area measurement). 

 

1.7 Chapters Overview 

This dissertation contains five main chapters. The overview of each chapter is 

given below. 

 First Chapter 

This is the introduction chapter with discussion on research background, 

mathematical morphology, nuclear tracks, motivations of the research and purpose 

and objective research. 

 

 Second Chapter 

In this chapter theoretical background of Image Processing and Mathematical 

Morphology are discussed and explained including the algorithms, which are 

relevant to the objectives of the research. A section related to Mathematical 

Morphology will give some ideas on what MIP is all about. Then the chapter 

included a brief of theory discussion of object extraction, granulometry and 

nuclear track formation. 
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 Third Chapter 

The descriptions, that focuses on MATLAB as a programming platform for Image 

Processing including Image Processing Toolbox and SDC Morphology Toolbox. 

 

 Fourth Chapter 

The chapter is all about research methodology. 

 

 Fifth Chapter 

All of the research findings and the discussions relating to the result obtained are 

found in this chapter. 

 

 Sixth Chapter 

This section provides the final conclusions and further deductions, specifically 

from the research findings.  
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CHAPTER 2 

 

 

THEORY AND BACKGROUND 

 

2.1 Chapter Overview 

In this chapter, theoretical background of image processing and mathematical 

morphology, including the relevant algorithms are discussed. The basic concepts used in 

the SDC Morphology Toolbox for MATLAB are also covered. 

 

2.2 Theoretical Background of Image Processing 

There are many possible definitions for the term of Image Processing and 

Computer Vision. The most common one that will be stated in this thesis is that image 

processing aims to process an image, usually by a computer to produce informative 

image output. On the other hand, computer vision processes the image and produces it 

into some form of generalised information about the image, such as labelled regions. 

Ballard and Brown (1982) came out with the statement that “Computer Vision is the 

enterprise of automating and integrating a wide range of processes and representations 

for visual perception”. They also include the term of image processing within this 

definition by implying that image processing is one of the many steps in computer 

vision. Niblack (1986) describes image processing as “the computer processing of 

pictures”, whereas Computer Vision includes many techniques from image processing, 

but is broader in the sense that it is concerned with a complete system. 

In many situations, image processing is operated with taking an array of pixels 

(image) as input and constructing a new array of pixels as output which somehow 

represents an improvement and enhancement to the original array. Image processing 

methods have been divided into Real Space methods and Fourier Space methods. The 

http://www.ccg.leeds.ac.uk/ian/msc/node37.html#ballard
http://www.ccg.leeds.ac.uk/ian/msc/node37.html#niblack
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Real Space methods are engaged in processing the input pixel array such as Grey Level 

Thresholding, Image Smoothing, and Detection of Points, Lines and Edges. The Fourier 

Space methods work by deriving a new representation of the input data by performing a 

Fourier Transform, which is then processed. Finally, an Inverse Fourier Transform is 

performed on the resulting data to give the final output image. 

A digital image can be written down as a[m, n], which ‘a’ is matrix with m rows 

and n columns, and also represented in a 2-D discrete space. It is derived from an 

analogue image a(x, y) in a 2-D continuous space through a sampling process, also 

known as digitisation. The process will digitise the image function, f(x, y) spatially and 

in amplitude (Russ, 2008).  

The digitisation process of an image is shown in Figure 2:1, which the analogue 

image or 2-D continuous image can be presented as a(x, y) and divided into N rows and 

M columns. The intersections point of a row and a column is known as pixel. The value 

assigned to the integer coordinates of a pixel [m, n] with {m = 0, 1, 2, ..., M-1} and {n = 

0, 1, 2, ..., N-1} is a[m, n]. In many cases, the 2-D continuous image a(x, y) which is 

considered to be the physical signal that gives limit effect on the face of a 2-D sensor, 

where the signal is an actual function of variables together with depth (z), colour (λ), 

and time (t). In this study, the images are 2-D, monochromatic and static images.  
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Figure 2:1 Digitisation of a continuous image. The pixel at coordinates [m = 7, n = 3] 

has the integer brightness value 212. 

 

The image shown in Figure 2:1 has been divided into pixels of N = 22 rows and 

M = 15 columns. A value assigned to each pixel is the average brightness of the pixel 

rounded to the nearest integer value. The process of representing the amplitude of the 2 

dimensional signals, at a given coordinate as an integer value with different grey levels 

is usually referred to as amplitude quantization or simply quantization. 

 

2.3 Mathematical Morphology Theoretical Background (The Concepts of 

Mathematical Morphology) 

One of the abilities of image processing and analysis refers to geometrical 

concepts such as size, shape, and orientation. Mathematical morphology uses concepts 

from set theory, geometry and topology to analyse geometrical structures in an image 

(Heijmans, 1994). The name Mathematical Morphology (MM) was introduced in 1966 

(Serra & Soille, 1994) and the theoretical treatment presented by Matheron (1975) and 

Serra (1982; 1988). MM provides an approach to image processing, which is based on 

the shape of an object. In the context of image processing, it is the name of a specific 

Rows 

Columns 

 , , , ,Value a x y z t  



Chapter 2: Theory And Background 

 11 

methodology, designed for the analysis of the geometrical structure in an image. The 

method has also found applications in several other fields, such as medical diagnostics, 

histology, industrial inspection, computer vision, and character recognition (Kukielka & 

Woznicki, 2001). 

MM examines the shapes or geometrical structure of an image by probing it with 

small patterned images which is called structuring elements. These structuring 

elements can take in various shape and size. A non-linear image will be produced from 

this procedure, which is suitable for studying geometrical and topological structures. 

These MM operators are then applied to an image in order to make certain features 

perceptible and apparent. The process of reducing the object shape in the image to a sort 

of caricature (skeletonization) will distinguish the meaningful information from 

inappropriate distortions. For example, the shape of an object can be transformed to the 

digital image of a symbol by reducing each connected component to a one pixel thick 

skeleton while retaining the symbol’s object shape. The effectiveness of this 

skeletonisation process is sufficient for recognition and it can be handled much more 

economically than the full symbol. 

Theoretically, mathematical morphology studies operators between complete 

lattices, specifically nonempty sets equipped with a partial order relationship for which 

every subset has an infimum and a supremum. Appendix 2A gives further details about 

infimum and supremum. In fact, MM was developed from translation invariant operator 

between complete lattices and it can be represented by means of elementary 

morphological operators. An image operator can be created by composing elementary 

morphological operators. However, this approach is not practical when a large number 

of elementary operators are used. Fortunately, most applications can be successfully 

operated within below the limited reasonable number of morphological operators. 
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Therefore, an image analysts need to identify the category of morphological operators 

for a particular problem, whether it is for shape detection, extraction, or filtering.  

Morphological operations tend to simplify, enhance, extract or describe image 

data. Figure 2:2 shows the relationships among the basic elements of MM.  

 

Figure 2:2 A mathematical tools diagram that studies operators on complete lattices. 

 

Morphology originally comes from a branch of biology that refers to the form 

and structure of animals and plants. Also, it is used for the study of geometry and 

topology of patterns. In addition, integral-geometry Morphological Image Analysis 

(MIA for short) employs additive image functionals to assign numbers to the shape and 

connectivity of patterns formed by the pixels in the image. A part from that, integral 

geometry provides the precise mathematical framework to define these image 

functionals (Santaló, 2004; Stoyan, Kendall, & Mecke, 1996; Michielsen & Raedt, 

2001). The fundamental theorem of integral geometry states that under certain 

conditions, the number of different additive image functionals is equal to the dimension 

of the pattern plus one (SDC, 2011). Thus, in the case of a 2-D image, there are exactly 

three of these functionals, called quermassintegrals or Minkowski functionals. For a 

given image, the first step in MIA is to compute these functionals themselves. The 
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second step is to study the behaviour of the three or four numbers as a function of some 

control parameters, such as time, density, and so on (Michielsen & Raedt, 2001). 

A significant feature of MIA is the massive contrast between the simplicity of 

implementation or use and the level of sophistication of the mathematical theory. 

Without a doubt, as follows, the calculation of the image functionals merely amounts to 

the proper counting of, for example faces, edges and vertices of pixels. The application 

of MIA requires little computational effort. Another appealing feature of MIA is that the 

image functionals have a geometrically and topologically intuitive and hence, also have 

perceptually clear interpretation for 2-D images as they correspond to the area, 

boundary length, and connectivity number. The four functionals for 3D images are the 

volume, surface area, integral mean curvature and connectivity number (Michielsen & 

Raedt, 2001). 

 

2.3.1 Morphological Image Processing 

Basically, the digital form image can be produced as an output from any image 

processing program (software), which the MATLAB itself could be used as a digitised 

image generator software. The digitised images are free of noise and other artifacts that 

may affect the geometry and topology of the image structures or area of interest. Such 

perfect images are easily generated by a computer and are very useful for the 

development of theoretical concepts and models. Unfortunately, genuine pictures or 

patterns obtained from computer simulations are usually imperfect. Therefore, some 

special form of image processing may be necessary before attempting to make measure-

ments of the features in the image (Michielsen & Raedt, 2001). 

In Morphological Image Analysis, it is very important to acquire the geometric 

and topological content of the image from the operations that are used to enhance the 

image quality. The morphological image processing (MIP) technique will be reviewed 
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in the following section and is well adapted for this purpose. This is because MIP and 

MIA are based on the same mathematical concepts. Most importantly, it is very flexible, 

fast and easy to use. Pioneering work in this field was carried out by Matheron (1975) 

and Serra (1982). 

The most important reason why we use mathematical morphology as the main 

principle in solving various Image Processing problems in this research is because it is a 

special mathematical tool or method for investigating geometric structure in binary and 

also greyscale images. In other words, mathematical morphology is not just a theory of 

geometric, but it also known as a geometric approach to Image Processing and Analysis. 

By using this approach, it makes the images become easier (becoming noiseless) to 

analyse. This is what we need in this research where the visual perception requires 

transformation of images so as to make particular shape information observable. The 

goal of this approach is to distinguish meaningful shape or structure information from 

irrelevant one (images). The vast majority of shape processing and analysis techniques 

are based on designing a shape operator which satisfies desirable properties. Figure 2:3 

and Figure 2:4 are shown below to display the difference between greyscale images and 

binary images. The binary images only show white and black colour, which the pixel 

values only give ‘0’ and ‘1’ as discussed earlier.  

 

(a) 

 

(b) 

Figure 2:3 Greyscale images 
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(a) 
 

(b) 

Figure 2:4 Binary Images 

 

Image analysis consists of obtaining measurement characteristics to images 

under consideration. For example, geometric measurements determine object location, 

orientation, area, and length of perimeter. 

The basic operations associated with an object are the standard set operations 

union {}, intersection {}, and complement {C} and also translation, which is given 

by a vector x and a set A. The translation, A + x, is defined as equation 2:1 below;  

                2:1 

Since we are dealing with a digital image composed of pixels at integer coordinate 

positions (Z
2
), thus implies restrictions on the allowable translation vectors x. 

The basic Minkowski set operations addition and subtraction can now be 

defined. The individual elements that comprise of B are not only pixels but also vectors, 

as they have a clear coordinate position with respect to [0, 0]. Given two sets equation A 

and B, as stated below; 

Minkowski addition:               

Minkowski subtraction:               
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2.3.2 Hit-or-Miss Transformation (HMT) 

The language of MM is that of a set theory, where the set represents binary and 

grey level images. For instance, the set of all white pixels in a black and white image 

form a complete description of the image and can also be regarded as an image object. 

MM extracts information about the geometrical structure of an object by transforming it 

through its interaction with another object, called the structuring element, which is of 

simpler shape than the original object. The information about size, spatial distribution, 

shape, connectivity, convexity, smoothness, and orientation can be obtained by 

transforming the image object using different structuring elements. An example of a 

structuring element, xB centred at a point x is given in Figure 2:5. The point x can be 

seen as the origin of a coordinate system, which permits to address any of the positions 

of xB by a vector b. 

 

 

 

 

Figure 2:5 Example of a (non-symmetric) structuring element, centered at x. The vector 

b permits to address different positions. 

 

The most fundamental operator for shape detection is known as Hit or Miss 

Transformation (HMT) (Serra, 1982). It is a point by point transformation of a set X. 

Structuring element, xB  is composed from two sub-sets, 1

xB  and 2

xB  which is centred at 

the same point x, as follows; 

      
    

  2:2 

The set 1

xB  only contains ones and the set 0

xB  only contains zeros. Both sets may 

contain points of indifferent values, which means one or zero. Apart from that, point x 

  1 1 1 1 1 1 

 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 x 1 1 1 1   

1 1 1 1 1 1   

 

  1 1 1 1 1 1 

 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 x 1 1 1 1   

1 1 1 1 1 1   

 

b 
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belongs to the HMT, BX  of X, if and only if 1

xB  is included in X and 0

xB  is included 

in the complement of X, as follows; 

          
      

      2:3 

An illustrative example for an image on a discrete grid is given in Figure 2:6. 

The structuring element is 1 at its centre and 0 on the right side, and thus 1

xB  is one at 

the centre and of indifferent value on the right (represented by a point in Figure 2:6). 

Whereas 0

xB  is of indifferent value at the centre and zero on the right side. It is easy to 

observe that only the right border points result from the HMT transformation. The 

sample structuring element shown below (Figure 2:6) is taken from the online 

documentation of SDC Morphology Toolbox, which re-groups a number of structuring 

elements B and is also interesting for various image analysing tasks. 

0 1 0 
HMT 

1 0 0  0 1 . 

1 1 0  0 0 0  1 1 . 

0 0 0  0 0 0  . . 1 

Figure 2:6 Example of a HMT transformation 

 

2.3.3 Erosion 

Erosion reduces the size of an object and eliminates features that are less than 

the scale of the neighbourhood as defined by the structuring element. It can be obtained 

by applying the HMT where 0

xB  is the empty set. Hence, the eroded set Y of X are the 

locus of the centres x of 1

xB  included in the set X. It can also be obtained by the classical 

Minkowski subtraction (Haralick & Shapiro, 1991),           , where bX  is 

the translated version of X by the vector b. Erosion is thus defined as (Serra, 1982);  

                              2:4 
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From the definition  
b B

bB
 

   is the transposed set of B, where the reflected set of B is 

with respect to the origin, and B,1  is the erosion of X by B of size 1. This process is 

viewed as a removing process of a certain number layers of the object. An example of 

erosion is given in Figure 2:7 and Figure 2:9. 

                       

                       

                       

                       

                       

                       

                       

           X            

                       

 

Figure 2:7 Minkowski subtraction is       

 

2.3.4 Dilation 

Dilation expands the size of objects on the scale of structuring element 

neighbourhood. It is the dual operation of the erosion with respect to complementation, 

meaning a dilation of    is equal to an erosion of X. It is the locus of the centres of the 

1

xB  which hit the set X. Dilation can also be expressed in terms of Minkowski addition 

and is defined as follows (Serra, 1982): 

                  

    

              
2:5 

Consequently, the transposed set B  is occupied to be able to make the analogy 

with the HMT. An example of dilation is given in Figure 2:8, where the process can be 

seen as the addition of layers to the object. See Figure 2:9 for more examples of dilation 

processes using MATLAB. 

 

 

A B     
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            X             

                         

                         

 

Figure 2:8 Binary Morphological Dilation process 

 

 

 

(a) Original Image 

 

(b) Structuring Element 

 

(c) Erosion image, ( )B X  

 

(d) Dilation Image, ( )B X  

Figure 2:9 Example of erosion and dilation of a binary set X 

 

2.4 SDC Morphology Toolbox for MATLAB 

The SDC Morphology Toolbox for MATLAB is an accumulation of greyscale 

morphological tools that can be applied to image segmentation, non-linear filtering, 

pattern recognition, and image analysis (SDC, 2011). It includes effective segmentation 

functions such as watershed and connected filters based on reconstruction. The SDC 

Morphology Toolbox comes with several scripts showing the morphological solution 

X Y X Y  

http://www.mmorph.com/html/mminfo/mmreadme.html
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to many real life image processing problems. For instance, several images in the field 

of machine vision, medical imaging, desktop publishing, document processing, food 

industry, agriculture, and so on, are included in the toolbox. 

The SDC Morphology Toolbox is a set of functions or programs for Image and 

Signal Processing. The functions in this toolbox are based on the theory of 

Mathematical Morphology, which have been discussed in section 2.3. It is a non-linear 

approach for the representation of image and signal transformation, which makes it 

practical for analysing some Image and Signal Processing problems generally, such as 

segmentation, and extraction of quantitative information, noise reduction and 

compression. Mathematical Morphology has a special characteristic which allows us to 

learn generic transformations of discrete signals directly, without appealing to 

continuous approximations. This characteristic allows for the development of efficient 

algorithms of compact integer data structures. 

Nowadays, researchers in image processing and computer vision field are 

increasingly recognising that simple algorithms derived from mathematical morphology 

can be extremely useful in all kinds of applications. Hence, MATLAB is becoming 

increasingly important as the programming environment for image processing. 

Furthermore, the addition of the MORPHOLOGY TOOLBOX for MATLAB enhances 

MATLAB image processing capabilities. 

  

2.4.1 Availability of the Toolbox 

The SDC Morphology Toolbox is generated mostly using automatic methods. 

This ensures that the syntax and conventions used are very consistent with the toolbox. 

The images loaded in SDC Morphology Toolbox are represented as 1-D, 2-D, or 3D 

arrays, with pixels of types uint8, uint16, and logical uint8 (binary). The image data 

type in uint8 represents positive integers from 0 to 255, the uint16 image data type 
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represents integers from 0 to 65535, and the logical uint8 represents just the numbers 0 

and 1. Structuring elements and a sub-image are needed to process the image. 

The toolbox has Interval functions which are also known as hit-or-miss 

templates. They are useful to process the morphological images. Generally, these 

functions are the functions that create interval to detect end-points of curves, and 

interval for homotopic thickening and thinning of binary image. The toolbox also has a 

few functions that can be applied to manipulate the interval, whether to rotate by an 

angle or to visualize it. This Interval function also has unique functions that are capable 

to create hit-or-miss template or an interval itself, based on a pair of structuring 

elements. For more details about Interval functions, please see its example in Appendix 

2B. 

 

2.4.2 General rules 

The SDC Morphology toolbox has several general rules which we need to 

comprehend before applying it. These general rules make it easier for us to understand 

and handle the toolbox. 

The first rule stated that each function of the toolbox can return only one 

variable, for example; the application of mmreadgray and mmbinary functions in the 

box below will return each, a variable of ‘a’ and ‘abin’, which are the images. Figure 

2:10 shows the MATLAB script, which the functions return one variable each. 
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Figure 2:10 The MATLAB script of the functions that returns one variable each 

 

In addition, the command line of MATLAB can be engaged from left to right, 

and the SDC Morphology toolbox’s operands can also be optional from left to right 

only. Mmconv is one of the functions in SDC Morphology Toolbox. Please refer to 

Appendix 2C for more detailed information regarding conventions that are used in the 

SDC Morphology Toolbox. 

The toolbox default parameter of the structuring element is mmsecross, which is 

the elementary 33 cross. The mmsecross function generates the structuring element B, 

formed by r successive Minkowski additions of the elementary cross. In other words, 

the 33 cross centred is at the origin with itself. If r = 0, B is the unitary set that 

contains the origin. If r = 1, B is the elementary that cross itself. Equation 2:6 below 

which proves how the mmsecross functions; 

                               2:6 

a = mmreadgray('view.jpg'); 

Warning: converting true-color RGB image to gray 

abin = mmbinary(a); 

 whos 

 Name       Size                   Bytes  Class 

 a          400x600                240000  uint8 array 

 abin     400x600                240000  logical array 

Grand total is 480000 elements using 480000 bytes  

a and abin are each return 

variables for the mmreadgray 

and mmbinary functions 

Function to read 

an image file 

 

Function to convert 

greyscale image, a 

to a binary image 

 

http://www.mmorph.com/morph0.14/html/mminfo/mmconv.html
http://www.mmorph.com/html/morph/mmreadgray.html
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And then, Figure 2:11 demonstrates the MATLAB script to demonstrate the function of 

mmsecross. 

se1 = mmsecross; 
mmseshow(se1) 

 ans = 

      0     1     0 

      1     1     1 

      0     1     0 

se2 = mmsecross(2); 

mmseshow(se2) 

 ans = 

      0     0     1     0     0 

      0     1     1     1     0 

      1     1     1     1     1 

      0     1     1     1     0 

      0     0     1     0     0 

Figure 2:11 The MATLAB Script of mmsecross function 

 

In other words, the radius, r needs to be determined to mmsecross in order to create the 

structuring elements with the radius more than 1. 

All the images in most functions must have the same data type and size. This 

rule states that the data type and size of images should be in the same value in order to 

make the functions of SDC Morphology Toolbox run smoothly. This can be seen below 

in the example of MATLAB script with regard to this matter. 

im1 = mmreadgray('cat_fr_gray.jpg'); 

im2 = mmreadgray('pcb2.tif'); 

whos 

  Name      Size                   Bytes  Class 

  im1     400x600                 240000  uint8 array 

  im2     400x600                 240000  uint8 array 

uniim = mmunion(im1, im2); 

mmshow(im1); 

mmshow(im2); 

mmshow(uniim); 

 

Figure 2:12 The MATLAB Script that shows data type and size are in the same value 

 

The default structuring 

element created by 

mmsecross (r = 1) 

Structuring element by r = 2  

Function to display 

structuring as an image 

whos function shows all the 

variables in the workspace, 

and displays the size of im1 

and im2 are same. 

mmunion creates the image by 

taking the pixel-wise maximum 

between the images and 

represents the union of them.  
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Figure 2:13 Image, im1 

 

Figure 2:14 Image, im2 

 

Figure 2:15 Final image, uniim 

 

As the result of the script which finally produces three images. This can be seen in 

Figure 2:13, which shows the first image from the script, and then Figure 2:14, which 

shows the second image, and the final image in Figure 2:15 represents their union 

image. 

The toolbox has the capability to operate an image with a constant value. This 

constant is regarded as a constant image and is the same size as the other images. This 

can be applied to mmunion function where the image besides the first images could be a 

constant (SDC, 2011), Refer to Appendix 2D for more detail about mmunion function. 

Furthermore, inside the SDC Morphology Toolbox, there is a function called 

mmfreedom, which controls the automatic data type conversions. There are 3 possible 

levels, called FREEDOM levels (SDC, 2011). In this research, we use type conversion 

‘1’. The FREEDOM levels are set or inquired by mmfreedom function. 
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Figure 2:16 MATLAB FREEDOM levels script 

 

Figure 2:16 shows the result of the MATLAB script, the level of FREEDOM that is 

equal to ‘1’ is more appropriate in applying the toolbox because the user will realize to 

what is actually happening to the programming script and the variables, especially when 

the warning sign appear after the image type conversion is completed. 

 

2.5 Objects Extraction Review 

This sub-topic is about reviewing theoretically the extraction of the objects from 

the image. Firstly, the operator that is always used as a first step to start the script in this 

research is called Opening operator. Then, the derivation from the erosion operation 

occurs followed by a dilation operation (Pratt, 2001). A part from that, there are a few 

functions of this operator that will always make the objects in the image smooth. 

f = uint8([2 3 4]); 

mmfreedom(2); 

mmaddm(f, 5) 

  ans = 

    7     8     9 

mmfreedom(1); 

mmaddm(f, 5) 

 Warning: Converting image from scalar to uint8. 

 ans = 

   7     8     9 

mmfreedom(0); 

mmaddm(f, 5) 

  ??? Cannot convert arguments. Freedom level is 0. 

 Error in ==>     

 C:\MATLAB6p5\morph1.2\morph\mmaddm.dll 

Level of FREEDOM = 1 

 

Level of FREEDOM = 0 

 

Level of FREEDOM = 2 

An error output if level of 

FREEDOM is equal to 0 

http://www.mmorph.com/html/morph/mmaddm.html
http://www.mmorph.com/html/morph/mmaddm.html
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Concurrently, the small images or islands will be eliminated depending on the 

structuring elements condition and they will also divide the narrow connection (Gatos & 

Perantonis, 2004). Object extraction can also be improved as fast opening functions to 

granulometries applications (Vincent, 1993; Vincent, 1994a). Figure 2:17, Figure 2:18 

and Figure 2:19 illustrate the example of the Opening operator application using disk 

shape structuring element to the artificial (synthetic greyscale) image. 

 

Figure 2:17 Original image 

 

Figure 2:18 The image after Opening 

operation 

 

 

Figure 2:19 The overlay of original and open image 

 

Hence, after the Opening operation has been done to the research image, the 

next process that follows is image reconstruction, which is also known as Infinite 

Reconstruction (Serra, 1983). Infinite Reconstruction (inf-reconstruction) constructs or 

rebuilds the portion of interest in the image by means of image filtering, ‘top-hat’, 

segmentation, etc. (Vincent, 1993; Heijmans, 1994). In other words, the purpose of the 

process is to give back the required objects into the image. The following figures 

present the example of the inf-reconstruction processing to the synthetic greyscale 
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image, where Figure 2:20 shows the original image, Figure 2:21 shows the image after 

erosion processing and Figure 2:22 shows a reconstructed image. 

 

Figure 2:20 Original image 

 

Figure 2:21 Eroded Image 

 

 

Figure 2:22 Reconstructed image 

 

 The following step is to subtract the research image in order to obtain a 

subtracted image based on the reconstructed image, where the portion of interest is more 

significant with the background pixel value uniformly (Serra, 1983; Gonzalez & 

Woods, 2002). See Figure 2:23, Figure 2:24 and Figure 2:25 that illustrate the example 

of subtraction operation for the sample image taken from SDC Information System’s 

site. Besides that, the operation of image comparison would be useful in order to obtain 

the image with uniformly pixel value background (SDC, 2011).  
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Figure 2:23 First image 

 

Figure 2:24 Second image 

 

 

Figure 2:25 Subtracted image 

 

After a few operations have been done to the image, the Area Opening operation 

will be proposed in this research where the grains (unwanted objects) will be removed 

and only the required objects or shapes will be kept (Haralick, Sternberg, & Zhuang, 

1987; Scott & Mukherjee, 2000). The Area Opening operation will remain the portion 

of interest based on the conditions given, for example, in choosing the area of the object 

pixel wisely (SDC, 2011). 

In addition, Close Holes operator can be also used in order to get fine extracted 

objects in the image. Close Holes is one of the morphological operators that function as 

closing the holes of the image or filling the holes in every connected component of an 

image. It is also resulted from the improvement of the closing operator. This is very 

useful for granulometry function analysis of the size of the objects in the image because 

it will entirely produce the shape of objects in the image without changing their contour 

(Ruberto & Dempster, 2000). Figure 2:26 below shows the flow chart of the basic and 

complete object extracting processes as have been discussed above. 
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Figure 2:26 Object extracting process Flow Chart 

 

2.6 Over-lapping Objects Extraction Review 

This review is extended from the previous review (Section 2.5), which is about 

extracting the over-lapping objects from the image. There are certain processes for this 

review that are similar with the subject-matter discussed above, and the processes 

include thresholding, marking, and Geodesic ‘Skeleton by Influence Zones’ (SKIZ) 

which will be discussed later. 

Generally, thresholding is a segmentation process of the objects in the image 

from the rest of image area and this process produces segmented objects, which we can 

distinguish from the other areas (Gonzalez & Woods, 2002). In order to get smooth 

segmented objects, an opening process is required for the image. Consequently, the 

distance transformation (Shih & Mitchell, 1992) and dilation operation can be applied to 

these segmented objects in order to obtain marked objects. 

Sample Image 

(greyscale or 

binary) 

Opening 

process 

Image 

reconstruction 

Subtraction 

opening 

Image 

Comparison 

Area Opening 

Operation 

Additional process: 

Close holes operation 

Extracted 

image 
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As stated above, this section is about extracting the over-lapping objects from 

the image. The separation of the over-lapping objects can be done by Geodesic SKIZ 

Approach (Vincent & Dougherty, 1994), a process which has a watershed operation. 

The process of watershed is based and limited by the markers image and applied to the 

negated distance function image. Furthermore, to get fully objects separation, a 

subtraction process can be applied to the Geodesic SKIZ processed image of the 

segmented image. This operation will separate the objects. See Figure 2:27 that shows 

the process flow chart, and Figure 2:28 shows the simulated image (224186) pixels, 

which runs under the process where the image has over-lapping objects in it. 

 

Figure 2:27 Over-lapping objects separating process 
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(Greyscale or 
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Area Opening 

Thresholding and 
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Marking Operation 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2:28 Images of Over-lapping extraction process; (a) Original image,  

(b) Thresholded image, (c) Image after Geodesic SKIZ process, and  

(d) Over-lapping objects segmented image 

 

2.7 Measurement of the Objects/Grains, (Granulometry) 

The objects that have been extracted and segmented as previously discussed can 

be used for measurement analysis, which is also known as Granulometry Analysis 

(Vincent, 1994b). Granulometries are programmed sets of morphological openings and 

closings operator that can be applied as detail image removals depending on its 

structuring elements’ size and characteristic. Because of this reason, it becomes one of 

our tasks in this research to discover the toolbox capabilities’ on Granulometries. Based 

on the SDC Morphology Toolbox’s demonstrations and documentations as our 

references, we need to perform some Granulometries tasks to our images that have been 

extracted and segmented (the objects) as above. For other references on recent 

granulometry research, please refer to Ves, Benavent, Ayala, & Domingo (2006). 
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2.8 Nuclear Track Formation Mechanism and Its Shape 

The formation of the nuclear track could occur when the radiation particle 

penetrated the film detector (nuclear track detector). The detectors are basically 

insulated by electrically solid materials where the passage of heavily charged particles 

creates trails along their paths and these damage zones on an atomic scale are called 

latent tracks. The treatment to these latent tracks using chemical or electrochemical 

etching allows their visualisation under optical microscopes.  

When the detectors are exposed to the radiation source, the ionising particle 

interacts with matter and transfers a part of its energy to the electrons of the medium 

with some rate of energy loss. When the energy loss is above a certain critical value, 

local structure transformations or etched track are formed. These transformations in the 

case of polymers can be explained by splits in the molecular chains and formations of 

new components chemically very reactive along the particle trajectory. Typically the 

latent track formed has diameters from 1 to 10 nm (Fleischer, Price, & Walker, 1975). 

Figure 2:29 gives a schematic illustration of the effect caused by the passage of charged 

particles. Figure 2:30 shows a schematic of the film detector with latent track before and 

after the etching process. 
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Figure 2:29 The schematic illustration of effect caused by the passage of charged 

particle 

  

 

 
Figure 2:30 The schematic of the film detector with latent track before and after the 

etching process 

 

The shapes of the nuclear tracks were not always regularly circular (circle) when 

viewed from above, there can also be oval in shape (ellipse), this depends upon the 

angle of incidence on the detector surface. Larger incidence angles will make nuclear 

track’s shape more elliptical (oval) (Khan & Khan, 1989), see Figure 2:31. Some 

radiation particles make diamond shaped nuclear tracks; this could be seen from above 
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view of image of a single-crystal mica template formed by nuclear track etching (Sun & 

Hao, 2005), see Figure 2:32.  

 
Figure 2:31 The top view of nuclear tracks ellipse shape (Khan & Khan, 1989) 

 

 
Figure 2:32 The top view of nuclear tracks diamond shape (Sun & Hao, 2005) 

 

2.9 Chapter Summary 

The effect of these MIP operations with their characteristics of structuring 

elements to the images could produce a variety of results depending on the parameters 

of structuring elements. The MIP has two important basic operators, namely the Erosion 

and Dilation, which could expand the procedure of the MIP. For instance, there are the 

Opening and Closing operations. The MIP that has a built-in SDC Morphology Toolbox 

is a complete tool of MIP applications, along with the MATLAB system. 
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There are 3 processing procedures that will be used with regard to this research; 

they are Object Extraction, Over-lapping Objects Extraction and Granulometry. All of 

them are related to MIP. It means that these procedures will also be utilised to test SDC 

Morphology toolbox and Image Processing toolbox capabilities. 
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CHAPTER 3 

 

 

THE MATLAB TOOLBOX FOR IMAGE PROCESSING 

 

3.1 MATLAB Image Processing 

Fundamentally, image processing is basically to perform operation on images. In 

general terms, image processing refers to the manipulation and analysis of two 

dimensional visual images. It is any operation that acts to improve, correct, analyse, or 

change an image in some ways to produce better images as the objective requires 

(Forsyth & Ponce, 2003; Horn, 1986; Jain, Kasturi, & Schunck, 1995). Figure 3:1 

shows the differences between image processing, image analysis and image 

understanding. 

 

Figure 3:1 Three manipulations of image 

 

Image processing operations can be generally divided into three major 

categories. They are image compression, image enhancement and restoration, and 

measurement extraction. Image compression involves reducing the amount of memory 

needed to represent a digital image (Matheron, 1988; User's Guide, 2001; Using 

MATLAB, 1999). The purpose is to compress the size of a file (picture or image) 

Image Processing 

Image 

Understanding 

Image Analysis 

Image In 

Image In 

Image In 

Operations 

Operations 

Operations 

Image Out 

Measurement 

Out 

High-Level 

Descriptions 

Out 



Chapter 3: The MATLAB Toolbox For Image Processing 

 37 

without reducing the quality of the picture or image itself. For instance, Joint 

Photographic Experts Group (JPEG) is one of the most popular and comprehensive 

continuous tone (as opposed to binary), still frame compression standard format. 

Further information related to image compression, other images or graphics file 

format and JPEG 2000 can be found in Gonzalez and Woods (2002), and Miano 

(1999). 

A digital image can be composed (consists) of a set of points which may be 

defined as a two-dimensional function, f(x, y); where x and y are spatial (plane) 

coordinates, and the amplitude of f at any pair of coordinates (x, y) has its own 

brightness which is called the intensity or grey level of the image at that point, see 

Figure 3:2. These points are called ‘pixels’ (pixel stand for picture element). The 

number of pixels within a unit length divided by area is called ‘resolution’, the level of 

detail measured in units per inch. 

 

 

 

 

 

 

   

Figure 3:2 Pixels 

 

Various operations may be performed on the pixels of the original image to 

produce a new image. These operations may be performed on each pixel in isolation or 

relative to other pixels in the image (Matheron, 1975). The purpose of these operations 

is to improve the visual appearance of images, or to prepare images for the 

measurement of features and structures present. More specifically, image processing 

file:///C:/Users/Nahar/Desktop/latest%20draf%20MSc/glosary.doc
file:///C:/Users/Nahar/Desktop/latest%20draf%20MSc/glosary.doc
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may be used to clean up an image by removing the noise (noise reduction), improve the 

contrast of the image and highlight elements with certain characteristics. It may also 

overcome distortions such as blurring or warping of an image caused by a camera or 

scanner, and then compensate for uneven illumination which existed in the image. 

The basic of image processing operations may also be carried out by filtering or 

mask processing operation, which attempts to highlight significant features and 

suppresses insignificant detail based on some neighbourhood operations. This is done 

by working with the values of the image pixels in the neighbourhood and the 

corresponding values of a sub-image (filter, mask, kernel, template, or window) that has 

the same dimensions as the neighbourhood. 

Edge detectors operation (detecting the edge of the objects in the image) 

highlights the significant transitions of the object in the image. This will specify the 

boundaries within the image. Edges are places in the image with strong intensity 

contrast. Since edges often occur at image locations representing object boundaries, 

edge detection is extensively used in image segmentation when we want to divide the 

image into areas corresponding to different objects. Representing an image by its edges 

has the further advantage that the amount of data is reduced significantly while retaining 

most of the image information. Since edges consist of mainly high frequencies, 

theoretically, edge detection can be done by applying a high-pass frequency filter in the 

Fourier domain or by convolving the image with an appropriate kernel in the spatial 

domain. Practically, edge detection is performed based on spatial domain, is more 

computational and gives better results. Figure 3:3, Figure 3:4 and Figure 3:5 show the 

differences of Saturn edge detected images using Sobel and Canny operators. This 

processing procedure was produced by using MATLAB script, see Appendix 3A. 

 

http://www.dai.ed.ac.uk/HIPR2/freqfilt.htm
http://www.dai.ed.ac.uk/HIPR2/convolve.htm
http://www.dai.ed.ac.uk/HIPR2/kernel.htm
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Figure 3:3 Original image of Saturn. 

 

  

Figure 3:4 Edge detection by Sobel operator. 

 

 

Figure 3:5 Edge detection by Canny operator.  

 

Texture analysis involves identifying variation in brightness from one pixel to 

the next or within a small region in the image. Then, it can be defined as the pattern of 
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the Grey Level Distribution (GLD) within the boundary of the field of view (Beddow, 

1997). Initially the GLD is obtained from the grey levels at each coordinate (x, y) point 

of the image. The next step is to clarify the appropriate boundary function, called the 

Grey Level Boundary Function. 

Thresholding and segmentation procedure partitions an image into its constituent 

parts or objects (Gonzalez & Woods, 2002). In other words it attempts to separate an 

object in image from its background. Thresholding is a well known technique for image 

segmentation (Haralick & Shapiro, 1991). It is the operation of converting a multi-level 

image into a binary image. In a binary image, each pixel value is represented by a single 

binary digit. In its simplest form, see equation 3:1; thresholding is a point-based 

operation that assigns the values of 0 or 1 to each pixel of an image based on a 

comparison with some global threshold value T. 

 
        

               

              
  

3:1 

Besides that, thresholding is an attractive early processing step as it leads to significant 

reduction in data storage and results in binary images that are simpler to analyse. Binary 

images permit the use of powerful morphological operators to shape and structure-base 

the analysis of image content. Appendix 3B gives an example of image segmentation 

using MATLAB. The input of a thresholding operation is typically a greyscale or colour 

image. In an uncomplicated implementation, the output is a binary image representing 

the segmentation. Black pixels correspond to background and white pixels correspond 

to foreground or vice versa. In other implementation, the segmentation is determined by 

a single parameter known as the intensity threshold. In a single pass, each pixel in the 

image is compared with this threshold. If the pixel's intensity is higher than the 

threshold, the pixel is set to white colour in the output. If it is less than the threshold, it 

is set to black colour (Fisher & Perkins, 2003). A simple flow chart that illustrates the 
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effect of thresholding on an image is given in Figure 3:6 and Figure 3:7. Figure 3:6 

shows the original image, sample1.jpg and Figure 3:7 shows an image after 

thresholding processes with a global threshold value, T of 170. 

 

 

Figure 3:6 Original image, sample1.jpg 

 

Figure 3:7 Threshold image 

 

Thinning, skeletonizing and distance transforms are important approaches to 

represent the structural shape of a plane region. This is to reduce it to a graph where its 

converting dominant shape features economical, simplified representations (Gonzalez & 

Woods, 2002). The skeleton of the region may be defined as the Medial Axis 

Transformation (MAT), which can be divided into two main methods. The first method 

is the process of morphological thinning that erodes away pixels from the boundary 

(while preserving the end points of line segments) until no more thinning is possible. An 

alternative method is to first calculate the distance transform of the image and then the 

skeleton lies along the singularities that is curvature discontinuities in the distance 

transform. This approach is more suitable to calculate the MAT since the MAT is 

similar to the distance transform but with all points off the skeleton suppressed to zero. 

Figure 3:8 and Figure 3:9 show us the binary images and Figure 3:10 shows the images 

after skeletonizing are processed. The images are processed and presented by flow chart 

as shown below.  

Image 
Thresholding, threshold 

value = 170 

Resultant 

image 

http://www.dai.ed.ac.uk/HIPR2/thin.htm
http://www.dai.ed.ac.uk/HIPR2/distance.htm
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Figure 3:8 Binary image 

 

 

Figure 3:9 Binary images for 

Skeletonizing operation 

  

Figure 3:10 Skeletonized images 

 

Histogram equalization processing, also known as histogram modelling 

technique is an approximation of a uniform histogram for an image. This method 

improves the range of dynamic and contrast of an image. This is done by altering the 

image based on its intensity which the histogram shaped. This technique is utilised in 

image comparison processes because of its effectiveness in detail enhancement and 

improvement of non-linear effects produced by a digitiser or display system (Fisher & 

Perkins, 2003). Figure 3:11, shows the usage of functional Image Processing Toolbox 

for MATLAB to perform histogram equalization. The process of adjusting intensity 

values can be done automatically by the histeq function. Example, Figure 3:12 show the 

histograms of intensity distributions for the two images. 

 

 

Binary 

Image 

Thinning, skeletonizing 

and distance transforms 

Resultant 

image 
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Figure 3:11 The image before (left) and after Histogram Equalization (right).  

(the image captured by camera digital laboratory)  

 

  

Figure 3:12 The histogram before Equalization (left) and after Equalization (right) 

 

3.2 MATLAB Applications 

MATLAB is a software that we choose to use as a tool platform to conduct our 

research. MATLAB stands for ‘MATrix LABoratory’. It is one of the programming 

languages used for technical computing. It produces a flexible environment for technical 

computing, specifically for mathematical computing, visualization and command 

language. It was previously developed based on the concept of open architecture, which 

makes it easier to use. It has specific companion products for specific usage (Using 

MATLAB, 1999). Figure 3:13 shows the snapshot of MATLAB version 6.5.  

Binary 

Image 
Histogram equalization 

Resultant 

image 
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Figure 3:13 MATLAB desktop snapshot 

 

MATLAB was initially written to provide easy access to matrix software 

developed by the LINPACK and EISPACK projects (Forsyth & Ponce, 2003). 

Nowadays, MATLAB engines exist as a corporation of the LAPACK and BLAS 

libraries (LAPACK, 2010). Many references gave detail explanations and informations 

about MATLAB applications, for instance Stanoyevitch (2004) and Lyshevski (2003). 

MATLAB features are completed with additional application specific solutions, 

called toolboxes. These toolboxes are important to the users who engaged in advance 

research. These comprehensive collections of MATLAB functions (M-files) extend the 

MATLAB capability to solve particular classes of problems. Areas in which toolboxes 

are available include signal processing, control systems, neural networks, fuzzy logic, 

wavelets, simulation, and many others (Forsyth & Ponce, 2003). The Image Processing 

toolbox version 3.2 and the SDC Morphology toolbox version 1.3 are used extensively 

in these studies. 
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3.2.1 Image Processing Toolbox 

The Image Processing Toolbox is one of the toolboxes developed by 

MathWorks, Inc. It is a compilation of image processing functions that extend the 

capability of the MATLAB
® 

numeric computing environment. The toolbox supports 

most of the range of image processing operations such as Spatial Image 

Transformations, Neighbourhood and Block Operations, Linear Filtering and Filter 

Design, Image Analysis and Enhancement, and many more. For more detail, please 

refer to MathWorks (2010).  

The Image Processing toolbox includes the Morphology operations feature, 

which is a special technique of image processing based on shapes. This technique is the 

main method that we used in this research, which is also provided by SDC Morphology 

Toolbox. Because of the similarity of the image processing operations, we conclude that 

it would be excellent to use it as a comparison or benchmark in determining how far the 

reliability and capability between these two toolboxes. Only then would the portion of 

Image Processing application can be seen and studied, especially in determining the 

number of object in the image (User's Guide, 2001). The SDC Morphology Toolbox 

will be discussed in detail in the next section, see Figure 3:14. It shows the position of 

image processing toolbox and SDC Morphology Toolbox in MATLAB program. 
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Figure 3:14 Diagram of Image Processing Toolbox in MATLAB Program 

 

3.2.2 Images in MATLAB and the Image Processing Toolbox 

The structure of data in MATLAB is an array of ordered set in real or complex 

elements. This structure will be utilised as the representation of images, real valued 

ordered sets of colour or intensity data. Basically, the images are stored in 2-D matrix 

arrays in which each of the elements of the matrix corresponds to a single pixel in the 

displayed image. For example, an image that is generated by 400 rows and 500 columns 

of different coloured dots is stored in MATLAB as a 400-by-500 matrix.  

The 3D array image is also known as Red, Green, and Blue (RGB) image 

composed by 3 matrix layers. The first plane represents the red pixel intensities, the 

second plane represents the green pixel intensities, and the third plane represents the 

blue pixel intensities, refer to Figure 3:15, which shows a three-dimensional illustration 

of the RGB image.  
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Figure 3:15 Illustration of RGB image 

 

Consequently, the concept of matrix represents an image display that works with 

images in MATLAB. This is similar to operating with any other types of matrix data, 

and makes the full potential of MATLAB available for image processing applications. 

For example, selection can be generated from an image matrix to any single pixel, using 

normal matrix subscripting. For instance, the command; 

I(5, 4) 

Returns the value of the pixel at row 5, and column 4 of the image I, see the example 

below, by using the MATLAB script in its command window; 
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>> I = uint8(rand(10,7)*100) 

 
I = 
 
    74    44    62    13    18    13    16 
    34    86     5     49    50     6     48 
    88    39    54     3     45    37    49 

    34    25    45    22    32    37    84 
     5     35    86    32    38    48    80 
    71    74    85    89    88    96    85 
    95    65    47    31    76    34    60 
    15    93    78    25    88    25    56 
    41    83    65    43    45    58    61 
       9     46     0     84    79    52    10 

 
>> I(5, 4) 
 
ans = 
 
         32 

 

 

3.3 SDC Morphology Toolbox 

The SDC Morphology Toolbox for MATLAB was developed by SDC 

Information Systems. It is a collection of greyscale morphological tools that can be 

applied to image segmentation, non linear filtering, pattern recognition, and image 

analysis (SDC, 2011). The SDC Morphology Toolbox for MATLAB 6.5 is a joint 

program of Image Analysis and Signal Processing which is composed of discrete non 

linear filters based on lattice operations. These filters, called morphological operators, 

are useful for restoration, segmentation and quantitative analysis of images. The 

operators include the classical morphological filters, which are used for restoration and 

shape description, and modern connected filters and watersheds, which are used for 

image segmentation. 

The SDC Morphology Toolbox deals with greyscale and binary images or 

signals and it is data type oriented. Therefore, most operators perform both greyscale 

and binary image processing and the choice of the appropriate (binary or greyscale) 

algorithm is automatic. The images may be represented by the following formats: 

The return value of image I 

at the pixel row 5, column 4. 

The variable of I is an image 

conversion of a random 10-by-7 

matrix to unsigned 8-bit integers. 
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binary, 8-bit greyscale and 16-bit greyscale, where each pixel is represented; 

respectively by a logical uint8, a uint8 and uint16 data type. 

Basically, the Morphological operators are developed by the improvement of 

two elementary operators, named dilation and erosion. Several operators are 

implemented by special fast algorithms to increase their efficiency (SDC, 2011). Some 

examples of these operators are Distance Transform, Watershed, Reconstruction, 

Labelling and Area Opening.  

Dilations and erosions are parameterised by sub-images, called structuring 

elements. These structuring elements may be flatted as binary images or non-flat as 

greyscale images. The SDC Morphology Toolbox supports both kinds of structuring 

elements and represents them in a decomposed form, which increases the performance 

of the corresponding dilation and erosion. 

  

3.3.1 SDC Morphology Toolbox System 

SDC Morphology Toolbox system consists of three main parts. They are Basic 

Concept, Demonstrations, and Functions. All of the operators that belong to the SDC 

Morphology Toolbox start with ‘mm’. This will make us recognise the operators by 

name, which is different from the others using MATLAB (User's Guide, 2001). 

 The Basic Concept is an important item that a user is required to know well in 

order to use this toolbox. The basic concept of SDC Morphology Toolbox can be further 

subcategorised by three categories, which are Software Model and Conventions, 

Installation and Software Evolution, and 3D Processing. 

The following part of SDC Morphology Toolbox is known as Demonstrations, 

which gives a full list of demonstration scripts or a set of instructions. This part is like a 

tutorial for the user who wants to learn the toolbox.  Refer to Appendix 3C for the list of 

the demonstration scripts and its descriptions. 
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The last one is called Functions, which is the most important part in SDC 

Morphology Toolbox system. This part contains all the functions in the system (refer to 

Appendix 3D). Every function has its own description or help manual, which can be 

read by typing;  

help function name  

in the MATLAB Command Window. 
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CHAPTER 4 

 

 

RESEARCH METHODOLOGY 

 

4.1 Chapter Overview 

This chapter is about the research methodologies that includes the image sample 

preparations in Detector Etching process. There are also flow charts supported 

methodologies of morphological image processing, which utilised the MATLAB and 

toolboxes. 

 

4.2 SDC Morphology Toolbox Installation 

The SDC Morphology Toolbox is designed to be used with MATLAB, but it is 

not a part of it. As a third party product, the SDC Morphology Toolbox must be 

obtained from another company, known as SDC Information System at 

www.mmorph.com. The Toolbox is available for Windows systems as well as for 

UNIX systems. After downloading it, the installation is done by MATLAB script file. 

To use the toolbox’s functions as a free evaluation, a serial code is needed, which must 

be obtained from the SDC homepage after the installation is completed. The SDC 

Morphology Toolbox operates on MATLAB Version 5 and above. One of the most 

significant factors about SDC Morphology Toolbox, compared to other Image 

Processing toolboxes, is that it does not depend on any other toolboxes (SDC, 2011). 

 

4.3 Detector Etching and the Sample Images of Nuclear Track 

The LR 115 detectors (LR 115 film, Type 2) used in this research was purchased 

from KODAK, Malaysia. The LR 115 is a film which consists of a layer of cellulose 
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nitrate on a 100 m clear polyester base substrate. The LR 115 detectors were cut to the 

size of about 2.25 cm
2
. 

For us to get detectors with latent track, the LR 115 detectors were exposed to a 

radiation source. The radiation source was Monazite (reddish brown colour phosphate). 

It is in the form of granule and contains the elements thorium, lanthanum, and cerium. 

The LR 115 films were exposed to monazite up to 43 hours.  

After the detectors were exposed to monazite in detecting radiation particles 

such as alpha particles, the detectors were then etched in a 2.5 N aqueous solution of 

NaOH at 60°C. The NaOH solution was placed in a water bath in which the temperature 

was kept to within 1°C. The LR 115 was etched for 1 hour. 

After the etching period, the detectors were removed from the etchant and rinsed 

with distilled water for 15 minutes. For the drying processes, the images are fanned for 

10 minutes. After drying, each portion of the detectors was placed between the 

transparent plastic slides (Figure 4:1). These slides with detectors within them were 

observed using optical microscope (Model Axioskop, Carl Zeiss MicroImaging Inc.). 

Then, the images of the nuclear track in each detector were captured after the best image 

of the nuclear track was seen through the microscope. 

 

Figure 4:1 The slide of LR 115 detector 
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Bottom transparent 

plastic 

LR 115 Detector 
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For each detector with exposed time differences, 10 sample images of nuclear 

track were captured from different areas of the sample using the microscope supported 

with digital camera (Model Canon, Power Shot G5 with 5 megapixel CCD). This means 

that there were 100 sample images of nuclear track taken using the system with the 

combination of microscope, digital camera and computer. Figure 4:2 showed the sketch 

diagram of the equipments used to capture the image of nuclear track. These images 

were focused through the microscope and directly captured from a computer software 

(Canon Utilities RemoteCapture, Canon Inc.) via digital camera. 

 

Figure 4:2 The sketch diagram of the equipments to capture image 

 

While the nuclear tracks were focused, the nuclear track images were magnified up to 

10 times magnification for eyepiece lens, 20 times for nosepiece lens and 1.3 times for 

camera magnification. This implies that the images were magnified up to 260 times 

magnification. During image capturing, all of the size of images was set to (640480) 

pixels and saved as RGB mode. Then, these images were converted to greyscale mode 

in preparing for the next process. This will be covered in section 4.5. 

 

4.4 Segmentation Limit of Overlapping Objects in Image 

The ideal tracks would be isolated circular or elliptical shapes distributed evenly 

throughout the image. Red images of those tracks may have jagged edges and in some 

cases overlapping tracks. To ascertain the effectiveness of the software to separate 
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overlapping tracks, a series of artificial images were used as test images. The images 

prepared were in various shapes with varying degrees of overlap.  

The procedure starts with the artificial images being generated using Adobe 

Photoshop. The characteristic of the image has been set so that the image contains 2 

similar shape objects, which were horizontally arranged and have a gap. The objects 

were considered as first object for the left position and second object for the right 

position. Besides that, the background of the generated image is set to 87% of grey level 

and the foreground is set to 15% of grey level (pixels value of the objects). In the first 

case, there were 2 similar circles sizes (75 pixels of diameter). Please refer to Figure 

4:3. Then, these objects were programmed to get closer to each other, until they 

overlapped with each other by pixels. The image was (320240) pixels generated from 

0 pixel that were overlapping, a few before and after those objects cannot be segmented. 

The objects or overlapping objects in the image were segmented and their areas were 

determined. 

 

Figure 4:3 The image sample of two circles for Overlapping limitation studies 

 

There were 2 circles with different sizes (75 pixels and 37, 45, 55, and 65 pixels 

of diameter, see Figure 4:4), 2 shapes of ellipses with the same sizes (75 pixels major 

axis and 45 pixels minor axis, see Figure 4:5), and 2 shapes of square with the same 

sizes pixels (6464) and horizontal diagonally arranged pixels, see Figure 4:6.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4:4 Test images with circles of different diameters  

(a) 75 pixels and 37 pixels (b) 75 pixels and 45 pixels 

(c) 75 pixels and 55 pixels(d) 75 pixels and 65 pixels  

 

 

Figure 4:5 Test images of two ellipses with same size 

 

 

Figure 4:6 Test image with two squares horizontally and diagonally arranged 
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4.5 Grain Counting and Granulometry to the Nuclear Track Image  

All of the 100 sample images of the nuclear track that we had captured in 

Section 4.3 were processed based on what we had discussed in sections 2.5, 2.6 and 2.7. 

Each of the image nuclear tracks was processed based on the flow chart on Figure 4:7, 

Figure 4:8 and Figure 4:9. At the beginning, the image was extracted through the 

extraction operation (Figure 4:7) then the image was segmented through the 

segmentation operation (Figure 4:8).  

 

Figure 4:7 Extraction Operations 
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Figure 4:8 Segmentation Operations 

 

After the extraction and segmentation operation, the granulometry part begins 

when the images were operated with MATLAB’s functions, this is to get the 

information of the number of nuclear tracks, sizes (minimum and maximum) and their 

mean size. Later on, the images were applied onto these functions, in which the data 

was extracted. Please refer the data extracting flow chart as follow, Figure 4:9. 

  
Figure 4:9 The flow chart of required data from extracted image data. 
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With the aim to have more result evaluations for each toolbox’s result, the 

nuclear tracks in the images were counted manually. These manual results were then 

used as the standard results to evaluate the toolboxes’ results. 

This procedure was repeated to both of the toolboxes separately in order to get 

the information of the grain counting and the granulometry from each toolbox. 

 

4.6 Nuclear Tracks Counting Simulation 

Based on section 1.4, two assumptions have been made that the number of 

nuclear tracks on the nuclear tracks detector will constantly increase due to time and the 

emission of the radiation particles from the Monazite radiation source to the nuclear 

track detector was a random emission. This means, that the distribution of the nuclear 

track position on the nuclear track detector was a normal distribution. Based on these 

two assumptions, a simulation of the nuclear tracks counting was done, Figure 4:10 

shows the simulation flow chart, which ‘i’ number is the increment number, which was 

less than or equal to 2020, which is equal to 400 and ‘n’ is the number that represent 

the number of the nuclear tracks. The simulation was iterated to 100 times. 

The simulated data such as the number of nuclear tracks and exposed time was 

obtained. The graph of the simulated number of nuclear tracks versus exposed time was 

plotted and was compared to linear rate of the nuclear tracks.  
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Figure 4:10 The flow chart of the nuclear tracks counting simulation 

 

 

 

 

 

Matrix, M  

(2020) 

Choose i numbers 

Generate i random numbers 

by choosing the numbers in 

matrix M 

Random numbers 

counting, n(i, j) 

function 

Number, n 

j + 1 



Chapter 5: Results Discussions  

 60 

CHAPTER 5 

 

 

RESULTS DISCUSSIONS 

 

5.1 Chapter Overview 

In this chapter, the analysis and result of the research findings are presented. Basically, 

this research focuses in finding the limitation of over-lapping objects using different 

shapes. The research also concentrates on grain counting operation, simulation of the 

emitted radiation particle to the same track position and granulometry. In granulometry 

the SDC Morphology Toolbox and Image Processing Toolbox were applied to the 

research images in order to discover their capabilities and compared them to the manual 

method of counting. For these purposes, the numbers of nuclear tracks are obtained as 

research data and are compared to standard data that acts as reference. 

 

5.2 Images of Nuclear Track 

For this research, we took images from a few image sources and used it as image 

samples. Firstly, the microscopic images from our Radiation Laboratory were captured 

by a special microscope. These images are the image of special plastic films (LR 115 

Type 2), which has been exposed to nuclear radiation due to time. The images are also 

known as nuclear track images. The image samples of radiation exposed film were 

captured using a high capability microscope and digital camera, in which we considered 

the radiation exposed time that ranges from 0 second to 43 hours. Below are 2 images 

from our image samples; Figure 5:1 which shows, 1 hour radiation exposed image and 

Figure 5:2 which shows, 43 hours radiation exposed image. 
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Figure 5:1 The Image after 1 hour 

radiation exposed 

 

Figure 5:2 The Image after 43 hours 

radiation exposed 

 

In order to get more image samples, we have also created a generated image or 

artificial image using image editing software, such as Adobe Photoshop and Paint. This 

source gives us the options to generate a certain image with its own problem 

characteristic, where this image will be used as the image sample to test our research 

techniques. These tasks will enable us to find out about our research techniques 

capabilities in facing different image processing problems.  

After the detector etching process is completed, the images of the nuclear tracks 

are captured using laboratory microscope, digital camera and a computer. As stated in 

Section 4.3, the images were taken based on exposed time to the radiation source called 

Monazite. The following Figure 5:3 shows us the first images of the nuclear track from 

10 nuclear track images with different exposure time. The rest of the images can be seen 

in Appendix 4A. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 

 
(j) 

 

Figure 5:3 The exposed times, (a) 0 hour, (b) 1 hour. (c) 3 hours, (d) 5 hours, (e) 7 

hours, (f) 10 hours, (g) 14 hours, (h) 20 hours, (i) 31 hours and (j) 43 hours 

 

5.3 Limitation of Segmented Over-Lapping Objects 

In section 4.4 the data that was extracted was divided based on the shapes of the 

objects that over-lapped that are categorized as Over-lapped Pixel, over-lapping area of 

the Objects (First Object (FO) and Second Object (SO)). If the over-lapping objects 

cannot be segmented anymore, one of the object data (second object) will result in zero 
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object area; where the second object is considered as non-existent. Then, the other 

object data (first object) makes the object area bigger than the original one. 

Some portion of the data results in linear distribution which conforms to the 

linear equation. The best straight line fitting to the data can be obtained by using a tool 

based on least-squares method and this can be determined by using the Basic Fitting 

tool in MATLAB. 

5.3.1 Over-Lapping of the Two Circles 

The data of the over-lapping process of two circles (75 diameter pixel) are 

presented in the following graphs. Figure 5:4 shows the graph where the segmentation 

of the objects ends when the objects were over-lapping with more than 60 pixels. This 

means that the limit of segmentation for these objects is 60 pixels. While the image 

segmentation was processing in the over-lapping range of between 0 pixel to 60 pixels, 

we found that both of the objects’ area decrease (decay) with 28.62 pixels for one over-

lapping pixel, see Figure 5:5. 

 
Figure 5:4 Over-lapping Process of two circles with 75 pixels diameter 

 

Number of 
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Figure 5:5 Over-lapping Process with the objects that can still be segmented 

 

For the other case study where the second object is smaller than the first object, 

as discussed in Section 4.4, the data are represented in a single graph, see Figure 5:6. 

The graph shows that the limits of segmentation are increasing due to the size of the 

second object. Then, we found that the limit of segmentation is increasing with each 

1.13 pixels over 1 pixel of diameter, as seen in Figure 5:7. 

Number of 
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Figure 5:6 Over-lapping Process with two circles of various diameters

Number of 
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Figure 5:7 Limitation of Segmentation based on differences of circle size (diameter) 

 

As seen in Figure 5:6, the decay in the first object area correspond to over-

lapped pixels. Figure 5:8, Figure 5:9, Figure 5:10 and Figure 5:11 show the graph for 

each case and provide the decay value based on linear Basic Fitting. As summary 

results, which is the gradient of the graphs present the decay rate of the first object area, 

which are shown in Table 5:1. (page 68). 

 
Figure 5:8 Segmentation process, diameter FO = 75 pixels and SO = 37 pixels 

 

Number of 
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Figure 5:9 Segmentation Process, diameter FO = 75 pixels and SO = 45 pixels 

 

 
Figure 5:10 Segmentation Process, diameter FO = 75 pixels and SO = 55 pixels 

 

Number of 

Number of 
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Figure 5:11 Segmentation Process, diameter FO = 75 pixels and SO = 65 pixels 

 

Table 5:1 Decay rate of the first object area based on the second object sizes 

Diameter (pixel) Decay rate of Object Area 

(pixel/over-lapped pixel) First Object Second Object 

75 37 -8.3 

75 45 -5.8 

75 55 -12.2 

75 65 -16.4 

75 75 -28.6 

 

5.3.2 Over-Lapping of the Two Ellipses (Oval Shapes) 

The segmentation data of the over-lapping of two ellipses is illustrated in Figure 

5:12. The graph shows that the limit of segmentation for these two ellipses is 55 over-

lapping pixels. Figure 5:13 shows the area decay rate while segmentation is 16.58 pixels 

over 1 over-lapping pixel. 

Number of 
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Figure 5:12 Over-lapping process of two ellipses 

 

 
Figure 5:13 Segmentation process of two ellipses 

 

 

5.3.3 Over-Lapping of the Two Squares Diagonally Arranged 

The segmentation data of the two over-lapping diagonally arranged squares are 

illustrated in Figure 5:14. The graph shows the limit of segmentation for these two 

squares is 68 over-lapping pixels. Figure 5:15 shows the area decay rate, while 

segmentation is 30.99 pixels over 1 over-lapping pixel. 

Number of 

Number of 
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Figure 5:14 Over-lapping Process of two squares diagonally arranged 

 

 

Figure 5:15 Segmentation Process on two squares diagonally arranged 

 

5.4 Limitations of Segmented Over-Lapping Objects Outcome Analysis  

Based on section 5.3, we can conclude that the limitation of segmented over-

lapping object can give effect to the nuclear track counting. We assume that all the 

shapes of the nuclear tracks images are circular shape and the radiation activity of the 

radiation source are random activity. This condition will allow the nuclear track to be 

Number of 

Number of 
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randomly emitted onto the nuclear track detector. As a result, there were possibilities 

that there was nuclear tracks image over-lapping more than segmentations limit. If these 

occur it will affect the result of the nuclear track counting by decreasing the number of 

counting; even though it cannot be detected by manual counting. 

 

5.5 Nuclear Track Counting and Granulometry 

The results of the nuclear track counting using the toolboxes and manual method 

seems to have a similar pattern; see Figure 5:16. However, there are slight differences 

between the three procedures, especially after 10 hours of exposed time. 

 
Figure 5:16 The graph of Numbers of Nuclear Track versus Exposed Time 

 

From the graph, the Manual Method, IPTM Processing and SDC Processing 

illustrate that starting from 0 hour to 10 hours the data form linear rate of number of 

nuclear tracks over exposed time (nuclear tracks rate). After 10 hours of exposed time, 

the nuclear tracks counting were broken down till the final data, 43 hours of exposed 

time. Hence, linear Basic Fitting (MATLAB feature) was fitted to each graph at the 

linear portion in order to see the differences between nuclear tracks rate of each method 
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and the number of nuclear tracks with exposed time equal to 0 second or recognised  as 

error number of nuclear tracks, see Figure 5:17, Figure 5:18 and Figure 5:19. The final 

results are shown in Table 5:2. 

 

 
Figure 5:17 Manual Counting Method to the number of nuclear track 

 

 
Figure 5:18 IPTM Processing to the number of nuclear track 
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Figure 5:19 SDC Processing to the number of nuclear track 

 

Table 5:2 The results of counting methods 

Counting 

Method 

Nuclear tracks rate 

(number/hour) 

Percentage difference 

to the Manual method 

(%) 

Error number of 

nuclear tracks 

Manual 5.373 0 1.584 

IPTM 5.083 5.4 1.892 

SDC 5.147 4.2 1.762 

 

Based on the results in Table 5:2, the toolboxes generate almost the same rate of the 

number of nuclear tracks. The IPTM and SDC processing generate less nuclear tracks 

rate than the manual method with the percentage difference of 5.4 and 4.2 nuclear track 

rate respectively. If the Manual method is considered as accurate data, this means that 

SDC processing generates improved result than the IPTM processing. This result is also 

supported by the error number of the nuclear tracks, which the SDC processing 

produces the closest number to the manual method of counting with the difference of 

0.18 nuclear tracks. Then, the IPTM processing gives the difference of 0.31 nuclear 

tracks respective to the manual method. 
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5.5.1 Simulation of Nuclear Track Counting  

Figure 5:20 shows the graph of simulated nuclear tracks counting versus 

exposed time resulting from the nuclear tracks counting simulation after 100 times 

iteration. Figure 5:21 shows the graph of its average. Both of the graphs depict the 

profile that the distribution of the nuclear track number due to time was non-linear and 

its rate decreasing. Based on this simulation, we can say that there were radiation 

particles penetrating on the track detector at the same place or position. The probability 

that radiation particles penetrate the same position also increases due to time. 

 
Figure 5:20 Simulated data graph after 100 times iterations 
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Figure 5:21 Average simulated data graph 

 

5.5.2 Simulated Data, Linear Extrapolation and Nuclear Track Counting 

Linear extrapolation of the graph was derived from the first data in the manual 

method of nuclear track counting, which 9.1 nuclear tracks are rounded to 9 nuclear 

tracks over 1 hour. Then, linear extrapolation is plotted with rate of 9 nuclear tracks per 

1 hour. Figure 5:22 shows the graph simulation of nuclear track counting data and linear 

extrapolation, which the simulated data were different from the linear extrapolation.  In 

other words, the difference ranging between these data was getting wider due to time. 

This means that the number of radiation particles penetrating the same position 

increases exponentially due to time. Unfortunately, because these radiation particles left 

no tracks behind, as a result it cannot be counted by our nuclear tracks counting scripts, 

which could affect the nuclear tracks counting results. 
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Figure 5:22 Simulated data and linear extrapolation graph with the data differences 

 

Figure 5:23 shows the nuclear tracks counting results from the Manual method, 

IPTM processing and SDC processing which gave similar data distribution profile to the 

simulated data, which the slope of the graph represents the rate of nuclear tracks 

counting decaying due to time. However, there were still significant differences 

between the distributions of results. There was a range gap between the simulated data 

and the nuclear tracks counting data distributions. The range gap was recognized as the 

number of uncounted nuclear tracks by nuclear tracks counting. As a result, the rate of 

the nuclear tracks from the Manual method, IPTM and SDC processing were already 

compensated by this uncounted number of nuclear tracks. 

 From this finding and based on Section 5.4, we can say that these uncounted 

numbers of nuclear tracks are actually the number of nuclear tracks that over-laps onto 

another nuclear track. For instance, if two nuclear tracks were over-lapping to each 

other more than limit of segmentation, the nuclear tracks counting will be counting it as 

1 nuclear track and the other one will be considered as uncounted nuclear track. 
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Figure 5:23 Simulated data, Linear extrapolation and Nuclear track counting graph 

 

5.6 Granulometry, the Area Measurement 

The analysis starts with an assumption that the area parameter of the nuclear 

tracks in the images is unvarying and approximate to the average area value. Thus, the 

final results would be the average of mean area of the nuclear tracks, coupled with its 

data uncertainty for each toolbox. 

Figure 5:24 shows the graph of the data of mean area of nuclear tracks against 

the exposed time to the radiation source. The results show that the data distribution 

pattern of the nuclear tracks mean area from both processing methods whether its IPTM 

or SDC has the same pattern of data distribution. 



Chapter 5: Results Discussions  

 78 

 
Figure 5:24 Mean area of nuclear tracks  

 

Additionally, for more information refer to Figure 5:25. From the results, we can safely 

say that areas are in the standard deviation range and there is only one point where it is 

situated outside of the standard deviation range that is the point at 3 hours exposed time. 

This means, that both of the processing methods can generate the results that is in the 

range of their data standard deviations. In other words we can establish that both 

toolboxes have the capability to produce results that is slightly in the same range of 

precision in measuring the area of nuclear tracks. Their average standard deviations also 

show that both toolboxes generate data deviations almost equal in determining the mean 

area of nuclear tracks, see Table 5:3. 
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Figure 5:25 Mean area of nuclear tracks with standard deviation error bars 

 

Table 5:3 The results of mean area of the nuclear tracks 

Method Average of mean area (pixel
2
) Average of standard deviations (pixel

2
) 

IPTM 149.80 42.04 

SDC 154.25 40.51 

 

5.6.1 Nuclear Track Area Analysis 

For a more detail analysis, starting with an assumption to the nuclear tracks 

shapes that were circulars. As a result, the roundness of the nuclear tracks area is related 

to the expression 5:1, where A is the area of the nuclear tracks and d is the diameter of 

the nuclear tracks.  

     
 

 
 
 

 5:1 

      
   5:2 

 

The value of d can be obtained by using the information from the Table 5:3 and applied 

to the equation 5:2. Unfortunately, the obtained d was still in pixel unit, which was 
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required to convert to SI unit. Therefore, in order to convert d in SI unit, the value of d 

was divided by image resolution, 180 pixels per inches (PPI or DPI) into inches unit. 

Then it was converted to micrometre unit. In order to get the actual diameter, the image 

magnification was reduced by 260 magnifications (Section 4.3, page 51) (see Appendix 

4B), as a result, see Table 5:4.  

Table 5:4 The results of mean area and diameter of the nuclear tracks 

Method 
Average of mean area 

(pixel
2
) 

Diameter, d 

(pixel) (inches) (µm) 

IPTM 149.80 42.04 0.0384 7.50 

SDC 154.25 40.51 0.0389 7.61 

 

The results that gave the diameter of the nuclear track from the IPTM processing and 

SDC processing were 7.50 µm and 7.61 µm respectively. These nuclear track diameters 

results were accepted as satisfied results, which they were in the ranges of 4.0 µm and 

8.0 µm diameter of nuclear track (Eghan, Buah-Bassuah, & Oppon, 2007). 

 

5.7 Chapter Conclusions 

Based on the tasks that have been done, we could safely say that we succeeded 

in achieving the objectives despite the inferior quality of the original images. MIP is 

used as the basic method for this study in conjunction with MATLAB system. SDC 

Morphology Toolbox and Image Processing Toolbox are capable in characterizing one 

or more of the region (object size) in the image. The usages of the toolboxes are 

computationally easy and fast. The toolboxes produce slightly different results in 

determining the nuclear tracks counting and also its accuracy and the precision range. 

This is due to imaging errors and noise but also to the fact that the ratio object size to 

size of structuring element must be large enough, sufficient to make the morphological 

filtering more effective (Rautio & Silvén, 1998). 
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There is the limitation in using the Segmentation process in processing the over-

lapping objects in the image. If the segmentation succeeds, then the objects are 

recognised as two different objects but if it fails, the objects are recognised as one 

object. On the other hand, the limitation is dependent on the size, shape of the objects 

and the over-lapping area of the two objects. The segmentation also makes the 

segmented objects smaller than the original one, in other words the segmentation 

process erodes the objects. 

The result proved that the MATLAB and SDC toolboxes and the manual 

counting method have failed to count the nuclear tracks in linearly distribution after 10 

hours of exposed time. This condition verified that these nuclear track counting method 

detected nonlinear growth after 10 hours of exposed time. This means, the effectiveness 

of LR 115 film track detector decrease in detecting radiation emission from monazite in 

linear distribution in range up to 10 hours of exposed time. 

The outcome for the nuclear tracks counting analysis based on the linear output 

results, please refer Table 5:2 (page 73), which give the percentage difference between 

the IPTM and SDC processing and the manual method results. Generally, the 

percentage differences showed that the SDC processing gave a better result than IPTM 

processing. This means, in 10 hours of exposed time to the radiation, SDC processing 

resulted the nuclear track rate was more precise than IPTM processing and it also same 

goes to the error number of nuclear track. 

The conclusions for the whole result of the nuclear track counting; please refer on the 

graphs in Figure 5:23 (page 77). The experimental graphs were not linear as resulted by 

Linear Extrapolation graph and also were not even similar to the curve of Simulated 

Data graph. There were two reasons that affected the experimental graphs, firstly the 

nuclear tracks that were at the same position as previous nuclear tracks were not 

counted and the limit of segmentation to the over-lapping nuclear tracks image, which 
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two over-lapping nuclear tracks will be counted as one nuclear track. In other words, 

these two reasons reduced the number of counting from the Manual method, IPTM 

processing and SDC processing counting. 

Granulometry of the mean area nuclear tracks can be over and done with that 

both toolboxes have the capability to produce results that is slightly in the same range of 

precision in measuring the area of nuclear tracks. Their average standard deviations 

proved that both toolboxes generated almost equal deviations data in determining the 

mean area of nuclear tracks, please refer Table 5:3. This is also supported by their 

diameter area, which the toolboxes give the results with 0.09 pixels different, given in 

Table 5:4.  
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CHAPTER 6 

 

 

CONCLUSIONS 

 

6.1 Research Conclusions 

A method of producing and developing the nuclear tracks images from the 

LR115 radiation detector film can be completed successfully in laboratory. The 

preparation of the images is easy but full of concentration required for each step in order 

to obtain fine nuclear track slides. This also goes to the image capturing process. During 

the process, the light that is used to focus the nuclear tracks slide must be always in 

fixed intensity (level number 7 at the microscope scale). This light is able to affect and 

distort the structure of the objects in the image if its brightness too high and low, in 

other words the image becomes saturated. 

The over-lapping objects in an image can be segmented to two objects but there 

is a limitation in separating the objects. This limitation depends on the shape of object 

and the over-lapping area of the two objects. For example, two identical circle objects 

(75 pixels diameter) that are over-lapping to each other can be segmented if the over-

lapping diameter (intersection, di) is less than 80 percent of the circle diameter, d, see 

Figure 6:1. Besides that, the segmentation process makes the over-lapping objects 

getting smaller; it erodes the shape of over-lapping objects. 

 

Figure 6:1 Intersection diameter, di of the over-lapping two circles 

 

di 
d 
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The conclusion for this studies especially the toolboxes usage part can be understood 

that each toolbox that has been applied has an advantage and also disadvantage in 

processing the image respectively. We concluded that SDC Morphology toolbox has 

high precision and accuracy in processing and determining the data from the image 

(object counting and granulometry) but it starts to gain an error if the exposed time is 

more than 30 hours. However, the Image Processing toolbox also has high precision and 

accuracy but its precision is less than SDC Morphology toolbox’s. This also proved that 

SDC Morphology toolbox which was developed based on MIP is improved toolbox in 

image processing field because precision is superior to the Image Processing toolbox. 

Besides that, the SDC Morphology toolbox is easy to prepare and we can get it from 

SDC Information System website as free trial software in 30 days period. Figure 6:2, 

Figure 6:3 and Figure 6:4 below show the research results based on toolboxes usage. 

 

Figure 6:2 Percentage difference of the nuclear tracks rate counting 
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Figure 6:3 Standard Deviations of the area measurement 

 

 

Figure 6:4 The results of the nuclear track sizes based on toolboxes compared to Eghan 

et al. (2007) as reference (Ref.) result 

 

Image imperfections, which are caused by the distortion of light intensity, can be 

reconstructed in order to improve the resultant initial image. A few of the nuclear track 

regions in the image are over-lapping to each other but this situation can be partially 

corrected by subtracting the over-lapping regions using watershed lines and recognized 

as separated regions. Watershed operation creates the output image by detecting the 

domain of the catchments basins of input image, according to the connectivity defined 

by structuring element.  
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The counting of the nuclear track regions on the track detector is a non-linear 

filtering process and this research introduced the method to extract the regions of 

interest based on morphological opening, reconstruction and the subtraction operations. 

 

6.2 Future Recommendations 

For the future recommendations research, this research can be extended to more 

comparison with variety of the image processing toolboxes, such as DIPimage toolbox, 

image processing tool with Mathematica platform, image processing tool with 

LabVIEW platform and many more. By using the same sample images, we propose that 

the results from all image processing tools will be analysed and studied how diverse 

their results to each other and to the true result or value. Limitation of the segmentation 

over-lapping studies also can be extended to the variety and complex shape objects, for 

instance the shape of triangle, polygon and rod shape. 

This research deals with binary and greyscale images. It is logical to extend 

these techniques to the colour images. However, this will need some work in improving 

the Mathematical Morphology algorithms before it can be applied to the colour images.  

However, based on the research, the Mathematical Morphology concept not just 

only works with digital image. Therefore, for the last future recommendation research, 

the Mathematical Morphology algorithms also could be more improved in order to 

make it works with motion picture or movie. 
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APPENDIX 2A: 

 

 

Infimum and Supremum 

 

1. Infimum (inf) 

 

The infimum (inf) is the greatest lower bound of a set S, defined as a quantity m 

such that no member of the set is less than m, but if   is any positive quantity, however 

small, there is always one member that is less than m . When it exists (which is not 

required by this definition, e.g., inf R  does not exist), the infimum is denoted inf S or

infx s x .  

More formally, the infimum inf S  for S a (nonempty) subset of the extended 

reals    R= R  is the largest value y R  such that for all x S  we have

x y . Using this definition, inf S always exists and, in particular, inf  R . 

Whenever an infimum exists, its value is unique. 

 

2. Supremum (sup) 

The supremum (sup) is the least upper bound of a set S, defined as a quantity M 

such that no member of the set exceeds M, but if  is any positive quantity, however 

small; there is a member that exceeds M . When it exists (which is not required by 

this definition, e.g., supR  does not exist), it is denoted sups or supx s .  

More formally, the supremum sup S  for S a (nonempty) subset of the extended 

reals    R R  is the smallest value y R  such that for all x S  we have

x y . Using this definition, sup S  always exists and in particular of sup R .  

Whenever a supremum exists, its value is unique. On the real line, the supremum 

of a set is the same as the supremum of its closure. 

 

http://mathworld.wolfram.com/Set.html
http://mathworld.wolfram.com/Set.html
http://mathworld.wolfram.com/Positive.html
http://mathworld.wolfram.com/Subset.html
http://mathworld.wolfram.com/Set.html
http://mathworld.wolfram.com/Positive.html
http://mathworld.wolfram.com/Subset.html
http://mathworld.wolfram.com/RealLine.html
http://mathworld.wolfram.com/ClosureSet.html
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APPENDIX 2B:  

 

 

Examples and Full Description of Interval Functions. 

 

1. mmendpoints - Interval to detect end-points. 

Synopsis  : [Iab] = mmendpoints (OPTION)  

Input : OPTION: String. ‘LOOP’ or ‘HOMOTOPIC’ Default: “LOOP”.  

Output  : Iab: Interval.  

Description 

 

: mmendpoints creates an interval that is useful to detect end-points of 

curves (i.e., one pixel thick connected components) in binary images. 

It can be used to prune skeletons and to mark objects transforming 

them in a single pixel or closed loops if they have holes. There are 

two options available: LOOP, deletes all points but preserves loops if 

used in mmthin; HOMOTOPIC, deletes all points but preserves the 

last single point or loops.  

 

Examples: 

Interval visualization; 

>> mmintershow(mmendpoints) 

ans = 

.   .   .  

0  1  0  

0  0  0  

 

>> mmintershow(mmendpoints('HOMOTOPIC')) 

ans = 

.   1   .  

0  1   0  

0  0   0 

 

 

 

Function to visualize 

an interval.  

 

mmendpoints interval 
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Pruning; 

 

>> i = imread('image05.tif'); 

>> mmshow(i); 

>> i1 = mmthin(i); 

>> mmshow(i1); 

>> i2 = mmthin(i1, mmendpoints, 10); 

>> mmshow(i2); 

 

(i) 

 

(i1) 

 

(i2) 

 

Homotopic marking; 

 

>> in = mmthin(i1,mmendpoints('HOMOTOPIC')); 

>> mmshow(mmdil(in)); 

 

(mmdil (in)) 

 

 

Equation; 

,

0 0 0 1 1 1

: 0 1 0 , 0 1 0

0 0 0 0 0 0

A BI A B

   
   

 
   
      

 

 

 

Pruning 10 pixels 

Function for image 

transformation by thinning. 
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2. mmhomothick - Interval for homotopic thickening. 

Synopsis  : [Iab] = mmhomothick  

Output  : Iab: Interval.  

Description 

 

: mmhomothick creates an interval that is useful for the homotopic (i.e., 

that conserves the relation between objects and holes) thickening of 

binary images. 

 

Examples: 

Interval visualization; 

>> mmintershow(mmhomothick) 

ans = 

1  1  1  

.   0   .  

0  0  0 

 

Equation; 

,

1 1 1 1 1 1

: 0 0 0 , 1 0 1

0 0 0 0 0 0

A BI A B

   
   

 
   
      

 

 

3. mmhomothin - Interval for homotopic thining. 

Synopsis  : [Iab] = mmhomothin  

Output  : Iab: Interval.  

Description 

 

: mmhomothin creates an interval that is useful for the homotopic (i.e., 

that conserves the relation between objects and holes) thinning of 

binary images.  

Examples: 

Interval visualization; 

>> mmintershow(mmhomothin) 

ans = 

0  0  0  

.   1   .  

1  1  1 
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Equation; 

,

0 0 0 0 0 0

: 0 1 0 , 1 1 1

1 1 1 1 1 1

A BI A B

   
   

 
   
      

 

 

4. mminterot - Rotate the Interval. 

Synopsis  : [Irot] = mminterot( Iab, theta, DIRECTION ) 

Input : Iab: Interval.  

theta: Degrees of rotation. Available values are multiple of 45 

degrees. Default: 45.  

DIRECTION: String. ‘CLOCKWISE’ or ‘ANTI-CLOCKWISE’. 

Default: ‘CLOCKWISE’.  

Output  : Irot: Interval.  

Description : mminterot rotates the interval Iab by an angle theta.  

Limitations : The rotation angles allowed are multiples of 45 degrees.  

 

 

Examples: 

>> in1 = mmendpoints; 

>> in2 = mminterot(in1); 

>> mmintershow(in1) 

ans = 

.   .   .  

0  1  0  

0  0  0  

>> mmintershow(in2) 

ans = 

0   .   .  

0  1   .  

0  0  0 

 

 

Equation; 

,A BI
 
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5. mmintershow -Visualize an interval. 

Synopsis  : [s] = mmintershow( Iab )  

Input : Iab : Interval. 

Output  :  s  : String. ( representation of the interval).  

Description : mmintershow creates a representation for an interval using 0, 1 and . 

(don’t care).  

 

Examples: 

>> mmintershow(mmhomothin) 

ans = 

0   0   0  

0   1   .  

0   0   0 

 

6. mmse2hmt - Create a Hit-or-Miss Template (or interval) from a pair of 

structuring elements. 

Synopsis  : [Iab] = mmse2hmt( A, Bc ) 

Input : A : Structuring element. Left extremity.  

Bc: Structuring element. Complement of the right extremity.  

Output  : Iab: Interval.  

Description : mmse2hmt creates the Hit-or-Miss Template (HMT), also called 

interval [A, Bc] from the structuring elements A and Bc such that A 

is included in the complement of Bc. The only difference between 

this function and mmse2interval is that here the second structuring 

element is the complement of the one used in the other function. The 

advantage of this function over mmse2interval is that this one is more 

flexible in the use of the structuring elements as they are not required 

to have the same size.  
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Examples: 

>> B1img = logical(uint8([0 1 0; 1 1 0; 0 0 1])) 

B1img = 

     0     1     0 

     1     1     0 

     0     0     1 

>> B2img = logical(uint8([1 0 0; 0 0 0; 0 0 0])) 

B2img = 

     1     0     0 

     0     0     0 

     0     0     0 

>> B1 = mmimg2se(B1img); 

>> B2 = mmimg2se(B2img); 

>> i = mmse2hmt(B1,B2); 

>> mmintershow(i) 

ans = 

 0   1   . 

 1   1   . 

 .    .   1  

 

Equation; 

Flat Interval; 

 , : c

A BcI X A X Bc    

 

7. mmse2interval - Create an interval from a pair of structuring 

elements. 

Synopsis  : Iab  = mmse2interval(a, b) 

Input : a : Structuring element. Left extremity.  

b : Structuring element. Right extremity.  

Output  : Iab: Interval.  

Description : mmse2interval creates the interval [a, b] from the structuring 

elements a and b such that a is less or equal b. 

 

 

 

http://www.mmorph.com/html/morph/mmimg2se.html
http://www.mmorph.com/html/morph/mmimg2se.html
http://www.mmorph.com/html/morph/mmintershow.html
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Examples: 

>> i = mmse2interval(mmsecross, mmsebox); 

>> mmintershow(i) 

ans = 

 .   1   . 

 1  1  1 

 .   1   .  

 

Equation; 

Flat interval, 

 , :A BI X W A X B     

Where W is a finite rectangle. 

Non-flat interval, 

 , :a bI f W a f b     

 

 

http://www.mmorph.com/html/morph/mmsecross.html
http://www.mmorph.com/html/morph/mmsebox.html
http://www.mmorph.com/html/morph/mmintershow.html
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APPENDIX 2C: 

 

 

The mmconv - Conventions used in the SDC Morphology Toolbox. 

 

Synopsis  : mmconv 

Description  

 

: All operators of the SDC Morphology Toolbox start with ‘mm’. This 

is a simple rule to check if an operator belongs or not to the SDC 

Morphology Toolbox. All operators of the SDC Morphology Toolbox 

obey the following rules of parameter uses:  

 Return a single data structure.  

 The parameters are position and type dependent. For example, if 

the third parameter of an operator is a structuring element, then the 

third parameter can only be a structuring element for that operator. 

Note that this rule is somewhat different from most MATLAB 

operators.  

 The definition of optional parameters depends on the parameters 

order in the parameter list. One parameter that has a parameter on 

its right that is not optional can not be optional either. For example, 

the mmwatershed operator has 3 parameters: f, Bc and LINEREG, 

with the last two being optional. Therefore, the only ways that 

mmwatershed can be invoked are: mmwatershed(f), 

mmwatershed(f, Bc) or mmwatershed(f, Bc, LINEREG).  

 When a default parameter is a structuring element, the elementary 

cross (mmsecross) is used as the default value.  

All operators of the SDC Morphology Toolbox, with two image 

parameters, such as mmaddm, obey the following rules of parameter 

uses:  

 The two images must have the same size.  
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One of the images (normally the rightmost) can be represented by a 

constant. In this case, the constant is treated as a constant image, with 

the same size and type of the other image. 
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APPENDIX 2D: 

 

 

The mmunion - Union of images. 

 

Synopsis  : y = mmunion( f1, f2, f3, f4, f5)  

Input : f1 : Gray-scale (uint8 or uint16) or binary image (logical 

uint8).  

  f2 : Gray-scale (uint8 or uint16) or binary image (logical 

uint8). Or constant. 

  f3 : Gray-scale (uint8 or uint16) or binary image (logical 

uint8). Or constant. Default: No parameter.  

  f4 : Gray-scale (uint8 or uint16) or binary image (logical 

uint8). Or constant. Default: No parameter.  

  f5 : Gray-scale (uint8 or uint16) or binary image (logical 

uint8). Or constant. Default: No parameter.  

  Obstacle: f1, f2, f3, f4, and f5 must have the same data 

type.  

Output : y: Gray-scale (uint8 or uint16) or binary image (logical uint8).  

Description  

 

: mmunion creates the image y by taking the pixel-wise maximum 

between the images f1, f2, f3, f4, and f5. When f1, f2, 

f3, f4, and f5 are binary images, y represents the union of 

them.  
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Example: 

Numerical script example; 

f = uint8([255   255    0   10    0   255   250]); 

g = uint8([0    40   80   140   250    10    30]); 

y1 = mmunion(f, g) 

  y1 = 

     255   255    80   140   250   255   250 

y2 = mmunion(f, uint8(255)) 

  y2 = 

     255   255   255   255   255   255   255 

 

Equations: 

Union:        1 2 1 2max ,f f x f x f x   

Generalized Union:      1 2: ...i nf i I f f f       
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APPENDIX 3A: 

 

 

Source Code of MATLAB 

 

 

1. Sobel and Canny edge detection MATLAB script: 

 

 

 

 
i = imread('saturn.jpg');% read the image 

i = rgb2gray(i);% convert the image to greyscale image 

ed1 = edge(i,'sobel');% Sobel edge detection processing  

ed2 = edge(i,'canny');% Canny edge detection processing 

imshow(ed1);% display Sobel edge detected image  

figure 

imshow(ed2);% display Canny edge detected image  

figure, imshow(i);% display original image 
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APPENDIX 3B: 

 

 

Detecting a Cell Using Image Segmentation 

 

An object can be easily detected in an image if the object has sufficient contrast from 

the background. We use edge detection and basic morphology tools to detect the blood 

cells. 

 

Step 1: Read Image 

Read in ‘cell.tif’, which is an image of the blood cell: 

I = imread('cell.tif'); 

figure, imshow(I), title('original image'); 

 

 

Step 2: Rescale the Image 

We use the imadjust function to rescale the image so that it covers the entire dynamic 

range ([0, 1]). 

DI = imadjust(I, [], [0 1]); 

figure, imshow(DI), title('scaled image'); 
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Step 3: Detect Entire Cells 

Seven cells are present in this image, but only one cell can be seen in its entirety. We 

will detect this cell. Another word for object detection is segmentation. The object to be 

segmented differs greatly in contrast from the background image. Changes in contrast 

can be detected by operators that calculate the gradient of an image. One way to 

calculate the gradient of an image is the Sobel operator, which creates a binary mask 

using a user-specified threshold value. We determine a threshold value using the 

graythresh function. To create the binary gradient mask, we use the edge function. 

 

BWs = edge(DI, 'sobel', (graythresh(DI) * .1)); 

figure, imshow(BWs), title('binary gradient mask'); 
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Step 4: Fill Gaps 

The binary gradient mask shows lines of high contrast in the image. These lines do not 

quite delineate the outline of the object of interest. Compared to the original image, you 

can see gaps in the lines surrounding the object in the gradient mask. These linear gaps 

will disappear if the Sobel image is dilated using linear structuring elements, which we 

can create with the strel function. 

se90 = strel('line', 3, 90);  

se0 = strel('line', 3, 0);    

 

Step 5: Dilate the Image 

The binary gradient mask is dilated using the vertical structuring element followed by 

the horizontal structuring element. The imdilate function dilates the image. 

BWsdil = imdilate(BWs, [se90 se0]); 

figure, imshow(BWsdil), title('dilated gradient mask'); 

 

 

Step 6: Fill Interior Gaps 

The dilated gradient mask shows the outline of the cell quite nicely, but there are still 

holes in the interior of the cell. To fill these holes we use the imfill function. 

BWdfill = imfill(BWsdil,'holes'); 

figure, imshow(BWdfill);  

title('binary image with filled holes'); 
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Step 7: Remove Connected Objects on Border 

The cell of interest has been successfully segmented, but it is not the only object that 

has been found. Any objects that are connected to the border of the image can be 

removed using the imclearborder function. The connectivity in the 

imclearborder function was set to 4 to remove diagonal connections. 

BWnobord = imclearborder(BWdfill, 4); 

figure, imshow(BWnobord), title('cleared border image'); 

 

 

Step 8: Smooth the Object 

Finally, in order to make the segmented object look natural, we smooth the object by 

eroding the image twice with a diamond structuring element. We create the diamond 

structuring element using the strel function. 
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seD = strel('diamond',1); 

BWfinal = imerode(BWnobord,seD); 

BWfinal = imerode(BWfinal,seD); 

figure, imshow(BWfinal), title('segmented image'); 

 

 

An alternate method for displaying the segmented object would be to place an outline 

around the segmented cell. The outline is created by the bwperim function. 

BWoutline = bwperim(BWfinal); 

Segout = imadd(I, immultiply(BWoutline, 255)); 

figure, imshow(Segout), title('outlined original image'); 

 

 



Appendix 3C: 

 

 

 109 

APPENDIX 3C: 

 

 

SDC Morphology Toolbox Functions 

 

The SDC Morphology Toolbox Functions can be classified by 17 categories. Each 

category has its own classification and suitability when it will be applied to solve the 

problems of image processing. According to documentation site in SDC Information 

Systems official website and manual reference, below are the lists of the SDC 

Morphology Toolbox Functions. 

1. Data Type Conversion  

mmbinary  : Convert a gray scale image into a binary image.  

mmfreedom  : Control automatic data type conversion. 

mmgray  : Convert a binary image into a gray scale image.  

 

2. Image Creation  

mmdrawv  : Superpose points, rectangles and lines on an image. (replaces 

mmdraw)  

mmframe  : Create a frame image.  

mmtext  : Create a binary image of a text.  

 

3. Image file I/O  

mmreadgray  : Read an image from a commercial file format and stores it as a 

gray scale image.  

mmwrite : Write a gray-scale image into a commercial file format. 

 

4. Relations  

mmcmp  : Compare two images pixel wisely.  

mmis  : Verify if a relationship among images is true or false.  

 

5. Operations  

mmaddm  : Addition of two images, with saturation.  

mmintersec  : Intersection of images.  

file:///D:/MATLAB6p5/morph1.2/html/morph/mmbinary.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmfreedom.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmgray.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmdrawv.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmframe.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmtext.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmreadgray.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmwrite.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmcmp.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmis.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmaddm.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmintersec.html
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mmneg  : Negate an image.  

mmsubm  : Subtraction of two images, with saturation.  

mmsymdif  : Symmetric difference between two images.  

mmtoggle  : Image contrast enhancement or classification by the toggle 

operator.  

mmunion  : Union of images.  

 

6. Structuring Elements  

mmimg2se  : Create a structuring element from a pair of images.  

mmsebox  : Create a box structuring element.  

mmsecross  : Cross structuring element.  

mmsedil  : Dilate one structuring element by another  

mmsedisk  : Create a disk or a semi sphere structuring element.  

mmsedomain  : Control implicit finite or infinite domain for image Minkowski 

operations. 

mmseline  : Create a line structuring element. 

mmsereflect  : Reflect a structuring element 

mmserot  : Rotate a structuring element. 

mmseshow  : Display a structuring element as an image. 

mmsesum  : N - 1 iterative Minkowski additions  

mmsetrans  : Translate a structuring element 

mmseunion  : Union of structuring elements 

 

7. Dilations and Erosions  

mmcdil  :  Dilate an image conditionally.  

mmcero  :  Erode an image conditionally.  

mmdil  :  Dilate an image by a structuring element.  

mmero  :  Erode an image by a structuring element.  

 

8. Morphological Filters  

mmasf  : Alternating Sequential Filtering.  

mmcenter  : Center filter.  

mmclose  : Morphological closing.  

mmopen  : Morphological opening.  

 

 

file:///D:/MATLAB6p5/morph1.2/html/morph/mmneg.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsubm.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsymdif.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmtoggle.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmunion.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmimg2se.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsebox.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsecross.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsedil.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsedisk.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsedomain.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmseline.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsereflect.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmserot.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmseshow.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsesum.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsetrans.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmseunion.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmcdil.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmcero.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmdil.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmero.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmasf.html
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9. Image Transforms  

mmdist  :  Distance transform.  

mmgdist  :  Geodesic Distance Transform.  

mmopentransf  :  Open transform.  

 

10. Connected Operators  

mmareaclose  : Area closing  

mmareaopen  : Area opening. 

mmasfrec  : Alternating Sequential Filtering by reconstruction 

mmclohole  : Close holes of binary and gray scale images. 

mmcloserec  : Closing by reconstruction. 

mmflood  : Flooding filter h, v, a-basin and dynamics (depth, area, volume).  

mmhbasin  : Remove basins with contrast smaller than h. 

mmhdome  : Remove peaks with contrast smaller than h. 

mminfrec  : Inf reconstruction. 

mminpos  : Minima imposition. 

mmopenrec  : Opening by reconstruction. 

mmregmax  : Regional Maximum. 

mmregmin  : Regional Minimum (with generalized dynamics). 

mmsuprec  : Sup reconstruction. 

mmvbasin  : Remove basins with volume smaller than v. 

mmvdome  : Remove domes with volume smaller than v. 

 

11. Residues  

mmcbisector : N Conditional bisector. 

mmcloserecth : Close by Reconstruction Top Hat.  

mmcloseth  : Closing Top Hat. 

mmedgeoff : Eliminate the objects that hit the image frame. 

mmgradm  : Morphological gradient. 

mmlastero : Last erosion. 

mmopenrecth : Open by Reconstruction Top Hat.  

mmopenth : Opening Top Hat.  

mmskelm : Morphological skeleton (Medial Axis Transform).  

mmskelmrec : Morphological skeleton reconstruction (Inverse Medial Axis 

Transform).  

 

file:///D:/MATLAB6p5/morph1.2/html/morph/mmdist.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmgdist.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmopentransf.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmareaclose.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmareaopen.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmasfrec.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmclohole.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmcloserec.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmflood.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmhbasin.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmhdome.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mminfrec.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mminpos.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmopenrec.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmregmax.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmregmin.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsuprec.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmvbasin.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmvdome.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmcbisector.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmcloserecth.html
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file:///D:/MATLAB6p5/morph1.2/html/morph/mmgradm.html
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12. Intervals (hit-or-miss templates)  

mmendpoints : Interval to detect end points. 

mmhomothick : Interval for homotopic thickening. 

mmhomothin  : Interval for homotopic thinning. 

mminterot  : Rotate an interval. 

mmintershow  : Visualize an interval. 

mmse2hmt  : Create a Hit or Miss Template (or interval) from a pair of 

structuring elements.  

mmse2interval  : Create an interval from a pair of structuring elements. 

 

13. Sup-generating and Inf-generating  

mminfcanon  : Intersection of inf generating operators. 

mminfgen  : Inf generating.  

mmsupcanon  : Union of sup generating or hit miss operators.  

mmsupgen  : Sup generating (hit miss).  

mmthreshad  : Threshold (adaptive). 

 

14. Thinning and Thickening  

mmcthick  : Image transformation by conditional thickening.  

mmcthin  : Image transformation by conditional thinning.  

mmcwatershed  : Detection of watershed from markers.  

mmiwatershed  : Interactive watershed from markers.  

mmskiz  : Skeleton of Influence Zone also know as Generalized Voronoi 

Diagram 

mmswatershed  : Detection of similarity based watershed from markers. 

mmthick  : Image transformation by thickening.  

mmthin  : Image transformation by thinning.  

mmwatershed  : Watershed detection.  

 

15. Measurements  

mmblob  : Blob measurements from a labeled image.  

mmfractal  : Compute the fractal dimension of a binary image using 

Minkowski sausage model.  

mmgrain  : Scale statistics for each labeled region.  

mmhistogram  : Find the histogram of the image f.  

mmlabel  : Label a binary image.  

file:///D:/MATLAB6p5/morph1.2/html/morph/mmendpoints.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmhomothick.html
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mmlabelflat  : Label the flat zones of gray scale images. 

mmpatspec  : Pattern spectrum (also known as granulometric size density).  

mmstats  : Find global image statistics.  

 

16. Visualization  

mmdtshow  : Display a distance transform image with an iso-line colour table.  

mmgdtshow  : Display a distance transform image with an iso-line colour table. 

mmglblshow  : Apply a random colour table to a gray-scale image. 

mmgshow  : Apply binary overlays as colour layers on a binary or gray-scale 

image 

mmlblshow  : Display a labeled image assigning a random colour for each label. 

mmshow  : Display binary or gray scale images and optionally overlay it with 

binary images.  

mmsurf  : Generate a shaded visualization image of a gray scale image as a 

topographic model.  

mmtruesize  : Make the image display true size to screen pixels. 

 

17. Obsolete  

mmdraw  : Superpose rectangles and lines on an image. Obsolete, use 

mmdrawv.  

mmisbinary  : Check for binary image. Obsolete, use mmis.  

mmisequal  : Verify if two images are equal. Obsolete, use mmis.  

mmislesseq  : Verify if one image is less or equal another. Obsolete, use mmis.  
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file:///D:/MATLAB6p5/morph1.2/html/morph/mmshow.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmsurf.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmtruesize.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmdraw.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmisbinary.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmisequal.html
file:///D:/MATLAB6p5/morph1.2/html/morph/mmislesseq.html
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APPENDIX 3D: 

 

 

The SDC Morphology Toolbox Demonstrations Scripts and Its Descriptions. 

 

mmdairport  : Detecting runways in satellite airport imagery.  

mmdarea  : Remove objects with small areas in binary images.  

mmdasp  : Detect the missing aspirin tablets in a card of aspirin tablets.  

mmdbeef  : Detect the lean meat region in a beef steak image.  

mmdblob  : Demonstrate blob measurements and display.  

mmdbrain  : Extract the lateral ventricle from an MRI image of the brain.  

mmdcalc  : Extract the keys of a calculator.  

mmdcells  : Extract blood cells and separate them.  

mmdchickparts  : Classify chicken parts in breast, legs, thighs and wings  

mmdconcrete : Aggregate and anhydrous phase extraction from a concrete 

section observed by a SEM image. 

mmdcookies  : Detect broken rounded biscuits.  

mmdcornea  : Cornea cells marking.  

mmdfabric  : Detection of vertical weave in fabrics.  

mmdfila  : Detect Filarial Worms.  

mmdflatzone  : Flat zone image simplification by connected filtering. 

mmdflow  : Detect water in a static image of an oil water flow 

experiment. 

mmdgear  : Detect the teeth of a gear.  

mmdholecenter  : Hole center misalignment in PCB.  

mmdlabeltext  : Segmenting letters, words and paragraphs.  
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file:///D:/MATLAB6p5/morph1.2/html/mmdemos/mmdasp.html
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file:///D:/MATLAB6p5/morph1.2/html/mmdemos/mmdchickparts.html
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mmdleaf  : Segment a leaf from the background.  

mmdlith  : Detect defects in a microelectronic circuit.  

mmdpcb  : Decompose a printed circuit board in its main parts.  

mmdpieces  : Classify two dimensional pieces.  

mmdpotatoes  : Grade potato quality by shape and skin spots.  

mmdrobotop  : Detect marks on a robot.  

mmdruler  : Detect defects in a ruler.  

mmdsoil  : Detect fractures in soil.  
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APPENDIX 4A: 

 

 

Sample Images; 

 

Exposed time = 0 hour 
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Exposed time = 1 hour 

   

   

   

 

Exposed time = 3 hours 
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Exposed time = 5 hours 

   

   

   

 

Exposed time = 7 hours 
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Exposed time = 10 hours 

   

   

   

 

Exposed time = 14 hours 
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Exposed time = 20 hours 

   

   

   

 

Exposed time = 31 hours 
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Exposed time = 43 hours 
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APPENDIX 4B: 

 

 

Diameter of Nuclear Track Area Conversion to micrometre unit; 

 

The shape of Nuclear track was presumed as circular (circle), A in pixel
2
 unit and d is 

diameter; 

    
   

 
  pixel
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  pixel 

Note that, the image resolution is equal to 180 pixels per inch, and 1 inch is equal to 

2.54 cm. 
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The images were taken at 260 magnifications, hence the real value of d can be required 

by reducing its magnifications. 
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If AIPTM = 149.80 pixel
2
 and ASDC =154.25 pixel

2
, (Table 5:3); 
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