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ABSTRACT 

Data of cervical cancer patients treated in Hospital Universiti Sains Malaysia are 

analysed using the Cox proportional hazards regression analysis to model the prognostic 

factors. Since there is a non-proportional hazards covariate, the analysis is extended to 

the stratified Cox model. Also, parametric survival models including the Weibull, 

lognormal and log-logistic models are performed on the data. Among these parametric 

models, Weibull is the best. Then, a stratified Weibull model is performed because the 

proportional hazards assumption is violated. A comparison between the stratified Cox 

and stratified Weibull models shows that the stratified Cox model gives a better fit. 

Commonly, a complete case analysis is considered when there are missing 

values in a data set. This approach may reduce the sample size and power of the study. 

The performance of several methods for handling missing values is studied including 

the Expectation-Maximization (EM) algorithm by method of weight, hot deck, multiple 

imputation by chained equation with predictive mean matching (MICE-PMM) and 

complete case analysis methods for the Weibull data. The values are assumed missing at 

random (MAR). Simulation studies are performed, and the cervical cancer data is used 

for illustration. Overall, the EM algorithm by method of weight performs well compared 

to other methods. 

In survival data, there may exist unmeasured factors that also influence the 

survival and cause heterogeneity among individuals. This unobserved random effect is 

known as frailty. This study also focuses on the test for detecting frailty in a positive 

stable Gompertz model. The Zhu’s score test (Zhu, 1998), modified score test and ln s 

based test (Sarker, 2002) may also be derived from such a model. Thus, this study 

investigates the tests properties, and found that the modified score test performs better 

than the other tests based on the convergence rate and power of the test via simulation. 
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ABSTRAK  

 Data pesakit kanser serviks yang dirawat di Hospital Universiti Sains Malaysia 

dianalisa menggunakan analisis model regresi bahaya berkadaran Cox untuk membina 

model faktor-faktor prognostik. Memandangkan terdapat kovariat bahaya tidak 

berkadaran, analisis ini dipanjangkan kepada model Cox berstrata. Disamping itu, 

model kemandirian parametrik termasuk model-model Weibull, lognormal dan log-

logistik dijalankan ke atas data. Antara model-model parametrik ini, Weibull adalah 

yang terbaik. Kemudian, model Weibull berstrata dijalankan kerana andaian bahaya 

berkadaran tidak dipatuhi. Perbandingan di antara model-model Cox berstrata dan 

Weibull berstrata menunjukkan bahawa model Cox berstrata memberi kesesuian yang 

lebih baik.   

 Lazimnya, analisis kes lengkap dipertimbangkan apabila terdapat nilai-nilai 

lenyap dalam sesuatu set data. Pendekatan ini mungkin mengurangkan saiz sampel dan 

kuasa kajian. Prestasi beberapa kaedah untuk mengendalikan nilai-nilai lenyap dikaji 

termasuk kaedah-kaedah algortima pemaksimuman jangkaan (EM) menggunakan 

pemberat, dek panas, imputasi berganda oleh persamaan berantai dengan padanan min 

ramalan (MICE-PMM) dan analisis kes lengkap untuk data Weibull. Nilai-nilai 

diandaikan lenyap secara rawak (MAR). Kajian simulasi dijalankan dan data kanser 

serviks digunakan untuk ilustrasi. Keseluruhannya, kaedah algoritma EM menggunakan 

pemberat menunjukkan prestasi yang baik berbanding kaedah-kaedah yang lain.  

 Dalam data kemandirian, mungkin wujud faktor-faktor tidak diukur yang juga 

mempengaruhi kemandirian dan menyebabkan keheterogenan antara individu-individu. 

Kesan rawak yang tidak dilihat ini dikenali sebagai frailty. Kajian ini juga fokus kepada 

ujian untuk mengesan frailty dalam model positif stabil Gompertz. Ujian skor Zhu (Zhu, 

1998), ujian skor terubah suai, dan ujian berasaskan ln s  (Sarker, 2002) mungkin boleh 
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juga diterbitkan daripada model tersebut. Oleh itu, kajian ini mengkaji sifat ujian-ujian 

tersebut, dan mendapati bahawa ujian skor terubah suai lebih baik daripada ujian-ujian 

lain berdasarkan kadar penumpuan dan kuasa ujian melalui simulasi.  
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Ŝ 

 for the case with nuisance parameters 175 

 

Univ
ers

ity
 of

 M
ala

ya



 

xiv 
 

Table 6.14    Estimated powers (%)  of  2
T , 

 2
T   and 

 2
T   at the 5% level of 

significance for  PS v  frailty (Uncensored case without  

nuisance parameters) 178 

Table 6.15    Estimated powers (%)  of  2
T̂ ,  2

T̂ 
 and  2

T̂ 

 
at the 5% level of 

significance  for  PS v  frailty (Uncensored case with  

nuisance parameters) 179 

Table 6.16    Estimated powers (%)  of  2 ,c
T  and 

 2 ,c
T   at the 5% level of significance 180 

Table 6.17    The results of simulated data ( 55n  ) using the score based  

tests for bivariate positive stable frailty 181 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

xv 
 

LIST OF FIGURES 

  
Page 

Figure 1.1     Diagram of time to event 1 

Figure 2.1     Study time for eight patients in a survival study 12 

Figure 2.2     Diagram of transformation zone on the cervix 14 

Figure 2.3     Multivariate data set with missing values 42 

Figure 2.4     Basic steps in multiple imputation method 51 

Figure 3.1     Kaplan-Meier estimate along with 95% confidence interval 68 

Figure 3.2     Kaplan-Meier survival curves for stage at diagnosis 70 

Figure 3.3     Kaplan-Meier survival curves for primary treatment 70 

Figure 3.4     Kaplan-Meier survival curves for distant metastasis 71 

Figure 3.5     Log-cumulative hazard plot of distant metastasis 73 

Figure 3.6     Plot of the martingale residuals against survival time for the  

stratified Cox model 77 

Figure 3.7     Plot of the deviance residuals against survival time for the 

stratified Cox model 78 

Figure 3.8     Plot of the delta-betas for histologic type against survival time for   

the stratified Cox model 79 

Figure 3.9     Plot of the delta-betas for stage at diagnosis against survival time  

for the stratified Cox model 79 

Figure 3.10   Steps involve in semi-parametric analysis of cervical cancer data 81 

Figure 4.1     Log-cumulative hazard plot 87 

Figure 4.2     Log-odds of survival against the log of survival time plot 88 

Figure 4.3     Plot of    -1 ˆ1-exp -H t
 
against the log of survival time 89 

Figure 4.4     Log-cumulative hazard plot for distant metastasis 96 

Figure 4.5     Plot of the martingale residuals against survival time 98 

Univ
ers

ity
 of

 M
ala

ya



 

xvi 
 

Figure 4.6     Plot of the deviance residuals against survival time for the  

stratified Weibull model 98 

Figure 4.7     Plot of the delta-betas residuals for the histologic type for the  

stratified Weibull model 99 

Figure 4.8     Plot of the delta-betas residuals for the stage at diagnosis for the  

stratified Weibull model 99 

Figure 4.9     Steps involve in parametric analyses of cervical cancer data 101 

Figure 4.10   The Cox-Snell residuals plot for without distant metastasis  

stratum for the stratified Weibull model 102 

Figure 4.11   The Cox-Snell residuals plot for with distant metastasis stratum  

for the stratified Weibull model 103 

Figure 4.12   The Cox-Snell residuals plot for the stratified Cox model 104 

Figure 5.1     Multiple imputation by chained equation (MICE) 121 

Figure 6.1     Estimated standardised critical values of the bivariate Zhu’s  

score test statistics  2
T̂  with superimposed fit of the equation 

3
0 1 2/ /C n n       173 

Figure 6.2     Estimated standardised critical values of the bivariate modified  

score test statistics (2)T̂ 
 with superimposed fit of the equation  

0 1 2/ /C n n       174 

Figure 6.3     Estimated standardised critical values of the bivariate ln s  based  

test statistics (2)T̂ 
with superimposed fit of the equation  

0 1 2/ /C n n       175 

 

Univ
ers

ity
 of

 M
ala

ya



 

xvii 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

  coefficient of regression 

 h t  hazard function 

 H t  cumulative hazard function  

k-nn k-nearest neighbour 

HR  hazard ratio 

 S t  survival function 

se  standard error 

t  survival time 

TR  time ratio 

ADC adenocarcinoma 

AFT accelerated failure time 

AIC Akaike information criterion 

CI confidence interval 

CT computed tomography 

DA data augmentation 

DM distant metastasis 

EM expectation-maximization 

EMB expectation-maximization algorithm with a bootstrap  

FIGO International Federation of Gynecology and Obstetrics 

HPE histopathological examination 

HPV Human Papillomavirus 

HUSM Hospital Universiti Sains Malaysia 

LML log-minus-log 

Univ
ers

ity
 of

 M
ala

ya



 

xviii 
 

MCAR missing completely at random 

MAE mean absolute error 

MAR missing at random 

MICE multiple imputation by chained equation 

MLE maximum likelihood estimate 

MNAR missing not at random 

PMM predictive mean matching 

PVF positive variance function 

RMSE root mean squared error 

SCC squamous cell carcinoma 

SCJ squamocolumnar junction 

WHO World Health Organization 

Univ
ers

ity
 of

 M
ala

ya



 

xix 
 

LIST OF APPENDICES 

  Page 

Appendix A     Ethical approval 206 

Appendix B     R code for the comparison of missing data methods 207 

Appendix C     The non-null mean and variance for 
 2

T    and 
 2

T   212 

Appendix D   R code for evaluating the convergence rates for uncensored      

case without nuisance parameters 214 

 

 

Univ
ers

ity
 of

 M
ala

ya



1 

 

CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

 Survival analysis is a collection of statistical procedures for data analysis for 

which the outcome variable is survival time (Kleinbaum & Klein, 2005). Survival time 

is the time measured from a well-defined starting point until the occurrence of an event 

of interest such as time measured from diagnosis of cancer until death (see Figure 1.1).  

 

Figure 1.1:  Diagram of time to event 

 

 One of the purposes of survival analysis is to estimate the survival function and 

hazard function. Furthermore, this analysis is useful for identifying factors that are 

significantly associated with the survival time or the risk of getting the event, which 

such factors are known as prognostic factors. Consequently, this analysis may provide 

valuable knowledge for medical practitioners such as the survival rate of patients, 

treatment progression, and factors contributing to either cure, recurrent or death after 

diagnosed with any particular disease. In addition, the findings are expected to help in 

the management of the disease such as in controlling and monitoring the prognostic 

factors in the population (Pruegsanusak et al., 2012; Schneider et al., 2014). 

Survival time 

0t 1t

Diagnosis: Cancer 

 

Event: Death 
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 There are three methods to analyse survival data, namely non-parametric, semi-

parametric and parametric. Non-parametric analysis includes the Kaplan-Meier (or 

Product Limit) method that is used to estimate the survival probability. The survival 

difference between two or more groups is checked based on the log-rank test. 

Meanwhile, semi-parametric method that is the Cox proportional hazards regression 

analysis is often used to develop a prognostic model for any disease such as cancer (see 

Taib et al., 2008; Ghazali et al., 2010; El-Sherbieny et al., 2011; Wahidah et al., 2012; 

Schneider et al., 2014). When survival times follow any particular statistical 

distribution, parametric survival analysis is more suitable compared to the Cox 

proportional hazards regression analysis (see Wang et al., 2011; Zhu et al., 2011).  

 The Cox proportional hazards regression model is preferable than parametric 

survival models since less assumption is required. More assumptions need to be 

checked in order to apply parametric survival models such as identifying the appropriate 

statistical distribution for the data, checking the proportional hazards assumption, and 

accelerated failure time (AFT) assumption. Even Hosmer and Lemeshow (1999) 

highlighted that parametric survival models should be developed with caution. 

However, parametric survival analysis is more powerful (Lee & Wang, 2003) and may 

yield precise estimates (Klein & Moeschberger, 1997; Orbe et al., 2002) when a 

parametric model is chosen correctly. Study on the comparison of survival models has 

gained much attention in the past few years (see Sayehmiri et al., 2008; Ding et al. 

2009; Aktürk Hayat et al., 2010; Grover et al., 2013). This type of study has been 

conducted using cancer data such as gastric cancer (Pourhoseingholi et al., 2007; Zhu et 

al., 2011), stomach cancer (Moghimi-Dehkordi et al., 2008), oral cancer (Köhler & 

Kowalski, 2012) and breast cancer (Pari Dayal et al., 2013).  

 In this study, data of cervical cancer patients treated in Hospital Universiti Sains 

Malaysia (HUSM) have been analysed. Patients who were diagnosed with cervical 
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cancer between 1
st
 July 1995 and 30

th
 June 2007, and received at least one treatment for 

cervical cancer in HUSM were included in this study. The survival probability of these 

patients is estimated using the Kaplan-Meier method. The Cox proportional hazards 

regression analysis has been conducted to develop the prognostic model. As there is a 

non-proportional hazards covariate, the model has been extended to the stratified Cox 

model.   

Also, this study is interested to identify a suitable parametric survival model for 

the aforementioned cervical cancer patients data. Therefore, the Weibull, log-logistic 

and lognormal models have been considered, and their performances are assessed based 

on the Akaike Information Criterion (AIC) statistic. The best parametric model is then 

compared to the stratified Cox model. In the comparison analysis, the non-proportional 

hazards covariate is also incorporated, and its importance has been emphasized. To our 

knowledge, parametric models have not been used extensively in the analysis of 

survival data in Malaysia. Furthermore, study on the comparison of survival models 

with non-proportional hazards covariate has not received enough attention yet.  

 Missing data are common to occur in many research studies. In medical studies, 

for instance, missing data are very difficult to be avoided especially when the studies 

involve retrieving information from any reported sources such as patients’ medical 

record. Most standard statistical methods do not consider missing values in the analysis. 

Thus, the easiest option being applied by many researchers is to remove incomplete 

observations from the analysis. Such a method is known as a complete case analysis. 

However, this approach may reduce sample size, power of the study and also contribute 

to the loss of information. In addition, parameter estimates may be biased and 

inefficient especially when the amount of missing values is large (Barzi & Woodward, 

2004). Therefore, treatment of missing values is necessary to avoid any devastating 
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impact on the statistical inference especially due to the exclusion of subjects from the 

study.  

Many referred literatures proposed techniques for handling missing covariate 

values in survival data. Jerez et al. (2006) applied mean substitution and hot deck 

methods on breast cancer survival data. Ibrahim and his co-workers (1998, 2001, 2004) 

developed Expectation-maximization (EM) type algorithm method for missing 

categorical and continuous covariate values for the Cox proportional hazards model. 

Meanwhile, Marshall et al. (2010a, 2010b) and Baade et al. (2015) applied various 

multiple imputation by chained equation (MICE) techniques for survival data in their 

studies.  

The performance of missing data methods has been extensively investigated for 

the Cox proportional hazards regression model. However, little attention has been paid 

to missing data methods for the parametric survival model. Therefore, four methods 

namely the complete case analysis, EM algorithm by method of weight, hot deck 

imputation and multiple imputation by MICE-PMM have been considered in this study 

for handling missing covariate values in the parametric survival model. The findings of 

this study would be very beneficial given that the application of the parametric model 

on survival data has received much attention recently (see Köhler & Kowalski, 2012; 

Pari Dayal et al., 2013; Grover et al., 2013). The Weibull model is considered because it 

is the most common parametric model used for analysing survival data. These covariate 

values are assumed to be missing at random (MAR). 

 Most of the survival models assume that the hazard function is fixed, the 

individual’s survival is independent of each other, and they have similar survival time 

distribution (Hosmer & Lemeshow, 1999). However, if there are other factors than 

covariates of interest which may also affect the survival and cause the population under 

study to be heterogeneous, the aforementioned assumptions may not be satisfied. 
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Heterogeneous population exists when there are individuals who are more likely to 

experience the event than other individuals in the group. For such data, the standard 

survival analysis is no longer appropriate to be applied because it may produce invalid 

inferences (Herring et al., 2002). A suitable survival model for this type of data is 

known as a frailty model or random effects model.  

 The frailty model considers heterogeneity caused by unmeasured or unobserved 

factors (Wienke, 2003). Vaupel et al. (1979) was the first who introduced the term 

frailty to describe an unobserved effect associated with each observation. Method for 

detecting frailty is very important since ignoring its effect may cause biased and 

inconsistent estimation (Andersen et al., 1999; Henderson & Oman, 1999). Commenges 

and Andersen (1995) derived a score test from the marginal partial likelihood of the Cox 

proportional hazards regression model. Meanwhile, Crowder and Kimber (1997) 

proposed a score test for the Weibull based model with gamma frailty. Zhu (1998) 

derived a Weibull based score test for a positive stable frailty that has infinite variance. 

Sarker (2002) extended Zhu’s score test and proposed two new tests namely a modified 

score test and test based on ln s .  

In this study, tests for detecting frailty for a bivariate positive stable Gompertz 

model have been derived following the tests proposed by Zhu (1998) and Sarker (2002). 

Sarker (2002) pointed out that the null variances of the modified score test and the ln s  

based test would be different for the non-Weibull case with nuisance parameters. Thus, 

some modification on the variance estimations for the positive stable Gompertz model 

have been done in this study. Also, the properties of these tests and their performance 

have been evaluated based on the convergence rate and power of the tests.    
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1.2 Problem Statement 

As the Cox proportional hazards regression model is very common in survival 

modelling, checking the proportional hazards assumption is very important. However, 

some studies tend to ignore this assumption, or if this assumption is violated, there is no 

proper treatment is considered. The Cox proportional hazards regression model is no 

longer valid to the model that violates the proportional hazards assumption. Thus, an 

extended Cox model is necessary to control for the non-proportional effect. In Malaysia, 

numerous studies have applied the Cox proportional hazards regression analysis in 

modelling prognostic factors. However, survival modelling with non-proportional 

hazards covariates has not been extensively applied especially using Malaysian data set. 

Hence, this study demonstrates the development of the stratified Cox model that 

considers the non-proportional hazards covariate using data of cancer patients in 

Malaysia.     

Parametric survival models are less preferred than the Cox proportional hazards 

regression model because more assumptions are necessary to be verified in order to 

perform parametric survival analysis. However, when survival times fit a particular 

statistical distribution very well, that parametric model would give a powerful, precise 

and meaningful interpretation. At the same time, the model would be more informative 

than the Cox proportional hazards regression model. In Malaysia, survival modelling 

using parametric models is somewhat scarce. To our knowledge, there is no published 

study that discussed the performance of different types of survival model using 

Malaysian medical data, particularly cervical cancer data. Therefore, this study 

considers several parametric survival models and demonstrates the development of 

these models using data of cancer patients in Malaysia.      

Many survival studies fail to address missing values problem in their studies and 

opt to exclude them from the analysis. Handling missing values is deemed necessary to 
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avoid any misleading or devastating impact on the statistical inferences. There are 

numerous methods for handling missing values which have been developed. Many 

studies focused on investigating the performance of these methods for the Cox 

proportional hazards regression model since this model is commonly applied in survival 

analysis. Thus, several methods for handling missing values for parametric models are 

investigated in this study.   

It is crucial to check the presence of frailty in a survival model since the effect 

may lead to bias parameter estimates when a standard survival analysis being applied. 

However, most developed frailty tests concentrated on a common survival model, in 

particular, the Cox and Weibull model. Frailty tests should be explored further for other 

types of distribution model. Therefore, this study derives frailty tests for a Gompertz 

distribution model and investigates the performance of the tests.   

1.3 Objectives of the Study 

The objectives of the study are as the following: 

1. To develop a prognostic model using semi-parametric survival analysis for cervical 

cancer patients’ data.   

2. To propose a parametric survival model for cervical cancer patients’ data.   

3. To propose a feasible method of handling missing covariate values in a parametric 

survival model. 

4. To derive a score test, modified score test and ln s  based test for testing frailty in a 

positive stable Gompertz model and investigate the performance of the tests. 
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1.4 Scope and Limitation of the study 

 This study looks at survival modelling, missing values methods and frailty tests 

for survival data. The first part of this research work is to develop a prognostic model 

for cervical cancer patients’ data using several types of survival model. The data set is 

obtained from the Hospital Universiti Sains Malaysia (HUSM). Patients who were 

diagnosed with cervical cancer between 1
st
 July 1995 and 30

th
 June 2007, and received 

at least one treatment related to cervical cancer in HUSM are included in the study. 

Non-parametric, semi-parametric and parametric survival analyses are performed on the 

data set. Also, the aim of this study is to propose a feasible method of handling missing 

covariate values in a parametric survival model. The Weibull AFT model with missing 

at random (MAR) categorical covariate values are considered. Simulation studies are 

performed to investigate the performance of the complete case analysis, EM algorithm 

by method of weight, hot deck imputation and multiple imputation by MICE-PMM for 

such a model. This study also investigates the frailty tests for the bivariate positive 

stable Gompertz model using the Zhu’s score test (Zhu, 1998), modified score test and 

ln s based test (Sarker, 2002). The properties of these tests are studied. Simulation 

studies are conducted to investigate the performance of these tests based on the 

convergence rate and power of the study.     

The main limitation of this study is that the results obtained are from a hospital-

based data. It may not be the best model to describe the national database of cervical 

cancer patients in Malaysia. Nevertheless, the aim of this study is to demonstrate the 

proper analyses of survival data.  
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1.5 Significance of the Study 

The findings from this study will be beneficial in the following ways: 

1. This study may demonstrate a development of non-proportional hazards model 

using a real data set from a hospital in Malaysia.  

2. This study may contribute to the knowledge of parametric survival analysis with an 

application to a real data set from a hospital in Malaysia. 

3. This study may suggest an appropriate method for handling missing values in 

survival data which optimise the estimation of parameters when the model is the 

parametric model.      

4. The research finding may help to determine the best method to detect frailty in a 

positive stable Gompertz model.     

1.6 Organisation of the Thesis 

 Chapter 1 provides the background of the study, problem statement and outline 

of chapters in the thesis. Chapter 2 presents the literature review related to the study. 

Chapter 3 presents the Kaplan-Meier analysis, and the stratified Cox model for the data 

of cervical cancer patients treated in HUSM. Chapter 4 explores further the 

aforementioned data set using parametric models namely the Weibull, lognormal and 

log-logistic models. Besides, the best parametric model obtained is compared with the 

stratified Cox model that has been obtained in Chapter 3. Chapter 5 discusses on the 

performance of the complete case analysis, EM algorithm by method of weight, hot 

deck imputation and multiple imputation methods for handling missing covariate values 

in the parametric survival model. Chapter 6 focuses on the properties and performances 

of frailty tests for the bivariate positive stable Gompertz model. Chapter 7 gives a brief 

overview of the findings and suggests several further works that may be performed in 

the future. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 Section 2.2 explains the background to survival analysis, the concept of 

censoring and also lists the survival functions that are used to describe the survival time 

data. Previous studies on survival and prognostic factors for cervical cancer are 

reviewed in Section 2.3. The non-parametric survival analysis is described in Section 

2.4. Several types of survival regression model are described in Section 2.5, where the 

assumptions of each model and its verification methods are also given. Meanwhile, 

Section 2.6 describes missing data problems, missing values mechanisms and methods 

to handle missing values in survival data. The theoretical background of frailty models 

including the types of frailty model, frailty distributions and tests available for detecting 

frailty are given in Section 2.7. 

2.2 Survival Analysis 

 Survival analysis is a collection of statistical procedures for data analysis for 

which the outcome variable is time that is measured from the origin until an event 

occurs (Kleinbaum & Klein, 2005). In conducting a survival study, the time origin, 

scale of measuring the time and event of interest must be clearly defined by the 

researcher (Cox & Oakes, 1984).  

 The time is defined as the duration (either in days, weeks, months or years) from 

the beginning of follow-up of an individual until the event of interest occurs. Also, it is 

known as survival time or failure time. Any designated experience of interest that may 

happen to an individual is known as event (Kleinbaum & Klein, 2005). This event may 

be a development of a disease, response to a treatment, relapse or death. Thus, survival 
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time may be tumour-free time, the time from the start of treatment response, and time to 

death (Lee & Wang, 2003). 

2.2.1 Censoring 

 A unique feature of survival analysis is its ability for handling censored 

observations. Censoring occurs when the end-point of interest has not been observed 

due to some causes. There are three conditions that may cause censoring to occur; (i) a 

subject does not experience the event by the time of the closure of the study, (ii) lost to 

follow-up during the study period or (iii) withdraws from the study due to some other 

reasons (such as adverse drug reaction or other competing risk) that makes further 

follow-up impossible (Clark et al., 2003a; Kleinbaum & Klein, 2005). All these may 

cause the actual survival time of those individuals remain unknown. 

 There are several types of censoring such as right censoring, left censoring and 

interval censoring. This study only focuses on right-censored data since it is the most 

common type of censoring to occur. Right censoring occurs when a person’s exact 

survival time is unknown at the right side of the follow-up period (Kleinbaum & Klein, 

2005). Figure 2.1 illustrates the mechanism of right-censoring for eight individuals 

where “●” represents the time entering the study. Patients 1, 3, 4 and 6 experience the 

event of interest () within the study duration. Meanwhile, there are four censored 

observations (○), where patients 2 and 7 are lost to follow-up while 5 and 8 are alive at 

the end of study period. 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

12 
 

P
at

ie
n
ts

 

1 
                                           

2  

3                

4                                                                 

5  

6                                                                                     

7  

8  

                                                                                                               
 

Figure 2.1: Study time for eight patients in a survival study 

2.2.2 Survival Time Functions  

 The distribution of survival time may be characterised by three main functions, 

namely the probability density function, survival function, and hazard function. Let a 

non-negative continuous random variable T  denotes the survival time that is measured 

from the time origin to an event of interest. Suppose that T  has a density function that 

is given by  

 
 

 
0

lim
t

P t T t t
f t

t 

   
  

 
. (2.1) 

 The cumulative distribution function  F t  is then given by   

 
     

0

,

t

F t P T t f u du     (2.2) 

which gives the probability that the survival time is less than some value t   (Collet, 

2003). The survival function  S t  may be obtained from the cumulative distribution 

function in (2.2) and is given by 
 

End of recruitment End of study 
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      1S t P T t F t    . (2.3) 

The survival function in (2.3) represents the probability of an individual survives longer 

than t .    

Another important quantity that is commonly used to describe the risk or hazard 

of death at some time t  is the hazard function  h t . This function is defined as the 

probability that an individual get an event in an interval of t  to t t  given that the 

individual has survived up to that time t  (Lee & Wang, 2003).  This function may be 

written as    

 
 

 
0

|
lim

t

P t T t t T t
h t

t 

   



. (2.4) 

The survival function  S t  may be derived if the hazard function  h t  is known and 

vice versa. The relationship between these two functions may be expressed as follows 

     expS t H t  , (2.5) 

where  H t  is the cumulative hazard function that is given by  

 
   

0

t

H t h u du  . (2.6) 

Therefore, the hazard function may also be written in term of a derivative involving 

 S t  by the following expression  

 
 

 

 

/dS t dt
h t

S t
  . (2.7) 

2.3 Cervical Cancer 

 Cervical cancer occurs when cancer cell (malignant neoplasm) has developed at 

the cervix that is in the lower part of the uterus. One of the major causes of this 

abnormality growth is the Human papillomavirus (HPV) infection. This virus is 
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predominantly transmitted through sexual intercourse. In addition to the infection of 

HPV, among other risk factors of cervical cancer are early age at first intercourse, 

multiple sexual partners, multiparity and smoking.   

 The cervix is divided into two parts; ectocervix and endocervix. The ectocervix 

is lined with stratified nonkeratinizing squamous epithelium while endocervix with a 

single layer of columnar epithelium. Squamocolumnar junction (SCJ) is a point at 

which squamous ectocervical epithelium and columnar endocervical epithelium met. 

Meanwhile, the transformation zone is the area of the transition point of the columnar 

cells into squamous cells of the ectocervix (see Figure 2.2). This area is the most 

vulnerable to the HPV infection, and the place where the normal cell change to pre-

cancer (dysplasia) (Escobar et al., 2007). Thus, most of the cancer cell arise at this zone 

(Kavanagh et al., 2006). 

 

Figure 2.2: Diagram of transformation zone on the cervix 

(Source: Cancer Research UK, 2014) 

2.3.1 Stage of Cancer 

 The International Federation of Gynecology and Obstetrics (FIGO) system is 

used in staging the cervical cancer. The main consideration is the size of the tumour or 

its extension to pelvis and adjacent organs. Table 2.1 shows the classification of the 

disease and its descriptions.  
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Table 2.1: FIGO staging for cervical cancer (Source: Waggoner, 2003) 

Stage Description 

Stage 0: Carcinoma in situ, cervical intraepithelial neoplasis Grade III. 

Stage I: 
The carcinoma is strictly confined to the cervix (Extension to the corpus 

would be disregarded). 

Ia 

Invasive carcinoma which can be diagnosed only by microscopy. All 

macroscopically visible lesions – even with superficial invasion – are 

allotted to Stage Ib carcinomas. Invasion is limited to a measured stromal 

invasion with a maximal depth of 5.0 mm and a horizontal extension of not 

>7.0 mm Depth of invasion should not be >5.0 mm taken from the base of 

the epithelium of the original tissue should not change the stage allotment. 

Ia1 
Measured stromal invasion of not >3.0 mm in depth and extension of not 

>7.0 mm. 

Ia2 
Measured stromal invasion of >3.0 mm and not >5.0 mm with an 

extension of not >7.0 mm. 

Ib 
Clinically visible lesions limited to the cervix uteri or preclinical cancers 

greater than Stage Ia. 

Ib1 

Ib2 

Clinically visible lesions not >4.0 cm.  

Clinically visible lesions >4.0 cm. 

Stage II: Cervical carcinoma invades beyond uterus but not to the pelvic wall or the 

lower third of the vagina. 

IIa 

IIb 

No obvious parametrial involvement.  

Obvious parametrial involvement. 

Stage III: The carcinoma has extended to the pelvic wall. On rectal examination, 

there is no cancer-free space between the tumour and the pelvic wall. The 

tumour involves the lower third of the vagina. All cases with 

hydronephrosis or nonfunctioning kidney are included unless they are 

known to be due to other causes. 

IIIa 
Tumour involves lower third of the vagina, with no extension to the pelvic 

wall. 

IIIb 
Extension to the pelvic wall and/or hydronephrosis or nonfunctioning 

kidney. 

Stage IV: The carcinoma has extended beyond the true pelvis or has involved 

(biopsy proven) the mucosa of the bladder or rectum. A bullous edema, as 

such, does not permit a case to be allotted to Stage IV. 

IVa 

IVb 

Spread of the growth to adjacent organs.  

Spread to distant organs. 

2.3.2 Treatment  

 There are several factors that influence the choice of treatment such as the age, 

general condition of the patient, the stage of the tumour, and patient’s own preference 

(Radstone & Kunkler, 2003). At early stage of cancer, patients will be treated by radical 

hysterectomy and pelvic lymphadenectomy or alternatively combined external pelvic 
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irradiation and brachytherapy with concomitant chemotherapy (Jensen et al., 2007). 

Meanwhile, patients with more advanced cancer will be given a combination 

radiotherapy and concomitant chemotherapy. Waggoner (2003) provided the types of 

treatment for cervical cancer patients according to the stage of cancer as given in Table 

2.2. 

Table 2.2: Treatment algorithm for cervical cancer (Source: Waggoner, 2003) 

Stage  Clinical features Treatment 

IA1 Invasion 3·0 mm or less If patient desires fertility, conisation of cervix. 

If she does not, simple hysterectomy (abdominal or 

vaginal). 

IA2 With lymphatic space 

invasion 

Hysterectomy with or without pelvic 

lymphadenectomy. 

IB1 3·0-5·0 mm invasion, <7·0 

mm lateral spread 

Radical hysterectomy with pelvic lymphadenectomy. 

Radiotherapy. 

IB2 Tumour 4 cm or less Radical hysterectomy with pelvic lymphadenectomy 

plus chemoradiotherapy for poor prognostic surgical-

pathological factors*. 

Radiotherapy. 

IIA Tumour bigger than 4 cm Radical hysterectomy with pelvic lymphadenectomy 

plus chemoradiotherapy for poor prognostic surgical 

and pathological factors*. 

Chemoradiotherapy. 

Chemoradiotherapy plus adjuvant hysterectomy. 
IIB Upper-two-thirds vaginal 

involvement 

Radical hysterectomy with pelvic lymphadenectomy. 

Chemoradiotherapy.  

IIIA With parametrial extension 

Lower-third vaginal 

involvement 

Chemoradiotherapy. 

Chemoradiotherapy.  

IVA Local extension within 

pelvis 

Chemoradiotherapy. 

Primary pelvic exenteration.  

IVB Distant metastases Palliative chemotherapy. 

Chemoradiotherapy. 
*Pelvic lymph-node metastases; large tumour; deep cervical stromal invasion; lymphovascular space invasion; positive vaginal 
or parametrial margins. 

2.3.3 Histologic Type  

 World Health Organization (WHO) has classified cervical carcinoma into three 

main histological types: squamous cell carcinoma, adenocarcinoma and other epithelial 

tumours (Cheah & Looi, 1999). Two most common histologic types are squamous cell 

carcinoma and adenocarcinoma. The development of these two histologic types is 
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highly associated with the infection of high-risk type of HPV (Walboomers et al., 

1999). Squamous cell carcinoma develops from flat cells that cover the outer surface of 

the cervix. Meanwhile, adenocarcinoma is endocervical cancers originating from 

glandular epithelium. Other examples of histologic type that may be found are 

adenosquamous carcinoma, glassy cell carcinoma, adenoid basal carcinoma, and 

adenoid cystic carcinoma. 

2.3.4 Metastasis 

 Cervical cancer may spread through direct local extension and also lymphatic. 

The cancer spreads directly to the vaginal mucosa, endometrial cavity, parametrial 

tissues and ligaments, pelvic side wall, bladder, and rectum (Moore-Higgs & Chafe, 

2001). Also, pelvic and para-aortic lymph node metastases are one of the most 

significant prognostic factors of cervical cancer (Ho et al., 2004). In the worst case, 

patient may experience distant metastasis when the cancer spreads to any distant organs 

such as bladder, bones or lungs.   

2.3.5 Survival and Prognostic Factors of Cervical Cancer   

 The survival of cervical cancer patients may vary by country. The five-year 

survival of cervical cancer in developed countries such as United States of America, 

Germany and Spain were higher than 60% (American Cancer Society, 2011). 

Meanwhile, the five-year survival exceeded 70% in Korea (Ahn et al., 2011; Shin et al., 

2011; Woo et al., 2011), and 55% in Turkey (Eser, 2011). Flores-Luna et al. (2001) 

studied the survival of Mexican women and found that the overall five-year survival 

was 66.6%. In Asian countries like China (Xiang et al., 2011) and Thailand 

(Sumitsawan et al., 2011), the five-year survival exceeded 50%. Pomros et al. (2007) 

had done a study on cervical cancer patients treated with radiation therapy in 
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Srinagarind Hospital in Thailand and found that the five-year survival was 62.5%. 

Meanwhile, the five-year survival in least developed countries such as Gambia and 

Uganda was remarkably low, which was less than 25% (Sankaranarayanan et al., 2011).  

 Many studies reported the survival of cervical cancer patients based on the stage 

of the cancer. In general, the overall five-year survival nearly approaches 100% for 

patients diagnosed at stage IA and drops remarkably to almost 20% for stage IVB 

(Kyrgiou & Shafi, 2010). In Korea, a study found that the relative five-year survival rate 

according to stage were 94.2%, 69.7%, 38.9% and 21.1% for stage I, II, III and IV, 

respectively (Chung et al., 2006). Meanwhile, a hospital-based study in Indonesia 

obtained lower five-year survival, where for stage I was 50%, stage II was 40%, stage 

III was 20% and stage IV was 0% (Aziz, 2009). 

 Numerous studies have been done to determine factors affecting the survival of 

cervical cancer patients (Pomros et al., 2007; Ho et al., 2011; Seamon et al., 2011). 

There were various prognostic factors identified such as stage at diagnosis, age at 

diagnosis, lymph node involvement and tumour size (Brun et al., 2003; Acs & Gombos, 

2006; Atahan et al., 2007; Dueňas-González et al., 2012). In most referred literatures, 

stage at diagnosis was frequently found as one of the significant factors affecting the 

prognosis of cervical cancer patients (see Grigienė et al., 2007; Zarchi et al., 2010; 

Katanyoo et al., 2012). 

 In Korea, a study of 44,182 patients who were diagnosed with cervical cancer 

between 1993 and 2002 found that stage at diagnosis and histologic type were important 

prognostic factors (Chung et al., 2006). Based on 479 surgical specimens obtained from 

radical abdominal hysterectomy, the statistical ranking of the significant prognostic 

factors were lymph node metastases, size of lymph node metastases, tumour volume, 

parametrial involvement and lymphatic space invasion (Pickel et al., 1997). Also, a 
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study of 381 cervical cancer patients in Kentucky found that stage of cancer was the 

significant prognostic factor for overall survival (Seamon et al., 2011).   

 Besides tumour diameter and pelvic lymph node enlargement, Endo et al. (2015) 

also found that distant metastasis was significantly associated with poor outcomes in 

patients with cervical cancer in their study. Meanwhile, Xia et al. (2014) identified that 

parametrial invasion and pelvic node metastasis were the significant factors affecting 

the outcome of patients treated by radical hysterectomy and pelvic lymphadenectomy. 

There were also studies that looked at the survival differences based on ethnicity and 

races (see Patel et al., 2005; Bates et al; 2008; Redaniel et al., 2009; Coker et al., 2009; 

Priest et al., 2010). A population-based study in Singapore found that Malays had 33% 

higher excess hazard of death compared to Chinese in patients with localized cervical 

cancer (Wang et al., 2003).  

 

Univ
ers

ity
 of

 M
ala

ya



 

20 
 

2.4  Non-parametric Analysis 

Survival function (also known as survival probability) denoted as  S t  is defined 

as the probability that an individual survives from the time of origin to a specified future 

time t  (Clark et al., 2003a). Kaplan-Meier (or product limit) method is used to estimate 

the survival probability at a given time t  and provides graphical presentation of the 

survival distribution.  

Suppose that there are n individuals with observed survival times 
1 2, , , nt t t  and 

there are r times of death amongst the individuals. The r rank ordered death times are

     1 2 r
t t t   , where  jt  is the jth death time ( 1,2, ,j r ). The estimated 

survival function at any time t, in the kth time interval from  k
t  to   1k

t


 ( 1,2, ,k r ), 

is the estimated probability of surviving beyond  k
t . This is the probability of surviving 

through the interval from  k
t  to  1k

t


, and all preceding intervals (Collet, 2003), which 

is obtained by the Kaplan-Meier estimate of the survival function from the equation   

 

 
1

ˆ
k

j j

j j

n d
S t

n

 
   

 
 , (2.8) 

where jn  represents the number of individuals who are alive just before time  jt  and 

jd  denotes the observed number of deaths at  jt . The  100 1 %  confidence interval 

for  S t  is given by 

     /2
ˆ ˆS t z se S t , (2.9) 

where   is the level of significance and   ˆse S t  is the standard error of the Kaplan-

Meier estimate of the survival function obtained from Greenwood’s formula that is 

given by 
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 The median survival time where the time beyond which 50% of the individuals 

in the population under study is expected to survive is given by (Collet, 2003)  

        ˆˆ 50 min | 0.50
j j

t t S t  . (2.11) 

The  100 1 %
 
confidence interval of median survival time is given by 

     /2
ˆ ˆ50 50t z se t , (2.12) 

where   

 
  

  
  

1 ˆˆ ˆ50 50
ˆ ˆ 50

se t se S t
f t

 
 

, (2.13) 

  ˆ ˆ 50se S t 
 

 is obtained from Greenwood’s formula in (2.10), and   ˆ ˆ 50f t  is the 

estimate of the probability function of the survival times at  50t . 

 The plot of the Kaplan-Meier estimate of the survival function can be used to 

compare survival functions between two or more groups (Lee & Wang, 2003). If the 

curves are clearly separated, there is a possible difference in survival between two or 

more groups. However, if the survival pattern is similar or the curves cross each other, 

this plot suggests that there may be no difference in survival (Kleinbaum & Klein, 

2005). Meanwhile, the log-rank test is used to check whether the Kaplan-Meier curves 

for two or more groups are statistically different (Kleinbaum & Klein, 2005). In this 

test, the values of observed ( )iO  and expected ( )iE  number of events are calculated for 

each independent variable group. The log-rank statistic is obtained by the following 

approximate formula  

  
2

no.of groups
2 i i

i i

O E

E



  . (2.14) 
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The p-value given by comparing the log-rank statistic to the chi-square distribution with 

1G   degree of freedom (where G  is the number of groups) is an evidence to suggest a 

difference in survival between groups (Kleinbaum & Klein, 2005).  

2.5 Survival Regression Model 

There are two common approaches used in modelling the relationship between a 

set of explanatory variables of interest and survival experience. The first type of 

survival model is a proportional hazards model that is mainly used for modelling the 

risk or hazard whilst the second model is an accelerated failure time (AFT) model that is 

used to model the survival time. The difference between these two models is how the 

covariates act that is either multiplicatively on the hazard functions for the proportional 

hazards model or survival time for the AFT model. 

2.5.1  Proportional Hazards Model 

 

 The most widely used model in survival analysis studies is the proportional 

hazards model. The hazards function of the proportional hazards model is given by  

      0 1 1exp p ph t h t x x    , (2.15) 

where t  is the survival time and  0h t  is the baseline hazard function that is the hazard 

for a value of 0 of the covariates (Hougaard, 2000). Meanwhile, 1 1, , , p    are the 

regression coefficients of p covariates 1 2, , , px x x . The hazard function  h t  must 

always be positive.
 
The expression in

 
(2.15) indicates that the effect of explanatory 

variables is multiplicative with respect to hazard.
 
The baseline hazard function  0h t  

involves t  thus this function describes the hazard function changes as a function of t . 

Meanwhile, the second term in (2.15) that is  1 1exp p px x    involves x  which 

Univ
ers

ity
 of

 M
ala

ya



 

23 
 

describes how the hazard function changes as a function of covariates (Hosmer & 

Lemeshow, 1999).  

The assumption of the proportional hazards model is the hazard for one subject 

is proportional to the hazard of any other subject, and the proportionality is independent 

of time (Kleinbaum & Klein, 2005). Equivalently, the hazard ratio of any two 

individuals is assumed to be a time-independent constant (Lee & Wang, 2003). This 

assumption implies that the true survival functions of these two individuals are parallel 

(Collet, 2003).  

Hazard ratio (HR) is defined as the ratio of the hazards function for two 

individuals, let say i  and i , with covariate values denoted 
ix  and 

ix  , respectively,  

which is computed as follows:    

     

   
0

0

exp

exp

i

i

h t x
HR

h t x



 

  
 

    

 

exp
.

exp

i

i

x

x



 

  (2.16) 

Suppose that 1ix 
 
and 0ix   , then the hazard ratio for  the subject i , relative to the 

subject i  is given by  
 

   
  

exp 1

exp 0
HR






 

 

      exp 1 0  

 

 

   exp  .

 

(2.17) 

Given that the event of interest is defined as death due to a particular disease, the hazard 

ratio gives the risk or hazard of death at time t. When 1HR  , the hazard of death is 

greater for subject i , relative to the subject i . Meanwhile, the hazard of death is 

smaller for subject i , relative to the subject i  if 1HR  . The interpretation of this 

quantity is meaningful and understandable especially for medical practitioners such as 
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for describing the prognosis of patients. The  100 1 %
 
confidence interval of the 

estimated hazard ratio  HR  is obtained from the equation  

  /2
ˆ ˆexp j jz se  

 
, (2.18) 

where  ˆ
jse   is the estimated standard error of the coefficient. 

2.5.2  Accelerated Failure Time Model  

The other approach for modelling the effect of explanatory variables is through 

the accelerated failure time (AFT) model. This model assumes that the effect of 

covariates is multiplicative with respect to the time scale (Kleinbaum & Klein, 2005). 

The standard way to express the AFT model is in a log-linear form which is given by  

 
1 1log ,i i p pi iT x x        (2.19) 

where 1, , p 
 

are the unknown regression coefficients of the p  explanatory 

variables 1, , px x ,   is the intercept,   is the scale, and 
i  is a random error 

following a particular probability distribution (Collet, 2003). The hazard function of the 

AFT model  is given by 

       0exp exph t h t    x x , (2.20) 

where 1 1 p px x     x . 

 Another way to present the AFT model is through the relationship between the 

survival function of an individual  1S t  relative to the baseline survival function  0S t , 

which is given by  

     1 0 exp ,S t S t   (2.21) 

where  exp   is called an acceleration factor. The effect of this quantity is either 

“accelerate” or “decelerate” the survival time (Hosmer & Lemeshow, 1999), where 
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 exp 1   speeds up the time to get an event and  exp 1   slows down the time 

to get the event.  

 The acceleration factor is also known as a time ratio (TR). Time ratio quantity is 

used for interpreting the AFT model like the hazard ratio in the proportional hazards 

model. The effect of the covariates on the survival time is clear and easy to understand 

as well as clinically meaningful (Hosmer & Lemeshow, 1999). The  100 1 %  

confidence interval for the time ratio is calculated by the following formula (Hosmer & 

Lemeshow, 1999)  

  /2
ˆ ˆexp j jz se  

 
, (2.22) 

where  ˆ
jse   denotes the estimated standard error of the coefficient ˆ

j . 

2.5.3 Semi-parametric Model  

 The proportional hazards model was first introduced by Cox (1972) that is 

known as the Cox proportional hazards regression model. This model is the most 

common model used in the analysis of survival data. This model is also known as a 

semi-parametric model because no particular form of the probability distribution is 

assumed for the survival time. Similarly, there is no assumption has been made on the 

actual form of the baseline hazard function  0h t  thus the model is more flexible and 

applicable. The hazard function of the Cox proportional hazards regression model is 

similar to (2.15) that is   

      0 1 1 2 2exp p ph t h t x x x      , (2.23) 

where the hazard function  h t  is dependent on a set of p covariates  1 2, ,.., px x x , 

where the impact is measured by the size of the respective coefficients  1 2, , , p   . 

This expression may be interpreted as a unit increase in variable px
 
corresponds to 
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multiplication of the baseline hazard function  0h t  by the other factor  exp p  given 

that other covariates in the model are kept fixed  (McShane & Simon, 2001).  

 In the Cox proportional hazards regression model, -parameters  are estimated 

by maximising the partial log-likelihood function. Of the n  observed survival times, 

suppose that there are D  uncensored times. Let 
1 2 Dt t t    denote the ordered D  

distinct event times (no ties between the event times). The partial likelihood function of 

the Cox proportional hazards model may be written as  

  
( )1

1
( ) 1

exp

exp
i

p
D j i jj

p
i

j ljl R t j

x
L

x








 

 
 

 
 



 

  
(2.24) 

 where  i j
x  be the jth covariate associated with the individual whose failure time is 

it . 

Meanwhile,  iR t  consists of all individuals whose survival times are at least 
it .  

 It is called the partial likelihood function since the likelihood does not consider 

probabilities of all subjects. The likelihood function takes into account probabilities 

only for those patients who get the event, and does not explicitly consider probabilities 

for those patients who are censored (Kleinbaum & Klein, 2005). Commonly, the 

Newton-Raphson iterative method is used to obtain the maximum likelihood estimates 

of -parameters . The  100 1 %  confidence interval for the estimated  
ˆ

j
  is given 

by 

 
   2

ˆ ˆ
jj

z se  .  (2.25) 

where 
  ˆ

j
se   is the estimated standard error of the coefficients. 
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2.5.3.1 Proportional Hazards Assumption 

In order to apply the Cox proportional hazards regression analysis, the 

proportional hazards assumption must be checked and fulfilled. The proportional 

hazards assumption implies that the hazard function of one individual is proportional to 

the hazard function of the other individual (Kleinbaum & Klein, 2005). In addition, the 

hazard curves for the groups should be proportional and parallel (Bradburn et al., 

2003a). The proportional hazards assumption of the fitted model may be assessed based 

on:  

(i) The scaled Schoenfeld residuals and global test. 

The proportional hazards assumption for individual variable is tested based on the 

scaled Schoenfeld residuals. Meanwhile, the global Schoenfeld residuals test is used 

to assess for the overall model. The proportional hazards assumption is violated if the 

tests are statistically significant ( -value 0.05p  ). From Collet (2003), the 

Schoenfeld residual denotes Pjir  may be obtained as follows:  

  ˆ
Pji i ji jir x a  , (2.26) 

where jix  is the value of the jth explanatory variable, 1, ,j p  for the  ith subject 

in the study,  

   

  

ˆexp
ˆ ,

ˆexp

i

i

jl ll R t

ji

ll R t

x
a


















x

x
 (2.27) 

and  iR t  is the set of all individuals at risk at the time t . Meanwhile, the scaled 

Schoenfeld residuals Pjir  are the components of the vector  

 
 ˆvarPi Pir r r , (2.28) 
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where r  is the number of deaths among the n  individuals, ˆvar( )  is the variance-

covariance matrix of the parameter estimates, and 
1 2

( , , , )
i i piPi P P Pr r r r  is the vector 

of Schoenfeld residuals for the ith subject.  

(ii) The log-cumulative hazard plot  

For categorical variables, the log-cumulative hazard functions against the logarithm 

of survival time plots (LML plot) are constructed and examined. The curves on the 

plot should not cross for the proportional hazards assumption to hold.     

There are several options may be considered when the proportional hazards assumption 

is not satisfied. One may choose to model the non-proportionality by stratified model, 

partition the time axis, or time-dependent covariates model (Therneau & Grambsch, 

2000). 

2.5.3.2 Stratified Cox Model  

In this study, the stratified Cox model is used to handle nonproportional hazards 

covariates. This model is the simplest option (Therneau & Grambsch, 2000) to model 

prognostic factors when there is categorical covariate that does not satisfy the 

proportional hazards assumption (Hosmer & Lemeshow, 1999). Other covariates that 

meet the proportional hazards assumption are included in the model, while the covariate 

that violates the assumption is controlled by stratification (Kleinbaum & Klein, 2005).   

Let jx  be a non-proportional hazards covariate with s  categories. Thus, subjects 

are stratified into s  stratum where the hazard function for stratum s  is given by  

      0 1 1 2 2exps s p ph t h t x x x      . (2.29) 

Meanwhile, other covariates are assumed to have proportional hazards within each level 

of stratification factor (Royston & Lambert, 2011). In this model, the baseline hazard is 
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assumed to be different across levels of stratification variables. Thus, the fitted stratified 

model will yield different estimated survival curves for each stratum. However, the 

coefficients are constrained to be the same across strata.  

The stratified model can be described as a no-interaction model where the model 

assumes that there is no interaction between any non-proportional hazards covariate (the 

stratified variable) with other variables in the model. This model, therefore, yields 

similar regression coefficients across the strata. Another type of stratified models is 

known as an interaction model that assumes the regression coefficients vary over the 

strata. The hazard function for such a model is  

      0 1 1 2 2exps s s s ps ph t h t x x x      , (2.30) 

or may be written as  

             0 1 1 111 1
exps s p p j p jp

h t h t x x x x x x           . (2.31) 

The likelihood ratio test is used to compare both models. The no-interaction assumption 

is satisfied and sufficient if the likelihood ratio test is not statistically significant

( -value 0.05)p  .   

2.5.4 Parametric Survival Model 

 A parametric survival model assumes that survival times follow a particular 

probability distribution. Most of these models belong to the AFT model. However, 

some of these models are belong to both: the proportional hazards model and the AFT 

model such as the exponential and Weibull models. Unlike the Cox proportional 

hazards regression model, the MLEs of the parameter   for the parametric models are 

obtained from the full likelihood function that is given by   

      L f t S t   . (2.32) 
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Parametric survival models that have been considered throughout this study are 

described as follows: 

(i) The Weibull Model  

 Suppose the survival times T  of n  individuals has a Weibull distribution with a 

scale parameter    and shape parameter  . The baseline hazard function is given by  

   1

0h t t  . (2.33) 

It follows that the hazard function of the Weibull proportional hazards model is given 

by 

     1

1 1exp p ph t x x t      , (2.34) 

where 1 2, , , p    are the regression coefficients for p  covariates 1 2, , , px x x . The 

shape of the hazard function depends on the value of  . The hazard is constant and 

survival times has an exponential distribution if 1  . Meanwhile, the hazard is 

increasing over time when 0   and decreasing when 0  .  

 Meanwhile, for the Weibull AFT model the hazard function is defined by  

        0exp exp ,h t h t     (2.35) 

where 1 1 p px x     and 1, , p   are the regression coefficients for p  

covariates 1 2, , , px x x . The hazard function of the Weibull AFT model is obtained by 

substituting for the baseline hazard from (2.33) in the hazard function in the equation 

(2.35) as follows:  

     0 ,h t e h te     

  
  

1

,e te


 


   
 

     1e t


   , (2.36) 

 where 1   and   is a scale parameter. 
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 A Weibull proportional hazards model is also an AFT model, yet requires 

different parameterisations. Therefore, when the proportional hazards assumption is 

satisfied, the AFT assumption also hold (Kleinbaum & Klein, 2005). From the equation 

(2.36), the corresponding -parameters  for the Weibull proportional hazards model in 

(2.34) may be obtained as 

 
,

j

j







  (2.37) 

for 1, ,j p . The survival function may be expressed in the form of  

    
1

exp tS t 


  . (2.38) 

The suitability of the Weibull model is assessed via the plot of the log negative plot of 

the survival estimates against the log of survival time. The assumption of the Weibull 

proportional hazards and AFT is reasonable when the plot gives parallel straight lines 

with slope   (Kleinbaum & Klein, 2005).    

(ii) The Log-logistic Model  

 A log-logistic model is an AFT model with two parameters   and  . It is also 

known as a proportional odds model, where the odds ratio is assumed to remain 

constant over time (Kleinbaum & Klein, 2005). The hazard function for the log-logistic 

model is given by  

 
 

1

1

t
h t

t














. (2.39) 

The shape 1   indicates that the hazard increases initially to a maximum point and 

then decreases, while 1   describes that the hazard decreases monotonically with time. 

The survivor function may be expressed as   

 
 

1

1
S t

t



. (2.40) 

Univ
ers

ity
 of

 M
ala

ya



 

32 
 

For the log-logistic model, if the proportional odds assumption holds, then AFT 

assumption also holds and vice versa. This assumption is evaluated graphically through 

the plot of      ˆ ˆln 1S t S t  against the log of survival time where  Ŝ t  is the 

survival estimates. The assumption is valid if the plot depicts straight and parallel lines 

(Kleinbaum & Klein, 2005). The log-logistic model is the only parametric model with 

both the proportional odds and the AFT representation (Klein & Moeschberger, 1997).  

(iii) The Lognormal Model  

 Another common AFT model is known as a lognormal model. T  has a 

lognormal distribution if logT  has a normal distribution with mean   and variance 

2.  The shape of the hazard function for this model is very similar to the log-logistic 

distribution, and these two models give very close results in most cases (Klein & 

Moeschberger, 1997; Kleinbaum & Klein, 2005). The survival function of the 

lognormal model is  

 
 

log
1

t
S t





 
  

 
, (2.41) 

where    is the standard normal cumulative density function. The lognormal 

assumption is checked based on the plot of    1 ˆ1 exp H t    against the log of 

survival time, where the lines on the plot should be straight.  Univ
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(iv) The Gompertz model 

 A Gompertz model is another type of a parametric proportional hazards model. 

Unlike the Weibull model, the Gompertz model is not an AFT model. The hazard 

function of this model may be expressed as follows  

   bth t ae , (2.42) 

where a  is a positive parameter and b  is a shape parameter. The hazard function of the 

Gompertz model does not initially begin at 0 (Lee & Wang, 2003). The shape of the 

hazard function depends on the b  value where the hazard is exponentially increasing 

with time when 0b  , and exponentially decreasing when 0b  . If 0b  , the hazard 

function in (2.42) become constant, a , thus the model is reduced to the exponential 

model. The survival function is defined by  

      exp 1 /btS t a e b   . (2.43) 

2.5.4.1 The Adequacy of the Parametric Model 

In the parametric model, survival times are assumed to follow a specific 

statistical distribution. Thus, it is important to assess the suitability of the statistical 

distribution considered for describing the survival times (Bradburn et al., 2003b). The 

parametric survival model is appropriate, if there is a linear relationship between the 

survival times and the cumulative hazard function (or a function of it) (Lee & Wang, 

2003). Thus, a plot of the cumulative hazard function (or a function of it) versus the 

survival time (or a function of it) is constructed to check for the adequacy of the 

parametric model. The points on the plot should indicate approximately a straight line or 

a linear trend (Collet, 2003). It is worthwhile to note that, this graphical assessment is 

not used to identify a particular correct model, yet to reject any model that is not 

suitable to represent the survival times distribution (Klein & Moeschberger, 1997).    
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There are various ways to estimate the cumulative hazard function,  Ĥ t . Klein 

and Moeschberger (1997) suggested using a Nelson-Aalen estimator, while Collet 

(2003) and Kleinbaum and Klein (2005) suggested a transformation of the survivor 

function which is estimated using the Kaplan-Meier estimate. The results have not much 

different among these methods of estimation. Thus, in this study, the Nelson-Aelen 

estimator is used to estimate the cumulative hazard function. The cumulative hazard 

function is computed according to the following formula (Klein & Moeschberger, 

1997): 

 

 
1

1

1

0,                     if ,

ˆ          
          if ,i

t t
i

t t

H t d
t t

Y




 





 (2.44)  

where di  be the number of event and  Yi  be the number of individuals who are at risk at 

time ti. 

The cumulative hazard function of the Weibull model is given by 

  H t t , (2.45) 

and taking logarithms of  H t  gives  

  log log logH t t   . (2.46) 

If the assumption of Weibull is satisfied, the relationship between  ˆlog H t  and log t

should be linear and the log-cumulative hazard plot or the plot of  ˆlog H t  versus log t

should give an approximately straight line. As given in (2.46), the slope and intercept of 

the straight line is   and log , respectively. Table 2.3 lists the plots that may be used 

to assess the adequacy of other parametric models. 
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Table 2.3: Plots to check the suitability of exponential, log-logistic and lognormal 

distribution 

Model 
Function of the 

cumulative hazard 
Plot 

Exponential  Ĥ t   Ĥ t
 
versus t  

Log-logistic    ˆlog exp 1H t      ˆlog exp 1H t   versus log t  

Lognormal    1 ˆ1 exp H t       1 ˆ1 exp H t    versus log t                                                                              

One of the approaches to select the best model among the parametric models 

under study is based on the Akaike’s Information Criterion (AIC) statistic (Bradburn et 

al., 2003b). This statistic is appropriate for comparing the feasibility of different 

parametric models since these models are fitted similarly by maximum likelihood 

(Royston & Lambert, 2011). The formula is given by   

    2 log-likelihood 2AIC c k    , (2.47) 

where c  is the number of unknown parameters (coefficient regressions), and k  are 

numbers of other parameters such as scale and shape for Weibull model. Therefore, k  is 

equal to 2 for the Weibull, log-logistic and lognormal models (Klein & Moeschberger, 

1997). A smaller value of the AIC indicates a better model.  

2.5.4.2 Proportional Hazards Assumption for a Parametric Model 

 For the Weibull model, there is an additional step required to check for the 

proportional hazards assumption. If the proportional hazards assumption holds, then 

AFT assumption also holds (vice versa).  

(i) Log-cumulative hazard plot: One way to assess the proportional hazards 

assumption for two or more levels of covariates in the Weibull model is by plotting 

the log-cumulative hazard plot. The curves must be parallel to support the 

proportional hazards assumption, and straight to support the Weibull assumption. 
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(ii) Likelihood ratio test: In the Weibull model, the assumption of the proportional 

hazards is violated if the shape parameters across the groups, l , for a particular 

variable are different. A likelihood ratio test may be used to check for the 

aforementioned assumption. Separate Weibull model that contains the same linear 

component is developed for each of the l  groups, and these models should yield 

different values of the shape and scale parameters. The sum of the value of the 

statistic ˆ2log L  for each of these models is obtained, which is denoted by 1
ˆ2log L . 

Then, a Weibull model which combines the l  sets of data is fitted and this model is 

corresponding to the assumption of equal shape parameter. The ˆ2log L  value for 

this model is computed and denoted by 0
ˆ2log L . The difference between 0

ˆ2log L  

and 1
ˆ2log L  is compared using a chi-squared distribution with 1l   degrees of 

freedom. The difference between these two values is the change in ˆ2log L  due to 

constraining the Weibull shape parameters to be equal. The proportional hazards 

assumption is not satisfied if the difference is significant (Collet, 2003). 

2.5.4.3 Stratified Weibull Model   

In the Weibull model, the proportional hazards assumption may be violated 

because the scale parameters (or the shape parameter) across any particular group are 

different. Therefore, to deal with this problem, a stratified model may be adopted. Such 

a model may relax the proportional hazards assumption (Kalbfleisch & Prentice, 1980). 

In a parametric stratified model, both intercept and any ancillary parameters such as 

scale in the Weibull model are allowed to vary for each level of the strata variable. 

Meanwhile, the coefficient regression for each covariate is assumed to be similar across 

strata. For the AFT model, the stratified model also allows the actual shape of the 

baseline survival function to vary with the strata (Cleves et al., 2010).  
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The log-linear form of the stratified Weibull regression model for an individual 

in the sth stratum may be written as  

   1 1log | , s p p sT X S s x x          , (2.48) 

where 
s  and 

s  denote stratum-specific intercept and scale parameters. In (2.48), the 

regression coefficient j  on the AFT scale are assumed to be stratum independent (Gu 

et al., 2014). 

2.5.5 Model Checking   

The fitness of the fitted model and possible influential observations are assessed 

by examining the residuals plots; martingale, deviance and dfbeta. The martingale 

residuals plot is used to determine the correct functional form of covariates to be 

included in the model and assess any lack of fit of the model (Collet, 2003). The 

martingale residual is given by  

  ˆ
iM i i ir H t  , (2.49) 

where  ˆ
i iH t  is the estimated cumulative hazard for the ith individual and 

i  
is unity 

for uncensored case and zero otherwise. The deviance residuals plot is used for 

checking the overall model fitness and detecting the outliers. The residuals are   

     sgn 2 log
iD M i M i i i M ir r r δ δ r    . (2.50) 
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Meanwhile, any subject that has a strong influence on parameter estimates can be 

identified by examining the dfbeta residuals plots. These residuals approximate the 

change in the coefficient estimate for the jth covariate if the ith observation is removed 

from the model (Collet, 2003). The dfbeta residual is denoted by  

 
 

ˆ ˆ ˆ
i j j t
     . (2.51) 

 The Cox-snell residuals (Collet, 2003) is given by  

     0
ˆ ˆexp

iC i ir H t x , (2.52) 

where  0
ˆ

iH t  is an estimate of the baseline cumulative hazard function at time 
it . Also, 

this residuals are defined by   

     ˆˆ log
iC i i i ir H t S t   , (2.53) 

where  ˆ
i iH t  is the estimated cumulative hazard function and  ˆ

i iS t  is the estimated 

survival function. For an AFT model, the estimated survival function is given by  

 
  1 1 2 2

ˆ ˆ ˆˆlog
ˆ ,

ˆi

i i p pi

i

t x x x
S t S

   



     
  

 
 (2.54) 

where  
i

S   is the survival function of 
i  in the AFT model, ˆ

j  is the estimated 

coefficient, and ̂ , ̂  are the estimated value of   and  . 

2.5.6 Some Studies on the Comparison of Survival Models   

 The most common survival model is the Cox proportional hazards regression 

model. This model has been widely applied in modelling prognostic factors especially 

in clinical studies, see Chemay et al. (2008), Abdul Razak et al. (2010), Mangantig et 

al. (2013), Yang et al. (2013) and Suh et al. (2013).  

Kleinbaum and Klein (2005) have given several reasons for the popularity of the 

Cox proportional hazards regression model. In practice, it is doubtful to identify the 

correct parametric model that represents the survival data. However, one should not be 
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worried from choosing a wrong parametric model when the analysis is conducted using 

the Cox proportional hazards regression model since this model does not depend on the 

assumption of the survival time distribution. If a survival model belongs to a particular 

parametric model such as the Weibull model, the results from the Cox proportional 

hazards regression model will be approximately close to the results of the Weibull 

model. In addition, the hazard ratio, hazard function and survival function can be 

estimated from the Cox proportional hazards model, even though the baseline hazard 

function is not specified.  

Recently, study on the association between the explanatory variables and 

survival time using parametric survival models has gained much attention. Parametric 

models tend to produce more precise estimates if the models fit the data well (Klein & 

Moeschberger, 1997). Also, parametric models tend to give smaller standard error 

estimates for the quantity such as relative hazards and median survival time (Collet, 

2003). Parameter estimates obtained from the model may completely specify the 

survival function and hazard function (Kleinbaum & Klein, 2005), and provide 

estimates of survival times (Hosmer & Lemeshow, 1999). Besides, the residuals may be 

simply computed from the differences between observed and predicted values of 

survival time (Hosmer & Lemeshow, 1999).   

Numerous studies have been conducted to look at the performance of different 

types of survival model using medical data. Some of these studies investigated  the 

performance between the semi-parametric model and parametric models (see 

Pourhoseingholi et al., 2007, 2009, 2011; Wang et al., 2011; Köhler & Kowalski, 2012; 

Hashemian et al., 2013). Meanwhile, some studies just compared the performance 

among parametric models (see Aktürk Hayat et al., 2010; Nakhaee & Law 2011; Pari 

Dayal et al., 2013). The exponential, Weibull, lognormal and log-logistic models are 

several type of parametric models those are commonly used in these studies.   
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Often, the Weibull model (Sayehmiri et al., 2008; Moghimi-Dekordi et al., 

2008; Nakhaee & Law, 2011; Zhu et al., 2011) and log-normal model (Pourhoseingholi 

et al., 2007; Wang et al., 2011; Köhler & Kowalski, 2012) were found to be the best 

parametric model to represent the survival data understudied. Pourhoseingholi et al. 

(2011) conducted a study using the same group of patients as in Pourhoseingholi et al. 

(2007) by incorporating more parametric models and it turned out that the log-logistic 

was the best model. Even though Gompertz model was not commonly considered in 

such comparison studies, it was found to be the best survival model for breast cancer 

data in a study done by Aktürk Hayat et al. (2010).   

Parametric model may be an alternative model when the proportional hazards 

assumption is violated, as being pointed by many referred literatures (Pourhoseingholi 

et al., 2011; Ravangard et al., 2011). However, some of these studies just mentioned 

about the assumption, but did not verify it for their models (Pourhoseingholi et al., 

2011; Ravangard et al., 2011). Some studies such as Köhler and Kowalski (2012) and 

Bessell et al. (2012) found that their models violated the proportional hazards 

assumption, but did not perform any proper method to handle this problem. A good 

survival study should clarify the method used to check for the proportional hazards 

assumption for the Cox proportional hazards regression model (Mallett et al., 2010a). 

According to Altman et al. (1995) in their review of 132 papers, the proportional 

hazards assumption was verified in 5% of the 43 papers that used the Cox proportional 

hazards regression model. Meanwhile, in a systematic review study done by Mallett et 

al. (2010b) found that only 10 out of 47 studies on cancer survival tested this 

assumption. Bellera et al. (2010) summarised the methods for checking the proportional 

hazards assumption using graphical, testing or modelling approaches, together with 

working examples.  
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One important step in conducting the parametric analysis is to verify the 

appropriateness of the chosen statistical distribution. Zhu et al. (2011) presented the log-

cumulative hazard plot against the log time to show that the Weibull model was suitable 

for modelling their data. Similarly, Moran et al. (2008) also checked the adequacy of 

the log-normal and log-logistic models by plotting log time against a linear function of 

the cumulative hazard rate. However, there are many studies that have not given any 

justification for using parametric models in their analyses (see Paillisse et al., 2005; 

Pourhoseingholi et al., 2009; Wang et al., 2011; Zare et al., 2012). Checking the 

suitability of parametric distribution is imperative to ensure that the parametric form of 

the survival distribution is correct (Royston, 2001).  

In many studies, the Akaike Information Criterion (AIC) statistic was used to 

measure the performance and efficiency of survival models being compared. The AIC 

statistic may be appropriate for comparing parametric models such as in Grover et al. 

(2013). However, using this statistic to measure the performance between semi-

parametric and parametric models as demonstrated by Bessell et al. (2012), Abidoun et 

al. (2012) and Hashemian et al. (2013) may be questionable. Royston and Lambert 

(2011) pointed out that the AIC value for semi-parametric and parametric models are 

incomparable because the Cox proportional hazards model is fitted by maximising the 

partial log-likelihood while parametric models are fitted by maximising the full log-

likelihood.  

 Also, residuals plot may be used to find the best model such as using the plot of  

deviance residuals (Royston, 2001; Pari Dayal et al., 2013), martingale residuals 

(Köhler & Kowalski, 2012), Cox-Snell residuals (Ding et al., 2009; Ravangard et al. 

2011) and normal-deviate residuals (Nardi & Schemper, 2003). In addition, the 

performance of these models may be checked based on the efficiency of parameter 

estimates using the measure of explained variation (Royston, 2001; Nardi & Schemper, 
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2003; Moran et al., 2008) or model fitness using the goodness of fit test (Sayehmiri et 

al., 2008; Nakhaee & Law, 2011). 

2.6 Missing Values 

 Missing data occur when any or all of the variables of interest are unidentified or 

unobserved (Schafer, 1997). Data may be missing because of many reasons such as in a 

survey study, participants sometimes fail to respond to some items in the questionnaire 

given either intentionally or unintentionally. In many survival studies, most of the 

required information is retrieved from patients’ medical records. However, some of 

these information may not be properly recorded or sometimes medical reports such as 

histopathological examination (HPE) report and Computed Tomography (CT) scan 

report may be lost. Meanwhile, in a clinical trial study, there might be a group of 

patients who neglected to visit the clinic or centre for further follow-up. Therefore, the 

progress of these patients may not be monitored, and their information on that particular 

clinic visit is not available. Figure 2.3 illustrates the multivariate data with missing 

covariate values. 

 Variables 

Observations y x1 x2 ... xp 

1 y1 x11 NA ... x1p 

2 y2 NA x22  x2p 

. y3 x31 x32 ... x3p 

. y4 x41 NA ... NA 

. y5 x51 x52 ... x5p 

. y6 x61 x62  x6p 

      

n yn NA xn2 ... NA 

Figure 2.3: Multivariate data set with missing values 
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2.6.1 Mechanism of Missing Data 

 The performance of missing data methods depends on the mechanism of 

missingness or how data are missing. Some of these methods have been developed 

based on the underlying assumption of a particular type of missing values mechanism 

such as in Lin and Ying (1993) study. If this assumption is violated, the method may 

yield biased parameter estimates (Allison, 2002). Thus, it is very crucial to understand 

the assumption of each mechanism of missing values. There are three mechanisms of 

missingness namely missing completely at random (MCAR), missing at random (MAR) 

and missing not at random (MNAR).  

 Suppose that there are two random variables, 
1x  and 

2x , where some values in 

1x  are missing and 
2x  are all observed. The values in 

1x  are said to be MCAR if the 

missingness probability of 
1x  is independent of 

1x  itself and 
2x . In other words, the 

missing data values are a simple random sample of all data values (Schafer, 1997). The 

assumption of MCAR is very restrictive (Van Buuren, 2012) and often unreasonable in 

many real situations (Allison, 2002; Little & Rubin, 2002; Van Buuren, 2012). 

 The 
1x
 

values are said to be MAR if the probability of being missing is 

independent of 
1x  itself. However, the missingness of 

1x
 
is related to other variable, 

2x , 

which this variable may provide information about the missing values and a basis for 

imputation (Barzi & Woodward 2004). In this case, the appropriate approach needs to 

be considered to handle missing data. Missing completely at random is a special case of 

MAR (Schafer & Graham, 2002), yet MAR assumption is less restrictive than the 

MCAR (Schafer, 1997). Both MCAR and MAR are called ignorable nonresponse 

(Allison, 2002).   

 In contrast, the nonignorable nonresponse that is MNAR depends on both 

missing ( 1x ) and observed variables ( 2x ). This type of missingness requires an extra 
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step where the missing data mechanism needs to be modelled in order to optimise the 

estimation of parameters (Allison, 2002). Herring et al. (2004) emphasised that the 

model for missing data mechanism should be specifically formulated prior to the 

analysis. Information that explains why data are missing must be gathered and utilised, 

so that the right model may be formulated. Leong et al. (2001) reported that using the 

complete case analysis for MNAR data have affected the parameter estimates and also 

the significant effect of important prognostic factors.   

2.6.2 Missing Data Methods 

 Many studies have been conducted to identify the best approach to handle 

missing values in survival data. Different approaches are investigated either by single 

imputation, multiple imputation, or likelihood based methods. Imputation methods are 

more preferred as these approaches are easy to perform using existing methods that 

available in any statistical software.   

 In this study, four methods of handling missing values namely the complete case 

analysis, hot deck imputation, expectation-maximization (EM) algorithm and multiple 

imputation are considered. Hot deck imputation, EM algorithm and multiple imputation 

methods are chosen because the “imputation” of each missing value depends on other 

variables in the model. Consequently, as more variables are included in the model, the 

more the assumption of missing at random is likely to hold because the uncertainty 

associated with missingness is reduced (Schafer, 1997). 

2.6.2.1 Complete Case Analysis 

 A common approach adopted by many researchers when there are missing 

values is the complete case analysis. This method removes any subject with missing 

values from the study. The complete case analysis is appropriate for MCAR data since 
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the reduced sample is assumed to be a random subsample of the full data (Allison, 2002; 

Little & Rubin, 2002). In MAR data, parameter estimates based on this method are 

unbiased when the percentage of missing values is low (Barzi & Woodward, 2004; 

Marshall et al., 2010a, 2010b). Also, parameter estimates may be unbiased if the 

probability of missing in independent variable does not depend on the outcome variable 

(Allison, 2002). 

2.6.2.2 Hot Deck Imputation 

 Hot deck imputation involves imputing missing values by values drawn from 

“similar” responding units in the sample (Little & Rubin, 2002). This method relies on 

the information of the next most similar case with completely observed variables. It is 

suitable for imputing categorical covariate values and preferable since it is simple, 

flexible and powerful for handling data with complex missing-data patterns (Little et al., 

2008; Andridge & Little, 2010; Liao et al., 2014). Also, this method maintains the 

associations with variables in the data set (Barzi & Woodward, 2004) and the imputed 

values are proper measurement level of variables (Brown & Kros, 2003).  

2.6.2.3 Expectation-Maximization (EM) Algorithm 

 The Expectation-Maximization (EM) algorithm is an iterative procedure that is 

useful for computing maximum likelihood estimates for various types of data in the 

presence of missing values. In missing values problem, the EM algorithm is preferred 

than other optimisation methods due its stability and simplicity (Schafer, 1997). The 

theory was first developed by Dempster et al. (1977). This method consists of two 

iterative steps: the expectation step (E-step) and maximization step (M-step).  

Let X  denotes a complete data set that contains p  variables for n   1,,i n   

observations. The probability density function of this complete data may be written as 
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1

| |
n

i

i

f X f x 


 , (2.55) 

where  |if x   is the density function for the ith observation and   is unknown 

parameters. Suppose that X  contains two components: the missing component that is 

denoted as 
misX , and observed component that is denoted as 

obsX . The probability 

density function for the incomplete data is given by  

      | | | ,obs mis obsf X f X f X X   , (2.56) 

where  |obsf X   is the density function of the observed data 
obsX  and

 

 | ,mis obsf X X 
 
is the density function of the missing data given the observed data.  

The corresponding log-likelihood function is given by  

      | | log | ,obs mis obsX X f X X    , (2.57) 

where  log | ,mis obsf X X   is called the predictive distribution of the missing data given 

.  This term portrays the interdependence between 
misX  and   where 

misX  contain 

information that is relevant to estimate the unknown parameters  , while   also help to 

estimate the possible values for 
misX  (Schafer, 1997). 

 The term  log | ,mis obsf X X   in (2.57) may not be computed since 
misX  

component is unobserved. The EM algorithm method solves this problem by replacing 

 | X  in (2.57) by computing the conditional expectation of the log-likelihood given 

the observed data 
obsX

 
and a preliminary estimates of  . In the E-step, the expected 

log-likelihood is denoted as   |
k

Q    and given by  

     | | | ,
k

obsQ E X X       . (2.58) 

Meanwhile, in the M-step,   |
k

Q    is maximised to obtain parameter estimates of 

( )k . The E-step and M-step are repeated until the difference  
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        1 1
| |

k k kkQ Q   
 

 , (2.59) 

changes by an arbitrarily small amount (McLachlan & Krishnan, 2008) or until the EM 

algorithm converges.  

   Ibrahim (1990) proposed the EM algorithm by method of weight to handle 

missing categorical covariate values in the generalized linear model. The study 

introduced a weighted complete data log-likelihood in the E-step. Let 
iy  be the 

outcome variable for the ith observation. It is assumed that covariates 

 1 2, , , px x xx  are random variables from a discrete distribution with finite range 

parameterised by the vector  1, , r  . Now, let  ,   , the complete data 

log-likelihood for n observations may be written as   

 
      |

1

| ,
i i i

n

y x x

i

y


   x , (2.60) 

where  |i iy x   is the log-likelihood based on the conditional distribution of |y x  and  

 
ix   is the contribution from the marginal distribution of x . When there are some 

covariates values missing for the ith observation, 
ix  consist of ,mis ix  (the missing 

components of 
ix ) and ,obs ix  (the observed components of 

ix ). Thus, the E-step is given 

by  

 
          

,

,| | , | , ,  = | , ,
mis i

k k k

i i i obs i i i i i

x

Q E y y w y 
      x x x  (2.61) 

where 
( )k

iw  are the weights corresponding to the incomplete observations. To obtain the 

maximum likelihood estimates of the parameter of interest, expression in (2.61) is 

maximised in the M-step, and these two steps are repeated until convergence.    

Lipsitz and Ibrahim (1996a) extended Ibrahim’s (1990) method to a parametric 

survival model with incomplete categorical covariate values. Let 
it  denotes the survival 
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time (the outcome variable), 
i  is a censoring indicator and  1 2, , , px x xx  is a set 

of p covariates for the ith subject. The complete data log-likelihood for the ith 

observation is  

      | , ,  , | , , log |i i i i i i it t p        x x x  , (2.62) 

where   is a 1p  vector of the regression coefficients,   is a scale parameter, 

 |ip x   is the density of the covariates indexed by  . The expected log-likelihood in 

E-step is given by 

 
          

,

,| | , , | , , ,  = | , , .
mis i

k k k

i i i i obs i i i i i i i

x

Q E t t w t     
    x x x  (2.63) 

This study also proposed saturated multinomial probabilities to model the

 |ip x  . However, this approach led to a large number of nuisance parameters that 

need to be estimated when there were many missing covariates values, consequently 

affected the estimates of the parameters of interest  . In their following study, Lipsitz 

and Ibrahim (1996b) solved this problem by proposing a conditional model for the 

covariate distribution that helped to reduce the number of nuisance parameters that 

needs to be estimated. Both of these studies directly applied their methods to a liver 

cancer data set, and compared the performance to the complete case analysis method. 

Lipsitz and Ibrahim (1998) extended the idea of EM algorithm method to 

accommodate the problem of missing categorical covariates values in the Cox 

proportional hazards model. Unlike the parametric model, maximum likelihood 

estimates are obtained from the partial likehood function in the Cox model. However, 

Ibrahim’s (1990) weighted EM algorithm approach was not feasible since the partial 

likelihood function caused a problem in finding the solution. Hence, Lipsitz and Ibrahim 

(1998) proposed a Monte Carlo method that was similar to that of Wei and Tanner 

(1990) to overcome this problem. This algorithm was similar to the algorithm of EM. 
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Herring and Ibrahim (2001) studied the method for missing continuous and 

mixed covariate for the Cox proportional hazards model. This study proposed a solution 

to the computational burden that was addressed by Lipsitz and Ibrahim (1998) for 

missing categorical covariate so that the weighted EM algorithm (Ibrahim, 1990) 

method may be used to estimate the parameters. In addition, method developed by 

Ibrahim et al. (1999) for missing continuous and mixed covariates values was 

implemented in this study.  

  Some of the aforementioned methods for MAR data have been extended to 

handle MNAR data. Ibrahim et al. (1999) were the first to explore Ibrahim’s (1990) 

method for missing categorical covariate, and Monte Carlo EM (Wei & Tanner, 1990) 

for missing continuous and mixed covariates in generalized linear model. Leong et al. 

(2001) adopted method that was proposed by Lipsitz and Ibrahim (1998) and applied to 

categorical MNAR data. Method that was proposed by Herring and Ibrahim (2001) was 

extended by Herring et al. (2004) for categorical, continuous and mixed MNAR data. 

The ability to handle different types of missing covariate values may be one of the 

advantages of this method over the one proposed by Leong et al. (2001). Both methods, 

Leong et al. (2001) and Herring et al. (2004) were developed for the Cox proportional 

hazards model.  

Various extensions of EM algorithm methods that have been proposed earlier 

were adapted to accommodate missing covariate values in other types of survival 

model. For instance, Herring et al. (2002) developed a method based on Ibrahim et al. 

(1999) idea of estimating the parameters in a frailty model when some of the covariates 

were missing. Recently, Fonseca et al. (2013) applied the EM algorithm by method of 

weight to the cure rate survival model with missing categorical covariates. The effects 

of different cure fraction level on the parameter estimates were also studied.  
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Even though initially Ibrahim’s (1990) method was adapted to parametric 

survival models (Lipsitz & Ibrahim, 1996a), the extension of this method has 

numerously focused on the Cox model. In addition, most of these studies compared only 

between the proposed EM algorithm method and the complete case analysis. Studies on 

the performance of EM algorithm method over other available methods for handling 

missing covariate values remain scarce especially for parametric survival models. 

Ibrahim et al. (2005) have done a comparison study among the EM algorithm by 

method of weight, multiple imputation, fully Bayesian and weighted estimating 

equations methods but for the generalized linear model.  

2.6.2.4 Multiple Imputation 

 Multiple imputation creates more than one set of complete data where missing 

values are replaced with a set of plausible values (Clark et al., 2003b). Each missing 

value is substituted with different possible values, producing several sets of complete 

data, m, with the same observed values yet different imputed values. Then, all these m 

imputed data sets are analysed separately using a standard statistical analysis for a 

complete data. It is worthwhile to note that the differences of the imputed values and the 

parameter estimates from each analysis reflect the uncertainty about what value to 

impute (Van Buuren, 2012). All m parameter estimates that have been obtained from 

each analysis are pooled into one estimate   following Rubin’s rule. Figure 2.4 

illustrates m=3 imputed data sets.  

Let ˆ
iQ   1, ,i m  be different parameters estimated from m  data sets and 

these values are combined using the following formulae:  

 
1

1 ˆ
m

i

i

Q Q
m 

  . (2.64) 

The total variance is    

Univ
ers

ity
 of

 M
ala

ya



 

51 
 

 
1

1V U B
m

 
   

 
, (2.65) 

where U  is the within imputation variance,  

 
1

1 m

i

i

U U
m 

  , (2.66) 

and B  is the between-imputations variance,  

 
 

2

1

1 ˆ
1

m

i

i

B Q Q
m 

  
 

 . (2.67) 

 

Figure 2.4: Basic steps in multiple imputation method 

 

Incomplete data: 

Eg: {18, 15, NA, 21, NA} 

Imputed data: 
Imputed data 2: 

{18, 15, 5, 21, 17} 

Imputed data 1: 

{18, 15, 25, 21, 9} 

Imputed data 3: 

{18, 15, 12, 21, 20} 

2  
1

 

3  

  

Analysis results: 

Pooled result: 

m=3 
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According to Schafer (1997), three to five imputed data sets would be enough to 

obtain good parameter estimates. Also, it depends on the percentage of missing values, 

where large amount of missing values require more imputation (Barzi & Woodward, 

2004). Unlike the single imputation method, multiple imputation method considers the 

variability or uncertainty about the missing values by imputing each missing value with 

multiple possible values. Also, if a correct model is specified for the imputation, this 

method enhances the efficiency and validity of the parameter estimates (Little & Rubin, 

2002).  

Several survival studies reported that multiple imputation outperformed other 

missing data methods understudied (see in Alkan et al., 2013; Moghimbeigi et al., 

2014). Various techniques of multiple imputation are available in statistical software 

packages for missing data. For instance, the R statistical software provides package for 

multiple imputation by chained equation (MICE), data augmentation (DA) and EM 

algorithm with a bootstrap (EMB) methods. Some of these methods may handle 

different types of variable. Marshall et al. (2010a, 2010b) compared the performance of 

several types of multiple imputation methods available in R software for handling 

missing values in the Cox proportional hazards regression model. Both of these studies 

found that, MICE with predictive mean matching (PMM) method performed the best 

among all methods considered. Also, according to Marshall et al. (2010a) the PMM 

method produced the least biased parameter estimates.  

2.6.3 The Importance of Treating Missing Values 

In most cases, subjects with missing covariate values will be removed from the 

analysis. However, this approach may reduce the sample size (Allison, 2002), and 

efficiency whenever uncensored subjects are excluded (Lin & Ying, 1993). Sometimes, 

the covariate itself will be excluded from the model if the percentage of missing values 
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of that particular covariate is high. This may lead to a model misspecification (Herring 

& Ibrahim, 2001; Ibrahim et al., 2005) and reduce the power of study (Lin & Ying, 

1993; Clark et al., 2003b). The complete case analysis still produces unbiased parameter 

estimates when data are MCAR. However, if the MCAR assumption is violated, this 

method may yield biased parameter estimates (Allison, 2002) and inefficient inferences 

(Little & Rubin, 2002). Therefore, proper method for handling missing values in a data 

set is very important to avoid any devastating impact on the statistical inferences. 

Moreover, most of the referred literatures considered large sample size in their studies. 

Hardt et al. (2013) pointing out the need of studying the impact of sample size on the 

performance of missing data methods. Thus, this study is interested to investigate the 

performance of missing data methods based on different sample sizes.  

2.7 Frailty Model 

 Frailty model is a random effect model for survival data that considers 

heterogeneity caused by unmeasured or unobserved factors (Wienke, 2003). Frailty 

model can be divided into two types: univariate and multivariate frailty models. In 

univariate model, each observation has its own frailty value that causes the hazard 

functions to be different among them (Wienke, 2011). In multivariate frailty model, the 

assumption of independent survival times often violated when more than an individual 

in the study have similar characteristics. For instance, in a multicentre study, the 

survival experience of individuals from the same centre may not be similar to other 

individuals belong to a different centre. This may be due to different medical practices 

across the centers.  

 The frailty W  is assumed to be identically and independently distributed 

random variables with a density function  G w . Frailty may follow several statistical 

distributions such as gamma, inverse Gaussian, positive stable and positive variance 
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function (PVF). The variance parameter 2  (if it exists) is defined as a measure of 

heterogeneity across the population in baseline risk (Wienke, 2011). Large 2  means 

the values of W  are more dispersed, suggesting greater heterogeneity in the individual 

hazards. When 2  is small, the values of W is close to one.     

2.7.1 Univariate Frailty Model 

Individuals in a study population may differ, for instance, according to the 

effects of drug, a treatment, or the influence of various explanatory variables (Wienke, 

2011). Each one has its own frailty, and those with higher frailty will experience an 

event earlier than those with lower frailty. In some cases, not all prognostic factors can 

be identified and included in the analysis. Some of these factors may be unobserved. 

Thus, there exist two sources of variability of survival time: one is variability accounted 

for observable factors, and the other is heterogeneity caused by unobserved factors.         

Frailty W  is a positive random variable that is assumed to follow a statistical 

distribution with probability density function  G w . Given the survival time ,t  the 

hazard function for proportional hazards model conditional on the frailty is given by  

    0|h t W Wh t , (2.68) 

where  0h t  is the baseline hazard function. In (2.68), W  acts multiplicatively on the 

baseline hazard function. The baseline hazard is common to all the individuals whereas 

each individual has different frailty W. Thus, the larger the value of the frailty, the more 

likely an individual to experience an event as the hazard function also becomes large 

(Hosmer & Lemeshow, 1999). The conditional (individual) survivor function of t  given 

W  is given by  
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0
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t

S t W w h t w dt   
    

 

 
                   

 
 

0
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t

w h t dt  
    

 

 
              

  0exp wH t    ,
 

(2.69) 

where    0 0
0

 
t

H t h t dt   is the cumulative baseline hazard function. Data for 

individual level are not observable, thus the population survival function or 

unconditional survival function is considered. The unconditional survivor function of t

is given by 

     expW oS t E wH t      

     0exp  dG
w

wH t w     
 

   0H t   L ,
 

(2.70) 

where  0H t  L  is the Laplace transform of  0H t . The population survival function 

is the weighted mean of the conditional survivor function with weights given by the 

density function of the frailty distribution (Wienke, 2011). It is obtained from the 

conditional survival function by integrating out the frailty.  

2.7.2 Multivariate Frailty Models 

 In multivariate frailty model, the frailty causes dependency among individuals in 

a cluster or a group. Frailty term is used to model the associations between the survival 

times. Under this model, it is assumed that the survival times for individuals within the 

same group or cluster correlate with each other. The dependence usually arises in 

multicentre studies (clustered sampling), genetic studies, longitudinal studies of 

recurrent events, and repeated measure studies.    
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 Let ijT  denotes the survival time of individual i  in the jth group, where 

1, ,i n  and 1, ,j p . For the ith individual, conditional on the frailty 
iw , survival 

times  1, ,i i ipT T T  are independent with a hazard of the form  

    | i j ijh t w w h t . (2.71) 

The probability results can be studied for a single individual and, therefore, the index i 

below is omitted whenever possible. The joint conditional survivor function can be 

written as the following  

 
   1

0
1

, , | exp |
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p j j j
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 ,

 

(2.72) 

where  
0

jt

j j j jH h t dt   is the baseline cumulative hazard function for the jth group. 

Given the 
iw  with distribution function of  G w , the unconditional joint survivor 

function can be written as  

 
     1

1

, , | exp  
p

p j j

jw

S t t W w w H t dG w


 
   

 
  

 

   L s , (2.73) 

where  
1

p

j j

j

s H t


 , and  L s  denotes the Laplace transform of s .  

 One important concept in multivariate frailty model is a shared frailty model 

which had been introduced by Clayton (1978). The shared frailty model is a common 

type of multivariate frailty model that includes frailty to represent a characteristic whose 

values are shared or common among individuals in one group or cluster (Collet, 2003). 

Therefore, it creates dependence between survival times among individuals within the 
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group (Hougaard, 2000). Positive dependence is observed whenever the variation of 

frailty variable is nonzero (Wienke, 2011). In this model, the frailty means a measure of 

relative risk that is a group share. Unlike the univariate frailty model, the frailty variable 

is associated with groups of individuals. The conditional survival function for the 

bivariate case is given by 

          0 1 0 2

1 2 1 2, | | | .
wH t wH t

S t t W w S t w S t w e e
 

    (2.74) 

 Suppose that there k  groups of individuals with jn  individuals per group, 

1, ,j k . For the proportional hazards model, the hazard of death at the time t  for the 

ith individual, 1, , ji n , in the group jth is  

      0expij ij jh t h t  x , (2.75) 

where ijx  is a vector of p explanatory variables and  0h t  is the baseline hazard 

function. The frailty, j , is the random effect shared by subjects in the kth group, and 

the values are independent. It has a multiplicative relationship with the baseline hazard 

function. Meanwhile, the general AFT model that incorporates the shared frailty 

component is of the form  

    0
ij ij

ijh t e h t e
 

 , (2.76) 

where ij ij jx    .  

 The extension of the shared frailty model namely the correlated frailty model is 

another type of multivariate frailty model. For this model, only parts of the frailty are 

shared among individuals in a group. The conditional survival function in the bivariate 

case is given by 

          1 0 1 2 0 2

1 2 1 1 2 2, | | | ,
w H t w H t

S t t W w S t w S t w e e
 

    (2.77) 

where W1 and W2 are two correlated random variables. In the correlated frailty model, 

there is also an additional parameter for correlation between frailties in each group 
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besides the parameter of the frailty. Unlike the shared frailty model, there are two 

associated random variables used to characterise the frailty effect for each cluster. For 

instance in twin data, different random variable is assigned to twin 1 and another to twin 

2 (Wienke et al., 2005). 

2.7.3 Statistical Distributions For Frailty 

 The frailty is a random variable W  with a probability distribution function 

 G w . Examples of frailty distribution are gamma distribution, positive stable, and 

inverse Gaussian.   

2.7.3.1 Gamma Distribution 

 The most widely used frailty distribution is a gamma distribution. It has been 

applied in many researches due to the simplicity of the Laplace transform. Also, it is a 

flexible distribution depending on the value of the shape parameter. The probability 

density function of a gamma distributed random variable is given by (Wienke, 2011) 

 
 

 
1 1wG w w e  



 


, (2.78) 

where   is a shape parameter and   is a scale parameter. Given that  s H t , the 

unconditional survivor function  fS t  is  

 
 

 
1

0

ws w

fS t e w e dw


  




  

  
 

  
 

 
1

0

ws w
e w dw


  



   


 

 

  
 

 
 

 
1

0

1
.

w s
e w s dw

s


 






 

    
 


 

(2.79) 
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 The last fraction in (2.79) does not depend on w  and can be taken out of the integral. 

What is left is a gamma density with parameters   and s  , and, therefore, integrates 

to one. This gives  

 
 

 
fS t

s











. (2.80) 

When 1  , the unconditional survivor function is given by  

    1fS t s


  . (2.81) 

2.7.3.2 Positive Stable Distribution 

 The probability density function of a positive stable distributed random variable 

is given by (Wienke, 2011) 

 
   

 
 

1 1
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  , (2.82) 

with 0w  and 0 1v  . The Laplace transform of positive stable distribution is given 

by  

       exp exp vL s E ws s    . (2.83) 

Therefore, the unconditional survivor function for the positive stable frailty model is 

given by  

      
0

expws v

fS t e dG w s


   . (2.84) 

All moments of the positive stable distribution are infinite, thus the mean of the frailty is 

infinite and variance does not exists (Wienke, 2011). 
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2.7.3.3 Inverse Gaussian Distribution 

 The inverse Gaussian distribution was introduced by Hougaard (1984). The 

density function may be expressed in the form of (Wienke, 2011) 

 
   

2

23
exp

22
G w w

ww

 




 
   

 
, (2.85) 

where   and   are positive parameters. 

2.7.4 Tests for Detecting the Presence of Frailty 

 Kiefer (1984) proposed a score test for heterogeneity in exponential survival 

model and considered uncensored data. Lancaster (1985) modified the test using the 

unconditional variance and applied to the Weibull model. Later on, Blossfeld and 

Hamerle (1989) derived a score test following the test proposed by Lancaster (1985), 

yet using the conditional variance estimator suggested by Burdett et al. (1985). This 

study considered the Weibull model with censored observations.  

Commenges and Andersen (1995) derived a score test from the marginal partial 

likelihood of the Cox proportional hazards regression model. The counting process 

arguments were used to obtain the asymptotic variance. The proposed test was studied 

in the case of individual frailty. Similar to Commenges and Andersen (1995), the basis 

of the tests proposed by Gray (1995) and Verweij et al. (1998) were martingale 

residuals. However, these studies considered the case of multivariate frailty. For 

instance, Gray (1995) focused on testing the institutional effect on study outcome and 

considered time-varying covariates in the model. Meanwhile, Andersen et al. (1999) 

applied the test proposed by Commenges and Andersen (1995) in a multicentre clinical 

trial study. This study compared the performance of frailty model with the common 

proportional hazards model. They found that ignoring the centre effect caused biased 

and inconsistent estimation. Sinha (2012) proposed a score test for detecting frailty for 
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recurrent event data that was derived from Taylor series expansion of the likelihood 

function about the frailty mean. Apart from numerical methods, there were also 

graphical approaches for testing frailty in survival models such as in Viswanathan and 

Manatunga (2001), Economou and Caroni (2005), Economou and Caroni (2008) and 

Economou (2011). Also, an outlier test was proposed by Caroni and Kimber (2004) for 

detecting frailty in the Weibull model.  

 In parametric survival model, many frailty tests were developed based on the 

Weibull model. For instance, Crowder and Kimber (1997) proposed a score test for 

Weibull based model with gamma frailty. Zhu (1998) derived a Weibull based score test 

for infinite variance frailty, yet it has a slow convergence rate to the normal limit. 

Sarker (2002) improved this drawback by proposing two new score tests which were 

derived from Zhu’s score test namely modified score test and test based on ln s. The 

convergence to the normal limit for Sarker’s tests was faster than Zhu’s (1998) score 

test. Meanwhile, Bolfarine and Valença (2005) proposed score tests which have been 

derived from a Weibull AFT model. Besides the score test, Zhu (1998), Sarker (2002), 

Duchateau et al. (2002) and Claeskens (2008) also looked into the likelihood ratio test 

in their study. Thus, the aim of our study is to investigate the tests for frailty in a 

Gompertz survival time data since the model has not been extensively explored by other 

studies.  

Univ
ers

ity
 of

 M
ala

ya



 

62 
 

2.8 Summary 

 The theory of survival analysis such as the survival time functions and types of 

survival model are described in this chapter. Studies on survival and prognostic factors 

for cervical cancer have been reviewed. Also, studies on the comparison of survival 

models are discussed. Missing data problem in survival models are also studied, where 

missing data methods used in this study are described. Since most of the referred 

literatures on missing covariate values focused on the Cox proportional hazards model, 

this study interested to look at the performances of these methods on the parametric 

survival model. This chapter also explains the theory of frailty model which includes the 

types of frailty model, frailty distributions and tests for detecting frailty. Based on 

referred literatures, frailty test derived from the Gompertz distribution is limited. Thus, 

frailty tests for this type of survival data are derived and investigated in this study.   

 The methods described in this chapter are very relevant and often used in the 

analysis of survival data. The use of the Cox model is justified in determining the 

hazard ratio which is an important quantity in survival analysis as it gives a meaningful 

and understandable interpretation especially for describing patients’ prognosis. The 

parametric survival models considered in this study are also appropriate as they are the 

most commonly used to model survival data. Meanwhile, methods for handling missing 

covariate values those have been considered in this study are also justified as they are 

the most commonly methods used in survival analysis. Also, the test for detecting frailty 

in survival data is of importance where further analyses are required especially when 

there is any unmeasured factor that may induce dependency among the survival times.         
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CHAPTER 3  

NON-PARAMETRIC AND SEMI-PARAMETRIC ANALYSIS OF 

CERVICAL CANCER DATA 

3.1 Introduction 

 The survival probability is estimated by the Kaplan-Meier method and the 

survival difference is checked based on the log-rank test. The relationship between the 

survival experience of patients and their socio-demographic and clinical characteristics 

is commonly studied based on the Cox proportional hazards regression model. This 

model identifies a set of covariates that is significantly influencing the hazard or the risk 

of getting an event. An important assumption of the Cox proportional hazards 

regression model is the proportional hazards assumption. When this assumption is 

violated, an extension of the proportional hazards model may be opted.   

In this chapter, data of cervical cancer patients treated in Hospital Universiti 

Sains Malaysia (HUSM) are analysed to model the prognostic factors. Section 3.2 

describes the data and variables that have been included in the analysis. In Section 3.3, 

results of the descriptive statistics are presented. Non-parametric methods using Kaplan-

Meier estimate and log-rank test to check for the survival differences are described in 

Section 3.4. In Section 3.5, prognostic factors that were significantly affecting the risk 

of death of the cervical cancer patients treated in HUSM are identified using the Cox 

proportional hazards regression analysis. The proportional hazards assumption is 

verified, and the stratified Cox model is carried out since the proportional hazards 

assumption is violated. The results are presented in Section 3.5. Section 3.6 discusses all 

the results that have been obtained and the summary is given in Section 3.7.  
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3.2 Description of the Data Set 

3.2.1 Source of Data 

The cervical cancer data are obtained from Hospital Universiti Sains 

Malaysia (HUSM). The HUSM is located in Kubang Kerian, Kelantan, Malaysia. This 

hospital is a referral centre for the East Coast region of Malaysia. All those patients who 

were histopathologically and clinically diagnosed with cervical cancer between 1
st
 July 

1995 and 30
th

 June 2007, and have received at least one treatment related to cervical 

cancer in HUSM are included in this study. Those who died due to other reason are 

excluded. Patients are followed until 31
st
 December 2008. In all, 120 patients are 

included which among them 66 (55%) died and 54 (45%) alive. Ethical approval is 

obtained from the research ethics committee (see Appendix A). 

3.2.2 Description of Variables 

  The outcome variable is survival time which is measured from the date of 

diagnosis with cervical cancer until date of death. Patient who survived beyond the 

study period is considered as censored observation. The independent variables are stage 

at diagnosis, ethnicity, histologic type, lymph node involvement, age at diagnosis, 

distant metastasis and primary treatment received. The stage of cancer follows the 

International Federation of Gynecology and Obstetrics (FIGO) system.  

 The number of patients diagnosed at stage IV is too small (5 patients) compared 

to all the other stages. Thus, it has been decided to combine both groups, stage III and 

stage IV, which yielded to 31 (25.8 %) patients. This variable is classified into three 

groups namely; stage I, stage II and stage III-IV. For the histologic type, cases are 

divided into squamous cell carcinoma and adenocarcinoma. Whenever the cancer has 

metastasized to the lymph node that is to pelvic, para-aortic or both, that patient is 
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considered to have lymph node involvement. Patients are grouped according to their age 

at diagnosis namely; less than 40, 40-49 years, 50-59 years, and 60 and over. Ethnicity 

is classified according to Malay and non-Malay. The type of primary treatment received 

is divided into either surgery or non-surgery (chemotherapy and/or radiotherapy). These 

variables are described in Table 3.1.    

Table 3.1: List of variables 

Variables Description/Code 

Time 
Survival time from diagnosis of cervical 

cancer to death (in months) 

Status 
Censored = 0 

Death = 1 

Ethnicity 
Non-Malay = 0, 

Malay =1 

Lymph node involvement 

      

Negative = 0  

Positive = 1 

Histologic type                        

   

Squamous cell carcinoma (SCC) = 0, 

Adenocarcinoma (ADC) = 1 

Age at diagnosis  

 

  

≤ 39 years = 0, 

40 – 49 = 1, 

50 – 59 = 2, 

≥ 60 = 3 

Stage at diagnosis 

 

I = 0, 

II = 1, 

III–IV = 2. 

Primary treatment 

 

Surgery = 0, 

Non-surgery = 1.  

Distant metastasis 

 

No = 0, 

Yes = 1. 

Univ
ers

ity
 of

 M
ala

ya



 

66 
 

3.3 Descriptive Statistics 

 The mean age at diagnosis of the cervical cancer patients is 49.73  9.52. 

Majority of these patients are Malays (99[82.5%]) and the remaining are non-Malays 

(21[17.5%]). Exactly 31(25.8%) patients are diagnosed with lymph node involvement 

and 89(74.2%) are diagnosed without lymph node involvement. Meanwhile, the 

squamous cell carcinoma type constitutes about 77.5% (93 patients) of all histologic 

types. There are 35 (29.2%), 54 (45.0%) and 31 patients (25.8%) diagnosed in stage I, 

II, III-IV respectively. Of the 120 patients, there are 40 (33.3%) patients primarily 

treated with surgical treatment and 37(30.8%) patients have distant metastasis.  The 

details are given in Table 3.2 below.  

 

Table 3.2:  Characteristics of patients with cervical cancer treated in HUSM 

Characteristic No. of cases (%) Died (%) Censored (%) 

Ethnicity 

     Non-Malay 

     Malay 

 

21(17.5) 

99(82.5) 

 

10(8.3) 

56(46.7) 

 

11(9.2) 

43(35.8) 

Lymph node involvement 

     Negative 

     Positive 

 

89(74.2) 

31(25.8) 

 

50(41.7) 

16(13.3) 

 

39(32.5) 

15(12.5) 

Histologic type                                  

    SCC
a 

    ADC
b 

 

93(77.5) 

27(22.5) 

 

48(40.0) 

18(15.0) 

 

45(37.5) 

9(7.5) 

Age at diagnosis 

     ≤ 39 years 

     40 – 49 

     50 – 59 

     ≥ 60 

 

15(12.5) 

46(38.3) 

38(31.7) 

21(17.5) 

 

11(9.2) 

24(20.0) 

21(17.5) 

10(8.3) 

 

4(3.3) 

22(18.3) 

17(14.2) 

11(9.2) 

Stage at diagnosis 

     I 

     II 

     III–IV 

 

35(29.2) 

54(45.0) 

31(25.8) 

 

16(13.3) 

28(23.3) 

22(18.3) 

 

19(15.8) 

26(21.7) 

9(7.5) 

Primary Treatment 

     Surgery 

     Non-surgery 

 

40(33.3) 

80(66.7) 

 

18(15.0) 

48(40.0) 

 

22(18.3) 

32(26.7) 

Distant Metastasis 

     No  

     Yes 

 

83(69.2) 

37(30.8) 

 

39(32.5) 

27(22.5) 

 

44(36.7) 

10(8.3) 
           aSquamous cell carcinoma, bAdenocarcinoma 
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3.4 Non-parametric Analysis 

The five year surival rate of the cervical cancer patients has been estimated 

using the Kaplan-Meier method. As defined by Lee and Wang (2003), the five-year 

survival rate is the cumulative proportion surviving at the end of the fifth year. 

Therefore, this study defines the five-year survival rate as the proportion of the cervical 

cancer patients who survived within five years after diagnosis.   

The differences of the survival distribution between the groups for each 

covariate are further tested using the log-rank test. This test is performed using the 

function survdiff from the survival package (Therneau, 2014) in R software. 

The survival difference between the groups are statistically significant when the 

-valuep  is significant ( -value < 0.05p ). In addition, Kaplan-Meier survival curves are 

constructed for each variable to observe the difference in the survival distributions 

between two or more groups. Also, the median survival time which is the time when 

half of the patients died is computed. 

 The overall five-year survival estimates of the 120 cervical cancer patients 

treated in HUSM is 39.7% (95% CI: 30.7, 51.3). The median survival time is 40.8 (95% 

CI: 34.0, 62.0) months. Figure 3.1 presents the overall Kaplan-Meier estimates of the 

survivorship functions along with 95% confidence interval. 
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Figure 3.1:  Kaplan-Meier estimate along with 95% confidence interval 

  The five-year survival rate for each factor is tabulated in Table 3.3. The log-

rank test is used to compare the survival difference between the groups. The log-rank 

test and Kaplan-Meier survival curves may provide a preliminary idea of possible 

prognostic factors for further analysis. The log-rank test shows that there is significant 

difference in the survivorship function between the groups for variables stage, primary 

treatment and distant metastasis (see Table 3.3). 
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Table 3.3:  Five-year survival according to patients’ characteristics 

Characteristic 
Five-year survival  

(%) 
95 % CI 

2
 (df) 

p-value 

(log-rank)
 

Ethnicity 

     Non-Malay 

     Malay 

 

33.0 

40.6 

 

12.7 – 86.0 

31.1 – 52.9 

 

0.2(1) 

 

0.631 

Lymph node involvement 

     Negative 

     Positive 

 

36.6 

52.3 

 

26.6 – 50.4 

37.0 – 74.0 

 

0.1(1) 

 

0.762 

Histologic type                                  

    SCC
b 

    ADC
c 

 

41.2 

35.2 

 

30.9 – 54.8 

19.9 – 62.3 

 

1.4(1) 

 

0.244 

Age at diagnosis 

     ≤ 39 years 

     40 – 49 

     50 – 59 

     ≥ 60 

 

29.6 

44.6 

38.9 

42.1 

 

13.1 – 66.8       

30.6 – 65.0   

25.0 – 60.3 

23.6 – 75.1 

 

3.3(3) 

 

0.345 

Stage at diagnosis 

     I 

     II 

     III–IV 

 

54.7 

40.8 

18.4 

 

38.7 – 77.2 

27.7 – 60.3 

6.8 – 50.1 

 

10.8(2) 

 

0.005 

Primary Treatment 

     Surgery 

     Non-surgery 

 

52.6 

33.3 

 

37.5 – 73.6 

22.9 – 48.4 

 

5.1(1) 

 

0.0242 

Distant Metastasis 

     No  

     Yes 

 

49.7 

16.4 

 

38.8 – 63.7 

6.6 – 40.8 

 

6.6(1) 

 

0.0102 

alog-rank test bSquamous cell carcinoma, cAdenocarcinoma 

  

 Kaplan-Meier curves with respect to the variables that significant in the log-rank 

test are constructed. Figure 3.2 illustrates the survival curves for the variable stage at 

diagnosis. Patients who are diagnosed at the latest stage (III-IV) are found to have the 

lowest survival compared to stage I and stage II. The survivorship function for stage III-

IV lies below the other two groups (stage I and stage II) suggesting that this group has 

the least favorable survival experience.  
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Figure 3.2:  Kaplan-Meier survival curves for stage at diagnosis 

     Figure 3.3 shows that the curve for non-surgery group lies below the curve for 

the surgery group suggesting that the survival of patients in the surgery group is higher 

than the non-surgery group.  

  
Figure 3.3:  Kaplan-Meier survival curves for primary treatment 
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 The Kaplan-Meier survival plot for the distant metastasis (see Figure 3.4) 

indicates that there is a clear separation between the lines for survival time beyond 25 

months. The survivorship function for without distant metastasis group lies above the 

other group suggesting better survival experience.  

 

 
 

Figure 3.4:  Kaplan-Meier survival curves for distant metastasis 

 

3.5 Cox Proportional Hazards Regression Model 

 The prognostic model of the cervical cancer patients is commenced using the 

Cox proportional hazards regression model. The analysis is conducted to identify 

significant factors associated with the risk of death of these patients.     
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based on the scaled Schoenfeld residuals. This test verifies the proportional hazards 

assumption for each covariate. Table 3.4 shows that the proportional hazards 

assumption holds for all variables except that for distant metastasis ( -value < 0.05p ). 

 

Table 3.4:  The proportional hazards assumption test results                                  

for each independent variable    

Variables rho 2
 p-value 

Ethnicity -0.0812 0.434 0.510 

Lymph node involvement -0.0170 0.019 0.892 

Histologic type 0.0221 0.032 0.858 

Age at diagnosis NA 4.042 0.257 

Stage at diagnosis NA 2.102 0.350 

Primary Treatment 0.0244 0.041 0.841 

Distant metastasis 0.2580 4.600 0.032 

 

  

 For categorical independent variables, the proportionality assumption is further 

confirmed using a log-cumulative hazard functions against the logarithm of time plot 

(LML plot). The curves should be parallel so that the proportionality assumption holds 

(Lee & Wang, 2003). Figure 3.5 shows the LML plot for the distant metastasis variable. 

The plot supports the result from the scaled Schoenfeld residuals test, where the 

proportional hazards assumption for this variable is not satisfied. The two curves are 

parallel initially but afterwards the one representing the distant metastasis group crosses 

upwards the curve of the other group (without distant metastasis group).  
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Figure 3.5:  Log-cumulative hazard plot of distant metastasis 

3.5.2 Univariate Cox Proportional Hazards Regression Analysis 

In univariate analysis, each factor is analysed using the Cox proportional hazards 

regression model to identify the association between each covariate and the outcome 

individually. This analysis also may provide a preliminary idea on which variables have 

possible prognostic importance. As the distant metastasis variable does not satisfy the 

proportional hazards assumption, it is not appropriate to analyse this variable using the 

Cox proportional hazards model. Table 3.5 shows that stage at diagnosis and primary 

treatment are statistically significant at 5% level of significance.       
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Table 3.5: The univariate Cox proportional hazards regression model 

Variables Coefficient Crude HR (95% CI) LR(df) p-value 

Ethnicity 

     Non-Malay 

     Malay 

 

 

-0.1653 

 

 

0.8476 (0.4312-1.666) 

 

 

0.22(1) 

 

 

0.6382 

Lymph node involvement 

     Negative 

     Positive 

 

 

-0.08687 

 

 

0.9168 (0.5218-1.611) 

 

 

0.09(1) 

 

 

0.7609 

Histologic type                                  

    SCC
a 

    ADC
b 

 

 

0.3219 

 

 

1.3797 (0.8013-2.376) 

 

 

1.28(1) 

 

 

0.2577 

Age at diagnosis 

     ≤ 39 years 

     40 – 49 

     50 – 59 

     ≥ 60 

 

 

-0.6247 

-0.4092 

-0.6155 

 

 

0.5354 (0.2617-1.096) 

0.6642 (0.3194-1.381) 

0.5404 (0.2277-1.283) 

 

 

 

 

2.97(3) 

 

 

 

 

0.3962 

Stage at diagnosis 

     I 

     II 

     III–IV 

 

 

0.3265 

1.0176 

 

 

1.3860 (0.7448-2.579) 

2.7665 (1.4272-5.362) 

 

 

 

9.6(2) 

 

 

 

0.0080 

Primary Treatment 

     Surgery 

     Non-surgery 

 

 

0.6360 

 

 

1.889 (1.077-3.312) 

 

 

5.37(1) 

 

 

0.0205 

 aSquamous cell carcinoma, bAdenocarcinoma 

3.5.3 Multivariate Cox Proportional Hazards Regression Analysis 

All variables are further analysed using the multivariate Cox proportional 

hazards regression analysis. Independent variables that significantly associated with the 

hazards of death of the cervical cancer patients under study are selected based on the 

stepwise selection method. This selection method consists of forward selection followed 

by backward elimination process, with -value < 0.05p  for variable entry, and 

-value > 0.10p  for variable removal. At this step, the preliminary main effects model is 

obtained.   

In the multivariate analysis, histologic type, stage at diagnosis and distant 

metastasis are found to be statistically significant. This study has decided to combine 
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the stage I and stage II groups since there is no significant difference between stage I 

and stage II (HR 1.413; 95% CI: 0.7579, 2.636; p-value=0.276). The likelihood ratio 

test also shows that there is no significant difference between model with three-level 

version and the collapsed two-level version of the stage at diagnosis variable. In 

addition, the binary variable yields a simpler model, and it has not changed the 

coefficients for any other variables in the model. 

Interaction between the covariates in the preliminary main effects model is 

checked by adding the interaction term to the model. The interaction is not statistically 

significant at 5% level of significance. The preliminary final model is obtained after 

checking for the interaction. The results are presented in Table 3.6.  

Table 3.6: The multivariate Cox proportional hazards regression model 

Variables Coefficient SE Adjusted HR (95% CI) p-value 

Histologic type                                  

    SCC
a 

    ADC
b 

 

 

0.5946 

 

 

0.2897 

 

 

1.8123(1.027-3.198) 

 

 

0.0401 

Stage at diagnosis 

     I-II 

     III–IV 

 

 

0.8643 

 

 

0.2700 

 

 

2.3734(1.398-4.029) 

 

 

0.0014 

Distant Metastasis 

     No  

     Yes 

 

 

0.7211 

 

 

0.2636 

 

 

2.0567(1.227-3.448) 

 

 

0.0062 
      aSquamous cell carcinoma, bAdenocarcinoma 

 The proportional hazards assumption for each variable in the preliminary final 

model is tested based on the scaled Schoenfeld residuals. The global Schoenfeld 

residuals test is used to assess the assumption for the overall model.  These tests are 

performed using the function cox.zph from the survival package (Therneau, 

2014) in R software. The results are tabulated in Table 3.7. The global test indicates that 

the proportional hazards assumption for the overall model is violated. Meanwhile, the 

scaled Schoenfeld residuals test shows that the hazard for the distant metastasis variable 

is not proportional.  
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Table 3.7:  The proportional hazards assumption test results                                  

for the preliminary final model 

Variables rho 2
 p-value 

Histologic type                           0.0712 0.373 0.5416 

Stage -0.1434 1.336 0.2477 

Distant metastasis 0.2934 6.591 0.0102 

Global NA 7.956 0.0469 

 

3.5.4 Stratified Cox Model 

As the distant metastasis violates the proportional hazards assumption, the 

stratified Cox model is applied. Only the stage at diagnosis and histologic type remain 

in the model, while the distant metastasis is included in the model as a stratification 

factor. Both no-interaction (see Table 3.8) and interaction models (see Table 3.9) are 

compared using the likelihood ratio test. The test indicates that the no-interaction 

assumption holds (p-value=0.0823). Thus, the no-interaction model in Table 3.8 is 

acceptable. 

Table 3.8:  The stratified Cox model (No-interaction model) 

Variables Coefficient SE Adjusted HR (95% CI) p-value 

Histologic type 0.6529 0.2954 1.921 (1.077-3.428) 0.0271 

Stage at diagnosis 0.9195 0.2744 2.508 (1.465-4.294) 0.0008 

      Log-likelihood = -222.6476 

Table 3.9:  The stratified Cox model (Interaction model) 

Variables Coefficient SE Adjusted HR (95% CI) p-value 

Histologic type 1.3668    0.892    1.367 (0.6880-2.715) 0.3723   

Stage at diagnosis 0.6760     0.3647 1.966(0.9619-4.018) 0.0638 

Histologic type   

distant metastasis 
1.3700     0.6474 3.935(1.1064-13.997) 0.0343 

Stage at diagnosis   

distant metastasis 
0.7773     0.5846 2.176(0.6918-6.842) 0.1837   

      Log-likelihood = -220.1503 
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3.5.5 Assessment of Model Adequacy 

The fitness of the stratified Cox model (Table 3.8), and outliers are examined 

from the martingale, deviance and dfbeta residuals plots. Figure 3.6 illustrates the 

martingale residuals against survival time plot. The residuals scatter between -2 to 1, 

and there is no outlier seen in the plot. There are residuals that close to unity that 

correspond to patients who have shorter survival time than estimated by the model. 

Meanwhile, negative residuals indicate that patients have long survival time yet 

expected to die earlier. There is no indication of a lack of fit of the model.  

 

 

Figure 3.6: Plot of the martingale residuals against survival time for the stratified 

Cox model

Survival time

M
ar

ti
n

g
al

e 
re

si
d

u
al

s

Univ
ers

ity
 of

 M
ala

ya



 

78 
 

 The plot of the deviance residuals against survival times is examined to identify 

the presence of subjects who is poorly predicted by the model. Figure 3.7 shows that the 

residuals are roughly symmetrically distributed around zero, and the residuals ranged 

between -2 to 3 suggesting no wildly deviant observations.  

 

 

Figure 3.7:  Plot of the deviance residuals against survival time for the stratified 

Cox model 

 

 

In addition, the plot of delta-betas residuals for the histologic type (see Figure 

3.8) and stage at diagnosis (see Figure 3.9) show that there is no influential observation 

since all residuals lie between -0.1 to 0.1, thus implying a good fit of the model. 
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Figure 3.8:  Plot of the delta-betas for histologic type against survival time for the 

stratified Cox model 

 

 
 

Figure 3.9:  Plot of the delta-betas for stage at diagnosis against survival time for 

the stratified Cox model  
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3.5.6 Final Model 

 After checking for the model fitness, the final model is obtained. The result is 

given in Table 3.10. In this model, the histologic type and stage at diagnosis are found 

to be significant prognostic factors that affect the survival of cervical cancer patients 

under study. A patient in adenocarcinoma group has 1.921 times the hazard faced by 

patients in squamous cell carcinoma type. Meanwhile, patients who are diagnosed with 

stage III-IV are at 2.508 times the risk of death as those in stage I-II. 

Table 3.10:  The final stratified Cox model 

Variables Coefficient SE Adjusted HR (95% CI) p-value 

Histologic type                                  

    SCC
a 

    ADC
b 

 

 

0.6529 

 

 

0.2954 

 

 

1.921 (1.077-3.428) 

 

 

0.0271 

Stage 

     I-II 

     III–IV 

 

 

0.9195 

 

 

0.2744 

 

 

2.508 (1.465-4.294) 

 

 

0.0008 
           aSquamous cell carcinoma, bAdenocarcinoma 

All analyses are conducted using R software version 3.0.3. Figure 3.10 

summarises the procedures that have been performed in developing the prognostic 

model of the cervical cancer patients in this study. 
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Figure 3.10: Steps involve in semi-parametric analysis of cervical cancer data 
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3.6 Discussion 

 The overall five-year survival of the 120 cervical cancer patients treated in 

HUSM is 39.7% with median survival time of 40.8 months. The finding of this study is 

almost similar to that of a study in Indonesia (Sirait et al., 2003) and in India (Yeole et 

al., 2011) where the five-year survival is 40.3% and 42%, respectively. Meanwhile, the 

five-year survival of this study is slightly higher than that of a study in the Philippines, 

where the result was 34% (Laudico & Mapua, 2011).  

 The five-year survival of cervical cancer patients in this study is slightly lower 

than patients treated in the University of Malaya Medical Centre with a five-year 

survival of 50% (Wan Zamaniah et al., 2014). Similarly, in comparison with the finding 

of a study in Bulgaria (47.7%) that was done by Kostova et al. (2008), our result is low. 

Also, the five-year survival of our study is low compared to the overall five-year 

survival in other countries in Asia such as Hong Kong, the Republic of Korea and 

Singapore where the survival exceeded 65% (Sankaranarayanan et al., 2011). In 

addition, the average five-year survival in 23 European countries is 63% (Sant et al., 

2009) showing better survival than that of patients in this study. Meanwhile, the median 

survival time of this study is nearly similar to that of the study in Indonesia which is 

1208 days (Sirait et al., 2003). 

  The finding of this study shows that the five-year survival according to stage I, 

II and III-IV is 54.7%, 40.8% and 18.4% respectively. The log-rank test also shows that 

the survival is significantly different. This result is found to be consistent with those of 

other studies (Kostova et al., 2008; Seamon et al., 2011). Our finding is similar to other 

studies (Chen et al., 1999; Sirait et al., 2003; Chung et al., 2006) where the survival 

decreases as the stage of the disease increased. Kumari et al. (2010) also found that 

stage at diagnosis significantly influenced the prognosis of cervical cancer patients. 

However, their five-year survival obtained according to the stage was higher compared 
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to our study. In fact, the survival of patients diagnosed at an advanced stage (Stage IV) 

was considerably high where the survival rate was 33%.  

 In our study, higher five-year survival is observed in patients treated with 

surgery compared to non-surgical treatment and the survival difference is statistically 

significant. Flores-Luna et al. (2001) found that patients who underwent surgical 

treatment had better survival (85.7%) than those who received radiotherapy (62.5%). 

Large proportion of individuals in the surgery group was diagnosed at an early stage. 

Therefore, longer survival time in this group was noted. Furthermore, the percentage of 

dying in surgical treatment group was lower than another treatment group.  

 The survival difference between with and without distant metastasis groups is 

statistically significant based on the log-rank test. The five-year survival of patients who 

have distant metastasis is lower than those who have no distant metastasis. This study 

also discovered that there is no significant difference in survival for variables ethnicity, 

lymph node involvement, age, and histologic type. In contrast, Yeh et al. (1999) 

reported a significant difference in survival of patients with lymph node and those 

without lymph node involvement. Garipagaoglu et al. (1999) and Flores-Luna et al. 

(2001) also reported that age did not influence the survival of cervical cancer in their 

study. Garipagaoglu et al. (1999) claimed that the survival difference was not observed 

due to a very small number of patients in younger age group (< 40 years). In contrast, 

Brun et al. (2003) reported an opposite finding. It was identified that the percentage of 

younger patients was large in their study. Meanwhile, Galic et al. (2012) found that the 

five-year survival of adenocarcinoma group was lower compared to the squamous cell 

carcinoma group for both early and advanced stage of cancer.    

 In this study, the stratified Cox model is performed as the proportional hazards 

assumption is violated for distant metastasis variable. Thus, this variable is stratified and 

considered in the model as a stratification factor. As a result, the significant prognostic 

Univ
ers

ity
 of

 M
ala

ya



 

84 
 

factors associated with the survival of those 120 cervical cancer patients are histologic 

type and stage at diagnosis.    

 This study found that the prognosis of cervical cancer depends significantly on 

the stage at diagnosis. Patient who is diagnosed with advanced stages (stage III-IV) of 

cancer has higher risk of death than early stages, stage I-II. This finding is also 

concurred with findings from other researches (Rijke et al., 2002; Grigienė et al., 2007; 

Katanyoo et al., 2012; Douine et al., 2014). It is worthwhile to note that a study of 515 

cervical cancer patients by Dueňas-González et al. (2012) showed a significant result 

for advance stage III & IV with adjusted hazard ratio of 1.54 (95% CI= 1.11-2.14), 

indicating that patients with advanced stage of disease had a 54% higher risk of 

progression or death at any time than earlier stage patients. Study in Thailand by 

Pomros et al. (2007) showed a significant result for stage III with adjusted HR of 1.65 

(95% CI: 1.05; 2.59). However, stage IV was found not significant probably due to 

small number of patients in that group.  

 This study also found that the histologic type is significantly affecting the 

survival, as patients diagnosed with adenocarcinoma are identified to have higher risk of 

dying compared to squamous cell carcinoma, which are supported by previous findings 

of other researches. As an example, Galic et al. (2012) found that adenocarcinoma had 

significant negative impacts on the prognosis of cervical cancer patients studied. 

Furthermore, Yamauchi et al. (2014) claimed that adenocarcinoma was associated with 

a worse prognosis because those who were diagnosed with such a histologic type were 

detected later and at more advanced stages than the squamous cell carcinoma. In 

addition, this histologic type is often associated with HPV 18 (Kyrgiou & Shafi, 2010) 

and has poorer prognosis than other HPV type (Schwartz et al., 2001). Chung et al. 

(2006) and Atahan et al. (2007) also reported that histologic type was a significant 

prognostic factor of cervical cancer in their studies.  
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3.7 Summary 

Data of cervical cancer patients treated in HUSM are analysed using the Cox 

proportional hazards regression model. From this model, it has been found that the stage 

at diagnosis, histologic type and distant metastasis are the significant prognostic factors 

that influence the risk of dying of these patients. However, the distant metastasis 

variable does not satisfy the proportional hazards assumption, thus the stratified Cox 

model is adopted. The stage at diagnosis and histologic type remain as the significant 

prognostic factors in the model. Meanwhile, the distant metastasis is considered as the 

stratification factor. Therefore, the findings indicate that cervical cancer patients treated 

at HUSM with stage III-IV with adenocarcinoma type are at the greatest risk of death 

from cervical cancer.  
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CHAPTER 4   

PARAMETRIC ANALYSIS OF CERVICAL CANCER DATA  

4.1 Introduction 

 Parametric survival models assume that survival times follow specific statistical 

distribution. This type of survival model may consist of a proportional hazards model 

and an accelerated failure time (AFT) model. The choice between these two models 

depends on the distribution of the survival times. The proportional hazards model 

involves modelling the hazards, while a major concern of the AFT model is on 

modelling the survival times.   

 Therneau and Grambsch (2000) listed several alternative methods to deal with 

nonproportional hazards data. Accelerated failure time model is one of the options that 

has been suggested since this model ignores the proportional hazards assumption 

(except for the exponential and Weibull models). The AFT model assumes that the 

predictors act multiplicatively on the survival times, which may be interpreted as the 

speed of progression of an individual along the time axis (Collet, 2003).  

 In this chapter, data of the 120 cervical cancer patients treated in HUSM that has 

been evaluated in Chapter 3 are further analysed using parametric survival models. The 

Weibull, log-logistic and lognormal models, are considered. The suitability of the 

aforementioned parametric models is checked in Section 4.2. In Section 4.3, the 

univariate and multivariate analyses are performed for each parametric model. All 

multivariate models are compared using Akaike information criterion (AIC) statistic to 

determine the best fitting model for the data. In Section 4.4, the best fit parametric 

survival model that has been obtained in Section 4.3 is compared with the stratified Cox 

model presented in Chapter 3. Discussions are given in Section 4.5, and summary of the 

findings is provided at the end of the chapter, in Section 4.6.   
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4.2 The Suitability of the Parametric Model   

 The suitability of the Weibull model is gauged based on the log-cumulative 

hazard plot. Figure 4.1 shows that the relationship between the   ˆlogH t  and log t  is 

approximately linear, suggesting that the Weibull assumption may be suitable.  

 

Figure 4.1: Log-cumulative hazard plot 

 

 The log-logistic model is also fitted to the data of the cervical cancer patients in 

this study. The suitability of the log-logistic model is assessed by a plot of the log-odds 

of survival against the log of survival time which is given in Figure 4.2. The plot 
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indicates a remarkably straight line suggesting that the survival times may be 

appropriate to be modelled using the log-logistic distribution.  

 
Figure 4.2: Log-odds of survival against the log of survival time plot 
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Figure 4.3 illustrates the plot of    1 ˆ1 exp H t    against the log of survival 

time that is used to check for the suitability of the lognormal model. The plot gives a 

reasonably straight line suggesting that the survival times may also be appropriate to be 

modelled using the lognormal distribution.  

 

Figure 4.3: Plot of    ˆ-1
Φ 1-exp -H t

 
against the log of survival time
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4.3 Parametric Survival Regression Model 

 The accelerated failure time (AFT) model is considered to model the effect of 

stage at diagnosis, ethnicity, histologic type, lymph node involvement, age at diagnosis, 

distant metastasis and primary treatment on the survival times of the 120 cervical cancer 

patients treated in HUSM. 

4.3.1 Univariate Parametric Survival Models 

Univariate analysis is performed to obtain a preliminary idea of which factor that 

may be of prognostic value. Factors that are considered in these analyses are ethnicity, 

lymph node involvement, histologic type, age at diagnosis, primary treatment received, 

stage at diagnosis and distant metastasis. Each of these variables is analysed using the 

Weibull, log-logistic and lognormal models separately.  

Results of the univariate analyses are presented in Table 4.1. In the case of the 

Weibull model, it has been found that variables with p-value less than 0.05 are stage at 

diagnosis, primary treatment and distant metastasis. Meanwhile, only the stage at 

diagnosis and primary treatment are statistically significant in the log-logistic and 

lognormal models.  
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Table 4.1: The univariate analyses of parametric models results 

Variables Weibull Log-logistic Lognormal 

 
α

a 
TR

b 
95%CI

c
 p-value α TR 95% CI p-value α TR 95%CI p-value 

             
Ethnicity 

            
   Non-Malay 

            
   Malay 0.21 1.24 0.62-2.48 0.551 0.08 1.09 0.53-2.24 0.821 0.12 1.12 0.52;2.42 0.769 

             
Lymph node 

            
   Negative 

            
   Positive 0.14 1.14 0.64-2.05 0.652 0.12 1.13 0.61-2.08 0.698 0.18 1.20 0.63-2.28 0.580 

             
Histologic  

                 
SCC

d 

                
ADC

e 
-0.40 0.67 0.38-1.18 0.166 -0.33 0.72 0.39-1.32 0.285 -0.36 0.70 0.36-1.34 0.280 

             
Age 

            
   ≤ 39 years 

            
   40 – 49 0.62 1.85 0.88--3.90 0.106 0.80 2.22 0.98-5.04 0.057 0.76 2.13 0.90-5.04 0.085 

   50 – 59 0.41 1.50 0.70-3.21 0.292 0.48 1.62 0.70-3.75 0.257 0.52 1.68 0.70-4.03 0.249 

   ≥ 60 0.48 1.62 0.66-3.98 0.295 0.80 2.22 0.88-5.60 0.093 0.92 2.50 0.92-6.82 0.073 

             
Stage 

            
   I-II 

            
   III-IV -0.92 0.40 0.24-0.66 <0.0001 -0.95 0.39 0.22-0.68 0.001 -1.02 0.36 0.20-0.64 0.001 

             
Treatment 

            
   Surgery 

            
   Non-surgery -0.80 0.45 0.27-0.76 0.003 -0.69 0.50 0.28-0.88 0.017 -0.78 0.46 0.26-0.82 0.009 

             
Metastasis 

            
   No 

            
   Yes -0.73 0.48 0.29-0.79 0.004 -0.51 0.60 0.35-1.02 0.062 -0.46 0.63 0.35-1.15 0.131 
             

  αa = regression coefficient, TRb= time ratio, CIc= confidence interval, SCCd=Squamous cell carcinoma, ADCe=Adenocarcinoma 
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4.3.2 Multivariate Parametric Survival Models 

In the multivariate analyses, the full model that contains all covariates is 

developed for each parametric survival model. Results for these full models are 

tabulated in Table 4.2. The histologic type, stage at diagnosis and distant metastasis are 

statistically significant ( -value 0.05)p   in the Weibull model. Meanwhile, for the log-

logistic model, only the stage at diagnosis variable is statistically significant. In the case 

of the lognormal model, the significant prognostic factors are stage at diagnosis and age 

at diagnosis 60 years and older. It is worthwhile to note that, although the primary 

treatment is statistically significant in the univariate analyses for all models, the 

treatment effect is not statistically significant in the multivariate analyses. 
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Table 4.2: The multivariate analyses of full parametric models results 

Variables Weibull Log-logistic Lognormal 

 
α

a 
TR

b 
95%CI

c 
p-value α TR 95% CI p-value α TR 95%CI p-value 

             Ethnicity 
 

 
   

 
      

   Non-Malay 
            

   Malay -0.44 0.64 0.31-1.31 0.226 -0.53 0.59 0.25-1.36 0.216 -0.41 0.66 0.29-1.50 0.326 
 

            

Lymph node             

   Negative             

   Positive 0.11 1.12 0.63-1.99 0.713 0.08 1.08 0.58-2.02 0.799 0.16 1.17 0.63-2.18 0.616 
 

            

Histologic              
     

SCC
d 

            
     

ADC
e 

-0.71 0.49 0.30-0.82 0.006 -0.54 0.58 0.33-1.04 0.067 -0.59 0.55 0.30-1.02 0.057 
 

            

Age             

   ≤ 39 years             

   40 – 49 0.48 1.62 0.77-3.41 0.206 0.59 1.80 0.78-4.14 0.169 0.75 2.12 0.91-4.91 0.081 

   50 – 59 0.35 1.42 0.69-2.95 0.34 0.36 1.43 0.62-3.29 0.404 0.52 1.68 0.72-3.93 0.229 

   ≥ 60 0.55 1.73 0.76-3.96 0.193 0.74 2.10 0.86-5.10 0.105 1.00 2.72 1.07-6.88 0.035 
 

            

Stage             

   I-II             

   III-IV -0.86 0.42 0.25-0.72 0.002 -0.95 0.39 0.21-0.72 0.003 -0.98 0.38 0.20-0.70 0.002 
 

            

Treatment             

   Surgery             

   Non-surgery -0.49 0.61 0.36-1.05 0.077 -0.41 0.66 0.37-1.20 0.176 -0.44 0.64 0.35-1.16 0.143 

 
            

Metastasis             

   No             

   Yes -0.60 0.55 0.34-0.88 0.013 -0.35 0.70 0.41-1.19 0.187 -0.30 0.74 0.43-1.29 0.289 
             

 αa = regression coefficient, TRb= time ratio, CIc= confidence interval, SCCd=Squamous cell carcinoma, ADCe=Adenocarcinoma 
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4.3.3 Comparison of Parametric Survival Models 

The Akaike Information Criterion (AIC) is used to compare and find the best 

fitted model among the Weibull, log-logistic and lognormal models. The AIC statistic is 

computed as follows: 

    2 log-likelihood 2AIC c k    , (4.1) 

where c  is the number of unknown parameters (coefficient regressions), and k  is the 

number of other parameters. 

 In determining the best fitted model by comparing models with reduced 

variables from backward, forward or stepwise selection methods may not be appropriate 

as different model (reduced variables) contains different number of significant 

variables. This means, comparison using AIC statistic from models with different 

number of variables may not be a proper approach (Lee and Wang, 2003). Thus, for this 

study, the AIC value is computed for each full parametric model (all variables) in Table 

4.2, and these values are presented in Table 4.3. The smallest AIC statistic is observed 

for the Weibull model. The AIC value for the lognormal model is slightly higher than 

the log-logistic model. This result suggests that the Weibull model fits the data better 

compared to the log-logistic and lognormal models. 
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Table 4.3: The Akaike information criterion value for each parametric model 

Model Log-likelihood AIC 

Weibull  -332.2703 686.5406 

Log-logistic -333.1028 688.2056 

Lognormal -333.0527 688.1054 

   

4.3.4 The Weibull Model   

Further analysis is conducted for the Weibull model, where the variables which 

are significantly associated with the time to death of the cervical cancer patients are 

selected using the stepwise selection method. The histologic type, stage at diagnosis and 

distant metastasis are found to be significant ( -value < 0.05p ), and the result is given in 

Table 4.4. There is also no evidence of interaction among the variables in the model.  

Table 4.4: The multivariate Weibull model 

Variables α
a 

TR
b 

95% CI
c 

p-value 

Histologic  
         

SCC
d 

    
   ADC

e 
-0.62 0.54 0.32-0.90 0.019 

Stage 
    

   I-II 
    

   III-IV -0.89 0.41 0.25-0.66 <0.0001 

Distant metastasis 
    

   No 
    

   Yes -0.74 0.48 0.30-0.76 0.002 
      αa = regression coefficient, TRb= time ratio, CIc= confidence interval, SCCd=Squamous cell carcinoma,     
     ADCe=Adenocarcinoma 

  

 The unique property of the Weibull model is that, if the proportional hazards 

assumption holds, then the AFT assumption also hold and vice versa (Kleinbaum & 

Klein, 2005). This means that a Weibull proportional hazards model is equivalent to a 

Weibull AFT model. It has been found that the proportional hazards assumption is 
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violated for distant metastasis variable. Figure 4.4 illustrates the log-cumulative hazard 

plot for distant metastasis. The plot indicates that the two lines are straight, yet not 

parallel. This plot suggests that the Weibull assumption holds, but the proportional 

hazards may be violated (Kleinbaum & Klein, 2005).  

 

Figure 4.4: Log-cumulative hazard plot for distant metastasis 

 Apart from that, a likelihood ratio test is conducted to check whether the value 

of the scale parameter for the Weibull model with common linear component (histologic 

type and stage) for without distant metastasis group is similar to with distant metastasis 

group. If the scale parameter is similar, then the proportional hazards assumption is 

satisfied. From the test, it is confirmed that the two scale parameters are not equal (p-

value=0.0003). This means the proportional hazards assumption is violated. Thus, a 
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standard Weibull AFT model may not be suitable to model the data of the cervical 

cancer patients. 

As the scale parameters are not identical between the model with and without 

distant metastasis, a stratified Weibull model is adopted. This model is developed by 

stratifying the distant metastasis variable while histologic type and stage at diagnosis 

remain as the covariates in the model. It is noted that, the stratification allows for a 

separate scale parameters for each distant metastasis group, yet the coefficients are 

assumed to be the same across the group. The stratified Weibull model is presented in 

Table 4.5.  The estimated scale parameter for without metastasis (DM=0) group is 

1.119, while for with distant metastasis (DM=1) group is 0.689. 

Table 4.5: The stratified Weibull model 

Variables α
a 

TR
b 

95% CI
c 

p-value 

Histologic type 
         

SCC
d 

    
   ADC

e 
-0.55 0.58  0.34-0.98 0.0429 

Stage at diagnosis     

   I-II     

   III-IV -0.98 0.37  0.23-0.60 <0.0001 
 αa = regression coefficient, TRb= time ratio, CIc= confidence interval, SCCd=Squamous cell carcinoma, ADCe=Adenocarcinoma 

 
 

4.3.5 Assessment of Model Adequacy  

Fitness of the stratified Weibull model, outliers and influential observations are 

checked using the plot of martingale, deviance and delta-beta residuals graphically. 

Plots of the martingale residuals against the survival times are shown in Figure 4.5. 

According to Collet (2003), the martingale residuals for the parametric AFT model are 

not symmetrically distributed about zero, as observed in Figure 4.5. Figure 4.6 indicates 

that the deviance residuals lie between 3 to -2 suggesting no wildly deviant 

observations.  
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Figure 4.5: Plot of the martingale residuals against survival time 

 
Figure 4.6: Plot of the deviance residuals against survival time for the stratified 

Weibull model 
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 Figure 4.7 and Figure 4.8 show the delta-betas residuals plot against the survival 

times for the histologic type and stage at diagnosis, respectively. These plots show that 

there are no influential observations since all residuals lie within -0.1 to 0.1.  

 

Figure 4.7: Plot of the delta-betas residuals for the histologic type for the stratified 

Weibull model 

 

Figure 4.8: Plot of the delta-betas residuals for the stage at diagnosis for the 

stratified Weibull model 
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4.3.6 Final Model 

Table 4.6 shows the final model obtained from the stratified Weibull model. The 

survival time for a patient who is diagnosed at stage III-IV is estimated to be 37% of 

that of a patient who was diagnosed with stage I-II. The estimated time ratio for the 

histologic type group is 0.58 which indicates that the earlier time to death is more likely 

for the patient with an adenocarcinoma type. Meanwhile, the scale parameter for 

without distant metastasis and with distant metastasis stratum is 119.11   and 

689.02   respectively. 

Table 4.6: The final stratified Weibull model  

Variables α
a 

SE
b 

TR
c
(95% CI

d
) p-value 

Histologic type 
         

SCC
e 

    
   ADC

f 
-0.55 0.27 0.58 (0.34-0.98) 0.0429 

Stage at diagnosis     

   I-II     

   III-IV -0.98 0.24  0.37 (0.23-0.60) <0.0001 
αa = regression coefficient, SEb=standard error, TRc= time ratio, CId= confidence interval, SCCe=Squamous cell carcinoma, 

ADCf=Adenocarcinoma 

 All analyses are conducted using the R software version 3.0.3. Figure 4.9 

summarises the procedures that have been performed in identifying the best parametric 

model. 
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Figure 4.9: Steps involve in parametric analyses of cervical cancer data 
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4.4 Comparison between the Stratified Cox and Stratified Weibull Models 

 The performance of the stratified Cox model and the stratified Weibull model 

are assessed further by examining the Cox-Snell residuals plots. Figure 4.10 and Figure 

4.11 illustrate the Cox-Snell residuals plots for the stratified Weibull model for without 

metastasis and with distant metastasis stratum, respectively. The residuals for each 

group are computed separately as the scale parameters are different across the strata. 

Figure 4.10 shows that the line connecting the points is reasonably straight and nearly 

close to a straight line with zero intercept and slope equal to one. Meanwhile, the jagged 

line in Figure 4.11 is slightly deviates from the reference line.   

 

Figure 4.10: The Cox-Snell residuals plot for without distant metastasis stratum  

for the stratified Weibull model 

Cox-Snell residuals

C
u

m
u

la
ti

v
e 

h
az

ar
d

 o
f 

re
si

d
u

al

Univ
ers

ity
 of

 M
ala

ya



 

103 
 

 
 

Figure 4.11: The Cox-Snell residuals plot for with distant metastasis stratum for 

the stratified Weibull model  

 

The plot of the Cox-Snell residuals for the stratified Cox model is given in 

Figure 4.12. This figure shows that the majority of the plotted points lie on a 45-degree 

straight line through the origin suggesting that the stratified Cox model may fit the data 

relatively well. Therefore, based on these Cox-Snell residuals plots, it may be concluded 

that the stratified Cox model is the best model for the data of the 120 cervical cancer 

patients treated in HUSM compared to the stratified Weibull model.  
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Figure 4.12: The Cox-Snell residuals plot for the stratified Cox model 
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4.5 Discussion 

Data of the 120 cervical cancer patients treated in HUSM are analysed using 

parametric AFT models namely the Weibull, log-logistic and lognormal model. The 

suitability of the distributions is checked based on the plot of the cumulative hazard 

function (or a function of it) against the log of survival time. All plots give a reasonable 

straight line suggesting that the data may be appropriate to be modelled using the 

Weibull, lognormal and log-logistic model. 

The stage at diagnosis and primary treatment are statistically significant in all 

univariate models. In addition, the distant metastasis variable is also significant in the 

univariate Weibull model. In the multivariate analysis, there are clear distinctions 

among different parametric models in the significant covariates. The stage at diagnosis, 

histologic type and distant metastasis are found to be significant factors in the Weibull 

model. For the lognormal model, the stage at diagnosis and age at diagnosis 60 years 

and older are significant. Meanwhile, only the stage at diagnosis variable is significant 

in the log-logistic model. The differences of the significant factors obtained from 

different models are also noted in Ravangard et al. (2011), Wang et al. (2011) and 

Köhler and Kowalski (2012).     

 It is worthwhile to note that, even though primary treatment variable is 

significant for all models in the univariate analysis, it is found to be not significant in 

any multivariate models. Meanwhile, stage at diagnosis may be regarded as the most 

important factor that affect the survival of cervical cancer patients since this variable is 

found statistically significant at all level of analyses (univariate and multivariate 

analysis) and type of models. Of these three parametric models, the Weibull model is 

the best fitted model because this model gives the smallest AIC value.   

The development of the Weibull model is continued by checking the 

proportional hazards assumption for each significant variable identified in the 

Univ
ers

ity
 of

 M
ala

ya



 

106 
 

multivariate model. It has been found that the distant metastasis variable does not satisfy 

the proportional hazards assumption, thus the AFT assumption is also violated. The 

violation of the proportional hazards assumption is confirmed by the likelihood ratio test 

since the scale parameters are different for without and with distant metastasis group. 

 Our study shows that only the Weibull model is able to detect the non-

proportional hazards covariate, while other AFT models are not. In contrast, Köhler and 

Kowalski (2012) found that the non-proportional hazards covariates are significant in 

every AFT models tested in their study. Nardi and Schemper (2003) also emphasised 

that the AFT model tend to detect the significant effect of the non-proportional hazards 

covariate. However, Moran et al. (2008) supports our study by showing the less ability 

of the AFT model to detect the non-proportional covariates in comparison to the 

proportional hazards model.  

Many studies pointed out that if the assumption of the proportional hazards is 

violated, the parametric model may be adopted (Pourhoseingholi et al., 2007; Moghimi-

Dehkordi et al., 2008). This is not always true for the Weibull model because both 

assumptions, the proportional hazards and AFT, are used interchangeably. Qi (2009) 

reported that the performance of the Weibull model was poorer than other parametric 

models as the proportional hazards assumption was violated. Contradictory, Sayehmiri 

et al. (2008) observed that the Weibull model fitted the data well even though there was 

a non-proportional hazards covariate in the model, which is in parallel with our finding. 

However, they reported only the result without proposing any proper method to handle 

the non-proportional hazards covariate in the model.   

In our study, a stratified model is proposed to relax the proportional hazards 

assumption of the Weibull model in which the distant metastasis variable became a 

stratification factor. Stage at diagnosis and histologic type remain as the covariates in 

the model. The final model of stratified Weibull indicates that shorter survival time are 
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more likely for the patient who is diagnosed at stage III-IV than those in early stages 

(Stage I-II). Similarly, those who are diagnosed with adenocarcinoma had an earlier 

time to death compared to squamous carcinoma. The interpretation of an AFT model is 

easier and more meaningful for the clinician or medical practitioners to understand since 

it measures the direct effect of the covariates on the survival time (Hosmer & 

Lemeshow, 1999). 

The set of covariates that are statistically significant in the Weibull model are 

also significant in the Cox model as presented in Chapter 3. Many studies are conducted 

to compare the performance of the Cox and parametric models. In fact, majority of these 

studies reported that the parametric model is better compared to the Cox model 

(Pourhoseingholi et al., 2007, 2009, 2011; Wang et al., 2011; Zhu et al., 2011; 

Hashemian et al., 2013). However, most of these studies rely on the AIC statistic to 

choose the best model which may be inappropriate for comparing between semi-

parametric and parametric models (Bradburn et al., 2003b; Royston & Lambert, 2011).  

In this study, the Cox-Snell residuals plot is examined to check the performance 

of the stratified Weibull model and stratified Cox model. Ravangard et al. (2011), and 

Kӧhler and Kowalski (2012) are examples of study that used the Cox-Snell residual plot 

to compare the performance of semi-parametric and parametric models. Unlike the 

aforementioned studies, the Cox-Snell residuals plots show that the stratified Cox model 

fitted the cervical cancer data better than the stratified Weibull model. One possible 

reason for the poor fit of the parametric model is due to the percentage of censored 

observations in our study which is 45%. Nardi and Schemper (2003) revealed that the 

parametric model may fit the data well when the percentage of censored observations is 

less than 40 to 50 percent.  

Similar to our study, Moran et al. (2008) also discovered that the Cox model 

with non-proportional hazards covariate is better than the parametric AFT models. 
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According to Moran et al. (2008), one of the reason for the contradictory findings of 

other studies is that the standard Cox proportional hazards model still being adopted 

even though there was a significant covariate that violated the proportional hazards in 

the model as demonstrated in Kӧhler and Kowalski (2012) study. However, with a 

proper treatment through the extended Cox’s model that takes into account the non-

proportional hazards effect may yield an acceptable result (Bellera et al., 2010).    

4.6 Summary 

 The Weibull model fits the data of cervical cancer patients treated in HUSM 

better compared to the log-normal and log-logistic models. The stage at diagnosis, 

histologic type and distant metastasis are the significant factors in the Weibull model. 

However, since distant metastasis variable violates the proportional hazards assumption, 

the stratified Weibull model is applied. Also, this study is interested to identify the best 

model between the stratified Cox model that has been obtained from Chapter 3 and 

stratified Weibull model. Based on the Cox-Snell residuals plots, the stratified Cox 

model exhibits a better fit than the stratified Weibull model.  
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CHAPTER 5 

MISSING VALUES IN PARAMETRIC SURVIVAL MODEL 

5.1 Introduction 

Missing covariate values are common in survival data. In this chapter, four 

methods for handling missing covariates values namely the complete case analysis, 

expectation-maximization (EM) algorithm by method of weight, hot deck and multiple 

imputation have been studied. These methods are investigated for the case of parametric 

model. The Weibull accelerated failure time (AFT) model is considered since this 

model is one of the most common parametric models being used in many survival 

studies. Also, this study focuses on missing categorical covariate values because most of 

the covariates in survival data are categorical. Data are assumed to be missing at 

random (MAR).  

Survival function of the Weibull AFT model and its maximum likelihood 

estimation for a complete data model are provided in Section 5.2. Next, Section 5.3 

describes the methods of the complete case analysis, EM algorithm by method of 

weight, hot deck and multiple imputation. Meanwhile, simulation studies and the results 

are presented in Section 5.4. Then, Section 5.5 illustrates these methods on the data of 

cervical cancer patients treated in HUSM that has been evaluated in Chapter 3 and 

Chapter 4. The summary of the chapter is given in Section 5.6. 

5.2 The Weibull AFT Model  

 Let iY  be the survival time for subject i  where 1, ,i n , and has a Weibull 

distribution with parameters   and  . The hazard function for the Weibull model is  
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11 1

i ih y y 
  , (5.1) 

where 
1

0

1

exp
p

j j

j

  



   
    

   
 x  and   is the scale parameter. The survival 

function is given by  

    
1

expi iS y y 


  . (5.2) 

 Commonly, the observation of Y  is censored by a variable C  so that the 

observable outcomes are the observed event time  min ,T Y C . The censoring 

indicator is denoted by 
i , which 1i   if the observed event is a failure  i iY C  and 

0i   otherwise  i iY C . Also, let  1 2, , ,i i i ipx x x


x  represents a 1p  vector of 

covariates associated with ,iT  and  1 2, , , p   
  be a 1p  vector of regression 

coefficients. In the case of noninformative censoring, the probability density function 

for  , | , ,i i it  x   is given by 

        , | , , , | , , , | , ,
i

i i i i i i i i ip t h t S t


     x x x   . (5.3) 

Hence, from the hazard function in (5.1) and survival function in (5.2), the probability 

density function for the Weibull AFT model is given by
 

  
11 1 1

0

1

, | , , exp

i
p

i i i j j

j

p t t



    
  



    
     

     
x x    

 

                                     

1 1

0

1

 exp exp
p

j j

j

t  
 



    
      

     
 x ,  (5.4) 

Univ
ers

ity
 of

 M
ala

ya



 

111 
 

while the log-likelihood function is given by 
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(5.5) 

 When there are no missing covariate values, the maximum likelihood estimates 

of   and   may be obtained by differentiating the log-likelihood function in (5.5) with 

respect to   and  , setting the derivative equal to zero and evaluating them at ̂  and 

̂ . The score equation for   is given by  

  
 , | , ,ˆ 0

i i it


 
 



x
u





, (5.6) 

and for the scale parameter   is given by 

  
 , | , ,

ˆ 0
i i it



 





 



x
u


. (5.7) 

As the solution may not be obtained in a closed form, numerical methods such as 

Newton-Raphson iteration method is often used to obtain the maximum likelihood 

estimates of   and  . 
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5.3 Missing Data Methods 

Four methods of handling missing covariate values are considered throughout 

this chapter namely the complete case analysis, EM algorithm by method of weight, hot 

deck imputation and multiple imputation.   

5.3.1 Complete Case Analysis 

Complete case analysis is the most common method opted in many survival 

studies. In this method, only individuals with complete information are included, while 

those individuals with incomplete information are excluded from a study.    

5.3.2 Expectation-Maximization (EM) Algorithm by Method of Weight 

The EM algorithm by method of weight that has been proposed by Lipsitz and 

Ibrahim (1996a) is considered in this study. When there are no missing values, the 

distribution of 
ix  is not needed for estimating   and  . However, if some covariate 

values are missing, a model for the distribution of the covariates that are subject to 

missingness needs to be specified. This model is denoted by  |ip x  , where    is  

unknown parameters vector.  Let  , ,    be the vector of unknown parameters, and 

the complete data log-likelihood function is given by
 
 

      | , , , | , , log |,i i i i i i it t p         x x x , (5.8) 

where  , | , ,i i it  x  is defined in (5.5).  

 
When some covariate values for subject i  are missing, it is possible to write 

 , ,,i mis i obs ix x x , where ,mis ix  is the missing components of ix  that contains the 

unobserved covariates, while ,obs ix  is the observed components that contains the 

completely observed covariates. The maximum likelihood estimates of   may be 
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obtained by maximising the expected log-likelihood in (5.8)  (Lipsitz & Ibrahim, 

1996a). The E-step of the EM algorithm involves computing the conditional expectation 

for the  | , ,i i it  x  in (5.8) given the current estimate  k
  and the observed data 

(Fonseca et al., 2013). The contribution of the ith subject to the expected log-likelihood 

is given by  

 
      

,| | , , | , , ,
k k

i i i i obs i i iQ E t t  
 

   x x , (5.9) 

where  k
  denotes the estimates of   in the kth iteration.  

 Suppose that J  is the number of possible values for ,mis ix . If there are q  

missing categorical covariates, where 1, , qc c  denotes the number of categories of each 

covariates, respectively, then the number of possible values for ,mis ix  is 
1

q

ii
J c


 . For 

instance, suppose ,mis ix  consists of two covariates, 1x  and 2x . Both 1x  and 2x  are 

binary covariates {0,1}, hence the number of categories for 1x  and 2x  are 
1 2c   and 

2 2c  , respectively. Therefore, the number of possible values for ,mis ix  is 

2

1 21
2 2 4ii

J c c c


      .   

Possible values for :  

1x   
2x    ( )

, 1 2,j

mis i x xx   

     

  0 →  (1)

, 0,0mis i x  

0     

  1 →   (2)

, 0,1mis i x  

     

  0 →   (3)

, 1,0mis i x  

1     

  1 →  (4)

, 1,1mis i x  

 

The number of 

possible values for 

,mis ix
 
is 4J  .  
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Let  ( ) ( )

, ,,j j

i mis i obs ix x x  is the covariate vector with imputed values and observed values, 

where 1, ,j J . The conditional probability for the vector ,mis ix
 
assuming the value

 

( )

,

j

mis ix
 
is represented by 

 k

ijw
 
which is also known as weight. The 

 k

ijw
 
is given by 

 
      

           
           

, ,

1

, | , ,
| , , , = .

, | , ,

j k k j k

i i i i
k j k

ij mis i obs i i i J j k k j k

i i i ij

p t p
w p t

p t p

  


  






x x
x x

x x





 (5.10) 

It is worthwhile to note that 
 

1

1
J

k

ij

j

w


  for all k and i. If all the covariates for the ith 

subject are observed, the weight 
 

1
k

ijw  .
 
 

  
Hence, the E-step for the ith subject may be written as  

  
      

1

| | , ,
J

k k

i ij i t i

j

Q w t 


   x   

                
         

1 1

, | , , log | ,
J J

k j k j

ij i i i ij i

j j

w t w p 
 

  
   x x  (5.11) 

where  k

ijw  are the weights corresponding to the incomplete observations, or the 

conditional probability of a given missing data pattern indexed by j. Meanwhile, the E-

step for all subjects may be expressed as   

  
            

1 1 1 1

| , | , , log | .
n J n J

k k j k j

ij i i i ij i

i j i j

Q w t w p 
   

  
     x x  (5.12) 

In the M-step, since the first term in (5.12) does not involve the parameter   

and the second term does not involve parameters   and  , therefore 
  |
k

Q    in 

(5.12) may be maximised separately with respect to   and  ,  

 
       

1 1

, | , | , ,
n J

k k j

ij i i i

i j

Q w t  
 

   x , (5.13) 

and with respect to  ,  

Univ
ers

ity
 of

 M
ala

ya



 

115 
 

 
       

1 1

| log | .
n J

k k j

ij i

i j

Q w p
 

 
   x  (5.14) 

The iterative Newton-Raphson method is used in the maximization step. In general, the 

formulation of the maximum likelihood estimation using Newton-Raphson method is 

given as follows  

          
1

1ˆ ˆ ˆ ˆ ,
s s s s

Q Q



      (5.15) 

 where  Q   be the 1q  vector of the first derivatives of the expected log-likelihood 

function 
  |
k

Q    

  
    

  
1 1

| | , ,
k j

n J
i i ik

ij

i j

Q t
Q w



 

 
 

 


  


 

x
, (5.16) 

and  Q   be the q q  matrix of second derivatives of the expected log-likelihood 

function 
  |
k

Q    

  
    

  2 2

1 1

| | , ,

  

k j
n J

i i ik

ij

i j

Q t
Q w



 

 
 

    


  


   

x
. (5.17) 

Since the maximization may be done separately, the standard statistical analysis for 

parametric survival model that allow weights to be assigned to each observation in the 

data set may be used.  

5.3.2.1 Estimation of   

 In survival modelling, the main interest is to obtain the parameter estimates of 

  and  . Therefore,   is considered as nuisance parameters since they are not 

parameters of interest. However,   is very important in this EM algorithm procedure in 

order to estimate   and  . Therefore, a model for the covariates distributions 

 |ip x   needs to be specified. In Lipsitz and Ibrahim (1996a) study, the saturated 

multinomial probability was used to model the covariates distributions. However, this 
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approach was inefficient and computationally intensive especially in the case of a large 

number of nuisance parameters   need to be estimated when the percentage of missing 

values is high.  

 As a result, Lipsitz and Ibrahim (1996b) suggested to model the distribution of 

the covariates as a product of one-dimensional conditional distributions. This method  

helps to reduce the number of nuisance parameters that need to be estimated in the M-

step. The distribution of p-dimensional covariate vector  1 2, , ,i i i ipx x x


x  may be 

written through a series of one-dimensional conditional distributions as follows  

        1 1 ( 1) 2 1 2 1 1, , | | , , ,   | , |i ip ip i i p p i i ip x x p x x x p x x p x       , (5.18) 

where p
 
is a vector of indexing parameters for the pth conditional distribution, and 

 1 2, , , p   . The model in (5.18) need to be specified only for covariates with 

missing values while observed covariates may be used as fixed regressor variables. To 

obtain a reduced model for dichotomous missing covariates, Lipsitz and Ibrahim 

(1996b) suggested to fit the logistic regression model,  ( 1)| ,ij i j jp x x  
 

in
 

(5.18).
 

Meanwhile,
 

for
 

the covariate with more than two levels, a multinomial logistic 

regression model may be used.   

5.3.2.2 Estimation of Variance 

The EM algorithm procedure does not give the right asymptotic covariance of 

the parameter estimates at convergence (Lipsitz & Ibrahim, 1996a). Therefore, the 

Louis (1982) method that was suggested by Lipsitz and Ibrahim (1996a) is used to 

compute the correct estimate of the asymptotic variance of the maximum likelihood 

estimates for  . From Louis (1982) method, the observed information matrix is given 

by  
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1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,
n J n

i ij i i i i i i i i i i

i j i

I Q w S t S t Q Q 
  

  
   

 
       x x , (5.19) 

where  ̂  denotes the maximum likelihood estimates of   and   

  
 ˆ | , ,

ˆ, , , .
ˆ

i i i

i i i i

x t
S x t













 (5.20) 

The estimates of ̂  are obtained at the convergence of EM algorithm. Hence, an 

estimate of the asymptotic covariance matrix of ̂  may be obtained from the inverse of 

the information matrix  
1

ˆI


 , 

    
1

ˆ ˆVar I


  . (5.21) 

The overall procedures of the EM algorithm by method of weight are summarised as 

follows: 

a) The initial estimates of    0
, ,    are obtained from the complete case 

analysis. 

b) E-step: At the  1k  th EM iteration, the conditional probability or weight ijw  

in (5.10)  is computed using the parameter estimates at kth iteration of EM 

algorithm 
 k

 .   

c) M-step: The estimates of 
 1k

  is obtained by maximising (5.12) using Newton-

Raphson method as in (5.15).  

d) The E-step and the M-step are repeated until convergence. 

In this study, the programming code for the EM algorithm by method of weight has 

been developed in R statistical software. The function survreg from the survival 

package (Therneau, 2014) in R software is used for maximising 
  , |
k

Q    in (5.13) 

Univ
ers

ity
 of

 M
ala

ya



 

118 
 

in order to obtain ̂  and ̂ . Meanwhile, ̂  is obtained by maximising   |
k

Q    in 

(5.14) using the maxLik function (Henningsen & Toomet, 2011) in R.  

5.3.3 Hot Deck Imputation 

For this method, the function imputation from the rminer package (Cortez, 

2013) in the R software has been considered. The imputed values are determined using 

the k-nearest neighbour (k-nn) method. Suppose that there is a data set that consists of n  

cases with two variables x  and y . Let one value of the variable y  is missing, and that 

missing term is denoted by jy . Using the k-nearest neighbour method, each of other 

cases with complete data is checked and the missing value jy  is substituted by the 

value for the most similar case. This similar case is identified by finding the difference 

between the observed value jx  and the nearest neighbours of jx , that is 

 1 1, , ,k j jx x x   using the following formula 

 .k jD x x   (5.22) 

The missing term jy  is substituted with the observed value 
ky  where the difference D  

between the observed items, 
kx  and jx , is the smallest. 

5.3.4 Multiple Imputation with MICE-PMM 

The multiple imputation method begins with creating 1m   imputed data sets, 

analysing the m  imputed data sets separately and pooling the m  parameter estimates 

into a single value. In this study, the multiple imputation by chained equation (MICE) 

with predictive mean matching (PMM) is considered. This method is performed using 

the package mice (Van Buuren & Groothuis-Oudshoorn, 2011) in the R software. 
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5.3.4.1 Multiple Imputation by Chained Equation  

Multiple imputation by chained equation (MICE) method generates the imputed 

values from a set of imputation models which one imputation model is specified for 

each incomplete variable (Van Buuren & Groothuis-Oudshoorn, 2011). Since each 

variable with missing values is imputed using its own imputation model, this method 

able to handle different types of variable including continuous, binary, unordered and 

ordered categorical data (White et al. 2011; Royston & White, 2011). In the imputation 

model, all the variables those are supposed to be in the analysis are included in the 

imputation model in order to avoid bias (Schafer, 1997). Also, the outcome variable 

should be incorporated into the imputed model for imputing any missing covariate 

values (Moons et al., 2006).   

 Let the data be presented by the n p  matrix Y . The elements of Y  is ijy  

where 1, ,i n  and 1, ,j p . The thj  column of Y is denoted as jY . Meanwhile, 

jY  is all columns of Y except jY . Missing component of jY  is denoted by 
mis

jY , whilst 

obs

jY
 
represents the observed component. The missing indicator R  is the n p  binary 

response matrix, which its elements 1ijr   if ijy is observed and if ijy is missing, 0ijr  . 

The unknown parameters of the imputation model are denoted as j . The MICE 

algorithm method specifies the imputation model on a variable-by-variable basis using a 

separate conditional distribution for each incomplete variable. The conditional 

distribution  | , , ,mis obs

j j jP Y Y Y R   is used to draw the imputed values for the .mis

jY  The 

imputation model describing the conditional probabilities 

   1 1 1| , , , , , | , , ,mis obs mis obs

j j jP Y Y Y R P Y Y Y R    
can be any appropriate regression 

model depending on the nature of the outcome variable. The MICE algorithm for 

imputation of multivariate missing data is described as follows (Van Buuren, 2012): 
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a) An imputation model  | , ,mis obs

j j jP Y Y Y R  for variable jY   1, ,j p  is 

specified. 

b) For each j , starting imputations 
0

jY  are filled in by random draws from 
obs

jY . 

c) Repeat for 1, ,k K : 

d) Repeat for 1, ,j p :  

e)  1 1

1 1 1, , , , ,k k k k k

j j j pY Y Y Y Y 

    is defined as the currently complete data except 

.jY  

f)  ~ | , ,k k obs k

j j j jP Y Y R    
is drawn. 

g) imputations  ~ | , , ,k mis obs k k

j j j j jY P Y Y Y R   
are drawn. 

h) End repeat j . 

i) End repeat k .  

In the kth iteration of the algorithm, the imputed value is generated for the missing 

variable, then this imputed value is used for imputing the next variable. This process 

repeats until convergence is reached (Horton & Kleinman, 2007). According to Van 

Buuren (2012), the iteration number may be low, such as 5 and 10. Separate chains are 

performed to create multiple sets of complete data in parallel m  times.   

 In this study, given that a survival data set contains four variables: survival time 

t that follows the Weibull distribution, censoring indicator  ,
 
and two binary covariates 

1x  and 2x . Let 2x  be the incomplete variable whilst all the others are completely 

observed. Since this study considers one incomplete variable that is 
2x , only one cycle 

(j=1) of 2x  imputation involves in the thk iteration. Figure 5.1 portrays the process of 

multiple imputation with the MICE algorithm.   
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 In this study, 10m   complete data sets are generated. Since the Weibull AFT 

model is considered, each of these data sets is analysed separately by a standard 

parametric survival analysis in R using the function survreg. All the parameter 

estimates of the Weibull AFT model  ˆ ,   those have been estimated from m  

imputed data sets, 1 2
ˆ ˆ ˆ, , , m   , are pooled following Rubin’s rule in (2.64) into one 

estimate ̂  using the function pool from the R package mice (Van Buuren et al., 

2014a).  

 

Figure 5.1:  Multiple imputation by chained equation (MICE) 
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5.3.4.2 Predictive Mean Matching  

 The multiple imputation by chained equation (MICE) with predictive mean 

matching (PMM) has been considered in this study. The PMM method imputes each 

missing value of covariate jx  with the value that is sampled from the observed value of 

jx . Based on the specified imputation model, the PMM method computes the predicted 

value for the missing value where all other variables serve as predictors. Then, a small 

number of candidate donors d  from the observed data, where their predicted values 

ˆ( )ix  close to the predicted value for the missing value ( ˆ
jx ) are selected. Each missing 

value is imputed with the observed value that is randomly drawn from these candidates. 

This method assumes that the distribution of imputed jx  follows the same distribution 

as the candidates’ data (Van Buuren, 2012).  

 It is worthwhile to note that, the MICE-PMM is robust against misspecification 

of the imputation model (Van Buuren, 2012). White et al., (2011) provided an example 

which under misspecified model, the PMM method able to impute the missing values 

appropriately. Therefore, this method is suitable for any types of variable including 

categorical variable (Van Buuren, 2012; Van Buuren et al., 2014b). Also, the imputed 

values are realistic since the values drawn are within the range of the observed data 

(Van Buuren, 2012).     

5.4 Simulation Study 

Simulation procedures are carried out to investigate the performance of complete 

case analysis, EM algorithm by method of weight, hot deck imputation and multiple 

imputation using the MICE-PMM for data that is assumed missing at random (MAR).  

In this simulation studies, survival times it  are generated from a Weibull 

distribution with parameters 0 2  , 1 1   and 2 1   , whilst the scale parameter 
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2  . Survival times are randomly made censored yielding about 30% of censored 

observations in each data set. Also, two categorical independent covariates 
1ix  and 

2ix
 

are generated from a Bernoulli distribution where 
1ix  with a success probability of 0.6, 

and 
2ix  with success probability of  

 
 

 
20 21 1

20 21 1

exp

1 exp

i

i

a a x

a a x



 
, (5.23) 

given that 
20 1a   and 

21 1a  .  

  Variable 
1ix
 
is always observed while 

2ix  is made MAR according to different 

percentage of missingness: 10%, 30% and 50%. When the mechanism of missingness of 

a covariate x  is MAR, the probability of missing x  values (conditional on the other 

observed covariates) does not depend on x  or any other unobserved covariates. 

However, the missing probability may depend on the outcome variable and other 

observed covariates. Missing values are generated by specifying a missing indicator 

2 ,iR  where 
2 1iR   indicates that 

2ix  is missing and 
2 0iR   when 

2ix  is observed. The 

2iR  follows the logistic regression model, and the probability of 
2ix  to be missing is 

modelled as the following 

  
 
 

0 1 2 1 3 1

2 1

0 1 2 1 3 1

exp
1 , ,

1 exp

i i i i

i i i

i i i i

t x x t
p R x t

t x x t

   

   

 



 

  
 

   
 , (5.24) 

where  

 
i

i

t

i

t

t
t








 . (5.25) 

The values of   for simulating 10%, 30% and 50% missing values for each data set are 

 10% 2.5, 1.0,0.2,1.5   ,  30% 1.12, 1.0,0.2,1.5    and 

 50% 0.3, 1.0,0.2,1.5   respectively.   

 The simulation procedures are repeated 5000 times for different combination of 

sample size and the percentage of missing values. Sample size varies from 100, 300, 
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and 500. The simulation mean, standard error (SE), mean absolute error (MAE) and root 

mean squared error (RMSE) are given by  

 

5000

1

ˆ
Mean,  

5000

k
 

 , (5.26) 

 5000

1

ˆ| |
MAE

5000

k



  

, (5.27) 

 
 

25000

1

ˆ

RMSE
5000

k



  

, 
(5.28) 

 
 

25000

1

ˆ

SE
5000

k



  

,
 

(5.29) 

respectively, where ̂  is the estimate of   from the kth simulated sample. The R code 

for this simulation procedure is provided in Appendix B. 

5.4.1 Simulation Results 

Table 5.1 presents simulation results from the complete case analysis, EM 

algorithm by method of weight, hot deck and multiple imputation by MICE-PMM 

approaches for sample size 100n  . This table presents the mean, SE, MAE, and 

RMSE for parameter estimates based on 5000 generated samples.   

With respect to the estimated values of SE, MAE, and RMSE of 
1  estimates, 

the performance of the complete case analysis is worse than that of other methods since 

all the aforementioned values of performance indicators are remarkably large for 30% 

and 50% missing value. Meanwhile, better performance may be seen after treating the 

missing values using multiple imputation method. Yet, when the percentage of missing 

values is 10%, the performance of EM algorithm by method of weight and hot deck 

methods are comparable to that of the multiple imputation method given that only small 

differences in the SE, MAE and RMSE values among these methods are observed.   
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The performance of hot deck method is the worst since the estimated values of 

SE, MAE, and RMSE of the coefficient 
2 , the parameter corresponding to the missing 

covariate 
2ix , are the largest, regardless the percentage of missing values in the data. 

Meanwhile, the complete case analysis performance is better than that of other methods 

when the percentage of missing values is 10%. However, as the percentage of missing 

values increases, the estimated values of SE, MAE and RMSE of 
2  also increases. 

When 30% of the data are missing, the multiple imputation method performs better. 

Meanwhile, the EM algorithm gives better results when the percentage of missing 

values is 50%.   

It is worthwhile to note that the estimated SE, MAE and RMSE values of the 

scale parameter    based on the complete case analysis are worse than those for other 

methods. Meanwhile, the other three methods perform almost similar. Small differences 

may be observed when the percentage of missing values is 50%. The estimates of 
 

obtained from
 
the multiple imputation method are slightly better compared to the EM 

algorithm by method weight and hot deck imputation method. 
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Table 5.1: The simulation results for = 100n  

Percentage 

of missing 

values  

Indicator Parameter 
Complete 

Case  
EM Hot Deck 

Multiple 

Imputation 

 
Mean 

1
  0.813 1.005 0.999 0.994 

 SE  0.545 0.513 0.517 0.510 

 
MAE  0.459 0.409 0.411 0.406 

 
RMSE  0.576 0.513 0.517 0.510 

 
Mean 2  -0.937 -0.968 -0.956 -0.954 

10% SE  0.731 0.750 0.778 0.737 

 MAE  0.575 0.588 0.609 0.579 

 RMSE  0.733 0.750 0.779 0.738 

 Mean   1.935 1.960 1.960 1.959 

 SE  0.198 0.189 0.190 0.189 

 MAE  0.168 0.156 0.156 0.155 

 RMSE  0.209 0.194 0.195 0.193 

 Mean 1
  0.570 1.007 0.991 0.975 

 SE  0.629 0.523 0.529 0.508 

 MAE  0.617 0.417 0.422 0.405 

 RMSE  0.762 0.523 0.529 0.509 

 Mean 2  -0.948 -0.974 -0.971 -0.956 

30% SE  0.981 0.967 1.058 0.886 

 MAE  0.676 0.678 0.748 0.656 

 RMSE  0.982 0.968 1.058 0.887 

 Mean   1.908 1.956 1.953 1.955 

 SE  0.221 0.191 0.192 0.190 

 MAE  0.195 0.157 0.159 0.157 

 RMSE  0.240 0.196 0.197 0.195 

 Mean 1
  0.340 1.006 0.987 0.952 

 SE  0.755 0.538 0.558 0.511 

 MAE  0.817 0.427 0.442 0.409 

 RMSE  1.002 0.538 0.558 0.513 

 Mean 2  -1.085 -0.996 -1.110 -1.037 

50% SE  2.395 1.607 2.394 1.844 

 MAE  0.925 0.818 1.025 0.825 

 
RMSE  2.396 1.607 2.396 1.844 

 
Mean   1.889 1.952 1.947 1.952 

 
SE  0.257 0.193 0.196 0.191 

 
MAE  0.228 0.160 0.163 0.158 

 
RMSE  0.280 0.199 0.203 0.197 
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Table 5.2 presents simulation results for 300n  . For 10% missing values, the 

estimated values of SE, MAE, and RMSE of 
1  using the multiple imputation, EM 

algorithm by method of weight and hot deck method are almost similar. However, as the 

percentage of missing values increases, the estimated values of SE, MAE, and RMSE 

for the EM algorithm by method of weight followed by hot deck method are slightly 

higher than that of multiple imputation. Obvious differences may be observed from the 

complete case analysis as this method yields the largest SE, MAE and RMSE values 

and worsen as the percentage of missing values increases.  

Based on 
2  estimates, the results show that the performance of EM algorithm 

method is better than all the others, except that when 10% of the data are missing where 

the performance of complete case analysis is better than EM algorithm. Largest values 

of the estimated SE, MAE and RMSE indicate that the hot deck estimations are the 

worst.  

Table 5.2 also indicates that the SE, MAE and RMSE of 
 
are remarkably large 

suggesting that the complete case analysis performs less well. The performance of EM 

algorithm by method of weight, hot deck and multiple imputation methods for 10% and 

30% missing covariate values are comparable. For 50% missing values, the estimated 

values of SE, MAE and RMSE are slightly higher based on the hot deck method than 

that of EM algorithm and multiple imputation. Meanwhile, the EM algorithm 

outperforms all the others. Univ
ers

ity
 of

 M
ala

ya



 

128 
 

Table 5.2: The simulation results for = 300n  

Percentage 

of missing 

values 

Indicator Parameter 
Complete 

Case  
EM Hot Deck 

Multiple 

Imputation 

 
MEAN 

1
  0.821 1.000 0.997 0.993 

 
SE  0.309 0.291 0.293 0.290 

 
MAE  0.289 0.234 0.235 0.233 

 
RMSE  0.358 0.291 0.293 0.290 

 
MEAN 2  -0.931 -0.963 -0.956 -0.962 

 
SE  0.407 0.418 0.440 0.421 

10% MAE  0.329 0.333 0.351 0.336 

 
RMSE  0.413 0.420 0.442 0.422 

 
MEAN   1.964 1.988 1.988 1.986 

 
SE  0.111 0.107 0.107 0.107 

 
MAE  0.093 0.086 0.086 0.086 

 
RMSE  0.116 0.107 0.108 0.108 

 MEAN 1
  0.591 1.003 0.996 0.982 

 
SE  0.354 0.295 0.299 0.290 

 
MAE  0.455 0.237 0.239 0.234 

 
RMSE  0.541 0.295 0.299 0.291 

 
MEAN 2  -0.931 -0.960 -0.950 -0.961 

 
SE  0.464 0.468 0.523 0.478 

30% MAE  0.373 0.373 0.418 0.383 

 
RMSE  0.469 0.469 0.525 0.480 

 
MEAN   1.950 1.987 1.986 1.983 

 
SE  0.127 0.108 0.109 0.108 

 
MAE  0.110 0.087 0.088 0.087 

 
RMSE  0.136 0.108 0.110 0.109 

 
MEAN 1

  0.380 1.007 0.993 0.968 

 
SE  0.424 0.299 0.307 0.291 

 
MAE  0.648 0.240 0.246 0.234 

 
RMSE  0.751 0.299 0.307 0.293 

 
MEAN 2  -0.981 -0.984 -0.993 -0.997 

 
SE  0.542 0.526 0.629 0.558 

50% MAE  0.432 0.420 0.502 0.447 

 
RMSE  0.543 0.526 0.629 0.558 

 
MEAN   1.942 1.984 1.980 1.978 

 
SE  0.147 0.108 0.112 0.109 

 
MAE  0.127 0.087 0.091 0.089 

 
RMSE  0.158 0.110 0.114 0.112 
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Table 5.3 presents simulation results for 500n  . The estimation of 
1  from the 

complete case analysis are poor since the estimated SE, MAE and RMSE values are 

remarkably large especially when the percentage of missing values are 30% and 50%. 

Meanwhile, the performance of EM algorithm by method of weight is as good as that of 

the multiple imputation method even when the percentage of missing values is 50%.  

The EM algorithm by method of weight gives the best estimates of 
2   since the 

SE, MAE and RMSE are the lowest. However, the complete case analysis performance 

is slightly better than EM algorithm when 10% of data are missing. The worst 

performance may be seen for the hot deck imputation method. Meanwhile, multiple 

imputation method performs slightly poor than the complete case analysis.   

The complete case analysis yields the worst estimates of   since the estimated 

values of SE, MAE, and RMSE are the largest. Meanwhile, the performance of EM 

algorithm by method of weight, multiple imputation and hot deck imputation methods 

are almost similar.  

Univ
ers

ity
 of

 M
ala

ya



 

130 
 

Table 5.3: The simulation results for = 500n  

Percentage 

of missing 

values 

Indicator Parameter 
Complete 

Case  
EM Hot Deck 

Multiple 

Imputation 

 
MEAN 

1
  0.823 0.999 0.998 0.993 

 
SE  0.237 0.226 0.227 0.225 

 
MAE  0.240 0.180 0.181 0.179 

 
RMSE  0.296 0.226 0.227 0.226 

 
MEAN 2  -0.938 -0.971 -0.964 -0.977 

10% SE  0.313 0.321 0.339 0.327 

 MAE  0.256 0.258 0.273 0.263 

 RMSE  0.319 0.322 0.340 0.328 

 MEAN   1.971 1.993 1.993 1.991 

 SE  0.089 0.086 0.086 0.086 

 MAE  0.075 0.069 0.069 0.069 

 RMSE  0.093 0.086 0.086 0.086 

 MEAN 1
  0.596 1.002 0.997 0.983 

 SE  0.276 0.229 0.232 0.226 

 MAE  0.423 0.182 0.184 0.180 

 RMSE  0.489 0.229 0.232 0.226 

 MEAN 2  -0.944 -0.973 -0.969 -0.987 

30% SE  0.356 0.358 0.406 0.383 

 MAE  0.287 0.286 0.324 0.306 

 RMSE  0.360 0.359 0.407 0.383 

 MEAN   1.958 1.993 1.991 1.988 

 SE  0.099 0.086 0.087 0.086 

 MAE  0.087 0.069 0.070 0.070 

 RMSE  0.107 0.086 0.087 0.087 

 MEAN 1
  0.394 1.006 0.996 0.974 

 SE  0.334 0.234 0.241 0.228 

 MAE  0.617 0.185 0.191 0.182 

 RMSE  0.692 0.234 0.241 0.230 

 MEAN 2  -0.980 -0.981 -0.991 -1.014 

50% SE  0.424 0.410 0.486 0.456 

 MAE  0.335 0.325 0.386 0.364 

 
RMSE  0.424 0.410 0.487 0.456 

 
MEAN   1.953 1.991 1.988 1.984 

 
SE  0.117 0.087 0.089 0.088 

 
MAE  0.102 0.070 0.072 0.071 

 
RMSE  0.126 0.087 0.090 0.089 
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 Table 5.1 to Table 5.3 show that as the percentage of missing values increasing, 

the estimated values of SE, MAE and RMSE of the parameter estimates are also 

increasing. On the other hand, the estimated SE, MAE, and RMSE values are 

decreasing as the sample size increasing. Overall, the EM algorithm method has shown 

the most favourable results in the simulation studies followed by the multiple 

imputation method. Based on the 
1  estimates, the performance of multiple imputation 

method is better than that of other methods. Meanwhile, the estimations of 
2  and

 
  

from the EM algorithm by method of weight are better than all the others. Even though 

small differences might be observed between 
1  estimates obtained from these two 

methods, the performance indicators show that the values are almost similar. The 

complete case analysis yields poor estimates of 
1  and  , while hot deck method gives 

the worst estimates for 
2 . It is worthwhile to note that, when there are 10% missing 

values, the results from the complete case analysis is nearly as good as the other three 

methods.  
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5.5 Illustrative Example 

Data of cervical cancer patients that has been evaluated in Chapter 3 and 4 is 

considered in this section. This data set consists of 120 cervical cancer patients treated 

in HUSM from 1997-2008. To illustrate the complete case analysis, EM algorithm by 

method of weight, hot deck and multiple imputation methods, only two covariates are 

considered. These two covariates are stage at diagnosis and distant metastasis. Variable 

stage at diagnosis consists of two groups, stage I-II and stage III-IV while distant 

metastasis is divided into with and without metastasis group. Variable distant metastasis 

is artificially set missing at random (MAR) with the percentage of 10%, 30% and 50%. 

Meanwhile, all values for the variable stage at diagnosis are observed. In addition, result 

from the analysis of complete data, denoted as FULL is also presented. 

Table 5.4 gives the estimates of the coefficient regression for stage at diagnosis 

 1 , distant metastasis  2  and the scale parameter    from the complete data 

(model without missing values that is denoted as FULL), complete case analysis, EM 

algorithm by method of weight, hot deck and multiple imputation methods. The largest 

differences are observed in the estimates of the effect of stage at diagnosis based on the 

complete case analysis. The results indicate that as the percentage of missing values 

increasing, the estimates of 
1  from the complete case analysis deviate remarkably from 

the full model estimates. Also, it is noted that the estimated values of standard error 

from the complete case analysis are the largest among other methods. By looking at the 

estimates of 1  and also its standard error from the EM algorithm by method of weight, 

this method performs well since the estimates are closer to that of the full model. 

Meanwhile, the estimates from multiple imputation method are slightly worse than that 

of the EM algorithm by method of weight.  
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By looking at the estimates of 
2 , EM algorithm by method of weight gives the 

closest estimates to that of the full model. In contrast, the other three methods yield poor 

estimates especially when distant metastasis variable values are missing at 30% and 

50%. The estimated values of standard error based on EM algorithm by method of 

weight are slightly larger than that of the hot deck and multiple imputation when the 

percentage of missing values are 30% and 50%. It is worthwhile to note that the 

standard error estimates from EM algorithm by method of weight are smaller than that 

of the complete case analysis. When 30% of distant metastasis values are missing, this 

variable remains statistically significant only after treating the missing values using the 

EM algorithm by method of weight and hot deck method. As the percentage of missing 

values increases to 50%, all methods fail to detect the significant effect of distant 

metastasis. However, EM algorithm by method of weight method shows slightly better 

performance as the -value=0.084p  is nearly to the level of significance 0.05  . 

For the scale parameter  , the closest estimates to the full model may be 

observed after treating the missing covariate values with EM algorithm by method of 

weight. The complete case analysis gives the worst estimates of  , while the estimates 

based on the multiple imputation and hot deck methods are comparable. 

 It is found that EM algorithm by method of weight performs the best by looking 

at the estimates of the regression coefficients of stage at diagnosis  1 , distant 

metastasis  2  and scale parameter   , although the standard error of 2  is slightly 

larger than those of other methods, in particular the hot deck imputation and multiple 

imputation. In addition, as the percentage of missing value increases, the problem of 

detecting the prognostic effect of the covariate with missing values, which is distant 

metastasis is observed. This variable remains statistically significant in the model up to 

30% missing values, and that only after using the EM algorithm by method of weight 

and hot deck method.   
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Table 5.4: Estimates for cervical cancer data with two variables 

Percentage Variable Method Estimates SE p-value 

  Full -0.842 0.250 0.001 

  CC -1.074 0.268 <0.0001 

 Stage 
1( )   EM -0.832 0.250 0.001 

  HD -0.826 0.257 0.001 

  MI -0.831 0.255 0.002 

  Full -0.648 0.239 0.007 

  CC -0.612 0.258 0.018 

10% Distant metastasis 
2( )   EM -0.627 0.255 0.014 

  HD -0.515 0.245 0.035 

  MI -0.556 0.244 0.032 

  Full 0.944   

  CC 0.939   

 Scale ( )  EM 0.947   

  HD 0.960   

  MI 0.954   

  Full -0.842 0.250 0.001 

  CC -1.194 0.257 <0.0001 

 Stage 
1( )   EM -0.833 0.252 0.001 

  HD -0.869 0.255 0.001 

  MI -0.857 0.256 0.001 

  Full -0.648 0.239 0.007 

  CC -0.464 0.250 0.064 

30% Distant metastasis 
2( )   EM -0.600 0.278 0.031 

  HD -0.498 0.248 0.044 

  MI -0.462 0.252 0.091 

  Full 0.944   

  CC 0.863   

 Scale ( )   EM 0.952   

  HD 0.960   

  MI 0.962   

  Full -0.842 0.250 0.001 

  CC -1.564 0.371 <0.0001 

 Stage
 1( )   EM -0.900 0.254 <0.0001 

  HD -0.922 0.256 <0.0001 

  MI -0.906 0.258 0.001 

  Full -0.648 0.239 0.007 

  CC -0.438 0.357 0.220 

50% Distant metastasis 
2( )   EM -0.566 0.327 0.084 

  HD -0.396 0.245 0.105 

  MI -0.466 0.310 0.380 

  Full 0.944   

  CC 0.968   

 Scale ( )  EM 0.958   

  HD 0.963   

  MI 0.962   
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5.6 Summary 

In this chapter, the performance of the complete case analysis, EM algorithm by 

method of weight, hot deck and multiple imputation with MICE-PMM methods are 

investigated based on different sample size ( 100,  300 and 500n  ) and different 

percentage of missing values (10%,  30,  and 50% ) on the parametric survival model 

namely the Weibull model. Data are assumed missing at random (MAR).  

 Only small differences are observed between the results obtained from the 

complete case analysis, EM algorithm by method of weight, hot deck imputation and 

multiple imputation with MICE-PMM method when percentage of missing values is 

10%. Meanwhile, in a small sample, 100n  , the multiple imputation with MICE-PMM 

yields better results compared to the complete case analysis, EM algorithm by method 

of weight, and hot deck imputation method. However, as the sample size increases, EM 

algorithm by method of weight outperforms the other methods. In addition, when the 

percentage of missing values is as high as 50%, the EM algorithm by method of weight 

performs considerably well than all the others. In addition, the effects of variables in the 

final model may be remained statistically significant for small to moderate percentage 

of missing covariate values when EM algorithm by method of weight is applied.   

As missing values are often encountered in survival data, this study may provide 

a suitable option for handling missing values particularly in parametric survival models. 

Amongst all, the EM algorithm by method of weight has shown a great potential in 

addressing the issue of missing values in parametric survival data analysis, especially 

when the sample size and the percentage of missing values are large.   
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CHAPTER 6 

SCORE TESTS FOR DETECTING FRAILTY IN A BIVARIATE 

POSITIVE STABLE GOMPERTZ MODEL 

6.1 Introduction 

 In a survival study, it is commonly assumed that survival times of a group of n  

individuals under study 
1 2, , , nt t t  are independent. However, there are circumstances 

where there exist unobserved or unmeasured factors that may induce dependency 

among the survival times. Frailty model is the best option to handle this type of data 

since the model takes into account the effect of these unobserved factors by introducing 

the frailty term into the model. Besides modelling the frailty, study on the tests for 

detecting the presence of frailty has received much attention.   

Frailty may follow various types of statistical distribution, and one of the 

distributions is a positive stable distribution. Zhu (1998) derived a score test for 

detecting frailty based on the positive stable Weibull model. Later on, Sarker (2002) 

extended the study by deriving two new score based tests from the Zhus’s score test, 

namely the modified score test and ln s  based test. Sarker (2002) also found that 

amongst these three tests, the convergence rate of the Zhus’s score test to the normal 

limit was remarkably slow. Meanwhile, the modified score test was preferable as the 

test converged faster to the normal limit and showed better performance based on the 

estimated power of the test.   

 These tests were proposed for a proportional hazards model with survival times 

follow Weibull distribution. It is worthwhile to note that a Gompertz distribution model 

is another type of survival models that adhere to this assumption which is better known 

as a proportional odds model. Thus, in this chapter, the behaviour of the aforementioned 
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score tests is studied based on the Gompertz distribution model with positive stable 

frailty for a bivariate case  2p  . The Gompertz distribution has many applications in 

medical field and biological sciences. In fact, this distribution was first introduced to 

model human mortality by Gompertz in 1825 (Collet, 2003). In addition, the Gompertz 

distribution will reduce to an exponential distribution if the shape parameter 0b  . 

This chapter is organised as follows. Section 6.2 describes the score based tests 

that have been proposed by Zhu (1998) and Sarker (2002). Section 6.3 presents the 

bivariate positive stable Gompertz model and its relation to the Zhu’s score test, 

modified score test and ln s  based test. The asymptotic properties of these score tests 

are presented in Section 6.4 for uncensored cases. The asymptotic variances for the 

modified score test and ln s  based test for the uncensored case with nuisance 

parameters are derived. The asymptotic properties of these score tests for censored cases 

are described in Section 6.5. Section 6.6 explains the critical region of the tests. Results 

of the rate of convergence to the normal limit for these tests are presented in Section 

6.7. In Section 6.8, the expressions for obtaining the critical values for any number of 

sample sizes are presented. The performance of these tests based on the estimated power 

is also evaluated in Section 6.9. Meanwhile, Section 6.10 presents the application of 

these tests on a simulated data set that follows the positive stable Gompertz model. 

Summary of the chapter is given in Section 6.11. 
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6.2 Derivation of the Score Tests from the Positive Weibull Model 

 The survival function  S t  for a survival time variable 0T   that follows a 

Weibull distribution is given by 

    expS t t  , (6.1) 

where   is a scale parameter, and   is a shape parameter. The cumulative hazard 

function of the Weibull distribution is given by 

  H t t . (6.2) 

An approach for constructing the Weibull based frailty model is to consider a mixture, 

either continuous or discrete, of the Weibull distribution. From (2.70), given the frailty 

W , the unconditional survival function of T may be written as   

      
0

exp  S t w t dG w


  , (6.3) 

where  G w  is the distribution function of the frailty W . Similarly, conditional on W , 

the unconditional survival function for the multivariate (p-variate) Weibull survival time 

 1 2, , , pT T T T  is given by  

      1 2
0

, , , exp  p wS t t t ws dG w


  , (6.4) 

where 
1

j

p

w j j

j

s t





 .  

 Suppose that, W  has a positive stable distribution with characteristic exponent

  0 1v v  . The Laplace transform of the positive stable distribution is  

       exp exp v

w wL s E ws s    . (6.5) 

Thus, the survival function for the multivariate positive stable Weibull model is 

obtained as Laplace transform 

        1 2
0

, , , exp  exp v

p w wS t t t ws dG w s


    , (6.6) 
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where 
1

j

p

w j j

j

s t





 .

 

  

 Let 
1T  and 

2T  denote the two survival times, where the bivariate survival 

function  1 2,S t t  is given by 

          1 2 1 1 2 2 1 2 1 2, Pr , 1 , .S t t T t T t F t F t F t t        (6.7) 

The relationship between the joint density function  1 2, , , pf t t t  and the survival 

function    1 2 1 1 2 2, , , Pr , , ,p p pS t t t T t T t T t     for survival times 1 2, , , pT T T  is 

    
   1 2

1 2 1 2

1 2

, , ,
, , , 1 ,

, , ,

p p
p p s w

p p p

p w

S t t t S s
f t t t h h h

t t t s

 
  

   
 (6.8) 

where   

 
1jw

j j j j

j

s
h t

t


 


 


, (6.9) 

and 

    exp v

s w wS s s  . (6.10) 

Therefore, from (6.8) the density function for the bivariate  1,2j   positive stable 

Weibull distribution may be written as follows  

 

    

   
 2

2 1 2

1 2

1 2

1
S t ,t

f t ,t
t t


 

 
  

      2 2 2 2

1 2  1v v

w w s wh h v s v v s S s   
 

 

      
2

1 2 2 2 2

1

 1 exp ,j v v v

j j j w w w

j

t v s v v s s


 
  



   
 

(6.11) 

where 1 2

1 1 2 2ws t t    .  

 In a multivariate case ( 1p  ), the frailty causes positive association among the 

survival times 1 2, , , pT T T . Under the positive stable Weibull model, when the 

characteristic exponent 1v  , the model degenerates to the independent Weibull model. 
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In other words, no frailty exists when 1v  , and the components 1 2, , , pT T T  are 

independent. Therefore, the null hypothesis for a positive stable frailty test is 
0 : 1,H v 

whilst the alternative hypothesis is 
0 : 0 1H v  .  

 Zhu (1998) proposed a score test based on the positive stable Weibull model that 

was derived from the first derivative of the log-likelihood function of the model. 

Suppose that, there is no censored observation and the parameters of Weibull model j

and j   1,2j   are  known. The density function for a bivariate sample of size n  

   11 12 1 2, , , ,n nt t t t  is given by  

       
2

1 2 2 2 2

1 2

1

,  1 expj v v v

i i j j j wi wi wi

j

f t t t v s v v s s


 
  



    , (6.12) 

where 1, ,i n . The log-likelihood function of the sample is given by  

       
2

1 2 2 2 2

1 1 1 1

ln ln 1  j

n n n
v v v

n wi j j ij wi wi

i i j i

v s t v s v v s


 
  

   

        . (6.13) 

Hence, the first derivative of the log-likelihood with respect to v  is 

 
1

ln 11
ln ln

1

v vn
vn wi wi wi
wi wi wi v

i wi

s vs s
s s s

v v vs v

   
     

   
 . (6.14) 

The score statistic is obtained as the following  

  

 
 12

1

| 2 2ln ln 1
n

n

v wi wi wi wi

i

v
T s s s s

v





    


 , (6.15) 

after substituting (6.14) for 1v   (under 0H ).  

 Later on, Sarker (2002) proposed two score based tests namely the modified 

score test and ln s  based test. The modified score test was derived from equation (6.15) 

by excluding the term 1 wis
 
and the score statistic is given as follows  

    2
1

2 2ln ln
n

wi wi wi

i

T s s s



   . (6.16) 

Meanwhile, the score statistic for the ln s  based test is given by 
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  2
1

ln
n

wi

i

T s



 . (6.17) 

6.3 Bivariate Positive Stable Gompertz Model  

 This study focuses on the bivariate positive stable Gompertz model  2p  . The 

cumulative hazard function of the Gompertz distribution is given by 

    1btH t a e b  , (6.18) 

where a  is a positive parameter and b  is a shape parameter of the Gompertz model. 

The survival function for the bivariate positive stable Gompertz model is given by  

    1 2, exp ,vS t t s   (6.19) 

where  2

1
1 /j jb t

j jj
s a e b


  . The model degenerates to the basic Gompertz model 

when the exponent character 1v  , where there is no association between 
1T  and 

2T . 

The corresponding density function may be written from (6.8) as the following  

       
2

2 2 2 2

1 2

1

,  1 expj jb t v v v

j

j

f t t a e v s v v s s 



    , (6.20) 

where s  is defined as in (6.19). The log-likelihood function for uncensored bivariate 

sample from Gompertz distribution of size n     11 12 1 2, , , ,n nt t t t  is given by  

 
      

2
2 2 2 2

1 1 1 1

ln ln  1 ,j j

n n n
b tv v v

n i j i i

i i j i

v s a e v s v v s 

   

       

, 

(6.21) 

where    1 1 2 2

1 1 2 21 / 1 /i ib t b t

is a e b a e b   
 
and

 
1, ,i n . The first derivative of the 

log-likelihood function in (6.21) is given by 

 
1

ln 11
ln ln

1

v vn
vn i i i
i i i v

i i

s vs s
s s s

v v vs v

   
     

   
 , (6.22) 
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which is similar to the first derivative of the log-likelihood of the positive Weibull 

model in (6.14). Hence, if the equation (6.22) is substituted for 1v  , the similar score 

statistic of the Zhu’s score test as in (6.15) is obtained as follows  

  

 
 12

1

| 2 2ln ln 1
n

n

v i i i i

i

v
T s s s s

v





    


 , (6.23) 

where  
2

1

1 /j ijb t

i j j

j

s a e b


  . Also, the other two tests proposed by Sarker (2002), the 

modified score 

    2
1

2 2ln ln
n

i i i

i

T s s s



   , (6.24) 

and the ln s  based test  

  2
1

ln
n

i

i

T s



 ,  (6.25) 

are derived from the log-likelihood function of the positive stable Gompertz model in 

the same manner as they were derived from the positive stable Weibull model. Thus, the 

Zhu’s score test, modified score test and ln s  based test may be applicable for detecting 

frailty in the positive stable Gompertz model.  

6.4 Properties of the Score Tests for the Uncensored Case 

6.4.1 The Asymptotic Null Properties of the Tests for the Uncensored Case 

without Nuisance Parameters 

All these score statistics depend on the observations  1 2,i it t  where 1, ,i n  

through the variables is  which all have the same null distribution regardless the values 

of
 ja  and jb . Hence, all these score statistics are the sum of independent, identically 

distributed variates. Such a property is useful for computing their asymptotic 

distributions.    
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 Under the null hypothesis, 
0 : 1H v  , and the assumption that ja  and jb  are 

known, the  components ijt   1,2j 
 
of the ith observation are independently Gompertz 

distributed. If T  is a random variable associated with the survival time of an individual 

and  S t  is the corresponding survivor function, the random variable  logY S T   

has an exponential distribution with unit mean irrespective of the form  S T  (Collet, 

2003). Thus,  Y H t  because    logH t S t  . Hence, the Gompertz cumulative 

hazard function,  1 /j ijb t

j ja e b   1,2j   is distributed as a unit exponential.  

 The moment generating function for a unit exponential distribution variable Y  is 

   
1

1YM t t


  . The moment generating function of the sum of mutually independent 

random variables is the product of their moment generating functions. Here, since 

 
2

1

1 /j ijb t

i j j

j

s a e b


  , therefore   

        
1 1 2

1 1 1
is

M t t t t
  

      . (6.26) 

From the moment generating function in (6.26),  
2

1

1 /j ijb t

i j j

j

s a e b


   has gamma 

distribution with scale and shape parameters equal to 1 and 2, respectively. Hence, the 

density function of is  is given by    

  0
is

i if s s e


 . (6.27) 

Expected values which may be derived from (6.27) are very useful for 

computing the null mean and variance of the score statistics. Those expected values are 

given by 
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-1 -1

0
0 0

0
0

0
0

2 2

0
0

2 2

0
0

2 2 2 2

0
0

1

1,

ln ln ' 2 1 ,

ln ln ' 3 3 2 ,

ln ln " 2 ,

ln ln " 3 ,

ln ln " 4 ,

ln

is

i i i i i

i i i i

i i i i i i

i i i i

i i i i i i

i i i i i i

i i i

E s s f s ds e ds

E s s f s ds

E s s s s f s ds

E s s f s ds

E s s s s f s ds

E s s s s f s ds

E s s s





 














  

    

    

  

  

  



 











   

   

1

0
0

2 2 1

0
0 0

ln ' 1 ,

,i

i i i

s

i i i i i i

s f s ds

E s s f s ds s e ds






 
  

   

   



 

 (6.28) 

where   is Euler’s constant and    is the gamma function.  

6.4.1.1 The Score Test 

 The mean of the score test  2
T

 
in (6.23) may be written as       

     2
1

n

i

i

E T E T


 ,  (6.29) 

where 2 2ln ln 1i i i i iT s s s s    . Using the expected values in (6.28),  iE T  may be 

obtained as the following 
 

 

       

   2 2ln ln 1i i i i iE T E s s s s      

       2 2 ln ln 1i i i iE s E s s E s   
 

 

     2 2 1 3 2 1 0         
 

  2 2 2 2 3 1 0        .
 

 (6.30) 

Hence, from  (6.29), the mean of  2
T  under the null hypothesis is given by

  
 

     2
1

0 0
n

i

i

E T E T n


    . (6.31) 
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Meanwhile, the variance of  2
T

 
may be expressed as  

       2 2

2
1 1

n n

i i

i i

Var T E T E T
 

   . (6.32) 

Under the null hypothesis,  2

iE T  may be obtained using (6.28) as 

 

  

 
2

2 1
2 2ln lni i i i

i

E T E s s s
s

  
     
   

  

         
2 2

4 4 ln ln 10 ln 4 lni i i i i iE s E s s E s E s s    
 

 

  
   

       2 24 ln 4 1/ 4 log / 1/ .i i i i i iE s s E s E s s E s   
 

(6.33) 

Each term in equation (6.33) has a finite value except that for  21/ iE s  which is 

infinite. It follows that the variance of  2
T  under the null hypothesis

 
is  

   2
Var T   . (6.34) 

Since the null variance of  2
T

 
is infinite, the common central limit theorem argument is 

inapplicable to  2
T . Instead, Zhu (1998) applied the central limit theorem for infinite 

variance (Feller, 1966) to obtain a standard normal test statistics as the following (see 

Zhu (1998) for the detail)   

  

 
 

2

2
0,1  as .

1
ln

2

T
S N n

n n

    
(6.35) 

6.4.1.2 The Modified Score Test 

The mean of  2
T 

 in (6.24) is  

    (2)

1

n

i

i

E T E T 



 , (6.36) 

where 2 2ln lni i i iT s s s    . Thus, using the expected values in (6.28) 
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    2 2ln lni i i iE T E s s s      

     2 2 1 3 2 1      
 

 

  2 2 2 2 3 1       .
 

(6.37) 

and the mean of   2
T 

 under the null hypothesis may be expressed as  

     0 02
1

1
n

i

i

E T E T n n  



    , (6.38) 

where 0

 is the null mean of  2

T 
 for a single observation. The variance of  2

T 

 
under 

the null hypothesis
 
may be expressed as  

       2 2

2
1 1

n n

i i

i i

Var T E T E T  

 

   , (6.39) 

where        

           22 2 2ln lni i i iE T E s s s      

  

   
2 2

4 4 ln lni i iE s E s s  
 

        28 ln 4 ln 4 lni i i i iE s E s s E s s  
    

 

           4 4 4 2 4 3 2 4 3 8 1            
  

  
2

22 6 4
3


     . (6.40) 

By substituting the Euler’s constant 0.577215664   and 3.1415926535  , the null 

variance of  2
T 

 is  

       2 2

2
1 1

n n

i i

i i

Var T E T E T  

 

     

  2
22 6 4

3
n n


 

 
     

 
 

 

  2
22 6 4 1

3
n


 

 
      

 
 

 

  3.492929993n    

  2

0n  , 
(6.41) 
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where 
2

0


 is the null variance of 
 2

T   for a single observation. By the central limit 

theorem, the standardised score statistic 
 2

S   under the null hypothesis is given as the 

following 

  

   
 

02 2

2 2

0

0,1  as 
3.4929299993

T n T n
S N n

nn





  





 
   


, (6.42) 

where from (6.38), 0 1  , whilst
 

2

0 3.4929299993   as given in (6.41).  

6.4.1.3 The Test based on ln s  

 The mean of 
 2

T   under the null hypothesis is derived as follows  

 
                       

    2
1

ln
n

i

i

E T E s



   

   1n   
 

 

  0.4227843351n 
 

 

  0n , (6.43) 

where the Euler’s constant 0.577215664  . Also, the null variance of 
 2

T   is 

       2 2

2
1 1

ln ln
n n

i i

i i

Var T E s E s

 

     

  

2

1
6

n
 

   
   

 

  0.6449340675n 
 

 

  
2

0n  , (6.44) 

where 3.1415926535  . Therefore, by the central limit theorem, the standardised 

score statistic for 
 2

T 

 
under the null hypothesis 

 2
S   is  

 
 

 
 

02 1

2 2

0

ln 0.4227843351

0,1  as 
0.6449340675

n

i

i

s n
T n

S N n
nn





 

 



 


   



, (6.45) 
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where from (6.43), 0 0.4227843351  , whilst
 

2

0 0.6449340675   as given in (6.44).  

6.4.2 The Non-null Case 

 The density function of 
is  under the alternative hypothesis 

1 : 0 1H v   is given 

by    

       2 2 1 1

1 exp 1v v v

i i i if s s v s v v s     . (6.46) 

Some expected values those are obtained from (6.46) are needed for computing the non-

null mean and variance of the tests. These expected values are given as follows:   

 

   

   

        

-1 -1

1
0

1
0

2

1
0

,

ln ln 1 / ,

ln ln 2 1/ 3 1/ ,

i i i i

i i i i

i i i i i i

E s s f s ds

E s s f s ds v

E s s s s f s ds v v v v









  

  

      







 (6.47) 

where      /        is the di-gamma function.  

 The non-null mean of   2
T  is given by  

 
                  

    2
1

n

i

i

E T E T


   

 

  

 
 

1

2 2ln ln 1
n

i i i i

i

E s s s s


     
 

       2 2 1 / ln 1/i i iv E s s E s       . (6.48) 

Also, Zhu (1998) showed that the non-null variance of   2
T  is undefined since the term  

    -2 -2

1
0

i i i iE s s f s ds


   . (6.49) 

The non-null mean and variance for 
 2

T   and 
 2

T   are given in Appendix C. 
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6.4.3 The Asymptotic Null Properties of the Tests for the Uncensored Case with 

Nuisance Parameters 

In the case of parameters ja  and jb  are unknown, all the score statistics 

considered may be denoted as  2
T̂ ,  2

T̂ 
 and  2

T̂ 
. The score statistics  2

T̂ ,  2
T̂ 

 and  2
T̂ 

 

are the same as  2
T , 

 2
T   and 

 2
T  , respectively, yet with ja  and jb  substituted by their 

corresponding maximum likelihood estimators (MLEs) under the null hypothesis. Thus, 

the score statistics for uncensored case with nuisance parameters are  

    2
1

ˆ ˆ ˆ ˆ ˆ2 2ln ln 1
n

i i i i

i

T s s s s


    , (6.50) 

 
   2

1

ˆ ˆ ˆ ˆ2 2ln - ln
n

i i i

i

T s s s



  , (6.51) 

and  

 
 2

1

ˆ ˆln
n

i

i

T s



 , (6.52) 

where  
2

ˆ

1

ˆˆ ˆ 1 /j ijb t

i j j

j

s a e b


   and ˆ
ja  and ˆ

jb  are the MLEs of ja , jb  under the null 

hypothesis. 

The asymptotic mean of the test statistic for the case with nuisance parameters 

are similar to that of without nuisance parameters case. However, for the case with 

nuisance parameters, the asymptotic variances may reduce (Kimber, 1996; Crowder & 

Kimber, 1997). Sarker (2002) pointed out that the null variances for the non-Weibull 

distribution case may be different from his study finding when the nuisance parameters 

are replaced by their null MLEs. Therefore, in this study, the asymptotic variances for 

 2
T̂ 

 and  2
T̂ 

 
for the positive stable Gompertz model are derived. The derivations of 

these asymptotic variances are based on the Pierce (1982) theorem. The asymptotic 
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variance for  2
T̂  is not obtained using the Pierce (1982) results since the variance of  2

T  

is infinite.  

6.4.3.1 The Modified Score Test  2
T̂ 

 

The variance of  2
T̂ 

 in equation (6.51) under the null hypothesis is given by  

    2 2 1

0 0 0 02
ˆ TVar T n n B J B       , (6.53) 

where  2 2

0 0 0J E    is the expected information matrix, and 

      0 2
1

2 ln 1
n

i i i

i

B E T E s s s 



        . (6.54) 

Under the null hypothesis, the log-likelihood function may be written as 

  
2

0

1 1 1

ln
n n

j i ij i

i j i

a b t s
  

    . (6.55) 

The formulae for computing 
1

0 0 0

TB J B
 are derived for  2

T̂ 

 
by considering ln ij ja 

 

 1,2j  . The corresponding formulae are   

 
0

0

0b

B
B

B

 
  
 

, 
0 0

0

0 0

b

b bb

J J
J

J J

 



 
  
 

;  

     

     

 

00 2 1
1

2 2

0 0
1 1 1

2 / ln 1

                2 / 1 ln  1 1 1

                    exp 1

j j k

j ij j ij k ik

j

j j ij j ij

n

i i i k
k

i

n
b t b t b t

i j jj j k

b t b t

j j

B E s s s

e e e
e e e

b b b

e
e e e

b



  









 

  



    

     
            

     

 
   

 
 



   

2

1

 ,ijdt
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00 2 1
1

2 2

0 0
1 1 1

2

2 / ln 1  /

                2 / 1 ln  1 1

1
                    e

j j

j ij j ij

k k ik k k ik

j j ij

n

i i i kb
k

i

n
b t b t

i j jj j

b t b t

j ik b t

k

B E s s s b

e e
e e

b b

b e e t e e
e e

b

 

 






 

  

    

     
           

     

  
 
 
 



   

 
2

1

xp 1  ,
j

j ijb t

ij

j j

e
e dt

b





 
  
 
 


 

  

 

 

   

2

0
00 2 2

2

0

1 1

0

1 1

0

                  1

                  1

                  1

j

j ij

kl
k l

pn
b t

j j ij

i jk l j

pn
bt

i j

bt

kl ik

i

J E

e
E b t e

b

e
E e

b

e
e f t

b









 


 





 

 



 
  

  

     
              

 
  

 

 







   

1

0
1

                  1  exp 1  ,

n

ik

n
bt bt bt

kl ik

i

dt

e e
e e e e dt

b b
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2

0
00 2 2

2

0

1 1

0 2
i 1 1

                 1  

1
                  

   

j

j ij

j j ij j j ij

b
kl

k l

pn
b t

j j ij

i jk l j

b t b t
pn

j ij

j j

J E
b

e
E b t e

b b

b e e t e e
E

b





 








 

 

 
  

  

     
              

       
 

    





   
 

   
 

20
1

20
1

1
               

1
                  exp 1  ,

k k ik k k ik

k k ik k k ik
k

k k ik k ik

b t b t
n

ik

kl ik ik

i j

b t b t
n

ik b t b t

kl ik

i j k

be e t e e
f t dt

b

be e t e e e
e e e dt

b b

 

  














   
  

  

     
     

   





 

  

 

     

2

0
00 2 2

2

0

1 1

2

0 2 3
1

                1  

2 2 1
                

j

j ij

j j ij j j ij j j ij

bb
kl

k l

pn
b t

j j ij

i jk l j

b t b t b t
p

j ij ij

i j j j

J E
b b

e
E b t e

b b b

b e e t e e t e e
E

b b



  





 

 

 
  

  

     
              

   
  

  





     
 

     

1

2

2 30
1

2

2 30

 

2 2 1
                  

2 2 1
                 

k k ik k k ik k k ik

k k ik k k ik k k ik

k k ik

n

b t b t b t
n

k ik ik

kl ik ik

i k k

b t b t b t

k ik ik b t

kl

k k

b e e t e e t e e
f t dt

b b

b e e t e e t e e
e e

b b

  

  













 
 
 
  

   
  

  

   
  

  





 

1

                   exp 1 ,
k

k ik

n

i

b t

ik

k

e
e dt

b





 
   

 



 

where the Euler’s constant is 0.577215664   and kl  is the Kronecker delta.  Without 

loss of generality, the computation is simplified by letting the value of 0j    1ja   

Univ
ers

ity
 of

 M
ala

ya



 

153 
 

and 1jb    1,2j  . Then, the following values are obtained through numerical 

integration by Mathematica software version 10,   

 

 

 

 

 

0

0.922784

0.922784

0.853955

0.853955

n

n
B

n

n

 
 

 
 
 

  

, (6.56) 

 

 

 

   

   

0

0 0.596347 0

0 0 0.596347

0.596347 0 0.531931 0

0 0.596347 0 0.531931

n n

n n
J

n n

n n

 
 
 
 
 
  

. (6.57) 

Thus, from (6.56) and (6.57), 
1

0 0 0

TB J B

 
may be obtained as  

 
1

0 0 0 2.749073TB J B n   , (6.58) 

after substituting for 0j   and 1jb  . Hence, using 
2

0 3.4929299993   from
 
(6.41), 

and 
1

0 0 0

TB J B
 in (6.58), the variance of  2

T̂ 
 under the null hypothesis is given by     

                      
   2 2 1

0 0 0 02
ˆ TVar T n n B J B         

      3.492929993 2.749073n n   
 

 

   3.492929993 2.749073n  
 

 

  0.7438566n  .
 

(6.59) 

Following the central limit theorem, using (6.38) and (6.59), the standardised score 

statistic  2
Ŝ 

 under the 
0H  is asymptotically distributed as standard normal, that is  

given by 

  

     
2 2

2 2

0

ˆ ˆ
ˆ 0,1  as 

0.7438566

T n T n
S N n

nn

 





 
   


. (6.60) 
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 The ratio of the null variance of (2)T 

 
in

 
(6.41) to the null variance of 

(2)T̂ 

 
in

 

(6.59)
 
is  

 
2 2

0 0 3.492929993 0.7438566  4.696     . (6.61) 

This explains that the asymptotic null variance of (2)T 
 is four times as large as that of 

(2)T̂  . Thus, the use of 
(2)T̂   as if it has the same null distribution as (2)T 

would lead to a 

conservative test. 

6.4.3.2 The Test based on ln s  2
T̂ 

 

The null variance of  2
T̂ 

  is given by  

    2 2 1

0 0 0 02
ˆ TVar T n n B J B       , (6.62) 

where  2 2

0 0 0J E     is the expected information matrix in (6.57), and  

    0 0 (2) 0

1

1
n

i i

i

B E T E s s 



      . (6.63) 

     

   

 

00 2 1
1

2

0 0
1 1

2

1

1/ /

                  1/ 1 1  

                        exp 1  ,

j k

j ij k ik

j

j j ij j ij

n

i i k
k

i

n
b t b t

i j j k

b t b t

ij

j j

B E s s

e e
e e

b b

e
e e e dt

b



 









 

 



  

   
     

   

 
   

 
 



  



 

     

 
   

 

00 2 1
1

2

20 0
1 1

2

1

1

1
               1/ 1

                    exp 1  .

k k ik k k ikj

j ij

j

j j ij j ij

n

i i kb
k

i

b t b t
n

j ikb t

i j j k

b t b t

ij

j j

B E s s b

b e e t e ee
e

b b

e
e e e dt

b
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By substituting for 0j   and 1jb  , 
0B  is  obtained as follows  

 

 

 

 

 

0

0.5

0.5

0.218945

0.218945

n

n
B

n

n

 
 
 
 
 
  

. (6.64) 

Using (6.57) and (6.64), 

 
1

0 0 0  0.5712094TB J B n   , (6.65) 

and the null variance of  2
T̂ 

  is given by 

             
   2 2 1

0 0 0 02
ˆ TVar T n n B J B      

 
  

     0.6449340675 0.5712094n n   
 

 

   0.6449340675 0.5712094n     

   0.07372465n  , (6.66) 

where from (6.44), 
2

0 0.6449340675    and from (6.65), 
1

0 0 0 0.5712094TB J B  . 

 By the central limit theorem, the standardised score statistic  2
Ŝ 

 under the null 

hypothesis is  

 
 

 
 

02 1

2 2

0

ˆln 0.4227843351ˆ
ˆ 0,1  as .

 0.07372465

n

i

i

s n
T n

S N n
nn





 

 



 


   



 (6.67) 

The ratio of the null variance of (2)T 

 
in (6.44) to the null variance of (2)T̂ 

 
(6.66)

 
is given 

by 

 
2 2

0 0 0.6449340675  0.07372465  8.748     . (6.68) 

The use of (2)T̂   as if it has the same null distribution as (2)T 

 
would lead to a very 

conservative test as the asymptotic null variance of (2)T 
 is about eight times larger than 

that of (2)T̂  .  

Univ
ers

ity
 of

 M
ala

ya



 

156 
 

6.5 Properties of the Score Tests for the Censored Case 

6.5.1 Censored Case without Nuisance Parameters  

 Consider now the case that jT   1,2j   might be right censored and the 

Gompertz parameters ja  and jb  are known.  Supposed that 
1T  and 

2T  are censored at 

fixed times 
1c  and 

2c ,
  

respectively. There are four possibilities may be observed for a 

particular individual with index i  as follows (Zhu, 1998):  

a) The likelihood contribution from  1 2,i it t ,
 
where 

1it  and 
2it  are uncensored is 

  
 

    
2 2

1 2 2 2 2 2

1 2

11 2

,
; , 1 expj ijb ti i v v v

i i i j i i i

ji i

S t t
L v t t a e v s v v s s

t t

 




    

 
 , (6.69) 

 and its corresponding contribution to the score statistic under the null hypothesis is  

  
 1 2

1 2 1

; , 1
, | 2 2ln ln

i i i

i i i v i i i

i

v t t
T t t s s s

v s



    


, (6.70) 

where
    1 1 2 2

1 1 2 21 / 1 /i ib t b t

is a e b a e b    . 

b) The likelihood contribution from  1 2,i it t , where 
1it  is censored and 

2it  is observed 

is  

  
 

   2 21 2 1

1 2 2

2

,
; , expj ib ti v v

i i i i

i

S c t
L v c t a e vs s

t




  


, (6.71) 

and its corresponding contribution to the score statistic under the null hypothesis is  

  
 1 2

1 2 1

; ,
, | 1 ln ln

i i

i i v i i i

v c t
T c t s s s

v



   


, (6.72) 

where    2 21 1

1 1 2 21 / 1 / .ib tb c

is a e b a e b     

c) The likelihood contribution from  1 2,i it t , where 
1it  is observed and 

2it  is censored 

is  
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   1 11 2 1

1 2 1

1

,
; , expj ib ti v v

i i i i

i

S t c
L v t c a e vs s

t




  


, (6.73) 

and its corresponding contribution to the score statistic under the null hypothesis 

  
 1 2

1 2 1

; ,
, | 1 ln ln

i i

i i v i i i

v t c
T t c s s s

v



   


, (6.74) 

where    1 1 2 2

1 1 2 21 / 1 / .ib t b c

is a e b a e b     

d) The likelihood contribution from  1 2,i it t ,
 
where 

1it  and 
2it  are censored is  

      1 2 1 2| , , exp v

iL v c c S c c s   , (6.75) 

and its corresponding contribution to the score function is  

  
 1 2

1 2 1

| ,
, | ln

i

i v i i

v c c
T c c s s

v



  


, (6.76) 

where    1 1 2 2

1 1 2 21 / 1 / .b c b c

is a e b a e b     

 Summarising the aforementioned information in (6.70) to (6.76), the Zhu’s score 

test, modified score test and ln s  based test for the bivariate model with censored 

observations is given by   

    
 

2 ,
1

1
1 ln ln

2

n
i i

i i i ic
i i

I I
T I s s s

s

 
    

 
 , (6.77) 

 

     2 ,
1

1 ln ln
n

i i i ic
i

T I s s s



   , (6.78) 

and 

    2 ,
1

ln
n

i ic
i

T I s



 , (6.79) 

respectively, where    1 1 2 2

1 1 2 21 / 1 /i ib t b t

is a e b a e b     and  iI  1,2, ,i n  is an 

indicator variable defined as follows  
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1 2

1 2

1 2

  0        if  and  are both censored,

  1        if exactly one of  and  is censored ,

  2        if  and  are both uncensored.

i i

i i i

i i

t t

I t t

t t




 



 (6.80) 

6.5.1.1 The Asymptotic Null Properties of  2 ,c
T   

Zhu (1998) showed that under the null hypothesis 

     
 

2 ,

1
1 ln ln 0

2
i i i ic

i

I I
E T nE I s s s

s

 
     

 
. (6.81) 

Meanwhile, 
  2 ,c

Var T    as the last term  1 / 2i i iI I s  in (6.77) comes from (6.70) 

that has infinite variance. Thus, Zhu (1998) used the non-regular normalisation as in 

(6.35), that is given by 

  

 
 

2 ,

2 ,
0,1  as 

1
ln

2

c

c

T
S N n

n n

   . 
(6.82) 

6.5.1.2 The Asymptotic Null Properties of 
 2

*

,c
T   

For calculating the mean of 
 2 ,c

T   under the null hypothesis, the expression of 

 2 ,c
T   is specified as follows   

    1 22 ,
2

,
n

i i ic
i

T g t t



 , (6.83) 

where   

    1 2, 1 ln lni i i i i ig t t I s s s   , (6.84) 

The subscript i  of  1 2,i i ig t t  is omitted in the following discussion since the modified 

score function depends on is  which are identically distributed. Hence, since 
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  2 ,
0

c
E T   from (6.81) and the component of jt  is right censored at jc  1,2j  , the 

expected value of 
 2 ,c

T   with respect to a joint density  1 2,f t t  is given by
 
 

 

  
 

 
2 1

1 2 1 22 , 0 0

1 1
,  

2

c c

c

I I
E T nE n f t t dt dt

s s


 

  
 

  . (6.85) 

Meanwhile, the variance of 
 2 ,c

T   is given by 

          2 2

1 2 1 22 ,
, ,

c
Var T n E g t t E g t t   . (6.86) 

Let  1 /j jb t

j j jz a e b   and  1 /j jb c

j j jd a e b   1,2j  . Under the null hypothesis 

and the assumption that ja and jb  are known, 
1z   and 

2z  are independently distributed 

as unit exponential variables (Sarker, 2002) with density function  

      exp  for 1,2j j j jf z z z d j    . (6.87) 

Consider the special case, when there are no covariates and censoring points jd  

for each component of jt  are equal  1 2d d d  . Thus, from (6.85) the null mean of 

 2 ,c
T 

 is  

 
           

    
2 1

1 2 1 22 , 0 0

1
,

c c

c
E T n f t t dt dt

s

     
 

                          1 2

1 2
0 0

1 2

 
z z

d d e
n dz dz

z z

 


   

 

                               21 2 2 0, 2 0,2d dn e e d d d d          

                            
0,cn , (6.88) 

where   1, z n

d
n d e z dz


     is the incomplete gamma function. For calculating the 

variance of (2),cT 

 
in (6.86),   2

1 2,i iE g t t  is obtained as follows  

          
2 1 1

2

2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 2 1
0 0 0

, , ,  , ,  
c c c

i i
c

E g t t g t t f t t dt dt g t c f t t dt dt
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2

1

2 2

1 2 1 2 1 2 1 2 1 2
0

, ,  , ,
c

c
g c t f t t dt dt g c c S t t



   . 
(6.89) 

As given in Sarker (2002), each part in (6.89) may be obtained from the following:  

   
2 1 2

1 1 2 1 2 1 2
0 0

, ,
c c

EG g t t f t t dt dt    

       
         1 2

2

1 2 1 2 1 2 1 2
0 0

2 2ln ln
d d z z

z z z z z z e dz dz
 

        

          2 28 ln 2 8 ln 8 0,2 8 ln 8 0,d d dde de d d d d d e d d         

 
 

            
2

2 2 2 2

0
4 4 ln 2 4 4 ln

d d
r r

d
r r r r e dr d r r r r e dr         , 

  

   
1

2

2

2 1 2 1 2 2 1
0

, ,
c

c
EG g t c f t t dt dt



    

       
         1 2

2

1 1 1 2 1
0

1 ln ln
d z z

d
z d z d z d e dz dz

  
        

         1
2

1 1 1 1
0

1 ln ln
d z d

z d z d z d e dz
 

       

      2 2 24 ln 2 4 ln 2 lnd d d d de de de d e d d e          

 

   

   
2

2 21 2 ln
d

r

d
r r r e dr   , 

 

   
2

1

2

3 1 2 1 2 1 2
0

, ,
c

c
EG g c t f t t dt dt



    

       
 

 

        1 2
2

2 2 2 1 2
0

1 ln ln
d z z

d
d z d z d z e dz dz

  
        

 

 

        2
2

2 2 2 2
0

1 ln ln
d d z

d z d z d z e dz
 

       

      2 2 24 ln 2 4 ln 2 lnd d d d de de de d e d d e          

 

   

   
2

2 21 2 ln  
d

r

d
r r r e dr   , 

and  

     2 2 2 2

4 1 2 1 2, , 4 ln 2 dEG g c c S c c d d e  .  

Thus, the null variance of (2),cT 
 is obtained as follows:  
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        2 2

1 2 1 22 ,
, ,

c
Var T n E g t t E g t t   

 
  

                       2

1 2 3 4 1 2,n EG EG EG EG E g t t        

        2 2 2 2 24 ln 1 4 ln 2 8 0, 0,2 2 4d d d dn d d e d d e d d d e e            

          2 2 2 24 0, 4 0,2 4 0, 4 0,2 8 0,dd d d d d d d d de d           

      2 2 3 48 0,2 4 0, 4 0,2 4d d d d dde d de d de d e e             

       
2

2 2 3 22 4 4 2 8 6 ln
d

r

d
d r r r r r r e dr        

    2 2

0
4 4 ln

d
rr r r r e dr   

  

                   
2

0,cn  ,
                                                                                                   

 (6.90) 

through numerical integration by Mathematica software. 

6.5.2 Censored Case with Nuisance Parameters 

The score statistics for censored cases with nuisance parameters are obtained by 

replacing the ja and jb  in (6.77), (6.78) and (6.79) by their null MLEs, ˆ
ja and ˆ

jb . The 

score statistics are given as follows  

    
 

2 ,
1

1
ˆ ˆ ˆ ˆ1 ln ln

ˆ2

n
i i

i i i ic
i i

I I
T I s s s

s

 
    

 
 , (6.91) 

     2 ,
1

ˆ ˆ ˆ ˆ1 ln ln
n

i i i ic
i

T I s s s



   , (6.92) 

and 

  (2),

1

ˆ ˆln
n

c i i

i

T I s



 , (6.93) 

where    1 1 2 2
ˆ ˆ

1 1 2 2
ˆ ˆˆ ˆ ˆ1 / 1 /i ib t b t

is a e b a e b    , ˆ
ja  and ˆ

jb  are MLEs of ja and jb , 

respectively under 
0H  and iI  is defined in (6.80). For censored observations, 

1it  and 
2it  

are replaced by censoring times 1ic  and 2ic , respectively.  
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The null mean of  
(2),
ˆ

cT   is the same as asymptotic null mean of (2),cT 
 but the null 

variance is different. Since finding the null variance of 
(2),
ˆ

cT   using the Pierce (1982) 

theorem might be a daunting task, a simulation study is conducted instead. For 500,n 

10000 values of 
(2),
ˆ

cT   are generated for each censoring point, where the censoring points 

lie between 0.2 and 20. This simulation procedure is repeated ten times in order to 

produce stable variances estimates. The averages of the estimated variances are 

regressed on the corresponding censoring points, d . As a result, it is found that the 

variance of (2),
ˆ

cT   may be approximated by the following quadratic equation:   

 
2 2

0, 0.745569 0.370864 0.285308d d

c e e        . (6.94) 

Practically, only the fixed censoring time jc   1,2j   is known, yet not the 

value of ja  and jb . Even the censoring time for both components are equal, where 

1 2 ,c c c 
 
the censoring point  

ˆˆ ˆˆ 1 /j jb t

j j jd a e b    might be different since it depends 

on the estimation of the nuisance parameters, ˆ
ja and ˆ

jb . Therefore, it is worthwhile to 

note that, the equation of variance in (6.94) has very limited application. 

6.6 The Critical Region  

 All the score tests considered in this chapter are one-tailed test. Negative value 

of the difference between the non-null mean and null mean gives a lower tailed test and 

vice versa. The non-null mean of  2
T  in (6.47) is   , thus obviously the test is a lower 

tailed test with the critical region of an asymptotically -level test is 
  2

S z  , 

where      2 2
/ 1/ 2 lnS T n n . Also, Sarker (2002) verified the modified score test and 

the ln s  based test are lower tailed tests. The critical region of an asymptotically 

Univ
ers

ity
 of

 M
ala

ya



 

163 
 

level  test for 
 2

T   is 
  2

S z
    where  

  02

2 2

0

T n
S

n





 






 , while 

  2
S z
    for 

 2
,T   where  

  02

2 2

0

T n
S

n





 






 . 

 

6.7 Evaluation of the Convergence Rates 

Simulation procedures are carried out to investigate the rate of convergence to 

the normal limit for the Zhu’s score test, modified score test and ln s  based test for the 

bivariate positive stable Gompertz model. All simulations are done using the statistical 

computing software R version 3.0.3. 

6.7.1 Convergence Rate for the Uncensored Case 

6.7.1.1 Without Nuisance Parameters Case 

 A simulation study is conducted to examine the convergence rate for all score 

based tests  2
T , 

 2
T   and 

 2
T   for no censored case and parameters ja  and jb  are known. 

The steps of the simulation are described as follows: 

(i) Random variables 
1it  and 

2it   1,2, ,i n  from   two independent Gompertz 

distribution with parameters 1ja   and 1jb    1,2j   are generated by 

calling the rgompertz function from the flexsurv package (Jackson, 

2014) in the R software.  

(ii) The random variable is  is computed based on the relation 

   1 21 1i it t

is e e     after substituting for 1ja   and 1jb  .  

(iii) Then,  2
T , 

 2
T   and 

 2
T   are computed using the formulae given in (6.15), 

(6.16) and (6.17).   
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(iv)  2
S  is obtained from the formula given in (6.35), whilst 

 2
S   and 

 2
S 

 
by 

normalising the score statistics 
 2

T   and 
 2

T   as in
 

(6.42) and (6.45), 

respectively.  

(v) The mean quantiles with its respective standard deviation are determined at the 

point 0.01,  0.025,  0.05,  0.10  . 

Sample size n is ranged from 50 to 10000. The simulations are repeated 10000 times for 

each n. Besides, the simulations are done ten times for each n to estimate the stability of 

the simulated results. The R code for this simulation procedure is provided in Appendix 

D. Table 6.1, Table 6.2 and Table 6.3 present the mean quantiles and corresponding 

standard deviation of  2
S ,

  2
S   and 

 2
S  , respectively.  For comparison, the quantiles of 

the standard normal distribution are listed at the bottom line of these tables. The results 

show that the rate of convergence of 
 2

S   to the normal limit is faster than 
 2

S  . On the 

other hand, the rate of convergence for  2
S

 
is the slowest and does not reach the normal 

limit even though the sample size reaches 10000. 
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Table 6.1: Standardised critical values of Zhu’s score test  2
S

                 
(Uncensored case without nuisance parameters) 

n  
1

log 
2

n n  

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 5.47 -2.698(0.03) -3.952(0.09) -5.272(0.19) -7.504(0.44) 

50 9.89 -2.435(0.04) -3.487(0.08) -4.629(0.12) -6.396(0.25) 

100 15.17 -2.323(0.06) -3.307(0.08) -4.351(0.11) -6.110(0.23) 

500 39.42 -2.097(0.03) -2.929(0.03) -3.761(0.06) -5.124(0.22) 

1000 58.77 -2.022(0.03) -2.796(0.04) -3.591(0.07) -4.870(0.26) 

5000 145.92 -1.924(0.03) -2.617(0.03) -3.336(0.07) -4.498(0.19) 

10000 214.57 -1.869(0.03) -2.548(0.03) -3.222(0.06) -4.360(0.12) 

  -1.28 -1.64 -1.96 -2.33 

Table 6.2: Normalised critical values of the modified score test 
 2

S


(Uncensored case without nuisance parameters) 

n  
0nσ


 

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 8.36 -1.326(0.02) -1.836(0.03) -2.314(0.03) -2.924(0.07) 

50 13.22 -1.323(0.02) -1.786(0.02) -2.205(0.03) -2.701(0.06) 

100 18.69 -1.321(0.02) -1.751(0.03) -2.135(0.04) -2.604(0.04) 

500 41.79 -1.299(0.02) -1.688(0.03) -2.038(0.04) -2.460(0.07) 

1000 59.10 -1.297(0.01) -1.680(0.02) -2.020(0.01) -2.416(0.03) 

5000 132.15 -1.281(0.01) -1.658(0.02) -1.983(0.03) -2.375(0.04) 

10000 186.89 -1.272(0.03) -1.636(0.03) -1.965(0.04) -2.344(0.04) 

  -1.28 -1.64 -1.96 -2.33 

 

Table 6.3: Normalised critical values of the  ln s  based test 
 2

S


              
(Uncensored case without nuisance parameters) 

n  
0nσ


 

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 3.59 -1.296(0.02) -1.695(0.02) -2.038(0.03) -2.440(0.05) 

50 5.68 -1.287(0.01) -1.664(0.01) -1.995(0.02) -2.378(0.05) 

100 8.03 -1.307(0.02) -1.686(0.03) -2.018(0.02) -2.407(0.05) 

500 17.96 -1.280(0.02) -1.655(0.02) -1.974(0.03) -2.356(0.05) 

1000 25.40 -1.285(0.02) -1.658(0.02) -1.986(0.03) -2.357(0.03) 

5000 56.79 -1.289(0.01) -1.657(0.02) -1.971(0.02) -2.344(0.03) 

10000 80.31 -1.283(0.02) -1.643(0.02) -1.964(0.02) -2.331(0.03) 

  -1.28 -1.64 -1.96 -2.33 
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6.7.1.2 With Nuisance Parameters Case 

 An additional step of maximum likelihood estimation that is for estimating the 

MLEs of  ja  and jb  under the null hypothesis is included in the simulation procedure 

for the case in which the Gompertz parameters, ja  and jb , are unknown. Complete 

steps for this simulation study are described as follows: 

(i) Random variables 
1it  and 

2it   1,2, ,i n  from two independent Gompertz 

distribution with parameters  1ja   and 1jb    1,2j   are generated by 

calling the rgompertz function.   

(ii) The MLEs of  ja  and jb ,
 
 ˆ

ja  and ˆ
jb ,

 
respectively, are estimated from sample 

ijt
 

using the Newton-Raphson iteration method by calling the maxLik 

function (Henningsen & Toomet, 2011) from the software R.  

(iii) The random variable 
îs  is computed by 

 
   1 1 2 2

ˆ ˆ

1 2

1 2

ˆ ˆ1 1
ˆ

ˆ ˆ

i ib t b t

i

a e a e
s

b b

  
  
  
 

. (6.95) 

(iv) Score statistics  2
T̂ ,  2

T̂ 
 and  2

T̂ 
 are computed using (6.50) to (6.52). 

(v)  2
Ŝ  is

 
obtained from (6.35) and  2

Ŝ 
 and  2

Ŝ 
 by normalising the test statistics 

 2
T̂ 

 and  2
T̂ 

 using the equation (6.60) and (6.67).  

(vi) The mean quantiles with its respective standard deviation are determined at the 

point 0.01,  0.025,  0.05,  0.10  . 

Sample size is ranged from 20 to 10000, and the simulations are repeated 10000 times 

for each n.  Simulations are carried out ten times for each n to estimate the stability of 

the simulated results.  
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 The mean quantiles for normalised critical values of  2
Ŝ ,  2

Ŝ 
 and  2

Ŝ 
 are 

tabulated in Table 6.4, Table 6.5, and Table 6.6, respectively, together with the standard 

deviations. Standard normal quantiles are presented at the bottom of the table. Table 6.4 

shows that  2
Ŝ  does not converge to the normal limit even for sample size 10000. 

Meanwhile, the rate of convergence of  2
Ŝ 

 is slightly slower than  2
Ŝ 

.  

Table 6.4: Standardised critical values of Zhu’s score test  
ˆ

2
S

               
(Uncensored case with nuisance parameters) 

n  
1

log 
2

n n  

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 5.47 -2.112(0.05) -3.183(0.09) -4.509(0.15) -6.849(0.26) 

50 9.89 -1.894(0.03) -2.812(0.03) -3.922(0.09) -5.924(0.22) 

100 15.17 -1.804(0.03) -2.653(0.07) -3.629(0.11) -5.410(0.25) 

500 39.42 -1.685(0.02) -2.422(0.04) -3.270(0.08) -4.670(0.12) 

1000 58.77 -1.626(0.03) -2.322(0.05) -3.131(0.06) -4.464(0.19) 

5000 145.92 -1.592(0.02) -2.238(0.04) -2.929(0.06) -4.123(0.15) 

10000 214.57 -1.557(0.02) -2.164(0.04) -2.831(0.06) -3.965(0.12) 

  -1.28 -1.64 -1.96 -2.33 

 

Table 6.5: Normalised critical values of the modified score test  
ˆ

2
S


       
(Uncensored case with nuisance parameters) 

n  
0nσ


 

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 3.86 -1.445(0.03) -1.866(0.03) -2.237(0.03) -2.672(0.05) 

50 6.10 -1.365(0.01) -1.765(0.02) -2.115(0.03) -2.516(0.04) 

100 8.62 -1.339(0.02) -1.727(0.03) -2.066(0.04) -2.465(0.06) 

500 19.29 -1.307(0.01) -1.683(0.02) -1.999(0.02) -2.390(0.03) 

1000 27.27 -1.301(0.02) -1.670(0.02) -1.994(0.02) -2.371(0.03) 

5000 60.99 -1.285(0.01) -1.657(0.02) -1.980(0.02) -2.337(0.03) 

10000 86.25 -1.281(0.02) -1.647(0.02) -1.958(0.04) -2.331(0.06) 

  -1.28 -1.64 -1.96 -2.33 
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Table 6.6: Normalised critical values of the  ln s  based test of  
ˆ

2
S


          
(Uncensored case with nuisance parameters) 

n  
0nσ


 

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 1.21 -1.477(0.03) -1.953(0.04) -2.375(0.04) -2.897(0.06) 

50 1.92 -1.397(0.02) -1.822(0.02) -2.215(0.03) -2.671(0.05) 

100 2.72 -1.357(0.01) -1.762(0.03) -2.128(0.04) -2.574(0.05) 

500 6.07 -1.317(0.01) -1.706(0.02) -2.048(0.02) -2.431(0.03) 

1000 8.59 -1.303(0.02) -1.689(0.01) -2.017(0.02) -2.402(0.04) 

5000 19.20 -1.296(0.01) -1.666(0.02) -1.990(0.02) -2.359(0.03) 

10000 27.15 -1.286(0.02) -1.656(0.02) -1.971(0.03) -2.329(0.05) 

  -1.28 -1.64 -1.96 -2.33 

6.7.2 Convergence Rate for the Censored Case 

Convergence rate for cases with censored observation is also investigated 

through simulations. It is worthwhile to note that, for censored case, the results of the 

estimated critical values have limited practical application. Thus, this study only focuses 

on the Zhu’s score test and modified score test. 

6.7.2.1 Without Nuisance Parameters Case 

 It is assumed that 
1iT  and 

2iT
 
are censored at fixed times 

1c  and 
2c , respectively. 

For censored case and the parameters  ja  and jb  are known, the population of censored 

observations 
 
has the relationship with the marginal cumulative hazard 

1 1( )H c  and 

2 2( )H c  as follows 

     

       1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 2 1 2

1 2 1 2

,

1 1 1 1
  exp exp exp

b c b c b c b c

P T c P T c P T c T c

a e a e a e a e

b b b b

       

        
           
     
     

 

       

  1 2= 1 1 1d de e    ,

 

(6.96)
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where ( )j j jH c d  and j jH d
e e
 


 

is the population proportion of censored 

observations for the component j . The full steps to investigate the rate of convergence 

of these score tests are given as the following    

(i) Random variables 
1it  and 

2it   1,2, ,i n  from two independent Gompertz 

distribution with parameters 1ja   and 1jb    1,2j   are generated by 

calling the rgompertz function.  

(ii) The censoring time 1.035jc 
 

is
 

chosen so that about 30% of pairs are 

censored at least in one component of jT
 
according to (6.96). Any value of ijT

 

that is greater than 1.035jc 
 
is replaced by 1.035 . 

(iii) The random variable 
is  is computed.    

(iv) The score statistics  2 ,c
T  and 

 2 ,c
T  are computed from equation (6.77) and 

(6.78), respectively.  

(v)  2 ,c
S  is obtained from (6.82) and 

 2 ,c
S  is obtained by normalising the test 

statistics (2),cT 

 
with the mean and variance given in (6.88) and (6.90), 

respectively.  

Table 6.7 presents the mean quantile for the Zhu’s score test and its corresponding 

standard deviation. Meanwhile, Table 6.8 presents the mean quantile for the modified 

score test and its corresponding standard deviation. As expected 
 2 ,c

S

 
converge faster to 

the standard normal limit than  2 ,c
S . 
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Table 6.7: Normalised critical values of the Zhu’s score test  2 ,c
S

                       
(30% censoring and without nuisance parameters case) 

n  
1

log 
2

n n  

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 5.47 -2.320(0.03) -3.465(0.05) -4.743(0.09) -7.002(0.14) 

50 9.89 -2.151(0.05) -3.137(0.09) -4.298(0.10) -6.262(0.24) 

100 15.17 -2.040(0.03) -2.953(0.04) -3.960(0.08) -5.727(0.25) 

500 39.42 -1.897(0.03) -2.661(0.06) -3.475(0.07) -4.886(0.15) 

1000 58.77 -1.876(0.04) -2.630(0.04) -3.429(0.06) -4.768(0.23) 

5000 145.92 -1.769(0.02) -2.414(0.03) -3.110(0.06) -4.237(0.14) 

10000 214.57 -1.739(0.03) -2.387(0.05) -3.052(0.09) -4.084(0.23) 

  -1.28 -1.64 -1.96 -2.33 

 

Table 6.8: Normalised critical values of the modified score test 
 2 ,c

S


                  
(30% censoring and without nuisance parameters case) 

n  0 ,cnμ


 
0,cnσ


 

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 17.95 6.81 -1.317(0.02) -1.744(0.02) -2.129(0.02) -2.595(0.05) 

50 44.87 10.76 -1.302(0.02) -1.705(0.03) -2.068(0.03) -2.472(0.05) 

100 89.74 15.22 -1.292(0.02) -1.677(0.01) -2.020(0.03) -2.440(0.05) 

500 448.71 34.04 -1.291(0.01) -1.671(0.02) -1.999(0.03) -2.369(0.04) 

1000 897.42 48.14 -1.288(0.02) -1.654(0.02) -1.986(0.03) -2.371(0.04) 

5000 4487.08 107.63 -1.282(0.02) -1.651(0.02) -1.970(0.02) -2.350(0.04) 

10000 8974.15 152.22 -1.283(0.02) -1.649(0.02) -1.959(0.03) -2.331(0.02) 

   -1.28 -1.64 -1.96 -2.33 

       

6.7.2.2 With Nuisance Parameters Case 

 In this case, the similar simulation procedure for the censored case with nuisance 

parameters is performed. In addition, the maximum likelihood estimation method is 

included in order to obtain the MLEs of a  and b  using the Newton-Raphson iterative 

method by calling the maxLik function (Henningsen & Toomet, 2011) in the software 

R. The mean and variance are calculated based on the equation in (6.88) and (6.94), 

respectively. Meanwhile, the test statistics  2 ,
ˆ

c
T  and (2),

ˆ
cT   are calculated from the 
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formula in equation (6.91) and (6.92), respectively. The mean quantile of  2 ,
ˆ

c
S  and 

 2 ,
ˆ

c
S

 and its corresponding standard deviation are tabulated in Table 6.9 and Table 6.10, 

respectively. The results indicate that the convergence rate of  2 ,
ˆ

c
S  is slower than  2 ,

ˆ
c

S
.  

Table 6.9: Normalised critical values of the Zhu’s score test  
ˆ

2 ,c
S

                      
 

(30% censoring and with nuisance parameters case) 

n  
1

log 
2

n n  

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 5.47 -1.731(0.04) -2.691(0.08) -3.879(0.12) -6.036(0.32) 

50 9.89 -1.706(0.04) -2.583(0.05) -3.622(0.09) -5.462(0.19) 

100 15.17 -1.666(0.04) -2.469(0.06) -3.435(0.09) -5.158(0.18) 

500 39.42 -1.594(0.05) -2.311(0.07) -3.136(0.09) -4.562(0.22) 

1000 58.77 -1.576(0.03) -2.248(0.03) -3.020(0.08) -4.422(0.22) 

  -1.28 -1.64 -1.96 -2.33 

 

Table 6.10: Normalised critical values of the modified score test  
ˆ

2 ,c
S


                
(30% censoring and with nuisance parameters case) 

n  0,cnσ


 

Quantiles (SD) 

0.10 0.05 0.025 0.01 

20 3.75 -1.299(0.02) -1.672(0.02) -2.006(0.03) -2.423(0.05) 

50 5.87 -1.298(0.02) -1.678(0.03) -2.007(0.03) -2.376(0.04) 

100 8.25 -1.289(0.01) -1.662(0.02) -1.987(0.02) -2.347(0.04) 

500 18.41 -1.278(0.02) -1.642(0.02) -1.961(0.04) -2.320(0.04) 

1000 26.06 -1.272(0.02) -1.635(0.03) -1.948(0.03) -2.298(0.06) 

  -1.28 -1.64 -1.96 -2.33 
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6.8 Critical Values Estimation 

In this section, simulation studies are conducted to produce reliable expressions 

for estimating the critical values that are applicable even to cases with small sample 

size.  In practice, nuisance parameters are usually unknown. Therefore, in this section, 

only critical values for the case with nuisance parameters are considered.   

 The standardised critical values for the Zhu’s score test, modified score test and 

ln s  based test for uncensored case with nuisance parameters are estimated for different 

values of sample size, ranged between 20 10000n   for quantiles 

0.01,  0.025,  0.05   and 0.10 . The steps for generating the standardised critical 

values follow the method described in Section 6.6. The estimated standardised critical 

values are then smoothed by calling the nls function in software R. The estimated 

regression coefficient of the fitted regression models for the Zhu’s score test is tabulated 

in Table 6.11, for the modified score test in Table 6.12, and for the ln s  based test in 

Table 6.13. Meanwhile, Figure 6.1, Figure 6.2 and Figure 6.3 indicate that the 

regression models fit the estimated standardised critical values very well.  

 Sarker (2002) pointed out that the estimation of critical values for censored cases 

with unknown parameters is extremely cumbersome. In this case, the test statistics 

depend on the Gompertz parameters and censoring time c  through the censoring point 

1( 1) /jb c

j j jd a e b 
 
 1,2j  . In practice, only on the censoring time, c , are known. 

Hence, jd  must be estimated as the term depends on the null maximum likelihood 

estimates (MLEs) of the Gompertz parameters. Thus, this study has decided not to 

pursue the investigation on the estimation of critical values for this case.  
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Table 6.11:  Estimated expressions for calculating the standardised critical values 

of  
ˆ

2
S

 
for the case with nuisance parameters 

Statistic   Expression RSE
1 

 2
Ŝ  0.10 31.4988 1.3303 0.2413 n n    0.0135 

 0.05 32.0436 3.0252 +0.2680n n   0.0198 

 0.025 32.6068 5.4266 +1.0764n n   0.0349 

 0.01 33.5103 10.5617 +3.2903n n   0.0799 
1Estimated residual standard error 

 

 
 

Figure 6.1:  Estimated standardised critical values of the bivariate Zhu’s score test 

statistics  
ˆ

2
T  with superimposed fit of the equation 
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Table 6.12:  Estimated expressions for calculating the standardised critical values 

of  
ˆ

2
S


 
for the case with nuisance parameters  

Statistic   Expression RSE
1 

 2
Ŝ 

 0.10 1.2818 0.4935 0.7675 n n    0.0080 

 0.05 1.6441 0.7706 0.5154  n n    0.0098 

 0.025 1.9588 1.0476 0.3030n n    0.0119 

 0.01 2.3214 1.4912 0.2777n n    0.0166 
1Estimated residual standard error 

 

 

Figure 6.2:  Estimated standardised critical values of the bivariate modified score 

test statistics  
ˆ

2


T  with superimposed fit of the equation 0 1 2/ /   C n n  
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Table 6.13:  Estimated expressions for calculating the standardised critical values 

of  
ˆ

2
S


 for the case with nuisance parameters  

Statistic   Expression RSE
1 

 2
Ŝ 

 0.10 1.2815 0.8654 0.3965 n n    0.0078 

 0.05 1.6447 1.2993 0.3878  n n    0.0100 

 0.025 1.9572 1.8380 0.6334n n    0.0129 

 0.01 2.3217 2.5274 0.4706n n    0.0164 
  1Estimated residual standard error 

 

 

Figure 6.3: Estimated standardised critical values of the bivariate lns  based test 

statistics  
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6.9 Evaluation of Power 

The power of a statistical test is the probability that the test correctly rejects a 

false null hypothesis (Daniel, 2005). The higher the power, the better the test compared 

to others. In this section, the power of the Zhu’s score tests, modified score test and ln s  

based test are evaluated for the bivariate positive stable Gompertz model based on 

different sample sizes, amount of censoring, and amounts of frailty.   

 Simulation procedures are performed to estimate the power of the score statistics 

(a)  2
T , 

 2
T   and 

 2
T   for uncensored cases without nuisance parameters, (b)  2

T̂ ,  2
T̂ 

 

and  2
T̂ 

 for uncensored cases with nuisance parameters, (c)  2 ,c
T , 

 2 ,c
T   and 

 2 ,c
T   for 

censored case without nuisance parameters based on the pre-determined critical values 

obtained in Section 6.7.   

6.9.1 Uncensored Case without Nuisance Parameters  

For uncensored case without nuisance parameters, the steps of the simulation 

procedure are given as follows: 

(i) Two random variables 
1ix  and 

2ix   1,2, ,i n  are generated from two 

independent Gompertz distribution with parameters 1ja   and 1jb    1,2j 

by calling the rgompertz function.  

(ii) A positive stable random variable 
iw  is generated by calling the function of 

stabledist (Wuertz et al., 2013) in R.  

(iii) Then, positive stable Gompertz random variables 
1it  and 

2it  are obtained from 

/ij ij it x w . 

(iv) The test statistics  2
T , 

 2
T   and 

 2
T 

 
are computed.  
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(v) The test statistics the are obtained in step (iv) are compared to pre-determined 

critical values at 5% from Table 6.1 to Table 6.3.  

(vi) The null hypothesis is rejected when the observed values of the test are lower 

than its corresponding critical values.  

(vii) Power of the tests which is equal to the percentage of rejections in a repeated 

sampling is estimated.  

All simulations procedures are performed for each combination of characteristic 

exponent 0.50 1.00v   and n   20,  50n 
 
and 100 . Simulations are repeated for 

2000 times. Table 6.14 shows that the power estimates of the Zhu’s score test and 

modified score test are comparable, with the Zhu’s score test yields slightly higher 

power estimates for 0.50 0.90v  . Meanwhile, the power estimates for the ln s  based 

test is remarkably low compared to the other two tests.  
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Table 6.14: Estimated powers (%)  of  2
T , 

 2
T

  and 
 2

T
  at the 5% level of 

significance  for  PS v  frailty (Uncensored case without nuisance parameters)  

n  v   2
T  

 2
T

  
 2

T
  

20 0.50 100.00 99.99 33.54 

 0.60 99.98 99.94 35.67 

 0.70 99.70 99.22 30.73 

 0.80 96.07 94.10 23.13 

 0.90 63.17 62.49 13.67 

 0.95 29.05 29.76 9.35 

 0.99 7.78 8.04 5.28 

 1.00 4.68 4.73 4.61 

50 0.50 100.00 100.00 33.04 

 0.60 100.00 100.00 38.36 

 0.70 100.00 100.00 36.88 

 0.80 99.95 99.91 28.32 

 0.90 90.24 89.42 16.82 

 0.95 48.40 49.58 10.52 

 0.99 10.83 10.01 6.01 

 1.00 5.26 5.11 5.03 

100 0.50 100.00 100.00 30.89 

 0.60 100.00 100.00 41.44 

 0.70 100.00 100.00 42.50 

 0.80 100.00 100.00 32.43 

 0.90 99.08 99.21 18.13 

 0.95 70.41 72.60 10.94 

 0.99 12.39 12.29 5.78 

 1.00 4.57 4.68 4.53 

 

6.9.2 Uncensored Case with Nuisance Parameters  

 For this case, the similar simulation procedure for the case without nuisance 

parameters is performed, except that the method of maximum likelihood estimation is 

included by calling the maxLik function (Henningsen & Toomet, 2011). The pre-

determined critical values in Table 6.4 to Table 6.6 are used. The estimated powers of 

the tests are tabulated in Table 6.15. The results indicate that the power for detecting the 

presence of frailty in the positive stable Gompertz for all the three tests is reasonable. 
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The power of the modified score test is the highest followed by the ln s  based test 

especially for 0.50 0.90v  .   

Table 6.15:  Estimated powers (%)  of  
ˆ

2
T ,  

ˆ
2

T


 and  
ˆ

2
T



 
at the 5% level of 

significance  for  PS v  frailty (Uncensored case with nuisance parameters) 

n  v   
ˆ

2
T   

ˆ
2

T


  
ˆ

2
T


 

20 0.50 99.53 99.89 99.87 

 0.60 96.37 98.45 97.95 

 0.70 83.35 90.22 88.35 

 0.80 57.30 65.51 63.53 

 0.90 27.62 30.05 29.70 

 0.95 15.77 15.74 15.85 

 0.99 6.42 6.14 6.15 

 1.00 4.37 4.55 4.38 

50 0.50 100.00 100.00 100.00 

 0.60 100.00 100.00 100.00 

 0.70 98.46 99.67 99.51 

 0.80 86.42 92.75 91.84 

 0.90 48.59 54.10 53.90 

 0.95 25.86 25.16 26.42 

 0.99 8.13 8.00 8.08 

 1.00 5.26 5.56 5.51 

100 0.50 100.00 100.00 100.00 

 0.60 100.00 100.00 100.00 

 0.70 99.99 100.00 100.00 

 0.80 98.04 99.53 99.31 

 0.90 68.33 75.51 75.57 

 0.95 34.30 35.79 36.77 

 0.99 9.74 8.63 9.23 

 1.00 4.81 4.77 4.98 

 

6.9.3 Censored Case without Nuisance Parameters  

 For censored case, only the power of the tests for the case without nuisance 

parameters are investigated. The power of the Zhu’s score test and modified score test 

for three different cases of fixed censoring time are investigated. The censoring time are 

chosen which (a) 1 2 1.38c c  , where 10% pairs are censored in at least one 
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component, (b) 
1 20.80,  c c  , where 30% pairs are censored only in one component 

and (c) 
1 2 1.035c c  , where 30% pairs are censored in at least one component. The 

results are tabulated in Table 6.16. The results indicate that the power estimates of the 

Zhu’s score test and modified score test are comparable, with slightly higher power for 

the Zhu’s score test. In addition, the power estimates for both tests are the lowest for 

larger amount of censoring cases that is when 30% pairs are censored at least in one 

component of the survival times. 

 

Table 6.16:  Estimated powers (%)  of  2 ,c
T  and 

 2 ,c
T

  at the 5% level of 

significance 

n  v   2 ,c
T  

 2

*

,c
T   2 ,c

T  
 2

*

,c
T   2 ,c

T  
 2

*

,c
T  

  1 2= = 1.38c c   1 2= 0.80, =c c   
1 2= = 1.035c c  

20 0.50 100.00 99.97 100.00 99.97 99.92 99.93 

 0.60 99.93 99.80 99.93 99.85 99.31 99.21 

 0.70 98.63 97.99 98.83 97.87 94.42 93.84 

 0.80 88.12 87.21 90.15 88.91 76.81 74.55 

 0.90 51.00 50.40 53.37 53.95 40.10 36.55 

 0.95 24.93 24.87 25.16 27.22 20.90 18.03 

 0.99 8.79 8.65 8.51 10.03 7.95 7.07 

 1.00 5.82 5.84 5.44 6.80 4.96 5.03 

50 0.50 100.00 100.00 100.00 100.00 100.00 100.00 

 0.60 100.00 100.00 100.00 100.00 100.00 100.00 

 0.70 100.00 100.00 100.00 100.00 99.97 99.97 

 0.80 99.57 99.26 99.71 99.47 97.06 97.13 

 0.90 79.38 77.88 81.04 81.70 66.92 64.36 

 0.95 41.02 38.20 41.02 44.28 32.76 28.64 

 0.99 11.23 8.92 10.60 12.40 8.76 7.59 

 1.00 6.09 5.04 5.82 7.37 4.99 5.01 

100 0.50 100.00 100.00 100.00 100.00 100.00 100.00 

 0.60 100.00 100.00 100.00 100.00 100.00 100.00 

 0.70 100.00 100.00 100.00 100.00 100.00 100.00 

 0.80 100.00 100.00 100.00 100.00 99.98 99.95 

 0.90 96.14 94.92 95.62 96.22 87.58 86.64 

 0.95 59.57 54.04 60.01 65.11 47.28 43.71 

 0.99 12.83 8.69 12.64 15.62 11.16 9.14 

 1.00 5.41 3.98 5.64 8.04 5.08 4.90 
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6.10 Illustrative Example  

6.10.1 Simulated Data 

 It has been found that the data set of cervical cancer patients considered in the 

previous chapters contains no frailty component in them. In addition, a real data set that 

may fit the positive stable Gompertz model is not available. Therefore, for illustration, a 

simulated data set that follows the positive stable Gompertz model is used. A data set 

with 55n   is generated which consist of two random variables from two independent 

Gompertz distribution with parameters 0.0001a   and 0.1b  . Meanwhile, a random 

variable from the positive stable distribution is generated with an exponent 

characteristic of 0.68v  .  All three score based tests  2
T̂ ,   2

T̂ 
 and  2

T̂ 

 
are considered. 

The critical values for each score statistics at the level of significance 0.05   are 

obtained based on the expressions in Table 6.11 to Table 6.13. The results are tabulated 

in Table 6.17. All the tests show evidence that there is significant frailty effects in the 

simulated data set at 5% level of significance.               

Table 6.17:  The results of simulated data ( 55n  ) using the score based tests for 

bivariate positive stable frailty  

Test statistic Observed value Critical values 
0.05C   Significant frailty 

(2)Ŝ  -32.38 -2.80 Yes 

(2)Ŝ   -7.16 -1.76 Yes 

(2)Ŝ   -6.93 -1.81 Yes Univ
ers
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6.11 Summary 

In this study, the Zhu’s score test, modified score test and ln s  based test are 

derived for the positive stable Gompertz model. The asymptotic properties of these tests 

have been investigated for four different cases, the uncensored case without nuisance 

parameters, uncensored case with nuisance parameters, censored case without nuisance 

parameters, and censored case with nuisance parameters. Also, the new asymptotic 

variances for with nuisance parameters case are derived.  

The performance of these tests are studied based on the rate of convergence and 

the power of the tests. As anticipated, the rate of convergence of the Zhus’s score test to 

the normal limit is the slowest amongst other tests. However, the estimated power of the 

test is considerably well. The results also suggest that the Zhu’s score test is less 

sensitive to censoring as its power is slightly higher than the modified test in such case.   

 The convergence rate of the modified score test and ln s  based test is much 

faster than the Zhu’s score test. Meanwhile, the power estimates of the modified score 

tests are close to the power of the Zhus’s score test. In contrast, the ln s  based test has 

lower power especially for the uncensored case without nuisance parameters. Based on 

the convergence rate and power of the tests, the results reveal that the modified score 

test performs better under all cases considered in this study.  
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CHAPTER 7 

CONCLUSIONS 

7.1 Summary 

This study looked at some problems related to survival data analysis. Most 

survival analysis studies tend to ignore the possible implications of such problems on 

the study findings. There are three main problems which have been addressed in this 

study; a nonproportional hazard, missing values and frailty. 

In Chapter 3, data of 120 cervical cancer patients treated in HUSM were 

analysed. This study found that the overall five-year survival of these patients was low. 

Factors considered in the analyses were stage at diagnosis, ethnicity, histologic type, 

lymph node involvement, age at diagnosis, distant metastasis and primary treatment 

received. Of all variables, it was found that survival difference was statistically 

significant for the stage at diagnosis, primary treatment, and distant metastasis variables.     

 Also, the relationship between the prognostic factors of cervical cancer and the 

hazard of dying due to the cancer for these patients was investigated. From the Cox 

proportional hazards regression analysis, it was found that the stage at diagnosis, 

histologic type and distant metastasis were significantly influenced the risk of dying for 

cervical cancer patients studied. However, since the proportional hazards assumption for 

the distant metastasis variable was violated, the stratified Cox model was considered. 

Consequently, stage at diagnosis and histologic type remained as significant prognostic 

factors associated with the hazard of dying of these patients after stratified for the 

distant metastasis variable. Women, who were diagnosed at an advanced stage (III-IV), 

were having a 2-fold greater risk of dying than patients with stage I-II. Patients who 
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were diagnosed with histologic type of adenocarcinoma have poorer prognosis 

compared to those in squamous cell carcinoma group. 

 In Chapter 4, data of cervical cancer patients were further analysed using the 

Weibull, log-logistic and lognormal models. Based on the plots of the cumulative 

hazard function (or a function of it) against the log of survival time, these parametric 

survival models were suitable for modelling the data set. Stage at diagnosis, histologic 

type and distant metastasis variables were statistically significant for the Weibull model, 

whilst only the stage at diagnosis was significant in the log-logistic model. Meanwhile, 

the stage at diagnosis and age at diagnosis 60 years and older were significant in the 

lognormal model. Thus, the most important factor that affected the progress of the 

cancer for these patients was stage at diagnosis since it was found statistically 

significant at all level of analysis (univariate or multivariate) and all type of parametric 

models.  

Amongst these three models, the Weibull model was the best-fitted model since 

the AIC value was the smallest. Then, fitness of the Weibull model was checked further. 

The likelihood ratio test indicated that the scale parameters were different for without 

distant metastasis and with distant metastasis groups. Thus, there was evidence that this 

variable did not satisfy the proportional hazards assumption. A stratified Weibull model 

was proposed, where the distant metastasis became the stratification factor. The final 

model indicated that shorter survival time were more likely for the patient who was 

diagnosed at stage III-IV than those in early stages (Stage I-II). Similarly, those who 

was diagnosed with adenocarcinoma had an earlier time to death compared to squamous 

carcinoma.  

Also, the performances of the stratified Cox model and stratified Weibull model 

have been compared. Both of these models contained the same explanatory variables. 
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From the plots of Cox-Snell residuals, it was found that the stratified Cox model fitted 

the cervical cancer data better than the stratified Weibull model.   

In Chapter 5, the performances of four missing data methods have been studied 

for the parametric survival model. The complete case analysis, EM algorithm by method 

of weight, hot deck and multiple imputation with MICE-PMM methods were 

considered for handling missing categorical covariate values in the Weibull AFT model. 

This study focused on MAR data. It was found that when the percentage of missing 

values was small, the complete case analysis method was acceptable. However, as the 

percentage of missing values increases, the complete case analysis yielded the worst 

estimates compared with other methods. Meanwhile, for smaller sample size, multiple 

imputation with MICE-PMM performed better, followed by the EM algorithm by 

method of weight and hot deck. As the sample size increases, the EM algorithm by 

method of weight gave better parameter estimates. Similarly, when the percentage of 

missing value increases, the EM algorithm by method of weight outperformed the other 

methods.  

Also, these methods were applied to the data of cervical cancer patients treated in 

HUSM.  Amongst all, the parameter estimates from the EM algorithm were closer to the 

full model which had no missing values. The results from the EM algorithm method 

also showed that the significant effect of the variables in the final model was remained 

when the percentage of missing values were between small to moderate values. Based 

on the results obtained, it was found that the performance of the EM algorithm by 

method of weight was the best for handling missing categorical covariate values in the 

parametric survival model.  

Another problem in survival data analysis is the existence of frailty. Zhu (1998) 

proposed a score test for detecting the presence of positive stable frailty in a Weibull 

model. Then, Sarker (2002) extended this score test and derived two new score tests 
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namely a modified score test and ln s  based test. In Chapter 6, similar tests were 

derived and studied for the bivariate positive stable Gompertz model. Four cases have 

been considered; uncensored case without nuisance parameters, uncensored case with 

nuisance parameters, censored case without nuisance parameters, and censored case 

with nuisance parameters. Also, the new asymptotic variances for cases with nuisance 

parameters were derived from the positive stable Gompertz model.  

The results from the simulation studies showed that the rate of convergence of 

the Zhus’s score test to the normal limit was the slowest, yet the estimated power of the 

test was considerably well. The convergence rate of the modified score test and ln s  

based test were faster than the Zhu’s score test. Meanwhile, the power estimates of the 

modified score tests was comparable to the power of the Zhus’s score test. In contrast, 

the power estimation for the ln s  based test was the lowest especially for uncensored 

case with known parameters. Overall, the modified score test performed better in all 

cases based on the convergence rate and power of the test. Unfortunately, the real data 

set that may follow the positive stable Gompertz model was not available. Thus, for 

illustration, a simulated data set has been used.   
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7.2 Contributions 

This study has contributed to survival data analysis in the following ways:  

1. This study has demonstrated the development of parametric survival models for 

Malaysian real data set using several types of parametric survival models. Also, this 

study has demonstrated on how to identify the best survival model to represent the 

data.  

2. This study has demonstrated the development of non-proportional hazards model 

for Malaysian cancer data set using the stratified Cox model and stratified Weibull 

model.  

3. This study has investigated the performance of complete case analysis, EM 

algorithm by method of weight, hot deck and multiple imputation with MICE-

PMM method for handling missing covariate values in a parametric survival 

models. It has been found that the best method is the EM algorithm by method of 

weight. This study is imperative since the Cox proportional hazards model with 

missing values has often been given more attention in many published studies than 

the parametric model. In addition, this study has illustrated these methods for the 

data of cervical cancer patients treated in HUSM.  

4. This study has derived the Zhu’s score test, modified score test and ln s  based test 

for the positive stable Gompertz model. Also, the new asymptotic variances for the 

case with nuisance parameters were derived. The performances of these tests have 

been investigated and this study found that the modified score test perform better 

than the other two tests.   
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7.3 Future Work 

Further research may be executed based on the analyses that have been done in our 

study.  Several studies that are possible to work on are listed as the following: 

(i) Modelling the cervical cancer data using the flexible parametric model 

analysis 

Another type of model that may be applied for analysing the cervical cancer data is a 

flexible parametric model. Such a model is more flexible than the standard parametric 

model and suitable for handling non-proportional hazards covariates. 

(ii) Missing not at random (MNAR) data  

This study only considered parametric model with missing at random (MAR) covariate. 

Therefore, further investigation on the performance of the missing data methods studied 

may be done for missing not at random (MNAR) data. Such a case has not widely 

studied especially for the parametric survival model. In addition, one may also consider 

cases with a mixture of different missingness mechanism such as MCAR, MAR and 

MNAR.    

(iii) Missing continuous covariates 

In practice, most survival data involve categorical covariates. Therefore, this study only 

focused on missing values for categorical covariate. However, sometimes continuous 

variables are more useful and important thus further investigation may be done for this 

type of covariate with missing values. There are several studies that proposed the 

methods to handle missing continuous covariates, yet these studies mostly focused on 

the Cox proportional hazards model. Thus, study on this method for handling missing 

continuous data in the parametric model may be informative.    
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(iv) Testing frailty for the multivariate ( > 2)p  case 

The study on the properties of all three score tests considered in Chapter 6 focused on 

the bivariate positive stable Gompertz model. Therefore, it is worthwhile to discuss 

further the properties of these score tests for multivariate ( 2)p   cases. Besides, more 

intensive investigation of these score tests for the positive stable Gompertz model in the 

presence of covariates information either with missing values or without missing values 

may be necessary.   

(v) Power analysis of the positive stable Gompertz model for censored case with 

nuisance parameters 

One may continue the investigation on the power of all three score tests for censored 

case with nuisance parameters using the method of bootstrap that had been proposed by 

Sarker (2002). In addition, the power of these score tests may be further evaluated under 

misspecified frailty.  
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Appendix B: R code for the comparison of missing data methods 

MISSING=function(n,S,lamdaC,shape,beta0,beta1,beta2,a02,a12,a11,a22,a3

3,a00,b00,c00){ 

 

# Generate data from Weibul distribution# 

#---------------------------------------# 

 

lambdaT = exp(beta0)     # Baseline hazard 

x1=rbinom(n,1,0.6)     # Generate x1{0,1} 

pi.x2=exp(a02+a12*x1)/(1+exp(a02+a12*x1))  # Prob(x2)  

x2=rbinom(n,1,pi.x2)     # Generate x2{0,1} 

# True survival time  

T = rweibull(n, shape=shape, scale=lambdaT*exp((beta1*x1+beta2*x2)))  

C = rweibull(n, shape=shape, scale=lambdaC)    #censoring time 

time = pmin(T,C)  # observed time is min of censored & true 

event = time==T    # set to 1 if event is observed 

sort(event) 

 

A=cbind(time,event,x1,x2) 

x=data.frame(A)      # Data 

 

#--------------------------------------------------------------------# 

 

# generate missing at random covariate # 

#--------------------------------------# 

 

x.star=(T-mean(T))/sd(T)   

miss.mech=function(x,a00,a11,a22,a33,x.star){ 

  

PR=exp(a00+a11*x.star+a22*x1+a33*x1*x.star)/ #Probability MAR 

 (1+exp(a00+a11*x.star+a22*x1+a33*x1*x.star)) 

r.x2.mar=rbinom(n,1,PR) 

x2.mar<-x2*(1-r.x2.mar)+r.x2.mar*99999 

x2.mar[x2.mar==99999]=NA 

  

z<-data.frame(cbind(A[,1:3],x2.mar))  #Data MAR   

    

#--------------------------------------------------------------------# 

 

 # Complete case analysis method # 

 #-------------------------------# 

  

 #--- Survival analysis (beta estimation) ---# 

  

 omit<-na.omit(z)     # remove NA 

 t=survreg(Surv(omit[,1], omit[,2]) ~ omit[,3]+omit[,4], omit, 

 dist="weibull") 

 coeff=cbind(t$coefficients) 

 p=t$scale 

 b0=coeff[1,] 

 b1=coeff[2,] 

 b2=coeff[3,] 

 b0.omit=b0  

 b1.omit=b1 

 b2.omit=b2 

 p.omit=p 

 #--- Logistic regression (alpha estimation) ---# 

 

 lrfit <- glm( omit[,4] ~ omit[,3], family = binomial) 

 coef=cbind(lrfit$coefficients) 

 a0=coef[1,] 
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 a1=coef[2,] 

 

 alpha.omit=cbind(a0,a1) 

 

# Note: Estimation values (.omit) are used for initial values for EM # 

 

#--------------------------------------------------------------------# 

 

 # EM by method of weight # 

 #------------------------# 

 

 EM.weight=EM(S,z,b0,b1,b2,p,a0,a1) 

b0.EM=EM.weight$b0.EM 

b1.EM=EM.weight$b1.EM 

b2.EM=EM.weight$b2.EM 

p.EM=EM.weight$p.EM 

 

#--------------------------------------------------------------------# 

  

 # Hot deck imputation method # 

 #----------------------------# 

 

 # Call library(rminer) # 

 

 HD <- imputation("hotdeck",z)    

 HDR=survreg(Surv(HD[,1],HD[,2])~HD[,3]+HD[,4],HD,dist="weibull") 

 coeff.HD=cbind(HDR$coefficients) 

 

 #--- Hot deck estimation ---# 

 

 p.HD=HDR$scale 

 b0.HD=coeff.HD[1,] 

 b1.HD=coeff.HD[2,] 

 b2.HD=coeff.HD[3,] 

 

#--------------------------------------------------------------------# 

 

 # multiple Imputation (MICE-PMM)method # 

 #--------------------------------------# 

 

 # Call library(mice) # 

 

  

 #--- Imputation (m=10) ---# 

 

 imp <- mice(z, m=10)        

 com <- complete(imp, "long") 

 data1<-com[1:n,] 

 data2<-com[(n+1):(2*n),] 

 data3<-com[(2*n+1):(3*n),] 

 data4<-com[(3*n+1):(4*n),] 

 data5<-com[(4*n+1):(5*n),] 

 data6<-com[(5*n+1):(6*n),] 

 data7<-com[(6*n+1):(7*n),] 

 data8<-com[(7*n+1):(8*n),] 

 data9<-com[(8*n+1):(9*n),] 

 data10<-com[(9*n+1):(10*n),] 

 

  

  

 #--- Analysis ---# 

 

 M1<-survreg(Surv(time,event) ~ x1+x2.mar, data1, dist="weibull") 

 coeff.M1=cbind(M1$coefficients) 
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 p.M1=M1$scale 

 b0.M1=coeff.M1[1,] 

 b1.M1=coeff.M1[2,] 

 b2.M1=coeff.M1[3,] 

 

 M2<-survreg(Surv(time,event) ~ x1+x2.mar, data2, dist="weibull") 

 coeff.M2=cbind(M2$coefficients) 

 p.M2=M2$scale 

 b0.M2=coeff.M2[1,] 

 b1.M2=coeff.M2[2,] 

 b2.M2=coeff.M2[3,] 

 

 M3<-survreg(Surv(time,event) ~ x1+x2.mar, data3, dist="weibull") 

 coeff.M3=cbind(M3$coefficients) 

 p.M3=M3$scale 

 b0.M3=coeff.M3[1,] 

 b1.M3=coeff.M3[2,] 

 b2.M3=coeff.M3[3,] 

 

 M4<-survreg(Surv(time,event) ~ x1+x2.mar, data4, dist="weibull") 

 coeff.M4=cbind(M4$coefficients) 

 p.M4=M4$scale 

 b0.M4=coeff.M4[1,] 

 b1.M4=coeff.M4[2,] 

 b2.M4=coeff.M4[3,] 

 

 M5<-survreg(Surv(time,event) ~ x1+x2.mar, data5, dist="weibull") 

 coeff.M5=cbind(M5$coefficients) 

 p.M5=M5$scale 

 b0.M5=coeff.M5[1,] 

 b1.M5=coeff.M5[2,] 

 b2.M5=coeff.M5[3,] 

 

 M6<-survreg(Surv(time,event) ~ x1+x2.mar, data6, dist="weibull") 

 coeff.M6=cbind(M6$coefficients) 

 p.M6=M6$scale 

 b0.M6=coeff.M6[1,] 

 b1.M6=coeff.M6[2,] 

 b2.M6=coeff.M6[3,] 

 

 M7<-survreg(Surv(time,event) ~ x1+x2.mar, data7, dist="weibull") 

 coeff.M7=cbind(M7$coefficients) 

 p.M7=M7$scale 

 b0.M7=coeff.M7[1,] 

 b1.M7=coeff.M7[2,] 

 b2.M7=coeff.M7[3,] 

 

 M8<-survreg(Surv(time,event) ~ x1+x2.mar, data8, dist="weibull") 

 coeff.M8=cbind(M8$coefficients) 

 p.M8=M8$scale 

 b0.M8=coeff.M8[1,] 

 b1.M8=coeff.M8[2,] 

 b2.M8=coeff.M8[3,] 

 

 M9<-survreg(Surv(time,event) ~ x1+x2.mar, data9, dist="weibull") 

 coeff.M9=cbind(M9$coefficients) 

 p.M9=M9$scale 

 b0.M9=coeff.M9[1,] 

 b1.M9=coeff.M9[2,] 

 b2.M9=coeff.M9[3,] 

 

 M10<-survreg(Surv(time,event)~x1+x2.mar, data10, dist="weibull") 

 coeff.M10=cbind(M10$coefficients) 

 p.M10=M10$scale 
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 b0.M10=coeff.M10[1,] 

 b1.M10=coeff.M10[2,] 

 b2.M10=coeff.M10[3,] 

  

 #--- Combine ---# 

 

 p.all=rbind(p.M1,p.M2,p.M3,p.M4,p.M5,p.M6,p.M7,p.M8,p.M9,p.M10) 

 b0.all=rbind(b0.M1,b0.M2,b0.M3,b0.M4,b0.M5,b0.M6,b0.M7,b0.M8,b0.  

      M9,b0.M10) 

 b1.all=rbind(b1.M1,b1.M2,b1.M3,b1.M4,b1.M5,b1.M6,b1.M7,b1.M8,b1. 

      M9,b1.M10) 

 b2.all=rbind(b2.M1,b2.M2,b2.M3,b2.M4,b2.M5,b2.M6,b2.M7,b2.M8,b2.  

      M9,b2.M10) 

 

 #--- Multiple imputation estimation ---# 

   

 p.MI=matrix(colMeans(p.all)) 

 b0.MI=matrix(colMeans(b0.all)) 

 b1.MI=matrix(colMeans(b1.all)) 

 b2.MI=matrix(colMeans(b2.all)) 

   

 

   list(b0.omit=b0.omit,b1.omit=b1.omit,b2.omit=b2.omit,p.omit=p.omit, 

   b0.EM=b0.EM,b1.EM=b1.EM,b2.EM=b2.EM,p.EM=p.EM,b0.HD=b0.HD, 

   b1.HD=b1.HD,b2.HD=b2.HD,p.HD=p.HD,b0.MI=b0.MI,b1.MI=b1.MI, 

   b2.MI=b2.MI,p.MI=p.MI) 

 

   } 

    

  # Run for different percentage of missing values # 

 

  NA.10=miss.mech(x,a00,a11,a22,a33,x.star) # 10%  NA  

  NA.30=miss.mech(x,b00,a11,a22,a33,x.star)  # 30%  NA  

  NA.50=miss.mech(x,c00,a11,a22,a33,x.star)  # 50%  NA   

 

 #------- Estimation based on complete case analysis 

 

  b0.omit.10=NA.10$b0.omit;b1.omit.10=NA.10$b1.omit; 

  b2.omit.10=NA.10$b2.omit;p.omit.10=NA.10$p.omit 

    

  b0.omit.30=NA.30$b0.omit;b1.omit.30=NA.30$b1.omit; 

  b2.omit.30=NA.30$b2.omit;p.omit.30=NA.30$p.omit 

  

  b0.omit.50=NA.50$b0.omit;b1.omit.50=NA.50$b1.omit; 

  b2.omit.50=NA.50$b2.omit;p.omit.50=NA.50$p.omit 

   

  

  #------- Estimation based on EM 

 

  b0.EM.10=NA.10$b0.EM;b1.EM.10=NA.10$b1.EM;b2.EM.10=NA.10$b2.EM; 

  p.EM.10=NA.10$p.EM 

          

  b0.EM.30=NA.30$b0.EM;b1.EM.30=NA.30$b1.EM;b2.EM.30=NA.30$b2.EM; 

  p.EM.30=NA.30$p.EM 

 

  b0.EM.50=NA.50$b0.EM;b1.EM.50=NA.50$b1.EM;b2.EM.50=NA.50$b2.EM; 

  p.EM.50=NA.50$p.EM 
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  #------- Estimation based on hot deck imputation 

  

  b0.HD.10=NA.10$b0.HD;b1.HD.10=NA.10$b1.HD;b2.HD.10=NA.10$b2.HD; 

  p.HD.10=NA.10$p.HD 

 

  b0.HD.30=NA.30$b0.HD;b1.HD.30=NA.30$b1.HD;b2.HD.30=NA.30$b2.HD; 

  p.HD.30=NA.30$p.HD 

 

  b0.HD.50=NA.50$b0.HD;b1.HD.50=NA.50$b1.HD;b2.HD.50=NA.50$b2.HD; 

  p.HD.50=NA.50$p.HD 

 

   

  #------- Estimation based on multiple imputation 

 

  b0.MI.10=NA.10$b0.MI;b1.MI.10=NA.10$b1.MI;b2.MI.10=NA.10$b2.MI; 

  p.MI.10=NA.10$p.MI 

 

  b0.MI.30=NA.30$b0.MI;b1.MI.30=NA.30$b1.MI;b2.MI.30=NA.30$b2.MI; 

  p.MI.30=NA.30$p.MI 

  

  b0.MI.50=NA.50$b0.MI;b1.MI.50=NA.50$b1.MI;b2.MI.50=NA.50$b2.MI; 

  p.MI.50=NA.50$p.MI 

 

 

list(b0.omit.10=b0.omit.10,b1.omit.10=b1.omit.10, 

b2.omit.10=b2.omit.10,p.omit.10=p.omit.10,b0.omit.30=b0.omit.30, 

b1.omit.30=b1.omit.30,b2.omit.30=b2.omit.30,p.omit.30=p.omit.30, 

b0.omit.50=b0.omit.50,b1.omit.50=b1.omit.50,b2.omit.50=b2.omit.50, 

p.omit.50=p.omit.50,b0.EM.10=b0.EM.10,b1.EM.10=b1.EM.10, 

b2.EM.10=b2.EM.10,p.EM.10=p.EM.10,b0.EM.30=b0.EM.30,b1.EM.30=b1.EM.30,

b2.EM.30=b2.EM.30,p.EM.30=p.EM.30,b0.EM.50=b0.EM.50,b1.EM.50=b1.EM.50,

b2.EM.50=b2.EM.50,p.EM.50=p.EM.50,b0.HD.10=b0.HD.10,b1.HD.10=b1.HD.10,

b2.HD.10=b2.HD.10,p.HD.10=p.HD.10,b0.HD.30=b0.HD.30,b1.HD.30=b1.HD.30,

b2.HD.30=b2.HD.30,p.HD.30=p.HD.30,b0.HD.50=b0.HD.50,b1.HD.50=b1.HD.50,

b2.HD.50=b2.HD.50,p.HD.50=p.HD.50,b0.MI.10=b0.MI.10,b1.MI.10=b1.MI.10, 

b2.MI.10=b2.MI.10,p.MI.10=p.MI.10,b0.MI.30=b0.MI.30,b1.MI.30=b1.MI.30,

b2.MI.30=b2.MI.30,p.MI.30=p.MI.30,b0.MI.50=b0.MI.50,b1.MI.50=b1.MI.50,

b2.MI.50=b2.MI.50,p.MI.50=p.MI.50) 

        

} 
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Appendix C: The non-null mean and variance for 
 2

T
   and 

 2
T

  

The density function of 
is  under alternative hypothesis 

1 : 0 1H v   is given in (6.46) 

as the following:    

       2 2 1 1

1 exp 1v v v

i i i if s s v s v v s     .   

Some expected values (Sarker, 2002) those are obtained from (6.46) are    
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where   is Euler’s constant,       /        is the di-gamma function, and  ,.n  

is the thn  derivative of the di-gamma function.
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From Sarker (2002), the non-null mean of  
 2

T   may be written as   

 
                    2 2

1 1 1 1
4 2 3 2v vE T n v n

v v v v
  

       
             

       
,  

whilst, the non-null variance of 
 2

T   may be obtained as follows:  
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Meanwhile, the non-null mean and variance of 
 2

T   are 
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respectively.  
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Appendix D: R code for evaluating the convergence rate for uncensored case 

without nuisance parameters 

 

nonu=function(n,shape,rate,cycle){ 

  a0=matrix(0,ncol=1) 

 b0=matrix(0,ncol=1) 

 c0=matrix(0,ncol=1) 

 

 for (i in 1:cycle){ 

  y1=rgompertz(n,shape,rate)  # generate y1 & y2 by  

  y2=rgompertz(n,shape,rate)  # calling library(flexsurv) 

 

   

  #--- Find s ---# 

  

  s=(exp(y1)-1)+(exp(y2)-1)  # compute s (shape=scale=1) 

 

   

  #--- Calculate Tn ---# 

  

  T2=sum(2+2*log(s)-s*log(s)-(1/s)) 

  T.2= sum(2+2*log(s)-s*log(s)) 

  T..2=sum(log(s)) 

 

   

  #--- Normalisation Sn ---# 

  

  S2= T2/sqrt(1/2*n*log(n)) 

  S.2= (T.2-n)/sqrt(n*3.492929993)  

  S..2=(T..2-(n*0.4227843351))/sqrt(n*0.6449340675)  

  

  a0[i]=S2 

  b0[i]=S.2 

  c0[i]=S..2 

  

  } 

  

list(a0=a0,b0=b0,c0=c0) 

 

} 
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Simulation program 

Simunonu<-function(n,shape,rate,cycle,simu){ 

 

S2<-matrix(0,nrow=cycle,ncol=simu) 

S.2<-matrix(0,nrow=cycle,ncol=simu) 

S..2<-matrix(0,nrow=cycle,ncol=simu) 

 

 for(j in 1:simu){ 

  nonus=nonu(n,shape,rate,cycle) 

  S2[,j]<-nonus$a0 

  S.2[,j]<-nonus$b0 

  S..2[,j]<-nonus$c0 

  } 

 

 a1=quantile(S2[,1], c(.10, .05, 0.025,0.01)) 

 a2=quantile(S2[,2], c(.10, .05, 0.025,0.01)) 

 a3=quantile(S2[,3], c(.10, .05, 0.025,0.01)) 

 a4=quantile(S2[,4], c(.10, .05, 0.025,0.01)) 

 a5=quantile(S2[,5], c(.10, .05, 0.025,0.01)) 

 a6=quantile(S2[,6], c(.10, .05, 0.025,0.01)) 

 a7=quantile(S2[,7], c(.10, .05, 0.025,0.01)) 

 a8=quantile(S2[,8], c(.10, .05, 0.025,0.01)) 

 a9=quantile(S2[,9], c(.10, .05, 0.025,0.01)) 

 a10=quantile(S2[,10], c(.10, .05, 0.025,0.01)) 

 

 b1=quantile(S.2[,1], c(.10, .05, 0.025,0.01)) 

 b2=quantile(S.2[,2], c(.10, .05, 0.025,0.01)) 

 b3=quantile(S.2[,3], c(.10, .05, 0.025,0.01)) 

 b4=quantile(S.2[,4], c(.10, .05, 0.025,0.01)) 

 b5=quantile(S.2[,5], c(.10, .05, 0.025,0.01)) 

 b6=quantile(S.2[,6], c(.10, .05, 0.025,0.01)) 

 b7=quantile(S.2[,7], c(.10, .05, 0.025,0.01)) 

 b8=quantile(S.2[,8], c(.10, .05, 0.025,0.01)) 

 b9=quantile(S.2[,9], c(.10, .05, 0.025,0.01)) 

 b10=quantile(S.2[,10], c(.10, .05, 0.025,0.01)) 

   

 c1=quantile(S..2[,1], c(.10, .05, 0.025,0.01)) 

 c2=quantile(S..2[,2], c(.10, .05, 0.025,0.01)) 

 c3=quantile(S..2[,3], c(.10, .05, 0.025,0.01)) 

 c4=quantile(S..2[,4], c(.10, .05, 0.025,0.01)) 

 c5=quantile(S..2[,5], c(.10, .05, 0.025,0.01)) 

 c6=quantile(S..2[,6], c(.10, .05, 0.025,0.01)) 

 c7=quantile(S..2[,7], c(.10, .05, 0.025,0.01)) 

 c8=quantile(S..2[,8], c(.10, .05, 0.025,0.01)) 

 c9=quantile(S..2[,9], c(.10, .05, 0.025,0.01)) 

 c10=quantile(S..2[,10], c(.10, .05, 0.025,0.01)) 

 

 a=rbind(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10)  

 b=rbind(b1,b2,b3,b4,b5,b6,b7,b8,b9,b10)  

 c=rbind(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10)  

 

 a.mean=colMeans(a) 

 b.mean=colMeans(b) 

 c.mean=colMeans(c) 

 

 a.sd=apply(a,2,sd) 

 b.sd=apply(b,2,sd) 

 c.sd=apply(c,2,sd) 

 

list(S2=S2,S.2=S.2,S..2=S..2,a=a,b=b,c=c,a.mean=a.mean,b.mean=b.mean, 

c.mean=c.mean,a.sd=a.sd,b.sd=b.sd,c.sd=c.sd)  

} 
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