
PERFORMANCE ENHANCEMENT FRAMEWORK FOR CLOUDLET IN
MOBILE CLOUD COMPUTING

MD WHAIDUZZAMAN

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

PERFORMANCE ENHANCEMENT FRAMEWORK FOR
CLOUDLET IN MOBILE CLOUD COMPUTING

MD WHAIDUZZAMAN

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Md Whaiduzzaman

Registration/Matrix No.: WHA110054

Name of Degree: Doctor of Philosophy

Performance Enhancement Framework for Cloudlet in Mobile Cloud Computing

Field of Study: Computer Science

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

Univ
ers

ity
 of

 M
ala

ya

ABSTRACT

A tremendous increase in the use of mobile devices, such as smart phones and tablets,

has been observed in recent years. Mobile device resources, such as CPU, memory and

storage resources, have also experienced dramatic increases in capacity. Simultaneously,

a rich variety of mobile applications that require extensive computational resources for

mobile application execution have been developed. These new applications are com-

plemented with cloud resources through the emerging Mobile Cloud Computing (MCC)

paradigm. MCC augments mobile device capabilities by leveraging the resources of dis-

tant clouds, nearby cloudlets or mobile ad-hoc clouds in the vicinity. However, practical

utilization of MCC is hindered by limitations associated with network connectivity. In the

case of distant clouds, jitter, bandwidth, and propagation delay pose a challenge to real-

time application response. On the other hand, cloudlets and mobile ad-hoc clouds are not

sufficiently resource-rich to be able to support rich mobile applications. In this research,

we consider a mobile user in the vicinity of a cloudlet that is situated at a distance of one

hop through a Wi-Fi communication medium. We show that a substantial number of users

accessing the cloudlet for computation-intensive tasks results in delayed task completion

and ultimately diminishes the benefits of using cloudlets. The problem is referred to as

the cloudlet resource scarcity problem. To alleviate this problem, various researchers have

offered solutions whereby mobile device resources are used for partial task completion.

However, the proposed approaches do not consider the mobile device offered-service-

to-load ratio. In this research, we propose the Mobile-device-based Cloudlet Resource

Enhancement (MobiCoRE) framework for mobile application augmentation to employ

nearby mobile devices while ensuring the following: (i) mobile devices always obtain

time benefits for their tasks when submitted to the cloudlet, and (ii) the cloudlet-induced

mobile device load is a fraction of its own service requirements. We map MobiCoRE on

iii

Univ
ers

ity
 of

 M
ala

ya

the M/M/c/K queue and model the system using a birth-death Markov chain. We show

that for cloudlets, the framework always obtains the maximum advantage for mobile de-

vices in terms of job completion time when the cloudlet service time is set to c̄
λ

, where c̄

is the cloudlet utilization and λ is the application arrival rate. Furthermore, the optimal

service time is independent of the application’s service requirement. We implemented the

MobiCoRE framework using the Openstack cloud. The evaluation shows that MobiCoRE

accommodates up to 50% more users when operating at the optimal service time and pro-

vides 50% time benefits for mobile users. The empirical analysis and statistical validation

demonstrate that our proposed framework, i.e., MobiCoRE, significantly and positively

impacts the cloudlet performance by exploiting and orchestrating nearby mobile device

resources.

iv

Univ
ers

ity
 of

 M
ala

ya

ABSTRAK

Peningkatan mendadak dalam penggunaan peranti mudah alih, seperti telefon pin-

tar dan tablet, telah diperhatikan dalam tahun-tahun kebelakangan ini. Sumber peranti

mudah alih, seperti CPU, memori dan storan, juga telah meningkat secara mendadak.

Pada masa yang sama, aplikasi mudah alih yang berpelbagai sedang dibangunkan dan

memerlukan sumber komputer yang luas untuk pelaksanaan aplikasi mudah alih ini. Ap-

likasi baru ini dilengkapi dengan menggunakan sumber cloud melalui paradigma Mobile

Cloud Computing (MCC) yang kian memuncul. MCC menambahkan kemampuan peranti

mudah alih dengan memanfaatkan sumber-sumber cloud yang jauh, cloudlet berdekatan

atau cloud mudah alih ad-hoc di sekitar berhampiran. Walau bagaimanapun, penggunaan

MCC yang praktikal dihalang oleh batasan yang berkaitan dengan pencapaian rangka-

ian. Dalam kes cloud jauh: ketar, lebar jalur, dan kelewatan perambatan menimbulkan

cabaran kepada respons masa nyata aplikasi. Sebaliknya, cloudlet dan cloud mudah alih

ad-hoc tidak mempunyai sumber yang mencukupi untuk menyokong pelbagai aplikasi

mudah alih. Dalam kajian ini, kami mengkaji pengguna mudah alih di kawasan berham-

piran cloudlet, yang terletak pada satu jarak hop melalui medium komunikasi Wi-Fi. Kita

menunjukkan bahawa sebilangan besar pengguna yang mengakses cloudlet untuk tugas-

tugas komputer intensif mengakibatkan kelewatan menyiapkan tugas, dan akhirnya men-

gurangkan manfaat menggunakan cloudlet. Masalah ini dirujuk sebagai masalah kekuran-

gan sumber cloudlet. Untuk mengurangkan masalah ini, penyelidik mencadangkan satu

penyelesaian di mana sumber peranti mudah alih akan digunakan untuk menyempurnakan

tugas separa. Walau bagaimanapun, pendekatan yang dicadangkan tidak mengambil kira

nisbah perkhidmatan muatan yang diberi oleh peranti mudah alih. Dalam kajian ini, kami

mencadangkan satu rangka kerja Peningkatan Sumber Cloudlet yang berdasarkan rangka

Cloudlet Resource Enhancement (MobiCoRE) untuk menambahkan aplikasi mudah alih

v

Univ
ers

ity
 of

 M
ala

ya

dengan menggunakan peranti mudah alih yang berhampiran di samping memastikan ba-

hawa: (i) peranti mudah alih sentiasa mempunyai manfaat masa untuk tugas-tugas yang

diserahkan kepada cloudlet, dan (ii) muatan peranti mudah alih yang disebabkan oleh

cloudlet merupakan sebahagian daripada keperluan perkhidmatan cloudlet itu. Kami

memetakan MobiCoRE pada barisan M / M / c / K dan model sistem itu dengan meng-

gunakan rantaian kelahiran mati Markov. Kami menunjukkan bahawa cloudlet sentiasa

mengakibatkan kelebihan maksimum bagi peranti mudah alih di segi masa tamat tugas

apabila masa perkhidmatan cloudlet ditetapkan untuk c / λ di mana c adalah penggunaan

cloudlet dan λ ialah kadar pencapaian aplikasi. Tambahan pula, masa perkhidmatan yang

optimum adalah tidak bergantung kepada keperluan perkhidmatan aplikasi. Kami melak-

sanakan rangka kerja MobicoRE menggunakan Openstack cloud. Penilaian menunjukkan

bahawa MobiCoRE menampung sehingga 50% pengguna tambahan semasa mengenda-

likan perkhidmatan optimum dan menyediakan 50% manfaat masa kepada pengguna mu-

dah alih. Analisis empirikal dan pengesahan statistik menunjukkan bahawa rangka kerja

yang dicadangkan, MobiCoRE, jelas memberi impak positif kepada prestasi cloudlet den-

gan mengeksploitasikan dan mengatur sumber peranti mudah alih berhampiran.

vi

Univ
ers

ity
 of

 M
ala

ya

ACKNOWLEDGEMENTS

First and foremost, I want to express my gratitude and thanks to the Almighty, the creator

of the universe, for enabling me with the strength, wisdom, and endless blessings to help

me to go through the most challenging journey in my life.

I sincerely express my deepest and sincere gratitude to my supervisor, Professor Dr.

Abdullah Gani, Dean of FCSIT, for his endless guidance, continuous support throughout

my PhD study. His wisdom, motivation and encouragement have made me both a good

person and a confident researcher. He helped me to see the research as well as the life in

to a new perspective. His consistent support and invaluable guidance enabled my research

into a good piece of work.

My hearty thanks must go to Dr. Anjum Naveed, Senior Lecturer, Faculty of Com-

puter Science & Information Technology, UM, who has provided the vision, encourage-

ment and technical guidance to proceed through this doctoral program and complete my

thesis.

I would like to express my special appreciation and thanks to my wife, for her sup-

port, encouragement and sacrifice. Special thanks to my brothers and sisters, parent-in-

law who sacrificed their joyful companion and accepted the distance and gap of my PhD

pursuing time. I would also like to express my deep appreciation to my MCC lab mates

who always encouraged me in my tough time.

Finally, I would like to thank the financial support and assistance of High Impact Re-

search (HIR) grant by the Ministry of Higher Education, Malaysia. My sincere thanks go

to the honorable Vice Chancellor of Jahangirnagar University and the JU administration

to provide me the opportunity to complete my PhD.

vii

Univ
ers

ity
 of

 M
ala

ya

DEDICATION

TO MY LATE PARENTS

viii

Univ
ers

ity
 of

 M
ala

ya

TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION ii

ABSTRACT iii

ABSTRAK v

ACKNOWLEDGEMENTS vii

TABLE OF CONTENTS ix

LIST OF FIGURES xiii

LIST OF TABLES xv

LIST OF APPENDICES xvii

CHAPTER 1: INTRODUCTION 1
1.1 Background 1
1.2 Motivation 4
1.3 Statement of Problem 6
1.4 Statement of Objectives 8
1.5 Proposed Methodology 9
1.6 Thesis Layout 10

CHAPTER 2: LITERATURE REVIEW 14
2.1 Background 15

2.1.1 Cloud and Mobile Cloud Computing 15
2.1.2 Cloudlets and Mobile Cloud Computing 16
2.1.3 Cloud based Mobile Applications 19
2.1.4 Limitations of Clouds in MCC 20

2.2 Application Execution in MCC 20
2.2.1 Client Server based Mobile Application Execution 21
2.2.2 VM Based Mobile Application Execution 22
2.2.3 Application Offloading for Cloud/Cloudlet Execution 23

2.3 Cloudlet Resource Augmentation 26
2.3.1 Cloudlet based Cloudlet Augmentation 26
2.3.2 Cloud based Cloudlet Augmentation 29
2.3.3 Mobile Device based Cloudlet Augmentation 31
2.3.4 Adhoc-Mobile-devices based Cloudlet Augmentation 32

2.4 Cloudlet Resource Optimization and Management 33
2.5 Applications of Cloudlets 37
2.6 Limitations of Cloudlets 39
2.7 Research Challenges and Open Issues 40

ix

Univ
ers

ity
 of

 M
ala

ya

2.7.1 Mobile Application Modification 42
2.7.2 Mobile Application Partitioning 42
2.7.3 Heterogeneity in Application Augmentation 42
2.7.4 Mobile-based Augmentation and Software Installs 42
2.7.5 Resource Availability and Scalability 43
2.7.6 Mobile-based Augmentation and Load Balancing 43
2.7.7 Consistent and Seamless Connectivity 43
2.7.8 Privacy and Integrity 44

2.8 Conclusion 44

CHAPTER 3: RESOURCE SCARCITY IN CLOUDLETS: PROBLEM
ANALYSIS 46

3.1 System Description 46
3.1.1 System Parameter Definitions 47
3.1.2 CPU Resources, Queue and User Arrival Scenario 48
3.1.3 Assumptions 49

3.2 Experimental Setup 50
3.2.1 Experimental Model 51

3.2.1.1 Cloudlet Resources 51
3.2.1.2 Mobile Device 51
3.2.1.3 Connectivity 53
3.2.1.4 Prototype Application 53
3.2.1.5 Performance Metrics 54

3.3 Empirical Analysis of Cloudlet Finite Resources Impact 54
3.3.1 CPU Utilization 55
3.3.2 Efficiency 56
3.3.3 Throughput 57
3.3.4 Task Completion Time 59
3.3.5 User Time Benefit 60

3.4 Cloudlet System Behavior Synthesis 62
3.4.1 Resource Enhancement Effects: 63

3.4.1.1 Number of User Served: 63
3.4.1.2 Number of Users in the System 64
3.4.1.3 Number of Users Waiting in the System 65
3.4.1.4 Uses of CPU Resource 66
3.4.1.5 Response Time of Cloudlet 66
3.4.1.6 Waiting Time in the Cloudlet 66

3.4.2 Maximum Number of User Enhancement: K-effect 68
3.4.2.1 Number of Users in the Cloudlet with Varying

Lambda and K 69
3.4.2.2 Resource CPU Utilization Uses by Varying Lambda

and K 70
3.4.2.3 Response Time with Varying Maximum Number of

Allowed User in Cloudlet 71
3.5 Preliminary Model 72

3.5.1 Notations 72
3.5.2 Model 73
3.5.3 Example 75

3.6 Conclusion 76

x

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 4: MOBICORE: MOBILE DEVICE BASED CLOUDLET
RESOURCE ENHANCEMENT FRAMEWORK 77

4.1 Overview of MobiCoRE 78
4.2 System Description 79

4.2.1 Admission Controller (AC) 79
4.2.2 Task Execution 81
4.2.3 Service Controller (SC) 81

4.2.3.1 Desired Service Time Computation 82
4.2.3.2 Record Keeping of Time Served 83
4.2.3.3 Decision on Task Vacation 83

4.2.4 Task State Wrapper 84
4.2.5 Task Flow 84

4.3 Existing Limitations and MobiCoRE Solution 86
4.4 Mathematical Model of MobiCoRE 87

4.4.1 Cloudlet Service Model 87
4.4.2 Mobile Computation Model 90

4.5 Conclusion 91

CHAPTER 5: IMPLEMENTATION AND EVALUATION 93
5.1 Experimental Setup 93

5.1.1 MobiCoRE Implementation 94
5.1.2 Mobile Device Data Collection 95
5.1.3 Model Data Collection Mechanism 95
5.1.4 Evaluation Metrics 96
5.1.5 Statistical Validation of Data 97

5.2 Model Validation Data 99
5.3 Parametric Analysis Data 99

5.3.1 Task Completion Time 100
5.3.2 Probability of User Drop 100
5.3.3 Average CPUs Used 102

5.4 Performance Evaluation Data 106
5.4.1 Task Completion Time 106
5.4.2 Number of Users Served 109
5.4.3 Average Number of Users in Cloudlet 112

5.5 Conclusion 114

CHAPTER 6: RESULTS AND DISCUSSION 116
6.1 MobiCoRE Model Validation 116

6.1.1 Application Response Time 117
6.1.1.1 Statistical Validation 117

6.1.2 Average Number of Users 118
6.1.2.1 Statistical Validation 118

6.1.3 Number of Users and Response Time 119
6.2 MobiCoRE Operational Analysis 120

6.2.1 Task Completion Time 121
6.2.1.1 Service Time at T̄m = T̄c 123
6.2.1.2 Service Time at Max. Advantage 124

xi

Univ
ers

ity
 of

 M
ala

ya

6.2.1.3 Comparison of Service Time at T̄m = T̄c and Min.
Task Time 125

6.2.2 Analysis of Service Time at T̄m = T̄c 126
6.2.3 Analysis of Cloudlet Service Time at Minimum Task Time 128

6.2.3.1 Drop Rate and Minimum Task Time 129
6.2.3.2 Cloudlet Utilization and Minimum Task Time 131

6.2.4 Discussion 134
6.3 MobiCoRE Performance 134

6.3.1 Task Completion Time Advantage 135
6.3.2 Number of Applications Served 136
6.3.3 Cloudlet Response Time and Utilization 137
6.3.4 MobiCoRE Overhead on Mobile Device 139

6.4 Conclusion 140

CHAPTER 7: CONCLUSION 142
7.1 Research Objectives Revisited 142
7.2 Contributions 145

7.2.1 Taxonomy of Cloudlet based Resource Augmentation 145
7.2.2 Outlined Open Research Issues and Challenges 145
7.2.3 Finite Resource Impacts Investigation on Cloudlet based Mobile

Application Augmentation 145
7.2.4 Performance Enhancing MobiCoRE Framework 146
7.2.5 MobiCoRE Framework Evaluation and Validation 146
7.2.6 Generic Expression Development 147
7.2.7 International Scholarly Publications: 147

7.3 Significance of the Work 149
7.4 Future Research Work 150

REFERENCES 152

xii

Univ
ers

ity
 of

 M
ala

ya

LIST OF FIGURES

Figure 1.1 Mobile Cloud Computing Components 3
Figure 1.2 Thesis Layout Schematic Diagram 10
Figure 1.3 Thesis Layout Diagram 11

Figure 2.1 Cloudlet and Surrounding Mobile Devices Connected via Wi-Fi 17
Figure 2.2 Cloud based Source of Computing Resources 19
Figure 2.3 Mobile Applications Augmentation Taxonomy 22
Figure 2.4 Cloudlet based Mobile Application Augmentation Models and

Researchers 27

Figure 3.1 CPU Utilization 55
Figure 3.2 Cloudlet Efficiency 58
Figure 3.3 Cloudlet Throughput with Increasing User Task Loads 58
Figure 3.4 Application Execution Time in Cloudlet and Different Mobile Devices 60
Figure 3.5 Cloudlet Task Loads and User Time Benefit 62
Figure 3.6 Number of User Served in Cloudlet at CPU4 63
Figure 3.7 Number of User Served in Cloudlet at CPU8 63
Figure 3.8 Number of User in Cloudlet at CPU4 64
Figure 3.9 Number of User in Cloudlet at CPU8 65
Figure 3.10 Number of Waiting User in Cloudlet Queue at CPU4 65
Figure 3.11 Number of Waiting User in Cloudlet Queue at CPU8 66
Figure 3.12 Uses of CPU Resources in Cloudlet at CPU4 67
Figure 3.13 Uses of CPU Resources in cloudlet at CPU8 67
Figure 3.14 Cloudlet Response Time at CPU4 68
Figure 3.15 Cloudlet Response Time at CPU8 68
Figure 3.16 Cloudlet Waiting Time at CPU4 69
Figure 3.17 Cloudlet Waiting Time at CPU8 69
Figure 3.18 Cloudlet Users Effect Varying the Maximum Allowed User in the

Cloudlet 70
Figure 3.19 Cloudlet CPU Resource Uses Pattern Varying the Maximum

Allowed User 71
Figure 3.20 Cloudlet Response Time Observation Varying the Maximum

Allowed User 72

Figure 4.1 Schematic Block Diagram of MobiCoRE Framework 80
Figure 4.2 Functional Diagram of MobiCoRE 81
Figure 4.3 Service Controller Work Flow Diagram 82
Figure 4.4 Sequential Work Flow Interaction Diagram of Mobile Devices and

Cloudlet Task Completion 85
Figure 4.5 Birth Death Model of MobiCoRE 88

Figure 6.1 Task Completion Time 117

xiii

Univ
ers

ity
 of

 M
ala

ya

Figure 6.2 Average Number of Users in Cloudlet 119
Figure 6.3 Implementation Exec. Time and No. of Apps. 120
Figure 6.4 T̄ , T̄m and T̄c for varying T̄s 122
Figure 6.5 T̄s for T̄m = T̄c 123
Figure 6.6 Improvement in Total Time for Maximum Advantage 124
Figure 6.7 T̄s for Max. Adv. and T̄m = T̄c 125
Figure 6.8 T̄ for Varying ¯Treq 126

Figure 6.9 Comparison of T̄ T̄m=T̄c and ¯Tmin 127
Figure 6.10 T̄s for Varying ¯Treq 128
Figure 6.11 Users Served for Varying λ 129
Figure 6.12 PK for Varying λ 130
Figure 6.13 T̄s for Varying ¯Treq 131
Figure 6.14 Cloudlet Utilization for Varying T̄s and λ 132
Figure 6.15 Average Cloudlet Utilization at Max. Adv. 133
Figure 6.16 Execution Time Adv. 135
Figure 6.17 Per Device Completion Time Advantage 136
Figure 6.18 Percentage of Extra App. Served 137
Figure 6.19 Cloudlet Response Time vs Mobile Load 138
Figure 6.20 Improved Utilization vs Average Service Time 139
Figure 6.21 Execution Time Adv. 140

Figure .1 Openstack Cloudlet Snapshot 164
Figure .2 Openstack cloudlet flavours 164

xiv

Univ
ers

ity
 of

 M
ala

ya

LIST OF TABLES

Table 2.1 Comparison of Cloudlet and Distant Cloud 21
Table 2.2 Cloud/cloudlet based Augmentation Approaches and Issues 41

Table 3.1 Technical Specifications of Cloudlet Resources Used in Empirical
Analysis 52

Table 3.2 Technical Specifications of Mobile Device Used in Experiment 53
Table 3.3 Performance Metrics and Units Used in Empirical Analysis 54
Table 3.4 Cloudlet Systems Parameters and Efficiency 57
Table 3.5 Cloudlet Task Time with Increasing Number of Users in Cloudlet 59
Table 3.6 User Time Benefit with Different Tasks Load. 61

Table 4.1 MobiCoRE Parameters 79

Table 5.1 Evaluation Metrics 97
Table 5.2 Number of Average User in Model Validation 99
Table 5.3 Task Completion Time for Model Validation 100
Table 5.4 Response time of TCld,TMob,T,TAvd for Varying Service Time 101
Table 5.5 Probability of User Drop,PK Varying with Service Time 103
Table 5.6 Average CPUs Used for Varying Service Time 104
Table 5.7 Lambda=4, Require Time=60, Varying CPU 105
Table 5.8 C=4, Lambda=4, Cavg, Requirement Varies 105
Table 5.9 C=4, Require Time=60, Tresponse Varying Lambda 107
Table 5.10 C=4, Require Time=60, Tresponse Varying CPU 108
Table 5.11 C=4, Lambda=4, Time Require Varies 109
Table 5.12 C=4, Require Time=60, User Served Varying Service Time 110
Table 5.13 C=4, Require Time=60, Users Served Varying CPU 111
Table 5.14 C=4, Lambda=4, Require Time Varies 111
Table 5.15 Lambda=4, Require Time =60, Number of Arrival User Vary 113
Table 5.16 C=4, Lambda=4, Require Time Varies 114

Table 6.1 Paired Sample T-test: Task Completion Time 118
Table 6.2 Paired sample T-test: Cloudlet response time 118
Table 6.3 Paired Sample T-Test: Number of Avg User in the Cloudlet 118
Table 6.4 Parameters and Value Ranges 121

Table .1 Service Time of Individual Applications 165
Table .2 Number of Users in the System at the Time of Sampling 166
Table .3 C=4, Lambda=4, Req Varies 167
Table .4 Lambda=4, C=4, NAvg, Varying Require Time 169

xv

Univ
ers

ity
 of

 M
ala

ya

xvi

Univ
ers

ity
 of

 M
ala

ya

LIST OF APPENDICES

xvii

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 1 : INTRODUCTION

Technological advancements in the domains of computing and communication technolo-

gies have significantly influenced all areas of life. The ubiquitous nature of computers has

resulted in new applications of computing. Mobile cloud computing is a computational

paradigm that has quickly garnered widespread popularity in the computing era and is

expected to be an important technology in the future.

This chapter presents a holistic view of the research performed in this thesis. We

present the motivation and the theoretical background for the research on cloudlets in

Mobile Cloud Computing (MCC). The chapter discusses the problem statement, states

the objectives and describes the methodology used for the proposed research. Moreover,

the chapter specifies the objectives of this study and describes the methodology proposed

to achieve said objectives. The chapter is divided into six sections.

The remainder of the chapter is organized as follows. Section 1.1 presents a brief

overview of and background on mobile cloud computing and an introduction to cloudlets

and their characteristics as they pertain to this research. Section 1.2 is dedicated to the

motivation of this research and highlights the significance of the work by explaining the

importance of the proposed work. The statement of the problem addressed in this thesis is

presented in Section 1.3. This is followed by a statement of the objective and the proposed

methodology for addressing the research problem in Sections 1.4 and 1.5, respectively.

Section 1.6 describes the layout of the thesis.

1.1 Background

The introduction of cloud computing significantly changed the way computational

paradigms and technologies work. Cloud computing aggregates the resources of smaller

computational units to provide computing as a service. Instead of purchasing computers

1

Univ
ers

ity
 of

 M
ala

ya

that remain unused most of the time and that are under-utilized the remaining period of

time, computation time is purchased as necessary. In other words, computing can be

considered as similar to other utilities such as electricity, gas and water. This model

has significant advantages. The utilization of computers can be significantly improved,

resulting in lower costs to customers. Furthermore, the operation and maintenance costs

of the hardware are reduced, and the end customer need not worry about these aspects. In

short, the primary advantage of cloud computing is its ability to provide hassle-free and

cost-effective high-end computing and storage resources.

When cloud resources are accessed using battery-powered, resource-limited and

mobility-capable mobile devices such as smartphones, PDAs, tablet PCs and laptops, the

computational paradigm is referred to as mobile cloud computing. Mobile cloud comput-

ing faces additional challenges because of highly dynamic wireless network conditions

and low-resource mobile devices that are subject to battery power restrictions. There-

fore, in addition to providing high-end computing and storage resources, mobile cloud

computing must also consider the limited battery power of mobile devices. The addi-

tional advantage that mobile cloud computing must offer is the preservation of the battery

power of the mobile devices. Figure 1.1 shows a typical access scenario in mobile cloud

computing. With the introduction of mobile cloud computing, researchers have proposed

additional scenarios for computing, some of which overcome the limitations of the orig-

inal form of mobile cloud computing. The two most prominent scenarios are mobile ad

hoc clouds and cloudlets.

Mobile ad hoc clouds are formed by the sharing of the resources of mobile devices

amongst themselves in the absence of access to a large-scale cloud. Although the re-

sources of individual mobile devices are limited (Fernando, Loke, & Rahayu, 2013), the

aggregate of small amounts of resources becomes a quite powerful set of resources if

properly managed. Such clouds/cloudlets are expected to be used in social computing in

2

Univ
ers

ity
 of

 M
ala

ya

Smart

Phones

Wireless

Technology
Computational

Cloud

Figure 1.1: Mobile Cloud Computing Components

the future. Another form of mobile cloud computing is cloudlets. This thesis is based on

cloudlets; therefore, we highlight the salients of the cloudlets in a subsequent section.

Cloudlets are small-scale clouds located in close proximity to mobile users. Typ-

ically, a mobile user can access the cloudlet through one-hop wireless access. In the

future, cloudlets are expected to be deployed along with hotspots in locations such as

offices, clinics and cafes. Cloudlets are installed on discoverable, localized, stateless

servers running one or more virtual machines (VMs) on which mobile devices can aug-

ment resource-intensive mobile applications (Satyanarayanan, Bahl, Caceres, & Davies,

2009).

Cloudlets offer several advantages over distant clouds for mobile users. Mobile users

obtain instant and direct access to the cloudlet which eliminates several drawbacks such as

communication latency, jitter, and slow data transfer. In addition, mobile device can avoid

resource starvation and cloudlets ensure faster application execution times compared to

the mobile device results and provides a significantly enhanced user experience. Finally,

because the cloudlets are in vicinity to the mobile user, which can save money by avoiding

expensive data transfers.

A number of useful applications that can use cloudlet technology have been proposed

3

Univ
ers

ity
 of

 M
ala

ya

by researchers. The diversity in potential applications indicates that cloudlets will see

significant deployment in the near future and be used as an enabling technology in the

future.

1.2 Motivation

The recent explosive growth of mobile and distributed computing, wireless network-

ing, and IOT (Internet Of Things) has changed ubiquitous computing for mobile users.

Mobile devices such as smartphones, tablets, and Personal Digital Assistants (PDAs)

have become an integrated aspect of technologically advanced lifestyles. Among them,

smartphones represent a one-upmanship due to their miniature nature and interesting fea-

tures, including voice and video calling, perception, multimedia, and geolocation services

(Albanesius, 2011). According to Gartner, smartphones have been leading the mobile

device market with a greater than 55% overall sales share in the last quarter of 2013

(Gartner, 2013). A report by Juniper Research stated that the consumer and enterprise

markets for cloud-based mobile applications are expected to increase by $9.5 billion by

2014, which demonstrates the increasing mobile computing use trends.

It is evident that smartphones have become an enabling technology to serve mankind

in several critical areas, particularly healthcare, education, tele-monitoring, urban man-

agement, and disaster recovery. However, smartphone capabilities are encumbered by

their intrinsic limitations, particularly constraints on the battery, Central Processing Unit

(CPU), and memory resources. Therefore, smartphone resource augmentation through

clouds and cloudlets is as necessary a technology as smartphones themselves. The ubiq-

uitous nature of smartphones and the mobile user expectations of being able to perform

any task at any time and place require computational augmentation in close proximity to

the smartphones.

A number of useful applications that can use cloudlet technology have been pro-

4

Univ
ers

ity
 of

 M
ala

ya

posed by various researchers. The most promising application proposed is the cognitive

augmentation of physically disabled people by connecting their body-worn computational

units to nearby cloudlets for computational offloading as they move around. Researchers

have proposed context awareness, sign language translation and online dictionaries as

potential applications that represent important needs in the future. Similarly, the appli-

cation of cloudlets in the domain of medical emergency response, healthcare and social

interaction has also been proposed. Finally, social interaction and multiplayer interactive

gaming have also been proposed as potential application areas for cloudlets.

Satyanarayanan (Satyanarayanan et al., 2009) first introduced the cloudlet concept

and described it as a “data center in a box”. Cloudlets are simple to deploy and manage,

thereby making them feasible to deploy on a business premises such as a coffee shop or

a doctor’s office. These same features of cloudlets make them ideal for large-scale de-

ployment in conjunction with WiFi hotspots. Such a deployment can enable a vast range

of applications, as previously discussed in this chapter. All these applications are rich

applications and require intensive computations that are generally beyond the capabilities

of a single mobile device.

The combination of the following facts necessitates research on addressing the issues

related to cloudlets.

• Mobile devices are resource-limited. The small and light-weight design of mobile

devices constrains the addition of extensive resources into mobile devices.

• Mobile device users expect their devices to be able to perform any computational

task and execute any mobile application irrespective of their location and time in-

volved. This ubiquitous nature of demand requires resource augmentation from

close proximity.

• The expected mobile applications are resource hungry, therein requiring extensive

5

Univ
ers

ity
 of

 M
ala

ya

computational capacities that are not available to the mobile device itself. This

necessitates mobile device resource augmentation, possibly from computational re-

sources in close proximity that are faster and easy to access at low cost.

• The best and closest source of resource augmentation for mobile devices is cloudlets

that are generally one hop away, do not experience the network issues suffered by

WANs and can offer a reasonable amount of resources at minimal or no cost.

This thesis represents an effort to address one of the most critical research problems

in the domain of mobile cloud computing and is directly related to cloudlets. It is expected

that the proposed research will bring cloudlets one step closer to wide-scale deployment

in urban areas.

1.3 Statement of Problem

Despite the significant advantages of cloudlets and potential use cases, cloudlets

have certain limitations. Such limitations also represent research challenges that must be

addressed before cloudlets can be widely deployed. A majority of cloudlets are expected

to be deployed as free resources. In such situations, anyone can offload any piece of code

onto the cloudlets to enhance the computational capacity of their mobile devices.

The cloudlet resources are shared with no significant bounds on the level of load that

a mobile user can offload onto the cloudlet. This can lead to the problem of fairness and

starvation. Certain users can occupy the cloudlet for extended periods of time, thereby

resulting in poor performance for the remaining users. This can also lead to starvation

and denial of service for the users. Furthermore, proper admission control is required to

ensure the service granted for the users, which is not the default case with cloudlets.

One of the major limitations and research challenges concerns the problem of limited

resources in the cloudlet. The limited and finite resources must be shared amongst multi-

ple users. In general, the computational resources are shared using time sharing policies

6

Univ
ers

ity
 of

 M
ala

ya

with no priority. Consequently, if the number of users sharing the cloudlet resources in-

creases, the per user time share of the computational resources decreases, and the wait

time between successive computation cycles increases.

In addition, under substantial workloads, the wait time between consecutive com-

putations can be significantly high. The effective computational capacity offered by the

cloudlet to individual users can be comparable or even less than the computational ca-

pacity of the users’ mobile devices. In other words, the effective execution time on the

cloudlet for mobile applications can be higher than the execution time when the applica-

tion is executed on the mobile device. Given that cloudlets offer free services, therefore,

the limited resources of the cloudlets can significantly degrade the user experience and

affect the offered service. The primary objective of improved computation time for which

the cloudlets are used is not achieved when subject to substantial numbers of workloads

unless an alternate arrangement is applied.

We refer to this problem as the problem of resource scarcity under increased resource

utilization of the cloudlets, which affects the ability of the cloudlet to efficiently complete

the user application tasks. Under such circumstances, the mobile users are unable to

obtain the desired benefit of faster computations from the cloudlets. In this thesis, we

analyse the problem of resource scarcity with reference to the user service experience

with the cloudlet.

7

Univ
ers

ity
 of

 M
ala

ya

This issue brings us to the statement of the following research problem:

Cloudlet resource utilization, particularly CPU utilization, increases proportionally

with increasing number of computation-intensive mobile application tasks augmented by

the cloudlet. The time sharing mechanism of the cloudlet produces an increased wait time

between computation cycles for each application. Consequently, such extensive resource

utilization leads to the resource scarcity problem in the cloudlet. The limited resources of

the cloudlet negatively impact the cloudlet response time, user service time, and overall

cloudlet efficiency and leads to degraded cloudlet performance.

1.4 Statement of Objectives

This research is undertaken with the aim to address the problem of resource scarcity

under heavy loads in cloudlets with finite resources using nearby mobile device resources.

The aim is achieved through the following set of objectives:

• To study and identify recent cloudlet-based mobile application augmentation ap-

proaches and gain an insight into offloading in MCC that helps us to identify

the current problems in computation-intensive mobile application augmentation in

MCC.

• To investigate and analyse the impact of limited and finite resources on cloudlet

performance in cloudlet-based mobile application augmentation.

• To propose a performance enhancement framework for cloudlets in MCC for cloudlet-

based computation-intensive mobile application augmentation.

• To evaluate the performance of the proposed framework by considering several

performance metrics such as user service time, cloudlet response time and resource

utilization.

8

Univ
ers

ity
 of

 M
ala

ya

1.5 Proposed Methodology

This study has been conducted in four steps corresponding to the four research ob-

jectives. The steps are outlined as follows.

A comprehensive review and synthesis of recent mobile computation outsourcing

efforts based on cloudlets in MCC is undertaken to identify the impact of the resource

scarcity problem in cloudlets. The cloud-based literature on cloud-/cloudlet-based mo-

bile augmentation performance is reviewed using scholarly digital libraries, particularly

IEEE, Science Direct, Springer and Web of Science. We also examine the impacts of

finite-resource cloudlets in MCC from different dimensions and identify several research

issues through the literature review. We identify the most significant research problems

to address in this research.

We investigate the identified problem and verify its significance through an exper-

imental analysis in a real MCC environment using an android-based smartphone and

Openstack cloud Havana version on the Linux Ubuntu 12.04 platform. Using a series

of experiments on local mobile devices and a cloudlet computing test bed, we evaluate

the performance when executing computation-intensive applications on the cloudlet to

verify the severity of the identified research problem.

To alleviate the identified problem, we implement and design a performance en-

hancement framework for cloudlets in MCC to achieve efficient computation-intensive

mobile application augmentation in cloudlets. The proposed framework is composed of

three layers of various building blocks of workflows. To achieve the efficient execution

of cloudlet applications and enhanced cloudlet performance, we design the MobiCoRE

framework for orchestrating resource sharing for mobile devices on cloudlets. The im-

plementation is used to test the proposed solution and to provide a comparison with the

mathematical model.

9

Univ
ers

ity
 of

 M
ala

ya

We evaluate the performance of our proposed framework using a mathematical model

as well as an empirical analysis. A computation-intensive prototype application is used

for empirical Wi-Fi environment. The entire solution is mathematically modelled. The

verification. The performance evaluation test bed is built using real android-based smart-

phones and Open stack cloudlet-based resources in a model is verified for correctness

and accuracy by comparing the results generated by the model with the empirical results.

Subsequently, the model as well as the empirical results are used for data collection, op-

timal parameter value computation and evaluation of the proposed solution in terms of

effectiveness in addressing the problem of cloudlet resource scarcity.

1.6 Thesis Layout

The thesis layout is shown in Figure 1.2. The remainder of the thesis has been

divided into six chapters. The organization of the thesis is shown in Figure 1.3.

Figure 1.2: Thesis Layout Schematic Diagram

Chapter 2: Review of Literature

Chapter 2 attempts to review the research undertaken in the field of cloudlets and

state-of-the-art mobile computational cloudlet-based mobile application augmentation.

This chapter discusses the MCC environment, reviews mobile application computation

approaches used to identify resource scarcity problems faced by cloudlets and provides

various solutions. The taxonomy of cloudlet resource augmentation research is devised

by considering several aspects to better understand the domain of cloudlet-based mobile

10

Univ
ers

ity
 of

 M
ala

ya

Figure 1.3: Thesis Layout Diagram

application augmentation. Finally, we investigate the impact of cloudlet resource scarcity

on cloudlets and its benefits and challenges in terms of future research.

Chapter 3: Resource Scarcity in Cloudlets: Problem Analysis

Chapter 3 presents an investigation and analysis of the impacts of finite resources on

the performance of cloudlet applications. Using a series of experiments with an android-

based mobile device and an Open Stack cloudlet on a Linux Ubuntu platform, we identify

the impact of cloudlet efficiency, user service time, and CPU utilization on the perfor-

11

Univ
ers

ity
 of

 M
ala

ya

mance of the cloudlet. We verify and establish the research problem and demonstrate its

significance.

Chapter 4: MOBICORE: Mobile Device based Cloudlet Resource Enhancement

Framework

In Chapter 4, we propose a performance enhancement framework for cloudlets in

MCC to enhance the performance of cloudlets. A presentation of the framework is given,

and the functional and non-functional properties of the main system components are ex-

plained. The significance of the proposed framework is highlighted, and the performance

evaluation setup is described.

Chapter 5:Implementation and Evaluation

Chapter 5 presents the techniques employed for the experiment and collection of

data and the evaluation methodology. We describe the evaluation methods and statistical

modelling that have been used to evaluate and validate the performance of the proposed

framework. The benchmarking model is explained, and the methodology used to build

the statistical model is described. The method used to validate the statistical model is also

described.

Chapter 6: Results and Discussion

In Chapter 6, we present the results of our performance evaluation and discuss the

findings from different perspectives of applications scenarios. We compare and contrast

the benchmarking results with the results of the statistical modelling (which is validated)

to validate the performance of the proposed framework.

Chapter 7: Conclusion

Chapter 7 concludes the thesis by describing how the aim and objectives of the re-

search are achieved. The main contributions are summarized, and the research signifi-

cance and the proposed framework’s usability are highlighted. We list publications, in-

cluding conference and journal articles, generated based on this research work. Future

12

Univ
ers

ity
 of

 M
ala

ya

works and our limitations conclude the chapter.

13

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 2 : LITERATURE REVIEW

This chapter reviews the cloud, cloudlet and mobile cloud computing aspects and tradi-

tional solutions for application outsourcing and provides a thematic taxonomy for current

applications in cloudlet-based resource augmentation. We analyze the implications and

critical aspects of the application augmenting techniques and frameworks, highlight the

challenges and identify issues in the cloudlet development and management of applica-

tion offloading in Mobile Cloud Computing (MCC). Further, we investigate commonal-

ities and deviations that play vital roles concerning critical cloudlet-performance-related

parameters. In this chapter, we highlight the state of the art with reference to challenges

relating both technologies. We summarize the chapter by highlighting the limitations of

cloudlets, therein presenting the challenges that form the basis of our research.

The chapter is organised as follows. Section 2.1 highlights the use of clouds and

cloudlets in mobile cloud computing and introduces cloud-based mobile applications.

Section 2.2 describes the application execution fundamentals in MCC. Section 2.3 dis-

cusses the literature on cloudlet augmentation. Cloudlet resource optimization and man-

agement are highlighted in Section 2.4. Cloudlet applications are detailed in Section 2.5.

Section 2.6 highlights the limitations of the state of the art with reference to the resource

scarcity problem. Research challenges and open issues are outlined in Section 2.7. Sec-

tion 2.8 concludes the chapter.

14

Univ
ers

ity
 of

 M
ala

ya

2.1 Background

This section describes the concepts of cloud computing and mobile cloud computing

along with the fundamentals of cloudlets and mobile application augmentation in the

computational cloud.

2.1.1 Cloud and Mobile Cloud Computing

The introduction of cloud computing significantly changed computational paradigms

and technologies (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). Cloud computing

aggregates the resources of smaller computational units to provide computing as a service

(Whaiduzzaman, Gani, Anuar, et al., 2014). Instead of purchasing computers that remain

unused most of the time and that are under-utilized the remaining period of time, the com-

putation time is purchased as needed (Whaiduzzaman, Haque, Rejaul Karim Chowdhury,

& Gani, 2014). In other words, computing can be considered as similar to other utilities

such as electricity, gas and water (Armbrust et al., 2010). In short, the primary advantage

of cloud computing is the ability to enable the hassle-free and cost-effective availability of

high-end computation and storage resources (Qi, Shiraz, Gani, Whaiduzzaman, & Khan,

2014).

Mobile cloud computing is becoming a well-established computational paradigm.

Mobile device resources are drastically improving; however, simultaneously, resource-

intensive mobile applications are being developed (Shiraz, Gani, Khokhar, & Buyya,

2013). Mobile cloud computing helps mobile devices augment their computational re-

sources by offloading computation-intensive tasks to clouds or nearby cloudlets (Abolfazli,

Sanaei, Ahmed, Gani, & Buyya, 2014). Although clouds have sufficient resources for user

tasks, the propagation delay involved in accessing the clouds from the mobile devices

is significantly higher and often unacceptable for many applications (Whaiduzzaman,

Sookhak, Gani, & Buyya, 2014). Similarly, the bandwidth is limited for high-demand in-

15

Univ
ers

ity
 of

 M
ala

ya

teractions between the application front end of the mobile device and the back-end com-

putation in the cloud (Ahmed, Akhunzada, et al., 2015). On the other hand, cloudlets,

which are typically one hop from mobile devices, do not suffer from these problems.

However, the resources available in cloudlets are often limited.

Mobile cloud computing is a computation paradigm whereby mobile devices aug-

ment their computational and storage resources using clouds and nearby cloudlets. The

use of clouds for mobile device resource augmentation has seen the greatest development

in the domain of mobile cloud computing. A number of researchers have analyzed var-

ious aspects of mobile resources and clouds in terms of the feasibility of mobile cloud

computing using clouds. For example, Kumar and Lu (Kumar & Lu, 2010) have shown

that offloading tasks from mobile devices to clouds can reduce the energy consumption of

mobile devices. Miettinen and Nurminen (Miettinen & Nurminen, 2010) have analyzed

the energy consumption of mobile devices and have shown that not all applications can

benefit from the offloading of tasks to the cloud. Canepa and Lee (Huerta-Canepa & Lee,

2010) have proposed a virtual cloud computing platform wherein mobile devices can use

resources from neighbouring devices in addition to available cloud resources.

2.1.2 Cloudlets and Mobile Cloud Computing

Cloudlets are small-scale clouds located in close proximity to mobile users. Typi-

cally, a mobile user can access the cloudlet through one-hop wireless access. In the future,

cloudlets are expected to be deployed along with the hotspots in locations such as offices,

clinics and cafes. Cloudlets are installed on discoverable, localized, stateless servers

running one or more Virtual Machines (VMs) on which mobile devices can augment

resource-intensive mobile applications (Satyanarayanan et al., 2009). Such cloudlets

are formed by a set of powerful, compared to the mobile devices, computers; are well-

connected to the Internet; and are available for use by nearby mobile devices (Bahtovski

16

Univ
ers

ity
 of

 M
ala

ya

Figure 2.1: Cloudlet and Surrounding Mobile Devices Connected via Wi-Fi

& Gusev, 2014a). A typical cloudlet access scenario is shown in Figure 2.1, where mobile

devices as well as thin clients can access the cloudlet over WiFi using single-hop access.

Satyanarayanan et al. (Satyanarayanan et al., 2009) first introduced the cloudlet con-

cept and described it as a “data center in a box”. A cloudlet is self-managing, requires

minimal power, and requires Internet connectivity and access control for setup. The sim-

plicity of management makes it feasible to deploy cloudlets on business premises such as

coffee shops or a doctor’s office, quite similar to hotspots. Researchers have highlighted

multiple advantages of cloudlets over the traditional cloud-based augmentation of mobile

devices. These advantages include speed of service, support of mobility, enhanced appli-

cation performance and battery life and reduced roaming data costs (Satyanarayanan et

al., 2009; Rahimi, 2012; Bohez, Turck, Verbelen, Simoens, & Dhoedt, 2013). Cloudlets

have an important role in mobile cloud computing because of these advantages.

Cloudlets can be trusted or non-trusted computing resources. A trusted cloudlet is

generally available for mobile devices within small office environments, where employees

17

Univ
ers

ity
 of

 M
ala

ya

can access the cloudlet using their security credentials. Such cloudlets are expected to be

smaller in number. The majority of cloudlets are to be deployed in a non-trusted fashion,

quite similar to hotspots.

A cloudlet can act independently when it is the only source of computation available

for mobile device resource augmentation. Alternatively, a cloudlet can act as a proxy,

thereby providing access to the clouds for delay-insensitive application components and

performing computations for delay-sensitive components locally. The task division be-

tween cloudlets and clouds can also be based on the workload, whereby light-resource

tasks can be executed in the cloudlet and resource-intensive tasks can be delegated to the

clouds for computation. Cloudlets act as a middle tier in this type of three-tier hierarchy

of mobile device, cloudlet, and cloud (Rahimi, 2012; Satyanarayanan et al., 2013).

Cloudlets offer several advantages over distant clouds for mobile users. First, mo-

bile users obtain instant and direct access to the cloudlet due to the close proximity of

the user and the cloudlet. This eliminates several drawbacks introduced by the com-

munication latency, jitter, and slow data transfer of cellular and WAN networks that are

experienced when distant clouds are accessed. Second, the conventional benefit of of-

floading computational-resource-intensive tasks onto a cloud is preserved in cloudlets,

namely, the mobile device is not subject to resource scarcity. Third, cloudlets provide

smaller application execution times compared to the mobile device, thereby reducing the

waiting time for the offloaded application results and providing a significantly enhanced

user experience. Finally, because the cloudlet is in close proximity to the mobile user,

expensive data transfers can be avoided, thereby lowering costs to the user. The cloud

based computing resources taxonomy (Abolfazli, Sanaei, Ahmed, et al., 2014) is shown

in Figure 2.2

18

Univ
ers

ity
 of

 M
ala

ya

Computational

Resources in Cloud

 Remote

Immobile Cloud

Proximate

Immobile Cloud

Proximate

Mobile Cloud
Hybrid

Public Cloud

Private Cloud

Cloudlets

Private cloud

Computing

Kisoks

Smartphones

Notebooks

Wearable

device

 Remote

Immobile Cloud

Proximate

Immobile Cloud

Proximate

Mobile Cloud

Figure 2.2: Cloud based Source of Computing Resources

2.1.3 Cloud based Mobile Applications

With the ever increasing number of smart phones, cloud-based mobile applications

have become ubiquitous (Shiraz, Whaiduzzaman, & Gani, 2013). We only touch the tip of

this iceberg by mentioning some of the most commonly used applications and application

engines (Shiraz, Ahmed, Gani, & Han, 2014). The Mobile App Store from Apple (Apple,

2015), the Play Store from Google, and Microsoft Lumia for Nokia applications (Lumia,

2015) are among the popular application stores and engines, which host millions of cloud-

based mobile applications (Abolfazli, Sanaei, Gani, Xia, & Yang, 2014). Among the most

popular cloud-based mobile applications, well-known applications include Google Mail,

Google Maps, Dropbox, Microsoft Outlook, and iCloud-based apps.

Christensen (Christensen, 2009) has proposed the use of RESTful web services to ap-

ply cloud computing to next-generation mobile applications. Nkosi and Mekuria (Nkosi

& Mekuria, 2010) have studied the use of clouds in terms of enhancing mobile-based

health applications. The entire body of research work is supported by a huge set of com-

mercial activities for supporting mobile-based application development using clouds as

the back end.

19

Univ
ers

ity
 of

 M
ala

ya

Given that smartphones will become the major technology of the future, it is safe to

state that cloud-based mobile applications are the future and that mobile cloud computing

is the computational paradigm that will shape trends in the coming years.

2.1.4 Limitations of Clouds in MCC

Despite their significant advantages and substantial development as well as the mil-

lions of cloud-based mobile applications, the use of clouds for mobile cloud computing

has its own limitations (Whaiduzzaman & Gani, 2014). Issues such as WAN latency,

jitter, congestion and slow data transfer hinder the development of resource-intensive ap-

plications because of increased power consumption (Rahimi, 2012). Currently, a majority

of cloud-based mobile applications are developed for entertainment and social interaction

(Ahmed, Gani, Khan, Buyya, & Khan, 2015). Applications for real-time audio and video

interaction as well as mission-critical applications, such as healthcare, are affected by

these factors and have not yet found practical implementation at large scales (Ahmed,

Gani, Sookhak, Ab Hamid, & Xia, 2015). To alleviate these problems, clouds are be-

ing taken closer to the user through the cloudlet concept (Bohez et al., 2013). Table 2.1

summarizes the comparison of the cloudlets with the distant clouds.

2.2 Application Execution in MCC

All cloudlets as well as cloud-based applications rely on application execution frame-

works for managing various aspects of application execution. In the next section, we

briefly discuss the related aspects of application execution in MCC (Liu et al., 2015).

A key component in all cases of cloudlet utilization is code offloading from the mo-

bile device to the cloudlet (Abolfazli, Sanaei, Alizadeh, Gani, & Xia, 2014). Cloud and

cloudlet-based mobile applications can be executed in one of the three manners: Client-

server execution, VM-based execution and code offloading. The cloud/cloudlet appli-

cation execution taxonomy is shown in Figure 2.3. In the following section, we briefly

20

Univ
ers

ity
 of

 M
ala

ya

Table 2.1: Comparison of Cloudlet and Distant Cloud

Properties Cloudlet Distant Cloud
State Only Soft State Hard and soft state

Management
Self-managed and less pro-
fessional attention needed

All time administered pro-
fessionally

Environment
Works at business premises
as small Data centre

Huge servers with cooling
system and devices with
hardware infrastructure

Ownership
By the local business owner
and decentralized.

Ownership centralized such
as Amazon, Rackspace

Network LAN latency/bandwidth Internet latency/bandwidth
Distance Near to the mobile user Remote cloud

Sharing Few users at a time
100s-1000s of users at a
time

Connection type Wi-Fi 3G/LTE
Context awareness Neutral Neutral
Location granular-
ity

Fine grain location granular-
ity

Lack of fine grained location
granularity

Programming Ab-
straction

Neutral Neutral

Latency Favorable Unfavorable
Privacy Favorable Unfavorable
Scalability Low scalability Highly Scalable

touch on these three execution types.

2.2.1 Client Server based Mobile Application Execution

A majority of cloud-based mobile applications use the client-server model, wherein

most of the computation is performed in the cloud and only a thin client user interface

is available on the mobile device. In addition to performing the computations, the data

are stored on the cloud. Researchers (Clinch, Harkes, Friday, Davies, & Satyanarayanan,

2012; Satyanarayanan et al., 2013) have studied applications wherein the computation

is performed on the cloud or cloudlet and the display is rendered on the mobile de-

vice, therein treating the mobile device as a thin client. Qing et al. (Qing, Zheng,

Ming, & Haifeng, 2013) have proposed , Cloudlet Aided Cooperative Terminals Service

(CACTSE), as a content distribution system for mobile terminals formed by exploiting

nearby cloudlet systems.

21

Univ
ers

ity
 of

 M
ala

ya

Application

Augmentation

Framework

Perspective

 Execution

Outcome

Perspective

Augmentation

Motivations
Key Factors

VM Migration

Complete

Application

Migration

Multi

Objective

Partitioning

Application

Energy based

Constraint

based

Performance

based

Faster

processing

speed

Battery

Lifetime

Data Safety

Local Storage

Virtualization

Capabilities

Security &

Privacy

Saving mobile

device

resources

Offered

Cloud

Services

Mobile

Devices

Prospective

User

Application

Execution

Models

 Connection

Types

Nature of

Applications

Figure 2.3: Mobile Applications Augmentation Taxonomy

This execution model is affected by intermittent network connectivity. The mobile

application ceases to function as soon as the user becomes disconnected from the Inter-

net. Several studies have been conducted to show that network connectivity is intermit-

tent (Silva, Silva, & Boavida, 2014; Treurniet, 2014). Similarly, many researchers have

attempted to predict and mitigate the impact of intermittent network connectivity on mo-

bile devices (Modares, Moravejosharieh, Lloret, & Salleh, 2014; Pirozmand, Wu, Jedari,

& Xia, 2014; Vu, Nguyen, Nahrstedt, & Richerzhagen, 2014). However, this problem has

not been solved to a level at which cloud-based mobile applications can enjoy uninter-

rupted network connectivity.

2.2.2 VM Based Mobile Application Execution

Satyanarayanan et al. (Satyanarayanan et al., 2009) have introduced a dynamic VM

synthesis mechanism that enables mobile devices to deliver a small VM overlay to a

22

Univ
ers

ity
 of

 M
ala

ya

cloudlet infrastructure that already possesses the base VM from which this overlay was

derived. The infrastructure applies the overlay to the base to derive the launch VM,

which initiates the suspended execution at the exact time of suspension. Ha et al. (Ha,

Pillai, Richter, Abe, & Satyanarayanan, 2013) have improved the performance of the

dynamic synthesis process by reducing the overlay size using a series of optimizations.

A deduplication approach has been used to eliminate duplicate data that exist at various

sources, such as Input/Output caches and virtual memory, to decrease the size of the VM

overlay. Similarly, Harney et al. (Harney, Goasguen, Martin, Murphy, & Westall, 2007)

have proposed live VM migration using Xen and IPv6 support. These two components

ensure that a virtual network is not required between migrating elements, thus reducing

the migration overhead.

Similar to client-server techniques, these techniques are highly dependent on net-

work connectivity, and the entire set of computations will likely be lost when the user

moves from one cloudlet to the next cloudlet because of the delayed discovery of po-

tential network disconnections. We now discuss the application offloading mechanism

for cloud-based mobile application execution. The proposed research in this thesis as-

sumes that such mechanisms are in place, although the research can be applied to other

mechanisms of application execution. Therefore, we discuss offloading mechanisms in

additional detail.

2.2.3 Application Offloading for Cloud/Cloudlet Execution

Code offloading is a well-established and frequently used technique in the domain

of distributed computing. In distributed computing, the computational elements that are

offloaded are relatively less delay sensitive and are transmitted using high-speed, limited-

error networks. This is not the case in mobile cloud computing, where the computational

elements are transported over wireless channels that are prone to errors and that provide

23

Univ
ers

ity
 of

 M
ala

ya

limited data rates. Furthermore, the computations are time sensitive in most cases. An-

other significant difference is the pre-partitioning of the code to be offloaded in the case

of distributed computing, which is not the case with mobile cloud computing.

Researchers in the domain of MCC have attempted to address the additional chal-

lenges. MAUI (Cuervo et al., 2010) enables the fine-grained, energy-aware offloading of

mobile code to the cloud. MAUI uses a managed code environment for run-time code

offloading to maximise energy savings. Automated and optimized mechanisms require

minimal effort by the programmer. µ-Cloud (March et al., 2011) is another effort whereby

the developers demonstrated that rich mobile applications can be achieved by modelling

applications using distributed graphs with components distributed on mobile devices and

clouds. In addition, CloneCloud (Chun, Ihm, Maniatis, Naik, & Patti, 2011) has been

demonstrated as an automated system that transforms mobile applications to benefit from

the cloud. The system is flexible in terms of application partitioning and runtime exe-

cution, therein enabling unmodified mobile applications running in an application-level

virtual machine. CloneCloud uses static analysis and dynamic profiling for automatic

application partitioning with a fine granularity by optimizing execution time and energy.

The Cuckoo framework (Kemp, Palmer, Kielmann, & Bal, 2012) has been proposed

to offload computations from smartphones to remote cloud resources to enhance the per-

formance of smart phone applications while reducing energy usage. This framework

simplifies the development of smart phone applications to obtain various benefits from

computation offloading and provides a dynamic runtime system to select between the

remote or local execution of application components.

The elastic application execution model (Zhang, Kunjithapatham, Jeong, & Gibbs,

2011) has been proposed to enhance the seamless and transparent use of cloud resources

to augment the capabilities of resource-constrained mobile devices. Soyata et al. (Soyata,

Muraleedharan, Funai, Kwon, & Heinzelman, 2012) have designed and implemented

24

Univ
ers

ity
 of

 M
ala

ya

facial recognition applications using a Mobile-Cloudlet-Cloud Architecture(MOCHA)

named MOCHA. The authors suggested that the software components on the mobile de-

vice can be redeployed at run-time to other nodes in the cloudlet according to optimization

criteria such as the execution time (Kristensen, 2010; Verbelen, Simoens, De Turck, &

Dhoedt, 2012a) energy consumption and throughput (Cuervo et al., 2010).

Verbelen et al. (Verbelen et al., 2012a; Verbelen, Simoens, De Turck, & Dhoedt,

2012b) have introduced AIOLOS, a mobile middleware framework for cyber foraging

on the Android platform. AIOLOS can migrate application components at run-time to

a discovered server using an efficient history-based server selection model. Flores et

al. (Flores, Srirama, & Paniagua, 2012) have proposed a middleware that can be used

to offload applications onto multiple clouds with heterogeneous platforms. Kosta et al.

(Kosta, Aucinas, Hui, Mortier, & Zhang, 2012) have proposed the ThinkAir framework to

migrate tasks from mobile devices to the cloud by exploiting the concept of smart phone

virtualization in the cloud.

Verbelen et al. (Verbelen, Simoens, De Turck, & Dhoedt, 2013), in developing

component-based collaborative immersive application frameworks, have proposed an adap-

tive component-based approach whereby software components and dependencies are con-

figured and defined with parameters. These distributed components are configured at

run-time to optimize the user experience. The proposed component-based platform de-

ploys components, application-specific metrics, and developer-specified constraints that

optimize application quality and adapt to changing network conditions.

Bohez et al.(Bohez et al., 2013) have proposed offloading middle-ware for collabora-

tive mobile applications to ensure smooth collaboration. Li and Wang (Li & Wang, 2013)

have studied the cloudlet accessibility issues resulting from user mobility and estimated

the success rate and execution time of offloaded application. Ravi and Peddoju (Ravi &

Peddoju, 2013) have presented mobility- and energy-aware mobile device collaboration

25

Univ
ers

ity
 of

 M
ala

ya

with cloudlets using a fuzzy offloading decision approach.

A major effort has been directed towards the partitioning of mobile code for hybrid

execution on the cloud and mobile device simultaneously. Furthermore, code annotation

and re-writing have become major challenges for making code workable on the cloud

when it has been originally written for mobile device platforms. These are issues that

hinder the wide-spread use of code offloading in the domain of mobile cloud computing.

The present research addresses both issues, as explained in subsequent chapters.

2.3 Cloudlet Resource Augmentation

The problem of cloudlet resource scarcity has been identified by multiple researchers.

Consequently, significant research efforts have been directed at this issue. In this section,

we present the body of work in this domain and highlight issues faced by current research.

Subsequently, we summarize the shortcomings of the techniques, therein forming the ba-

sis for the proposed research. The cloudlet resource augmentation mechanisms can be

grouped into four categories: (i) cloudlet-based augmentation of cloudlet resources, (ii)

cloud-based augmentation of cloudlet resources and (iii) mobile-device-based augmen-

tation of cloudlet resources, (iv) Adhoc-Mobile-devices based Cloudlet Augmentation.

Figure 2.4 shows the cloudlet resource augmentation models and different researchers

contributions. The remainder of this section provides a description of the mechanisms

and highlights their shortcomings.

2.3.1 Cloudlet based Cloudlet Augmentation

Multiple researchers have proposed the sharing of resources amongst cloudlets to

address the problem of resource scarcity.

Cloudlet-to-cloudlet resource augmentation has been proposed by Bohez et al. (Bohez,

Verbelen, Simoens, & Dhoedt, 2014) . The authors have proposed the runtime optimiza-

tion of collaborative cloudlet middleware. The runtime collaboration amongst cloudlets

26

Univ
ers

ity
 of

 M
ala

ya

Cloudlet Augmentation

Model

Cloudlet-distance

cloud
Cloudlet-Cloudlet

Mobile device-

Cloudlet

Mobile-Mobile

Adhoc cloudlet

Rahimi et al.

2012

Routaib et al.

2014

Tolga Soyata et

al. 2013

Magurawalage

et al. 2014

Bohez et al.

2014

Verbelen et

al. 2014

Derini et al.

2014

Li et al. 2014
Wei et al.

2013

Jararweh et

al. 2013
Rawadi et al.

2014

Verbelen et al.

2013

Figure 2.4: Cloudlet based Mobile Application Augmentation Models and Researchers

has been formulated as an optimization problem that describes the cloudlet infrastruc-

ture, application structure and application behavior. Two heuristic allocation algorithms

based on Simulated Annealing(SA) and Steepest Descent(SD) have been proposed; SD

and SA were found to yield very similar performances in terms of average CPU usage

and constraint violations. Compared to SD, SA requires over five-times more actions

(e.g., component migrations) to be performed in total. To improve the stability of the

allocation, a hysteresis factor is introduced to enforce a minimum gain before a realloca-

tion is accepted. However, multiple applications simultaneously run in the cloudlet, and

network bandwidth is considered as constant. The theoretical model is used for run-time

optimization.

Along similar lines, Rawadi et al. (Rawadi, Artail, & Safa, 2014) have proposed a

collaborative cloudlet system that can communicate to delegate tasks to cloudlets. The

cloudlets should be linked to a central cloudlet server that is discoverable by users. Mo-

bile users submit requests to the discoverable server, which distributes the tasks to the

cloudlets. However, when one cloudlet is overloaded, the probability of finding an under-

utilized cloudlet in close proximity is very small. Although the model performs well

27

Univ
ers

ity
 of

 M
ala

ya

in the absence of background applications, in practice, during the load hours when one

cloudlet is loaded by multiple applications, the probability that an alternate cloudlet in

close proximity is free is negligible.

Ceselli et al. (Ceselli, Premoli, & Secci, 2015) have proposed the integration of

cloudlets into large-scale mobile access networks. A cluster of cloudlets is deployed to

provide uniform access to the mobile users. In this model, virtual machines are associated

with mobile users and are allocated to cloudlets. The design of the cloudlet service net-

work involves determining the sites for cloudlet deployment and associating access points

with the sites to provide mobile user connectivity, therein considering virtual machine mi-

gration and user mobility. The design attempts to ensure the satisfaction of service-level

agreements. The authors claimed that, considering user mobility, the proposed design

requires 40% fewer virtual machine migrations and 40% fewer cloudlet resources. For

the migration of virtual machines, two modules have been considered. The authors found

that a strong preference should be given to bulk migrations for delay-stringent services,

such as augmented reality support, whereas for applications with less stringent delay re-

quirements, live migration is largely preferable.

The above-mentioned schemes rely on the fact that computations from a cloudlet that

is heavily loaded can be shifted to a nearby cloudlet. However, the extensive use of one

cloudlet typically indicates that a significant number of users are in the area, indicating

high activity because of an event or peak usage hours. Under such conditions, the situation

whereby one cloudlet is heavily loaded while a nearby cloudlet is free does not occur. We

can safely conclude that although such schemes are useful for coverage enhancement

and help in reducing communication overhead as well as costs, this mechanism is less

effective for cloudlet resource augmentation.

28

Univ
ers

ity
 of

 M
ala

ya

2.3.2 Cloud based Cloudlet Augmentation

A number of researchers have proposed frameworks wherein a three-layer approach

to mobile cloud computing is utilized. Under such approaches, the cloudlets function as

a middle layer, therein providing services to mobile users while simultaneously connect-

ing with the clouds to obtain services for themselves or for the mobile devices. In this

case, cloudlet resources can be augmented using clouds, where less time-sensitive com-

putations can be shifted to clouds and time-critical execution can be performed on the

cloudlet.

Rahimi et al. (Rahimi, Venkatasubramanian, Mehrotra, & Vasilakos, 2012) have pro-

posed a two-tier architecture and shown that rich mobile applications, such as augmented

reality and image processing, can use this architecture by modelling such applications as

a workflow of tasks. Workflows are used to decide upon execution on local or distant

clouds based on a simulated annealing approach. The authors have introduced MAP-

Cloud, a hybrid, tiered cloud architecture consisting of local and public clouds that can

be leveraged to increase both the performance and scalability of mobile applications. The

authors have modelled the mobile application as a work-flow of tasks and attempt to opti-

mally decompose the set of tasks for subsequent execution on the mobile client and 2-tier

cloud architecture considering multiple QoS factors such as power, price, and delay. The

authors have proposed the CRAM framework, which is able to achieve an approximately

84% optimal solution for large numbers of users.

Mobile Cloud Hybrid Architecture (MOCHA) has been proposed by Soyata et al.

(Soyata, Muraleedharan, Funai, et al., 2012). MOCHA is a mobile-cloudlet-cloud frame-

work. The authors have developed algorithms that minimize the overall response time for

face recognition based on the estimated communication latencies and processing power

of the cloud. The framework provides face recognition applications while collaborat-

29

Univ
ers

ity
 of

 M
ala

ya

ing between mobile devices, cloudlets, and distant clouds. The critical aspect of the

framework is to address the issue of how to perform task partitioning from mobile de-

vices to clouds and distribute computational loads amongst cloud servers and cloudlets

to minimize the response time given diverse communication latencies and server com-

putation resources. The authors have designed, implemented, and validated the basic

functionalities of MOCHA as a proof of concept and developed algorithms that minimize

the overall response time for face recognition. The experimental results show that high-

power cloudlets are technically feasible and indeed help reduce overall processing time

when face recognition applications run on mobile devices using the cloud as the back end

servers.

Routaib et al. (Routaib, Badidi, Elmachkour, Sabir, & Elkoutbi, 2014) have proposed

a centralized architecture for the use of cloudlets and clouds. The authors have modelled

the architecture using Continuous-Time Markov Chains (CTMCs) to estimate the delay

incurred from different nodes for simulated search engine queries. The authors have also

proposed a cloudlet architecture for managing data caches. A new routing algorithm for

mobile search engines for finding mobile content on websites has also been proposed.

Initial simulation results show that the usage of a cloudlet-based architecture provides

increased performance in terms of latency, delay and synchronization.

Magurawalage et al. (Magurawalage, Yang, Hu, & Zhang, 2014) have proposed a

system architecture consisting of a new middle layer called a cloudlet layer. This layer

operates between mobile devices and their cloud infrastructure or clone and is composed

of cloudlets; thus, it is called a cloudlet layer. Cloudlets are deployed next to IEEE 802.11

access points and serve as a localized service point in close proximity to mobile devices

to improve the performance of mobile cloud services. The decision making considers

the energy consumption for task execution and the network status while satisfying cer-

tain task response time constraints. A data caching mechanism at the cloudlets is also

30

Univ
ers

ity
 of

 M
ala

ya

considered to further improve the overall MCC performance. An offloading algorithm

determines whether and where to offload, with the objective of saving battery life for

mobile devices while satisfying the response time constraints of applications by increas-

ing efficiency compared to conventional offloading architectures. However, the algorithm

lacks experimental verification.

The primary issue with using distant clouds for cloudlet resource enhancement is

the transfer of computations from distant clouds to a user when the user moves out of

the vicinity of the cloudlet. In this case, only the cloudlet knows which task belongs to

which mobile device, and the information is only available to the cloudlet; however, the

mobile device, being out of range, is unable to obtain the results. Mobile device mobility

management and interactive and collaborative cloudlets can address this issue. Another

issue is the pricing model for accessing such services from clouds. In general, cloudlets

are free resources and are not expected to be augmented by a paid cloud service. On

the other hand, if we assume that the mobile device has an associated cloud service, it is

highly unlikely that the cloud service can allow the cloudlet to use its services on behalf of

the mobile device. Who should pay for the cloud server and what is the incentive for such

payment remain as unanswered questions. Such administrative issues make this option

less attractive.

2.3.3 Mobile Device based Cloudlet Augmentation

Cloudlet resource augmentation using mobile devices has been studied by multiple

researchers. Wei et al. (Wei, Fan, Lu, & Ding, 2013) have proposed the Hybrid Local Mo-

bile Cloud Model (HLMCM) as an extended cloudlet using mobile devices. The authors

have proposed Hybrid Ant Colony algorithm-based Application Scheduling (HACAS)

for efficiently scheduling applications given the limited resources of the cloudlets. The

algorithm only considers the available resources and does not consider overhead when

31

Univ
ers

ity
 of

 M
ala

ya

calculating the advantage ratio of mobile devices for joining the cloudlet. Consequently,

a mobile device can be significantly overloaded after joining the cloudlet, although its

service requirements from the cloudlet might be limited. Similarly, the task might be of-

floaded to a very weakly resourced device. Such devices can create bottlenecks and lead

to poor overall performance. Furthermore, the departure of devices from the cloudlet can

result in a partially completed task leaving with the device.

Jaraweh et al. (Jararweh, Tawalbeh, Ababneh, & Dosari, 2013) have proposed merg-

ing cloudlets with mobile devices to obtain reduced power consumption and communica-

tion latency. Verbelen et al. (Verbelen, Simoens, De Turck, & Dhoedt, 2014) have pro-

posed a platform to enhance cloudlet resources by dynamically including devices within

wireless networks and using application-component-level migration. The problem with

this approach is the lack of consideration of the load added to the mobile devices com-

pared to the advantages provided by using the cloudlet.

Ali et al. (Ali, Ahmad, & Amin, 2014) have proposed a scalable and lightweight

intelligent distributed surveillance system using a framework that integrates the Internet-

of-Things (IoT) and cloudlets. To address the resource scarcity of the IoT and the de-

pendency on massive data transmissions to distant clouds, this system provides real-time

on-site object detection, distributed retrieval and processing of critical and sensitive data.

Issues concerning data migration over limited-bandwidth and high-latency communica-

tion networks and the heterogeneous nature of data obtained from the surveillance system

are successfully addressed. Stored data in cloudlets should be maintained and processed

with high security.

2.3.4 Adhoc-Mobile-devices based Cloudlet Augmentation

Li and Wang (Li & Wang, 2014) have proposed the fundamental mobile cloudlet

properties that unfold whether and when a mobile cloudlet can provide mobile applica-

32

Univ
ers

ity
 of

 M
ala

ya

tion service. Specifically, they investigate the cloudlet size, cloudlet node’s lifetime and

reachable time. They also investigate the required conditions which are needed to form

mobile cloudlet in order to provide mobile application services. Between the one hop

and multi hop mobile cloudlets, one hop is adopted for proximity and simplicity. How-

ever, still lacks of design and implementation of mobile applications on a mobile cloudlet

system to feasibility study of mobile cloudlet computing. Similarly, Mohamed Nazih

El-Derini et al. (El-Derini, Aly, El-Barbary, & El-Sayed, 2014) have proposed Droid-

Cloudlet, a cloudlet architecture in any available mobile device with abundant processing

or power resources, can participate as a server. Offloading is carried out dynamically at

runtime according to specific policies that target reducing execution time and saving bat-

tery. The mobile device suffering lack of resources can offload partitions of its running

application to those servers. However, not adequate prototype implementation has been

done yet.

2.4 Cloudlet Resource Optimization and Management

Researchers have also proposed mechanisms for achieving efficient cloudlet resource

management. Hoang et al. (Hoang, Niyato, & Wang, 2012) have proposed an SMDP-

based optimization model for MCC by integrating cloud computing hotspots with cloudlets.

A resource allocation model for the mobile cloud computing hotspot with a cloudlet

has been proposed by optimizing the dynamic resource sharing of mobile users in Mo-

bile Cloud Computing (MCC). The authors have used a Semi-Markov Decision Process

(SMDP) that transforms into a linear Programming (LP) model to determine an optimal

solution. This model maximises the reward (e.g., the revenue of the service provider)

of the resource usage for MCC hotspots while meeting the QoS requirements of mobile

users.

Xia et al. (Xia, Liang, & Xu, 2013) have proposed an admission cost model for

33

Univ
ers

ity
 of

 M
ala

ya

resource consumption in cloudlets. The online request admission issue for cloudlets with

the objective of maximizing the system throughput and a novel admission cost model have

been proposed for addressing resource consumption using efficient control algorithms.

The maximization of the system throughput of the cloudlets is such that each request can

be represented by a demand resource vector. The proposed algorithm outperforms other

heuristics in terms of system throughput. Li and Wang (Li & Wang, 2014) have analyzed

the hybrid mobile cloudlet performance. The authors have shown that frequent access

to mobile devices can increase the available computational resources and that mobility

does not significantly affect this resource pool in the long term. The authors have also

derived upper and lower bounds on the computing capacity and computing speed of a

mobile cloudlet. Although these mechanisms can optimize the use of existing resources,

the additional resources offered are generally incremental and not sufficient to address the

resource scarcity problem faced by cloudlets.

Several researchers have proposed mechanisms to enable efficient cloudlet resource

management. Zhang et al. (Yang, Niyato, & Wang, 2015) have developed an optimal

offloading algorithm for mobile users in an intermittently connected cloudlet system,

therein considering the user local load and the availability of cloudlets based on user mo-

bility patterns and cloudlet admission control. The authors have derived the probability of

successfully performing offloading actions. They formulated and solved a Markov Deci-

sion Process (MDP) model to obtain an optimal policy for the mobile user with the objec-

tive of minimizing the computation and offloading costs by considering a stochastic mo-

bility model to describe an intermittent connection between mobile users and cloudlets.

Mobile application is divided into multiple phases, and the user has the flexibility to make

the decision to run each phase locally or to offload the computations to nearby cloudlets.

Hoang et al. (Hoang, Niyato, & Le, 2014) have proposed Simulation-Based Opti-

mization for Admission Control of Mobile Cloudlets, which is a simulation-based algo-

34

Univ
ers

ity
 of

 M
ala

ya

rithm that is applied to obtain the optimal policy for the MDP. The algorithm can estimate

the performance measure to update the policy gradient in an online manner. The com-

plexity issues are addressed to obtain the optimal admission control policy based on pa-

rameterization and approximate gradient improvement to maximize revenue. The authors

have shown that the algorithms are efficient and converge.

Kommineni (Kommineni, De, Alladi, & Chilukuri, 2014) has proposed Choosing

the right cloudlet, a systematic guideline for selecting the optimal nearby cloudlet. This

guideline ensures better performance in selecting the optimal cloudlet for a given appli-

cation. This choice is based on a weighted function of the processing power, available

memory, bandwidth on the fixed network and the WAN latency of the cloudlet. Jin et al.

(Jin, Song, Wang, Niyato, & Ju, 2015) have proposed a feasible and efficient double auc-

tion mechanism to stimulate cloudlets for serving nearby mobile devices to satisfy com-

putational efficiency, individual rationality, budget balance, and truthfulness constraints.

The authors have considered an appealing MCC application paradigm for mobile devices

to acquire the resources of nearby cloudlets. Numerical results confirm the analysis and

demonstrate the high system efficiency.

Resource management systems addressing cloud providers must provide a uniform

interface for various services. Munteanu et al. (Munteanu, Şandru, & Petcu, 2014) have

discussed the solution adopted by a recently developed open-source cloud for multi-cloud

application deployment systems for automated cloud resource management. They pro-

vided a flexible approach to encompassing new cloud service offers and resources that

enables resource abstraction and automated management. Yamato et al. (Yamato, Muroi,

Tanaka, & Uchimura, 2014) have described the development of a template management

technology for building virtual resource environments on OpenStack. The mechanism

tracks transaction management functions, such as rollback and roll forward, in the case

of abnormal failures during stack operations, which allows users to easily replicate and

35

Univ
ers

ity
 of

 M
ala

ya

build virtual environments to achieve efficient resource utilization.

To effectively manage cloud/cloudlet resources, Chen et al. (Chen, Wang, & Pedram,

2013) have presented an architecture-based approach. Cloud resources are abstracted

as runtime models to propagate any observable runtime changes in target resources to

corresponding architecture models. A customized model is constructed according to the

personalized management requirement and according to the synchronization between the

customized model and the cloud resources. The runtime models are obtained through

model transformation.

Kara et al. (Kara, Soualhia, Belqasmi, Azar, & Glitho, 2014) have proposed virtu-

alization task scheduling and computational resource sharing strategies based on genetic

algorithms. They analysed and simulated strategic algorithms used to measure the cloud

resource performance. Rak et al. (Rak, Venticinque, Máhr, Echevarria, & Esnal, 2011)

have proposed the mOSAIC framework, which attempts to offer a solution for the de-

velopment of interoperable, portable and cloud-provider-independent cloud applications

by introducing the mOSAIC monitoring components to custom monitoring systems for

cloud applications.

A cloudlet-based multi-lateral resource exchange framework (Wu & Ying, 2015)

that does not rely on central entities has been proposed for mobile users. A novel virtual-

currency-tailored framework has been proposed for efficient resource exchange markets,

wherein flexible pricing strategies are adopted by individual users. A prototype design

for enabling seamless trading amongst mobile users on Internet bandwidth has been in-

troduced as a proof of concept with minimal user intervention. Both simulations and

experiments have demonstrated the practicality and efficiency of the system. Bohez et

al. (Bohez, Verbelen, Simoens, & Dhoedt, 2015) have proposed cloudlet middleware that

more optimally distributes loads across the cloudlet nodes. User mobility and fluctuations

in wireless bandwidth are considered as factors in load distribution. Two heuristic alloca-

36

Univ
ers

ity
 of

 M
ala

ya

tion algorithms based on Steepest Descent (SD) and Simulated Annealing (SA) have been

used. The authors have found that SD produces 4-times fewer reallocations compared to

SA and that it is more stable.

2.5 Applications of Cloudlets

Given the clear advantages of cloudlets in the domain of mobile cloud comput-

ing, researchers have proposed multiple applications that use cloudlets as the underly-

ing technology. The first and most prominent application has been proposed by Satya-

narayanan et al. in the form of augmenting cognitive reality for physically disabled people

(Satyanarayanan et al., 2009). The authors have proposed that people with special needs

can utilise a body-mounted computational unit that can connect to nearby cloudlets for

computation augmentation as the user moves around. The cloudlets can also share the

precomputed information about the surroundings with the body-mounted computing de-

vice. This can greatly facilitate the day-to-day navigation of the user.

Multiple researchers, including Achanta et al. (Achanta, Sureshbabu, Thomas, Sahitya,

& Rao, 2012) and Bahtovski and Gusev (Bahtovski & Gusev, 2014b), have proposed

cloudlet-based multilingual dictionaries. Achanta et al. (Achanta et al., 2012) have pro-

posed a cloudlet-based multilingual dictionary that uses a system wherein nearby com-

puters are used as a “cloudlet” to relieve the mobile device from most of its computational

load. This system does not require continuous Internet connectivity and is not affected

by WAN latency. This solution can be used to provide language translation in scenarios

with limited bandwidth and in specialized and smaller settings wherein the complexity

and expense of a standard cloud deployment are not feasible.

Bahtovski and Gusev (Bahtovski & Gusev, 2014b) have proposed a cloudlet-based

dictionary application specifically developed to be processed on a nearby cloudlet as well

as on a distant cloud for translating words using a VM deployment on the cloud/cloudlet.

37

Univ
ers

ity
 of

 M
ala

ya

The translation is subsequently displayed on the mobile device. This approach is faster

and provides a better performance. Interactive Mobile Cloud Applications (IMCAs) have

been proposed by Fesehaye et al. (Fesehaye, Gao, Nahrstedt, & Wang, 2012). These

applications include editing, video streaming and chatting, with mobile nodes moving

from one cloudlet coverage area to another cloudlet coverage area. The authors have

shown that the introduction of cloudlets for such applications reduces data content transfer

delay and increases content delivery throughput. Other researchers have also proposed the

use of cloudlets for real-time collaborative applications (Bohez et al., 2015, 2014).

A hierarchical cloudlet-based storage architecture for mobile clouds (Duro, Blas,

Higuero, Perez, & Carretero, 2015) has been proposed by Duro et al. The authors have

implemented a hierarchical cloud storage system for mobile devices based on multiple I/O

caching layers. The system offers flexibility and easy deployment, and generic features

enable implementation in heterogeneous environments in terms of hardware and network-

ing. The system dynamically permits the system’s capacity to increase with increasing

number of users. Park et al. (Park, Parwani, Satyanarayanan, & Pantanowitz, 2012) have

proposed the use of cloudlets in pathological data recording. Chang et al. (Chang, Fan,

Lo, Hung, & Yuan, 2015) have developed mobile-cloudlet-based applications for depres-

sion detection. Soyota et al. (Soyata, Muraleedharan, Langdon, Funai, & Ames, 2012)

have evaluated cloudlets for defence applications. Similarly, Wang et al. (Qing et al.,

2013) have proposed the use of cloudlets for terminal content delivery. Jindal and Dave

(Jindal & Dave, 2014) have proposed security protocols for distributed cloudlets.

Quwaider and Jararweh (Quwaider & Jararweh, 2013) have proposed cloudlet-based

Big Data processing for big data analysis networks . The authors extended their work

to Wireless Body Area Network (WBANs) in a subsequent publication (Quwaider &

Jararweh, 2015). Khan et al. (Khan, Wang, Grecos, Luo, & Wang, 2013) have proposed

an integrated cloudlet and wireless mesh network framework in the form of MeshCloud

38

Univ
ers

ity
 of

 M
ala

ya

for real-time applications. In another study, the MC-Skynet (Bayat & Lutfiyya, 2014)

framework has been introduced as an fine-grained offloading approach and to support

runtime and dynamic partitioning of an application by employing cloudlet mesh networks.

Jindal and Dave (Jindal & Dave, 2014) have proposed a distributed cloud architecture for

mobile multimedia services.

Ali et al. (Ali et al., 2014) have proposed distributed surveillance systems based on

cloudlets. Along similar lines, Shi et al. (Shi, Abhilash, & Hwang, 2015) have proposed a

new cloudlet mesh architecture for security enforcement to provide trusted mobile cloud

computing. Chi et al. (Chi, Wang, Cai, & Leung, 2014) have proposed the use of cloudlets

for sharing downloaded game data. Cai et al. (Cai, Leung, & Hu, 2014) have proposed

the concept of Gaming as a Service (GaaS) for mobile devices. In short, a large variety

of applications of cloudlets in the domain of mobile cloud computing have already been

proposed, and the near future will see many more applications.

2.6 Limitations of Cloudlets

Cloudlets have several significant beneficial features. However, cloudlets also suffer

from several limitations. We list several drawbacks here.

1. Cloudlets are normally resource constrained due to their limited resources com-

pared to remote commercial clouds such as Amazon and Rackspace. Among the

various resources, the essential resources that directly impact the mobile augmen-

tation process are CPU and memory (Rawadi et al., 2014; Xia et al., 2013).

2. Unlike distant clouds where user soft states as well as user hard states can be stored

for extended periods of time, in the case of cloudlets, only soft states can be saved

because of limited permanent storage. A soft state is also only stored for a limited

time period because a subsequent visit by the same user is not expected to occur in

the near future.

39

Univ
ers

ity
 of

 M
ala

ya

3. Resources of cloudlets are less or not at all scalable due to the simplicity of the

cloudlet deployment and management (Rahimi, 2012).

4. In case of middleware designs for cloudlets, development, deployment and admin-

istration are considered to be tedious tasks (Bohez et al., 2015) because any such

system must be fully automated and must not require user intervention.

5. Cloudlets should be discoverable by the mobile user. In the case of multiple cloudlets

in the vicinity, users must be able to decide which cloudlet to use. User-specific

criteria must be maintained to select the most feasible cloudlet for user task aug-

mentation for the mobile device to cloudlet (Kommineni et al., 2014) .

6. User mobility has a substantial impact on cloudlet users. Therefore, the probability

of mobility should be considered to ensure a good user experience for rich applica-

tions. Researcher have worked in this direction, and examples include the work of

Li and Wang (Li & Wang, 2014) and Jararweh et al. (Jararweh et al., 2013).

7. If use of the cloudlet requires payment, then identifying a pricing scheme/model

for every application and use of resources and implementing an instant payment

system become difficult tasks (Li & Wang, 2013).

8. Unknown cloudlets from the user perspective always present a privacy and security

issue for mobile users (Bahtovski & Gusev, 2014a) .

2.7 Research Challenges and Open Issues

Despite several applications of cloudlets and their significance in the domain of mo-

bile cloud computing, a number of issues concerning cloudlets need to be addressed.

This section presents several concurrent issues in mobile application augmentation and

research challenges of mobile application augmentation. We focus on cloudlet-based mo-

bile application augmentation. The proper management of cloudlets for addressing the

40

Univ
ers

ity
 of

 M
ala

ya

Table 2.2: Cloud/cloudlet based Augmentation Approaches
and Issues

Work Author and Year Approach
Hybrid Local Mo-
bile Cloud Model
(HLMCM)

Xianglin Wei et al ,
2013

Integrated cloudlet with mo-
bile device

CACTSE: Cloudlet
Aided Cooperative
Terminals Service

WANG Qing et al, 2013
Content distribution exploit-
ing cloudlet

MOCHA (Mobile
Cloud Hybrid Archi-
tecture)

Tolga Soyata et al ,
2012

Minimizes response time la-
tencies

Interactive mobile
cloud applications
(IMCA)

Debessay Fesehaye ,
2012

Cloudlets to cloudlet interac-
tive applications

Component based
Collaborative Im-
mersive Applications
framework

Tim Verbelen„ 2013
Component-based approach
for run time optimization.

Cloudlet based central-
ized architecture

Hayat Routaib et al
Continuous Time Markov-
Chain (CTMC) model

MDP based optimiza-
tion model for MCC

Dinh Thai Hoang et al,
2012

MCC hotspot resource shar-
ing by SMDP.

Co-operative inter-
cloudlet

JeanMarc Rawadi et al,
2014

On demand services by a
cloudlet root server.

Impact of User mobility
in cloudlet performance

Yujin Li and Wenye
Wang, 2013

Access probability, execution
speed for mobility pattern.

AIOLOS
Tim Verbelen et al,
2012

Middleware built on the
OSGi model.

Wi-Fi access enables
adhoc mobile devices.

Tim Verbelen et al,
2013

Component level, optimiza-
tion on available resources.

collaborative cloudlet
middleware

Steven Bohez et al,
2014

Heuristic and algorithms SD
and SA.

2 tired Cloud Architec-
ture CRAM

M. Reza Rahimi, 2012
Space-Time workflow mod-
elling framework CRAM

adverse impact of these issues is very important in achieving the wide-scale adoption of

cloudlets. In this section, we summarize and highlight several important open issues and

research challenges identified through the literature review. Table 2.2 summarizes these

works and related issues.

41

Univ
ers

ity
 of

 M
ala

ya

2.7.1 Mobile Application Modification

The majority of cloudlet-based mobile application execution frameworks require that

the mobile application be adapted to the cloud/cloudlet architecture. This is challenging

given that there are millions of applications that have been developed for mobile plat-

forms. A better approach is to provide a virtual environment on the cloudlets that matches

that of the mobile device. This solution remains less practical given the hundreds of avail-

able mobile platforms.

2.7.2 Mobile Application Partitioning

The execution of mobile applications is always based on partitioning the application

and executing part of the application on the mobile device while shifting the remaining

part to the cloud/cloudlet. This requires compiler support, code annotation, and expert

programmers who can decide on the load that each component will introduce and its

interaction with the system. Generally, this is not a straight-forward process, and a light-

weight dynamic partitioning mechanism has yet to be developed.

2.7.3 Heterogeneity in Application Augmentation

For mobile application augmentation, a homogeneous platform that provides the

greatest benefit in application processing must be obtained. In MCC, the different ar-

chitectures and operating systems used by mobile devices are a challenging aspect of

mobile application augmentation. Therefore, optimal and efficient application augmenta-

tion remains a challenge.

2.7.4 Mobile-based Augmentation and Software Installs

When cloudlets are augmented using mobile devices, the frameworks require the

installation of cloudlet components onto the mobile device. In general, this is not a prac-

tical solution for two reasons. First, the mobile device only joins for a limited period of

42

Univ
ers

ity
 of

 M
ala

ya

time and may not have sufficient time to install cloudlet components and then perform

valuable resource augmentation. Second, the cloudlets are free and untrusted resources.

Therefore, mobile devices may be unwilling to have additional software installed from an

untrusted source.

2.7.5 Resource Availability and Scalability

Resource availability and cloudlet scalability are two important considerations for

mobile application augmentation. The unavailability of cloudlet resources or inadequate

performance when subject to an increasing number of users can affect the service of

the cloudlets. Resource unavailability can be minimized via optimal resource allocation

and management policies and by identifying peak loads. However, scalability typically

remains an issue for cloudlets because of inadequate funds and their self-managed nature.

2.7.6 Mobile-based Augmentation and Load Balancing

When mobile devices are used for cloudlet-based resource augmentation, current

schemes do not keep track of the load shifted to the mobile devices and the service re-

quirements of the mobile devices. In general, the mobile devices become part of the

cloudlet and are treated as equal to the cloudlet computational units. Such an integration

increases book keeping overhead, results in sub-optimal performance when a slower mo-

bile device joins and often overloads resource-poor as well as high-power mobile devices.

2.7.7 Consistent and Seamless Connectivity

For MCC, mobility is an important attribute for mobile users. Mobile users enjoy

the freedom of computing and communication on the move. However, a number of ob-

stacles hinder the goals of seamless connectivity and consistency in mobile application

augmentation. For example, handoffs, high-speed travelling, geographical location diver-

sity and various environmental factors can affect such augmentation. Therefore, seamless

43

Univ
ers

ity
 of

 M
ala

ya

connectivity and uninterrupted access to centralized cloud data centres is vital to applica-

tion augmentation research in MCC. As a result, ensuring the transparency of application

augmentation is important. Specifically, the seamless and transparent deployment of dis-

tributed application platforms for computation-intensive applications is challenging in

MCC. Clearly, the complexity should be reduced, and users should be provided with rich

application execution experiences by abstracting the technical complexity of application

augmentation.

2.7.8 Privacy and Integrity

Privacy and the integrity of the data as well as computations is an important issue,

specifically in the case of free cloudlets and mobile-device-based resource augmentation.

If a cloudlet decides to forward data of a particular user to another device in the network

for computation, the privacy of the data can be compromised by the serving device. Sim-

ilarly, there is no way of verifying the integrity of the computations performed by the

mobile device when the code is offloaded by the cloudlet. A malicious device can easily

become part of the cloudlet by offering its resources and performing malicious computa-

tions or compromising the integrity of the data. In addition, such sharing mechanisms can

also result in the migration of malicious code from the networked devices to the intended

victims.

2.8 Conclusion

In this chapter we presented a literature review of the state of the art of cloudlet-

based mobile application augmentation in mobile cloud computing. We developed the

taxonomy for cloudlet-based mobile application execution and resource augmentation for

MCC. We analyzed current resource augmentation frameworks by providing a thematic

taxonomy and highlighted the commonalties and differences of such frameworks in terms

of various significant parameters. We categorized and highlighted a detailed analysis of

44

Univ
ers

ity
 of

 M
ala

ya

code offloading mechanisms. We presented applications of cloudlet-based augmentation

and the weaknesses of the cloudlets. We discussed cloudlet resource constraints in this

chapter and identified key factors and influential parameters through an extensive liter-

ature review. We considered the various approaches, frameworks, techniques and tools

that are frequently used by researchers. Our research objective is to identify and establish

problems that have a significant impact on MCC. Further, we will develop a new frame-

work and justify the applicability and validity of the framework in later chapters. Finally,

a number of issues were identified for future research directions. This chapter highlighted

fundamental aspects of the application and use of cloudlet-based mobile applications for

MCC. We highlighted challenges to the current deployment of cloudlet applications and

issues concerning the optimal and easy use of cloudlet-based augmentation frameworks

for MCC.

In a subsequent chapter, we further investigate the highlighted issues, especially the

resource scarcity problem, which addresses the impact of finite resources on cloudlet

performance. Finally, with reference to the resource augmentation of cloudlets using

mobile devices, we will present a solution that addresses the highlighted issues.

45

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 3 : RESOURCE SCARCITY IN CLOUDLETS: PROBLEM

ANALYSIS

In this chapter, we attempt to highlight the resource scarcity problem and establish the

impact of resource scarcity on cloudlet performance via empirical analysis. Moreover,

we extend our analysis by modeling cloudlet user arrival and serving scenarios and es-

tablish the research problem by analyzing the observed output. To this end, we conduct

a series of experiments, and based on the results of the experiments, we show that the

problem of resource scarcity is real and non-trivial. Subsequently, we develop a prelim-

inary mathematical model for the problem and derive the basic relationship between the

number of resources available in the system and the number of users that can be served

simultaneously.

Section 3.1 presents several definitions and the initial assumptions. Sections 3.2

and 3.3 describe the empirical investigations using details of the experimental setup and

model of the experiment. Section 3.4 presents the results of the empirical analysis. The

performed cloudlet operational system behaviour synthesis is explained in Section 3.5.

Based on these findings, we develop and discuss a preliminary mathematical model of

the problem in Section 3.5. The chapter is concluded in Section 3.6.

3.1 System Description

In this section, we present the details of the operation of cloudlet systems by defining

several system definitions and assumptions. This will help us better understand the factors

that affect the response of the cloudlet to user applications (Whaiduzzaman, Gani, &

Naveed, 2015)

46

Univ
ers

ity
 of

 M
ala

ya

3.1.1 System Parameter Definitions

We first define several relevant terms that are used frequently in this chapter and in

the remainder of the thesis. The definitions for the analysis are as follows:

Mobile Device: A mobile device is a smart phone, tablet, notebook or any other

portable device that can connect to a nearby network or the Internet through Wi-Fi or

cellular network connections and that is capable of requesting and receiving required

services from the computational cloud.

Mobile Service: A mobile service is initially started using a mobile user request

through the device for a specific purpose by maintaining a work flow service. Accord-

ingly, for every mobile service request, the tasks are executed by processing the input and

finally providing feedback with an output.

Cloudlet Service: A cloudlet having finite resources offers services to mobile users

in close proximity to serve computational user service requests and other task execution

requests using its greater resources compared to the mobile device.

Resource: A resource represents an available unit that is required for executing a

task. We can denote r as a resource, and R can be denoted as a set of available resources.

CPU Utilization or CPU Use Time: CPU usage, or CPU time, is the amount of

time for which a central processing unit (CPU) is used for processing the instructions of

a computer program.

Task: A task can be a logical unit of work that is executed by a resource.

Cloudlet Execution Time: The execution time is the total time needed to complete

a task by the available resources.

Cloudlet Response Time The cloudlet response time is the total time taken for the

execution of the task by the cloudlet, including the waiting time in the system.

User service time: The user service time indicates the total time taken by the

47

Univ
ers

ity
 of

 M
ala

ya

cloudlet to deliver the computation service to the mobile user and other related transfer

times and network delays. Therefore, the user service time includes cloudlet response,

code transfer, and network delay.

User Time Benefit: The user time benefit is the ratio of the mobile device execution

time to the total cloudlet execution time. The user time benefit depends on mobile device

resources, particularly the CPU speed, the cloudlet CPU speed, the code transfer time and

other overhead. This benefit can be expressed as follows: user time benefit = Time taken

by mobile device/Total user service time for cloudlet X100

Throughput: Throughput is the number of tasks completed by the cloudlet per unit

of time. This metric depends on several factors that can affect the execution of a task.

Efficiency: The cloud system efficiency indicates the effective utilization of cloudlet

resources and services. Therefore, a higher value of the efficiency indicates that the over-

head will be smaller.

3.1.2 CPU Resources, Queue and User Arrival Scenario

A cloudlet consists of a set of CPU resources associated with one or more queues.

When the user application is submitted to the computational system, the application is

initialized and added to the queue. In general, the queue does not use priorities, and the

user applications are served in a round robin manner. Every application is served for a

fixed period of time or shorter when it is assigned to a CPU resource. The component of

the cloudlet that assigns the applications to the CPU cores is known as a process manager,

and it is part of the kernel of the operating system.

The applications join the queue in a process based on three events. First, when the

application is initialized, it is added to the queue. Second, after the amount of execution

time on the designated CPU is used, the application is added back to the queue. Finally,

if the application was in sleep mode or waiting for a specific event, upon completion of

48

Univ
ers

ity
 of

 M
ala

ya

the event, the application is triggered and rejoins the queue. The applications leave the

queue only when the process control decides to assign the application to a CPU core for

execution (Shiraz et al., 2014).

At the CPU level, The process manager is the process that periodically executes com-

putations on each CPU. The process manager decides on the next process to be executed.

It loads the process state into memory and sets the CPU in such a way that the process

can execute a given number of instructions at most. Subsequently, control is handed over

to the process, which executes its own instructions. After the execution of the given num-

ber of instructions, the control is handed back to the process control, which repeats the

entire setup for the next process in the queue. Consequently, there is a constant overhead

resulting from process control execution.

For the purpose of this analysis, we assume that the applications are computationally

intensive and do not wait on hardware resources (Whaiduzzaman, Gani, & Naveed, 2014).

Therefore, the two items of interest inside the cloudlet system are (i) the wait time until

a CPU becomes available when another process or process controller is being executed

and (ii) the actual instruction execution time. Throughout the remainder of this thesis,

we refer to the CPU wait time as the wait time and the instruction execution time as the

cloudlet service time. The sum of the two times is referred to as the cloudlet response

time.

3.1.3 Assumptions

In our experiments, we consider a cloudlet that has various resources such as CPU,

memory, and disk space. We mainly focus on computation-intensive applications in this

research. Therefore, we mainly focus on computational resources, especially cloudlet

CPU resources, thereby primarily addressing computation-intensive applications.

For our investigation and experiment, we consider the following assumptions to de-

49

Univ
ers

ity
 of

 M
ala

ya

fine our research scope and simplify the problem to analyze the cloudlet system.

1. We consider computation-intensive applications that do not require access to hard-

ware resources. Therefore, the wait time of the applications for resources is zero.

This is a simplifying assumption. In practice, the wait time can simply be added to

the application time.

2. Cloudlet resources are all single VMs. Users are allocated resources within the

VM.

3. The cloudlet resources are all of the same type, i.e., they are homogeneous. For

example, all the CPU cores have the same configuration and are of the type and

make.

4. The user application size is the same, and we repeatedly use the same application

to ensure that the same effects are produced.

5. For the mobile device execution time, no other applications are running on the

mobile device.

6. All the mobile devices are homogeneous; specifically, they are all of the same make

and model and have the same specifications.

7. A mobile user is allowed to submit only one task to the cloudlet.

8. The processing speed of the cloudlet is higher than the mobile device.

3.2 Experimental Setup

In our experiments, we consider a cloudlet that has resources such as CPU, mem-

ory, and disk space. For the cloudlet, we considered that any user can join, but storing

data in the cloudlet and returning to use the stored data is not possible. This is because

the cloudlets can only maintain soft states. Maintaining hard states requires substantial

50

Univ
ers

ity
 of

 M
ala

ya

storage resource, and most of the stored data will never be used again. This is because

users do not repeatedly join the same cloudlet. If they do, the stored state is quite old

and no longer valuable to the user. Therefore, we do not consider the disk space of the

cloudlet as a resource for our experiments, and we mainly focus on computational re-

sources, with the primary focus on cloudlet CPUs. Thus, our research primarily address

computation-intensive applications.

3.2.1 Experimental Model

In this analysis, the two test bed modes are named as the local mobile execution mode

and the remote execution mode specifically in the cloudlet execution mode. We test our

computation-intensive prototype application using these two modes. In local execution

mode, all the application components are executed locally on the mobile device, whereas

in the cloudlet, the computation-intensive prototype mobile application is executed. In

our experiments, we deployed a small-scale Openstack-based cloud as the cloudlet. Our

experimental model and its components are described below.

3.2.1.1 Cloudlet Resources

We create a 4-core virtual machine for the mobile device. Note that in general, a

mobile device is offered less than 4 cores because of the limited resources available in the

cloudlet. The mobile device is allocated 8 GB of RAM and 80 GB of hard disk space. The

processor is a 2.4 GHz Xeon processor, which has a processing speed of 32000 MIPS.

The virtual machine is running Ubuntu linux version 12.0.4 LTS as the operating system.

The cloudlet specifications are summarized in Table 3.1

3.2.1.2 Mobile Device

The mobile device used in this experiment is a Samsung Galaxy S2 GT-19100G,

featuring a dual-core 1.2 GHz Cortex-A9 processor; 512 MB of RAM; 802.11 a/b/g/n

51

Univ
ers

ity
 of

 M
ala

ya

Table 3.1: Technical Specifications of Cloudlet Resources
Used in Empirical Analysis

Cloudlet Platform Open Stack
Version Havana
Original OS Linux UBUNTU 12.04
Processor 2.4 GHz Xeon
MIPS 32000MIPS
VCP 4 core
RAM 8GB
Storage 80GB
OS Cirros3.03

Wi-Fi; Exynos 4210 chipset; Mali-400 GPU; accelerometer, gyro, and proximity sensors;

a compass; GPS; and Android v2.3.4. The processing capacity of the mobile device

is 7500 MIPS. This results in a greater than 4 times speedup factor when the mobile

application is shifted from the mobile device to the cloudlet. Details of the mobile device

are summarized in Table 3.2.

52

Univ
ers

ity
 of

 M
ala

ya

Table 3.2: Technical Specifications of Mobile Device Used
in Experiment

Mobile device Samsung Galaxy S2
Series GT I-9100
OS Android
OS Version V2.3.4
Processor Dual core 1.2 GHz Cortex-A9
RAM 512 MB
Chipset Exynos-4210
Storage 16GB
Wi-Fi 802.11 a/b/g/n

3.2.1.3 Connectivity

The connectivity between the mobile device and the cloudlet is established by at-

taching a wireless router to the cloudlet network. We use a Cisco Linksys WRT45GL

wireless router with the 4.30.16 build 6 version of the firmware to enable wireless con-

nectivity. The wireless link speed is 54 Mbps, and indoor communications occur via the

2.4 GHZ band. The router is connected to a high-speed LAN network to communicate

with the Internet.

3.2.1.4 Prototype Application

The prototype application is a computation-intensive math application that receives

values and performs several addition and multiplication operations. The prototype appli-

cation is developed in the C programming language. For local execution on the mobile

device, we first rooted the smartphone to obtain full control as an administrator or super

user. The program was compiled on a laptop using the ARM linux GCC compiler version

4.8.3. The workload of the program instruction size is 120x109 instructions, with the pro-

gram taking approximately 210 seconds to execute on the mobile device. The program

has been compiled statically, and the size of the executable is 8.47 KB. To embed the li-

brary file to run and execute the application, we compiled the application as a static code

by differentiating the architecture as an arm processor. The same application has been

53

Univ
ers

ity
 of

 M
ala

ya

Table 3.3: Performance Metrics and Units Used in Empirical
Analysis

Performance Metrics Units
CPU Utilization % of use
User service time Seconds
Throughput
Efficiency % of use
Response time Seconds
Waiting time Seconds

used for all mobile devices to ensure that the impact of the variable workload is miti-

gated. In addition, we performed an alternate set of experiments with variable application

sizes. The results are as expected irrespective of the application size and diversity in the

size of the applications.

3.2.1.5 Performance Metrics

We use several performance metrics, namely user service time, throughput, CPU

utilization and efficiency, for our experiment, as previously described. The metrics are

summarized in Table 3.3.

Linux console commands have been used to measure the performance metrics that

were presented in the previous section. We used the Top command to extract the values

of the CPU load and the number of users on the system. The time command was used to

measure the time taken by the applications Awk and Sed scripts were used to extract the

values from the raw output files.

3.3 Empirical Analysis of Cloudlet Finite Resources Impact

In this section, we present our empirical findings with reference to the impact of

cloudlet resources on the performance of cloudlet in delivering the service to the mobile

users.We first present the CPU utilization. This is followed by the cloudlet efficiency,

cloudlet throughput and finally the cloudlet response time.

54

Univ
ers

ity
 of

 M
ala

ya

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of user Applications

%
 o

f C
P

U
 U

til
iz

at
io

n

Figure 3.1: CPU Utilization

3.3.1 CPU Utilization

The CPU Utilization, or CPU usage time, is the amount of time for which a central

processing unit (CPU) was used for processing instructions of a computer program. In

general, over an extended period of time, the average CPU utilization is low because of

I/O operations. However, the instantaneous utilization can reach 100%. In this experi-

ment, we increase the number of mobile applications being executed on the cloudlet and

observe the impact on the cloudlet CPU utilization as the instructions are being executed.

The results are presented in Figure 3.1

Note that the cloudlet CPU utilization increases as long as the number of user appli-

cations is less than the number of CPUs available on the cloudlet. This is because a newly

submitted application can be executed on an idle CPU. When the idle CPU is brought

into use, the overall utilisation of the CPUs on the cloudlet increases. However, when

the number of applications on the cloudlet increases beyond the number of installed CPU

55

Univ
ers

ity
 of

 M
ala

ya

cores, the cloudlet CPU utilization reaches 100% and remains there.

A utilization of 100% for only four computation-intensive mobile applications is

alarming. However, the exact impact of increasing the number of applications beyond the

number of CPU cores is not obvious from this graph. To this end, we consider cloudlet

efficiency as our next metric.

3.3.2 Efficiency

For the cloudlet, efficiency is defined as the ratio of the service time of the task

to the total cloudlet response time. This is given in Equation 3.1, where Ts,To and Tw

represent the cloudlet service time, operating system overhead and the cloudlet wait time,

respectively.

E f f iciency =
Ts

(Ts +To +Tw)
∗100 (3.1)

Equation 3.1 shows that as the overhead increases, the system efficiency decreases.

The results for different numbers of user applications being executed on the cloudlet are

shown in Table 3.4. The results for efficiency are shown in Figure 3.2. We can see that

the system efficiency is nearly 100% when the number of users is less than the number

of CPU cores. However, as the number of mobile applications being executed by the

cloudlet increases further, the efficiency starts decreasing. The initial uniform value is

because each CPU is handling only one task. This leads to the negligible overhead of the

operating system only. On the other hand, as the number of users increases, the processes

start sharing the CPUs, thus resulting in an increased wait time with increasing number

of applications. Therefore, the efficiency decreases exponentially with increasing number

of applications.

The decrease in efficiency indicates that the performance of the cloudlet decreases

with increasing number of users and that the cloudlet needs additional resources to cater

to the higher number of users. However, such resources are not available, which in turn

56

Univ
ers

ity
 of

 M
ala

ya

Table 3.4: Cloudlet Systems Parameters and Efficiency

No. T To-vm To-os To T-To Tw Eff
1 54.65 0.02 0.98 1.00 53.65 0.00 98.17
2 55.71 0.11 0.99 1.11 54.61 0.96 96.30
3 56.52 0.30 0.95 1.25 55.27 1.62 94.92
4 56.75 0.34 0.93 1.27 55.49 1.84 94.54
5 70.72 0.38 1.08 1.46 69.26 15.61 75.86
6 84.35 0.42 1.40 1.82 82.53 28.88 63.60
7 98.25 0.58 1.54 2.12 96.13 42.48 54.61
8 113.62 0.32 2.18 2.50 111.12 57.47 47.22
9 127.55 1.02 2.07 3.09 124.46 70.81 42.06
10 141.79 0.70 2.30 2.99 138.80 85.15 37.84
11 155.20 1.32 2.51 3.83 151.37 97.72 34.57
12 170.15 1.06 2.76 3.81 166.34 112.69 31.53
13 184.57 1.35 3.30 4.65 179.92 126.27 29.07
14 198.11 1.19 3.19 4.38 193.73 140.08 27.08
15 212.95 1.62 3.37 4.98 207.97 154.32 25.19
16 226.15 1.74 3.55 5.29 220.86 167.21 23.72
17 240.26 1.81 3.78 5.59 234.66 181.02 22.32
18 255.19 1.89 3.87 5.76 249.43 195.78 21.02
19 269.46 1.92 3.95 5.87 263.59 209.94 19.91
20 284.54 1.99 4.12 6.11 278.43 224.78 18.85
21 299.28 2.12 4.27 6.39 292.89 239.24 17.92
22 314.61 2.46 4.39 6.85 307.76 254.11 17.05
23 329.67 2.49 4.45 6.94 322.73 269.09 16.27
24 345.75 2.89 4.59 7.48 338.27 284.62 15.51
25 361.38 2.99 4.75 7.74 353.63 299.98 14.85
26 377.73 3.17 4.89 8.069 369.66 316.01 14.20
27 394.39 3.28 4.95 8.23 386.15 332.51 13.60
28 411.33 3.49 5.35 8.84 402.49 348.84 13.04
29 428.31 3.79 5.79 9.58 418.73 365.08 12.52
30 444.34 4.56 6.99 11.55 432.79 379.14 12.07

affects the service that the users receive in terms of service time. This is further confirmed

by examining the cloudlet throughput and service time.

3.3.3 Throughput

The cloudlet system throughput is a ratio defined as the number of tasks completed

over a given period of time. The can be represented by Equation 3.2, where N is the total

number of tasks completed during the experiment time.

T hroughput =
N

Texp
(3.2)

57

Univ
ers

ity
 of

 M
ala

ya

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Efficiency

Number of user Applications

%
 o

f E
ffi

ci
en

cy

Figure 3.2: Cloudlet Efficiency

Figure 3.3 shows that the throughput initially increases as the number of tasks in-

creases up to a maximum value when the number of user applications being executed on

the cloudlet is equal to the number of CPU cores. Subsequently, the throughput remains

constant and continues to constant as the number of tasks in the system increase.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of user Applications

Th
ro

ug
hp

ut

Figure 3.3: Cloudlet Throughput with Increasing User Task Loads

This suggests that the cloudlet task will not vacate earlier that means wait time will

58

Univ
ers

ity
 of

 M
ala

ya

Table 3.5: Cloudlet Task Time with Increasing Number of
Users in Cloudlet

No. T SD E CI
UserAps1 54.65 0.1678 0.07906 54.65(+/-)0.07906
UserAps2 55.71 0.1926 0.09074 55.71(+/-)0.09074
UserAps3 56.52 0.1520 0.07162 56.52(+/-)0.07162
UserAps4 56.75 0.1511 0.07118 56.75(+/-)0.07118
UserAps5 70.72 0.1942 0.09149 70.72(+/-)0.09149
UserAps6 84.35 0.1366 0.06434 84.35(+/-)0.06434
UserAps7 98.25 0.1380 0.06502 98.25(+/-)0.06502
UserAps8 113.62 0.1776 0.08366 113.62(+/-)0.08366
UserAps9 127.59 0.1476 0.06955 127.59(+/-)0.06955
UserAps10 141.79 0.1733 0.08161 141.79(+/-)0.08161
UserAps11 155.21 0.1788 0.08423 155.21(+/-)0.08423
UserAps12 170.15 0.2542 0.11972 170.15(+/-)0.11972
UserAps13 184.57 0.2049 0.09650 184.57(+/-)0.09650
UserAps14 198.11 0.2514 0.11841 198.11(+/-)0.11841
UserAps15 212.96 0.2483 0.11696 212.96(+/-)0.11696
UserAps16 226.15 0.2202 0.10375 226.15(+/-)0.10375
UserAps17 240.26 0.2218 0.10449 240.26(+/-)0.10449
UserAps18 255.19 0.4265 0.20091 255.19(+/-)0.20091
UserAps19 269.46 0.1900 0.08950 269.46(+/-)0.08950
UserAps20 284.54 0.3060 0.14412 284.54(+/-)0.14412
UserAps21 299.28 0.3300 0.15543 299.28(+/-)0.15543
UserAps22 314.61 0.1854 0.08733 314.61(+/-)0.08733
UserAps23 329.67 0.2602 0.12256 329.67(+/-)0.12256
UserAps24 345.75 0.2629 0.12385 345.75(+/-)0.12385
UserAps25 361.38 0.1831 0.08625 361.38(+/-)0.08625
UserAps26 377.73 0.2377 0.11198 377.73(+/-)0.11198
UserAps27 394.39 0.2217 0.10441 394.39(+/-)0.10441
UserAps28 411.33 0.2738 0.12896 411.33(+/-)0.12896
UserAps29 428.31 0.2552 0.12022 428.31(+/-)0.12022
UserAps30 444.34 0.2812 0.13245 444.34(+/-)0.13245

increase, ultimately increase the cloudlet response time with the number of users or tasks

entered into the cloudlet system.

3.3.4 Task Completion Time

We finally consider the task completion time to observe the impact of limited cloudlet

resources and increasing number of user applications on the service provided by the

cloudlet. Table 3.5 presents the data concerning the total task time for 20 different execu-

tions with the results averaged.

59

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

350

400

450

500

 U
se

rA
ps

1
 U

se
rA

ps
2

 U
se

rA
ps

3
 U

se
rA

ps
4

 U
se

rA
ps

5
 U

se
rA

ps
6

 U
se

rA
ps

7
 U

se
rA

ps
8

 U
se

rA
ps

9
 U

se
rA

ps
10

 U
se

rA
ps

11
 U

se
rA

ps
12

 U
se

rA
ps

13
 U

se
rA

ps
14

 U
se

rA
ps

15
 U

se
rA

ps
16

 U
se

rA
ps

17
 U

se
rA

ps
18

 U
se

rA
ps

19
 U

se
rA

ps
20

 U
se

rA
ps

21
 U

se
rA

ps
22

 U
se

rA
ps

23
 U

se
rA

ps
24

 U
se

rA
ps

25
 U

se
rA

ps
26

 U
se

rA
ps

27
 U

se
rA

ps
28

 U
se

rA
ps

29
 U

se
rA

ps
30

Service Time

Mobile1 devicetime

Mobile2 device time

Mobile3 device time

S
er

vi
ce

 T
im

e
(S

ec
on

ds
)

Number of user Applications

Figure 3.4: Application Execution Time in Cloudlet and Different Mobile Devices

Figure 3.4 graphically represents the service time with increasing number of users.

For comparison, the time taken by the mobile device to execute the same application

locally has also been plotted as a straight line.

Note that the task completion time linearly increases, and for 17 users, the task com-

pletion time from the cloudlet increases to being greater than the time taken by the mobile

device itself. The increase in task completion time is mainly caused by the increased wait-

ing time, which is directly proportional to the number of users on the cloudlet.

3.3.5 User Time Benefit

The scarcity of cloudlet resources can be best captured by considering the user time

benefit for offloading the mobile device’s computational task to the cloudlet. Table 3.6

shows the data concerning the user benefit with increasing number of applications being

executed by the cloudlet. The data are presented graphically in Figure 3.5. The benefit to

the user decreases with increasing number of users and diminishes when the number of

applications reaches 16.

60

Univ
ers

ity
 of

 M
ala

ya

Table 3.6: User Time Benefit with Different Tasks Load.
No T T-To TMob benefit
1 54.65 53.65 212 3.88
2 55.71 54.60 212 3.80
3 56.52 55.27 212 3.75
4 56.75 55.49 212 3.74
5 70.72 69.26 212 2.99
6 84.35 82.53 212 2.51
7 98.25 96.13 212 2.16
8 113.62 111.12 212 1.87
9 127.55 124.46 212 1.66
10 141.79 138.80 212 1.49
11 155.2 151.37 212 1.37
12 170.15 166.34 212 1.25
13 184.57 179.92 212 1.15
14 198.11 193.73 212 1.07
15 212.95 207.97 212 0.99
16 226.15 220.86 212 0.94
17 240.26 234.67 212 0.88
18 255.19 249.42 212 0.83
19 269.46 263.59 212 0.79
20 284.54 278.43 212 0.75
21 299.28 292.89 212 0.71
22 314.61 307.75 212 0.67
23 329.67 322.73 212 0.64
24 345.75 338.27 212 0.61
25 361.39 353.64 212 0.59
26 377.73 369.67 212 0.56
27 394.39 386.15 212 0.54
28 411.33 402.49 212 0.52
29 428.31 418.72 212 0.49
30 444.34 432.79 212 0.48

The results show that the cloudlet resources are not sufficient to handle a substantial

number of work loads. For the cloudlet that we created for testing, barely 16 user appli-

cations being executed by the cloudlet system can result in no time benefit for the mobile

device, which is a major factor when deciding to use the cloudlet. In other words, the

service of the cloudlet becomes unacceptable as the number of users increases. This is

mainly because of the limited resources of the cloudlets.

61

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

% user time benefit

Number of user Applications

U
se

r t
im

e
be

ni
fit

Figure 3.5: Cloudlet Task Loads and User Time Benefit

3.4 Cloudlet System Behavior Synthesis

The cloudlet system behaviour scenarios are studied by varying influential factors

such as resources, access rate, and service time. This allows us to closely observe, thor-

oughly study and analyze the cloudlet system performance from various aspects and from

a technical perspective.

In this section, we closely analyze the cloudlet system behavior. We discuss several

aspects of the cloudlet system behavior, including user arrival rate (Lambda, λ), user ser-

vice time, cloudlet response time, queue length and waiting stage of the cloudlet system

as a function of the number of cloudlet parameters from a broader perspective and expand

the analysis by increasing the amount of resources. We report and analyse from different

angels and perspectives and critically analyse the overall system behaviors in two main

categories: First, we observe and report on the resource enhancement, specially the CPU

core effect. Second, we observe and report on the overall effects if we allow more users

with fixed resource impacts on the overall performance of the cloudlet as follows:

62

Univ
ers

ity
 of

 M
ala

ya

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80

%Served, Lambda-4

%Served, Lambda-5

%Served, Lambda-6

%Served, Lambda-7

%Served, Lambda-8

Service Time (Seconds)

%
 o

f U
se

r S
er

ve
d

Figure 3.6: Number of User Served in Cloudlet at CPU4

3.4.1 Resource Enhancement Effects:

In this section, we investigate and analyse the impact on cloudlet behaviour with

varying resources.

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80

%Usrsrvd, Lambda-4 %Usrsrvd, Lambda-5 %Usrsrvd, Lambda-6

%Usrsrvd, Lambda-7 %Usrsrvd, Lambda-8

Service Time (Seconds)

%
 o

f U
se

r S
er

ve
d

Figure 3.7: Number of User Served in Cloudlet at CPU8

3.4.1.1 Number of User Served:

In this experiment, we observed the number of users served by the cloudlet. Figure

3.6 shows that the number of users served is initially 100% and remains at this level up

to a service time of 20. From a service time of 30, an arrival rate, lambda, of 8 results in

63

Univ
ers

ity
 of

 M
ala

ya

0

5

10

15

20

25

10 20 30 40 50 60 70 80

NAverage, Lambda-4
NAverage, Lambda-5
NAverage, Lambda-6
NAverage, Lambda-7
NAverage, Lambda-8

Service Time (Seconds)

N
um

be
ro

f U
se

r i
n

C
lo

ud
le

t

Figure 3.8: Number of User in Cloudlet at CPU4

users being dropped. From a service time of 60, the cloudlet starts dropping users for any

arrival pattern and continues providing services. Figure 3.7 shows the improvement to

the number of users served up to a service time of 60. Therefore, increasing the resources

strongly affects the number of users served by the cloudlet. However, for the cloudlet, we

do not consider the ability to add any extra resources to the cloudlet during operation.

3.4.1.2 Number of Users in the System

Figure 3.8 shows the number of users on the cloudlet system against the service time.

The number of users reaches a maximum of 20 very quickly when the user arrival rate is

higher, and this occurs less quickly when a low arrival rate is used.

In Figure 3.9, we observe the same effect as in Figure 3.8 by increasing the CPU

resources from 4 to 8 cores. The graph indicates that increasing resources can allow users

to be served even with linearly increasing arrival rates. The trends show that a fully linear

relationship will result if further resources are provided to the cloudlet.

64

Univ
ers

ity
 of

 M
ala

ya

0

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50 60 70 80

NAverage, Lambda-4
NAverage, Lambda-5
NAverage, Lambda-6
NAverage, Lambda-7
NAverage, Lambda-8

Service Time (Seconds)

N
um

be
ro

f U
se

rs
 in

 C
lo

ud
le

t

Figure 3.9: Number of User in Cloudlet at CPU8

3.4.1.3 Number of Users Waiting in the System

In Figures 3.10 and 3.11, we can observe the number of waiting users in the system

when varying the number of CPU cores from 4 to 8. Figure 3.10 shows no waiting from

a service time of 10 to a service time of 20. However, Figure 3.11 shows that the added

CPU resources impact the cloudlet by resulting in a minimal waiting time up to a service

time of 40.

0

2

4

6

8

10

12

14

16

18

10 20 30 40 50 60 70 80

QAverage, Lambda-4
QAverage, Lambda-5
QAverage, Lambda-6
QAverage, Lambda-7
QAverage, Lambda-8

Service Time (Seconds)

Q
ue

ue
 L

en
gt

h
in

 C
lo

ul
et

Figure 3.10: Number of Waiting User in Cloudlet Queue at CPU4

65

Univ
ers

ity
 of

 M
ala

ya

3.4.1.4 Uses of CPU Resource

Cloudlet CPU utilization is an important indicator of the resource scarcity of cloudlets.

Figures 3.12 and 3.13 show the CPU utilization for 4 cores and 8 cores, respectively.

0

1

2

3

4

5

6

7

8

9

10

10 20 30 40 50 60 70 80

QAverage, Lambda-4

QAverage, Lambda-5

QAverage, Lambda-6

QAverage, Lambda-7

QAverage, Lambda-8

Service Time (Seconds)

Q
ue

ue
 L

en
gt

h
in

 C
lo

ud
le

t

Figure 3.11: Number of Waiting User in Cloudlet Queue at CPU8

With fewer CPU cores, 100% utilization is quickly reached; on the other hand, Fig-

ure 3.13 shows that 100% utilisation is achieved later due to the increased resources. In

addition, the higher arrival rate obviously reaches its peak earlier.

3.4.1.5 Response Time of Cloudlet

Figures 3.14 and 3.15 show the cloudlet response time with 4 and 8 CPU cores. Ini-

tially, the response time is the same irrespective of the arrival rate. However, the response

time changes with increasing service time.

3.4.1.6 Waiting Time in the Cloudlet

Figures 3.16 and 3.17 show the waiting effect of the cloudlet with increasing number

of CPU cores. For 4 cores, the waiting time increases almost linearly irrespective of the

arrival rate. However, for 8 CPU cores, no waiting time is experienced up to a service time

of 40; then, the waiting time starts increasing with the service time. When the number of

66

Univ
ers

ity
 of

 M
ala

ya

0

0.5

1

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60 70 80

Cavg, Lambda-4
Cavg, Lambda-5
Cavg, Lambda-6
Cavg, Lambda-7
Cavg, Lambda-8

Service Time (Seconds)

C
P

U
 C

or
e

U
til

iz
at

io
n

Figure 3.12: Uses of CPU Resources in Cloudlet at CPU4

CPU cores increases and the overall response time decreases, the cloudlet can work faster

as a result of the increased resources.

For all the aforementioned cases, we observe and discuss the effects on the cloudlet

when increasing and decreasing the number of CPU cores. In the following section, we

will closely observe the cloudlet system behavior based on user interaction by fixing the

resources, but we will allow more users to be served by the cloudlet at any given time.

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80

Cavg, Lambda-4
Cavg, Lambda-5
Cavg, Lambda-6
Cavg, Lambda-7
Cavg, Lambda-8

Service Time (Seconds)

C
P

U
co

re
 U

til
iz

at
io

n

Figure 3.13: Uses of CPU Resources in cloudlet at CPU8

67

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80

TResAvg, Lambda-4
TResAvg, Lambda-5
TResAvg, Lambda-6
TResAvg, Lambda-7
TResAvg, Lambda-8

Service Time (Seconds)

C
lo

ud
le

t R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Figure 3.14: Cloudlet Response Time at CPU4

3.4.2 Maximum Number of User Enhancement: K-effect

We observed the results of varying the maximum number of allowed users K and the

corresponding effects on the cloudlet. For this experiment, we set CPU=4, User appli-

cation requirement=60 seconds, and service time=60 seconds. We varied the maximum

number of allowed users on the cloudlet in the order of 20, 30 and 40 to observe the rele-

vant effects. We obtained the quite interesting findings described in the relevant graphs.

0

20

40

60

80

100

120

140

160

180

200

10 20 30 40 50 60 70 80

TResAvg, Lambda-4
TResAvg, Lambda-5
TResAvg, Lambda-6
TResAvg, Lambda-7
TResAvg, Lambda-8

Service Time (Seconds)

C
lo

ul
et

 R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Figure 3.15: Cloudlet Response Time at CPU8

68

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80

Wavg, Lambda-4
Wavg, Lambda-5
Wavg, Lambda-6
Wavg, Lambda-7
Wavg, Lambda-8

Service Time (Seconds)

C
lo

ud
le

tW
ai

tin
g

Ti
m

e(
S

ec
on

ds
)

Figure 3.16: Cloudlet Waiting Time at CPU4

3.4.2.1 Number of Users in the Cloudlet with Varying Lambda and K

In this observation, we concentrate on the number of users in the cloudlet with vary-

ing the user arrival rate and the maximum number allowed user.

From Figure 3.18, shows the arrival rate and the maximum allowed number of users

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80

Wavg, Lambda-4
Wavg, Lambda-5
Wavg, Lambda-6
Wavg, Lambda-7
Wavg, Lambda-8

Service Time (Seconds)

C
lo

ud
le

t W
ai

tin
g

Ti
m

e
(S

ec
on

ds
)

Figure 3.17: Cloudlet Waiting Time at CPU8

69

Univ
ers

ity
 of

 M
ala

ya

0

5

10

15

20

25

30

35

40

45

4 5 6 7 8 9 10

Navg, K-20
Navg, K-30
Navg, K-40

Arrival rate, Lamda

N
um

be
r o

f C
lo

ud
le

tU
se

rs

Figure 3.18: Cloudlet Users Effect Varying the Maximum Allowed User in the Cloudlet

in the cloudlet system. we observe that for lower arrival rates, the maximum number

of users is slowly reached. However, for increased arrival rates, the maximum number

of users in the system for higher K is quickly reached. The case of K=40 saturated the

cloudlet earlier than did the cases of K=30 and K=20.

3.4.2.2 Resource CPU Utilization Uses by Varying Lambda and K

In Figure 3.19, shows the resource CPU utilization uses by varying lambda and the

maximum allowed user. We observe the effect of varying K with the number of CPUs

fixed at 4. When varying the maximum number of allowed users on the system, we

observe that the CPUs are quickly used in an optimal manner when a higher arrival rate is

used. For an arrival rate of 4, K=40 results in a higher CPU utilization compared to K30

and K20.

70

Univ
ers

ity
 of

 M
ala

ya

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4 5 6 7 8 9 10

K-20

K-30

K-40

Lamda Value

C
P

U
 U

til
iz

at
io

n

Figure 3.19: Cloudlet CPU Resource Uses Pattern Varying the Maximum Allowed User

However, when increasing the arrival rate, all the cases obtain the maximum CPU

utilization. Therefore, the maximum number of users and the user arrival rate affect the

CPU utilization. The greater the arrival rate and maximum number of allowed users in

the system, the stronger the CPU utilization will impact the cloudlet system.

3.4.2.3 Response Time with Varying Maximum Number of Allowed User in Cloudlet

In this case, we observe the cloudlet response time, Tres, in Figure 3.20, which shows

the total cloudlet execution time of an application and the effect. Here, we simply use 4

CPU cores and vary the maximum number of allowed users in the cloudlet to observe the

overall effects.

Figure 3.20 shows that the maximum number of allowed users on the cloudlet system

has a significant effect. The greater the maximum number of allowed users, the longer

the response time, namely, slower user response and increased overall cloudlet execution

time. Interestingly, we observe that increasing the maximum number of allowed users

71

Univ
ers

ity
 of

 M
ala

ya

0

100

200

300

400

500

600

700

4 5 6 7 8 9 10

K-20 K-30 K-40

Arrival rate, Lambda

C
lo

ud
le

t R
es

po
ns

e
Ti

m
e

(S
ec

on
ds

)

Figure 3.20: Cloudlet Response Time Observation Varying the Maximum Allowed User

produces a pattern of increased response time when shifting the line upward.

3.5 Preliminary Model

In this section, we present the preliminary model that we have developed with the

objective of performing a problem analysis. The model defines a relationship between

the cloudlet resources and the number of cloudlet users that leads to the unacceptable

performance of the cloudlet. This model will be used to show that the problem established

through empirical analysis is not limited to one instance but can be generalized to all

possible cloudlet instances. We first present the notations that will be used in the model.

This is followed by the model presentation.

3.5.1 Notations

The following notations are used in the model:

1. Sm: Mobile execution speed in MIPS.

72

Univ
ers

ity
 of

 M
ala

ya

2. Sc: Cloudlet virtual machine execution speed in MIPS.

3. Tmob: Application execution time on the mobile device.

4. Ts: Application execution time on the cloudlet when no other applications are being

executed.

5. T : Application execution time on the cloudlet when other applications are being

executed.

6. Tmc: Application transfer time from the mobile device to the cloudlet.

7. Tcm: Application transfer time from the cloudlet to the mobile device.

8. Tpd: Network propagation delay.

3.5.2 Model

We assume that the cloudlet execution speed will always be greater than the mobile

device execution speed; otherwise, the mobile device will not join the cloudlet. Specifi-

cally,

Sc > Sm

We also assume that the two speeds are linked by a speedup factor, where

Sc = F ∗Sm

Because the execution time of the instructions is dependent on the processing speed of

the computational unit, it naturally follows that the mobile device execution time will be

higher than the cloudlet execution time in the absence of external overhead.

Tmob > Ts

73

Univ
ers

ity
 of

 M
ala

ya

The total time taken for the remote execution of an application is given by the following

equation:

Ttot = 2∗Tpd +Tmc +Tcm +T

We assume that the transfer time can be ignored for simplicity because it is not a fac-

tor that directly affects the cloudlet performance and is beyond control of the cloudlet

parameters. We obtain

Ttot = T = Ts +To +Tw

To ensure that the mobile device obtains the benefit from offloading its computations to

the cloudlet, the following condition must be satisfied.

Tmob > T (3.3)

Let the number of cloudlet CPU cores be c; then, T can be given as Equation 3.4, where

n is the number of users on the cloudlet.

T = max(0,(n− c))∗ Ts

c
+Ts (3.4)

Substituting the value of T from Equation 3.4 into Equation 3.3 and solving, we obtain

Tmob >max(0,(n− c))∗ Ts

c
+Ts

Tmob >max(0,(n− c))∗ Tmob

Fc
+

Tmob

F

1 >max(0,(n− c))∗ 1
Fc

+
1
F

1 >
(max(0,(n− c))+ c)

Fc

Fc >(max(0,(n− c))+ c)

(3.5)

74

Univ
ers

ity
 of

 M
ala

ya

Equation 3.5 is a simplified equation that is based on multiple assumptions. Specifically, it

assumes that all applications submitted to the cloudlet are equally sized and that the speed-

up factor for all mobile devices is the same. Nevertheless, the equation gives valuable

insight into cloudlet performance and the problem of resource scarcity. The equation

states that the product of the speed-up factor of the mobile devices and the number of

cores in the cloudlet must be greater than the sum of the number of users in the cloudlet

and the number of CPU cores in the cloudlets for the mobile devices to be able to achieve

any benefit from the cloudlets. Using this expression, we can compute the maximum

number of permitted users on the cloudlet and show that the resource scarcity problem of

the cloudlet arises for fewer numbers of user applications.

3.5.3 Example

Consider a 16-core cloudlet that is connected to relatively powerful and newer mo-

bile devices such that the speed-up factor is 2. We have F=2, and c=16. We want to

determine the maximum number of users that the cloudlet can accommodate before it

should reject further users or else result in no benefit for the mobile applications in terms

of execution time. We have

Fc >(max(0,(n− c))+ c)

2∗16 >n

32 > n

This means that a maximum of 31 users can simultaneously coexist on the cloudlet and

that a further increase will result in no time benefit. Note that a steady user arrival rate of

8 users per minute with a service requirement of slightly over 4 minutes can easily result

in 32 users after only 4 minutes of cloudlet operation. The proposed preliminary model

75

Univ
ers

ity
 of

 M
ala

ya

links the CPU resources available in the cloudlet with the number of users that the system

can accommodate. The relationship shows that resource scarcity is experienced fairly

early. Hence, it can be concluded that the resource scarcity problem is real and needs to

be addressed.

3.6 Conclusion

In this chapter, we presented the empirical analysis to demonstrate that the scarcity

resource problem experienced by cloudlets is a non-trivial problem. We investigated the

impact on finite-resource cloudlet performance by allowing computation-intensive mo-

bile application augmentation to be obtained using a computational cloudlet. We exper-

imentally and analytically demonstrated that a large number of user tasks proportionally

exacerbates the resource scarcity problem faced by cloudlets.

Based on the aforementioned experiments and results, we conclude that if the re-

sources are overutilized or are scarce, then for all the cases, the cloudlet system perfor-

mance will be negatively affected through reduced user service time, throughput, effi-

ciency, user time benefit and overall cloudlet performance. We also link resource scarcity

in cloudlets with user time benefit. We developed a preliminary mathematical model to

generalize the empirical findings. Finally, we derived an expression under simplifying

assumptions and found that the resource scarcity problem can arise even when substantial

cloudlet resources are available.

In this research, our aim is to enhance the performance of cloudlets without increas-

ing the cloudlet resources or requiring manual intervention during normal cloudlet oper-

ation. In the next chapter, we will propose a framework to enhance the optimal cloudlet

performance by exploiting and orchestrating nearby mobile devices. We expect that

the MobiCoRE framework will significantly enhance the performance of finite-resource

cloudlets and ensure mobile user benefit.

76

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 4 : MOBICORE: MOBILE DEVICE BASED CLOUDLET

RESOURCE ENHANCEMENT FRAMEWORK

This chapter presents our proposed framework, Mobile-device-based Cloudlet Resource

Enhancement (MobiCoRE), for cloudlet performance enhancement. Based on the litera-

ture review and the empirical results presented in Chapter 3, it is evident that the perfor-

mance of cloudlets can become sub-optimal, specifically under heavy loads. Therefore, a

number of researchers have addressed the issue of cloudlet resource scarcity by augment-

ing the cloudlet resources using distant clouds, cloudlets in close proximity and mobile

devices. The objective is to explain and address the issues identified concerning resource

scarcity problems discussed in the previous chapter. This chapter explains the frame-

work and operating procedure and presents the working principle of the proposed frame-

work. We present the main building blocks, component diagram, and overall schematic

diagrams of the proposed framework and describe their functionality. In addition, the

interaction among major components of the framework is illustrated in detail using se-

quential diagrams and flowcharts. In this chapter, we address the limitations of mobile-

device-based augmentation approaches. We propose mobile-device-based cloudlet re-

source enhancement (MobiCoRE), which effectively addresses the limitations of existing

approaches. We modelled the MobiCoRE framework mathematically. MobiCoRE effec-

tively improves the user experience for mobile devices as well as the cloudlet response

time.

The chapter starts with an overview of MobiCoRE in Section 4.1. This is followed

by a detailed description of MobiCoRE in Section 4.2, where we explain the operation of

various components of MobiCoRE. We highlight how MobiCoRE has addressed the lim-

itations of the state of the art in Section 4.3. In Section 4.4, we present the mathematical

77

Univ
ers

ity
 of

 M
ala

ya

model of MobiCoRE. The chapter is concluded in Section 4.5.

4.1 Overview of MobiCoRE

The MobiCoRE framework essentially consists of two major building blocks. One

is the user side; we assume it to be a mobile device, and other part is Cloudlet. In this

study, we assume that all the devices are of the same type from the operation perspective.

For the cloudlet, a small-scale cloud is built and operated using the open-source cloud

software Openstack. We explain how the frameworks interact with each other in the

following sections, and we demonstrate the performance enhancement obtained by our

proposed framework based on the the substantial performance gains and enhancement of

the overall cloudlet performance of mobile application augmentation.

MobiCoRE performs four functions: (i) parameter monitoring, (ii) dynamic service

time control, (iii) partially executed task state wrapping and (iv) admission control. The

block diagram of MobiCoRE is shown in Figure 4.1. MobiCoRE monitors a number of

cloudlet parameters, including user arrival rate, average number of users on the system

and average time served. The complete set of monitored and derived parameters is listed

in table 4.1. Based on the monitored parameters, a desired average service time is period-

ically set to ensure an optimal cloudlet response time for a given arrival rate and cloudlet

resources.

The key feature of MobiCoRE is the determination of (i) when to use mobile device

resources and (ii) which tasks should use the mobile device resources. MobiCoRE uses

mobile device resources when the average number of user tasks in the cloudlet increases

beyond the expected number of tasks for an optimal response. At this stage, the desired

service time is reduced, and based on the average time served for the active tasks, a set

of tasks is chosen to use the mobile device resources and vacate the cloudlet. Tasks that

have a time served that is greater than the desired average service time are selected to use

78

Univ
ers

ity
 of

 M
ala

ya

Table 4.1: MobiCoRE Parameters

Parameter Symbol
Cloudlet CPU cores c
Cloudlet max. active tasks K
User task arrival rate λ

Task rejection rate PK
Task departure rate µ

Average number of tasks in Cloudlet N̄
Average expected service time T̄s =

1
µ

Average desired service time T̄ds
Average time served T̄ts

the mobile device resources to complete the remaining task. The execution state of these

tasks is generated, wrapped into process resumption code and sent to their corresponding

mobile device.

4.2 System Description

A functional diagram of MobiCoRE is shown in Figure 4.2. The cloudlet is repre-

sented as a group of CPU cores and a ready queue. Although a process can be in states,

such as waiting for resources or sleep, such states do not have a significant impact on

the cloudlet performance and are omitted in this diagram. Similarly, the cloudlet contains

other resources, including memory and disk space; however, the combined effect of all re-

sources is a certain processing speed (in units of MIPS) for user applications. Therefore,

such details have also been omitted. Three components, namely, Admission Controller,

Service Controller and Reply Wrapper, provide the key functionality of MobiCoRE. The

three components are explained in the following sections in detail.

4.2.1 Admission Controller (AC)

The mobile devices submit their tasks to the Admission Controller component. This

component admits the mobile device task to the cloudlet as long as the number of tasks

in the system is less than the maximum user threshold K. K is set by considering the

task arrival rate λ . This ensures that λ in the cloudlet does not exceed a limit such

79

Univ
ers

ity
 of

 M
ala

ya

Resource Manager

User
Arrival

Service Controller

Admission
Control

CPU

Task Handler

Memory Storage

Record
Keeping

Service Time
Decision
Engine

Profilier

Exit

Results

Task State
Wrapper

Figure 4.1: Schematic Block Diagram of MobiCoRE Framework

that the cloudlet cannot efficiently process the submitted tasks. To achieve the above-

mentioned functionality, the Admission Controller must know the number of application

tasks joining the cloudlet system as well as the number of tasks departing the cloudlet

system.

The tasks joining the system are directly counted by the Admission Control, and the

Service Controller informs the Admission Controller of the departing tasks. Using the two

values, the Admission Controller computes the number of tasks in the system and uses the

computed value to provide the admission control functionality. Using the instantaneous

values, the Admission Controller also computes the truncated running average of the

number of users NAvg in the system. This parameter is also communicated to the Service

Controller component.

80

Univ
ers

ity
 of

 M
ala

ya

Admission

Control
k k-1 ... 3 2 1

CPU 1

CPU 2

CPU c-1

CPU c

Partial Reply

Wrapping
Exit

Service
Control

Service
Control

User

Arrival

Ready Queue

Figure 4.2: Functional Diagram of MobiCoRE

4.2.2 Task Execution

Once the mobile user task is admitted to the cloudlet, it can be in one of two states

with reference to the cloudlet operations. If the task is currently being served, it will

be in the execution state, with task instructions being executed by one of the available

CPUs. Each CPU spends at most a specified amount of time executing the instructions of

a task. After the specified number of instructions are executed, the task state is saved by

the cloudlet and is subsequently swapped out of the CPU, with its process control block

then added to the wait/ready queue. In MobiCoRE, the task is submitted to the Service

Control component before re-entering the queue.

4.2.3 Service Controller (SC)

The Service Controller performs three operations:

• Periodic computation of desired average service time T̄ds

• Record keeping of individual time served T i
ts for each task i and computation of

average time served to active tasks T̄ts

• Decides on the vacating of mobile tasks considering T̄ds, T̄ts and the optimal average

service time T̄s

81

Univ
ers

ity
 of

 M
ala

ya

Compute

 T̅s , N̅

N̅avg< N̅

T̅ds=T̅ds+(T̅s-T̅ts)

T̅ds=T̅ds - (T̅s-T̅ts)

Update,

T̅ts

Task

complete?
Return

Tasklist(next)≠Null

Update

Tts
i
 ≥T̅ds

Tag for Wrap

Update

Tts
i

Update Navg

Periodic
Timer expire

Task received

from CPU

No
Yes

Yes

No

Yes

λ

No

YesNo

Yes

Figure 4.3: Service Controller Work Flow Diagram

Figure 4.3 shows the three operations as well as the interaction of the Service Controller

with the other components. Each function is explained in the following sections.

4.2.3.1 Desired Service Time Computation

MobiCoRE attempts to operate the cloudlet with an optimal average service time

such that the mobile devices can complete their tasks using the cloudlet service as quickly

as possible. The mobile application arrival rate and cloudlet resources are used to compute

the optimal average service time (the computation is explained in Chapter 6). At a given

instant, the average time served for the active mobile tasks and the optimal average service

time can differ. The difference mainly arises from a varying arrival rate, which can result

in a different optimal average service time. The increase in optimal average service time

requires an increase in time served for the mobile tasks before vacating them from the

82

Univ
ers

ity
 of

 M
ala

ya

cloudlet system and vice versa. For this purpose, the desired service time is used and

computed as explained in the following paragraph.

There is an associated value of the average number of users N̄ in the cloudlet cor-

responding to each value of the average service time. The average number of users Navg

in the cloudlet should be equal to the expected average number of users N̄ to obtain the

optimal operation of the cloudlet. Given the task arrival rate λ and system resources c,

MobiCoRE computes the expected average number of users N̄ and expected service time

T̄s for optimal operation. If Navg < N̄, T̄ds is increased by the truncated running average

of (T̄s− T̄ts), where T̄ts is the average time served for the active tasks. This results in the

desired time served T̄ds being set higher than the expected service time T̄s. Similarly, if

Navg > N̄, T̄ds is decreased using the truncated running average of (T̄ts− T̄s).

The effect of this periodic adjustment is a fluctuation of the desired average service

time T̄ds around T̄s. The long-term average of T̄ds is in general equal to T̄s, which ensures

an optimal response time for the mobile devices from the cloudlet.

4.2.3.2 Record Keeping of Time Served

The second function of the SC is to keep a record of the time served to each active

mobile task in the cloudlet. For this purpose, the SC records the amount of time that was

served to the tasks by the CPU during each cycle. The time served during each cycle is

added to the total time served to the task T i
ts when the task is submitted to the SC. Using

the individual time served for the active tasks, the SC computes the average time served

T̄ts to currently active tasks by the cloudlet.

4.2.3.3 Decision on Task Vacation

The third function of the SC is decision making with reference to using the resources

of mobile devices. The objective of the decision-making process is to maintain the pa-

rameter – the instantaneous number of users in the system – Ninst as close to N̄ as possible.

83

Univ
ers

ity
 of

 M
ala

ya

To achieve this, the average time served to the active tasks is maintained as close to T̄ds

as possible. When a task is submitted to the SC, it compares the time served to the task

T i
ts by the cloudlet with T̄ds. If T i

ts ≥ T̄ds, the task is chosen for resource sharing with the

mobile device. Such tasks are marked for wrapping and sent to the state wrapper, and the

task is marked as departing the cloudlet. If the submitted task is complete, it is marked as

departing the cloudlet without wrapping. Otherwise, the task is added to the ready queue

for execution.

4.2.4 Task State Wrapper

If the task is not completely executed by the cloudlet, the mobile device must re-

sume the task from the last process state in the cloudlet to be able to complete the task. A

number of mechanisms are available that save the process state of a process and resume

the process on a remote system using the saved state. We recommend the checkpoint-

ing and migration mechanism based on the wrapper methods proposed by Litzkow et

al. (Litzkow, Tannenbaum, Basney, & Livny, 1997). In this mechanism, no modifica-

tion or pre-installed code is required on the remote end, which in our case is the mobile

device. A signal is generated at the beginning of the execution of the generated code.

The signal handler consists of a jump to the process resumption code, which invokes the

same application on the remote device and immediately suspends it, thereby creating the

skeleton structures in the kernel space. Subsequently, the saved state is used to populate

the structures. This is followed by another jump to the actual instruction pointer of the

application.

4.2.5 Task Flow

The complete task flow of a mobile application in the MobiCoRE-based cloudlet is

shown in Figure 4.4. The mobile device submits the task to the cloudlet using a request

for augmentation. The cloudlet either denies service through the admission controller or

84

Univ
ers

ity
 of

 M
ala

ya

Mobile User Cloudlet Collaborative Mobile Device

Request for augmentation

Service not available

Request for Mobile device

resources

Process into

cloudlet

Sending result to Mobile

user
Client device not agreed

Client device agreed

Sending process state to tasks

sender mobile device

Complete the

application

execution

tasks

Find the execution

starting check point

Figure 4.4: Sequential Work Flow Interaction Diagram of Mobile Devices and Cloudlet
Task Completion

admits the task. In the case of a heavy load, the cloudlet performs partial tasks and informs

the mobile device that its resources will be required to complete the task. The partially

completed tasks are wrapped and sent to the mobile device for completion. Alternatively,

the task is completed by the cloudlet in the case of light loads or limited demand by the

mobile device, and completed tasks are returned to the mobile device.

The performance and effectiveness of MobiCoRE are dependent on the proper se-

lection of the parameters, specifically the expected average number of users and desired

average service time. To derive the values for the parameters, we have mathematically

modelled MobiCoRE. Before presenting the mathematical model, we highlight the limi-

tations of existing schemes that have been addressed by MobiCoRE. Some of these lim-

itations represent important challenged for achieving the wide-spread use of cloudlets as

offloading elements.

85

Univ
ers

ity
 of

 M
ala

ya

4.3 Existing Limitations and MobiCoRE Solution

The limitations of existing mobile-device-based cloudlet resource enhancement mech-

anisms were discussed in Chapter 2, Section 2.6. In this section, we highlight how Mobi-

CoRE can address these limitations.

1. All schemes proposed in the literature require partitioning of the computational

part of the application code before part of it can be migrated to the cloudlet. This

partitioning is based on a complex decision-making process and often results in

negligible advantage in terms of execution time. No such partitioning is required in

the case of MobiCoRE as long as user and system interaction elements have been

separated from the computation. This is because MobiCoRE wraps the partial state

into an executable state that is directly executable on the mobile device.

2. No change in mobile application is required to make it compatible for cloudlet

execution. Moreover, the executable for the mobile device can be used to run the

mobile application on the cloudlet, provided that the mobile device emulator is

available on the cloudlet.

3. No component of the system needs to be installed on the mobile device, which

is one of the major concerns of users given the fact that the cloudlets are untrusted

entities available for public access. The execution of applications from partial states

is realised.

4. Unlike current schemes whereby mobile devices share the computational load of

other devices, MobiCoRE does not use the mobile devices to execute the tasks

of any other device. The resource sharing is conducted with the mobile device to

facilitate the completion of the task. This ensures the privacy as well as the integrity

of the computation and prevents malicious code propagation.

86

Univ
ers

ity
 of

 M
ala

ya

5. The resources of only those devices that have high service demands are used.

Therefore, it is ensured that the resources of mobile devices used by the cloudlet are

always lesser than the resources required to complete its own task. This is because

only a fraction of the mobile device tasks are sent back.

4.4 Mathematical Model of MobiCoRE

In this section, we present the mathematical model for MobiCoRE. The execution of

the mobile task using MobiCoRE is performed in two parts. The first mandatory part of

the computation is performed in the cloudlet. The second part is optional and dependent

on the cloudlet average service time and mobile service requirements. If the service

requirement of a mobile device is higher than the average service time, there is significant

probability that for such a device, the device’s resources will be shared with the cloudlet

to complete its submitted task. On the other hand, for devices with service requirements

that are less than the cloudlet service time, no resources from the mobile device are used,

resulting in the absence of the second part of computation.

4.4.1 Cloudlet Service Model

The mobile applications submitted to the cloudlet can be represented by two MobiCoRE-

related attributes. Every application has a service requirement T i
req from the cloudlet. This

is the amount of time that the application will require if the cloudlet serves only one ap-

plication. In general, this time is not known in advance and cannot be used as a parameter

to tune the system. The second attribute is the ratio of the cloudlet processing speed and

the mobile device processing speed, given the cloudlet serves only the specific mobile

user application. This ratio is known in advance and is represented by f i for device i. We

assume that the applications arriving for service at the cloudlet follow a Poisson distribu-

tion with an arrival rate of λ . Every application will be served in the cloudlet for time

T i
ts, where T i

ts ≤ T i
req. Because of MobiCoRE’s service control, the average time served

87

Univ
ers

ity
 of

 M
ala

ya

0 1 2 C-1 C.....

λ

µ (1/Ts)

λ λ λ

2µ 3µ cµ cµ

K

(c-1)µ

λ (Arrival rate) λ

.....

Number
of CPUs

Maximum
Applications

Figure 4.5: Birth Death Model of MobiCoRE

for all applications in the cloudlet will be T̄s ≈ 1
n

n
∑

i=1
T i

ts. Given that there are multiple user

applications requiring the resources of the cloudlet, every application will wait a time T i
w

for the resources to be free. In the case of a cloudlet, the wait time is distributed between

the time served because of the interleaving of the processes.

Let c be the number of CPUs available in the cloudlet, and the maximum users that

can be served at any instance is K. The cloudlet service under MobiCoRE can be mapped

on an M/M/c/K queue with an arrival rate λ and a departure rate µ = 1
T̄s

. Such a system

can be modelled using a birth-death Markov chain model, as shown in Figure 4.5. The

steady-state probabilities of being in any state of the model maps to the probabilities of

having n users in the cloudlet (waiting or being served). These probabilities are given by

equations 4.1 and 4.2. The probability PK is the probability that a user will be rejected

by the cloudlet because the system cannot accommodate additional users. Using these

probability values and the equations ρ = λ

µ
and a = ρ

c , we can derive the parameters

related to the cloudlet performance.

88

Univ
ers

ity
 of

 M
ala

ya

P0 =

[
c−1

∑
n=0

λ n

n!µn +
K

∑
n=c

λ n

cn−cc!µn

]−1

(4.1)

Pn =

λ n

n!µn P0 for 0 < n < c

λ n

cn−cc!µn P0 for c≤ n≤ K

(4.2)

Given the probabilities P0 and PK , we can compute the cloudlet normalized utiliza-

tion U using equation 4.3, and the average number of users N̄ in the cloudlet is given by

equation 4.4. N̄ and c determine the load on the cloudlet as it serves the mobile device

applications. A reduced load results in an improved performance by the cloudlet. The two

parameters contribute to the average waiting time and the response time of the cloudlet,

both of which indicate the usefulness of the cloudlet service to the mobile devices. The

average time spent by the applications in the cloudlet T̄rc is the sum of the average service

time T̄s and average waiting time T̄w and is given by equation 4.5. The average waiting

time is given by equation 4.6.

U =
λ (1−PK)

cµ
(4.3)

N̄ =ρ(1−PK)+
P0ρa

c!(i−a)2∗[
1−aK−c+1− (1−a)(K− c+1)a(K−c)

]
(4.4)

T̄rc =
N̄

λ (1−PK)
(4.5)

T̄w =
N̄−ρ(1−PK)

λ (1−PK)
(4.6)

Equations 4.3-4.6 can be used to compute the performance of the cloudlet. However,

these equations can only be useful in improving the mobile device application perfor-

89

Univ
ers

ity
 of

 M
ala

ya

mance in the cloudlet if the entire mobile application is executed in the cloudlet. This is

the case for applications where the time served by the cloudlet for the application is equal

to the application requirement, i.e., T i
req = T i

ts ≤ T̄s. On the other hand, for applications

where T i
req > T i

ts, MobiCoRE uses the respective mobile devices to complete the appli-

cation execution. Therefore, we also need to consider the computations being performed

by the mobile devices to completely characterise the performance of MobiCoRE-based

cloudlets.

4.4.2 Mobile Computation Model

The time required by the mobile device to complete the partially executed task de-

pends on the remaining applications as well as the speed of the mobile device with ref-

erence to the cloudlet processing speed. Recall that the service requirement time T i
req is

the time required by the ith mobile device application to be completed by the cloudlet,

provided there are no other applications in the cloudlet. We know that the ratio of the

cloudlet to mobile device processing speed is given by f i. Given these two values, the

mobile device can complete the entire task (without cloudlet assistance) in time T i
req ∗ f i

or greater, depending on the load on the mobile device. In the case of MobiCoRE, the

mobile application is served for a time T i
ts before returning its state to the mobile device.

Assuming that the overhead of the application state transfer and resume can be ignored,

the time required by the mobile device T i
m to complete the task is given by equation 4.7.

Consequently, the total time T i required by the mobile application to complete the execu-

tion is the sum of the time served by the cloudlet T i
ts, the wait time in the cloudlet T i

w and

the time required by the mobile device T i
ts, as given in equation 4.8.

90

Univ
ers

ity
 of

 M
ala

ya

T i
m =max(T i

req−T i
ts),0)∗ f i (4.7)

T i =T i
ts +T i

w +T i
m (4.8)

The introduction of the mobile computation into the cloudlet analysis significantly

changes the behavior of the system compared to standard birth-death Markov models.

4.5 Conclusion

In this chapter, we proposed a resource augmentation mechanism for cloudlets that

uses mobile devices to augment the resources of cloudlets. MobiCoRE adjusts the ser-

vice time for the mobile applications in the cloudlet. The tuning of the service time leads

to reduced service times for individual mobile applications when the cloudlet is subject

to heavy loads. The reduced service time results in the early vacation of users from the

system, which in turn improves the efficiency and performance of the cloudlet. This also

results in service for an increased number of users, even under heavy loads. The par-

tially vacated task states are wrapped and sent to the mobile device for further execution,

resulting in time benefits at the cost of minimal overhead.

MobiCoRE requires no code modification and no code partitioning, thereby relieving

programmers from having to think about code partitions at the time of programming.

Simultaneously, no code component is required on the mobile device for MobiCoRE

to function properly. Furthermore, the application of a mobile device is offloaded for

augmentation to the same device, thus eliminating the issues of privacy and integrity.

The resource sharing from the mobile devices for their own tasks guarantees that the

resources used from the mobile device for cloudlet augmentation are always lesser than

the application demand of the respective mobile device. Further, only those devices that

91

Univ
ers

ity
 of

 M
ala

ya

require extensive cloudlet resources are used for the augmentation of the cloudlet.

A comprehensive mathematical model has been proposed to facilitate a performance

evaluation of MobiCoRE. In the next chapter, we present the details of the empirical

setup and model the solution setup. The data collection details and the collected data

are presented. Subsequently, the data are analyzed and subsequently used to verify the

correctness of model and draw meaningful conclusions about the cloudlet’s performance

under MobiCoRE.

92

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 5 : IMPLEMENTATION AND EVALUATION

We have investigated and identified the resource scarcity problem in cloudlets.For solu-

tion, we have proposed MobiCoRE, a performance enhancement framework for cloudlet

resource augmentation using mobile devices. This chapter reports on the evaluation ap-

proach of the proposed MobiCoRE framework performance. We describe the implemen-

tation details and data collection method for the evaluation of our proposed MobiCoRE

framework. We explain the tools used for testing the proposed framework, the data col-

lection technique and the statistical method used for the processing of the data. Using a

series of experiments in a real environment, we evaluate the performance of our frame-

work. The performance evaluation results of our framework are validated using statistical

modelling with the SPSS package. To build our statistical model, we leverage standard

well-recognised statistical data analysis tools.

The chapter is organized as follows. Section 5.1 explains the experimental setup

that has been used for the collection of data. Section 5.2 presents the data relating to

model validation. Section 5.3 presents the data relating to the parametric evaluation.

The performance analysis data are presented in Section 5.4. The chapter is concluded in

Section 5.5.

5.1 Experimental Setup

In this section, we explain the experimental setup and data collection mechanism.

We also highlight the statistical tools that we have used to verify the correctness of the

data.

93

Univ
ers

ity
 of

 M
ala

ya

5.1.1 MobiCoRE Implementation

The first and foremost component of the data collection process was the implemen-

tation of the MobiCoRE framework.

We implemented MobiCoRE in a lab environment wherein the mobile device was

modeled using a single computer and a small-scale OpenStack-based cloud deployment

was used as the cloudlet. We used an Openstack-based cloudlet deployed on Dell Pow-

eredge blade servers. To kept the scale of the experiment small; a virtual machine was

created with 4 CPUs having a hardware configuration that included a 1.8 GHz Es-2403

processor and 16 GB of RAM. The cloudlet was deployed over the WAN and accessed

through Ethernet interfacing. The data rate of the Ethernet network was reduced to match

the rate of WiFi access.

A laptop was used as the mobile device, which emulated a Samsung Galaxy II smart-

phone with a cloudlet to mobile processing ratio of 4. This ratio was achieved by adding

background processes onto the laptop until we achieved the speed in MIPS of the Sam-

sung Galaxy II. MobiCoRE was implemented as a shell script on the cloudlet and per-

formed the admission control activity of the cloudlet. We used Linux kernel modules to

extract and restore the state of the application processes.

We used a fixed-size application that performed extensive mathematical computa-

tions to keep the CPU busy when the application was executed. Application arrival was

emulated by generating a Poisson distribution in Matlab with a given average. The gen-

erated distribution was added to the script, which selected one value every minute and

created a number of applications equal to the selected value. The generated processes

were submitted to the cloudlet virtual machine based on the admission control. The time

served to each application by cloudlet was measured using the top command and was

recorded by the service control. The experiment was run for 90 minutes, and users were

94

Univ
ers

ity
 of

 M
ala

ya

admitted for the first 60 minutes. A grace time of 30 minutes was allowed for the appli-

cations to complete execution.

5.1.2 Mobile Device Data Collection

We performed the data collection for the mobile device using a real Samsung Galaxy

II device. The device was rooted to allow the C-based application to be executed from the

shell. The application was transferred over WiFi as well as a 3G network to the mobile

device from a laptop to measure the transfer time and energy consumed during the trans-

fer. The application was executed on the mobile device with and without the background

processes to estimate the time taken by the application execution on the mobile device.

This time was used for comparison with the time achieved by the cloudlet-based and hy-

brid executions. This time was also used to calibrate the laptop, which acted as a mobile

device for the remainder of the experiments.

5.1.3 Model Data Collection Mechanism

The mathematical model was implemented in Matlab. A Poisson distribution was

used for the generation of the user arrival time as well as the user service requirement.

We generated data for 80 different service time values by varying the service time from

1-80 seconds. Similarly, the CPU resources and average user arrival rate were varied

between 4-32 and 4-10, respectively. Multiple results were generated and subsequently

averaged with a confidence interval of 99%.

The Matlab script directly generated all the desired values, and the data were directly

written into Excel files by the Matlab script. The generated data were only processed to

generate graphs. Otherwise, the entire data generation process was automated.

95

Univ
ers

ity
 of

 M
ala

ya

5.1.4 Evaluation Metrics

A large set of metrics were selected for the evaluation. These metrics along with a

brief description of each are given here.

• Number of CPUs in the Cloudlet: The total number of CPU cores in the cloudlet

that are available for the mobile devices.

• Maximum Number of Allowed Users: The maximum number of users that can

be accommodated by the cloudlet. Additional users are rejected if this number

is reached.

• Average Number of Users in the Cloudlet: The average number of users in the

cloudlet during a given execution cycle.

• Service Time from the Cloudlet: The CPU time given to the mobile application by

the cloudlet.

• Wait Time in the Cloudlet: The time when the application is in the cloudlet but is

waiting for the CPUs to vacate and is thus not being served.

• Response Time from the Cloudlet: The sum of the service time and the wait time in

the cloudlet.

• Mobile Device Time: Time taken by the mobile device to complete the partially

finished task.

• Total Time by the Mobile Device: Time taken by the mobile device if entire task is

executed by the mobile device without the cloudlet. This time is used a benchmark

to measure the benefit for the mobile device for submitting the task to the cloudlet.

• Total Response Time of the Application: The sum of the cloudlet time and the mo-

bile time required for a task to be completed under MobiCoRE.

96

Univ
ers

ity
 of

 M
ala

ya

Table 5.1: Evaluation Metrics
Parameter Unit
Number of CPUs in cloudlet
Maximum number of users possible
Average number of users in the cloudlet
Service time from the cloudlet Seconds
Wait time in the cloudlet Seconds
Response time from the cloudlet Seconds
Mobile device time Seconds
Total time of the mobile device Seconds
Total response time of the application Seconds
User arrival rate per Minute
Number of users served
User service requirement Seconds
Cloudlet utilization
Queue size

• User Arrival Rate: The average number of user applications that are submitted to

the cloudlet per minute.

• Number of Users Served: The total number of users served by the cloudlet over a

given period of time.

• User Service Requirement: The service requirement time of the mobile application

from the cloudlet if the cloudlet serves only this application.

• Cloudlet Utilization: The ratio of the average number of utilized cloudlet CPUs to

the total number of available CPUs.

• Queue Size: The number of users that are in the cloudlet but that are not being

served.

Table 5.1 provides the list of metrics evaluated along with the units.

5.1.5 Statistical Validation of Data

According to the sample central limit theorem, approximately 99% of the sample

means fall within 2.58 standard deviations of the population mean, provided that the sam-

ple size is greater than or equal to 30 (n>= 30). Hence, a computation-intensive prototype

97

Univ
ers

ity
 of

 M
ala

ya

application is evaluated on the basis of five parameters with 30 different computational

intensities. The empirical data are collected for all the components of the mobile applica-

tion in 30 experiments. Each experiment is conducted 30 times for the evaluation of each

parameter to derive the values of the point estimator.

The measurement of the central tendency of the data sample of each experiment is

calculated using the sample mean(-X) because the sample mean ascertains a better point

estimate of the population mean compared to the median or mode (Confidence Intervals

and Sample Size). Data sampling involves the sampling error; hence, the sample mean

can differ from the population mean. Therefore, to signify the goodness of the calculated

point estimate, the interval estimate of each sample is determined. The interval estimate

of a parameter represents the interval or range of values used to estimate the parameters.

The confidence level of an interval estimate of a parameter indicates the probability that

the interval estimate contains the parameter. Let E represent the error estimate for the

99% confidence interval, which is calculated using the following equation:

E = 2.58× (
σ√

n
) (5.1)

where σ indicates the standard deviation of the sample values and n indicates the

size of the sample space. The interval estimates for each sample mean (X̄) of the primary

data are calculated with a 99% confidence interval using the following equation.

Con f idenceInterval = (X̄)±E (5.2)

The following section presents the data collected during different experiments for the

evaluation of the MobiCoRE framework as applied to the real-time cloudlet environment.

98

Univ
ers

ity
 of

 M
ala

ya

Table 5.2: Number of Average User in Model Validation

Service Time Number of average
user (Empirical)

Number of average user
(Model)

40 3.85 3.42
45 5.04 4.48
50 6.4 6
55 8.38 8.28
59 10.56 10.55
65 10.54 10.77

5.2 Model Validation Data

We heavily rely on the mathematical model results that we obtained for the perfor-

mance evaluation of MobiCoRE. Therefore, the first step is to verify the correctness of

the model. To this end, we collected the model validation data; then, we compared the

data of the model and, under the same conditions, the data generated when using the Mo-

biCoRE implementation. We validated our model by employing statistical analysis tools

for the statistical validation; in this case, we use a T-test:Paired sample test and Pearson

coefficient. The statistical tests validate our model.

Table 5.2 presents the data for the average number of users in the system for different

values of cloudlet service time and constant values of the number of CPUs and the user

arrival rate, both of which were set to 4. The values presented in the table show a near

perfect match between the empirical and model results. Table 5.3 shows the results of the

average task completion time for 240 applications that were generated using a Poisson

arrival rate distribution under MobiCoRE and the model. Once again, the results show a

perfect match between the two results, verifying the correctness of our model.

5.3 Parametric Analysis Data

In this section, we present the data that has been used to identify the optimal opera-

tional parameters.

99

Univ
ers

ity
 of

 M
ala

ya

Table 5.3: Task Completion Time for Model Validation

Service Time Job Completion Time
(Empirical)

Job Completion Time
(Model)

40 158 153
45 153 147
50 156 151
55 167 166
59 188 190
65 173.6 184.8

5.3.1 Task Completion Time

The cloudlet response time along with the mobile time are the first indicators and

provide us an idea about the performance of the cloudlet. Therefore, we start with the

presentation of the data for the cloudlet response time. Table 5.4 presents the data for

the response time. In addition, the data for the cloudlet and mobile time as well as the

mobile device benefit are included. The values of other parameters are set as follows.

The service requirement of the mobile device is 60 seconds, the user arrival rate is set to

4 applications per minute, the number of available cloudlet CPUs is 4, and the maximum

number of users allowed in the cloudlet at any given time is set to 20.

Note that with increasing service time, the task completion time initially decreases

until it reaches a minimum value for a service time of 45 seconds. The task completion

time increases beyond this point to a maximum value. This behavior indicates that the

cloudlet has an optimal operational point. Similar trends have been observed for all values

of the arrival rate and the cloudlet resources as long as the system remains stable. This

trend will be discussed further in a subsequent chapter.

5.3.2 Probability of User Drop

Based on observations of the task completion time, we study similar trends of other

parameters. Table 5.5 presents the data on the probability that a user will be dropped

when it arrives at the system. It can be observed that the probability of application drop

increases with increasing cloudlet service time. 100

Univ
ers

ity
 of

 M
ala

ya

Table 5.4: Response time of TCld,TMob,T,TAvd for Varying
Service Time

Ts TCld TMob T TAdv
13.00 13.05 188.00 201.05 38.95
14.00 14.07 184.00 198.07 41.93
15.00 15.10 180.00 195.10 44.90
16.00 16.14 176.00 192.14 47.86
17.00 17.18 172.00 189.18 50.82
18.00 18.24 168.00 186.24 53.76
19.00 19.31 164.00 183.31 56.69
20.00 20.39 160.00 180.39 59.61
21.00 21.49 156.00 177.49 62.51
22.00 22.60 152.00 174.60 65.40
23.00 23.74 148.00 171.74 68.26
24.00 24.91 144.00 168.91 71.09
25.00 26.10 140.00 166.10 73.90
26.00 27.32 136.00 163.32 76.68
27.00 28.58 132.00 160.58 79.42
28.00 29.87 128.00 157.87 82.13
29.00 31.22 124.00 155.22 84.78
30.00 32.61 120.00 152.61 87.39
31.00 34.06 116.00 150.06 89.94
32.00 35.57 112.00 147.57 92.43
33.00 37.16 108.00 145.16 94.84
34.00 38.82 104.00 142.82 97.18
35.00 40.58 100.00 140.58 99.42
36.00 42.45 96.00 138.45 101.55
37.00 44.43 92.00 136.43 103.57
38.00 46.54 88.00 134.54 105.46
39.00 48.81 84.00 132.81 107.19
40.00 51.25 80.00 131.25 108.75
41.00 53.88 76.00 129.88 110.12
42.00 56.73 72.00 128.73 111.27
43.00 59.83 68.00 127.83 112.17
44.00 63.21 64.00 127.21 112.79
45.00 66.89 60.00 126.89 113.11
46.00 70.91 56.00 126.91 113.09
47.00 75.30 52.00 127.30 112.70
48.00 80.09 48.00 128.09 111.91
49.00 85.32 44.00 129.32 110.68
50.00 91.00 40.00 131.00 109.00
51.00 97.16 36.00 133.16 106.84
52.00 103.81 32.00 135.81 104.19
53.00 110.93 28.00 138.93 101.07
54.00 118.53 24.00 142.53 97.47
55.00 126.58 20.00 146.58 93.42
56.00 135.04 16.00 151.04 88.96
57.00 143.87 12.00 155.87 84.13
58.00 153.01 8.00 161.01 78.99
59.00 162.40 4.00 166.40 73.60
60.00 171.00 0.00 171.00 69.00

101

Univ
ers

ity
 of

 M
ala

ya

This is because a grater number of users remain in the system because of the longer

service time. Furthermore, the drop ratio is higher for higher arrival rates for the cloudlet

service time. We further observe that the value of the drop probability of 0.01 coincides

with the value of the minimum task completion time presented in the previous section.

This indicates that there is a correlation between the user drop probability and the optimal

service time.

5.3.3 Average CPUs Used

Table 5.6 shows the average number of CPUs used in the cloudlet for different user

application arrival rates and cloudlet service times. The number of available CPUs for

the experiment was set to 4, the maximum number of users allowed in the cloudlet was

set to 20, and the average user service requirement was set to 60 seconds. The actual user

requirement for one hour of arrival at a given arrival rate is generated using a Poisson

distribution. This means that for an arrival rate of 4 users per minute, a total of 240 values

were generated. Similarly, for an arrival rate of 10 users per minute, a total of 600 values

for the requirement were generated.

The data show that the CPU utilization increases with increasing service time. This

is because the user application departure rate decreases with increasing service time, and

more users continue to occupy the system for an extended period of time. Similarly, the

higher arrival rate results in a greater CPU utilization. A critical observation is that a

CPU utilization of 75% coincides with a user drop probability of 0.01. We investigate the

relationship between the optimal service time of the cloudlet, user drop probability and

cloudlet utilization in a subsequent chapter.

Table 5.8 presents the data on average CPU utilization as a function of service re-

quirement. Similarly to the case for varying numbers of CPUs, for a given value of

cloudlet service time, the number of CPUs utilized remains constant, irrespective of the

102

Univ
ers

ity
 of

 M
ala

ya

Table 5.5: Probability of User Drop,PK Varying with Service
Time

Servicetime λ=4 λ=5 λ=6 λ=7 λ=8 λ=9 λ=10
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00 0.00 0.00
19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0.00 0.00 0.00 0.00 0.01
21 0.00 0.00 0.00 0.00 0.00 0.00 0.01
22 0.00 0.00 0.00 0.00 0.00 0.01 0.02
23 0.00 0.00 0.00 0.00 0.00 0.01 0.03
24 0.00 0.00 0.00 0.00 0.00 0.02 0.05
25 0.00 0.00 0.00 0.00 0.01 0.03 0.07
26 0.00 0.00 0.00 0.00 0.01 0.04 0.10
27 0.00 0.00 0.00 0.00 0.02 0.06 0.12
28 0.00 0.00 0.00 0.00 0.03 0.08 0.15
29 0.00 0.00 0.00 0.01 0.04 0.10 0.18
30 0.00 0.00 0.00 0.01 0.05 0.12 0.20
31 0.00 0.00 0.00 0.02 0.07 0.15 0.23
32 0.00 0.00 0.00 0.03 0.09 0.17 0.25
33 0.00 0.00 0.01 0.04 0.11 0.20 0.27
34 0.00 0.00 0.01 0.05 0.13 0.22 0.29
35 0.00 0.00 0.01 0.06 0.15 0.24 0.31
36 0.00 0.00 0.02 0.08 0.17 0.26 0.33
37 0.00 0.00 0.02 0.10 0.19 0.28 0.35
38 0.00 0.00 0.03 0.11 0.21 0.30 0.37
39 0.00 0.00 0.04 0.13 0.23 0.32 0.38
40 0.00 0.01 0.05 0.15 0.25 0.33 0.40
41 0.00 0.01 0.06 0.17 0.27 0.35 0.41
42 0.00 0.01 0.08 0.19 0.29 0.37 0.43
43 0.00 0.02 0.09 0.21 0.30 0.38 0.44
44 0.00 0.02 0.11 0.22 0.32 0.39 0.45
45 0.00 0.03 0.12 0.24 0.33 0.41 0.47
46 0.00 0.03 0.14 0.26 0.35 0.42 0.48
47 0.00 0.04 0.16 0.27 0.36 0.43 0.49
48 0.00 0.05 0.17 0.29 0.38 0.44 0.50
49 0.00 0.06 0.19 0.30 0.39 0.46 0.51
50 0.01 0.07 0.20 0.31 0.40 0.47 0.52
51 0.01 0.09 0.22 0.33 0.41 0.48 0.53
52 0.01 0.10 0.23 0.34 0.42 0.49 0.54
53 0.01 0.11 0.25 0.35 0.43 0.50 0.55
54 0.02 0.12 0.26 0.37 0.44 0.51 0.56
55 0.02 0.14 0.27 0.38 0.45 0.52 0.56
56 0.03 0.15 0.29 0.39 0.46 0.52 0.57
57 0.03 0.16 0.30 0.40 0.47 0.53 0.58
58 0.04 0.18 0.31 0.41 0.48 0.54 0.59
59 0.04 0.19 0.32 0.42 0.49 0.55 0.59
60 0.05 0.20 0.33 0.43 0.50 0.56 0.60

103

Univ
ers

ity
 of

 M
ala

ya

Table 5.6: Average CPUs Used for Varying Service Time

Servicetime λ=4 λ=5 λ=6 λ=7 λ=8 λ=9 λ=10
13.00 0.87 1.08 1.30 1.52 1.73 1.95 2.17
14.00 0.93 1.17 1.40 1.63 1.87 2.10 2.33
15.00 1.00 1.25 1.50 1.75 2.00 2.25 2.50
16.00 1.07 1.33 1.60 1.87 2.13 2.40 2.67
17.00 1.13 1.42 1.70 1.98 2.27 2.55 2.83
18.00 1.20 1.50 1.80 2.10 2.40 2.70 3.00
19.00 1.27 1.58 1.90 2.22 2.53 2.85 3.16
20.00 1.33 1.67 2.00 2.33 2.67 3.00 3.31
21.00 1.40 1.75 2.10 2.45 2.80 3.14 3.46
22.00 1.47 1.83 2.20 2.57 2.93 3.28 3.59
23.00 1.53 1.92 2.30 2.68 3.06 3.42 3.70
24.00 1.60 2.00 2.40 2.80 3.19 3.54 3.79
25.00 1.67 2.08 2.50 2.91 3.31 3.65 3.86
26.00 1.73 2.17 2.60 3.03 3.43 3.74 3.91
27.00 1.80 2.25 2.70 3.14 3.54 3.81 3.94
28.00 1.87 2.33 2.80 3.25 3.64 3.87 3.96
29.00 1.93 2.42 2.90 3.36 3.72 3.91 3.98
30.00 2.00 2.50 3.00 3.46 3.79 3.94 3.99
31.00 2.07 2.58 3.09 3.55 3.85 3.96 3.99
32.00 2.13 2.67 3.19 3.64 3.89 3.97 3.99
33.00 2.20 2.75 3.28 3.71 3.92 3.98 4.00
34.00 2.27 2.83 3.37 3.78 3.95 3.99 4.00
35.00 2.33 2.91 3.46 3.83 3.96 3.99 4.00
36.00 2.40 3.00 3.54 3.87 3.97 4.00 4.00
37.00 2.47 3.08 3.61 3.90 3.98 4.00 4.00
38.00 2.53 3.16 3.68 3.93 3.99 4.00 4.00
39.00 2.60 3.24 3.74 3.95 3.99 4.00 4.00
40.00 2.67 3.31 3.79 3.96 3.99 4.00 4.00
41.00 2.73 3.39 3.84 3.97 4.00 4.00 4.00
42.00 2.80 3.46 3.87 3.98 4.00 4.00 4.00
43.00 2.86 3.53 3.90 3.99 4.00 4.00 4.00
44.00 2.93 3.59 3.92 3.99 4.00 4.00 4.00
45.00 3.00 3.65 3.94 3.99 4.00 4.00 4.00
46.00 3.06 3.70 3.96 3.99 4.00 4.00 4.00
47.00 3.13 3.75 3.97 4.00 4.00 4.00 4.00
48.00 3.19 3.79 3.97 4.00 4.00 4.00 4.00
49.00 3.25 3.83 3.98 4.00 4.00 4.00 4.00
50.00 3.31 3.86 3.99 4.00 4.00 4.00 4.00
51.00 3.37 3.89 3.99 4.00 4.00 4.00 4.00
52.00 3.43 3.91 3.99 4.00 4.00 4.00 4.00
53.00 3.49 3.93 3.99 4.00 4.00 4.00 4.00
54.00 3.54 3.94 4.00 4.00 4.00 4.00 4.00
55.00 3.59 3.95 4.00 4.00 4.00 4.00 4.00
56.00 3.64 3.96 4.00 4.00 4.00 4.00 4.00
57.00 3.68 3.97 4.00 4.00 4.00 4.00 4.00
58.00 3.72 3.98 4.00 4.00 4.00 4.00 4.00
59.00 3.76 3.98 4.00 4.00 4.00 4.00 4.00
60.00 3.80 3.99 4.00 4.00 4.00 4.00 4.00

104

Univ
ers

ity
 of

 M
ala

ya

Table 5.7: Lambda=4, Require Time=60, Varying CPU

Servicetime CPU=4 CPU=5 CPU=6 CPU=7 CPU=8
1 0.07 0.07 0.07 0.07 0.07
5 0.33 0.33 0.33 0.33 0.33
10 0.67 0.67 0.67 0.67 0.67
15 1.01 1.00 1.00 1.00 1.00
20 1.36 1.34 1.33 1.33 1.33
25 1.74 1.68 1.67 1.67 1.67
30 2.17 2.04 2.01 2.00 2.00
35 2.71 2.42 2.36 2.34 2.33
40 3.42 2.85 2.72 2.68 2.67
45 4.45 3.35 3.10 3.03 3.01
50 6.03 3.98 3.52 3.39 3.35
55 8.26 4.80 3.99 3.77 3.70
60 10.57 5.92 4.56 4.18 4.06

number of available CPUs.

The presented data provide significant information for the cloudlet parametric anal-

ysis. The fixed value of the cloudlet service time for the minimum task completion time,

user drop probability of 0.01 and CPU utilization of 75% indicate that there is a relation-

ship between the three parameters. This shall be explored in a subsequent chapter.

Table 5.8: C=4, Lambda=4, Cavg, Requirement Varies

Ts Treq=40 Treq=50 Treq=60 Treq=70 Treq=80
1 0.07 0.07 0.07 0.07 0.07
5 0.33 0.33 0.33 0.33 0.33
10 0.67 0.67 0.67 0.67 0.67
15 1.00 1.00 1.00 1.00 1.00
20 1.33 1.33 1.33 1.33 1.33
25 1.67 1.67 1.67 1.67 1.67
30 2.00 2.00 2.00 2.00 2.00
35 2.33 2.33 2.33 2.33 2.33
40 2.67 2.67 2.67 2.67 2.67
45 3.00 3.00 3.00 3.00
50 3.31 3.31 3.31 3.31
55 3.59 3.59 3.59
60 3.80 3.80 3.80
65 3.91 3.91
70 3.96 3.96
75 3.99
80 3.99

105

Univ
ers

ity
 of

 M
ala

ya

5.4 Performance Evaluation Data

In this section, we present data on the performance evaluation of MobiCoRE.

5.4.1 Task Completion Time

Table 5.9 presents the data on the task completion time under MobiCoRE for varying

values of user arrival rate. The number of available CPUs for the experiment has been

set to 4. Maximum number of users allowed in the cloudlet is set to 20. Initially, the

user arrival rate does not affect the task completion time. This is because a majority

of the computation is being performed by the mobile device, which is independent of

the user arrival rate. However, as the cloudlet service time increases, increasingly more

computation is being performed by the cloudlet. Consequently, the task completion time

decreases for lower user arrival rates. This is because the lower arrival rate results in

fewer user applications in the system. This in turn results in a smaller wait time and early

vacation. Consequently, the task completion time is reduced for lower user arrival rates.

Based on the observation made using the previous table, Table5.10 shows the cloudlet

component of the task completion time as a function of CPU resources. The user arrival

rate for this experiment was set to 4. The maximum number of users allowed in the

cloudlet was set to 20. It can be observed that increasing the number of CPU resources

results in an improved cloudlet response time. This clearly indicates that additional com-

putational resources can improve the performance of the cloudlet. In the case of Mobi-

CoRE, these additional resources are added through mobile-device-based augmentation

instead of adding additional CPU cores.

106

Univ
ers

ity
 of

 M
ala

ya

Table 5.9: C=4, Require Time=60, Tresponse Varying
Lambda

Tserv λ=4 λ=5 λ=6 λ=7 λ=8 λ=9 λ=10
13 201 201 201 201 202 202 203
14 198 198 198 199 199 199 200
15 195 195 195 196 196 197 198
16 192 192 193 193 194 195 196
17 189 189 190 190 191 193 195
18 186 187 187 188 189 191 195
19 183 184 184 185 187 190 195
20 180 181 182 183 186 190 196
21 177 178 179 181 184 190 199
22 175 175 177 179 184 191 203
23 172 173 174 178 183 193 207
24 169 170 172 176 184 197 213
25 166 168 170 176 186 201 219
26 163 165 169 175 188 206 224
27 161 163 167 176 191 212 229
28 158 160 166 177 196 217 234
29 155 158 165 179 201 223 239
30 153 156 165 181 206 228 242
31 150 155 165 185 212 233 246
32 148 153 165 189 217 238 249
33 145 152 167 194 223 242 251
34 143 151 169 200 228 245 254
35 141 150 172 205 233 248 256
36 138 150 175 211 237 251 258
37 136 150 179 217 241 254 260
38 135 150 184 222 245 256 262
39 133 151 189 227 248 258 263
40 131 153 194 232 251 260 265
41 130 155 200 236 254 262 267
42 129 158 206 240 256 264 268
43 128 161 212 244 258 265 269
44 127 165 217 247 261 267 271
45 127 170 222 251 263 269 272
46 127 175 227 253 265 270 273
47 127 180 232 256 266 272 275
48 128 185 236 259 268 273 276
49 129 191 240 261 270 274 277
50 131 197 244 263 271 276 278
51 133 203 248 265 273 277 280
52 136 208 251 267 274 278 281
53 139 214 254 269 276 280 282
54 143 219 257 271 277 281 283
55 147 224 259 272 279 282 284
56 151 229 262 274 280 283 286
57 156 233 264 276 281 284 287
58 161 237 266 277 282 286 288
59 166 241 268 279 284 287 289
60 171 245 270 280 285 288 290

107

Univ
ers

ity
 of

 M
ala

ya

Table 5.10: C=4, Require Time=60, Tresponse Varying CPU

Servicetime CPU=4 CPU=5 CPU=6 CPU=7 CPU=8
1 1.00 1.00 1.00 1.00 1.00
5 5.00 5.00 5.00 5.00 5.00
10 10.02 10.00 10.00 10.00 10.00
15 15.10 15.01 15.00 15.00 15.00
20 20.39 20.07 20.01 20.00 20.00
25 26.10 25.23 25.04 25.01 25.00
30 32.61 30.60 30.14 30.03 30.01
35 40.58 36.35 35.34 35.08 35.02
40 51.25 42.77 40.74 40.20 40.05
45 66.89 50.30 46.49 45.42 45.12
50 91.00 59.67 52.77 50.83 50.25
55 126.58 72.07 59.92 56.54 55.48
60 171.00 89.14 68.39 62.69 60.88

Finally, Table5.11 shows the cloudlet response time as a function of service require-

ment. The user arrival rate was set to 4, the number of cloudlet CPU cores was set to

4, the maximum number of allowed users in the cloudlet was set to 20, and the service

requirement for 240 users was generated using a Poisson distribution around the aver-

age value given as the heading of each column. It can be observed that increasing the

service requirement dramatically increases the cloudlet response time. This is because

users very slowly vacate the system. The table also indicates that the reverse can be

highly beneficial as well. Effectively, slightly reducing the service requirement of the

users can dramatically decrease the cloudlet response time. This is the basic idea behind

MobiCoRE, whereby the cloudlet service time is decreased in response to an increase

in the number of users. A slight decrease in the cloudlet service time can dramatically

increase the response time as a result of the reduced user wait time and early vacation of

the system.

108

Univ
ers

ity
 of

 M
ala

ya

Table 5.11: C=4, Lambda=4, Time Require Varies

Tserv Treq=40 Treq=50 Treq=60 Treq=70 Treq=80
1 1.00 1.00 1.00 1.00 1.00
5 5.00 5.00 5.00 5.00 5.00
10 10.02 10.02 10.02 10.02 10.02
15 15.10 15.10 15.10 15.10 15.10
20 20.39 20.39 20.39 20.39 20.39
25 26.10 26.10 26.10 26.10 26.10
30 32.61 32.61 32.61 32.61 32.61
35 40.58 40.58 40.58 40.58 40.58
40 51.25 51.25 51.25 51.25 51.25
45 66.89 66.89 66.89 66.89
50 91.00 91.00 91.00 91.00
55 126.58 126.58 126.58
60 171.00 171.45 171.45
65 220.44 220.44
75 306.16
80 342.04

5.4.2 Number of Users Served

In addition to the cloudlet response time and the task completion time for mobile

applications, an important performance parameter for the cloudlet is the number of users

served by the cloudlet. In this scenario, we collected data mainly concerned with the

number of users served by the cloudlet. Table 5.12 presents data on the number of users

served by the cloudlet for a 4-core system with a service requirement of 60 seconds, and

the maximum number of users in the cloudlet was set to 20. We find that for all values

of the arrival rate, there is a point whereby user drop begins. The user drop starts earlier

for higher values of the arrival rate. This indicates that if the cloudlet does not use the

resource augmentation option by exploiting mobile device resources, the number of users

served will be significantly reduced, as indicated by the higher arrival rates, which is

equivalent to longer service times.

Table 5.13 presents the number of users served as the cloudlet resources are in-

creased. The user arrival rate was set to 4 users per minute, with a service requirement

of 60 seconds, and the maximum number of users in the cloudlet was set to 20. It can be

observed that higher resources lead to fewer dropped users.
109

Univ
ers

ity
 of

 M
ala

ya

Table 5.12: C=4, Require Time=60, User Served Varying
Service Time

servicetime λ=4 λ=5 λ=6 λ=7 λ=8 λ=9 λ=10
13 480 600 720 840 960 1080 1200
14 480 600 720 840 960 1080 1200
15 480 600 720 840 960 1080 1200
16 480 600 720 840 960 1080 1200
17 480 600 720 840 960 1080 1199
18 480 600 720 840 960 1080 1198
19 480 600 720 840 960 1079 1197
20 480 600 720 840 960 1079 1193
21 480 600 720 840 960 1077 1186
22 480 600 720 840 959 1074 1175
23 480 600 720 840 958 1069 1159
24 480 600 720 840 957 1062 1138
25 480 600 720 839 954 1051 1112
26 480 600 720 839 950 1036 1082
27 480 600 720 838 944 1017 1051
28 480 600 720 836 935 995 1019
29 480 600 719 834 924 971 987
30 480 600 719 830 910 946 957
31 480 600 718 825 894 920 927
32 480 600 718 818 876 894 899
33 480 600 716 810 856 869 872
34 480 600 714 800 836 845 847
35 480 600 712 788 815 821 823
36 480 599 708 774 795 799 800
37 480 599 703 760 775 778 778
38 480 598 697 745 756 758 758
39 480 597 691 729 737 738 738
40 480 596 683 713 719 720 720
41 480 595 674 698 702 702 702
42 480 593 664 682 685 686 686
43 480 590 653 667 669 670 670
44 480 587 642 653 654 655 655
45 479 584 631 639 640 640 640
46 479 579 619 625 626 626 626
47 479 574 608 612 613 613 613
48 478 569 596 600 600 600 600
49 478 563 585 587 588 588 588
50 477 556 574 576 576 576 576
51 476 549 563 565 565 565 565
52 475 541 553 554 554 554 554
53 474 533 543 543 543 543 543
54 472 526 533 533 533 533 533
55 470 518 523 524 524 524 524
56 468 510 514 514 514 514 514
57 465 502 505 505 505 505 505
58 462 494 496 497 497 497 497
59 459 486 488 488 488 488 488
60 455 478 480 480 480 480 480

110

Univ
ers

ity
 of

 M
ala

ya

Table 5.13: C=4, Require Time=60, Users Served Varying
CPU

Servicetime CPU=4 CPU=5 CPU=6 CPU=7 CPU=8
5 480.00 480.00 480.00 480.00 480.00
10 480.00 480.00 480.00 480.00 480.00
15 480.00 480.00 480.00 480.00 480.00
20 480.00 480.00 480.00 480.00 480.00
25 480.00 480.00 480.00 480.00 480.00
30 480.00 480.00 480.00 480.00 480.00
35 479.99 480.00 480.00 480.00 480.00
40 479.91 480.00 480.00 480.00 480.00
45 479.38 479.98 480.00 480.00 480.00
50 477.07 479.88 479.99 480.00 480.00
55 469.95 479.47 479.96 480.00 480.00
60 455.02 478.10 479.84 479.98 480.00

This is effectively the same as saying that resource augmentation can lead to im-

proved cloudlet performance, namely, additional mobile device resources can improve

the number of users served.

Finally, Table 5.14 shows the impact of varying the service requirement on the num-

ber of users served. The cloudlet resources were set to 4 cores. The user application

arrival rate was 4 users per minute, and the maximum number of users that can be accom-

modated in the cloudlet was set to 20.

Table 5.14: C=4, Lambda=4, Require Time Varies

Tserv Treq=40 Treq=50 Treq=60 Treq=70 Treq=80
1 480.00 480.00 480.00 480.00 480.00
5 480.00 480.00 480.00 480.00 480.00
10 480.00 480.00 480.00 480.00 480.00
15 480.00 480.00 480.00 480.00 480.00
20 480.00 480.00 480.00 480.00 480.00
25 480.00 480.00 480.00 480.00 480.00
30 480.00 480.00 480.00 480.00 480.00
35 479.99 479.99 479.99 479.99 479.99
40 479.91 479.91 479.91 479.91 479.91
45 479.38 479.38 479.38 479.38
50 477.07 477.07 477.07 477.07
55 469.95 469.95 469.95
60 455.02 455.02 455.02
65 432.94 432.94
70 407.65 407.65
75 382.64
80 359.50

111

Univ
ers

ity
 of

 M
ala

ya

It can be observed that the increase in the service requirement does not affect the

number of users served by the cloudlet as long as the cloudlet service time is kept constant.

This is understandable because the cloudlet is not providing additional resources by fixing

the service time, irrespective of the demand of the mobile devices.

5.4.3 Average Number of Users in Cloudlet

We highlighted that the higher response time of the cloudlet results from the in-

creased number of user applications in the cloudlet. To confirm this observation, we

present data on the average number of users in the cloudlet for different values of the

service time. Table 5.15 presents the cloudlet average number of users in the system as

a function of service time and user arrival rate. The cloudlet CPU resources were set to

4, with a maximum user application capacity of 20 users. The service requirement of the

mobile devices was set to 60 seconds. The presented data clearly show that the increased

service time from the cloudlet results in an increased number of users in the cloudlet.

Similarly, the increased user application arrival rate results in an increased number of

users, even when the service time is kept constant. This increase in the number of users

confirms our results of higher wait times as the cloudlet service time increases or the user

arrival rate increases. The increased wait time results in an increased response time. To

improve the response time from the cloudlet, the cloudlet must vacate the user applica-

tions earlier by adjusting the service time. This eventually improves the performance of

the cloudlet.

To study the impact of the service requirement on the cloudlet average number of

users in the system, we present the data in Table5.16. The data show the average number

of users in the cloudlet as a function of service time and mobile application requirements.

It can be observed that higher user requirements do not affect the number of users in

the cloudlet as long as the service time from the cloudlet is kept constant. MobiCoRE

112

Univ
ers

ity
 of

 M
ala

ya

Table 5.15: Lambda=4, Require Time =60, Number of Ar-
rival User Vary

Servicetime λ=4 λ=5 λ=6 λ=7 λ=8 λ=9 λ=10
13.00 0.87 1.09 1.32 1.56 1.82 2.10 2.42
14.00 0.94 1.18 1.43 1.70 1.99 2.32 2.71
15.00 1.01 1.27 1.54 1.84 2.17 2.56 3.03
16.00 1.08 1.36 1.66 1.99 2.37 2.83 3.42
17.00 1.15 1.45 1.78 2.15 2.59 3.14 3.88
18.00 1.22 1.54 1.91 2.32 2.83 3.50 4.45
19.00 1.29 1.64 2.04 2.50 3.10 3.93 5.16
20.00 1.36 1.74 2.17 2.71 3.42 4.45 6.03
21.00 1.43 1.84 2.32 2.93 3.78 5.08 7.07
22.00 1.51 1.95 2.48 3.18 4.21 5.84 8.26
23.00 1.58 2.06 2.65 3.46 4.72 6.74 9.55
24.00 1.66 2.17 2.83 3.78 5.32 7.77 10.76
25.00 1.74 2.30 3.03 4.15 6.03 8.90 12.12
26.00 1.82 2.42 3.25 4.58 6.85 10.08 13.26
27.00 1.91 2.56 3.50 5.08 7.77 11.25 14.23
28.00 1.99 2.71 3.78 5.66 8.77 12.36 15.05
29.00 2.08 2.86 4.10 6.32 9.82 13.36 15.72
30.00 2.17 3.03 4.45 7.07 10.57 14.23 16.27
31.00 2.27 3.21 4.86 7.89 11.88 14.98 16.72
32.00 2.37 3.42 5.32 8.77 12.82 15.60 17.08
33.00 2.48 3.64 5.84 9.69 13.67 16.12 17.38
34.00 2.59 3.88 6.43 10.61 14.41 16.55 17.62
35.00 2.71 4.15 7.07 11.51 15.05 16.91 17.83
36.00 2.83 4.45 7.77 12.36 15.60 17.20 18.01
37.00 2.96 4.79 8.51 13.15 16.07 17.46 18.16
38.00 3.10 5.16 9.29 13.86 16.46 17.67 18.29
39.00 3.25 5.57 10.08 14.50 16.79 17.85 18.40
40.00 3.42 6.03 10.57 15.05 17.08 18.01 18.50
41.00 3.59 6.53 11.63 15.54 17.32 18.14 18.59
42.00 3.78 7.07 12.36 15.96 17.53 18.26 18.67
43.00 3.99 7.65 13.04 16.32 17.71 18.37 18.74
44.00 4.21 8.26 13.67 16.63 17.87 18.46 18.80
45.00 4.45 8.90 14.23 16.91 18.01 18.55 18.86
46.00 4.72 9.55 14.74 17.14 18.13 18.62 18.91
47.00 5.01 10.21 15.20 17.35 18.24 18.69 18.96
48.00 5.32 10.63 15.60 17.53 18.34 18.75 19.00
49.00 5.66 11.51 15.96 17.69 18.42 18.81 19.04
50.00 6.03 12.12 16.27 17.83 18.50 18.86 19.08
51.00 6.43 12.71 16.55 17.96 18.57 18.90 19.11
52.00 6.85 13.26 16.79 18.07 18.64 18.95 19.14
53.00 7.30 13.76 17.01 18.17 18.70 18.99 19.17
54.00 7.77 14.23 17.20 18.26 18.75 19.02 19.20
55.00 8.26 14.66 17.38 18.35 18.80 19.06 19.23
56.00 8.77 15.05 17.53 18.42 18.85 19.09 19.25
57.00 9.29 15.40 17.67 18.49 18.89 19.12 19.27
58.00 9.82 15.72 17.79 18.56 18.93 19.15 19.29
59.00 10.35 16.01 17.91 18.61 18.97 19.18 19.31
60.00 10.91 16.27 18.01 18.67 19.00 19.20 19.33 113

Univ
ers

ity
 of

 M
ala

ya

Table 5.16: C=4, Lambda=4, Require Time Varies

Tserv Treq=40 Treq=50 Treq=60 Treq=70 Treq=80
1 0.07 0.07 0.07 0.07 0.07
5 0.33 0.33 0.33 0.33 0.33
10 0.67 0.67 0.67 0.67 0.67
15 1.01 1.01 1.01 1.01 1.01
20 1.36 1.36 1.36 1.36 1.36
25 1.74 1.74 1.74 1.74 1.74
30 2.17 2.17 2.17 2.17 2.17
35 2.71 2.71 2.71 2.71 2.71
40 3.42 3.42 3.42 3.42 3.42
45 4.45 4.45 4.45 4.45
50 6.03 6.03 6.03 6.03
55 8.26 8.26 8.26
60 10.57 10.57
65 13.26 13.26
70 15.05 15.05
75 16.27
80 17.08

transfers the partially completed applications to the mobile devices, irrespective of their

service requirement. Therefore, additional requirements have no impact on the cloudlet

system, and the number of users in the cloudlet system remain unaffected.

5.5 Conclusion

This chapter presented the methodology used for the collection of the data that have

been used for the evaluation of MobiCoRE. We started by explaining the applied method-

ology. The data were presented in three steps. In the first step, we presented the data that

have been used for the validation of the mathematical model. The data showed that the

model and empirical results closely match. In the second step, we presented the data that

were used for the extraction of the optimal parameters for the operation of MobiCoRE. In

the final step, we presented the data that were used for the performance evaluation of the

cloudlets under MobiCoRE.

114

Univ
ers

ity
 of

 M
ala

ya

The presented data are only a fraction of the total data collected for the experiments.

We have not included all the data for the sake of brevity. In a subsequent chapter, we

distill the collected data and present our findings in the form of a discussion.

115

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 6 : RESULTS AND DISCUSSION

In this chapter, we present the data in graphical format and analyse in a cohesive and se-

quential manner to draw the logical conclusion. We start by verifying the correctness of

the mathematical model. We derive the operational points of MobiCoRE where the best

performance of the cloudlet can be achieved. Subsequently, we evaluate the performance

of MobiCoRE using optimal parameters. Finally, we show that MobiCoRE is effective

in enhancing the performance of cloudlets that have relatively large resources. The chap-

ter is divided into three parts of MobiCoRE mathematical model validation, operational

analysis,and performance enhancement of cloudlets using MobiCoRE framework.

The chapter is organized as follows. In Section 6.1, we present the model validation

results along with a discussion on accuracy. Section 6.2 presents the parametric analysis

and discussion on optimal parameter selection. Section 6.3 presents the performance

analysis results and a discussion of MobiCoRE framework, and the chapter is concluded

in Section 6.4.

6.1 MobiCoRE Model Validation

The first step of the results analysis is the validation of the mathematical model of

MobiCoRE framework. In this section, we answer the following question: Does the

developed mathematical model accurately represent the MobiCoRE framework? The an-

swer to this question establishes the correctness of the framework, which has been used

for data collection and for the remainder of the results and discussion. For this pur-

pose, we implemented the mathematical model of MobiCoRE framework in Matlab to

obtain analytical results. The empirical results were obtained from the real prototype im-

plementation of MobiCoRE. The implementation details of MobiCoRE framework were

explained in a previous chapter.

116

Univ
ers

ity
 of

 M
ala

ya

0

20

40

60

80

100

120

140

160

180

200

40 45 50 55 60 65

Job Completion Time (Empirical)

Job Completion Time (Model)

Service Time (Seconds)

Ti
m

e
(S

ec
on

ds
)

Figure 6.1: Task Completion Time

6.1.1 Application Response Time

We start by validating the application response time, as achieved by the MobiCoRE

cloudlet implementation and the mathematical model. Figure 6.1 shows the average task

completion time T̄ for an arrival rate of 4 and varying service time T̄s. It can be observed

that the empirical results almost perfectly match the model results, although the random

values were generated over a small sample space of 60. The empirical results are within

6% of the analytical results, with most of the differences being less than 3%.

6.1.1.1 Statistical Validation

We further validate the correctness of the model by comparing the results using sta-

tistical analysis. We have conducted paired sample t-tests for this purpose, and the results

are presented in Table 6.1. The Pearson correlation in this case is approximately one,

suggesting that the empirical results and MobiCoRE mathematical model results closely

match. Similarly, the t-stat and t-critical values are greater than 0.005, with t-critical val-

117

Univ
ers

ity
 of

 M
ala

ya

Table 6.1: Paired Sample T-test: Task Completion Time

Pearson Correlation df t-Stat P(T<=t) two-tail t- Critical two-tail
0.965483791 5 0.237111308 0.821979158 2.570581836

ues being higher than the t-stat values, thus confirming that the two results are similar.

A similar analysis has been conducted for the cloudlet response time where the mobile

computation part has been ignored. The results are presented in Table 6.2 and show a

near perfect match between the empirical and analytical results.

Table 6.2: Paired sample T-test: Cloudlet response time

Pearson Correlation df t-Stat P(T<=t) two-tail t-Critical two-tail
0.99834276 5 0.237111308 0.821979158 2.570581836

6.1.2 Average Number of Users

Similar to the trend exhibited by the application response time, a near perfect match

was observed in the case of the average number of applications in the MobiCoRE frame-

work N̄, as shown in Figure 6.2. In this case, the empirical results have an average devia-

tion of 0.21 from the analytical results. The near perfect match of the results suggests that

the proposed MobiCoRE mathematical model can be used for the analysis of MobiCoRE.

Table 6.3: Paired Sample T-Test: Number of Avg User in the
Cloudlet

Pearson Correlation df t-Stat P(T<=t) two-tail t-Critical two-tail
0.999292095 5 1.723121278 0.145475573 2.570581836

6.1.2.1 Statistical Validation

For the sake of completeness, we perform a paired sample t-test using these data,

and the results are presented in Table 6.3. The Pearson Correlation indicates an even

better match in this case, with a value of 0.99, thus confirming that the results are in good

agreement.

118

Univ
ers

ity
 of

 M
ala

ya

0

2

4

6

8

10

12

40 45 50 55 59 65

Number of average user (Empricial)
Number of average user (Model)

Service Time (Seconds)

N
um

be
r o

f U
se

r

Figure 6.2: Average Number of Users in Cloudlet

6.1.3 Number of Users and Response Time

Finally, we present the results to verify the claim that the total response time for the

service of a mobile application is dependent upon the number of users.

The results of one run of the implementation are shown in Figure 6.3. The graph

shows the application execution time and the corresponding number of users in the cloudlet

averaged over a minute for a Poisson arrival rate of on average 4 users per minute. The ap-

plication requirement time was kept constant and equal to 65 seconds. It can be observed

that although the application requirement as well as the service time are constant, the task

completion time of the applications varies as a function of the number of applications in

the system. This is because of the increased waiting time faced by the applications. The

average task completion time for this experiment is 173 seconds, and the average time

computed using the model for the same input values is 184 seconds. The error margin is

less than 6%, which is acceptable for probabilistic models.

119

Univ
ers

ity
 of

 M
ala

ya

N
o.

 o
f A

pp
s

in
 C

lo
ud

le
t

0

3

6

9

12

15

18

Ap
p.

 E
xe

c.
 T

im
e

(S
ec

)

0

50

100

150

200

250

300

System Time (Min.)

App. Time
No. of Apps.

Figure 6.3: Implementation Exec. Time and No. of Apps.

The plot of the number of users exactly following the bar graph suggests that our

claim is valid. It can further be noted that a higher number of users in the system at any

particular time results in the impact of those users being experienced for extended periods

of time after the event. Therefore, the number of users in the system must be kept under

control at all times to ensure optimal performance. In other words, active user application

management is required inside the cloudlet, which is a characteristic of MobiCoRE.

Having validated the MobiCoRE mathematical model, we now use the MobiCoRE

model-generated results and perform the operational analysis of MobiCoRE. We use the

analysis to identify the parameters for the optimal operational point of MobiCoRE.

6.2 MobiCoRE Operational Analysis

MobiCoRE maintains a desired service time such that the average service time of

the cloudlet is set to an optimal point for a given arrival rate and given cloudlet resources.

For this purpose, the average number of users that corresponds to the respective optimal

120

Univ
ers

ity
 of

 M
ala

ya

Table 6.4: Parameters and Value Ranges

Parameter Tested Value Range
λ 4→ 10 per minute
T̄s 10→ 80 seconds
c 4→ 16
K 20
f̄ 4
f i Generated using poisson dist.
¯Treq 60→ 80 seconds
¯T i
req Generated using poisson dist.

Ttotal Time of kth synchronization

service time in the system is maintained. In this section, we use the model presented in

Chapter 4 to compute the optimal operational point for MobiCoRE for given arrival rates

and resources.

We start by analyzing the task completion time and its components. Based on the ob-

servations of the task completion time, we further analyse the role of the average cloudlet

utilization and the percentage of users served by the cloudlet on the optimal operation of

MobiCoRE. We are interested in determining the condition for the optimal operational

value for the average service time, independent of the application service requirements,

which are not known a priori and which are difficult to estimate. The parameters and their

respective ranges used in this analysis are shown in Table 6.4. Throughout the analysis,

the service time requirements of the mobile device applications as well as the cloudlet-to-

mobile-device speed-up ratio was generated using a Poisson distribution. Similarly, the

number of users arriving per minute was also generated using a Poisson distribution with

the desired λ as the average.

6.2.1 Task Completion Time

Figure 6.4 shows the average job completion time and its component times T̄m and

T̄c. The advantage of using MobiCoRE for different values of the service time is also

shown. The value of the advantage is the difference between the job completion time

121

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

5 10 15 20 25 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80

Totaltimeavg Totalmobiletimeavg Cloudlettotaltime advantage

Servicetime (Seconds)

Ti
m

e
(S

ec
on

ds
)

Figure 6.4: T̄ , T̄m and T̄c for varying T̄s

when the entire task is executed in the cloudlet and the job completion time when mobile

resources are used to complete the application after obtaining the service time from the

cloudlet. This value is plotted on the X-axis. Effectively, this is the benefit for the mobile

device applications when a MobiCoRE-based cloudlet is providing the service. For this

result, the parameters used are ¯Treq = 60 seconds, C = 4,K = 20, and λ = 4.

It can be observed that the task completion time initially decreases with increasing

cloudlet service time because of the increased number of computations being performed

by the cloudlet. However, after reaching a minimum value, the time starts increasing as a

result of the increased number of users in the cloudlet and longer wait times. This suggests

that there is an optimal service time and hence a number of cloudlet users whereby the

cloudlet can provide the best service for the mobile devices. Two points are noteworthy in

this graph. First, there is a service time for which the time spent on application execution

by the mobile device is equal to the time spent by the cloudlet. Second, for a particular

value of the service time, the maximum advantage is achieved for mobile applications

122

Univ
ers

ity
 of

 M
ala

ya

λ=4
λ=5
λ=6
λ=7
λ=8
λ=9
λ=10

Figure 6.5: T̄s for T̄m = T̄c

under MobiCoRE. We analyse both operational points in greater detail.

6.2.1.1 Service Time at T̄m = T̄c

Figure 6.5 shows the absolute difference between the time that the mobile device

spent on the computation and the time spent by the cloudlet as a function of cloudlet

service time for different values of λ . If can be observed that for every λ , the difference

becomes approximately zero, which is the point where T̄m = T̄c. For example, for λ = 4,

the above condition is satisfied for a cloudlet service time of 44 seconds. The average

time taken by the cloudlet to complete (44/60) ∗ 100 = 73% of the application is equal

to the average time taken by the mobile devices to complete the remaining 27% of the

application. It can also be observed that the difference sharply increases after reaching the

minimum value. The sharp increase can be attributed to the sharp increase in the waiting

time for larger values of service times. This indicates that a small decrease in service time

can result in a significantly higher advantage in terms of time. This observation is further

123

Univ
ers

ity
 of

 M
ala

ya

λ=4
λ=5
λ=6
λ=7
λ=8
λ=9
λ=10

Figure 6.6: Improvement in Total Time for Maximum Advantage

confirmed in a subsequent section.

6.2.1.2 Service Time at Max. Advantage

Similar to the service time whereby the mobile and cloudlet times are equal, there

is a service time for all values of λ where the maximum benefit of using MobiCoRE is

achieved, as shown in Figure 6.6. The graph shows the advantage resulting from the use

of MobiCoRE in terms of service time as a function of service time from the cloudlet

for different values of λ . It can be observed that there is a specific service time for

all values of λ whereby the maximum advantage is achieved. Further, the service time

corresponding to the maximum advantage resulting from the use of MobiCoRE decreases

with increasing arrival rate λ . The service time whereby the maximum benefit is achieved

for an arrival rate of λ = 4 is 45 seconds, whereas for λ = 10, the value decreases to 18

seconds.

It can also be observed that the decrease in advantage is near exponential for ser-

124

Univ
ers

ity
 of

 M
ala

ya

0

5

10

15

20

25

30

35

40

45

50

4 5 6 7 8

Tm=Tc
Max adv

Application arival rate per minutute

S
er

vi
ce

Ti
m

e
(S

ec
on

ds
)

Figure 6.7: T̄s for Max. Adv. and T̄m = T̄c

vice times higher than the service time that provides the maximum advantage. This con-

firms the earlier observation that the waiting time in the cloudlet increases sharply for

higher cloudlet service times. Therefore, a small reduction in the cloudlet service time

can significantly improve the cloudlet performance. This observation will be revisited in

Section 6.3.

6.2.1.3 Comparison of Service Time at T̄m = T̄c and Min. Task Time

Figure 6.7 shows the average service time values where the maximum advantage

is achieved as well as the values where the cloudlet and mobile times are equal as a

function of λ . It can be observed that the increasing value of λ decreases the values

of the average service time in both cases. This is because the cloudlet must vacate the

mobile applications earlier from the system to accommodate more users while keeping

the wait time low. Furthermore, the decrease in the average service time for the maximum

advantage point is sharp compared to the decrease in service time for T̄m = T̄c. This shows

125

Univ
ers

ity
 of

 M
ala

ya

0

10

20

30

40

50

60

40 50 60 70 80

λ=4 λ=5
λ=6 λ=7
λ=8 λ=9
λ=10

Avg Service Requirement (Sec)

C
lo

ud
le

t S
er

vi
ce

Ti
m

e
(S

ec
)

Figure 6.8: T̄ for Varying ¯Treq

that for T̄m = T̄c,the cloudlet does more work (leaving less work for the mobile device)

compared to the maximum benefit point. Consequently, at T̄m = T̄c, the load on the mobile

device is reduced, which is desirable. Therefore, with reference to the load on the mobile

device, it is more desirable to operate the cloudlet at the point where T̄m = T̄c. We further

analyse the cloudlet average service time for the condition T̄m = T̄c.

6.2.2 Analysis of Service Time at T̄m = T̄c

Figure 6.8 shows the cloudlet average service time at T̄m = T̄c plotted against the

average service requirement of the mobile devices for different values of the arrival rate.

It can be observed that the average service time varies almost linearly with the service

requirement. This means that the cloudlet average service time at T̄m = T̄c is dependent on

the value of the application requirement. This can be observed from equation 6.1, which

has been derived from T̄m = T̄c and can be solved iteratively to compute the required

cloudlet service time for different values of the required service time such that the above

126

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

4 5 6 7 8 9 10

T at Tm=Tc Tmin

Lambda Value

Ta
sk

 C
om

pl
et

e
Ti

m
e

(S
ec

)

Figure 6.9: Comparison of T̄ T̄m=T̄c and ¯Tmin

condition is met.

T̄ T̄m=T̄c
s =

¯Treq ∗ f − T̄w

1+ f
(6.1)

Although T̄ T̄m=T̄c
s is an important operational point for MobiCoRE-based cloudlets, its

dependence on the service requirement ¯Treq makes it a less useful parameter because ¯Treq

is not known by the mobile devices nor the cloudlet, even at the time of operation. In

addition, the task completion time at T̄ T̄m=T̄c
s is not a minimum, and a smaller completion

time can be obtained by the MobiCoRE-based cloudlet, as shown in Figure 6.9. The

figure shows the minimum T̄ (average task completion time) and T̄ for the service time

of equation 6.1 for varying arrival rates. Other parameters are set to ¯Treq = 60,c = 4

and K = 20. The difference between the two values indicates that the minimum task

completion time is not achieved at T̄ T̄m=T̄c
s . We now turn our attention to the average

service time where the average task completion time is minimized.

127

Univ
ers

ity
 of

 M
ala

ya

6.2.3 Analysis of Cloudlet Service Time at Minimum Task Time

We start the study of the service time at the minimum task time by observing its

dependence on the service requirement. Figure 6.10 shows the average task completion

time under MobiCoRE for varying cloudlet average service times and variable mobile

application service requirements. The cloudlet resources and user arrival rate were set to

c = 4,K = 20,λ = 4. It can be observed that the optimal operational point is not affected

by the service requirement of the mobile applications. For all values of ¯Treq and the given

cloudlet resources, the minimum task completion time is achieved at the same average

service requirement of T̄s = 45 seconds. The only affect of ¯Treq is the constant increase in

the task completion time, which is also obvious from the trendline equations, where the

only significant change is in the constant factor.

The trend shown in Figure 6.10 has been observed for all values of λ and c as long as

K is set sufficiently large and the cloudlet operates under stable conditions. This observa-

y = -0.0184x3 + 1.372x2 - 24.614x + 251.29

y = -0.0169x3 + 1.307x2 - 23.926x + 290.09

y = -0.0165x3 + 1.2938x2 - 23.823x + 330.33

0

50

100

150

200

250

300

350

400

5 15 25 32 36 40 44 48 52 56 60 64 68 72 76 80

TReq=59

TReq=69

TReq=79

Poly. (TReq=59)

Poly. (TReq=69)

Poly. (TReq=79)

ServiceTime (Seconds)

Ti
m

e(
S

ec
on

ds
)

Figure 6.10: T̄s for Varying ¯Treq

128

Univ
ers

ity
 of

 M
ala

ya

0
10
20
30
40
50
60
70
80
90

100

5 15 25 32 36 40 44 48 52 56 60 64 68 72 76 80

Lamda-4 Lamda-5 Lamda-6
Lamda-7 Lamda-8

ServiceTime (seconds)

%
of N

um
ber

 of
use

r se
rve

d

Figure 6.11: Users Served for Varying λ

tion leads us to the following question: Is there a specific behavior of the cloudlet system

that can be used as a basis to derive an expression for the optimal cloudlet average service

time? The answer to this question lies in the application rejection rate PK and cloudlet

utilization U . We now consider both variables.

6.2.3.1 Drop Rate and Minimum Task Time

To determine the optimal service time, we examine different parameters concerning

cloudlet operation. We start with the application drop rate. Figure 6.11 shows the per-

centage of applications served for varying service times and different values of λ . It can

be observed that as the service time increases, the number of users served also decreases.

More importantly, we observe that application dropping starts at values that are close to

the values of the maximum benefit for mobile applications from the cloudlet. We further

analyse the user drop by observing the drop probability PK .

PK is the probability of a task being dropped by the cloudlet. This event occurs

129

Univ
ers

ity
 of

 M
ala

ya

when the number of tasks in the cloudlet is equal to the parameter K. Figure 6.12 shows

the value of PK as a function of λ at the average service time where the average task

completion time is a minimum. It can be observed that the value of PK is constant up to

three decimal places. Note that the value remains constant for all values of the average

service requirement. We use this observation to derive the expression for the optimal

value of the average service time. Using equation 4.2, we obtain equation 6.2 as follows:

0.999 =(1−PK)

=⇒ 0.999 =

(
1− λ K

cK−cc!µK P0

)
=⇒ 1

P0
=

λ K

cK−cc!µK 1000 (6.2)

Equation 6.2 can be solved iteratively using the known parameters of λ ,c and K for

the value of the only unknown µ . The average service time of the cloudlet for which

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

4 5 6 7 8 9 10
Lambda Value

P
K

Figure 6.12: PK for Varying λ

130

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90

Job time vs Service time

Job time(lambda=4)
Job time(lambda=5)
Job time(lambda=6)
Job time(lambda=7)
Job time(lambda=8)

ServiceTime (Seconds)

Jo
b

Ti
m

e
(S

ec
on

ds
)

Figure 6.13: T̄s for Varying ¯Treq

the condition Pk = 0.001 is satisfied can be computed using T̄s =
1
µ

. Effectively, for any

value of λ ,c and K, we can compute the optimal cloudlet average service time for which

the average task completion time is minimized independent of the task requirement. This

result is of fundamental importance and can be used to tune the parameter N̄ (which is

a function of λ ,c, K and µ) of the MobiCoRE-based cloudlet to determine the optimal

operational point.

6.2.3.2 Cloudlet Utilization and Minimum Task Time

We now turn our attention to the second variable of cloudlet utilization U . We start

by observing the optimal service time dependence on λ . Figure 6.13 shows the average

task completion time under MobiCoRE for different values of the service time from the

cloudlet for c = 4,K = 20, and ¯Treq = 60 and with varying λ . It can be observed that an

increased value of Λ results in a reduced service time from the cloudlet for the minimum

task completion time. This suggests that the optimal service time and the number of users

131

Univ
ers

ity
 of

 M
ala

ya

N
or

m
al

iz
ed

 U
til

is
at

io
n

0

0.25

0.5

0.75

1

Service Time

1 11 21 31 41 51

λ=4
λ=5
λ=6
λ=7
λ=8
λ=9
λ=10

Figure 6.14: Cloudlet Utilization for Varying T̄s and λ

in the cloudlet are inversely proportional to the mobile application task arrival rate. Fur-

thermore, the task completion time increases with increasing arrival rate, thus suggesting

that the number of users as well as the cloudlet utilization increase. This results in a

longer wait time for the applications and a resulting increase in the task completion time.

Figure 6.14 shows the normalised utilization of the cloudlet for varying service times

and different values of λ . It can be observed that increasing the service time results in

increased cloudlet utilization, which eventually reaches the maximum value of 1. We fur-

ther observe that the cloudlet utilization is almost constant at service time values whereby

the maximum benefit for the mobile device is achieved. This can be observed in Fig-

ure 6.15, where the cloudlet utilization has been plotted for service times whereby the

minimum task time is achieved. It can be observed that the cloudlet utilization is approxi-

mately 75% for the optimal service time. We use this observation to compute a simplified

expression for the optimal service time that is conditionally valid and that can be used for

132

Univ
ers

ity
 of

 M
ala

ya

most of the realistic scenarios.

We know from queuing theory that λ̄ = µ c̄. Given that the value of K is sufficiently

large, we can use the above equation and the facts identified in Figure 6.12 and Figure 6.16

to derive the expression for the optimal service time as follows:

λ̄ =µ c̄

=⇒ λ (1−PK) =µ c̄

=⇒ 1
µ
=

c̄
λ (1−PK)

=⇒ ¯T opt
s =

cc̄
cλ (1−PK)

=⇒ ¯T opt
s =

cU
λ (1−PK)

(6.3)

Equation 6.3 gives a simplified expression for the computation of the optimal service

time in the cloudlet under MobiCoRE, given K is sufficiently large. When the condition

%
 U

til
iz

at
io

n

0

25

50

75

100

Lambda

4 5 6 7 8 9 10

Figure 6.15: Average Cloudlet Utilization at Max. Adv.

133

Univ
ers

ity
 of

 M
ala

ya

on K is satisfied, we have U = 0.75 and 1−PK = 0.999, as shown in Figure 6.16 and

Figure 6.12, respectively. The value of K is considered to be sufficiently large as long as

the value of PK is less than 0.001. This effectively means that for given parameters of the

CPU resources in the cloudlet and the user arrival rate, K should be set such that the users

are not dropped by admission control. In other words, an optimal value is achieved only

when the admitted user rate is adjusted according to the resources by blocking the users

outside the system to achieve the desired average number of users in the system.

6.2.4 Discussion

In this section, we analysed the behavior of MobiCoRE-based cloudlets. We found

that given the arrival rate and cloudlet resources, there is a service time value such that

operating the cloudlet at this value results in equal time spent on the applications by

the cloudlet and by the mobile device. However, this time is dependent on the service

requirement of the applications, which is not known a priori. Further analysis showed

that there is an optimal cloudlet service time value corresponding to a given arrival rate

and cloudlet resources that results in the minimum average task completion time for the

applications. Furthermore, this time is independent of the service requirements of the

mobile applications. We derived a generalized expression for the optimal service time.

We simplified this expression given the assumption that K is sufficiently large.

In the remainder of the chapter, we analyse the performance of MobiCoRE-based

cloudlets using optimal service time values for different arrival rates and cloudlet re-

sources.

6.3 MobiCoRE Performance

The performance of MobiCoRE can be measured using three metrics. First, Mobi-

CoRE must ensure that any user that is admitted for service must obtain a benefit in terms

of execution time compared to local task execution as well as cloudlet-based execution

134

Univ
ers

ity
 of

 M
ala

ya

0

50

100

150

200

250

300

4 5 6 7 8

Cloudlet Time (Without MobiCoRE) MobiCoRE Time

User Arrival Rate, Lambda

Ta
sk

 E
xe

cu
tio

n
Ti

m
e

(S
ec

)

Figure 6.16: Execution Time Adv.

without MobiCoRE. Second, the number of computations performed on the mobile de-

vice should be a small portion of the total task of that mobile device. Finally, the cloudlet

should be able to serve more users under MobiCoRE for the same level of resources. We

show the effectiveness of MobiCoRE using the above metrics as well as through cloudlet

utilization.

6.3.1 Task Completion Time Advantage

MobiCoRE uses mobile resources to enhance the performance of the cloudlet. Be-

cause of the use of mobile device resources, mobile devices vacate the cloudlet early,

resulting in fewer devices in the system, which in turn reduces the waiting time in the

cloudlet. Therefore, MobiCoRE should reduce the task completion time for mobile de-

vices. Figure 6.16 shows the average advantage in terms of task completion time for

mobile devices when the task is executed at an average service time of ¯Topt under Mobi-

CoRE compared to the time when MobiCoRE is not used. It can be observed that for all

135

Univ
ers

ity
 of

 M
ala

ya

-60

-30

0

30

60

90

120

1 51 101 151 201 251 301 351 401 451

Number of users

Ti
m

e
(S

ec
on

ds
)

Per Mobile App. Adv.

Figure 6.17: Per Device Completion Time Advantage

values of λ , MobiCoRE is able to significantly reduce the task completion time. It can

also be observed that the advantage becomes constant after a certain value of λ . This is

because the cloudlet operates at maximum utilization beyond this point, and increasing λ

linearly increases the cloudlet waiting time.

Figure 6.17 shows the task completion advantage values for individual mobile appli-

cations for system parameters of c = 4,K = 20,λ = 4, and ¯Treq = 60. The actual service

requirement and cloudlet-to-mobile-device speed-up ratios were generated using a Pois-

son distribution. It can be observed that ≈ 97% of applications were able to complete

their tasks faster under MobiCoRE compared to cloudlet-only execution at the optimal

point, execution only by the mobile device, and execution by the full cloudlet.

6.3.2 Number of Applications Served

The primary advantage of enhanced cloudlet resources under MobiCoRE should be

in the form of extra users served by the cloudlet. Figure 6.18 shows the percentage of

136

Univ
ers

ity
 of

 M
ala

ya

0

10

20

30

40

50

60

4 5 6 7 8

% of Extra Users Served

Max Adv
Tm=Tc

User arrival rate, Lambda

%
 o

f E
xt

ra
 U

se
rs

Figure 6.18: Percentage of Extra App. Served

extra users served when MobiCoRE was operated at the optimal service time as well

as at the service time where T̄m = T̄c. It can be observed that MobiCoRE was able to

accommodate up to 50% more users at higher arrival rates when operating at the optimal

service time. On the other hand, the number of additional users served by the cloudlet

was slightly reduced in the case where T̄m = T̄c. This is because fewer mobile device

resources were used to ensure minimal overhead on the mobile device.

6.3.3 Cloudlet Response Time and Utilization

The resource sharing of the mobile devices with the cloudlet should result in an

improved response time from the cloudlet. This can be observed in Figure 6.19, where the

cloudlet response time-to-mobile device load ratio is plotted against the service times for

varying λ . Higher values indicate better advantages of using the mobile device resources.

It can be observed that there is a point of maximum benefit ratio for all values of λ .

We observe that the service time for which the maximum response time improvement-

137

Univ
ers

ity
 of

 M
ala

ya

to-mobile resources used ratio is achieved is given by the expression 1
P0

= (λ−1)K

cK−cc!µK 1000.

We further observe that a load of 16% on the mobile device results in an up to 47%

improvement in the response time of the cloudlet, which is a significant improvement in

cloudlet performance.

Figure 6.20 shows the reduction in cloudlet resource utilization for varying service

times under MobiCoRE compared to complete task execution by the cloudlet. We observe

that for a majority of the service time values, the cloudlet utilization is reduced, which

is intuitive. We also observe that the utilization is always equal to 75% for the optimal

operation point, which is an improvement of 25% for most the cases where the cloudlet

is subject to heavy loads. A reduction in cloudlet utilization below 80% to a more stable

point results in an improved response time, which in turn results in a better performance

of the cloudlet under MobiCoRE in serving mobile users.

Lambda=10
Lambda=9
Lambda=8
Lambda=7
Lambda=6
Lambda=5
Lambda=4

C
loudlet R

esponse to M
obile Load (Sec/sec)

Figure 6.19: Cloudlet Response Time vs Mobile Load

138

Univ
ers

ity
 of

 M
ala

ya

Lambda=10
Lambda=9
Lambda=8
Lambda=7
Lambda=6
Lambda=5
Lambda=4

Figure 6.20: Improved Utilization vs Average Service Time

6.3.4 MobiCoRE Overhead on Mobile Device

Figure 6.21 shows the overhead of MobiCoRE on mobile devices when the maxi-

mum advantage is obtained as well as when equal time between the cloudlet and mobile

device is obtained. It can be observed that equal time sharing between the cloudlet and

mobile device results in a reduced overhead on the mobile device compared to the max-

imum advantage, especially for higher values of λ . Effectively, the cloudlet can choose

between the two modes, depending on the application arrival rate. We note that in the case

of equal time sharing, even at very high arrival rates, the mobile device must perform less

than 50% of its own computations. This ensures that mobile device resources are not

used beyond a certain threshold while ensuring an improved response time for the mobile

device as well as enhanced cloudlet performance when 50% more users are served.

139

Univ
ers

ity
 of

 M
ala

ya

0

17.5

35

52.5

70

4 5 6 7 8

Max Adv Tm=Tc

Lambda

Ti
m

e
(S

ec
on

ds
)

% Overhead on Mobile Device

Figure 6.21: Execution Time Adv.

6.4 Conclusion

In this chapter, we validate the mathematical model of MobiCoRE framework. The

data generated using the model were subsequently used to identify the optimal operational

point for MobiCoRE-based cloudlets. The analysis also revealed that at the optimal op-

erational point whereby the minimum average response time is achieved for the mobile

applications, the value of the variables PK and c̄ are constant. These findings lead us to

compute the cloudlet service time value for the optimal operational point for given values

of cloudlet resources and user arrival rates. We derived an expression for such an opera-

tional point and found the the expression is generic and independent of the mobile device

requirements. This expression can be used to tune any cloudlet to achieve optimal oper-

ation.Under the assumption of sufficiently large values of the allowable number of users

in the system, the derived expression was greatly simplified to c̄
λ

, where c̄ is the average

number of CPUs used and λ is the application arrival rate. This simpler expression can

be used to quickly tune the cloudlets when detailed parameters are not available. These

140

Univ
ers

ity
 of

 M
ala

ya

expressions are of great importance, and to the best of our knowledge, such results have

yet to be derived for cloudlet operation.

Finally, we evaluated the performance of MobiCoRE. We considered the perfor-

mance enhancement of the cloudlet in terms of the average response time and the num-

ber of users served. We also considered the impact of the improved performance of the

cloudlet on the service received by the mobile devices. The results showed that Mobi-

CoRE can accommodate up to 50% more users when operating at optimal service times

and provide 50% time benefits to mobile users. At the optimal point, only 16% of the

resources of the mobile devices are used to achieve the above-mentioned increase in the

number of users served and the service time. The empirical analysis and statistical valida-

tion demonstrate that our proposed framework, MobiCoRE, positively and significantly

impacts cloudlet performance by exploiting and orchestrating nearby mobile device re-

sources without adding significant additional loads on the mobile devices.

141

Univ
ers

ity
 of

 M
ala

ya

CHAPTER 7 : CONCLUSION

This chapter presents the overall conclusion of this thesis and highlight the future research

directions. We re-examine and highlight the research aim and objectives by revisiting

again to ensure that we achieve through the work reported in this thesis. We also present

the significance and important of this study and highlight the contributions in this the-

sis. Moreover, we list the scholarly peer reviewed ISI journal articles, conference and

proceedings papers as an outcome of carried out research work throughout the research

period. Finally, this chapter ends by discussion on research limitations and possible future

works.

In Section 7.1, we describe how aim and objectives of this study are accomplished.

Section 7.2 presents contributions of this research. Significance of this work is presented

in Section 7.3. The scholarly ISI articles and conferences that are produced by this re-

search are listed in Section 7.4 and future works are highlighted in Section 7.5.

7.1 Research Objectives Revisited

In this research, we aimed to achieve the performance enhancement of resource

constrained cloudlet and at the same time the optimal user response time in cloudlet

based mobile application augmentation in mobile cloud computing. In following, we

re-examine the research aim and objectives whether or not this thesis achieve and fulfil

the expected requirements.

Objective #1: Study and identify the recent cloudlet based mobile application aug-

mentation approaches

The first objective was to study and identify recently developed cloudlet-based mo-

bile application augmentation approaches and gain an insight into offloading in MCC

to help us identify current problems in computation-intensive mobile application aug-

142

Univ
ers

ity
 of

 M
ala

ya

mentation. This research was conducted through an extensive and rigorous literature re-

view by considering major research from well-established scholarly published databases

worldwide. We used Web of Science, IEEE Explorer, Scopus ScienceDirect by Elsevier,

Springer publications, Taylor and Francis and Inderscience and downloaded the most

up-to-date research works and findings. We organised the literature and developed tax-

onomies for cloud-/cloudlet-based mobile application execution and cloudlet resource

augmentation.

A number of research issues were identified in the literature review. The highlighted

research issues demonstrated that a critical issue hindering the wide-spread deployment of

cloudlets is ensuring that the cloudlets remain self-managed and easy to use and deploying

computational entities while ensuring adequate user performance. The restrictions of the

self-management and self-deployment of free resources resulted in limited resources in

the cloudlets, with no possibility of enhancing the resources as required. This problem

was subsequently addressed by the proposed research.

Objective #2: Investigate and analyse the limited and finite resources impact on

cloudlet performance

The second objective was to investigate and analyse the impact of limited and finite

resources on cloudlet performance as well as on the user service experience in cloudlet-

based mobile application augmentation. We performed an extensive empirical study and

developed a basic model for the cloudlets. The empirical analysis was used to investigate

the service time, cloudlet response, resource utilisation and overall mobile service time

to demonstrate that the problem of resource scarcity indeed exists and affects the user

performance. The experiments helped us better understand the problem. Subsequently,

a preliminary mathematical model was developed to better understand the extent of the

problem. Using the model, we derived a relationship between the number of user appli-

cations in the cloudlet, the cloudlet resources and the expected response time from the

143

Univ
ers

ity
 of

 M
ala

ya

cloudlet. We were able to establish the number of user applications beyond which the

cloudlet is unable to offer any advantage to the mobile devices.

Objective #3: Propose a performance enhancement framework for cloudlet in

MCC for cloudlet based compute-intensive mobile application augmentation

The third objective was to propose a performance enhancement solution for cloudlets

in MCC for cloudlet-based computation-intensive mobile application augmentation to

achieve efficient computation by exploiting mobile device resources. As a solution to the

identified problem, we proposed the MobiCoRE framework for cloudlets, which enabled

the performance enhancement of cloudlets while simultaneously optimising the mobile

user’s overall response time. We described several building blocks and architectural com-

ponents of the framework. In addition, we described the work flow in sections.

The proposed framework tunes the cloudlet service time to control the number of

users in the system, which in turn keeps the cloudlet response time low, resulting in

improved service time for the mobile users. This is achieved using the limited resources

of mobile devices for completion of their own tasks. We modelled the proposed system

using queuing theory and derived meaningful conclusions from the proposed model.

Objective #4: Evaluate the performance of the proposed framework

The final objective was to evaluate the performance of the proposed performance en-

hancement solution by considering several performance metrics such as efficiency, user

service time and resource utilisation. To this end, we implemented the proposed frame-

work and model in Matlab. The data were collected using the model and the implemen-

tation. The results were first used to validate the model, which showed a near perfect

match with the results from the experiments. The model was used to derive the perfor-

mance parameters for the proposed framework to obtain optimal operation. Specifically,

we derived generic expressions, thereby linking the cloudlet optimal service time with the

cloudlet resources and the user application arrival rate. The performance of the cloudlet

144

Univ
ers

ity
 of

 M
ala

ya

was evaluated, and we found that as many as 50% more users can be served with an up

to 50% improved total response time if 16% of the resources of the mobile devices are

shared with the cloudlet to augment the resources of the cloudlet.

7.2 Contributions

We now summarize the contributions of this research. First, we present the contribu-

tion of this thesis to the body of knowledge. Then, we present a list of scholarly articles

that were published during the course of this research.

7.2.1 Taxonomy of Cloudlet based Resource Augmentation

We developed the taxonomy for the existing literature in the domain of cloudlet re-

source augmentation. We also produced and devised the taxonomy of cloudlet based

resources in MCC by critically reviewing the state-of-the-art researches extracted from

more than 100 scholarly articles. This classification and categorization is useful and sig-

nificant contribution of this thesis for future researchers.

7.2.2 Outlined Open Research Issues and Challenges

In this thesis, we outlined and presented the research challenges and open issues.

We analyzed and synthesized the present state-of-the-art literature of the cloudlet based

resource augmentation for future research directions and also included the current limita-

tions for cloudlet based mobile application augmentation research. This provides impor-

tant research guidelines for young researchers in this domain.

7.2.3 Finite Resource Impacts Investigation on Cloudlet based Mobile Application
Augmentation

We contributed to the body of knowledge by identifying the impacts of finite resource

cloudlet based mobile application in MCC. We performed empirical investigation and

comprehensive cloudlet behavior analysis of cloudlet performance. We investigated and

145

Univ
ers

ity
 of

 M
ala

ya

demonstrated significant cloudlet resource limitation effects by considering efficiency,

throughput, and cloudlet response time. The empirical investigation and analytical study

established that the limited resource of cloudlet negatively impact the cloudlet perfor-

mance, which we identified as resource scarcity problem in cloudlet based mobile appli-

cation augmentation in MCC.

7.2.4 Performance Enhancing MobiCoRE Framework

We proposed MobiCoRE, which is a performance enhancement framework for cloudlets

that uses mobile devices for resource augmentation. The framework addresses the short-

comings of current solutions. Specifically, the framework ensures that the loads on the

mobile devices are always a fraction of their own requirements from the cloudlet and that

time benefits are always obtained for the mobile devices. The framework does not lead to

issues concerning privacy and confidentiality because mobile application code and data

are not shared with other mobile user devices in the network. No installation is required

on the mobile devices. The performance analysis shows that MobiCoRE can significantly

improve the performance of cloudlets as well as the service response time of mobile de-

vice applications.

7.2.5 MobiCoRE Framework Evaluation and Validation

We contributed to the knowledge by implementing, evaluating, and validating the

performance of MobiCoRE framework . We also demonstrated its reliability, validity and

significance. The results also verify that utilizing our proposed MobiCoRE framework

provide significant performance enhancement of cloudlet as up to 50% , and served 50%

extra user in the cloudlet system. The results ensure the feasibility of the framework and

advocate the realization of objectives for this research.

146

Univ
ers

ity
 of

 M
ala

ya

7.2.6 Generic Expression Development

The most valuable contribution of this thesis is the development of generic expres-

sions that link the optimal cloudlet service time with the cloudlet resources and the user

arrival rate. The expressions are independent of the user service requirement, which is

not known in advance. The expressions can be used to dynamically tune the cloudlet to

obtain optimal performance under variable application arrival rates. To the best of our

knowledge, our work is the first work to develop such expressions for cloudlets.

7.2.7 International Scholarly Publications:

The following list includes international research publications in high-quality publi-

cation produced by us during this research tenure.

Publication as only First Authors:

1. Md Whaiduzzaman, Mehedi Shookhak , Abdullah Gani, Rajkumar Buyya, "A

Survey on Vehicular Cloud Computing", Elsevier Journal of Computer Networks

and Applications, ISI (Tier1/Q1)and SCOPUS indexed publication, Impact Factor

2.23, Publised April, 2014

2. Md Whaiduzzaman, Abdullah Gani, Mohammad Nazmul Haque, Md Rejaul Karim

Chowdhury, "A Study on Strategic Provisioning of Cloud Computing Services",

Published Scientific World Journal , ISI indexed Tier1/Q1, Impact Factor 1.73, June

2014

147

Univ
ers

ity
 of

 M
ala

ya

3. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed , Rajkumar Buyya, "Cloudlet

based Mobile Application Augmentation in Mobile Cloud Computing: Motivation,

Taxonomy and Open Issues" , Elsevier Journal of Computer Networks and Applica-

tions,Under Review, ISI Tier1/Q1 and SCOPUS indexed publication,Impact Factor

2.23, August, 2015

4. Md Whaiduzzaman, Abdullah Gani, Nor Badrul Anuar, Muhammad Shiraz, Mo-

hammad Nazmul Haque and Israat Tanzeena Haque, " Cloud Service Selection

using Multi-Criteria Decision Analysis", The Scientific World Journal, Published,

March 2014, ISI Indexed Q1/Tier1, Impact Factor 1.73

5. Md Whaiduzzaman, Anjum Naveed, Abdullah Gani “ MobiCoRE: Mobile based

Cloudlet Resource Enhancement for Optimal Task Response”, IEEE Transactions

on Service Computing,ISI and SCOPUS indexed publication, Revised, Tier1/Q1,

Impact Factor 3.049, June, 2015

6. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed, "TOWARDS ENHANCING

RESOURCE SCARCE CLOUDLET PERFORMANCE IN MOBILE CLOUD COM-

PUTING", Fifth International Conference on Computer Science and Information

Technology, CCSIT-2015, Sydney, Australia, February 2015

7. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed, " An Empirical Analysis of

Finite Resource Impact on Cloudlet Performance in Mobile Cloud Computing",

Conference, CEET-2014, Kuala Lumpur, Malaysia, April 2014

8. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed, " PEFC: Performance En-

hancement Framework for Cloudlet in Mobile Cloud Computing", IEEE & Confer-

ence, ROMA-2014,Kuala Lumpur, Malaysia, June 2014.

148

Univ
ers

ity
 of

 M
ala

ya

9. Md Whaiduzzaman, Abdullah Gani, " Measuring Security for Cloud Service

Provider : A Third Party Approach”, IEEE & ISI indexed International conference

on Electrical Information & Communication Technology (ECIT), Khulna, Decem-

ber 2013

7.3 Significance of the Work

The research work presented in this thesis can be considered significant because of

several key features briefly discussed as follows.

First, cloudlets represent the present and future of mobile cloud computing. Address-

ing the issue of resource scarcity for cloudlets can facilitate the wide-spread deployment

of cloudlets. The proposed research has addressed the problem of resource scarcity in

cloudlets while addressing known research issues concerning the problems and shortcom-

ings of current solutions. Therefore, the thesis can be considered as a valuable research

work.

Second, our presented framework, MobiCoRE address several shortcomings of ex-

iting literature. For example, the framework does not lead to the issues of privacy and

confidentiality because mobile application code and data is not shared with other mobile

user devices in the network. Mobile device does not required extra software installation to

use the cloudlet. The performance analysis shows that MobiCoRE can significantly im-

prove the performance of cloudlet as well as service response time of the mobile device

applications.

Third, and more important aspect is deriving and presenting generic expressions link-

ing performance parameters of the cloudlet. Unlike prior research where empirical veri-

fications demonstrated that the proposed solutions work under limited sets of scenarios,

the proposed research derives generic mathematical expressions. These expressions can

be used to dynamically tune cloudlets to achieve optimal operation points. The generic

149

Univ
ers

ity
 of

 M
ala

ya

nature of these expressions makes them applicable to any cloudlet or to similar systems,

irrespective of the operating conditions. Therefore, the contribution of this research can

be considered as a significant contribution to the body of knowledge in the domain of

cloudlet resource augmentation using mobile devices.

7.4 Future Research Work

In this section, we enlist a limited set of possibilities of future work, that arise from

this thesis.

1. The proposed research does not rely on application partitioning because a generic

solution for dynamic partitioning is not available. However, if the functionally

independent partitions of an application can be created, then the mobile device can

work on one of the partitions in parallel with the cloudlet computation. In this way,

by the time the cloudlet completes its part of the computation, the mobile device can

most likely finish the remaining computation, thereby reducing the total response

time by almost half. Exploring such a possibility remains a future research subject

to the availability of dynamic partitioning algorithms.

2. We expect that the cloudlet will have the same platform as the mobile device (hard-

ware and operating system) available as a virtual machine. This facilitates the trans-

fer of states from the cloudlet to the mobile device. However, if such a setup is not

available, this heterogeneous platform does not allow for state migration. The het-

erogeneous migration of tasks and integration into the proposed framework remains

as future work.

150

Univ
ers

ity
 of

 M
ala

ya

3. A detailed admission control and service broker can significantly improve the ad-

mission of user applications into the mobile device. The integration of such a mech-

anism can improve the smoothness of the number of users and their service time in

the cloudlet.

151

Univ
ers

ity
 of

 M
ala

ya

REFERENCES

Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., & Buyya, R. (2014). Cloud-based aug-
mentation for mobile devices: motivation, taxonomies, and open challenges. IEEE
Communications Surveys & Tutorials, 16(1), 337–368.

Abolfazli, S., Sanaei, Z., Alizadeh, M., Gani, A., & Xia, F. (2014, February). An ex-
perimental analysis on cloud-based mobile augmentation in mobile cloud comput-
ing. IEEE Transactiojn on Consumer Electronics, 60(1). doi: 10.1109/TCE.2014
.6780937

Abolfazli, S., Sanaei, Z., Gani, A., Xia, F., & Yang, L. T. (2014). Rich mobile appli-
cations: Genesis, taxonomy, and open issues. Journal of Network and Computer
Applications, 40, 345 - 362. doi: http://dx.doi.org/10.1016/j.jnca.2013.09.009

Achanta, V. S., Sureshbabu, N. T., Thomas, V., Sahitya, M. L., & Rao, S. (2012).
Cloudlet-based multi-lingual dictionaries. In Third international conference on ser-
vices in emerging markets (icsem) (pp. 30–36).

Ahmed, E., Akhunzada, A., Whaiduzzaman, M., Gani, A., Ab Hamid, S. H., & Buyya,
R. (2015). Network-centric performance analysis of runtime application migration
in mobile cloud computing. Simulation Modelling Practice and Theory, 50, 42–56.

Ahmed, E., Gani, A., Khan, M. K., Buyya, R., & Khan, S. U. (2015). Seamless ap-
plication execution in mobile cloud computing: Motivation, taxonomy, and open
challenges. Journal of Network and Computer Applications, 52, 154 - 172. doi:
http://dx.doi.org/10.1016/j.jnca.2015.03.001

Ahmed, E., Gani, A., Sookhak, M., Ab Hamid, S. H., & Xia, F. (2015). Application opti-
mization in mobile cloud computing: Motivation, taxonomies, and open challenges.
Journal of Network and Computer Applications, 52, 52–68.

Albanesius, C. (2011, February). smartphone shipments surpass pc shipments for first
time. whats next? http://www.pcmag.com/article2/0,2817,2379665,00.asp.

Ali, A. M. M., Ahmad, N. M., & Amin, A. H. M. (2014). Cloudlet-based cyber foraging
framework for distributed video surveillance provisioning. In Proc. of fourth world
congress on information and communication technologies (wict) (pp. 199–204).

Apple, O. (2015, Accessed on 7th July). Apple notes. Retrieved from https://www
.apple.com/itunes/charts/free-apps/

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Zaharia,
M. (2010, April). A view of cloud computing. Commun. ACM, 53(4), 50–58.

152

Univ
ers

ity
 of

 M
ala

ya

https://www.apple.com/itunes/charts/free-apps/
https://www.apple.com/itunes/charts/free-apps/

Bahtovski, A., & Gusev, M. (2014a). Cloudlet challenges. Procedia Engineering, 69,
704–711.

Bahtovski, A., & Gusev, M. (2014b, May). Multilingual cloudlet-based dictionary. In
37th international convention on information and communication technology, elec-
tronics and microelectronics (mipro) (p. 380-385).

Bayat, N., & Lutfiyya, H. (2014). Mc-skynet: Mobile-cloud dynamic partitioning for
mobile cloud applications. In Computers and communication (iscc), 2014 ieee sym-
posium on (pp. 1–7).

Bohez, S., Turck, J. D., Verbelen, T., Simoens, P., & Dhoedt, B. (2013). Mobile, collab-
orative augmented reality using cloudlets. In Proceedings of the 2013 international
conference on mobile wireless middleware, operating systems, and applications (pp.
10–19).

Bohez, S., Verbelen, T., Simoens, P., & Dhoedt, B. (2014, April). Allocation algorithms
for autonomous management of collaborative cloudlets. In Ieee 2nd international
conference on mobile cloud computing, services, and engineering (mobilecloud)
(p. 1-9).

Bohez, S., Verbelen, T., Simoens, P., & Dhoedt, B. (2015). Discrete-event simulation for
efficient and stable resource allocation in collaborative mobile cloudlets. Simulation
Modelling Practice and Theory, 50, 109–129.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing
and emerging {IT} platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems, 25(6), 599 - 616.

Cai, W., Leung, V. C., & Hu, L. (2014). A cloudlet-assisted multiplayer cloud gaming
system. Mobile Networks and Applications, 19(2), 144–152.

Ceselli, A., Premoli, M., & Secci, S. (2015). Cloudlet network design optimization. In
Proc. of ifip networking.

Chang, Y.-S., Fan, C.-T., Lo, W.-T., Hung, W.-C., & Yuan, S.-M. (2015). Mobile cloud-
based depression diagnosis using an ontology and a bayesian network. Future Gen-
eration Computer Systems, 43-44(0), 87 - 98.

Chen, S., Wang, Y., & Pedram, M. (2013). A semi-markovian decision process based
control method for offloading tasks from mobile devices to the cloud. In Globecom
(p. 2885-2890).

Chi, F., Wang, X., Cai, W., & Leung, V. (2014). Ad hoc cloudlet based cooperative
cloud gaming. In Cloud computing technology and science (cloudcom), 2014 ieee
6th international conference on (pp. 190–197).

153

Univ
ers

ity
 of

 M
ala

ya

Christensen, J. H. (2009). Using restful web-services and cloud computing to create next
generation mobile applications. In Proceedings of the 24th acm sigplan conference
companion on object oriented programming systems languages and applications (pp.
627–634). New York, NY, USA: ACM.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). Clonecloud: elastic
execution between mobile device and cloud. In Proceedings of the sixth conference
on computer systems (pp. 301–314).

Clinch, S., Harkes, J., Friday, A., Davies, N., & Satyanarayanan, M. (2012, March).
How close is close enough? understanding the role of cloudlets in supporting dis-
play appropriation by mobile users. In Ieee international conference on pervasive
computing and communications (percom) (p. 122-127).

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R., &
Bahl, P. (2010). Maui: making smartphones last longer with code offload. In
Proceedings of the 8th international conference on mobile systems, applications,
and services (pp. 49–62).

Duro, F. R., Blas, J. G., Higuero, D., Perez, O., & Carretero, J. (2015). Cosmic: A hierar-
chical cloudlet-based storage architecture for mobile clouds. Simulation Modelling
Practice and Theory, 50, 3–19.

El-Derini, M., Aly, H., El-Barbary, A.-H., & El-Sayed, L. (2014, April). Droidcloudlet:
Towards cloudlet-based computing using mobile devices. In 5th international con-
ference on information and communication systems (icics) (p. 1-6).

Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey.
Future Generation Computer Systems, 29(1), 84–106.

Fesehaye, D., Gao, Y., Nahrstedt, K., & Wang, G. (2012, Sept). Impact of cloudlets on in-
teractive mobile cloud applications. In Ieee 16th international enterprise distributed
object computing conference (edoc) (p. 123-132).

Flores, H., Srirama, S. N., & Paniagua, C. (2012). Towards mobile cloud applications.
International Journal of Pervasive Computing and Communications, 8(4), 344-367.

Gartner. (2013, Nov). Gartner says smartphone sales accounted for 55 percent of overall
mobile phone sales in third quarter of 2013. Retrieved from http://www.gartner
.com/newsroom/id/2623415

Ha, K., Pillai, P., Richter, W., Abe, Y., & Satyanarayanan, M. (2013). Just-in-time
provisioning for cyber foraging. In Proceeding of the 11th annual international
conference on mobile systems, applications, and services (pp. 153–166).

Harney, E., Goasguen, S., Martin, J., Murphy, M., & Westall, M. (2007). The efficacy
of live virtual machine migrations over the internet. In Proceedings of the 2nd inter-

154

Univ
ers

ity
 of

 M
ala

ya

http://www.gartner.com/newsroom/id/2623415
http://www.gartner.com/newsroom/id/2623415

national workshop on virtualization technology in distributed computing (vtdc’07),
reno, nevada, usa (pp. 1–7). ACM.

Hoang, D. T., Niyato, D., & Le, L. B. (2014). Simulation-based optimization for admis-
sion control of mobile cloudlets. In Communications (icc), 2014 ieee international
conference on (pp. 3764–3769).

Hoang, D. T., Niyato, D., & Wang, P. (2012, April). Optimal admission control policy
for mobile cloud computing hotspot with cloudlet. In Ieee wireless communications
and networking conference (wcnc) (p. 3145-3149).

Huerta-Canepa, G., & Lee, D. (2010). A virtual cloud computing provider for mobile
devices. In Proceedings of the 1st acm workshop on mobile cloud computing &
services: Social networks and beyond. ACM.

Jararweh, Y., Tawalbeh, L., Ababneh, F., & Dosari, F. (2013, Dec). Resource efficient
mobile computing using cloudlet infrastructure. In Ieee ninth international confer-
ence on mobile ad-hoc and sensor networks (msn) (p. 373-377).

Jin, A., Song, W., Wang, P., Niyato, D., & Ju, P. (2015). Auction mechanisms toward effi-
cient resource sharing for cloudlets in mobile cloud computing. Services Computing,
IEEE Transactions on, PP(99), 1-1.

Jindal, M., & Dave, M. (2014, May). Data security protocol for cloudlet based architec-
ture. In Recent advances and innovations in engineering (icraie), 2014 (p. 1-5).

Kara, N., Soualhia, M., Belqasmi, F., Azar, C., & Glitho, R. (2014). Genetic-based
algorithms for resource management in virtualized ivr applications. Journal of Cloud
Computing, 3(1), 1–18.

Kemp, R., Palmer, N., Kielmann, T., & Bal, H. (2012). Cuckoo: a computation offloading
framework for smartphones. In Mobile computing, applications, and services (pp.
59–79). Springer.

Khan, K. A., Wang, Q., Grecos, C., Luo, C., & Wang, X. (2013). Meshcloud: Inte-
grated cloudlet and wireless mesh network for real-time applications. In Electron-
ics, circuits, and systems (icecs), 2013 ieee 20th international conference on (pp.
317–320).

Kommineni, S., De, A., Alladi, S., & Chilukuri, S. (2014). The cloudlet with a silver
lining. In Sixth international conference on communication systems and networks
(comsnets).

Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X. (2012). Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading.
In Proceedings ieee infocom (pp. 945–953).

155

Univ
ers

ity
 of

 M
ala

ya

Kristensen, M. D. (2010). Scavenger: Transparent development of efficient cyber for-
aging applications. In Ieee international conference on pervasive computing and
communications (percom) (pp. 217–226).

Kumar, K., & Lu, Y.-H. (2010). Cloud computing for mobile users: Can offloading
computation save energy? Computer, 43(4), 51-56.

Li, Y., & Wang, W. (2013, Dec). The unheralded power of cloudlet computing in the
vicinity of mobile devices. In Ieee global communications conference (globecom)
(p. 4994-4999).

Li, Y., & Wang, W. (2014, April). Can mobile cloudlets support mobile applications? In
Infocom, 2014 proceedings ieee (p. 1060-1068).

Litzkow, M., Tannenbaum, T., Basney, J., & Livny, M. (1997). Checkpoint and migration
of unix processes in the condor distributed processing system. Computer Sciences
Department, University of Wisconsin.

Liu, J., Ahmed, E., Shiraz, M., Gani, A., Buyya, R., & Qureshi, A. (2015). Application
partitioning algorithms in mobile cloud computing: Taxonomy, review and future
directions. Journal of Network and Computer Applications, 48, 99 - 117. doi: http://
dx.doi.org/10.1016/j.jnca.2014.09.009

Lumia. (2015, June). Microsoft nokia lumia. Retrieved from http://www.microsoft
.com/en-in/mobile/apps/lumia/

Magurawalage, C. M. S., Yang, K., Hu, L., & Zhang, J. (2014). Energy-efficient and
network-aware offloading algorithm for mobile cloud computing. Computer Net-
works, 74, 22–33.

March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M., & Lee, B. S. (2011). µcloud:
towards a new paradigm of rich mobile applications. Procedia Computer Science, 5,
618–624.

Miettinen, A. P., & Nurminen, J. K. (2010). Energy efficiency of mobile clients in cloud
computing. In Proceedings of the 2nd usenix conference on hot topics in cloud
computing (pp. 4–4). Berkeley, CA, USA: USENIX Association.

Modares, H., Moravejosharieh, A., Lloret, J., & Salleh, R. (2014). A survey on proxy
mobile ipv6 handover. IEEE Systems Journal, 1-10.

Munteanu, V. I., Şandru, C., & Petcu, D. (2014). Multi-cloud resource management:
cloud service interfacing. Journal of Cloud Computing, 3(1), 1–23.

Nkosi, M., & Mekuria, F. (2010, Nov). Cloud computing for enhanced mobile health
applications. In Ieee second international conference on cloud computing technology
and science (cloudcom) (p. 629-633).

156

Univ
ers

ity
 of

 M
ala

ya

http://www.microsoft.com/en-in/mobile/apps/lumia/
http://www.microsoft.com/en-in/mobile/apps/lumia/

Park, S., Parwani, A., Satyanarayanan, M., & Pantanowitz, L. (2012). Handheld comput-
ing in pathology. Journal of Pathology Informatics, 3(1), 15.

Pirozmand, P., Wu, G., Jedari, B., & Xia, F. (2014). Human mobility in opportunistic
networks: Characteristics, models and prediction methods. Journal of Network and
Computer Applications, 42, 45–58.

Qi, H., Shiraz, M., Gani, A., Whaiduzzaman, M., & Khan, S. (2014). Sierpinski triangle
based data center architecture in cloud computing. The Journal of Supercomputing,
69(2), 887–907.

Qing, W., Zheng, H., Ming, W., & Haifeng, L. (2013, June). Cactse: Cloudlet aided
cooperative terminals service environment for mobile proximity content delivery.
Communications, China, 10(6), 47-59.

Quwaider, M., & Jararweh, Y. (2013). Cloudlet-based for big data collection in body
area networks. In 8th international conference for internet technology and secured
transactions (icitst) (pp. 137–141).

Quwaider, M., & Jararweh, Y. (2015). Cloudlet-based efficient data collection in wireless
body area networks. Simulation Modelling Practice and Theory, 50, 57–71.

Rahimi, M. R. (2012). Exploiting an elastic 2-tiered cloud architecture for rich mobile
applications. In Ieee international symposium on a world of wireless, mobile and
multimedia networks (wowmom) (pp. 1–2).

Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., & Vasilakos, A. V. (2012). Map-
cloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In
Proceedings of the 2012 ieee/acm fifth international conference on utility and cloud
computing (pp. 83–90).

Rak, M., Venticinque, S., Máhr, T., Echevarria, G., & Esnal, G. (2011). Cloud application
monitoring: The mosaic approach. In Ieee third international conference on cloud
computing technology and science (cloudcom) (pp. 758–763).

Ravi, A., & Peddoju, S. K. (2013). Energy efficient seamless service provisioning in
mobile cloud computing. In Ieee 7th international symposium onservice oriented
system engineering (sose) (pp. 463–471).

Rawadi, J., Artail, H., & Safa, H. (2014, April). Providing local cloud services to mobile
devices with inter-cloudlet communication. In 17th ieee mediterranean electrotech-
nical conference (melecon) (p. 134-138).

Routaib, H., Badidi, E., Elmachkour, M., Sabir, E., & Elkoutbi, M. (2014, May). Model-
ing and evaluating a cloudlet-based architecture for mobile cloud computing. In 9th
international conference on intelligent systems: Theories and applications (sita-14)
(p. 1-7).

157

Univ
ers

ity
 of

 M
ala

ya

Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. (2009, October). The case for
vm-based cloudlets in mobile computing. IEEE Pervasive Computing, 8(4), 14–23.

Satyanarayanan, M., Lewis, G., Morris, E., Simanta, S., Boleng, J., & Ha, K. (2013).
The role of cloudlets in hostile environments. Pervasive Computing, IEEE, 12(4),
40–49.

Shi, Y., Abhilash, S., & Hwang, K. (2015). Cloudlet mesh for securing mobile clouds
from intrusions and network attacks. In The third ieee international conference on
mobile cloud computing, services, and engineering,(mobile cloud 2015).

Shiraz, M., Ahmed, E., Gani, A., & Han, Q. (2014). Investigation on runtime parti-
tioning of elastic mobile applications for mobile cloud computing. The Journal of
Supercomputing, 67(1), 84-103. doi: 10.1007/s11227-013-0988-6

Shiraz, M., Gani, A., Khokhar, R. H., & Buyya, R. (2013). A review on distributed appli-
cation processing frameworks in smart mobile devices for mobile cloud computing.
IEEE Communications Surveys & Tutorials, 15(3), 1294–1313.

Shiraz, M., Whaiduzzaman, M., & Gani, A. (2013). A study on anatomy of smartphone.
Computer Communication & Collaboration, 1, 24–31.

Silva, R., Silva, J. S., & Boavida, F. (2014). Mobility in wireless sensor networks: Survey
and proposal. Computer Communications.

Soyata, T., Muraleedharan, R., Funai, C., Kwon, M., & Heinzelman, W. (2012). Cloud-
vision: Real-time face recognition using a mobile-cloudlet-cloud acceleration archi-
tecture. In Ieee symposium on computers and communications (iscc) (pp. 000059–
000066).

Soyata, T., Muraleedharan, R., Langdon, J., Funai, C., & Ames, S. (2012, May). Combat:
mobile-cloud-based compute/communications infrastructure for battlefield applica-
tions. Proc. SPIE 8403, Modeling and Simulation for Defense Systems and Applica-
tions VII.

Treurniet, J. (2014). A taxonomy and survey of microscopic mobility models from the
mobile networking domain. ACM Computing Surveys (CSUR), 47(1), 14.

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012a). Aiolos: Middleware
for improving mobile application performance through cyber foraging. Journal of
Systems and Software, 85(11), 2629–2639.

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012b). Cloudlets: Bringing the
cloud to the mobile user. In Proceedings of the third acm workshop on mobile cloud
computing and services (pp. 29–36).

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2013). Adaptive application

158

Univ
ers

ity
 of

 M
ala

ya

configuration and distribution in mobile cloudlet middleware. In Mobile wireless
middleware, operating systems, and applications (pp. 178–191). Springer.

Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2014). Adaptive deployment and
configuration for mobile augmented reality in the cloudlet. Journal of Network and
Computer Applications, 41, 206–216.

Vu, L., Nguyen, P., Nahrstedt, K., & Richerzhagen, B. (2014). Characterizing and mod-
eling people movement from mobile phone sensing traces. Pervasive and Mobile
Computing.

Wei, X., Fan, J., Lu, Z., & Ding, K. (2013). Application scheduling in mobile cloud
computing with load balancing. Journal of Applied Mathematics, 2013.

Whaiduzzaman, M., & Gani, A. (2014). Measuring security for cloud service provider:
A third party approach. In IEEE International Conference on Electrical Information
and Communication Technology (EICT) (pp. 1–6). Khulna.

Whaiduzzaman, M., Gani, A., Anuar, N. B., Shiraz, M., Haque, M. N., & Haque, I. T.
(2014). Cloud service selection using multicriteria decision analysis. The Scientific
World Journal, 2014.

Whaiduzzaman, M., Gani, A., & Naveed, A. (2014, April). An empirical analysis of
finite resource impact on cloudlet performance in mobile cloud computing. Kuala
Lumpur, Malaysia: CEET-2014.

Whaiduzzaman, M., Gani, A., & Naveed, A. (2015, February). Towards enhancing
resource scare cloudlet performancein mobile cloud computing. Sydney, Australia.

Whaiduzzaman, M., Haque, M. N., Rejaul Karim Chowdhury, M., & Gani, A. (2014).
A study on strategic provisioning of cloud computing services. The Scientific World
Journal, 2014.

Whaiduzzaman, M., Sookhak, M., Gani, A., & Buyya, R. (2014). A survey on vehicular
cloud computing. Journal of Network and Computer Applications, 40, 325–344.

Wu, Y., & Ying, L. (2015). A cloudlet-based multi-lateral resource exchange framework
for mobile users.

Xia, Q., Liang, W., & Xu, W. (2013, Oct). Throughput maximization for online request
admissions in mobile cloudlets. In Ieee 38th conference on local computer networks
(lcn) (p. 589-596).

Yamato, Y., Muroi, M., Tanaka, K., & Uchimura, M. (2014). Development of tem-
plate management technology for easy deployment of virtual resources on openstack.
Journal of Cloud Computing, 3(1), 1–12.

159

Univ
ers

ity
 of

 M
ala

ya

Yang, Z., Niyato, D., & Wang, P. (2015). Offloading in mobile cloudlet systems with
intermittent connectivity. IEEE Transactions on Mobile Computing, PP(99), 1-1.
doi: 10.1109/TMC.2015.2405539

Zhang, X., Kunjithapatham, A., Jeong, S., & Gibbs, S. (2011). Towards an elastic
application model for augmenting the computing capabilities of mobile devices with
cloud computing. Mobile Networks and Applications, 16(3), 270–284.

160

Univ
ers

ity
 of

 M
ala

ya

APPENDICES-A

International Scholarly Publications: The following list includes international re-

search publications in high-quality publication produced during this research tenure.

Journal Publication as First Authors:

1. Md Whaiduzzaman, Mehedi Shookhak , Abdullah Gani, Rajkumar Buyya, "A

Survey on Vehicular Cloud Computing", Elsevier Journal of Computer Networks

and Applications, ISI (Tier1/Q1)and SCOPUS indexed publication, Impact Factor

2.23, Publised April, 2014

2. Md Whaiduzzaman, Abdullah Gani, Mohammad Nazmul Haque, Md Rejaul Karim

Chowdhury, "A Study on Strategic Provisioning of Cloud Computing Services",

Published Scientific World Journal , ISI indexed Tier1/Q1, Impact Factor 1.73, June

2014

3. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed , Rajkumar Buyya, "Cloudlet

based Mobile Application Augmentation in Mobile Cloud Computing: Motivation,

Taxonomy and Open Issues" , Elsevier Journal of Computer Networks and Applica-

tions,Under Review, ISI Tier1/Q1 and SCOPUS indexed publication,Impact Factor

2.23, August, 2015

4. Md Whaiduzzaman, Abdullah Gani, Nor Badrul Anuar, Muhammad Shiraz, Mo-

hammad Nazmul Haque and Israat Tanzeena Haque, " Cloud Service Selection

using Multi-Criteria Decision Analysis", The Scientific World Journal, Published,

March 2014, ISI Indexed Q1/Tier1, Impact Factor 1.73

161

Univ
ers

ity
 of

 M
ala

ya

5. Md Whaiduzzaman, Anjum Naveed, Abdullah Gani “ MobiCoRE: Mobile based

Cloudlet Resource Enhancement for Optimal Task Response”, IEEE Transactions

on Service Computing,ISI and SCOPUS indexed publication, Revision, Tier1/Q1,

Impact Factor 3.049, June, 2015

Journal Publications as co-authors:

6. Ejaz Ahmed, Adnan Akhunzada, Md Whaiduzzaman, Abdullah Gani, Siti Hafizah

Ab Hamid, Rajkumar Buyya, "Network-centric Performance Analysis of Runtime

Application Migration in Mobile Cloud Computing", Published in Special Issue on

Mobile Clouds in Elsevier Journal Simulation Modelling Practice and Theory (Q-2,

Impact Factor 1.159), July, 2014

7. Han Qi, Muhammad Shiraz, Abdullah Gani, Md Whaiduzzaman, Suleman Khan

, "Sierpinski Triangle Based Data Center Architecture in Cloud Computing", Pub-

lished in August 2014, in Journal of Supercomputing, ISI Indexed Q2, Impact Fac-

tor 0.917

8. Abdullah Gani, Golam Moktader Nayeem, Muhammad Shiraz, Mehdi Sookhak,Md

Whaiduzzaman, Suleman Khan, "A Review on Interworking and Mobility Tech-

niques for Seamless Connectivity in Mobile Cloud Computing ",Published in Jour-

nal of Network and Computer Applications ,ISI-Indexed Tier1/Q1, Impact Factor

2.23, November 2014

9. Muhammad Shiraz, Md Whaiduzzaman, Abdullah Gani, "A Study on Anatomy

of Smartphone", Accepted for Publication in Journal of Computer Communication

& Collaboration,Canada 2014.

162

Univ
ers

ity
 of

 M
ala

ya

Conference Publications:

1. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed, "TOWARDS ENHANCING

RESOURCE SCARCE CLOUDLET PERFORMANCE IN MOBILE CLOUD COM-

PUTING", Fifth International Conference on Computer Science and Information

Technology, CCSIT-2015, Sydney, Australia, February 2015

2. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed, " An Empirical Analysis of

Finite Resource Impact on Cloudlet Performance in Mobile Cloud Computing",

Conference, CEET-2014, Kuala Lumpur, Malaysia, April 2014

3. Md Whaiduzzaman, Abdullah Gani, Anjum Naveed, " PEFC: Performance En-

hancement Framework for Cloudlet in Mobile Cloud Computing", IEEE & Confer-

ence, ROMA-2014,Kuala Lumpur, Malaysia, June 2014.

4. Md Whaiduzzaman, Abdullah Gani, " Measuring Security for Cloud Service

Provider : A Third Party Approach”, IEEE & ISI indexed International conference

on Electrical Information & Communication Technology (ECIT), Khulna, Decem-

ber 2013

163

Univ
ers

ity
 of

 M
ala

ya

	Original Literary Work Declaration
	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Background
	Motivation
	Statement of Problem
	Statement of Objectives
	Proposed Methodology
	 Thesis Layout

	Literature Review
	Background
	Cloud and Mobile Cloud Computing
	Cloudlets and Mobile Cloud Computing
	Cloud based Mobile Applications
	Limitations of Clouds in MCC

	Application Execution in MCC
	Client Server based Mobile Application Execution
	VM Based Mobile Application Execution
	Application Offloading for Cloud/Cloudlet Execution

	Cloudlet Resource Augmentation
	Cloudlet based Cloudlet Augmentation
	Cloud based Cloudlet Augmentation
	Mobile Device based Cloudlet Augmentation
	Adhoc-Mobile-devices based Cloudlet Augmentation

	Cloudlet Resource Optimization and Management
	Applications of Cloudlets
	Limitations of Cloudlets
	Research Challenges and Open Issues
	Mobile Application Modification
	Mobile Application Partitioning
	Heterogeneity in Application Augmentation
	Mobile-based Augmentation and Software Installs
	Resource Availability and Scalability
	Mobile-based Augmentation and Load Balancing
	Consistent and Seamless Connectivity
	Privacy and Integrity

	Conclusion

	Resource Scarcity in Cloudlets: Problem Analysis
	System Description
	System Parameter Definitions
	CPU Resources, Queue and User Arrival Scenario
	Assumptions

	Experimental Setup
	Experimental Model
	Cloudlet Resources
	Mobile Device
	Connectivity
	Prototype Application
	Performance Metrics

	Empirical Analysis of Cloudlet Finite Resources Impact
	CPU Utilization
	 Efficiency
	 Throughput
	Task Completion Time
	User Time Benefit

	 Cloudlet System Behavior Synthesis
	Resource Enhancement Effects:
	Number of User Served:
	Number of Users in the System
	 Number of Users Waiting in the System
	 Uses of CPU Resource
	Response Time of Cloudlet
	Waiting Time in the Cloudlet

	Maximum Number of User Enhancement: K-effect
	Number of Users in the Cloudlet with Varying Lambda and K
	Resource CPU Utilization Uses by Varying Lambda and K
	Response Time with Varying Maximum Number of Allowed User in Cloudlet

	Preliminary Model
	Notations
	Model
	Example

	Conclusion

	MobiCoRE: Mobile Device based Cloudlet Resource Enhancement Framework
	Overview of MobiCoRE
	System Description
	Admission Controller (AC)
	Task Execution
	Service Controller (SC)
	Desired Service Time Computation
	Record Keeping of Time Served
	Decision on Task Vacation

	Task State Wrapper
	Task Flow

	Existing Limitations and MobiCoRE Solution
	Mathematical Model of MobiCoRE
	Cloudlet Service Model
	Mobile Computation Model

	Conclusion

	Implementation and Evaluation
	Experimental Setup
	MobiCoRE Implementation
	Mobile Device Data Collection
	Model Data Collection Mechanism
	Evaluation Metrics
	Statistical Validation of Data

	Model Validation Data
	Parametric Analysis Data
	Task Completion Time
	Probability of User Drop
	Average CPUs Used

	Performance Evaluation Data
	Task Completion Time
	Number of Users Served
	Average Number of Users in Cloudlet

	Conclusion

	Results and Discussion
	MobiCoRE Model Validation
	Application Response Time
	Statistical Validation

	Average Number of Users
	Statistical Validation

	Number of Users and Response Time

	MobiCoRE Operational Analysis
	Task Completion Time
	Service Time at =
	Service Time at Max. Advantage
	Comparison of Service Time at = and Min. Task Time

	Analysis of Service Time at =
	Analysis of Cloudlet Service Time at Minimum Task Time
	Drop Rate and Minimum Task Time
	Cloudlet Utilization and Minimum Task Time

	Discussion

	MobiCoRE Performance
	Task Completion Time Advantage
	Number of Applications Served
	Cloudlet Response Time and Utilization
	MobiCoRE Overhead on Mobile Device

	Conclusion

	Conclusion
	Research Objectives Revisited
	Contributions
	Taxonomy of Cloudlet based Resource Augmentation
	Outlined Open Research Issues and Challenges
	Finite Resource Impacts Investigation on Cloudlet based Mobile Application Augmentation
	Performance Enhancing MobiCoRE Framework
	MobiCoRE Framework Evaluation and Validation
	Generic Expression Development
	International Scholarly Publications:

	Significance of the Work
	Future Research Work

	References

