
A  METACOGNITIVE SUPPORT ENVIRONMENT FOR 

NOVICE PROGRAMMER USING SEMANTIC WEB 

 

 

 

 

 

 

 

 

 

 

SITI NURULAIN BT MOHD RUM 

 

 

 

 

 

 

 

 

 

 

 

 

THESIS SUBMITTED IN FULFILLMENT 

OF THE REQUIREMENTSFOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

FACULTY OF COMPUTER SCIENCE AND 

INFORMATION TECHNOLOGY 

UNIVERSITI OF MALAYA 

KUALA LUMPUR 

 

2015

Univ
ers

ity
 of

 M
ala

ya



UNIVERSITI MALAYA 

ORIGINAL LITERARY WORK DECLARATION 

Name of Candidate: SITI NURULAIN BINTI MOHD   

Registration/Matric No: WHA120021 

Name of Degree: DOCTOR OF PHILOSOPHY 

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): 

A  METACOGNITIVE SUPPORT ENVIRONMENT FOR NOVICE PROGRAMMER USING 

SEMANTIC WEB 

Field of Study:  COMPUTER SCIENCE (INFORMATION SYSTEM) 

I do solemnly and sincerely declare that: 

(1) I am the sole author/writer of this Work;   
(2) This Work is original;  
(3) Any use of any work in which copyright exists was done by way of fair dealing and 

for permitted purposes and any excerpt or extract from, or reference to or 
reproduction of any copyright work has been disclosed expressly and sufficiently 
and the title of the Work and its authorship have been acknowledged in this Work;  

(4) I do not have any actual knowledge nor do I ought reasonably to know that the 
making of this work constitutes an infringement of any copyright work;  

(5) I hereby assign all and every rights in the copyright to this Work to the University of 
Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that 
any reproduction or use in any form or by any means whatsoever is prohibited 
without the written consent of UM having been first had and obtained;  

(6) I am fully aware that if in the course of making this Work I have infringed any 
copyright whether intentionally or otherwise, I may be subject to legal action or any 
other action as may be determined by UM.  

Candidate’s Signature Date 

Subscribed and solemnly declared before, 

Witness’s Signature Date 

Name: 
Designation

Univ
ers

ity
 of

Mala
ya



 

iii 

 

ABSTRACT 

It is has been acknowledged that acquiring programming knowledge is very 

challenging for someone that is very new to programming. Computer programming 

education for both teaching and learning is generally known to be difficult as it requires 

a higher level of knowledge and practice ability rather than theory alone. The skill of 

metacognition, which is apparently lacking among novices is required for the 

knowledge of “When and why” in computer programming practice to manage cognitive 

skills efficiently and facilitate the learning process as well as the transfer of knowledge. 

This study aims to identify the methods of supporting novice programmers in learning 

computer programming metacognitively. Several steps are taken in realizing this. 

Firstly, a survey using Metacognitive Awareness Inventory (MAI) is performed to 

investigate the effect of metacognition on the performance in respect of the Computer 

Programming subject. The respondents that participated in this study are the 

undergraduate students with a computer science background from several universities in 

Malaysia. The result indicates that metacognition has a positive effect on students’ 

achievement in the Computer Programming Subject at university.  The results also 

revealed that i) problem-solving is the type of strategy that usually works for them to 

understand programming, ii) novices need a support environment to assist them to 

monitor and evaluate their knowledge in learning programming, and iii) the majority of 

the novices are motived to use a support environment if it provides criteria like 

learnability, helpfulness and affect.  Secondly, interview sessions are conducted with 

expert lectures in Computer Programming at the Faculty of Computer and Mathematical 

Science, University Teknologi MARA, Shah Alam. The objective of the interview was 

to investigate the awareness and the implementation of metacognition in teaching 

Introductory Computer Programming at the University. The findings of the survey show 

that i) expert lecturers employed metacognition in teaching, and teaching metacognition 

Univ
ers

ity
 of

 M
ala

ya



 

iv 

 

skills for improving student’s learning process and ii) expert lecturers recognize the role 

of metacognition as one of an important learning success factors of the computer 

programming subject that must be done before, during and after instruction. Semantic 

Web is an ideal technology for the development of the proposed system that facilitates 

the process of differentiating the ambiguity lies between cognitive and metacognitive 

elements. Thirdly, a usability test is conducted using the Software Usability 

Measurement Inventory (SUMI) to determine the user’s perception towards the MSSNP 

in terms of the affect, efficiency, control, helpfulness and learn-ability. The results of 

the usability test show that the MSSNP is an ideal system to support the metacognitive 

activities for learning Introductory Computer Programming. Finally, an experimental 

study is conducted, which comprise an empirical evaluation of observations on student 

interaction with the MSSNP. It concentrates primarily on the observation of 

metacognitive changes as well as changes in performance. The subjects are categorized 

into two groups (experimental and control) in which each one are associated with 

different conditions. The results show that students in the experimental group developed 

more favorably compared to those in the control group with respect to metacognition 

behavior and performance. 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

v 

 

ABSTRAK 

Untuk memperolehi pengetahuan dalam bidang pengaturcaraan Komputer  telah 

diketahui umum sebagai sesuatu yang amat mencabar untuk seseorang yang baru dalam 

dunia pengaturcaraan. Pengajaran dan pembelajaran Pengaturcaraan Komputer telah 

diketahui umum sebagai sesuatu yang sukar dan memerlukan keupayaan ilmu 

pengetahuan yang tinggi. Ini merujuk kepada pengetahuan "Bila dan Mengapa" yang 

memerlukan kemahiran-kemahiran metakognitif yang tidak dipunyai oleh kebanyakkan 

Pengaturcara Baru. Metakognitif merupakan satu kemahiran penting kepada 

Pengaturcara Baru bagi menguruskan kemahiran kognitif mereka dengan cekap dan 

menjadikan proses pembelajaran lebih mudah yang secara tidak langsung dapat 

memudahkan proses pemindahan pengetahuan. Tujuan kajian ini dijalankan adalah 

untuk mengenalpasti kaedah-kadeah yang boleh menyokong Pengaturcara Baru dalam 

pembelajaran Pengaturcaraan Komputer secara metakognitif. Beberapa langkah diambil 

dalam merealisasikan kajian ini. Pertama sekali, kajian menggunakan ‘Metacognitive 

Awareness Inventory’ (MAI) telah dijalankan bagi megenalpasti kepentingan 

metakognisi dalam pencapaian prestasi pembelajaran Pengaturcaraan Komputer di 

Universiti. Responden yang menyertai kajian ini adalah pelajar mahasiswa yang 

mempunyai latar belakang Sains Komputer dari beberapa universiti di Malaysia. Hasil 

Kajian telah menunjukkan bahawa metakognisi mempunyai kesan yang positif dalam 

pencapaian pelajar dalam pembelajaran Pengaturcaraan Komputer di universiti. 

Keputusan juga menunjukkan i) ‘Penyelesaian masalah’ adalah strategi yang lazimnya 

digunakan oleh pelajar bagi mefahami pembelajaran pengaturcaraan, ii) Pengaturcara 

Baru memerlukan persekitaran sokongan yang boleh membantu mereka dalam 

memantau dan menilai ilmu pengetahuan mereka iii) majoriti Pengaturcara Baru 

mempunyai motivasi kepada persekitaran sokongan sekiranya Kriteria seperti 

‘Keupayaan belajar’, ‘Kemudahan bantuan’ dan serta ‘memberi kesan’ diambilkira . 

Univ
ers

ity
 of

 M
ala

ya



 

vi 

 

Kedua, sesi temu duga telah dibuat bersama pakar pengajar kursus Pengenalan 

Pengaturcaraan Komputer yang  di Fakulti Komputer  & Sains Matematik  di UiTM 

,Shah Alam. Objektif temuduga adalah untuk mengenalpasti sejauh manakah  kesedaran 

dan pelaksanaan metakognisi di dalam pengajaran Pengenalan Pengaturcaraan 

Komputer di Universiti. Penemuan kajian telah menunjukkan i) Pensyarah pakar 

menggunakan metakognisi di dalam pengajaran, serta mengajar kemahiran-kemahiran 

metacognition kepada pelajar dalam meningkatkan pengajian mereka di perkara 

pengaturcaraan computer dan ii) pensyarah-pensyarah pakar menyedari akan peranan 

metakognisi sebagai salah satu faktor penting kejayaan dalam pengaturcaraan komputer 

yang perlu diaplikasikan sebelum, semasa dan selepas pengajaran. Teknologi Semantic 

Web sangat ideal bagi membangunkan sistem yang dicadangkan bagi memudahkan 

proses menyelesaikan masalah kekaburan elemen di antara kognitif dan metakognitif. 

Ketiga, satu ujian ‘kebolehgunaan’ dijalankan menggunakan Software Usability 

Measurement Inventory (SUMI) bagi  melihat penerimaan pengguna terhadap MSSNP 

dari segi kesan, kecekapan, kawalan, bantuan dan kebolehan menelaah. Keputusan ujian 

‘kebolehgunaan’ telah menunjukkan MSSNP merupakan satu sistem yang dapat 

membantu dalam menyokong aktiviti-aktiviti metakognitif dalam pembelajar 

Pengaturcaraan Komputer. Akhir sekali,satu eksperimen telah dijalankan secara 

empirikal bagi melihat kesan interaksi pelajar terhadap MSSNP. Tumpuan diberikan 

kepada pemerhatian metakognitif dan perubahan prestasi dalam pembelajaran. 

Ekseperimen kajian telah dibahagikan kepada dua kumpulan eksperimen dan kumpulan 

yang dikawal. Pelajar dalam kumpulan eksperimen telah menunjukkan perubahan yang 

baik didalam prestasi pembelajaran dan perlakuan metakognitif. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

vii 

 

ACKNOWLEDGEMENTS 

First of all, praise be to Allah the Almighty for his compassion and mercifulness in 

allowing me to finalize this research. There are various people who I would like to 

thank, without whom this thesis would not have been possible. First of all, to my 

supervisor, Dr. Maizatul Akmar Ismail, for her continuous support of this research 

work; for her enthusiasm, motivation, patience and immense knowledge in supervising 

me. Her guidance helped me throughout the research and writing of this thesis. I would 

also like to express my thanks to the Doctorate Support group (DSG), which provided 

many helpful tips on how to conduct research.  Last, but not least, I would like to thank 

my family, especially to my husband and my parents for their continuous support and 

prayers for me for completing this study successfully. It would not have been possible 

without their prayers, encouragement and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

viii 

 

TABLE OF CONTENTS 

ABSTRACT………………………………………………………………………….iii 

ABSTRAK…………………………………………………………………………….v 

ACKNOWLEDGEMENTS………………………………………………………...vii 

TABLE OF CONTENTS…………………………………………………………..viii 

LIST OF FIGURES…………………………………………………………………xiii 

LIST OF TABLES………………………………………………………………….xv 

LIST OF ABBREVIATIONS……………………………………………………..xviii 

CHAPTER 1:INTRODUCTION……………………………………………………1 

1.1  Problem Statement ................................................................................................. 2 

1.1.1 Domain of Computer Programming for Metacognitive Support Tool ....... 4 

1.2  Aims of the Research ............................................................................................. 5 

1.3  Related Work.......................................................................................................... 6 

1.4  Research Methodology ........................................................................................... 7 

1.5  Research Scope ...................................................................................................... 8 

CHAPTER 2:METACOGNITION IN LEARNING PROGRAMMING………..9 

2.1  Metacognition Definition ....................................................................................... 9 

2.2  Differences between Metacognitive and Cognitive ............................................. 11 

2.3  Metacognition Models.......................................................................................... 13 

2.3.1 Tobias and Everson’s Model ..................................................................... 14 

2.3.2 Flavell’s Model ......................................................................................... 15 

2.3.3 Brown’s Model .......................................................................................... 17 

2.4  Metacognition Assessment ................................................................................... 18 

2.4.1 Metacognition Awareness Inventories (MAI)........................................... 19 

2.4.2 Knowledge Monitoring Assessment (KMA) ............................................ 20 

2.4.3 Methods of Metacognition Assessments ................................................... 21 

2.5  Problems in Computer Programming Education ................................................. 23 

2.6  Metacognition and Problem-Solving ................................................................... 24 

2.6.1 The Characteristics of Problems and How Metacognition Helps ............. 25 

Univ
ers

ity
 of

 M
ala

ya



 

ix 

 

2.6.2 The Interplay between Problem-Solving, Metacognition and Computer 

Programming ............................................................................................. 26 

2.7  Novice Programmer ............................................................................................. 27 

2.7.1 The difficulties encountered by Novice Programmers .............................. 28 

2.7.2 The essential need of Metacognition skill in Novice Programmers .......... 29 

2.7.3 Emergent requirements of a Support Environment for Novice 

Programmers… ......................................................................................... 30 

2.8  The Instructional Metacognitive Activities Design ............................................. 31 

2.8.1 Reflective Questions and Prompts ............................................................ 32 

2.8.2 Scaffolding ................................................................................................ 34 

2.8.3  Self-questioning ....................................................................................... 35 

2.8.4 Self-asessment and Self-directed .............................................................. 36 

2.8.5 Graphic Organizers ................................................................................... 37 

2.8.6  Timing ...................................................................................................... 39 

2.9  Existing Support Learning Tools for Novice Programmers................................. 42 

2.10 Semantic Web as the Underlying Technology for E-learning ........................ 47 

2.10.1 Why semantic Web for the MSSNP? ........................................................ 49 

2.10.2 Semantic Web Technologies ..................................................................... 50 

2.10.3 Layers of the Semantic Web ..................................................................... 51 

2.10.4 Hypertext Web Technologies .................................................................... 53 

2.10.5 Standardized Semantic Web technologies ................................................ 53 

2.10.6 Unrealized Semantic Web Technologies .................................................. 54 

2.10.7 RDF and RDFS ......................................................................................... 54 

2.11 Ontology .......................................................................................................... 55 

2.11.1 Ontology Construction .............................................................................. 56 

2.11.2 Ontology Development Tools ................................................................... 61 

2.12 Summary ......................................................................................................... 63 

CHAPTER 3:REALIZATION OF A SUPPORT ENVIRONMENT FOR NOVICE 

PROGRAMMERS…………………………………………………………………65 

3.1  Observational Study ........................................................................................ 66 

3.1.1  Results of the Observation ........................................................................ 67 

3.2   Interview.......................................................................................................... 69 

3.2.1  Interviews with Expert Lecturers .............................................................. 69 

3.2.2  Interviews with Novice Programmers ....................................................... 70 

3.3  A Questionnaire Survey using MAI Inventory ............................................... 72 

Univ
ers

ity
 of

 M
ala

ya



 

x 

 

3.3.1 Survey Methodology ................................................................................. 78 

3.3.2  Procedure .................................................................................................. 79 

3.4  Design and Implementation of Metacognitive Support System for Novice 

Programmer (MSSNP) .................................................................................... 80 

3.5  Experimental study and evaluation of the MSSNP ......................................... 81 

3.6  Summary .............................................................................................................. 82 

CHAPTER 4:ANALYSIS OF METACOGNITIVE AWARENESS IN TEACHING 

AND LEARNING COMPUTER PROGRAMMING……………………………84 

4.2  Results and analysis of questionnaire survey ....................................................... 85 

4.2.1 Demographic Study ................................................................................... 87 

4.2.2  Data Normality Test .................................................................................. 90 

4.2.3 Descriptive statistics .................................................................................. 90 

4.2.4 Correlation Coefficient Result .................................................................. 94 

4.2.4.1 Coefficient of Correlation between KC with sub-components of MAI .... 95 

4.2.4.2 Coefficient Correlation between RC with sub-components of MAI......... 96 

4.2.5 Descriptive Analysis ................................................................................. 97 

4.2.5.1 Declarative knowledge (DL) ..................................................................... 97 

4.2.5.2  Procedural Knowledge (P) ..................................................................... 101 

4.2.5.3 Conditional Knowledge (CDL) ............................................................... 104 

4.2.5.4 Planning (PL) .......................................................................................... 106 

4.2.5.5 Information Management Strategy (IMS) ............................................... 109 

4.2.5.6 Comprehension Monitoring (CM) .......................................................... 112 

4.2.5.7 Debugging Strategies (DBG) .................................................................. 114 

4.2.5.8 Evaluation (EVL) .................................................................................... 117 

4.2.6 Types of Strategy in Learning Programming .......................................... 119 

4.2.7 Motivational Factors ............................................................................... 122 

4.3  Further Analysis ................................................................................................. 123 

4.4  Reliability Test of Survey Result .................................................................. 124 

4.5  Discussion of the Survey ............................................................................... 125 

4.6  Interview Findings......................................................................................... 128 

4.6.1 Interview Findings with Expert Lecturers ............................................... 129 

4.6.2 Demographic Study ................................................................................. 129 

4.6.3  Expert Lecturer Definition of Metacognition.......................................... 129 

4.6.4 The role of Metacognition in teaching Computer Programming ............ 130 

4.6.5 Metacognition application before teaching Computer Programming ..... 131 

Univ
ers

ity
 of

 M
ala

ya



 

xi 

 

4.6.6 Metacognition application during teaching Computer Programming ..... 131 

4.6.7 Metacognition application after teaching Computer Programming ........ 131 

4.6.8  Summary of the Interview with Expert Lecturer .................................... 132 

4.6.9 Interview Findings with Novice Programmers ....................................... 132 

4.6.10 Summary of Interviews with Novices ..................................................... 135 

4.7  Summary ............................................................................................................ 136 

CHAPTER 5:DESIGN AND IMPLEMENTATION OF METACOGNITIVE 

SUPPORT SYSTEM FOR NOVICE PROGRAMMERS (MSSNP)…………..142 

5.2 Segment A- Ontology Construction .................................................................... 144 

5.2.1  Define Scope and Boundary ................................................................... 145 

5.2.2 Reuse consideration.................................................................................... 148 

5.2.3 Class design/enumerate terms .................................................................... 149 

5.2.4. Taxonomic identification .......................................................................... 152 

5.2.5 Property identification ................................................................................ 154 

5.2.6 Data property identification ....................................................................... 157 

5.2.7 Anomaly validity check ............................................................................. 160 

5.3 Segment B- Triplestore data or Semantic Storage .............................................. 162 

5.3.1 ARC2 Framework ...................................................................................... 163 

5.3.2 ARC2 Installation ....................................................................................... 164 

5.3.3 MySQL Schema Installation ................................................................... 164 

5.3.4 Loading OWL Data via PHP code .......................................................... 165 

5.4  Segment C- Metacognitive Support Information for Novice Programmer ........ 167 

5.4.1 Model for knowledge monitoring .............................................................. 167 

5.4.2 Model for the evaluation of learning ....................................................... 169 

5.4.3 Model for the Selection of metacognitive strategies ............................... 169 

5.5  Overview of activities in the MSSNP with the layout screen ............................ 170 

5.6  Summary ............................................................................................................ 178 

CHAPTER 6:EXPERIMENTAL STUDY AND EVALUATION STUDY OF THE 

MSSNP……………………………………………………………………………..180 

6.1 The effect of the MSSNP .................................................................................... 180 

6.1.1  Experimental Design ............................................................................... 180 

6.1.2  Participants .............................................................................................. 182 

6.1.3  Materials .................................................................................................. 182 

6.1.4  Preparation for data analysis ................................................................... 183 

Univ
ers

ity
 of

 M
ala

ya



 

xii 

 

6.1.5  Data Normality .......................................................................................... 185 

6.1.6 Correlation Observation .......................................................................... 190 

6.1.7  Difference between Pre-test and Post-Test ............................................. 193 

6.2 Usability Test ...................................................................................................... 195 

6.2.1 Respondents ............................................................................................... 196 

6.2.2 Usability testing procedure......................................................................... 196 

6.2.3 Results ........................................................................................................ 197 

6.3  Summary ............................................................................................................ 199 

CHAPTER 7:CONCLUSION……………………………………………………201 

7.1 Summary of the study ......................................................................................... 201 

7.2 Discussion of the findings ................................................................................... 203 

7.3  Limitations and future research directions ......................................................... 207 

7.4  Contribution of this Research ............................................................................. 208 

7.5  Future work ........................................................................................................ 209 

7.6 Conclusion ........................................................................................................... 210 

References …………………………………………………………………………..211 

List of Publications and Papers Presented................................................................. 233 

Appendix A ............................................................................................................... 234 

Appendix B ............................................................................................................... 235 

Appendix C ............................................................................................................... 241 

Appendix D ............................................................................................................... 242 

Appendix E ................................................................................................................ 244 

Appendix F ................................................................................................................ 247 

Appendix G ............................................................................................................... 248 

Appendix H ............................................................................................................... 250 

Appendix I ……………………………………………………………………….....252 

Appendix J................................................................................................................. 253 

Appendix K ............................................................................................................... 254 

Appendix L …………………………………………………………………………255 

Appendix M............................................................................................................... 257 

Appendix N ............................................................................................................... 259 

Appendix O ............................................................................................................... 260 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

xiii 

 

LIST OF FIGURES 

Figure 1.1: Research Questions, Methods and Goal ......................................................... 8 

Figure 2.1: Tobias and Everson – metacognition model hierarchy (Tobias, Everson, 

Laitusis, & Fields, 1999) ................................................................................................. 14 

Figure 2.2: Flavell’s model of metacognition (Flavell, 1979). ....................................... 15 

Figure 2.3: Brown’s Model of Metacognition (Baker & Brown, 1984) ......................... 17 

Figure 2.4: The decomposition of MAI (Schraw & Sperling Dennison, 1994) .............. 20 

Figure 2.5: User interface of Jelliot 3 .............................................................................. 46 

Figure 2.6: Semantic Web Stack (Berners-Lee, Fischetti, & Foreword By-Dertouzos, 

2000)................................................................................................................................ 51 

Figure 2.7:  Example RDF statement graphical representation ...................................... 55 

Figure 2.8: Kinds of Ontology (Guarino, 1998).............................................................. 56 

Figure 2.9: SWOOP screenshot ...................................................................................... 62 

Figure 3.1: Research framework for Metacognitive Support Environment for Novice 

Programmers ................................................................................................................... 66 

Figure 3.2: The decomposition of Metacognitive Sub Components (Tobias S. et al., 

1999)................................................................................................................................ 74 

Figure 3.3: Proposed architectural design of Metacognitive Support System for Novice 

Programmer (MSSNP) .................................................................................................... 81 

Figure 4.1: Survey Invitation via Facebook .................................................................... 86 

Figure 4.2: The IIUM Bachelor of Computer Science Facebook group ......................... 86 

Figure 4.3: Frequency Polygon for GPA, MAI, CDL, PL, DL and P score ................... 92 

Figure 4.4: Frequency Polygon for IMS, CM, DBG and EVL score .............................. 93 

Figure 4.5: Theoretical model and the proposed desired effects for the MSSNP ......... 141 

Figure 5.1: Proposed architectural design of the MSSNP ............................................. 142 

Figure 5.2: The decomposition of process by segments in developing the MSSNP .... 143 

Figure 5.3: The MSSNP Conceptual Stages ................................................................. 145 

Figure 5.4: Basic Programming Strategy ...................................................................... 151 

Figure 5.5: Compound Data Type programming strategy ............................................ 151 

Figure 5.6: C++ Educational Ontology ......................................................................... 153 

Figure 5.7: The three different hierarchies of the MSSNP Ontology ........................... 154 

Figure 5.8: hasAccount functional property .................................................................. 155 

Figure 5.9: The domain and range for the hasSolution property .................................. 155 

Figure 5.10: Part of object properties in the MSSNP Ontology.................................... 157 

Univ
ers

ity
 of

 M
ala

ya



 

xiv 

 

Figure 5.11: Data properties in the MSSNP .................................................................. 158 

Figure 5.12: Pellet reasoned architecture ...................................................................... 161 

Figure 5.13: The final look at the MSSNP Ontology .................................................... 162 

Figure 5.14: Triple-based data store using MySQL ...................................................... 166 

Figure 5.15: ARC SPARQL endpoint ........................................................................... 166 

Figure 5.16: The MSSNP activities sequence performed in one iteration .................... 171 

Figure 5.17: Reflect / Pre-Task Screenshot ................................................................... 172 

Figure 5.18: Familiarization screenshot ........................................................................ 173 

Figure 5.19: Production screenshot ............................................................................... 174 

Figure 5.20: Answer to the question ............................................................................. 175 

Figure 5.21: Quiz Screenshot ........................................................................................ 176 

Figure 5.22: Evaluation Dashboard ............................................................................... 176 

Figure 5.23: Post-Task Screenshot ................................................................................ 177 

Figure 7.1: The MSSNP Conceptual Stages ................................................................. 202 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

xv 

 

LIST OF TABLES 

Table 2.1: KMA possible value. Types of Outcome and their respective counts ........... 21 

Table 2.2: Metacognitive Assessment Comparison ........................................................ 22 

Table 2.3: Research on support learning tools for novice programmers ........................ 30 

Table 2.4: Summary of support tool features .................................................................. 46 

Table 2.5: Semantic Web as underlying technology for E-learning: the benefit (Drucker, 

2000)................................................................................................................................ 48 

Table 2.6: General description of Development tools..................................................... 61 

Table 2.7: Software architecture and tool evolution ....................................................... 63 

Table 3.1: Pedagogical approach in teaching and learning Computer programming at 

university ......................................................................................................................... 68 

Table 3.2: Tabulation of Questions from the Survey Questionnaire............................... 75 

Table 3.3: Subcomponents of MAI ................................................................................. 79 

Table 4.1: Distribution of respondents group by University ........................................... 86 

Table 4.2: Distribution by University’s programming course ........................................ 88 

Table 4.3: Tests of Normality ......................................................................................... 90 

Table 4.4: Means, Mode, Standard Deviations, Skewness and coefficient variations of 

all variables ..................................................................................................................... 91 

Table 4.5: Correlation Coefficient between GPA and other sub-components of MAI ... 95 

Table 4.6: Correlation Coefficient between Knowledge of Cognition (KC) and other 

sub-components of MAI.................................................................................................. 96 

Table 4.7: Correlation Coefficient between Regulation of Cognition (RC) and other sub-

components of MAI ........................................................................................................ 97 

Table 4.8: Comparison of ‘Declarative Knowledge’ by respondent’s GPA ................. 100 

Table 4.9: Comparison of ‘Procedural Knowledge’ by respondent’s GPA .................. 102 

Table 4.10: Comparison of ‘Conditional Knowledge’ by respondent’s GPA .............. 105 

Table 4.11: Comparison of ‘Planning Knowledge’ group respondent’s GPA .............. 108 

Table 4.12: Comparison of ‘Information Management Strategies’ group by respondent’s 

GPA ............................................................................................................................... 111 

Table 4.13: Comparison of ‘Comprehension Monitoring’ by respondent’s GPA ........ 114 

Table 4.14: Comparison of ‘Debugging Strategies’ by respondent’s GPA .................. 115 

Table 4.15: Comparison of ‘Evaluation’ by respondent’s GPA ................................... 118 

Table 4.16: Types of strategy in learning programming ............................................... 120 

Table 4.17: Motivating Factors of using support environment ..................................... 122 

Univ
ers

ity
 of

 M
ala

ya



 

xvi 

 

Table 4.18: Multiple linear regression result ................................................................ 124 

Table 4.19: Item-Total Statistics ................................................................................... 124 

Table 4.20:Reliability Statistics .................................................................................... 124 

Table 4.21: Metacognitive stages and activities............................................................ 138 

Table 4.22: The mapping of time, components of metacognition, metacognition sub-

components with the proposed stages in the MSSNP ................................................... 139 

Table 5.1: Part of Classes used in the MSSNP Ontology ............................................. 149 

Table 5.2: List of the MSSNP Object Property ............................................................. 156 

Table 5.3: Part of the MSSNP Datatype ....................................................................... 158 

Table 5.4: ARC2 File components ................................................................................ 164 

Table 5.5: KMA Score Condition ................................................................................. 169 

Table 5.6: Classification of KMA ................................................................................. 169 

Table 5.7: Pre-defined variables evaluated in the feedback message ........................... 178 

Table 5.8: Comparison of features between existing System and the MSSNP............. 178 

Table 6.1: The groups of subject and conditions .......................................................... 181 

Table 6.2: Distribution of respondents by group........................................................... 182 

Table 6.3: The results of KMA Pre-test, Pre-Test score, KMA Post-Test, Absolute 

Difference, Relative Difference and KMA difference of Control group ...................... 183 

Table 6.4: The results of the KMA Pre-test, Pre-Test score, KMA Post-Test, Absolute 

Difference, Relative Difference and KMA difference of the Experimental group ....... 184 

Table 6.5: Normality Test for control group data ......................................................... 185 

Table 6.6: Normality Test for experimental group ....................................................... 186 

Table 6.7: Paired Samples Statistics for Experimental group ....................................... 186 

Table 6.8: Paired Samples Test for Experimental group .............................................. 187 

Table 6.9: Paired Samples Statistics for Control group ................................................ 187 

Table 6.10: Paired Samples Test for the Control group ................................................ 188 

Table 6.11: Descriptive Statistics for KMA in pre- and post-test for the experimental  

group.............................................................................................................................. 188 

Table 6.12:  Descriptive Statistics for KMA in the pre- and post-test for the control 

group.............................................................................................................................. 189 

Table 6.13: Pre-Test KMA frequency for the control group ......................................... 189 

Table 6.14: Post-Test KMA frequency for the control group ....................................... 190 

Table 6.15: Positive Correlation Test with Spearman for Pre-test vs. Post-test scores of 

Experimental  group ...................................................................................................... 191 

Univ
ers

ity
 of

 M
ala

ya



 

xvii 

 

Table 6.16: Positive Correlation Test with Spearman for Pre-test vs. Post-test scores of 

the Control group. ......................................................................................................... 192 

Table 6.17: Wilcoxon Test – Changes in the Pre-test and Post-test for the experimental 

group.............................................................................................................................. 193 

Table 6.18: Wilcoxon Test – Changes in the Pre-test and Post-test for the control group

 ....................................................................................................................................... 194 

Table 6.19: SUMI scores for the MSSNP ..................................................................... 198 

Table 6.20: Scores of SUMI subscales per user ............................................................ 198 

Table 7.1: Mapping of research questions, research objectives, methods and results .. 204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

xviii 

 

LIST OF ABBREVIATIONS 

 

GPA  Grade Point Average 

CDL Conditional 

CM Comprehension Monitoring 

DL Declarative 

DVG Debugging Strategies 

EVL Evaluation 

ILE Instructional Learning Environment 

IMS Information Management Strategies 

ITS Intelligent Tutoring System 

KC Knowledge of Cognition 

KM Knowledge Monitoring  

KMA  Knowledge Monitoring Assessment  

MAI Metacognitive Awareness Inventory 

OWL Ontology Web Language 

P Procedural 

PL Planning 

RC Regulation of Cognition 

RDF Resource Description Framework 

RDFS Resource Description Framework Schema 

SRL Self-Regulated Learning 

URI Uniform Resource Identifier 

W3C World Wide Web Consortium 

XML Extensible Markup Language 

Univ
ers

ity
 of

 M
ala

ya



 

1 

 

CHAPTER 1:  INTRODUCTION 

 

 

It has been noted that developing programming skills is challenging for novice 

programmers (Falkner & Palmer, 2009; Soloway & Spohrer, 2013) and this is a 

Universal Problem. The research by (Ismail, Ngah, & Umar, 2010; Mason, 2012) 

indicated that learning to understand and code computer programs is extensively 

perceived to be very challenging in computer science education due to the demand for a 

greater degree of practical ability rather than theory alone. Relying solely on traditional 

classroom education is not enough to produce good programmers.  Faced with this 

challenge and difficulty, novices always ask for help from someone who has more 

experience or other resources, such as books or the Internet.  In turn, it can degrade the 

motivational state of the student and cause students to drop out from computer science 

courses (Hoc, 1990; Robins, Rountree, & Rountree, 2003).  

 

Theoretically, knowledge and skill in programming enables the learners to assess their 

solutions as well as their method of approaching the solutions. This cognitive process 

facilitates the process of transmitting newly acquired skills and applying them to new 

problem situations. Realizing this, the development of metacognitive skills for novices 

has been considered as an essential skill in learning programming. In didactical 

taxonomies (Mangione, Gaeta, Orciuoli, & Salerno, 2010), metacognitive knowledge 

refers to the upper level of knowledge that gives the opportunity and ability to the 

learners to control, comprehend, manipulate and direct their knowledge throughout the 

learning process. This can be achieved through self-regulated learning individual 

learning processes (Cleary, Durning, Gruppen, Hemmer, & Artino Jr, 2013; 

Zimmerman & Schunk, 2001). Possessing such skills, makes the learning process 

become easier and simplifies the process of knowledge transferal of past problem-

Univ
ers

ity
 of

 M
ala

ya



 

2 

 

solving skills to the problem situation, which consequently increases the potential for 

the student to learn independently.   Theoretically, programming skills enable learners 

to reflect and formulate solutions. The process of cognition entails modeling, coaching, 

reflection and articulation (Brown, Collins, & Newman, 1989). Metacognition is a 

critical skill for students to build and it is a main focus for learning research. It is one of 

three broad recommendations in “How People Learn” (Bransford, 2000), which lead the 

general study of learning and education. A number of research works have shown that a 

strong focus on metacognition in instructional programs can improve the learning 

outcome of students (Madureira et al., 2014; McGilly, 1996; Palinscar & Brown, 1984). 

There is potential to produce independent learners by helping them to improve their 

metacognitive skills and awareness. Many support tools exist to support various skills of 

self-regulation (Aleven & Koedinger, 2002). However, there are generally few success 

stories of helping students enhance their metacognitive skills, especially in learning 

computer programming. This research aims to provide and design activities and scaffold 

novice programmers by providing an innovative metacognitive supportive learning 

environment. 

 

1.1  Problem Statement 

 

For many Computer Sciences and IT courses, an elementary pass in mathematics and 

English is the only entry requirement for a degree program. Introductory computer 

programming subjects and a few other fundamental subjects may be included in the first 

semester of study.  There are various kinds of bugs in learning to program that either 

result from or are perpetuated by the minimal use of metacognitive processes during 

programming. Difficulties have been documented for program writing and reading. 

These fundamental computing activities can be a challenge to learning and place 

students in situations to which they are unaccustomed. Knowledge at the conditional or 

Univ
ers

ity
 of

 M
ala

ya



 

3 

 

strategic level or higher level knowledge is a knowledge that demands metacognitive 

skills. Lack of such skills has been stated in several studies in computer science 

education (Cetin, Sendurur, & Sendurur, 2014; Coull & Duncan, 2011; Linn & Clancy, 

1992; McGill & Volet, 1997; Meerbaum-Salant, Armoni, & Ben-Ari, 2013; Volet, 

1991). Novices range from being those who never previously experienced programming 

to those who may have some basic background to programming, attained informally or 

via formal study in pre-university contexts. A novice programmer in this study refers to 

someone that lacks programming knowledge. The common mistake for novice learners 

seems to being prone to miscomprehend the knowledge of programming and approach 

the programming code line-by-line rather than the conceptual and bigger picture of the 

knowledge (Soloway & Spohrer, 2013).  

 

The knowledge of the novice tends to be context specific rather than a conceptual view 

(Kessler & Anderson, 1986; Kranch, 2012; Lee, Rodrigo, d Baker, Sugay, & Coronel, 

2011; Soloway & Spohrer, 2013), and they also often fail to adapt and apply correctly 

the knowledge they have acquired. (McCracken et al., 2001; Scott & Ghinea, 2013; 

Utting et al., 2013) noticed serious weaknesses in the programming knowledge and 

skills of the students in introductory courses. As mentioned in the introductory section, 

classroom teaching and learning is not enough to groom a good programmer. 

Regardless of what programming, language, method and development environment in 

the classroom, the concept of programming and logical reasoning processes are 

challenging for students. In order to solve a variety of problems and contexts of the real 

world, such knowledge must be applied. As a result, in the context of programming, the 

rote type of learning is almost impossible. (Berges, 2015; Linn & Clancy, 1992; 

Soloway & Spohrer, 2013) indicated that these skills seem to be inadequate in newbie 

learners. (Davidson, Deuser, & Sternberg, 1994) indicated that the metacognitive 

Univ
ers

ity
 of

 M
ala

ya



 

4 

 

processes are the key contributors to problem-solving performance in independent 

domains. (Bransford, 2000) agreed that this skill is a critical process in supporting 

learning and problem-solving (Allert, 2004). To date, metacognition in programming 

has been little studied and the above remarks have emphasized the self-regulatory 

components of metacognition. It is likely that metacognitive activities involving 

reflection on the state of one's knowledge and skills in programming are central to the 

development of programming expertise (Mathan & Koedinger, 2005) . For example, 

careful program documentation should emerge after a programmer discovers the 

difficulty in tracing program bugs without it. Explicit awareness of the strengths and 

limitations of one's program design and program debugging strategies should lead one 

to seek help in order to learn to program more effectively.  

 

The above discussion about the issues and challenges faced by novices are directed at 

one problem statement, i.e. there is a lack of metacognitive support for novices in 

learning computer programming. In this research work, the ‘Novice Programmer’ refers 

to the newbie in Computer Programming. The term ‘support’ means assisting learners in 

how to use his/her metacognitive skills during learning. 

 

1.1.1 Domain of Computer Programming for Metacognitive Support Tool 

 

Problem-solving is a common activity used as a teaching and learning approach in 

computer programming because it helps students to develop different cognitive abilities. 

The emergence of metacognition is a concept that plays a vital role in computer 

programming problem-solving.  It is desirable to choose this domain for the following 

reasons:  

1. Computer Programming is an important subject in Computer Science Education. 

Univ
ers

ity
 of

 M
ala

ya



 

5 

 

 Computer programming is an essential subject in computer science 

education and is required to be mastered by those who are interested in 

studying computer science education. 

2. Problem-solving in computer programming involves cognitive skills in a wide 

range, which creates an environment that is suitable for developing 

metacognition.  

 The higher level of knowledge, which refers to the knowledge of “when 

and why”, demands the metacognitive skills that are seemingly lacking 

among the students. This has been reported in several studies (Ismail, 

Ngah, et al., 2010; Linn & Clancy, 1992; McGill & Volet, 1997; 

Meerbaum-Salant et al., 2013; Volet, 1991). 

1.2  Aims of the Research  

 

This study aims to conduct a series of observations and surveys with the specific 

research objectives as follows: 

1. Identification of the effect of metacognition in learning computer programming 

2. Identification of the support features for a metacognitive learning environment 

3. Development of support tools based on the identified features in (2) by 

employing Semantic Web technology 

4. Evaluation of the effectiveness and usability of the prototype system 

 

In line with the objectives of this research work, this study aims to find the answers to 

the following research questions:  

 

R1. How does metacognition affect the learning success of computer programming 

at university? 

R2. What is the role of metacognition in teaching and learning of computer 

programming?  

Univ
ers

ity
 of

 M
ala

ya



 

6 

 

R3. What are the characteristics of metacognitive instruction that should be 

incorporated in the support system in learning programming? 

R4. How can a metacognitive support environment benefit novice programmers in 

learning computer programming?  

 

 

1.3  Related Work  

 

Based on the reviewed literature, in general, there is a lack of research work on a 

metacognitive support system for novice programmers in learning computer 

programming. In addition, no similar work using the Semantic Web as the underlying 

technology for building this support tool could be located.  The use of Semantic Web 

technology in education as a method of content specifying has been explored by recent 

studies in education  (Ghaleb et al., 2006; Kramarski & Mevarech, 2003; Sampson, 

Lytras, Wagner, & Diaz, 2004; Stojanovic, Stojanovic, & Volz, 2002) to enhance the 

mechanism for the retrieval of learning resources.  The work by (Ghaleb et al., 2006), 

for example, employed the technology of the Semantic Web in the E-learning model by 

providing services and a tool in the context of a semantic E-learning portal. The work 

by (Mangione et al., 2010) provides an educational environment by extending the E-

learning platform with the Semantic Web and social web technologies and methods. 

Other studies (Stojanovic, Staab, & Studer, 2001) present an approach for developing E-

learning using the technology of the Semantic Web that is mainly based on the content 

of ontology-based descriptions, structure and the materials learning context and thus 

provides flexible access and is personalized to these learning materials. Over the years, 

there has been much work and discussion on providing an environment, especially in E-

learning, to support novice learners. The likelihood of enhancing the retrieval 

mechanism (e.g. produce search based on meaning) is the benefit of using the Semantic 

Web. Thus, utilizing Semantic Web technology in a metacognitive based E-learning 

Univ
ers

ity
 of

 M
ala

ya



 

7 

 

system would contribute to an interesting and novel research, especially in supporting 

teaching and learning programming metacognitively. 

 

1.4  Research Methodology  

 

The educational psychology theory adopted in this research work and the 

quantitative methods are used to solicit and elicit data. This research work involves the 

following activities: 

i. Conducting a literature study relating to metacognition in the field of 

educational psychology that is associated with a supporting environment for 

novice programmers in learning programming.  

ii. Conducting interviews with expert lecturers to explore the awareness of 

metacognition and the implementation of metacognitive strategies in teaching 

introductory computer programming courses at Universiti Teknologi MARA 

(UiTM), Shah Alam. 

iii. Conducting an empirical study using a well-tested and validated instrument 

called Metacognitive Awareness Inventory (MAI) to investigate the relationship 

between metacognition with learning success in learning computer programming 

at the University.  

iv. The Metacognitive Support System for Novice Programmer (MSSNP) 

development using Semantic Web technology. 

v. The MSSNP System Prototype assessment and evaluation. 
Univ

ers
ity

 of
 M

ala
ya



 

8 

 

 

Figure 1.1: Research Questions, Methods and Goal 

1.5  Research Scope 

 

The research scope study concentrates on developing a support system for novice 

programmers by putting the metacognitive activity elements in learning programming 

using the Semantic Web technology. Thus, the scope and boundary of this research 

work are as follows:  

 

1. Novice programmers in this study refer to students who have already taken the 

Fundamentals of Computer Problem-solving subject specifically in the Faculty 

of Computer & Mathematical Sciences (FCMS), University Teknologi MARA.  

2. Metacognitive awareness Inventory (MAI) is used to investigate the relationship 

between metacognition with the learning success in learning Computer 

Programming at University 

3. The development of a prototype system that is perceived to be beneficial for 

novice programmers to improve their metacognitive skills in learning Computer 

Programming. 

Univ
ers

ity
 of

 M
ala

ya



 

9 

 

CHAPTER 2:  METACOGNITION IN LEARNING PROGRAMMING 

 

The major philosophical and theoretical underpinnings of this research are presented 

in this Chapter. It begins with the introduction of metacognition, and the examination of 

definitions, which focuses on different aspects of this interesting phenomenon. This 

chapter also presents a model that expands the insight of what metacognition is and 

describes the chosen model and emphasizes knowledge monitoring, which is one of the 

metacognition skills. The measurement methods of metacognition are discussed 

together with the assessment tools that are employed in this research work. It then re-

examines existing studies related to the problems in computer programming education, 

the relation of problem-solving in computer programming with metacognition, the 

characteristics of novice programmers and the difficulties faced by them, as well as 

presenting a review of the research that interplays between metacognition, problem-

solving and computer programming.  The approaches to metacognitive instruction are 

also described in this chapter (the necessary metacognitive elements that are possible to 

embed in the instructional system).  This chapter ends with the proposed underlying 

technology used to build the prototype system. 

 

2.1  Metacognition Definition 

 

"Metacognition" is a term used in the area of educational psychology. It comes from 

the root word ‘meta’ – to define ‘thinking about thinking’ or ‘knowledge about 

knowledge’. Without realizing it, we apply metacognition in our daily activities every 

day (Briñol & DeMarree, 2012; Reder, 2014). The active control of cognitive processes 

that we engage in during learning can be referred to as metacognition; which involves 

activities like planning, monitoring and evaluating knowledge. To be a successful 

learner, metacognition is the key, as it is related to intelligence (Borkowski, Carr, & 

Univ
ers

ity
 of

 M
ala

ya



 

10 

 

Pressley, 1987; Carr, Kurtz, Schneider, Turner, & Borkowski, 1989; Frith, 2012; 

Pishghadam & Khajavy, 2013; Song, 2013; Thompson, Prowse Turner, & Pennycook, 

2011). Therefore, it is important to research the elements of metacognitive activities and 

their development so that a learner can better apply their cognitive resources 

appropriately. 

 

"Thinking about thinking" is the definition most often used to describe metacognition. 

In actuality, it is not that simple to define metacognition. Although the term has existed 

in the vocabulary of educational psychologists for the past few decades, there is still 

much polemic over what exactly metacognition is. There are several terms often used 

interchangeably in the literature to describe this interesting phenomenon (e.g. meta-

memory, self-regulation, executive control), which is one of the reasons behind the 

confusion. Although there are some differences between definitions (see (Haynie, 

Shepherd, & Patzelt, 2012; Van Zile-Tamsen, 1994; Van Zile-Tamsen, 1996)), all 

emphasize the executive role processes in the monitoring and regulation of cognitive 

processes. 

 

Flavell has always been linked to the term "metacognition", and, according to him, it is 

composed of both knowledge and regulation of metacognition (Flavell, 1987; Flavell, 

1979). Acquiring knowledge about the cognitive process is a simple way to describe 

metacognitive knowledge, which can be employed to control the cognitive processes. 

Flavell categorizes three types of metacognitive knowledge – variables that relate to the 

knowledge of the person, variables that are associated with the task, and strategy. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

11 

 

2.2  Differences between Metacognitive and Cognitive 

 

In Flavell’s models (Flavell, 1979; Lee, Lim, & Grabowski, 2010; Winne, 2011), he 

assumes that metacognitive and cognitive are distinct in their function and content, but 

that there is a resemblance in their quality and form, as much as they can be possessed, 

corrected, forgotten as well as can be thought of in an external method. This is similar to 

cognition in that the information can be correct or incorrect, shared, validated or 

subjective. Hence, cognition and metacognition can be differentiated using two basic 

features, content and function. For instance, for people who have difficulty in 

understanding the principles of mathematics, would this be considered as metacognitive 

or cognitive knowledge? (Flavell, 1979; Lee et al., 2010) acknowledge that the 

distinction between these two types of knowledge lies in how it is used. 

 

Metacognition involves the process of inspecting whether the cognitive goal could be 

achieved or not (e.g. understanding a text), whereas to ensure that the objective and goal 

accomplished have been reached is the role of metacognitive strategies (e.g. self-

questioning to understand text). Cognitive activity is usually preceded or followed by 

metacognitive experiences. In many cases, they happen when cognition activity fails, 

for example the failure of what one just read.  To activate the metacognitive processes, 

one needs to attempt to rectify the situation (Dorça, Lima, Fernandes, & Lopes, 2013a, 

2013b; Roberts & Erdos, 1993). 

 

Depending on the metacognitive or cognitive purpose, questioning, for example, could 

be regarded as either a metacognitive or a cognitive strategy and these two strategies 

may overlap. For example, for obtaining knowledge, the self-questioning strategy is 

used, and can be referred to as a cognitive process, while for monitoring what has been 

read can be considered to be a metacognitive process. Any attempt to inspect one 

Univ
ers

ity
 of

 M
ala

ya



 

12 

 

without recognition of the other would provide an inadequate picture because these two 

strategies (cognitive and metacognitive) are dependent upon each other and closely 

related. In other words, metacognitive can also be considered as knowledge that is 

actively used in ensuring that the goal is met. For instance, a novice programmer may 

use planning in how to approach a programming problem, “I know that I have difficulty 

(person variable) with programming logic (task variable), so I will do the pseudocode 

first before coding (strategy variable). Information of knowledge (strength and 

weakness as well as the nature of the task) without its application is not considered as 

metacognitive”. 

 

The metacognitive perspective results from learning experiences and is able to activate 

responsive processes on knowledge as well as self-knowledge (Nett, Goetz, Hall, & 

Frenzel, 2012; Tsai, 2009).  Metacognitive strategies is presented as the highest level in 

didactical taxonomies, which refers to the learners’ ability to understand, manipulate 

and direct their learning knowledge. Self-regulated learning can be used to achieve 

metacognition and is considered as the learner’s self-directed management of learning 

(Van den Boom, Paas, van Merriėnboer, & Van Gog, 2004). 

 

Until today, there are relatively few stories that successfully help students to improve 

their metacognitive skills, particularly in learning programming using an interactive and 

reflective learning environment. One of the instructional design principles proposed by  

(Bransford, Brown, & Cocking, 2000) is “how people learn” is to scaffold 

metacognition skills and awareness. Having better metacognitive skills encourages them 

to be self-regulated learners, and, furthermore, can provide them a better learning 

environment across domains and contexts. Evidence shows that well-designed 

instruction of metacognition has a positive impact on metacognitive behavior, and, 

Univ
ers

ity
 of

 M
ala

ya



 

13 

 

consequently, on domain learning, for example, instruction on the use of debugging 

skills (Askell-Williams, Lawson, & Skrzypiec, 2012; Carver & Mayer, 1988; Mayer, 

2011) or self-regulatory strategies (Bielaczyc, Pirolli, & Brown, 1995). 

 

2.3  Metacognition Models 

 

Metacognition conceptualization has attracted a broad range of researchers who 

have proposed and designed a number of models of metacognition. Some are more 

conceptual and have resulted in the development of a theoretical framework, such as 

Brown’s and Flavell’s model of metacognition; while other researchers focused on 

particular aspects of metacognition, such as metamemory and memory processes 

(Mazzoni & Nelson, 2014; Ornstein, Baker-Ward, & Naus, 1988; Schneider, 1985), 

knowledge of the language structure (Tunmer & Bowey, 1984), studying and learning 

from texts  (Brown A., 1987; Brown, 1980) and self-regulation metacognitive strategies 

during reading (Scardamalia & Bereiter, 1985). 

 

The foundation of theory for metacognition is presented by Flavell’s model (defined 

metacognition components and their interaction). Similarly, with Brown’s model, which 

emphasized the distinction of these two different categories of metacognition 

(knowledge of cognition and regulation of cognition).  Finally, Tobias and Everson’s 

Model is presented in the following section, as they propose a standardized module of 

metacognition for flexible arrangement, which is used as the underlying theory for this 

study.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

14 

 

2.3.1 Tobias and Everson’s Model 

 

Tobias and Everson indicated that metacognition is composed of knowledge of 

cognition, learning processes, cognitive monitoring and the control of these processes. 

These components are organized into hierarchical order in which the knowledge 

monitoring skill is a primary process to stimulate the other metacognitive skills, as 

presented in Figure 2.1. 

 

 

 

 

 

 

Figure 2.1: Tobias and Everson – metacognition model hierarchy (Tobias, Everson, 

Laitusis, & Fields, 1999)  

 

They identified knowledge monitoring as knowledge of awareness of what one knows 

and what one does not know. Thus, those who are able to differentiate accurately 

between what is yet to be attained and what they have already learned benefit as they 

can use time wisely and concentrate most of their energy on topics that are unfamiliar to 

them. Conversely, they argue that those who lack the skill of knowledge monitoring are 

prone to allocate their time as well as their resources inefficiently, which, consequently, 

contributes to their greater difficulty in mastering new knowledge (Tobias, Everson, & 

Laitusis, 1999). 

 

The monitoring aspect of metacognition has been investigated extensively by Tobias 

and Everson who made the assumption that accuracy in monitoring knowledge is 

important in the context of training and learning where students are required to master 

Univ
ers

ity
 of

 M
ala

ya



 

15 

 

new knowledge (Tobias S. et al., 1999). A series of empirical studies was conducted by 

them to investigate the relationship of learning from instruction to the monitoring aspect 

of metacognition in various domains and measurement concerns.  They emphasized 

such issues as knowledge monitoring on domain specificity and the relationship of 

academic ability to knowledge monitoring. The metacognitive awareness instrument 

developed by Tobias is detailed in section 2.4.2. This model is generally appropriate for 

this research work because it allows emphasis to be given to the specific metacognitive 

skills that are relevant to problem-solving. 

 

2.3.2 Flavell’s Model  

 

There are four components defined by Flavell’s model (Flavell, 1979) in 

metacognition:  (1) knowledge of metacognitive, (2) experience of metacognitive, (3) 

goals or tasks, (4) strategies or actions, and the effect of the interaction between these 

components gives the ability to the person to control and monitor a wide variety of 

enterprises of cognition. The components relationship is illustrated in Figure 2.2.  

 

 

Figure 2.2: Flavell’s model of metacognition (Flavell, 1979).  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

16 

 

The definition of Flavell’s model components can be summarized as below: 

Metacognitive knowledge can be defined as extensive knowledge about the processes of 

cognition that one acquires for cognitive abilities. Flavell indicates that knowledge 

metacognition affects the course as well as the outcome of cognitive enterprise, which 

results from the interaction of various factors or variables (Flavell, 1979).  (Flavell, 

1979) identifies three categories of factors according to person, task and strategy, as 

described below:  

 Person – The person category is composed of a cognitive processor, which 

relates to the beliefs and knowledge that one has regarding the differences 

between the differences of intra-individual (e.g. the fact that one is better at 

memorizing text than calculating), or the recognition of universal properties (e.g. 

belief or knowledge that there is a dissimilarity in the kinds and degrees of 

understanding). 

 Task – Information about a specific cognitive task in which a person is 

engaging. In this category, one would get insights into the implications of the 

information being presented and whether it is being well presented or poorly 

presented, as well as the goal setting. 

 Strategy – Process or knowledge of finding strategies that are likely to be 

effective in achieving the goal in various cognitive tasks  

 Metacognitive experience – Efficient cognitive action coming from effective 

experience. It is the success or the failure in learning or other cognitive 

enterprise, such as feeling confused about a text passage 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

17 

 

2.3.3 Brown’s Model  

 

In Brown’s model (Baker & Brown, 1984), metacognition can be categorized into 

two main components: 1) knowledge of cognition involves conscious reflection of one’s 

cognitive abilities, and 2) regulation of cognition concerns the self-regulatory 

mechanisms during the ongoing process of problem-solving. These two divisions of 

metacognition are closely related and recursively complement each other (See Figure 

2.3).  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Brown’s Model of Metacognition (Baker & Brown, 1984) 

 

Regulate learning as well as oversee learning are the two functions in terms of the 

regulation of cognition in which the activities include planning (e.g. scheduling 

strategies, predicting outcome, experimenting and prior to problem undertaking, 

inspecting (e.g. testing, monitoring, revising) and checking outcomes (evaluating the 

outcome against the criteria). Knowledge of cognition can be stable or late developing, 

which relates to the cognitive processes of the individual. On the other hand, regulation 

of cognition can be relatively rarely stable, unstable and independent of age. Self-

regulatory behavior may be different from one person to another, from one situation to 

Univ
ers

ity
 of

 M
ala

ya



 

18 

 

another situation because regulation may be affected by self-concept (e.g. self-efficacy, 

self-esteem) and pattern of arousal (interest, anxiety, fear). 

 

2.4  Metacognition Assessment  

 

 

 (Garner & Alexander, 1989) focus on the relevance for measuring metacognition with 

empirical research, suggesting how the question “How can knowledge about knowledge 

be measured accurately?” should be addressed. Many researchers (e.g. (Semerari et al., 

2012; Veenman, 2011; Wilson & Bai, 2010)) have come up with ideas and designed 

methods and instruments to measure all the components of metacognition and were 

tested across domains. This approach to measuring metacognition ranges from self-

report questionnaires (one rates one’s own knowledge of metacognition) to verbal-

report (one recalls what one’s thoughts are during the learning experience). The 

reliability and the accuracy of these methods in measuring metacognition has attracted 

the attention of researchers and they claimed that all such methods are fallible because 

of the complexity in measuring metacognition. Hence, to provide a more reliable 

measurement for the investigation of phenomena, multiple methods have been 

suggested by many people to avoid a common source of error (Greene, Robertson, & 

Costa, 2011; Schellings, van Hout-Wolters, Veenman, & Meijer, 2013; Veenman, 

2011). For example, verbal reports can be combined with performance measurements as 

well as combining verbal data with nonverbal data.  In this research work, we have 

employed two types of method for measuring metacognition, that is, using 

Metacognition Awareness Inventories (MAI) and Knowledge Monitoring Assessment 

(KMA), both of which will be discussed in the following section. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

19 

 

2.4.1 Metacognition Awareness Inventories (MAI) 

 

Since it was first utilized in the 1970s, the concept of metacognition has become 

quite fashionable and several efforts have been made by researchers to design a 

metacognitive inventory. To determine the level of metacognitive awareness in learning 

programming among novice programmers, an Inventory developed by (Schraw & 

Sperling Dennison, 1994) is used.  This 52-item inventory has a comprehensive scale 

assessing various facets of metacognition, including metacognitive knowledge and 

regulation (Schraw & Sperling Dennison, 1994). Items are classified into eight 

components under two primary categories, (1) knowledge of cognition and (2) 

regulation of cognition(see Figure 2.4). There are three types of knowledge in the 

knowledge of cognition: declarative knowledge, procedural knowledge, and conditional 

knowledge. Hence, the regulation of cognition can be defined as a set of processes and 

activities that aids students to control their learning that consists of five types of 

knowledge: planning, debugging strategies, information management strategies, 

evaluation and comprehension monitoring. A strong connection between these factors 

suggests that both types of knowledge (knowledge of cognition and regulation of 

cognition) may work simultaneously to help students become self-regulated learners. 

The MAI is used to answer the hypothesis put forward in this research work – 

‘Metacognitive skills influence students learning success in Introductory Computer 

Programming at University’. This is the main hypothesis driving this research work in 

providing an instructional tool to scaffold the metacognitive skill of Novice 

Programmers in learning Computer Programming’.  

Univ
ers

ity
 of

 M
ala

ya



 

20 

 

 

Figure 2.4: The decomposition of MAI (Schraw & Sperling Dennison, 1994)  

 

2.4.2 Knowledge Monitoring Assessment (KMA) 

 

(Tobias & Everson, 1995) developed an instrument of assessment that focuses on 

knowledge monitoring, part of the metacognition component that could be applied 

across domains. In terms of its applicability, the instrument has indeed been shown to be 

quite general and has been used successfully across multi-disciplines (Cella, Swan, 

Medin, Reeder, & Wykes, 2014; Goh & Hu, 2014; Wu, Valcke, & Van Keer, 2012). 

The techniques concerning how the knowledge monitoring assessment works is by first 

asking the subjects whether they have knowledge about something or not and later 

challenging  them to prove their assessment that can be right or wrong. For instance, a 

student is asked about his/her comprehension of a given word and later asked to provide 

the definition. In the scenario of task oriented, the programming problem presented to  

his/her estimation of her knowledge concerning whether or not she can solve that 

problem, and, at some later point in time, asking her to solve the problem. After 

answering all the questions, the student is submitted with a preview for each question. 

The knowledge monitoring assessment provides statistical profile of the individual by 

gathering a significant number of elementary assessments of that person. The four 

scores generated by KMA are as follows: 

Univ
ers

ity
 of

 M
ala

ya



 

21 

 

1. Student estimated her ability of the knowledge and performed accordingly ( (a)  

abbreviated as  ++) 

2. Student estimated her inability to solve problem given, but when challenged, she 

succeeded ( (b) abbreviated as  -+) 

3. Student estimated her ability of the knowledge but when challenged, she failed 

to perform ( (c) abbreviated as  +-) 

4. Student estimated her inability to solve problem given and failed to perform ( (d) 

abbreviated as  --) 

Each time these scenarios happen is counted for the same student with the four cases 

being labelled as (a), (b), (c) and (d), as presented in Table 2.1. The simple formula that 

represents the Knowledge Monitoring Assessment (KMA) score is then obtained as 

follows: 

((a+d)−(b+c))/(a+b+c+d) 

Table 2.1: KMA possible value. Types of Outcome and their respective counts 

Actual Performance Student Assessment 

Know Do not 

know 

succeeded (a) (b) 

failed (c) (d) 

 

2.4.3 Methods of Metacognition Assessments 

 

Recently, many diagnostic tools have been designed to assess and measure 

metacognition. The trend of those tools is addressed to assess the prospective as well as 

retrospective of metacognition to specific arithmetical performance. Self-reporting, 

hypothetical interviews and questionnaires are some examples of the prospective 

methods, in which one has to indicate to what extent a statement on a Likert-type of 

scale (e.g. ‘I do self-questioning to know the meaning of the text I’ve read’) is the 

Univ
ers

ity
 of

 M
ala

ya



 

22 

 

representation of behavior (e.g. (Elshout-Mohr, Meijer, van Daalen-Kapteijns, & 

Meeus, 2003)). In retrospective techniques, for assessing metacognition, both interviews 

and questionnaires have been applied. However, there is a risk of distortion of memory 

with the retrospective type of assessment due to the time lag between the problem-

solving and actual performance as well as the verbal reports afterwards. Think aloud 

protocols that are also categorized as concurrent assessment can take place as an 

addition to both techniques. Throughout the implementation of these protocols, 

instruction is given to the participant to merely verbalize their thoughts during task 

performance. Table 2.2 provides the techniques in assessing metacognitive skill and 

awareness. 

 

Table 2.2: Metacognitive Assessment Comparison 

Technique Description  Advantage  Limitation 

Concurrent think-

aloud (Greene et al., 

2011; Rosenzweig, 

Krawec, & 

Montague, 2011; 

Schellings et al., 

2013) 

Learner expresses 

out loud 

everything 

crossing his/her 

mind and 

everything that 

occurs while 

performing a task 

Rich data can be 

extracted from 

the process that 

is invisible to 

other techniques 

 

Automated processes 

remain inaccessible; 

Verbalizations might be 

a problem to some 

targeted subjects; 

Extensive analysis of 

data is needed  

Post-performance 

interviews 

(Dabarera, 

Renandya, & 

Zhang, 2014; Ford 

& Yore, 2012) 

Interview learner 

past learning 

experience  

Provides data 

from responses 

to specific, direct 

probes. 

Awareness deficiencies 

in  processing that are  

automated; cognitive 

events that happened 

during the time of 

processing and 

reporting but always 

failed to remember; 

lack of verbal fluency 

Cross-age tutoring 

(De Backer, Van 

Keer, & Valcke, 

2012; Hill & 

Greive, 2011) 

Conduct tutoring 

session to  observe 

which 

strategies and 

behaviors 

will encourage 

solving a 

problem – younger 

children 

 

Non-verbal data; 

avoid subject 

speculating 

what the 

investigator 

desires to hear 

and answering 

accordingly. 

 

Suitable for certain type 

of strategies  (e.g. 

awareness of usefulness 

of text re-examination 

strategy). 

Univ
ers

ity
 of

 M
ala

ya



 

23 

 

Self-Report 

Inventory (Baas, 

Castelijns, 

Vermeulen, 

Martens, & Segers, 

2014; Veenman, 

2011) 

Self-questionnaire 

typically using 

formats like Likert 

scale, forced 

choice or true-

false  

Structured and 

convenient: ease 

of use  and 

secure 

Answers given may just 

be pleasant to the 

investigator; 

Answers about partially 

automated processes are 

difficult to acquire 

 

2.5  Problems in Computer Programming Education 

 

Difficulty in computer programming is common for Malaysian students. Studies 

have shown that analytical skills and problem-solving are the two major problems 

regarding computer programming (Henderson, 1987; Linn & Clancy, 1992; Poli & 

Koza, 2014; Soloway & Spohrer, 2013). However, according to (Ismail, Azilah, Naufal, 

& Kelantan, 2010), many students are “woefully inadequate” in terms of problem-

solving skills. (Soloway & Spohrer, 2013) agreed that analytical thinking and problem-

solving skills are major weaknesses of students in a computer science course, and a 

major theme of a computer science course should be emphasized in these skills. 

Problem-solving in computer programming study involves cognitive skills that provide 

practice for students to work in a methodical manner as well as to build representations 

(Mayer, 2013), which creates an environment that is suitable for developing 

metacognition. Programming foster students to evaluate their thinking process as well as 

their solutions is a cognitive activity that facilitates the process of applying a newly 

acquired problem to novel problem situations. Regardless of the approach adopted in 

problem-solving, it is recognized as being an essential part and considered as the first 

step taken in programming. In  addition, errors correction in programming also 

contributes to knowledge building (Sternberg & Frensch, 2014).  The competency of 

programmers can be developed through thoroughly organized programming knowledge 

and good programming skills (Linn & Clancy, 1992). The prior practices and 

knowledge are also attributed to the difficulty in programming. In addition, the 

Univ
ers

ity
 of

 M
ala

ya



 

24 

 

difficulty of programming not only cause a difficulty in  understanding the concepts or 

syntax, but also planning (Costa, Aparicio, & Cordeiro, 2012; Havenga et al., 2012).  

Students may be good at giving an explanation and their understanding of the concept of 

programming (e.g. the function of pointer), but still be unable to apply it appropriately. 

Most computer programming introduction courses only emphasize declarative 

knowledge (lower level knowledge) and procedural knowledge (know what and how”)  

(Su, Yang, Hwang, Huang, & Tern, 2014), as a result, they are unable to explain and 

often fail to understand the sematic actions. Traditional approaches of learning, such as 

reading, lecturing and practical (Hazzan, Lapidot, & Ragonis, 2011) are the most 

common approaches to learning computer programming. These types of learning 

environment only produce passive students, especially in larger groups, because of the 

minimal interaction between students and teachers. (Uysal, 2014) Suggested that to 

have effective teaching, computer programming must be used together with problem-

solving strategy instruction. (Mason, 2012) also suggested that lessons of computer 

programming must employ systematical instruction design activities that are rich in 

practice opportunities and feedback.  

 

2.6  Metacognition and Problem-Solving 

 

 (Frensch & Funke, 2014) related the capacity to solve problems as the main aspect of 

intelligence. Without having to know in advance how to solve the problem, one usually 

always solves problems to achieve something. Factors that make up the problem-solving 

are different from person to person (Bardach, 2011; McNie, 2007). What is demanding 

and challenging to one person might be easy and simple to another. The demands of 

performing the task and the interaction of one’s experience are the activities involved in 

problem-solving. Research has shown (Jacobse & Harskamp, 2012; Sandi-Urena, 

Cooper, & Stevens, 2012; Scherer & Tiemann, 2012) that those who consciously utilize 

Univ
ers

ity
 of

 M
ala

ya



 

25 

 

their intellectual skills as well as showing perseverance and flexibility in problem-

solving can be considered to show well-developed metacognitive abilities. It has also 

been pointed out by researchers (Bulu & Pedersen, 2012; Sandi-Urena et al., 2012) that 

metacognitive regulatory skills are important skills in problem-solving (e.g. planning 

and monitoring). In this research work, we have chosen problem-solving as the activity 

of learning upon which to build the proposed system. A such, we emphasize those 

metacognition aspects that are most employed in problem-solving and the monitoring of 

knowledge, which includes comprehension of the problem, planning (strategies and 

heuristics) and evaluating the process of problem-solving.  

 

2.6.1 The Characteristics of Problems and How Metacognition Helps 

 

There are three important attributes in problems: givens, obstacles and a goal. The 

givens can be defined as the elements, the conditions and their relations that create the 

problem-situation’s initial state. The obstacles refer to the characteristics of the problem 

situation and problem solver who finds difficulty in transforming the problem initial 

state into the desired state. Whereby the goal can be referred to as the desired outcome 

or solution of the problem. Transforming the problem initial state into the desired one is 

an active process (Davidson et al., 1994; Eysenck, Ellis, Hunt, & Johnson-Laird, 1994). 

In general, with the aid of metacognition, the problem solver would be able to: 

1. Acknowledge the problem to be solved 

2. Grasp and understand the problem  

3. Grasp the idea of how to reach the solution. 

The metacognitive processes help individuals pinpoint the givens, goals and obstacles of 

problem-solving. (Davidson et al., 1994; Eysenck et al., 1994) guide the active process 

of converting the problem initial state into the desired state, and, with this in mind, they 

require the identification of the problem as well as the representation of the problem, 

Univ
ers

ity
 of

 M
ala

ya



 

26 

 

planning how to move on, and evaluation of the obtained solution (Schraw & Gutierrez, 

2015). Preparation to solve the problem, understand the problem as well as the desired 

goal and givens is the crucial part in solving the problem because without adequate 

understanding, the correct solution cannot be generated. This process is called the 

familiarization stage (Halpern, 2014). The actual problem-solving stage is called the 

production stage (Halpern, 2014).  During this stage, the solution paths are produced by 

the problem solver to define the problem space. The evaluation stage involves the 

activity of verification of the problem-solving (Halpern, 2014).  During this stage, the 

path solution is evaluated by the problem solver in order to choose the best one 

(Halpern, 2014). 

 

2.6.2 The Interplay between Problem-Solving, Metacognition and Computer 

Programming 

 

According to Sternberg and Sternberg (Sternberg & Frensch, 2014), general 

problem-solving steps include: problem identification, problem definition, strategy 

formulation, organization of information, allocation of resources, monitoring and 

evaluation. The solving of programming problems requires similar steps. It comprises 

the implementation of abstract ideas, plans and/or designs by means of expressions, 

statements and programming constructs (syntax) in such a way as to resemble the 

correct logic and meaning of those expressions, statements and constructs (semantics), 

and to solve the programming problem effectively. The role of metacognition in the 

solving of programming problems is imperative. (Bergin, Reilly, & Traynor, 2005) 

found that students that possess metacognitive management skills and strategies perform 

well in programming compared to lower-performing students. In fact, the more complex 

a programming problem is, the greater the need for metacognitive control, purposeful 

reflection and positive feedback (Havenga, 2011). A programmer needs to apply in-

Univ
ers

ity
 of

 M
ala

ya



 

27 

 

depth reading skills and meta-comprehension to judge how clearly and effectively he or 

she understands the programming problem.  

 

Furthermore, programmers need to direct their problem-solving processes, apply a 

programming approach, correct programming errors, think deeply about their 

programming solutions and test program output. These problem-solving steps require 

metacognitive control, such as planning (planning the solution), monitoring (monitor the 

design and development of the program) and evaluation (test and reflect on the 

programming solution). Students should therefore manage their programming processes, 

motivate their decisions, articulate their actions and investigate alternative solutions to 

improve the quality of their programs. The teacher has thus the responsibility to support 

students in developing metacognitive skills and applying these during problem-solving 

and program development. 

 

2.7  Novice Programmer 

 

Novice programmers can be defined as a person that lack the knowledge and 

programming expert skills. Several factors and elements have been described in the 

literature and also reviewed by (Costa et al., 2012; Havenga et al., 2012; Rist, 1996). 

Limitations in seeing the abstract knowledge of the program is the common area that 

novices face as they approach programs by line-by-line of written code rather than the 

big picture of program structures. A common characteristic that novices seem to 

experience is that they have limited ability to see knowledge in abstract; the knowledge 

of novices tends to be context specific rather that general (Kessler & Anderson, 1986), 

and they also fail to correctly apply the knowledge they have obtained. In fact, an 

average student does not usually make much progress in an introductory programming 

course (Kölling & Rosenberg, 1996). This was also realized by the study of McCraken 

Univ
ers

ity
 of

 M
ala

ya



 

28 

 

et al. (Mayer, Dyck, & Vilberg, 1986), who noticed serious shortcomings in student’s 

programming skills in fundamental courses. There are effective and ineffective novices, 

i.e. students who learn without excessive effort and those who do not learn without 

inordinate personal attention. In programming courses, different student behaviors in 

confronting a problematic situation can be recognized. Perkins (Papert & Solomon, 

1971) named two main types: stoppers and movers. In a problematic situation, stoppers 

simply stop and abandon all hope of solving the problem on their own, while movers 

keep trying, modifying their code and using feedback about errors effectively. 

Naturally, student’s personal learning strategies and motivation affect their success in 

learning programming strategies.  

 

2.7.1 The difficulties encountered by Novice Programmers 

 

Learning programming is generally considered hard, and programming courses 

often have high dropout rates. It has even been said that it takes about 10 years for a 

novice to become an expert programmer (Soloway & Spohrer, 1989; Soloway & 

Spohrer, 2013). Educational research has been carried out to determine the 

characteristics of novice programmers and to study the learning process and its 

connection to the different aspects of programming. The process of the progress of the 

learner from novice to an expert can be viewed as a process of learning. The 

dissimilarity of novices and experts have been investigated by researchers and yielded 

significant information about how to guide novices programming knowledge. Firstly, 

novices have grammatical problems in programming language, and, hence, they are 

battling with syntactic knowledge (Lahtinen, Ala-Mutka, & Järvinen, 2005). Experts, in 

the context of semantic knowledge possess an effective notional or virtual mental model 

compared to novices who have yet to build such models. In terms of schematic 

knowledge, experts use deep structure to program categorization based on required 

Univ
ers

ity
 of

 M
ala

ya



 

29 

 

routines.  In contrast, the approach used by novices for categorization is that of 

superficial features as they are unskilled at problem decomposition and tend to use low-

level plans. In contrast, experts decompose problems into manageable sub-problems 

where they keep the overall view of the problem in mind as well as consider many 

alternative solutions compared to novices (Hu, Winikoff, & Cranefield, 2012; Lahtinen 

et al., 2005). Hence, to counter the challenges in computer programming, especially to 

novice programmers, providing good strategies for instruction are important for optimal 

learner support (Soloway & Spohrer, 2013). 

 

2.7.2 The essential need of Metacognition skill in Novice Programmers  

 

As indicated in the literature, teaching programming is a universal problem in 

computer science courses (Soloway & Spohrer, 2013). The central development 

competency of a programmer is the problem-solving skills (Soloway & Spohrer, 2013), 

and yet, these skills seem inadequate. (Soloway & Spohrer, 2013) also note that 

analytical thinking and problem-solving are major weaknesses in programming. 

Theoretically, the evaluation of thinking as well as the solution are the cognitive 

processes that are encouraged in programming that facilitate the process of transferring 

the new skills of problem-solving to the novel situation of the problem, however, it is 

difficult to achieve the outcome. The process of metacognition is an important 

contributor to the performance of problem-solving across a wide range of domains 

(Azevedo & Aleven, 2013; Davidson et al., 1994).  According to (Bransford et al., 

2000; Brown, 1980), novice programmers have metacognitive deficiencies regardless of 

their age. In addition, they fail to reflect on the design approach solution (Berliner & 

Calfee, 1996). Thus, to be a lifelong learner and become a successful problem solver, it 

is necessary to develop articulation as well as reflection in novice programmers. 

Univ
ers

ity
 of

 M
ala

ya



 

30 

 

2.7.3 Emergent requirements of a Support Environment for Novice 

Programmers 

 

It is proven from the review of existing tools that support tools may be used to help 

novice programmers in learning. This has prompted researchers to develop tools and 

methods to mitigate the difficulty of learning computer programming. There are a broad 

range of methods and approaches to teach the complexity of computer programming 

that interleave with the concepts. Hence, a support tool that is adequately flexible to 

provide many different forms of instruction by incorporating metacognitive learning 

elements are of the most value. However, to date, very few attempts have been made to 

provide an adequate learning tool for novices to improve their metacognitive skills. 

Table 2.3 presents a summary of research that provides a support learning tool for 

novice programmers in learning programming. 

 

Table 2.3: Research on support learning tools for novice programmers 

Research Description 

A program design tool to 

help Novices learn 

programming 

(Garner, 2007) 

The development, use and evaluation of a tool that helps 

novice programmers generate pseudocode designs for 

simple programming problems. It discusses the 

difficulties of learning to program; what is meant by 

pseudocode; the development of the tool; and the 

evaluation of the tool with students. 

Personifying Programming 

Tool Feedback 

Improves Novice 

Programmers Learning 

(Lee & Ko, 2011) 

Presented a Gidget, a game where the eponymous robot 

protagonist is cast as a fallible character that blames 

itself for not being able to correctly write code to 

complete its mission. Players (Novice programmers) 

learn programming by working with Gidget to debug its 

problematic code. 

SNOOPIE : Development of 

a learning support tool for 

novice programmers within 

the conceptual framework 

(Coull, 2008) 

Framework for learning the Java programming for 

novice programmers. 

Use of CALMS to enrich 

learning in an Introductory 

Programming Course (Thota 

& Whitfield, 2009) 

Computing Augmented Learning Management System. 

Integration of computer science related content with the 

University specified learning management system – 

learning theories, instructional process and learning 

taxonomies – educational media and the organization of 

the learning content. 

Univ
ers

ity
 of

 M
ala

ya



 

31 

 

A novice programmer’s 

support environment 

(Liffick Blaise W & Aiken 

Robert, 1996) 

Presents a model of how programming knowledge can 

be represented by five cognitive levels: lexical, 

syntactic, semantic, schematic, and conceptual. 

 

 

2.8  The Instructional Metacognitive Activities Design 

 

The most effective approaches of metacognitive instruction involve theory and 

practice. The knowledge cognitive processes, learning strategies and opportunities to 

apply both metacognitive and cognitive strategies must be given to a learner as well as 

the outcome of their efforts for self-regulation development (Boyle, Rosen, & Forchelli, 

2014; Brown A., 1987; Garrison & Akyol, 2013). Knowledge alone without experience 

or vice-versa is not sufficient for metacognitive control development. Hence, it is 

necessary for the instructional context to consider a design for embedding 

metacognitive activities. (Bannert & Reimann, 2012; Lin, 2001; Mishra & Director, 

2013) suggest that both social aspects and cognitive student development should be the 

focus when designing metacognitive activities that relate to knowledge about the self as 

the learner as well as about specific domains. (Lin, 2001) affirms that this approach is 

balance theoretically and practically Strategies to promote metacognition in the 

classroom have been identified by researchers. An interesting set of tasks and activities 

that can be adapted in different situations was proposed by (Angelo & Cross, 1993). For 

more effective development of learning strategies, it is important to assess students’ 

abilities in metacognitive and target instruction. Representational tools and graphics for 

learning are the typical support of metacognitive development provided in a computer 

based learning environment that encourage the help-seeking behavior and self-reflection 

(Aleven, Roll, & Koedinger, 2012; Garrison, 2011; Laurillard, 2013; Reusser, 1993). 

Guided questioning and reflective prompts are some of the examples of self-reflective 

activities that require learners to express their ideas and knowledge, as well as explicit 

Univ
ers

ity
 of

 M
ala

ya



 

32 

 

self-explained prompts, and self-assessment support features (Gan & Hattie, 2014; 

Ifenthaler, 2012; Katz, 2002; Latva-karjanmaa, 2001; Molenaar, Roda, van Boxtel, & 

Sleegers, 2012). Some of the instructional learning environments may apply many 

approaches to deliver metacognitive strategies in learning. (Murray et al., 2013; 

Puntambekar & Du Boulay, 1997), for example, applied peer collaboration, reflective 

prompts and self-questioning.  

 

2.8.1 Reflective Questions and Prompts 

 

Reflective questions and prompts are simple ways used by educators and researchers 

for interactive discussion throughout the teaching and learning process. The revision of 

the learning experience toward critical thinking as well as an action plan is always the 

initial part of reflective activity (Nickerson, 2012). This activity encourages the self-

reflection of learners, which can be used to perform tasks in learning (e.g. solving a 

problem) as well as to justify the reasons for the strategies employed. There is a 

dissimilarity between prompts and questions. In nature, questions are more general, 

serving as an approach for triggering broad metacognitive control and monitoring (e.g. 

So what or Now what?). Whereas prompts are more specific as well as more directive 

that provide assistance for learner on specific aspects of the learning processes. This 

may remind students about what task has to been done and what the next steps are, as 

well as make a relationship between past experience and the existing task.  

 

Prompting is a method used in instruction for supporting and guiding learner regulation 

in the problem-solving process (Bannert & Reimann, 2012). As suggested by previous 

researchers (Davis, 2000; Lai, 2008), question prompts can be an effective approach to 

inculcate reflection as the result of the cognitive complexity in which the learner feels 

about, thinks about and makes relations in experience. Learners could develop their 

Univ
ers

ity
 of

 M
ala

ya



 

33 

 

understanding and locate the important tasks in a larger context by engaging in 

reflective activities (e.g. responding to question prompts)  (Amulya, 2004; Reynolds, 

2011).  This enables them to observe and excavate the underlying qualities that make 

the experience significant.  

 

The evidence of recent research shows that question prompts given by the learner to the 

tutor in the peer tutoring context have a positive influence. (Wu & Looi, 2011) found 

that tutor motivation can be built up with tutee questions, which has a significant 

positive influence in teaching and learning activities. The importance of embedding 

question prompts into the intelligent learning environment (ILE) design has also been 

recognized by the researchers in the ILE field (Van der Meij & de Jong, 2011). 

Question prompts have been extensively used as scaffolds for learner to achieve goals in 

learning. Positive evidence was found by (Davis, 2000) that question prompts help 

learners in various aspects, such as problem-solving and knowledge integration (Xie & 

Bradshaw, 2008). Learners can reflect on their own thoughts by motivating and 

activating them to analyze and think about the effectiveness of the chosen strategies that 

would help them to oversee, regulate and control the application or strategic procedure 

in a specific situation. To present a prompt is usually dependent on the purpose and 

intention of a specific interposition. The learner is supposed to receive the prompt from 

the learning tool just at the right time, for example, at the moment that they require 

assistance or else presenting a prompt in an inappropriate manner will cause cognitive 

overload (Ifenthaler, 2012; Thillmann, Künsting, Wirth, & Leutner, 2009).  

 

Generally, the difference is made during, before and after the learning sequence 

presentation. The presentation of the prompt during the sequence of learning is 

reasonable if the intention is to activate a learner’s monitoring skill in problem-solving 

Univ
ers

ity
 of

 M
ala

ya



 

34 

 

activities. However, where the objective is to motivate learners to evaluate certain 

activities in problem-solving, then presentation after the learning sequence is expedient. 

It is appropriate to present the prompt before the sequence of problem-solving if one 

wishes to trigger learner reflection on getting the approach to solve a problem. Another 

aspect that is crucial is how it can be embedded in order to provide a learner with an 

optimal scaffold. 

 

According to Davis (2003), there are two categories of reflective prompts; generic and 

directed prompts in which generic prompts would seem more effective compared to 

directed prompts because they give the learner autonomy during learning. On the other 

hand, the directed prompt, asks additional information from the learner to process and 

introduce a new reflection expert model (see (Davis, 2003)).  

 

2.8.2 Scaffolding  

 

There have been a number of attempts to tackle the difficulties and complexity 

encountered while learning programming (Apiola, Tedre, & Oroma, 2011; Rum, 

Nurulain, & Ismail, 2014; Rum & Ismail, 2014; Soloway & Spohrer, 2013). Scaffolding 

is identified as a critical component in facilitating students’ learning (Bickhard, 2013; 

Feyzi-Behnagh et al., 2014).  Scaffolding provides help on an as needed basis to the 

learner, reducing the assistance as learner competence increases (Kim & Hannafin, 

2011). Scaffolding has been defined as support provided for the learner to engage in 

activities that would instead be beyond their immediate grasp and independent abilities 

(Davis, 2014; Hannafin, Land, & Oliver, 1999; Vygotskiĭ, 1978). Scaffolds are guides, 

tools and strategies used by humans, teachers, animated pedagogical agents and 

computer tutors during learning to develop an understanding beyond their abilities 

(Deejring, 2015; Graesser, Wiemer-Hastings, Wiemer-Hastings, & Kreuz, 1999).  

Univ
ers

ity
 of

 M
ala

ya



 

35 

 

Strong support for metacognitive skills can be developed by designers and teachers by 

incorporating the use of metacognitive scaffolds into the curriculum (Hannafin et al., 

1999). It has been shown by (Azevedo, Cromley, Winters, Moos, & Greene, 2005; 

Davis, 2000, 2014; Molenaar, van Boxtel, & Sleegers, 2011) that student attitudes and 

achievement can be impacted by the use of scaffolds within the learning environment in 

various situations. According to (Davis, 2014; Molenaar et al., 2011) student success 

may be affected by metacognitive skills, and they suggest that the mitigation of 

metacognition skill deficiencies found in students could be realized through the use of 

strong metacognitive scaffolds.  

 

Metacognitive skills have also been recognized by the school library community as a 

skill required for students (Brand-Gruwel & Stadtler, 2011; Willer, Eisenberg, & 

Sadzewicz)). Students that possess strong metacognitive skills yield more positive 

results in information-seeking behaviors (Choi & Jeong, 2013; Roll, Aleven, McLaren, 

& Koedinger, 2011). Scaffolding and specific support for desired metacognitive skills 

can be provided by educators by modeling specific metacognitive activities, such as 

reflection, self-questioning and strategy revision.  

 

2.8.3 Self-questioning  

 

Self-questioning is an effective way of metacognitive comprehension monitoring 

strategy for promoting self-directed learning (Joseph, Alber-Morgan, Cullen, & Rouse, 

2015). Studies show that questions created by learners are more effective compared to 

questions given to the learner by someone else. “Have I omitted anything important 

information?” is an example of a self-question that would help a student in self-directed 

learning to identify important information. The more self-questions used by students in 

diverse situations, the more likely it will become a skill that is used unconsciously and 

Univ
ers

ity
 of

 M
ala

ya



 

36 

 

automatically as the situation is needed. The performance of the learner before, during 

and after task performance can be guided through self-questioning. Control over 

thinking and self-awareness can be improved by self-questioning, thereby improving 

performance. It can also help the learner to improve the long-term retention of skills and 

knowledge, as well as the ability to transfer and apply knowledge. Finally, a leaner’s 

motivation and attitude can also be reflected as the result of performance improvement 

(Brophy, 2013; Rouse, Alber‐Morgan, Cullen, & Sawyer, 2014).       

 

2.8.4 Self-asessment and Self-directed 

 

Self-questioning refers to the process through which learners ask and answer 

questions while reading. This process enables them to understand the text and become 

independent leaners where they can actively engage through goal-directed learning with 

organized thinking. In many cases, difficulty in comprehension is always regarded as 

the failure of the reader to participate actively in the reading process. To increase novice 

programmers’ understanding of the important information in the text as well their 

motivation, self-questioning is one of the best approaches to practice. (Rum et al., 

2014), for example, have designed reflective activities in computer assisted learning 

systems to encourage self-questioning about the learning experience that lead to self-

directed learning. (Merriam, Caffarella, & Baumgartner, 2012) define self-directed as a 

process in which individuals manage their own learning, identify learning needs, 

formulate learning goals, implement appropriate learning strategies, apply the required 

resources and evaluate their learning outcomes  

 

The application of SDL skills offers a way to enable students to ‘help themselves’ and 

to adapt to requirements and changes (Francom, 2010). One of Francom’s general 

principles for fostering SDL skills are to provide for both skills – self-directed learning 

Univ
ers

ity
 of

 M
ala

ya



 

37 

 

as well as subject matter knowledge. Metacognition is intrinsically part of SDL, and 

refers to the conscious planning, control and evaluation of one’s own cognitive 

processes, such as our own thoughts that engage in the learning processes (Sternberg & 

Frensch, 2014). (Veenman, Van Hout-Wolters, & Afflerbach, 2006) distinguish 

between metacognitive knowledge and metacognitive skills in which the former refers 

to a person’s declarative knowledge and the latter comprises a person’s procedural 

knowledge, for example, how to solve problems. Metacognitive knowledge involves the 

knowledge of a person, knowledge of a task and knowledge of different strategies 

(Flavell, 1979). Metacognitive skills, such as monitoring, comprise the ability of an 

individual to assess his/her state of cognitive activity whereas metacognitive control 

refers to the ability of an individual to regulate cognitive activity (Miller & Geraci, 

2011). Metacognitive control also refers to activities that help students to manage their 

learning and/or problem-solving (Schraw, 1998) and relates to the planning, monitoring 

and evaluation of the learning process (Hartman, 2001). Examples of metacognitive 

skills are motivation, goal orientation, knowledge of one’s own strengths and 

weaknesses, as well as judgment and beliefs about personal learning (Ertmer & Newby, 

1996). 

 

2.8.5 Graphic Organizers 

 

Graphic Organizers, also known as concept maps, mind maps and entity relationship 

charts, are a pictorial way of organizing information as well as one of versatile reading 

strategy tools and as metacognitive monitoring instruction. Graphic organizers are used 

to illustrate conceptual text structures and relationships between text elements and 

concepts (Stull & Mayer, 2007). According to (Horton, Lovitt, & Bergerud, 1990), a 

graphic organizer is a text adjunct that is a “visuospatial arrangement of information 

containing words or statements that are connected graphically to form a meaningful 

Univ
ers

ity
 of

 M
ala

ya



 

38 

 

diagram”. Concept maps, knowledge maps, Venn diagrams, causal diagrams, and 

matrices are just a few of the common graphic organizers seen in textbooks (Stull & 

Mayer, 2007) and utilized in the classroom. With visual arguments, the organization of 

text concepts is shown rather than explained, which makes textual relationships more 

explicit. The comprehension of expository text often depends on the ability of a learner 

to understand multiple levels of text component relationships and to build a “coherent 

mental representation of the information being comprehended” (Giora, 1996). Graphic 

organizers can be used to make the text’s structure and the inferential relationships 

between and among text elements more explicit (Graesser, Singer, & Trabasso, 1994). 

During reading a competent learner seeks to build “a coherent cognitive structure that 

makes sense, by being internally consistent (i.e. coherent internal connections) and 

consistent with existing knowledge (i.e. coherent external connections)” (Mayer, 2003).  

 

The rhetorical structure of the text is the structure commonly used by writers to organize 

their ideas and information and the structure used by efficient readers to comprehend 

text (Chambliss & Calfee, 1998).  (Mayer, 2003) describes the most common rhetorical 

structures found in expository text as generalization, which presents a main idea and 

describes the supporting evidence; enumeration, which presents a list of facts; sequence, 

which describes a series of events or steps in a process; classification, which divides 

information into categories; and compare and contrast, which shows the similarities and 

differences of two or more items along different dimensions. Figure 2.5 is the definition 

of the most common types of graphic organizer.  

Univ
ers

ity
 of

 M
ala

ya



 

39 

 

 

Figure 2.5: Graphic Organizer definition and common graphic organizer types. 

2.8.6  Timing 

 

According to Flavell (Flavell, 1979), metacognitive experiences can occur at any 

time before, during or after cognitive enterprise. In the design of a metacognition 

support system, we have identified criteria and elements that need to be considered. The 

design has to be parallel with the goal and objectives of metacognition within the 

support system. The Tobias and Everson model of metacognition have a limitation of 

the role within the system, providing the only underlying frame for the development of 

the proposed system. This section discusses the elements to be integrated within the 

proposes system framework. Metacognitive experiences take place at any time (during, 

before, after) the cognitive enterprise. According to (Metallidou & Efklides, 2002), 

metacognitive experiences can be evoked before, during, or after the task processing is 

completed and can trigger control decisions. Therefore, the moment in time where the 

system provides metacognitive instruction is an important consideration. (Zimmerman, 

1990) suggested three stages for a better self-regulated learning process: 

1. Thoughtful provision beforehand; learners' carefully thinking and preparing in 

advance before performing task. 

Univ
ers

ity
 of

 M
ala

ya



 

40 

 

2. "Performance control", involves learners consciousness and willpower during 

the learning process. 

3. Self-reflection takes place at the end stage when learners re-examine their 

performance toward the final goals. Meanwhile concentrating on their strategies 

during the learning process is efficient for their final results and outcomes 

(Williams & Hellman, 2004).  

 

Thus, we have put the three stages (before, during and after learning) to present the 

metacognitive activities within the proposed system as follows:   

 

1. Before the learning exercise situation  

 

Objective: Self-reflection that happens before the learning process leads to the 

potential to put the learner in the correct condition or frame of mind to perform 

the task. The possible activities that take place before any attempt to address a 

new problem or before a new lesson include planning, setting goals, selecting 

strategies to perform a sequence of operations, identification of potential 

obstacles and predicting the desired results.  

 

2. During the learning exercise situation 

 

Objective: Self-reflection that happens during the learning process can help the 

student in the self-monitoring process. The possible activities that take place 

during this stage are the actual cognitive performance, spotting obstacles or 

errors and knowing how to overcome the obstacles or errors. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

41 

 

3. After the completion of the learning task 
 

Objective: Self-reflection that happens after the learning process is a natural 

time for the student to reflect on their learning process and performance. The 

possible activities that take place in this stage are assessing achievement of the 

goal, inferring the adequacy and accuracy of the results, evaluating the 

appropriateness of the procedures used, assessing the handling of errors or 

obstacles, judging the efficiency of the plan and the execution of the plan, etc. 

 

Studies in the cognitive psychology have linked number constructs to metacognition. 

Critical thinking is one of the constructive elements that has been related to 

metacognition. Critical thinking varies widely in definitions but the common elements 

defined by (Ennis, 1985; Ernst* & Monroe, 2004; Paul, 1992) are analyzing arguments, 

making inferences through the deductive reasoning or inductive reasoning, evaluating or 

judging, solving problems or making decisions. They suggest that instruction should 

designate a process of groundwork in general principles of critical thinking, as well as 

practice in applying critical thinking skills in the context of particular domains. An 

instructional approach, called Cognitive Strategy Instruction (CSI), stresses that the 

development of the thinking processes and skills as a means to enhance learning is an 

important criterion to enable the learner to be more self-reliant, strategic, productive and 

flexible in their learning effort (Scheid, 1993). Underlying CSI is the presumption that 

cognitive strategies are identifiable (Halpern, 2002) and that learning success has been 

connected with these strategies (Garner, 1990). With metacognition, the learner can 

benefit from instruction (Carr et al., 1989; Zile-Tamsen & Marie, 1996) and impel the 

maintenance and the use of cognitive strategies. While there are a few existing 

metacognitive instruction approaches, the most effective one is preparing the learner 

with the knowledge of the cognitive processes as well as metacognitive strategies. In the 

Univ
ers

ity
 of

 M
ala

ya



 

42 

 

development of metacognitive regulation, exposure or practice in using both cognitive 

and metacognitive strategies and evaluating the outcomes of their efforts are the key 

contributors. Simply preparing knowledge without experience or the other way around 

does not appear to be adequate for the development of metacognitive control 

(Livingston, 1996).  

 

2.9  Existing Support Learning Tools for Novice Programmers 

 

E-learning has a lot of potential as a metacognitive tool. For instance, through their 

ability to record interactions with users, they can become powerful reflection tools. 

Having captured the actions of the student carrying out a task, these can be played back 

to them in an abstract and structured way. This will help the student to become aware of 

the processes and help them improve performance on the task in question through 

reflection on the how’s and why’s of the chosen problem-solving paths. As 

collaborative learning devices, they can be programmed to support group planning, 

monitoring and evaluation of the learning process. Students in a small learning group 

can, for example, look back over their solution paths and compare them with other 

members of the group. This should trigger reflection on which changes could be 

improved (Boud, Keogh, & Walker, 2013). Another interesting possibility is that of 

simulated “Learning Companions” acting as peers who encourage the student to reflect 

and articulate their actions (Scott, 2014) Despite this potential, to date, the majority of 

computer-based learning environments have focused on supporting students by 

developing domain-related skills and knowledge. Some attempts have been made to 

incorporate metacognitive components, mostly in the form of embedded reflection on 

the learning task or processes. In addition, a very small number of systems have 

included explicit metacognition training as their main target. Detecting, tracing, 

modelling, and fostering students metacognitive and self-regulatory behaviors during 

Univ
ers

ity
 of

 M
ala

ya



 

43 

 

learning in ILEs is a research challenge that is almost ignored. Nevertheless, the 

examples from existing literature show the prospects for this important area. 

 

Finding similar works that specifically focus on support systems in learning computer 

programming metacognitively and using the Semantic Web as the underlying 

technology for building the support tool could not be located. However, a few studies 

were identified that were similar in terms of providing a support tool in learning 

programming. ‘Gidget’ (Lee & Ko, 2011), for example, provides features as follows: 

 A game where the eponymous robot protagonist is cast as a fallible character 

that blames itself for not being able to correctly write code to complete its 

mission. 

 Players learn programming by working with ‘Gidget’ to debug its problematic 

code. In a two-condition controlled experiment, we manipulated ‘Gidget’ level 

of personification in communication style, sound effects, and image. 

ANNET (Liffick B.W. & Aiken R., 1996) using the cognitive model approach to 

develop an automated method of annotating example programs in such a way that 

students can access information about any aspect of the example that was preventing 

them from fully understanding it. This model is a synthesis of the interactive language 

model proposed by Foley, van Dam et al. (Foley, Van Dam, Feiner, Hughes, & Phillips, 

1994) and the concept of programming plans as described by Soloway, Bonar, and 

others (Soloway, 1984). The result is a definition of a cognitive model containing five 

levels of knowledge within the domain of programming: Lexical, Syntactic, Semantic, 

Schematic, and Conceptual, The Lexical and Syntactic levels are self-explanatory. 

Figure 2.6 presents the hierarchical nature of ANNET from the generalized and 

specialized perspective. 

Univ
ers

ity
 of

 M
ala

ya



 

44 

 

 

Figure 2.6: The hierarchical nature of ANNET (Liffick B.W. & Aiken R., 1996) 

 

CALMS  (Thota & Whitfield, 2009) (Figure 2.9) is a standard LMS that can be 

customized by instructors according to their preferences by integrating computer 

science content with plug-in modules of learning software developed by themselves or 

others. The pedagogic foundation for the introductory programming course design 

including learning theories, instructional process and learning taxonomies is discussed 

along with the choice of educational media and the organization of the learning content. 

It is designed to be integrated dynamic programming visualization with Moodle that 

was guided by the need to have a flexible, adaptable and collaborative learning 

environment. Some of the programming related activities and resources are shown in 

Figure 2.7. 

Univ
ers

ity
 of

 M
ala

ya



 

45 

 

 

Figure 2.7: Moodle activities and resources for programming course (Thota & 

Whitfield, 2009) 

 

Jeliot 3 (Moreno, Myller, Sutinen, & Ben-Ari, 2004) (see Figure 2.8) is designed to aid 

novice students to learn procedural and object-oriented programming. The key feature 

of Jeliot is the fully or semi-automatic visualization of the data and control flows. The 

development process of Jeliot has been research-oriented, meaning that all the different 

versions have had their own research agenda arising from the design of the previous 

version.  

 

JAVAVIS (Oechsle & Schmitt, 2002) is a system developed to help students understand 

what is happening in a Java program during execution. The system uses the Java Debug 

Interface (JDI). It visualizes the state of the program and its changes during execution. 

The system is not meant for novices, because the visualization it produces assumes that 

students are familiar with UML and the basics of programming. However, this kind of 

system could be very useful for advanced courses in programming.  Table 2.4 presents a 

summary of the features provided by each support tool.   

Univ
ers

ity
 of

 M
ala

ya



 

46 

 

 
Figure 2.5: User interface of Jelliot 3 

 

Table 2.4: Summary of support tool features  

Support tool Scaffolding Modeling  Self-

Assessment 

Graphic 

Organizer 

Self-

Directed 

Gidget (Lee & Ko, 

2011) 

√   √ √ 

CALMS (Liffick 

B.W. & Aiken R., 

1996) 

√ √    

Jeliot 3 (Moreno et 

al., 2004) 

√ √  √ √ 

JAVAVIS (Oechsle 

& Schmitt, 2002) 

√   √  

ANNET (Liffick 

B.W. & Aiken R., 

1996) 

√ √   √ 

 

While there are several approaches to metacognitive instruction, the most effective 

ones involve a mixture of theory and practice. The learner must be given some 

knowledge of cognitive processes and strategies (that will be used as metacognitive 

knowledge), as well as opportunities to practice both cognitive and metacognitive 

strategies; evaluation of the outcome of their efforts is also important for the 

Univ
ers

ity
 of

 M
ala

ya



 

47 

 

development of metacognitive regulation (Brown, 1987; White et al., 1999). Simply 

providing knowledge without experience or vice versa does not seem to be sufficient for 

the development of metacognitive control. Hence, it is necessary to design 

metacognitive activities that can be embedded into instructional contexts. In this sense, 

Lin (2001) suggests that the design of such metacognitive activities should focus on 

both cognitive and social aspects of student development, including strategy training 

and the creation of a supportive social environment for the teaching of two kinds of 

content: knowledge about a specific domain and knowledge about the self-as-learner. 

She also affirms that this balanced approach is a theoretical and practical challenge for 

teachers and researchers.  

 

Researchers have identified strategies that teachers can use to promote metacognition in 

the classroom. An interesting set of activities and tasks that can be adapted and used by 

teachers in different situations is proposed by Angelo and Cross (1993). It is worth 

noting that sometimes students apply one or more techniques that are ineffective. 

Hence, it is important to evaluate students’ metacognitive abilities and target instruction 

to the development of more effective and adequate general learning strategies. Some of 

the example of metacognitve activities that can be embedded in instructional program 

are planning, goal setting and assessing knowledge monitoring. 

 

2.10 Semantic Web as the Underlying Technology for E-learning  

 

Many E-learning applications are highly monolithic and seriously lacking in 

flexibility. The kind of intelligent computer support enabled by Semantic Web 

descriptions, such as software agents and self-describing systems, is not taken into 

account in the design. The key property of the Semantic Web architecture, (i.e. 

common-shared-meaning and machine-process able metadata), which is enabled by a 

Univ
ers

ity
 of

 M
ala

ya



 

48 

 

set of suitable agents, establishes a powerful approach to satisfy the E-learning 

requirements: efficient, just-in-time and task relevant learning. Knowledge based 

learning is semantically annotated and for a new learning demand it may be easily 

combined in a new learning course. In fact, the Semantic Web can be exploited as a 

very suitable platform for implementing an E-learning system, because it provides all 

means for eLearning: ontology development, ontology-based annotation of learning 

materials, their composition in learning courses and proactive delivery of the learning 

materials through E-learning portals. More details about the E-learning scenario will be 

given in the last section. In the following (Table 2.5), a summary view of the possibility 

to use the Semantic Web for realizing the E-learning requirements is presented. 

Table 2.5: Semantic Web as underlying technology for E-learning: the benefit 

(Drucker, 2000) 

Dimensions  Training  eLearning 

Delivery Pull – Student 

determines the agenda 

Knowledge items (learning materials) are 

distributed on the Web, but they are 

linked to a commonly agreed ontology. 

This enables the construction of a user-

specific course, by semantic querying for 

topics of interest 

 

Access Reactionary – Responds 

to problem at hand 

 

Software agents on the Semantic Web 

may use a commonly agreed service 

language, which enables co-ordination 

between agents and proactive delivery of 

learning materials in the context of actual 

problems. The vision is that each user has 

his own personalized agent that 

communicates with other agents. 

Symmetry Non-linear – Allows 

direct access to 

knowledge in whatever 

sequence makes sense to 

the situation at hand 

 

User can describe the situation at hand 

(goal of learning, previous knowledge,...) 

and perform semantic querying for the 

suitable learning material. The user 

profile is also accounted for. Access to 

knowledge can be expanded by 

semantically defined navigation. 

Modality Continuous – Learning 

runs in parallel to 

business tasks and never 

stops 

Active delivery of information (based on 

personalized agents) creates a dynamic 

learning environment that is integrated in 

the business processes. 

Authority Distributed – Contents 

come from the 

The Semantic Web will be as 

decentralized as possible. This form of 

Univ
ers

ity
 of

 M
ala

ya



 

49 

 

interaction of the 

participants and the 

educators 

interaction enables an effective co-

operative content management. 

Personalization Personalized – Contents 

determined by the 

individual user’s needs 

and aims to satisfy the 

needs of every user 

A user (using its personalized agent) 

searches for learning material customized 

for her/his needs. The ontology is the link 

between user needs and characteristics of 

the learning material 

Adaptively Dynamic – Content 

changes constantly 

through user input, 

experiences, new 

practices, business rules 

and heuristics 

The Semantic Web enables the use of 

distributed knowledge provided in 

various forms, enabled by semantic 

annotation of content. Distributed nature 

of the Semantic 

Web enables continuous improvement of 

the learning materials 

 

2.10.1 Why semantic Web for the MSSNP? 

 

Semantic Web is the enabling technology facilitates the process of distinguishing 

the ambiguity lies between cognition and metacognition. With this technology 

information that relates to both of the skills can be expressed in precise form that can be 

interpreted by machine and ready for software agents to process, share that would 

enable the application to interoperate on the semantic as well as syntactic level. In the 

literature, the cognitive and metacognitive functions are often used interchangeably 

(Frith, 2012; Jones & Idol, 2013; Markova & Legerstee, 2013; Mayer, 2011; Özsoy, 

2011; Schellenberg, Negishi, & Eggen, 2011; Son & Simon, 2012; Vohs et al., 2014). 

The ambiguity mainly comes from the following three reasons: (1) it is difficult to 

distinguish metacognition from cognition; (2) metacognition has been used to refer to 

two distinct areas of research: knowledge about cognition and regulation of cognition; 

and (3) there are four historical roots to the inquiry of metacognition (Brown Ann, 

1987). With this ambiguous definition of "metacognition", we cannot answer the crucial 

questions concerning existing learning strategies or systems: what they have supported, 

or not; what is difficult for them to support; why it is difficult; and essentially what the 

distinction between cognition and metacognition is. In order to answer these questions, 

Univ
ers

ity
 of

 M
ala

ya



 

50 

 

the ontology is used to explicitly formalize the specification of the terms in cognitive 

and metacognitive and relations among them. We first should clarify how many 

concepts are subsumed under the term metacognition and how each of these concepts 

depend upon each other. The constructed of the set of vocabulary contains the important 

concept and classess and knowledge and semantic are coded into the set.  

 

This clarification through the use of ontology (RDF standard model for data interchange 

on the Web) of the difference between the cognitive and metacognitive skills enables us 

to specifying the goals for learning strategies, and systems to support the development 

of learners’ metacognition; what and why it is difficult to achieve each of these goals; 

and how to achieve each of the goals using strategies within the support systems.  

 

2.10.2 Semantic Web Technologies 

 

 (Lee, Hendler, & Lassila, 2001) said that “The Semantic Web is an extension of the 

current web in which information is given well-defined meaning, better enabling 

computers and people to work in co-operation”. The Semantic Web is the current 

technology that enables machines to interpret data published in the machines into an 

interpretable form on the Web to more meaningful content. Much work has been done 

to improve the Web representation from HTLM to semantic based language, such as 

extended markup language XML, Resource Description Framework RDF, RDF schema 

(RDFS) and Web Ontology Language (OWL). 

 

The Semantic Web Stack (illustrated in Figure 2.9) of the hierarchy of languages, is 

where each layer exploits and uses the capabilities of the layers below. This shows how 

technologies that are standardized for the Semantic Web are organized to make the 

Univ
ers

ity
 of

 M
ala

ya



 

51 

 

Semantic Web possible. It also shows how the Semantic Web is an extension (not 

replacement) of the classical hypertext web. 

 

Figure 2.6: Semantic Web Stack (Berners-Lee, Fischetti, & Foreword By-Dertouzos, 

2000) 

 

2.10.3 Layers of the Semantic Web  

 

The main task of the Semantic Web is to express meaning. To achieve this, 

representation structures (several layers) are required (see Figure 2.10), for which the 

basic layers are as follows: 

 XML layer (represents data structure) 

 RDF layer  (represents the data meaning) 

 Ontology layer (represents formal meaningful of data) 

 Logic layer (intelligent reasoning ) 

 

The real power behind the Semantic Web technology is realized when the content of the 

Web from diverse source exchanges processes the information with machine agents or 

other humans. As more machine readable web content, as well as automated services 

Univ
ers

ity
 of

 M
ala

ya



 

52 

 

become available, there will be a drastic increase in the effectiveness of the Semantic 

Web. To achieve this, the “proofs” exchange is required for inter agent communication. 

There are two technologies that are already in place for the development of the 

Semantic Web; the eXtensible Markup Language (XML) and the Resource Description 

Framework (RDF). 

 

Figure 2.10: Layer of Semantic Web 

With XML, programmers can create their own tags to annotate sections of text as well 

as on a page in sophisticated ways. It can be used by others who need to know the 

purpose of the tag. In short, XML gives flexibility to the user to put arbitrary structure 

to their documents without the meaning of the structure (Erdmann & Studer 2000). With 

the “semantic” mark up and tags, the meaning of XML-documents is intuitively clearly 

defined. However, the tag names alone do not provide semantics as computers do not 

have intuition. The RDF provides a means for adding semantics to a document. With 

RDF, structured metadata can be encoded, exchanged and reused. Primarily, 

information is machine understandable, which is stored in triple based form RDF 

statements. Intelligent agents, search engines, browser, information brokers and humans 

can understand the information as well as use that semantic information. The 

implementation of RDF is independent serialized in XML. Semantic annotation is a 

process of adding semantic information to the Web (Handschuh et al., 2001). The 

combination of RDF and RDFS offers primitive modeling that gives the flexibility of 

expansion according to the demand. RDFS can be used to express the relationship 

Univ
ers

ity
 of

 M
ala

ya



 

53 

 

between object and classes. In general, there is a lack of a formal semantic for RDF(S), 

for its modeling primitives that make interpretation an error-prone process. Realizing 

this, the viz ontologies, the third component of Semantic Web component provide the 

solution. 

2.10.4 Hypertext Web Technologies  

 

The basis technologies of the Semantic Web are provided in the bottom layers 

(Berners-Lee et al., 2000). 

 Uniform Resource Identifier (URI) provides a means to the resources of the 

Semantic Web that are uniquely identified to allow provable manipulation with 

resources in the top layer 

 Unicode – server to represent and manipulate text in many languages. Semantic 

Web should also help to bridge documents in different human languages 

 XML – markup language that enables the creation of documents composed of 

structured data. Semantic web gives meaning (semantics) to structured data. 

 XML Namespaces 

2.10.5 Standardized Semantic Web technologies 

 

Middle layers contain technologies standardized by W3C to enable building 

Semantic Web applications (Berners-Lee et al., 2000): 

 Resource Description Framework (RDF) is a framework for creating statements 

in a form of so-called triples. It enables the representation of information about 

resources in the form of a graph. 

 RDF Schema (RDFS) provides basic vocabulary for RDF. Using RDFS it is for 

example possible to create hierarchies of classes and properties. 

 Web Ontology Language (OWL) Extends RDFS by adding more advanced 

constructs to describe the semantics of DRF statements. 

Univ
ers

ity
 of

 M
ala

ya



 

54 

 

 SPARQL is a RDF query language can be used to query any RDF-based data 

(including RDFS and OWL) to retrieve information for Semantic Web 

applications. 

 

2.10.6 Unrealized Semantic Web Technologies 

 

Top layers contain technologies that are not yet standardized or contain just ideas 

that should be implemented in order to realize the Semantic Web: 

 RIF or SWRL will bring the support of the rules. This is important for example 

to allow describing relations that cannot be directly described using description 

logic used in OWL. 

  Cryptography is important to ensure and verify that Semantic Web statements 

are coming from a trusted source. This can be achieved by the appropriate digital 

signature of RDF statements. 

  Trust to derive statements will be supported by (a) verifying that the premises 

come from trusted sources and by (b) relying on formal logic during deriving 

new information. 

  The user interface is the final layer that enables humans to use Semantic Web 

applications. 

 

2.10.7 RDF and RDFS  

 

RDF is a data model of metadata that provides universal data translation into XML 

format. The idea of a RDF data model is to make statements about web resources in the 

triple based expression (subject-object-predicate). In RDF terminology, these 

expressions are known as triples. RDF representations are depicted as a directed labeled 

graph, as illustrated in Figure 2.13.  The subject in RDF can be either a blank node or a 

Univ
ers

ity
 of

 M
ala

ya



 

55 

 

Uniform Resourcer Identifier (URI). Both URI and blank node denode resources. 

Anonymous resources is the term used to indicate blank node, which are not directly 

identifiable from the statement of RDF.  

 

This is predicated on the fact that it is also a URI to denote resources as well as 

represent the relationship. Whereas the object can also be a blank node, a Unicode string 

literal or URI. In the triple data store, the subject is linked to other resources through a 

property link. A statement is another term for triple. In Figure 2.11, the RDF triples, 

subject-predicate-object, are used to represent information that can be read as ‘Dora 

Smith has homepage http://www.sample.org/~dora’. 

 

Figure 2.7:  Example RDF statement graphical representation 

2.11 Ontology 

 

Behind the Semantic Web technology is Ontology. Ontologies are the backbone of 

the Semantic Web. There have been many attempts to define what constitutes ontology, 

but according to (Gruber, 1993)  “An Ontology is an explicit specification of a 

conceptualization”. A conceptualization in this context means an abstract model of 

some aspects of the world, taking the form of a definition of the properties of important 

concepts and relationships. An explicit specification means that the model should be 

specified in some unambiguous language, making it amenable to processing by 

machines as well as by humans. Furthermore (Guarino, 1998), suggests the opportunity 

to develop different kinds of ontology according to their generality, as shown in Figure 

2.12 (for a more detailed discussion see (Van Heijst, Schreiber, & Wielinga, 1997)). 

Univ
ers

ity
 of

 M
ala

ya



 

56 

 

 

 

 

 

 

 

 

 

Figure 2.8: Kinds of Ontology (Guarino, 1998) 

 Top-level (upper) Ontologies – this type of ontology describes very general 

concepts of the ontology, such as space, time, matter, object, event, etc., which 

are independent of a particular problem or domain; it therefore seems 

reasonable, at least in theory, to have unified top-level ontologies for large 

communities of users. 

 Domain Ontologies and Task Ontologies – describe, respectively, the 

vocabulary related to generic domain (like medicine, or automobiles) or a 

generic task or activity (like diagnosing or selling), by specializing the terms 

introduced in the top-level ontology 

 Application Ontologies – application ontology that consists of representations of 

defined classes. 

 

2.11.1 Ontology Construction 

 

In traditional learning, instructors play an important role intermediate between 

learning material and learner but it is completely different in the learning scenario in E-

learning where the learning material and learners are no longer controlled by the 

instructors. In recent Web-based learning, a broad variety of learning materials are 

Univ
ers

ity
 of

 M
ala

ya



 

57 

 

available for learners.  The new generation of Web technology called the Semantic Web 

makes it possible to express the information in a precise way that is understood by 

machines and ready to process by a software agent. Compared to traditional learning in 

which the instructor plays the intermediate role between the learner and the learning 

material, the learning scenario in E-learning is completely different: instructors no 

longer control the delivery of the material and learners have the possibility of 

combining learning material in courses on their own. Recent advances in Web-based 

learning technology provide a broad variety of learning materials available to people.  

 

The Semantic Web is the new-generation Web that makes it possible to express 

information in a precise, machine interpretable form, ready for software agents to 

process, share, and reuse it, as well as to understand what the terms describing the data 

mean.  Thus, ontology plays a vital role in ensuring the homogeneity of information by 

allowing them to share the semantics. In this research work, an ontology is identified as 

domain specific ontology in learning introductory programming metacognitively.  The 

motivation behind ontology construction is for a shared understanding of metacognitive 

skill and facilitating its development as well as to organize activities in cognitive skill 

and metacognitive skill. According to (Wache Holger et al., 2001; Wache H. et al., 

2001),  ontologies can be constructed using three different approaches – single 

ontology, multiple ontology and hybrid ontology (Wache H. et al., 2001). These 

approaches help in providing the integration task to describe the semantics of 

information sources. In general, ontology construction could be done in three ways 

(Ismail, Yaacob, Kareem, & Halim): 

 Manual whereby ontology is constructed manually 

 Semi-automatic whereby human intervention is needed during the ontology 

process 

Univ
ers

ity
 of

 M
ala

ya



 

58 

 

 Fully automatic whereby the system takes care of the complete construction 

The single ontology approach (as shown in Figure 2.13) is the most simple approach of 

ontology construction, which shares terminology as well as the vocabulary for 

specifying the semantics. However, there is a limitation of this approach in that it does 

not provide a solution for the integration of information. In multiple ontology approach 

(see Figure 2.14), information source is described by its own local by its own. The 

hybrid ontology approach (see Figure 2.15) is the combination of single and multiple 

approaches (Wache Holger et al., 2001).   

 

Figure 2.13: Single Ontology Approach 

 

 

Figure 2.14: Multiple Ontology Approach 

 

Univ
ers

ity
 of

 M
ala

ya



 

59 

 

 

Figure 2.15: Hybrid approach 

 

Ontology construction is not an isolation process but an iterative process that involves 

the following steps (Ismail et al.):  

 Design – specification of the scope and objective of the ontology as well as 

identification of the relationship among objects. 

 Develop – make decision as to whether to use the existing ontology or to 

construct the ontology from scratch  

 Integrate – combine the built ontology with the existing one. 

 Validate – verification of the constructed ontology by using automated tools or 

by experts 

 Iterate – repeat the above process as well as incorporate the changes made from 

the validation process. 

(Rum et al., 2014) described the seven steps in building the Ontology. The first step is 

the scope and boundary definition. One of the ways of determining the scope of the 

ontology is by sketching a list of questions and competency questions (Grüninger & 

Univ
ers

ity
 of

 M
ala

ya



 

60 

 

Fox, 1995) concerning how to achieve its objectives. Later, the litmus test of using these 

questions is used to determine whether the ontology can provide the answer for the 

competency question or not. This is about making the content of E-learning more 

understandable by machines (McIlraith, Son, & Zeng, 2001), and, furthermore, 

adaptively in the context of user input and experience. In the second step, the reuse 

consideration, reusing existing sources may be a requirement for a system that needs to 

communicate with other applications that have already committed to a specific 

vocabulary that is controlled by the organization, field or domain, etc. The third step 

involves the class design enumerates terms by listing down all the terms that we intend 

to use to explain things to a user. Taking into consideration the properties of the terms; 

for example, in this study, important metacognitive learning related terms will include 

the student, syllabus, performance, knowledge monitoring, strategy and so on.  

 

First and foremost, it is important to comprehensively list down all the related terms, 

concepts or classes. The next step is to develop the association, class hierarchy between 

classes and defined properties. In step four, the "Identification and Representation of 

Taxonomic Relationship" aims at discovering taxonomic relationships through the 

application of heuristic patterns and at representing them in an ontology specification 

language. There are three approaches to generalizing and specializing the key concept, 

that is, top-down, bottom-up and a combination of these two approaches. The sixth step 

involves property identification.  In order to answer the competency questions, classes 

alone will not be sufficient to provide the information. Once the classes have been 

identified, the concept’s internal structure must be described. The anomalies check is 

the final step of the construction process to check the inconsistency of the ontology 

design. 

 

Univ
ers

ity
 of

 M
ala

ya



 

61 

 

2.11.2 Ontology Development Tools 

 

In ontology life cycle, creation, implementation, population and maintenance of 

ontologies can be made using the ontology tools (Polikoff, 2003). Various types of 

knowledge management, such as retrieval, knowledge sharing can be provided by 

ontology (Pundit & Bishr, 1999). The most popular definition of ontology is “shared 

knowledge specification” (Waterson & Preece, 1999). In the context of knowledge-

management system, ontology can be referred to as knowledge classification. Ontology 

based search engines are different to traditional keyword based search engines in terms 

of semantic matching and the functionality in that they have the capability to do 

retrieval more efficiently compared to the traditional methods. The process of ontology 

construction is a laborious task and very time consuming. According to Gunther (1998), 

XML language is not suitable to describe the interrelationships of resources as well as 

machine-understandable documents. Therefore, the use of RDF, RDFS, DAML+OIL, 

and OWL have been recommended by W3C. Since then, many tools have been 

developed for implementing the metadata of ontologies by using these languages. Table 

2.6 presents the general description of the ontology tools and the prominent ontology 

construction tools available as open source or software license. Table 2.7 ontology 

software architecture tools and the evolution. 

Table 2.6: General description of Development tools  

Development Tool  Tool Description  Developers  Availibility 

Protégé (Noy et al., 

2001) 

Ontology developers can 

perform knowledge 

management task (navigate, 

manipulate and manage 

ontology). Provide Tree 

control for quick navigation 

through class hierarchy 

SMI 

(Standford 

University) 

Open 

Source 

OntoEdit (Sure, 

Angele, & Staab, 

2003) 

Construct a collection of 

relatively small content rich 

theory ontologies, and to 

compose them together to 

form larger ontological 

Ontoprise Software 

License 

Univ
ers

ity
 of

 M
ala

ya



 

62 

 

structures (Swartout et al., 

1996)  

Apollo (Koss, 2002) Construct a collection of 

relatively small content 

ontologies. Ontology is 

represented in hierarchical 

format  

KMI (Open 

University) 

Open 

Source 

SWOOP (Kalyanpur, 

2004)(see Figure 

2.18) 

Consist of OWL validation 

and syntax presentation 

views (Abstract Syntax, N3, 

etc.). Provide reasoning 

feature (Pallet and RDFS-

like), support OWL 

Inference engine as well as 

provide a multiple ontology 

environment  

MND 

(University of 

Maryland) 

Open 

Source 

 

 

 

Figure 2.9: SWOOP screenshot 

 

Univ
ers

ity
 of

 M
ala

ya



 

63 

 

Table 2.7: Software architecture and tool evolution 

Feature Apollo OntoEdit Protégé Swoop TopBraid 

Composer 

Semantic 

web 

architecture 

Standalone Eclipse 

client/server 

Standalone 

and Client 

Server 

Web-based 

and Client 

Server 

Standalone 

Eclipse 

plug-in 

Extensibility Plug-ins Plug-ins Plug-ins Plug-ins  Plug-in 

Backup 

Management 

No No No No Yes 

Ontology 

Storage 

Files DBMS File and 

DBMS 

(JDBC) 

As HTML 

Models 

DBMS 

 

 

2.12 Summary  

 

From the review of the literature, it is clear that metacognition is a multi-aspect 

research topic and providing training for metacognition is a challenging task. This leads 

us to conclude that metacognition learning environments involve more than just simple 

learning activities. The three prominent models of metacognition (Flavell’s model, 

Brown’s model, Tobias and Everson model) give an insight of the characteristic that 

must be incorporated in the metacognitive support learning environment. A review of 

the existing literature shows the following weaknesses in the existing support tools: 

1. All of the discussed support tools focus on the cognitive development without 

considering the metacognitive development.  

2. Some of the systems are not meant for novices, and only suitable for advanced 

programming learning.  

With the intention to improve the observable domain, it is necessary to synchronize the 

metacognitive message to the domain and seamlessly blend it into teaching and 

learning. The literature has helped in identification of the importance of metacognitive 

skills in problem-solving. However, converting these findings into a computerized 

environment poses a major challenge, especially without the ability of the lecturer to 

Univ
ers

ity
 of

 M
ala

ya



 

64 

 

adapt metacognitive scaffolding in terms of time and the amount of individual needs. 

Although many attempts have been made by researchers for helping students to develop 

their metacognition skills and knowledge, especially in the areas of Intelligent Tutoring 

Systems (ITS), only a few achieved significant results as well as making metacognition 

the main goal.  The outline of the necessary steps that are ideal for an ideal environment 

is presented in the following chapter. The studies also revealed that Semantic Web 

technology is the most suitable solution to develop the prototype system as it allows one 

to differentiate the cognitive and metacognitive elements and activities. 

Univ
ers

ity
 of

 M
ala

ya



 

65 

 

CHAPTER 3:  REALIZATION OF A SUPPORT ENVIRONMENT FOR 

NOVICE PROGRAMMERS 

 

 

The research flow of this research work is presented in this chapter. It shows the 

steps taken to achieve the aim to identify the methods of supporting teaching and 

learning as portrayed in Figure 3.1. The methods involved in this study were 

observational study to understand how a pedagogical approach assists student during the 

computer programming class; a survey using a questionnaire to investigate the effect of 

metacognition on the learning success of computer programming at university; 

interviews with the novice programmers with the objective of understanding their 

learning behavior; interviews with the expert lecturers to explore the metacognitive 

implementation and metacognitive awareness in teaching and learning the computer 

programming course at universities; identification of the metacognitive learning 

methods based on the literature study; designing and implementation of the proposed 

support system for novice programmers, and, finally, the evaluation of the usability of 

the prototype system by the user.  

Univ
ers

ity
 of

 M
ala

ya



 

66 

 

 

Figure 3.1: Research framework for Metacognitive Support Environment for Novice 

Programmers 

Five steps have been identified in order to achieve the objectives of this research work 

(as illustrated in Figure 3.1). The observational study on how a pedagogical approach 

assists students during the computer programming class is further discussed in the 

following section.  

 

3.1  Observational Study 

 

The main objective of this study is to obtain further understanding concerning how a 

pedagogical approach assists students during the computer programming class. The 

observational study was conducted in the classroom during the Introductory Computer 

Programming class where the instructor was informed in advance. This study was 

conducted at the Faculty of Computer and Mathematical Sciences, UiTM, Shah Alam. 

Univ
ers

ity
 of

 M
ala

ya



 

67 

 

A letter requesting consent (See Appendix A) to conduct the survey was given to the 

instructor and positive feedback was received from the instructor by allowing us to do 

the observation study during the class sessions. The teaching and learning activities 

during the class session were observed and recorded.  The main objective of this study 

was partly derived from the motivating factor that novice programmers’ would want to 

have a supporting environment in learning computer programming (further discussed in 

Chapter 4). The respondents participating in this study were students who had been 

taught by the instructor. The students were first year undergraduates who took 

Introductory Computer Programming. The questions to be answered in this study are:  

1. How do students learn during the computer programming class? 

2. What are the positive attributes derived from each learning approach? 

3. What are the negative attributes derived from each learning approach? 

The observational study was conducted for five different class sessions. The results of 

the observation are discussed further in the following section.  

 

3.1.1  Results of the Observation 

 

The results of the study are analyzed and summarized in Table 3.1. The analysis of 

the onservation is done quantitatively based on the notes jotted down during the survey. 

The findings of the survey show that three types of learning approach are typically and 

commonly used by instructors to teach computer programming; cooperative learning, 

discussion and dialog that takes place during the lecture and repetition. Collaboration 

learning has been proven to be effective for all types of students because it promotes 

learning and fosters respect and friendship among diverse groups of students. Several 

studies show that cooperative learning encourages metacognitive thought (Veenman et 

al., 2006). 

Univ
ers

ity
 of

 M
ala

ya



 

68 

 

Table 3.1: Pedagogical approach in teaching and learning Computer programming at 

university 

How did students 

learn during class? 

Positive attributes of the 

learning 

Negative attributes of 

the learning 

Collaboration  Working with others that 

were on the same level 

 Sharing ideas 

 Assistance from other 

students 

 Learning from others 

 Promote metacognitive 

reflecting 

 Needed to spend 

more time 

collaborating with 

others  

 People needed to 

go at a different 

pace and speed 

 

Discussion and 

dialog  
 Students feeling 

comfortable voicing their 

opinions 

 Build self-confidence 

 More interactive 

 Promote metacognitive 

reflecting  

 Passive students 

who are too shy 

to answer 

questions and 

raise an opinion 

get lost in large-

group context 

Repetition   Repeating lecture builds 

metacognitive skill as it 

allows the student an 

opportunity to assess what 

they understood when the 

lecture was first received 

as opposed to the repeated 

version 

 Too much 

depends on 

lecturer/instructor  

 

However, with this learning approach, more time is needed for collaborative learning 

with others in that some students need to go at a different speed while working in the 

group. Someone is either slowed down or forced to catch up faster than they would like 

to. The second learning approach is through discussion and dialogue. The benefits of 

this approach are that the student feels comfortable voicing this, which, indirectly, could 

help students to build their self-confidence, promote metacognitive learning, and, with 

this approach, the learning atmosphere is more interactive.  However, the drawback of 

this approach is that unresponsive and passive students who are too shy to get involved 

and to answer questions or raise an opinion are often lost in the large-group context and 

usually do not receive the necessary attention compared to extrovert students. The third 

approach is through repetition. Repeating lectures build metacognitive skills as it allows 

Univ
ers

ity
 of

 M
ala

ya



 

69 

 

the student an opportunity to assess what they understood when the lecture was first 

received as opposed to the repeated version. However, this type of learning approach 

requires more time for repeating the lecture and discourages students from becoming 

independent.  Literature that solely focuses on novice programmers learning 

programming metacognitively is lacking. Therefore, based on the above findings, a 

study on a metacognitive support environment in learning computer programming is 

needed for novice programmers in learning programming, as classroom learning alone 

is not sufficient. Thus, a study is perceived to be necessary, specifically in the following 

areas:   

1. Establishing the computer-based metacognitive activities in supporting computer 

programming learning. 

2. Identification of methods in learning programming metacognitively  

3. Identification of the motivating factors in using a support system for the purpose 

of learning programming 

3.2   Interview  

 

This section is divided into two sections. The first section discusses the method of 

conducting interview sessions with the expert lecturers and the second section discusses 

the approach taken for interviewing the novice programmers. 

 

3.2.1  Interviews with Expert Lecturers 

 

The main objective of the interview with expert lecturers is to explore the 

metacognitive implementation and metacognition awareness in teaching computer 

programming courses at universities. The interviews took place in the FSKM, UiTM. 

The participation was voluntary in nature and each session lasted around 45 minutes. 

The interview sessions were conducted during the midterm of semester.  Each interview 

Univ
ers

ity
 of

 M
ala

ya



 

70 

 

session was conducted individually. Five expert lectures were chosen for the 

interviewing sessions. The process of choosing the participants is based on the years of 

experience in teaching computer programming courses and the involvement of research 

projects and consultancy. Three of them are PhD holders and the others are master 

degree holders. All participants have teaching experience of more than five years in 

various types of programming languages, such as structured programming, JAVA 

programming, C, and C++ programming and assembly languages. The questions asked 

during the interview sessions are: 

1. Have you ever heard of metacognition?  

2. Would you describe what metacognition is? (After reading the definition) 

3. How is metacognition important for a lecturer in teaching? 

4. Do you feel that metacognition is important in computer science education? 

Why? 

5. How do you teach metacognitive skills to your students to improve their 

learning? 

6. How do you apply metacognition in your own teaching? 

7. When you teach, what is important to you? 

8. What are you thinking about when you are teaching? 

9. Before you teach, what do you usually do? 

10. What do you think about before you teach? 

11. After you teach, what do you usually do? 

 

3.2.2  Interviews with Novice Programmers  

 

The objective of these interviews is to understand the learning behavior of the 

novice programmers in learning computer programming. The questions in this study 

were extracted from the motivating factors that novice programmers’ would want to 

Univ
ers

ity
 of

 M
ala

ya



 

71 

 

have as supporting features, which is discussed in more detail in Chapter 4.  Fifteen 

emails were randomly sent out to participants for the purpose of inviting them to join 

the observational study. Only five participants agreed to be part of the study while the 

others refused. Five questions were formulated and given as experimental questions to 

the respondents. The questions were designed based on three types of metacognition 

knowledge, as categorized by Flavell (1979): 

1. Person variable, which refers to what one recognizes about his or her strengths 

and weaknesses in learning and processing information. 

2. Task variable, which refers to what one knows or can figure out about the nature 

of a task and the processing demands required to complete the task. 

3. Strategy variable, which refers to the strategies a person has “at the ready” to 

apply in a flexible way to successfully accomplish a task. 

Livingston (1997) provides an example of all three variables: “I know that I (person 

variable) have difficulty with word problems (task variable), so I will answer the 

computational problems first and save the word problems for last (strategy variable).”  

The questions are also obtained from the analysis of the interview with the expert 

lecturers.  

The questions to answer are: 

1. Do you know your own strengths and weakness in learning programming? 

2. How do you motivate yourself to learn programming? 

3. What are the types of resource that you usually refer to? 

4. What techniques do you use to process information in learning programming? 

5. What kind of help seeking method do you use to make you understand while 

learning programming? 

6. Do you track the amount of time taken for solving problems in programming?  

7. How do you evaluate your own knowledge performance and understanding? 

Univ
ers

ity
 of

 M
ala

ya



 

72 

 

The respondents who participated in the survey were chosen from the undergraduate 

students that took the programming subject (further described in Chapter 4). 

 

3.3  A Questionnaire Survey using MAI Inventory 

 

This research aims to explore the effect of metacognitive awareness on the learning 

success of computer programming education at universities. Effect in this study referred 

to the result or the consequence of metacognitive awareness of an individual in learning 

computer programming. It is measured by identifying the relationship between total 

score of metacognitive awareness level of students with their GPA. The question that 

was highlighted and put forward in this research work is ‘Do metacognitive skills have a 

positive effect on students’ learning success in introductory computer programming at 

university?’ The best practice suggested by (Gaddis, 1998) in designing the 

questionnaire survey was applied as follows: 1)  Introduction of the study is provided at 

the main page of the survey form to encourage participation from the respondents; 2) 

using filtering questions to direct respondents to appropriate questions; 3) dividing long 

surveys into sections; 4) using appropriate open-ended questions; 5) ending the 

questionnaire by thanking the respondents for their time; 6) giving a token of 

appreciation to encourage more response; and, finally, 7) pre-testing the questions 

before the actual survey.  

 

The questionnaire survey is divided into two sections. The first section question 

concerns the demographic information of the respondents and the second section 

consists of the self-report questions that are taken from the Metacognition Awareness 

Inventory (MAI) and augmented with some additional information requests such as 

demographic information, types of strategies used for learning Computer Programming 

and motivational factor of using support tool. The inventory was invented by (Schraw & 

Univ
ers

ity
 of

 M
ala

ya



 

73 

 

Sperling Dennison, 1994). The self-questionnaire in MAI is well structured, convenient, 

easy to use and secure. It has a well-devised statement and well-validated inventory 

(Hughes, 2015; Stewart & Hadley, 2014; Young & Fry, 2012) .  The MAI is also a 

general domain inventory for assessing the knowledge of cognition and regulation of 

cognition of individuals. It consists of a 52-item self-report tapping into two 

components of metacognition; the metacognitive knowledge and metacognitive 

regulation. Their study reveals that the knowledge cognition factor and the regulation of 

cognition factor have strong support for each other. The questionnaire survey includes 

items regarding knowledge and regulation of cognition and is divided into eight 

component processes (Schraw & Sperling Dennison, 1994). 

 

Knowledge about cognition is composed of three subcomponent processes that facilitate 

the reflective aspect of metacognition: declarative knowledge (i.e. knowledge about self 

and strategies), procedural knowledge (i.e. knowledge about how to use strategies’), 

conditional knowledge (i.e. knowledge about when and what strategies). Whereas the 

regulation about cognition component is the aspect of learning including planning, 

information management strategies, comprehension monitoring, debugging strategies 

and evaluation (Schraw & Sperling Dennison, 1994). The decomposition of the MAI is 

illustrated in Figure 3.2. Undergraduate students of Computer Science from several 

universities were invited to participate in this study.  Questionnaire surveys (Refer 

Appendix B) were distributed accordingly.  

 

The sampling of the respondents was based on a convenience sample as it requires less 

effort and time, which was considered important in this study. Self-selected or 

convenience sampling is based on the voluntary act of respondents to the uncontrolled 

distribution of the instrument, i.e. a questionnaire (Schonlau, Ronald Jr, & Elliott, 

Univ
ers

ity
 of

 M
ala

ya



 

74 

 

2002).  The pilot test in this study is relatively important to check the effectiveness of 

the MAI instrument to avoid misunderstanding of the questions, to check the clarity of 

the question and to test how long it takes to be completed. The first thing to do was to 

mock-up the online survey by sending out through the email to a small group of the 

targeted respondents, to ensure that there are no obvious problems with the questions. 

Once this had been done, a test was carried out on larger group of people. 

Figure 3.2: The decomposition of Metacognitive Sub Components (Tobias S. et al., 

1999) 

 

Researchers investigate metacognition knowledge and awareness and how it relates to 

measure academic success. In these studies, the skills of metacognition are measured 

from the perspective of metacognitive regulation and metacognitive knowledge. Given 

the discovery thus far regarding academic achievement measured with MAI, the 

primary goal of this study was exploratory in nature. This study is interested in 

determining the correlation between the MAI and the Grade Point Average (GPA) of 

the introductory Computer Programming course, understanding the learning behavior of 

students regarding metacognition in learning computer programming as well as identify 

the motivation that would influence the novice programmer to use a support system 

during computer programming learning.  

 

Univ
ers

ity
 of

 M
ala

ya



 

75 

 

The tabulation of the question from the survey is provided in Table 3.2. The first section 

is about the demographic study, in this section the general background on respondents’ 

academic year of study for undergraduates’ student. (Info: Gender, GPA, University, 

Year of Semester) are captured. The second section of the questionnaire survey is about 

Cognitive Knowledge and Cognitive Regulation of an individual, during this part, 

respondents are exposed to eight components of metacognitve awareness as described 

by  (Tobias S. et al., 1999). In the last section, respondents are required to provide their 

strategies in learning Computer Programming as well as the motivational factor of using 

support tool. 

 

Table 3.2: Tabulation of Questions from the Survey Questionnaire 

Section Description Type Literature 

Demographic 

Study 

The general 

background on 

respondents’ 

academic year 

of study for 

undergraduates 

student. (Info: 

Gender, GPA, 

University, Year 

of Semester) 

Demographic Study (Soloway & Spohrer, 

2013) 

 

Cognitive 

Knowledge 

Knowledge 

about oneself as 

a learner and 

factors affecting 

cognition 

Declarative 

Knowledge 

(Dechant, 2013; 

Schraw, 2006; Schraw 

& Moshman, 1995; 

Slavin & Davis, 2006) 

 

Awareness and 

management of 

cognition, 

including 

knowledge  

about strategies 

Procedural 

Knowledge 

(Banks & Millward, 

2007; Dechant, 2013; 

Kuhn & Dean, 2004; 

Schraw, 2006) 

Knowledge 

about why and 

when to use a 

given strategy 

Conditional 

knowledge 

(Dechant, 2013) 

Univ
ers

ity
 of

 M
ala

ya



 

76 

 

Cognitive 

Regulation 

Identification 

and selection of 

appropriate 

strategies and 

allocation of 

resources 

Planning (Cross & Paris, 1988; 

Paris & Winograd, 

1990; Schraw, 2006)  

Attending to 

and being  

aware of  

comprehension 

and task  

performance 

Comprehension 

Monitoring  

(Cross & Paris, 1988;  

Paris & Winograd, 

1990;  

Schraw et al., 2006;  

Schraw & Moshman, 

1995;  

Whitebread et al., 

2009) 

The skills and 

strategy 

sequences used 

to process 

information 

more efficiently 

(e.g. organizing, 

elaborating, 

summarizing, 

selective 

focusing) 

Information 

Management 

Strategies 

(Schraw, 2006) 

Strategies used 

to correct 

comprehension 

and 

performance 

errors 

Debugging Strategies (Schraw., 2006)  

(Schraw & Moshman, 

1995) 

Assessing the 

processes  

and products of 

one’s  

learning, and 

revisiting  

and revising 

learning  

goals 

Evaluation (Cross & Paris, 1988;  

Paris & Winograd, 

1990;  

Schraw et al., 2006;  

Schraw & Moshman, 

1995;  

Whitebread et al., 

2009) 

Types of strategy 

in learning 

programming 

Typical strategies used to learn 

computer programming 

(Robins et al., 2003) 

Motivating factor Motivating Factor in using support 

system for learning computer 

programming 

(Ramaha & Ismail, 

2012) 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

77 

 

Spearman’s Rho, which is a non-parametric correlation analysis, was conducted to 

prove that a relationship exists between the knowledge of cognition and the regulation 

of cognitive factors, correlation between the MAI and Grade Point Average (GPA) for 

Introductory of Computer Programming Course, as well as the relationship between the 

subcomponents. The sampling is based on convenience sampling, that is, a non-

probability sampling that consumes less time and effort, which is considered to be of 

great significance in this study. This sampling method is based on the respondents 

voluntary act to the instrument distribution that is uncontrollable, i.e. a questionnaire 

(Schonlau et al., 2002).  

 

The online survey is set up using the Google Docs’ application. The Google doc’s 

application allows researchers to design an online survey form and invite a group of 

people to respond via email or the URL that is created can be posted on Facebook. The 

targeted respondents were undergraduate students of Computer Science from fourteen 

selected universities, and the responses were assembled automatically into a Google 

Docs’ spreadsheet. The participants were invited through email and a group on 

Facebook. With the permission given by the academic affairs departments of the 

universities, the email addresses of students were obtained from the student database 

system.  The main objective of the experimental study is to identify the metacognitive 

effect towards the learning success of the Introduction of Programming subject at 

university using the Metacognitive Awareness Inventory (MAI) developed by  (Schraw 

& Sperling Dennison, 1994). 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

78 

 

3.3.1 Survey Methodology  

 

This section discusses the methods used for data collection for the questionnaire 

survey. The objective of the survey is to identify the metacognitive effect towards the 

learning success of computer programming. The questionnaire is further divided into 

nine sections. The first section concerns the demographics. This study was conducted 

using a descriptive research model. The sampling was based on convenience sampling, 

that is, non-probability sampling, as it consumed less time and effort, which were 

considered of great significance in this study. This sampling method is based on the 

respondents voluntary act to the instrument distribution that is uncontrollable, i.e. a 

questionnaire (Schonlau et al., 2002). The online survey was set up using the Google 

Docs’ application. The Google Docs’ application allows researchers to design an online 

survey form and invite a group of people to respond via email or the URL created can 

be posted to Facebook. All responses are assembled automatically into a Google Docs’ 

spreadsheet. The participations were invited through email and groups on Facebook. 

With the permission given by the academic affairs departments of the universities, the 

email addresses of students were obtained from the student database system.       

 

The questionnaire comprises two sections. The first section is to elicit personal 

information about the respondents including educational background. The second 

section consists of 52 self-reports in which students are required to rate as TRUE or 

FALSE. The MAI is given 1 (one) point for each TRUE on the chart and for each 

question with a FALSE answer, a 0 (zero) score is given. The second of the 

questionnaire is regarded to the two components of knowledge discussed above; 

knowledge about cognition and regulation of cognition. The scores are calculated by 

adding the total scores from each factor. Higher total scores of each factor correspond to 

Univ
ers

ity
 of

 M
ala

ya



 

79 

 

greater metacognitive knowledge and greater metacognitive regulation. Table 4.1 

presents the subcomponents of MAI. 

Table 3.3: Subcomponents of MAI 

Instrument Metacognitive Inventories Subscales No of Items 

Procedural Knowledge 4 

Declarative Knowledge 8 

Conditional knowledge 5 

Planning 7 

Comprehension Monitoring 7 

Evaluation 6 

Debugging Strategies 5 

Information Management Strategies 10 

Total 52 

 

3.3.2 Procedure  

 

The MAI survey was set up using the Google Docs’ application for respondents to 

access. The Google Docs’ application allows researchers to design an online survey 

form and invite a group of people to respond via email, or the URL created can be 

posted to Facebook. All responses are assembled automatically into a Google Docs’ 

spreadsheet. The URL of the online survey was sent through the student group and 

individual email. The URL was also posted on the Faculty of Computer Science 

Facebook page that come from different groups/universities. The advantages of the 

Web-based survey method are as follows: 

 Convenience: This technique represents a convenient and efficient way of 

reaching potential respondents. They are able to receive the questionnaire and 

complete it in the privacy of their home (Rea & Parker, 2012) 

 Rapid data collection: information, especially information that must be timely 

can be collected and processed within days (Rea & Parker, 2012) 

Univ
ers

ity
 of

 M
ala

ya



 

80 

 

 Cost-effectiveness: This technique is more cost-effective than the traditional 

mail survey because there is no need for postage or paper supplies (Rea & 

Parker, 2012)  

 Ample time: The respondent is not pressed for time in responding to the Web-

based survey and has the opportunity to consult records in answering the 

questions. There is time to consider response choices and to respond to open-

ended questions in the form of text (Rea & Parker, 2012) 

 Confidentiality and security: Potential respondents can be reminded to respond 

so the respondents can be protected on a secure server through the efforts of the 

research team (Rea & Parker, 2012) 

 Specialized populations: The Web-based survey is particularly useful in 

reaching specialized or well-identified populations whose e-mail addresses are 

readily available (Rea & Parker, 2012) 

 Complexity and visual aids: Web-based surveys can utilize visual images and 

more complex questions (Rea & Parker, 2012) 

 

3.4  Design and Implementation of Metacognitive Support System for Novice 

Programmer (MSSNP) 

 

The design of the suggested system incorporated the metacognitive elements and 

activities that would assist novice programmers in learning programming 

metacognitively. The proposal for an ideal architectural design is illustrated in figure 

3.3, which is refined from the findings in Chapter 4. The design and implementation of 

the Metacognitive Support System for Novice Programmer (MSSNP) is further 

discussed in Chapter 5.  

 

Univ
ers

ity
 of

 M
ala

ya



 

81 

 

 

Figure 3.3: Proposed architectural design of Metacognitive Support System for Novice 

Programmer (MSSNP) 

 

3.5  Experimental study and evaluation of the MSSNP 

 

The previous chapters have discussed the characteristics of designing a 

metacognitive instruction for learning programming.  We develop the MSSNP 

following a rationale that metacognitive activities encourage students to think about 

their knowledge monitoring ability, to select metacognitive strategies and to evaluate 

their learning experience that have a positive impact on their learning gain. Because it is 

difficult to test changes in the state of metacognition, an experimental study was 

established to test whether the design model was effective. The empirical evaluation of 

students’ interaction with the MSSNP focused mainly on the observation of 

metacognitive and performance changes. For the analysis of the results, several 

inferential statistical measurements, such as Kolmogorov Smirnov (data normality test), 

Shapiro-Wilk (data normality test), Spearman’s rho, and Wilcoxon were employed. The 

Univ
ers

ity
 of

 M
ala

ya



 

82 

 

experiment was undertaken with undergraduate students from the Faculty of Computer 

and Mathematical Science, UiTM, Shah Alam. The design of the experiment is 

presented in Chapter 6. It also presents the statistical analysis. The observation and 

analysis are used to formulate more general answers for the research questions. Apart 

from the experimental test, the users perception of the system usability is important in 

this study to ensure the user’s acceptance of the system.  Usability testing is a technique 

used in user-centered interaction design to evaluate a product by testing it on users. It 

was defined by ISO 9241 as “the extent to which a product can be used by specified 

users to achieve goals with effectiveness, efficiency and satisfaction in the specified 

context of use” (Veenendaal, 1998). The Software Usability Measurement Inventory 

(SUMI) is a comprehensive solution for measuring the quality of the software from the 

end user’s perspective. SUMI is an internationally proven method and well tested 

instrument for determining the software quality from the end user. As already 

mentioned in the previous section, the SUMI questionnaire includes 50 items to 

represent the efficiency, affects, helpfulness and learnability attributes of the software. 

The statements presented to the users are about their views and behavior of the tested 

software. 

 

3.6  Summary  

 

As discussed in previous chapters, the objective of this study is to identify methods 

of supporting novice programmers learning computer programming metacognitively. 

The six steps involved in this study are: 

1. A questionnaire survey is conducted to identify the metacognitive effect on the 

learning success of computer programming, to identify the novice programmer 

learning behavior, to identify the motivating factor of utilizing the support 

system in learning computer programming. 

Univ
ers

ity
 of

 M
ala

ya



 

83 

 

2. Interviews with expert lecturers are conducted with the aim to investigate the 

importance of metacognition in teaching and learning, the awareness and the 

application of metacognition in teaching and learning programming 

3. Analysis of the results and interviews. 

4. Development of prototype system that provide features derived from the 

requirement analysis study.  

5. Evaluation of the system in terms of metacognitive changes through the 

interaction with the prototype system and usability measurement of the 

prototype system. 

Support features that would assist novice programmers in learning computer 

programming that were elicited from the survey results give vital information in this 

research work. In addition, the learning behavior of novice programmers provides an 

insight for refining the support features by incorporating the learning elements that 

relate to metacognition.  The details of the results and analysis of the survey are 

discussed further in the following chapter (Chapter four).  

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

84 

 

CHAPTER 4: ANALYSIS OF METACOGNITIVE AWARENESS IN TEACHING 

AND LEARNING COMPUTER PROGRAMMING 

 

 (Garner & Alexander, 1989) emphasize the relevance of empirical research on the 

measurement of metacognition, and suggested that the following questions should be 

addressed: How to accurately measure “knowledge about knowledge”? How can the 

effectiveness of strategies used in training be measured? This chapter discusses the 

empirical study conducted to explore the eight components of knowledge of novice 

programmers that comprise declarative knowledge, procedural knowledge, conditional 

knowledge, planning, information management strategies, comprehension monitoring, 

debugging strategies and evaluation. As discussed in Chapter 3, the Metacognitive 

Awareness Inventory (MAI) (Schraw & Sperling Dennison, 1994) is used in this study 

measuring novice programmers’ awareness of metacognition in learning the 

introductory computer programming at the university. The MAI inventory consists of 

52-items of self-report that tap into two components of metacognition: the 

metacognitive knowledge and metacognitive regulation (See Appendix B).  

Univ
ers

ity
 of

 M
ala

ya



 

85 

 

4.2  Results and analysis of questionnaire survey  

 

In Chapter 1, we defined the characteristics of novice programmers as someone that 

lacks the knowledge and skills of programming knowledge. Thus, the target population 

in this study is the undergraduate students of computer science that already took the 

introductory computer programming at university or education institution. Realistically, 

to take the entire population is too large for a researcher to attempt to survey all 

members; therefore, a chosen sample is used to represent the population.  In this study, 

400 (sample size) sets of questionnaires were distributed to the undergraduate students 

of computer science via online. Using an Internet survey tool, we were able to place a 

date and time stamp on each response and find out how much time it took each person 

to complete it. We know from past experience that respondents who complete the 

survey too quickly (less than 30%-50% of median time) are likely to not be reading or 

answering the questions appropriately. The same is true for flat-liners (i.e. those who 

mark each answer the same), which are often speeders. They may have read the 

questions, but they do not really think about their answers. Therefore, it was considered 

prudent to remove speeders and flat-liners from our data to eliminate a lot of 

meaningless data. After the data cleansing process, which involves the activity of 

removing ‘duplicate responses’, ‘speeders’ and ‘flat-liners 164 of the respondents were 

chosen for further analysis. According to (Visser, Krosnick, Marquette, & Curtin, 1996) 

who showed that surveys with lower response rates (near 20%) yielded more accurate 

measurements than did surveys with higher response rates (near 60 or 70%) and surveys 

with low response rates are not necessarily low in validity. The respondents were 

invited through Facebook (see Figure 4.1) and the invitation was posted to the computer 

science Facebook groups (see Figure 4.2 as an example).  

 

Univ
ers

ity
 of

 M
ala

ya



 

86 

 

 

Figure 4.1: Survey Invitation via Facebook 

 

Figure 4.2: The IIUM Bachelor of Computer Science Facebook group 

The distribution of the chosen respondents by University is presented in Table 4.1,  

Table 4.1: Distribution of respondents group by University 

Universities Frequency Percentage (%) 

International Islamic University Malaysia 

(IIUM) 
7 4.27 

Kolej PolyTech MARA Kuala Lumpur 5 3.05 

UiTM Kedah Campus 3 1.83 

UiTM Kelantan Campus 6 3.66 

UiTM Perlis Campus 8 4.88 

UiTM Sarawak Campus 18 10.98 

UiTM Segamat Campus 34 20.73 

UiTM  Sri Iskandar Campus 20 12.20 

UiTM Terengganu Campus 16 9.76 

UiTM Pahang Campus 15 9.15 

UiTM Melaka Campus 16 9.76 

Univ
ers

ity
 of

 M
ala

ya



 

87 

 

Univerisity of Malaya (UM) 6 3.66 

Universiti Teknologi Malaysia (UTM) 4 2.44 

Universiti Sains Malaysia (USM) 6 3.66 

Total 164 100 

 

The majority of the respondents come from the UiTM Segamat Campus, which make up 

12.2%, followed by the respondents from UiTM Sri Iskandar Campus (12.2.%). In this 

study, we employed an explanatory study to explain and measure the relationships 

between variables using statistical techniques. Two types of statistic – descriptive and 

inferential statistics – were used to analyze the results. The descriptive statistics were 

carried out to visualize what the data showed and to see the pattern that might emerge 

from the data, while the inferential statistics were used to analyze the results obtained 

and draw the conclusion. We used SPSS (Version 10) to perform the descriptive 

analysis and explanatory analysis. The findings are reported and discussed accordingly 

in the following section in more detail. 

 

4.2.1 Demographic Study  

 

Appendix C provides the demographic background of the respondents who 

participated in the survey. This study was participated in by 164 undergraduate students 

of computer science (102 females, 62 males), as shown in Table 4.2. The target sample 

of this study is 400 and the response rate was 41%. For an online survey, 

conventionally, a 40% response rate is considered as a good response rate (Deutskens, 

De Ruyter, Wetzels, & Oosterveld, 2004).  As depicted in Table 4.1, the majority of 

respondents (82.93%) are from Universiti Teknologi Mara from nine different campuses 

(Segamat Campus, Kelantan Campus, Perlis Campus, Sarawak Campus, Terengganu 

Campus, Pahang Campus and Melaka Campus), 4.27% are from International Islamic 

University Malaysia, 3.05% from Kolej PolyTech MARA Kuala Lumpur, 3.66% from 

University of Malaya and 2.44% from Universiti Teknologi Malaysia. Table 4.2 

Univ
ers

ity
 of

 M
ala

ya



 

88 

 

presents the distribution of respondents by the University’s Introductory Computer 

Programming course. The distribution of respondents grouped by the GPA is presented 

in Table 4.6: 26.83% are from GPA between 2.00 – 2.49, 34.15% students in the 2.5 – 

2.99 GPA range, and 24.39% student in the 3.5 – 4.00 GPA range. The distribution of 

respondents by gender, GPA and academic year of study is presented in Appendix C. 

Table 4.2: Distribution by University’s programming course 

Course 

Code 

Course Title Course description University 
Frequency 

(%) 

CSC 

1101 

Structured 

Programming 

Language/ 

Bachelor of 

Computer 

Science (BCS) 

 

This course focuses 

on the 

fundamentals of 

structured 

programming with  

C++.  Students are 

taught the art of 

problem-solving in 

programming, the 

techniques, 

architectures, the 

design issues and 

fundamentals about 

class and object. 

This course is 

designed to prepare 

a student to be 

familiar with 

software 

development 

process. 

Internationa

l Islamic 

University 

Malaysia 

7 
4.27 

SC128 Fundamentals 

of Computer 

Problem-

solving 

/ Diploma of 

Computer 

Science 

(CS110) 

 

This is 

fundamental to 

problem-solving 

courses using 

computers via 

structured 

programming. The 

focus is on various 

aspects of problem-

solving rather than 

syntactical aspect 

of the chain 

programming 

language, mainly 

consisting of the 

UiTM 

Kedah, 

UiTM of 

Kelantan, 

UiTM of 

Perlis, 

UiTM of  

Sarawak, 

UiTM of 

Segamat 

Johor, 

UiTM of Sri 

Iskandar 

Perak, 

UiTM of 

136 82.93 

Univ
ers

ity
 of

 M
ala

ya



 

89 

 

problem domain, 

phases of problem-

solving and basic 

techniques in 

designing 

solutions.  

Terengganu

, 

UiTM of 

Pahang, 

UiTM of 

Melaka, 

Kolej 

PolyTech 

MARA 

Kuala 

Lumpur 

WXES1

116 

Programming 

I/  

Bachelor of 

Computer 

Science (AI) 

(MC00) 

 

This course is a 

basic to Object 

Oriented 

Programming using 

JAVA. It defines 

the concepts of 

Object Oriented 

programming with 

flowchart and 

pseudocode. The 

student learns how 

to write and 

develop programs 

using the 

appropriate 

semantic and 

syntactic features. 

University 

of Malaya 

(UM) 

6 3.66 

SCJ1013 Programming 

Techniques I/ 

Bachelor of 

Computer 

Science (SCJ) 

 

This course equips 

the students with 

theory and practice 

on problem-solving 

techniques by 

using the structured 

approach. Students 

are required to 

develop programs 

using C++ 

programming 

language 

Universiti 

Teknologi 

Malaysia 

(UTM) 

4 2.44 

CPT111/

3  

Principles of 

Programming/ 

Bachelor of 

Computer 

Science 

In this course, the 

student is equipped 

with the principle 

of Programming. 

They are taught 

how to analyze and 

examine problems, 

and transform the 

problem solution 

into codes that are 

understood by 

programming 

Universiti 

Sains 

Malaysia 

(USM) 

6 3.66 

Univ
ers

ity
 of

 M
ala

ya



 

90 

 

 

 

4.2.2  Data Normality Test  

 

The inferential statistical measurement (Kolmogorov Smirnov and Shapiro-Wilk) is 

performed to test the normality of GPA and each other component of MAI. The results 

in Table 4.3 show that most of the variables were not normally distributed; therefore the 

non-parametric type of statistic called Spearman Rho is applied for further analysis. 

 

Table 4.3: Tests of Normality 

Attr. Kolmogorov-Smirnov
a
 Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

GPA .214 164 .000 .866 164 .000 

P .221 164 .000 .838 164 .000 

MAI .106 164 .000 .922 164 .000 

DL .138 164 .000 .911 164 .000 

CDL .231 164 .000 .841 164 .000 

PL .202 164 .000 .874 164 .000 

IMS .178 164 .000 .903 164 .000 

CM .172 164 .000 .858 164 .000 

DBG .281 164 .000 .725 164 .000 

EVL .181 164 .000 .903 164 .000 

a. Lilliefors Significance Correction 

 

 

4.2.3 Descriptive statistics  

 

Of the 164 respondents, the mean MAI score was 36.51, the mean score for the 

knowledge of cognition factor (KC) was 11.76 and regulation of cognition factor (RC) 

was 24.75, Procedural (P) was 3.02, Declarative (DL) was 4.94, Conditional (CDL) was 

3.76, Planning (PL) was 4.67, Information Management Strategies (IMS) was 7.38, 

Comprehension Monitoring (CM) was 4.74 and Debugging Strategies (DBG) was 3.93, 

language 

Total 164 100 

Univ
ers

ity
 of

 M
ala

ya



 

91 

 

respectively. Table 4.4 presents the descriptive statistics of all the other variables. The 

value of mode, standard deviation, skewness and coefficient variation for all variables is 

presented in Table 4.4. In the theory of statistics, skewness is a measure of the 

asymmetry of the distribution; it can be a positive or negative value. The value of 

skewness can be used to define the extent to which a distribution differs from a normal 

distribution. The values in Table 4.4 are translated into graphs, which are presented in 

Figure 4.3 and Figure 4.4. The graphs that are symmetrically bell-shaped can be 

classified as normal distribution where the mean and mode are equal.  

 

Table 4.4: Means, Mode, Standard Deviations, Skewness and coefficient variations of 

all variables 

Variables Mean Mode Std Dev Skewness Coefficient 

variation 

GPA  2.88 2.745 0.50916 0.299 17.68% 

MAI  36.51 48 10.660 -0.568 29.20% 

Knowledge about 

Cognition (KC) 

11.76 17 3.507 -0.150 29.82% 

Regulation of 

Cognition (RC)  

24.75 10 7.592 -0.762 30.67% 

Procedural (P) 3.02 3 0.913 -0.587 30.23% 

Declarative (DL) 4.94 6 2.033 -0.027 41.15% 

Conditional (CDL) 3.76 5 1.224 -0.619 32.55% 

Planning (PL) 4.67 6 2.025 -0.588 43.36% 

Information 

Management 

Strategies (IMS) 

7.38 9 1.973 -0.296 26.73% 

Comprehension 

Monitoring (CM) 

4.74 7 2.047 -0.660 43.18% 

Debugging Strategies 

(DBG) 

3.93 5 1.389 -1.243 35.34% Univ
ers

ity
 of

 M
ala

ya



 

92 

 

 

 
Figure 4.4: Frequency Polygon for GPA, MAI, CDL, PL, DL and P score

F
ig

u
re

 4
.3

: 
F

re
q
u
en

cy
 P

o
ly

g
o
n
 f

o
r 

G
P

A
, 
M

A
I,

 C
D

L
, 
P

L
, 
D

L
 a

n
d
 P

 s
co

re
 

Univ
ers

ity
 of

 M
ala

ya



 

93 

 

 

 
Figure 4.5: Frequency Polygon for IMS, CM, DBG and EVL score 

 

Figure 4.3 and Figure 4.4 show the data distribution frequency for the MAI score 

and other individual MAI sub-component scores. The frequency polygon diagrams were 

provided in this thesis for understanding the shapes of distribution for each variable. 

The black line superimposed on each of the histograms in Figure 1 and Figure 2 

represent the bell-shaped “normal” curve. All diagrams (as shown in Figure 1 and 

Figure 2) depicted that each variable (GPA, MAI, P, DL, CDL, PL, IMS, CM, DBG and 

EVL) is normally distributed, where the mean and median are almost the same. In the 

theory of statistics, the coefficient of variation (CV) is a standardized measure of 

dispersal of a probability distribution, or, in other words, it can be defined as the ratio of 

the standard deviation to the mean. In examining the coefficient variation (CV) result, 

Univ
ers

ity
 of

 M
ala

ya



 

94 

 

most of the CVs are approximately at 30%, which implies that the data are stable and 

that the standard deviation compared to the mean is acceptable. Based on the normality 

test the non-parametric statistic is the most suitable statistic used for further 

investigation. This type of statistic does not require the distribution of population to be 

characterized by certain assumptions, for instance, they do not assume that the outcome 

is approximately normally distributed compared to parametric tests that require a 

specific probability distribution, such as ‘normal distribution’. The Spearman’s Rho, 

which is a non-parametric correlation analysis, was conducted to prove that the 

relationship existed between the knowledge of cognition and the regulation of cognitive 

factors, correlation between the MAI and Grade Point for Introductory of Computer 

Programming Course (GPA) as well as the relationship between the subcomponents. 

 

4.2.4 Correlation Coefficient Result 

 

The correlation coefficient results for all variables is presented in Appendix D. In 

Table 4.5, the results indicate that there is a positive linear correlation between the GPA 

and MAI score with a correlation coefficient of r= 0.8226 and significant at the 1% 

level. The findings confirmed that metacognition has a positive effect on students 

learning success in the Introductory Computer Programming course at university, as the 

MAI scores go up, the GPA tends to increase as well and vice versa. The variations in 

MAI explained at 67.67% of the variation in GPA (r
2
 = 0.6767 with  n=164), indicating 

that there is a possibility of  32% of other factors influencing or affecting student 

learning success in the Introductory to Computer Programming at University. The 

results also tell us that a strong correlation exists between the GPA and Knowledge 

about Cognition (KC) with r
 
= 0.7483, GPA with Regulation of Cognition (RC) with r = 

0.8224, GPA and Procedural Knowledge (P) with r = 0.4387, GPA and Declarative 

Knowledge (DL) r= 0.7358, GPA and Conditional Knowledge (CDL) with r= 0.6134, 

Univ
ers

ity
 of

 M
ala

ya



 

95 

 

GPA and Planning (PL) with r = 0.7061, GPA and Information Management Strategies 

(IMS) with r = 0.6882, GPA and Comprehension Monitoring (CM) with r= 0.7025.  A 

strong relationship also exists between GPA with Debugging (DBG) with r = 0.6023 

and all are significant at the 1% level. This implies that each of the sub-component 

processes of the Knowledge about Cognition and Regulation of Cognition influence the 

academic achievement in the Introductory Computer Programming course at the 

University. 

Table 4.5: Correlation Coefficient between GPA and other sub-components of MAI 

Y X r r
2
 t Pr(>|t|) 

GPA MAI 0.8226 0.6767 18.4136 0.0000 

GPA P 0.4387 0.1925 6.2140 0.0000 

GPA DL 0.7358 0.5413 13.8274 0.0000 

GPA CDL 0.6134 0.3762 9.8843 0.0000 

GPA PL 0.7061 0.4986 12.6917 0.0000 

GPA IMS 0.6882 0.4737 12.0747 0.0000 

GPA CM 0.7025 0.4935 12.5629 0.0000 

GPA DBG 0.6023 0.3627 9.6027 0.0000 

GPA EVL 0.5679 0.3225 8.7816 0.0000 

GPA KC 0.7483 0.5599 14.3562 0.0000 

GPA RC 0.8224 0.6763 18.3987 0.0000 

 

4.2.4.1 Coefficient of Correlation between KC with sub-components of MAI 

 

The results provided in Table 4.6 indicate that strong correlations exist between the 

Knowledge of Cognition (KC) with Procedural Knowledge (P) with r= 0.6698, 

Declarative Knowledge (DL) with r= 0.9071, Conditional Knowledge (CDL) with r= 

0.8289, Planning (PL) with r= 0.7347, Comprehension Monitoring (CM) with r= 0.781. 

Moderate correlation existed between KC and Information Management Strategies 

(IMS) with r= 0.6548, Debugging (DBG) with r= 0.5446 and Evaluation with r= 

0.6087.  All are significant at the 1% level. From the results, it is clearly shown that the 

Declarative knowledge (DL) is highly correlated with Knowledge of Cognition (KC) 

with the coefficient of determination r
2 

= 82% and the value of r= 0.9071 close to +1 

Univ
ers

ity
 of

 M
ala

ya



 

96 

 

indicates that if novice programmers possess higher knowledge of declarative, the 

Knowledge of Cognition can easily be acquired. 

 

Table 4.6: Correlation Coefficient between Knowledge of Cognition (KC) and other 

sub-components of MAI 

Y X r r
2
 t Pr(>|t|) 

KC P 0.6698 0.4486 11.4797 0.0000 

KC DL 0.9071 0.8228 27.4249 0.0000 

KC CDL 0.8289 0.6870 18.8584 0.0000 

KC PL 0.7347 0.5398 13.7840 0.0000 

KC IMS 0.6548 0.4288 11.0268 0.0000 

KC CM 0.7810 0.6099 15.9145 0.0000 

KC DBG 0.5446 0.2966 8.2648 0.0000 

KC EVL 0.6087 0.3705 9.7643 0.0000 

 

4.2.4.2 Coefficient Correlation between RC with sub-components of MAI 

 

The test results presented in Table 4.7 show the coefficient correlation between the 

Regulation of Cognition (RC) with other sub-components of MAI. The Regulation of 

Cognition (RC) is strongly related to other sub-components of MAI as indicated in 

Table 4-6, which shows the coefficient correlation between Regulation of Cognition 

(RC) and Procedural Knowledge at r 0.55, Regulation of Cognition (RC) with 

Declarative Knowledge (DC) at r = 0.78, Regulation of Cognition (RC) with 

Conditional Knowledge (CDL) at r = 0.68, Regulation of Cognition (RC) with Planning 

(PL) at r = 0.86, Regulation of Cognition (RC) with Information Management Strategy 

(IMS) at r= 0.82, Regulation of Cognition (RC) with Comprehension Monitoring at r = 

0.85, and, last, but not least, the Regulation of Cognition (RC) and Debugging 

Strategies (DBG) at r = 0.68. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

97 

 

Table 4.7: Correlation Coefficient between Regulation of Cognition (RC) and other 

sub-components of MAI 

Y X r r
2
 t Pr(>|t|) 

RC P 0.5523 0.3051 8.4328 0.0000 

RC DL 0.7878 0.6206 16.2789 0.0000 

RC CDL 0.6815 0.4644 11.8528 0.0000 

RC PL 0.8615 0.7423 21.6000 0.0000 

RC IMS 0.8199 0.6723 18.2308 0.0000 

RC CM 0.8521 0.7262 20.7263 0.0000 

RC DBG 0.6866 0.4714 12.0204 0.0000 

RC EVL 0.7451 0.5551 14.2175 0.0000 

 

4.2.5 Descriptive Analysis  

 

This section presents the descriptive analysis of the results obtained from the survey. 

This section is divided into eight themes/classifications of metacognitive skills, as 

defined by (Tobias & Everson, 1995). Respondents are grouped into four, with a 

different range of GPA scores for the Introductory Computer Programming subject (2.0 

– 2.49, 2.5 – 2.99, 3.0 – 3.49 and 3.5 – 4.00). The reason behind this is to see the pattern 

(the GPA score with each metacognitive component ) exhibited from the data collected.  

  

4.2.5.1 Declarative knowledge (DL) 

 

Declarative knowledge refers to the factual information and knowledge that a person 

possesses. It is one component that makes up the knowledge of Cognition within the 

MAI instrument.  As described by (Tobias & Everson, 1995), there are six attributes or 

statements that made up the declarative knowledge component. The first attribute is 

about novices understanding their intellectual strengths and weaknesses. The second 

attribute is the awareness of knowing the kind of information that is most important to 

learn in respect of computer programming. Organizing information is the third attribute 

that makes up the declarative knowledge. The fourth attribute is the awareness of what 

the instructor expects novices to learn followed by the attribute concerning 

Univ
ers

ity
 of

 M
ala

ya



 

98 

 

remembering information. The last attribute is the control over how well they learn the 

subject. Table 4.8 presents the comparison of declarative knowledge of the respondents 

based on their GPA in the computer programming subject.  

 

The result shows that the higher degree of the declarative knowledge the better the 

student performance in the Computer Programming subject. Students with a higher 

degree of declarative knowledge know their weaknesses and strengths, know what to 

learn, are good at organizing information, good at remembering information and good at 

monitoring their knowledge. The ‘T’ symbol, as shown in Table 4.8, represents the 

‘TRUE’ response whereas ‘F’ represents ‘FALSE’. The result obviously revealed that 

there is an increase in the response rate on ‘TRUE’  from the left to the right of the 

table, which gives an indication that the better students perform in the computer 

programming subject the better the declarative knowledge the student possesses.   

 

From Table 4.8, it shows that 96% of the respondents with a GPA between 3.5 – 4.00  

responded ‘TRUE’  to the attributes of that relates to their understanding of strength and 

weaknesses (first attributes), while the other 4% of the respondents from this group 

responded ‘FALSE’. For the group with a GPA of between 3.00 – 3.49, 97.5%  

responded ‘TRUE’ for the first attribute and 2.5% said ‘FALSE’.  In addition, 94.63% 

of the group from GPA 2.5 – 2.99 responded ‘TRUE’ and 3.57% responded ‘FALSE’ 

for the first attribute.   

 

The second attribute is about ‘Knowing what kind of information is most important to 

learn’. For the group with the GPA 3.5 – 4.00, 70% agreed and the other 30% disagreed 

with the second attribute. For the respondents with a GPA of between 3.0 and 3.49, 65% 

said ‘TRUE’ and 35% responded ‘FALSE’. While 73% of the respondents with a GPA 

Univ
ers

ity
 of

 M
ala

ya



 

99 

 

between 2.5 and 2.99 agreed that they know the kind of information that is most 

important to learn, the other 27% did not agree.  Most of the respondents (88%) with a 

GPA of 2.00 – 2.49 disagreed with the statement, only 12% from this group responded 

‘TRUE’ for this statement.  

 

The third attribute is about organizing information. From the results obtained in Table 

4.8, it obviously revealed that almost all respondents (92%) with a good GPA (3.5 – 

4.00) agreed that they are good at organizing information and only 8% did not agree; 

70%  said ‘TRUE’ and 30% said ‘FALSE’ from the group of respondents with  a GPA 

between 3.0 – 3.49; and 36% responded ‘TRUE’ while 64% responded ‘FALSE’ from 

the group with a GPA between 2.5 and 2.99. For the group with a GPA of between 2.0 

and 2.49, the majority (84%) said ‘FALSE’ while only 16% said ‘TRUE’.  

 

The fourth attribute is about knowing what the instructor expects the student to learn. 

This clearly revealed that the better the student’s achievement in Introductory Computer 

Programming in terms of the GPA score, the better their skill of knowing what the 

instructor expects them to learn. A total of 79% of respondents with a GPA between 3.5 

and 4.00 responded ‘TRUE’ for that statement while 21% responded ‘FALSE’; 82.5% 

said ‘TRUE’ while the other 17.5% said ‘FALSE’ for the group of respondents with a 

GPA between 3.0 and 3.49; 46% said ‘TRUE’ and 54% said ‘FALSE’ from the group 

of respondents with a GPA between 2.5 and 2.99, and for those respondents with a GPA 

between 2.0 and 2.49, 34% responded ‘TRUE’ and 66% responded ‘FALSE’.  

 

The fifth attribute concerns remembering information, 71% of the respondents with a 

GPA between 3.5 and 4.00 responded ‘TRUE, while 29% responded ‘FALSE’;  70% of 

the respondents from the group with a GPA of 3.0 – 3.49 said ‘TRUE’, while 30% said 

Univ
ers

ity
 of

 M
ala

ya



 

100 

 

‘FALSE’. For the group of respondents with a GPA of 2.5 – 2.99, 50% said ‘TRUE’ 

and the other 50% said ‘FALSE’; 18% from the group with a GPA of 2.0-2.49 

responded ‘TRUE’ and the majority with 82% said ‘FALSE’.  

 

The last attribute pertains to the control of information.  The collected data showed that 

students who performed well at the Introductory Computer Programming had a good 

control of information; 79% from the respondents group 3.5 – 4.00 responded ‘TRUE’ 

and 21% responded ‘FALSE’; 87.5% of respondents from the group with a GPA of 

between 3.0 and 3.49 responded ‘TRUE’ while 12.5% responded ‘FALSE’. For the 

group with a GPA of between 2.5 and 2.99, 43% responded ‘TRUE’ and 57% 

responded ‘FALSE’; 25% from the group of students with a GPA between 2.0 and 2.49 

said ‘TRUE’ and 75% said ‘FALSE’. In this section, it can be concluded that the greater 

the declarative knowledge possessed by novices the better one’s performance in the 

computer programming subject. 

 

Table 4.8: Comparison of ‘Declarative Knowledge’ by respondent’s GPA 

Attr. 

No 
Declaration 

Knowledge 

Attribute 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True 

(T)/ 

False 

(F) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I understand 

my 

intellectual 

strengths and 

weaknesses 

T 33 75.00 54 96.43 39 97.50 23 95.83 

F 11 25.00 2 3.57 1 2.50 1 4.17 

2 I know what 

kind of 

information is 

most 

important to 

learn 

T 5 11.36 41 73.21 26 65.00 17 70.83 

F 39 88.64 15 26.79 14 35.00 7 29.17 

3 I am good at 

organizing 

information. 

T 7 15.91 20 35.71 28 70.00 22 91.67 

F 37 84.09 36 64.29 12 30.00 2 8.33 

4 I know what 

the teacher 

expects to 

T 15 34.09 26 46.43 33 82.50 19 79.17 

F 29 65.91 30 53.57 7 17.50 5 20.83 

Univ
ers

ity
 of

 M
ala

ya



 

101 

 

learn. 

5 I am good at 

remembering 

information. 

T 8 18.18 28 50.00 28 70.00 17 70.83 

F 36 81.82 28 50.00 12 30.00 7 29.17 

6 I have control 

over how well 

I learn. 

T 11 25.00 24 42.86 35 87.50 19 79.17 

F 33 75.00 32 57.14 5 12.50 5 20.83 

7 I am a good 

judge of how 

well I 

understand 

something 

T 5 11.36 31 55.36 31 77.50 21 87.50 

F 39 88.64 25 44.64 9 22.50 3 12.50 

8 I learn more 

when I am 

interested in 

the topic. 

T 33 75.00 53 94.64 36 90.00 22 91.67 

F 11 25.00 3 5.36 4 10.00 2 8.33 

 

 

4.2.5.2  Procedural Knowledge (P) 

 

This knowledge refers to how to perform a certain task, also known as imperative 

knowledge, which is another component of the knowledge of cognition within the MAI. 

Students that possess a higher degree of procedural knowledge know the appropriate 

strategy to use when studying. Not all respondents provide the information about their 

strategies in learning programming. However, some of the examples given by the 

respondents were as follows, ‘seek help of the Internet’, ‘trial and error method’, ‘seek 

the help of instructor’, and ‘study with others’. According to the Kolb' learning cycle 

(Harb, Durrant, & Terry, 1993), the most influential and effective idea of learning is the 

experiential, it is the learning by doing.  

 

There are four attributes or statements that make up the procedural knowledge. The first 

attribute is about the past strategies used during learning computer programming, the 

second attribute is about student awareness of the specific strategies used for specific 

purpose, the third attribute is about the awareness of strategies used when studying and 

the last attribute is about the awareness of what helpful learning strategies to use when 

Univ
ers

ity
 of

 M
ala

ya



 

102 

 

studying. Table 4.9 presents the comparison of the procedural knowledge group by 

CGPA. A total of 96% of the group of respondents with a GPA between 3.5 and 4.00 

responded ‘TRUE’ for the first attribute, that they used strategies that have worked 

during learning, while only 4% responded ‘FALSE’; 72.5% said ‘TRUE’ and 27.5% 

said ‘FALSE’ for the first attribute; this response rate comes from the group of 

respondents with a GPA between 3.0 and 3.49. 

 

Table 4.9: Comparison of ‘Procedural Knowledge’ by respondent’s GPA 

Attr. 

No 

Procedural 

Knowledge 

Attribute 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True 

(T)/ 

False 

(F) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I try to use 

strategies that 

have worked in 

the past 

T 28 63.64 35 62.50 29 72.50 23 95.83 

F 16 36.36 21 37.50 11 27.50 1 4.17 

2 I have a specific 

purpose for 

each strategy I 

use. 

T 35 79.55 44 78.57 38 95.00 23 95.83 

F 9 20.45 12 21.43 2 5.00 1 4.17 

3 I am aware of 

what strategies I 

used when I 

study. 

T 30 68.18 40 71.43 38 95.00 23 95.83 

F 14 31.82 16 28.57 2 5.00 1 4.17 

4 I find myself 

using helpful 

learning 

strategies 

automatically 

T 24 54.55 36 64.29 29 72.50 21 87.50 

F 20 45.45 20 35.71 11 27.50 3 12.50 

 

 

For respondents with a GPA between 2.5 and 2.99, 62.5% said ‘TRUE’ for this first 

attribute and 37.5% responded ‘FALSE’, and 63.6% of the respondents with a GPA 

between 2.0 and 2.49 responded ‘TRUE’ while the other 36.4% said ‘FALSE’. For the 

second attribute (the awareness of a specific purpose for each strategy used), the 

majority of respondents (96%) from the group with a GPA between 3.5 and 4.00 

responded ‘TRUE’ and 4% responded ‘FALSE’. The same goes for the group with a 

Univ
ers

ity
 of

 M
ala

ya



 

103 

 

GPA of between 3.0 and 3.49, for which the majority of respondents (95%) responded 

‘TRUE’, while the other 5% responded ‘FALSE’; 79% out of 56 respondents from the 

group with a GPA of between 2.5 and 2.99  said ‘TRUE’ and  the other 21% said 

‘FALSE’; 80% out of 44 respondents from the group with a GPA of 2.0 – 2.49 

responded ‘TRUE’ and 20% responded ‘FALSE’. For the third attribute, which 

concerns the awareness of what strategies are used during studying, the majority of the 

respondents (96%) from the group with a GPA of between 3.5 and 4.00 responded 

‘TRUE’ to the statement, while 4% did not agree with the statement and responded 

‘FALSE’.  

 

The same goes for the respondents with a GPA between 3.00 – 3.49, for which the 

majority (95%) responded ‘TRUE’ and 5% responded ‘FALSE’. While 71% out of 56 

respondents from the group with a GPA of between 2.5 and 2.99 responded ‘TRUE’ and 

29% responded ‘FALSE’. For the group of respondents with a GPA between 2.0 and 

2.49, 54.6% responded ‘TRUE’, while 45.4% responded ‘FALSE’.  The last attribute 

concerned the awareness of what helpful learning strategies are used when studying. 

The majority of the respondents (87.5%) with a GPA of between 3.5 and 4.00 agreed 

with the statement and responded ‘TRUE’, while the other 12.5% responded ‘FALSE’. 

For the respondents from the group with a GPA of between 3.00 and 3.49, the majority 

(72.5%) responded ‘TRUE’ and 27.5% responded ‘FALSE’. Out of 56 respondents 

from the group with a GPA of between 2.5 and 2.99, 64% responded ‘TRUE’ while the 

other 36% responded ‘FALSE’. It can be concluded from the results obtained, that the 

better the students performed in terms of the GPA obtained in Introductory Computer 

Programming the better the procedural knowledge they possessed.  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

104 

 

4.2.5.3 Conditional Knowledge (CDL) 

 

Conditional knowledge is a classification of the knowledge found in the long-term 

memory; it can be best described as knowing “when” and “why” to use declarative and 

procedural knowledge and ‘when’ not to (Schraw, 2006).  In this study, there are five 

attributes or statements that make up the conditional knowledge. The first attribute is 

about a novice’s learning performance when they know something about the topic in 

computer programming. The second attribute is to answer the question: do novices 

apply different learning strategies for the different situations during learning computer 

programming? The third attribute is to know how far novices are self-motivated in 

learning programming. The fourth attribute is to know whether novices use their 

intellectual strengths to compensate for their weaknesses and the last attribute is to 

identify the novice’s  learning effectiveness when applying each strategy during 

learning. Table 4.10 presents the comparison of conditional knowledge group by the 

respondent’s GPA in Introductory Computer Programming.  

 

The majority of respondents from the group with a GPA between 3.5 and 4.00 agreed 

(by responding ‘TRUE’) with all five attributes, 87.5% for the first attribute, 100% for 

the second, third and fourth attribute and 87.5% for the last attribute; only 12.5% of the 

respondents from this group disagreed with the first and the last attribute. Similarly, for 

the respondents from the group with a GPA between 3.0 and 3.49, the majority 

responded ‘TRUE’ to all five attributes; 77.5% for the first attribute, 87.5% for the 

second attribute, 90% for the third attribute and 100% for the fourth attribute and  

67.7% for the last attribute. Only 22.5% responded ‘FALSE’ for the first attribute, 

12.5% for the second attribute, 10% for the third attribute and 32.5% for the last 

attribute. For respondents from the group with a GPA of between 2.5 – 2.99, 75% 

responded ‘TRUE’ for the first attribute, 87.5% responded ‘TRUE’ for the second and 

Univ
ers

ity
 of

 M
ala

ya



 

105 

 

third attributes, 78.6% for the fourth attribute, and 77% for the last attribute. 

Conversely, 25% of the respondents from this group responded ‘FALSE’ for the first 

attribute, 12.5% responded ‘FALSE’ for the second attribute, 21.43% responded 

‘FALSE’ for the third attribute and 23.21% responded ‘FALSE’ for the last attribute.  

 

Out of 44 respondents from the group with a GPA of between 2.0 and 2.49, 34% 

responded ‘TRUE’ for the first attribute, 50% responded ‘TRUE’ for the second and 

fourth attribute, 68% responded ‘TRUE’ for the third attribute and 38.6% responded 

‘TRUE’ for the last attribute. In total, 66% responded ‘FALSE’ for the first attribute, 

50% responded ‘FALSE’ for the second and fourth attribute, and 61.6% responded 

‘FALSE’ for the last attribute. It can be concluded in this section that the better that 

students performed in terms of the GPA obtained in the Introductory Computer 

Programming the better the conditional knowledge they possessed 

Table 4.10: Comparison of ‘Conditional Knowledge’ by respondent’s GPA 

Attr. 

No 

Conditional 

Knowledge 

Attribute 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True 

(T)/ 

False 

(F) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I learn best 

when I know 

something 

about the 

topic. 

T 15 34.09 42 75.00 31 77.50 21 87.50 

F 29 65.91 14 25.00 9 22.50 3 12.50 

2 I use 

different 

learning 

strategies 

depending on 

the situation. 

T 22 50.00 49 87.50 35 87.50 24 100.0

0 

F 22 50.00 7 12.50 5 12.50 0 0.00 

3 I can 

motivate 

myself to 

learn when I 

need to. 

T 30 68.18 49 87.50 36 90.00 24 100.0

0 

F 14 31.82 7 12.50 4 10.00 0 0.00 

4 I use my 

intellectual 

strengths to 

compensate 

for my 

weaknesses. 

T 22 50.00 44 78.57 40 100.0

0 

24 100.0

0 

F 22 50.00 12 21.43 0 0.00 0 0.00 

Univ
ers

ity
 of

 M
ala

ya



 

106 

 

5 I know when 

each strategy 

I use will be 

most 

effective. 

T 17 38.64 43 76.79 27 67.50 21 87.50 

F 27 61.36 13 23.21 13 32.50 3 12.50 

 

4.2.5.4 Planning (PL) 

 

Planning (also called forethought) is the process of thinking about and organizing 

the activities into a desired goal. Planning involves the creation and maintenance of a 

plan. As such, planning is a fundamental property of intelligent behavior. In this study, 

there are seven attributes that make up the planning knowledge. The first attribute 

concerns how the novice sets the pace while learning computer programming in order to 

have ample time.  The second attribute is about students’ realization of what they need 

to learn before beginning for any given task. The third attribute is about goal setting 

before the beginning any task.  The fourth attribute concerns knowing how far the 

student prepares materials before learning, the fifth attribute relates to the way students 

solve problems in learning computer programming, The sixth attribute pertains to the 

things that novices must do right before the beginning of a task (read instruction) and 

the last attribute concerns how students manage their time in order to accomplish goals.  

 

From Table 4.11, only 27% out of 44 respondents from the group with a GPA of 

between 2.0 – 2.49 responded ‘TRUE’ for the first attribute while the other 73% 

responded ‘FALSE’, for the second attribute, 35% responded ‘TRUE’, 65% responded 

‘FALSE’. Out of 44 respondents from this group 32% responded ‘TRUE’ for the third 

attribute and the other 68% responded FALSE, 41% responded ‘TRUE’ and 59% 

responded ‘FALSE’ for the fourth attribute. In addition, 47% responded ‘TRUE’ and 53 

responded ‘FALSE’ for the fifth attribute; 34% out of 44 respondents from the group 

responded ‘TRUE’ for the sixth attribute and 64% responded ‘FALSE’. While 20% 

from this group responded ‘TRUE’ for the last attribute and 80% responded ‘FALSE’; 

Univ
ers

ity
 of

 M
ala

ya



 

107 

 

64.3% out of 56 respondents from the group with GPA of between 2.5 and 2.99 

responded ‘TRUE’ for the first attribute while the other 35.7% responded ‘FALSE’.  

 

For the second attribute, 77% responded ‘TRUE’ and 23% responded ‘FALSE’. Out of 

56 respondents from this group 71% responded ‘TRUE’ for the third attribute and the 

other 28% responded FALSE, 80% responded ‘TRUE’ and 20% responded ‘FALSE’ 

for the fourth attribute; 82% responded ‘TRUE’ and 18% responded ‘FALSE’ for the 

fifth attribute; 62.5% out of 56 respondents from the group responded ‘TRUE’ for the 

sixth attribute and 37.5% responded ‘FALSE’. In addition, 48% from this group 

responded ‘TRUE’ for the last attribute and 52% responded ‘FALSE’;  82.5% out of 40 

respondents from the group with a GPA of between 3.0 and 3.49 responded ‘TRUE’ for 

the first attribute while the other 17.5% responded ‘FALSE’.  

 

For the second attribute, 77.5% responded ‘TRUE’, 22.5% responded ‘FALSE’. Out of 

40 respondents from this group the majority, 97.5%, responded ‘TRUE’ for the third 

attribute and only 2.5% responded FALSE, 85% responded ‘TRUE’ and 15% responded 

‘FALSE’ for the fourth attribute. For the fifth attribute, 90% responded ‘TRUE’ and 

10% responded ‘FALSE’; 95% out of 40 respondents from the group responded 

‘TRUE’ for the sixth attribute and 5% responded ‘FALSE’ . While 87.5% from this 

group responded ‘TRUE’ for the last attribute and 12.5% responded ‘FALSE’; 79.2% 

out of 24 respondents from the group with a GPA of between 3.5 and 4.00 responded 

‘TRUE’ for the first attribute while the other 20.8% responded ‘FALSE’.  

 

For the second attribute, 91.7% responded ‘TRUE’, 8.3% responded ‘FALSE’. Out of 

24 respondents from this group 95.8% responded ‘TRUE’ for the third attribute, and the 

other 4.2% responded FALSE, 91.7% responded ‘TRUE’ and 8.3% responded ‘FALSE’ 

Univ
ers

ity
 of

 M
ala

ya



 

108 

 

for the fourth attribute; 95.8% responded ‘TRUE’ and 4.2% responded ‘FALSE’ for the 

fifth attribute; 87.5% out of 24 respondents from the group responded ‘TRUE’ for the 

sixth attribute and 12.5% responded ‘FALSE’. While 75% from this group responded 

‘TRUE’ for the last attribute and 25% responded ‘FALSE’. It can be concluded that 

from the results obtained that the better the student performed in terms of the GPA 

obtained in Introductory Computer Programming the better the planning knowledge 

possessed by them 

 

Table 4.11: Comparison of ‘Planning Knowledge’ group respondent’s GPA 

Attr. 

No 

Planning 

Attribute 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True 

(T)/ 

False 

(F) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I pace 

myself 

while 

learning in 

order to 

have 

enough 

time. 

T 12 27.27 36 64.29 33 82.50 19 79.17 

F 32 72.73 20 35.71 7 17.50 5 20.83 

2 I think 

about what 

I really 

need to 

learn before 

I begin a 

task. 

T 15 34.09 43 76.79 31 77.50 22 91.67 

F 29 65.91 13 23.21 9 22.50 2 8.33 

3 I set 

specific 

goals before 

I begin a 

task. 

T 14 31.82 40 71.43 39 97.50 23 95.83 

F 30 68.18 16 28.57 1 2.50 1 4.17 

4 I ask myself 

questions 

about the 

material 

before I 

begin. 

T 18 40.91 45 80.36 34 85.00 22 91.67 

F 26 59.09 11 19.64 6 15.00 2 8.33 

5 I think of 

several 

ways to 

T 19 43.18 46 82.14 36 90.00 23 95.83 

F 25 56.82 10 17.86 4 10.00 1 4.17 

Univ
ers

ity
 of

 M
ala

ya



 

109 

 

solve a 

problem 

and choose 

the best 

one. 

6 I read 

instructions 

carefully 

before I 

begin a 

task. 

T 15 34.09 35 62.50 38 95.00 21 87.50 

F 29 65.91 21 37.50 2 5.00 3 12.50 

7 I organize 

my time to 

best 

accomplish 

my goals. 

T 9 20.45 27 48.21 35 87.50 18 75.00 

F 35 79.55 29 51.79 5 12.50 6 25.00 

 

4.2.5.5 Information Management Strategy (IMS) 

 

Table 4.12 depicts the distribution of respondents who responded concerning the 

attributes that relate to the information management strategies. The information 

management strategies skill refer to the skill of organizing information and the control 

over it, planning, structuring, elaborating and processing the information.  It is clearly 

revealed that the respondents responded ‘TRUE’  for all the attributes increasing from 

left to the right of the table, which indicates that those who have a good achievement in 

computer programming (CGPA) have positive attributes towards the skill of 

information management strategies.  

 

From Table 4.12, 61% out of 44 respondents from the group with a GPA of between 2.0 

and 2.99 responded ‘TRUE’ for the first attribute while the other 17% responded 

‘FALSE’, for the second attribute, 50% responded ‘TRUE’ and ‘FALSE’. Out of 44 

respondents from this group, 54% responded ‘TRUE’ for the third attribute and the 

other 45% responded FALSE, 52% responded ‘TRUE’ and 48% responded ‘FALSE’ 

for the fourth attribute. For the fifth attribute, 45% responded ‘TRUE’ and 55% 

responded ‘FALSE’, 71% out of 56 respondents from the group with a GPA of between 

Univ
ers

ity
 of

 M
ala

ya



 

110 

 

2.5 – 2.99 responded ‘TRUE’ for the first attribute while the other 29% responded 

‘FALSE’. For the second attribute, 68% responded ‘TRUE’, 32% responded ‘FALSE’. 

Out of 56 respondents from this group 82% responded ‘TRUE’ for the third attribute 

and the other 18% responded FALSE, 64% responded ‘TRUE’ and 36% responded 

‘FALSE’ for the fourth attribute.  

 

For the fifth attribute, 75% responded ‘TRUE’ and 25% responded ‘FALSE’, 87.5% out 

of 40 respondents from the group with a  GPA of between 3.0 and 3.49 responded 

‘TRUE’ for the first attribute while the other 12.5% responded ‘FALSE’. For the second 

attribute, the majority of 90% responded ‘TRUE’ and only 10% responded ‘FALSE’. 

Out of 40 respondents from this group, the majority, with 82.5%, responded ‘TRUE’ for 

the third attribute and only 17.5% responded FALSE, 85% responded ‘TRUE’ and 15% 

responded ‘FALSE’ for the fourth and fifth attribute. In addition, 87.5% out of 24 

respondents from the group with a GPA of between 3.5 and 4.00 responded ‘TRUE’ for 

the first attribute while the other 12.5% responded ‘FALSE’.  

 

For the second attribute, 91.7% responded ‘TRUE’ and 8.3% responded ‘FALSE’. Out 

of 24 respondents from this group, 91.7% responded ‘TRUE’ for the third attribute and 

the other 8.3% responded FALSE, 83.3% responded ‘TRUE’ and 16.7% responded 

‘FALSE’ for the fourth attribute. For the fifth attribute, 87.5% responded ‘TRUE’ and 

12.5% responded ‘FALSE’. The comparison of the other attributes in IMS for the 

respondents is provided in Table 4.12.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

111 

 

Table 4.12: Comparison of ‘Information Management Strategies’ group by 

respondent’s GPA 

Attr. 

No 

Information 

Management 

Strategies 

Attribute 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True/ 

False 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I slow down 

when I 

encounter 

important 

information. 

T 27 61.36 40 71.43 35 87.50 21 87.50 

F 17 38.64 16 28.57 5 12.50 3 12.50 

2 I consciously 

focus my 

attention on 

important 

information. 

T 22 50.00 38 67.86 36 90.00 22 91.67 

F 22 50.00 18 32.14 4 10.00 2 8.33 

3 I focus on the 

meaning and 

significance 

of new 

information. 

T 24 54.55 46 82.14 33 82.50 22 91.67 

F 20 45.45 10 17.86 7 17.50 2 8.33 

4 I create my 

own examples 

to make 

information 

more 

meaningful. 

T 23 52.27 36 64.29 34 85.00 20 83.33 

F 21 47.73 20 35.71 6 15.00 4 16.67 

5 I draw 

pictures or 

diagrams to 

help me 

understand 

while 

learning. 

T 20 45.45 42 75.00 34 85.00 21 87.50 

F 24 54.55 14 25.00 6 15.00 3 12.50 

6 I try to 

translate new 

information 

into my own 

words. 

T 23 52.27 45 80.36 37 92.50 22 91.67 

F 21 47.73 11 19.64 3 7.50 2 8.33 

7 I use the 

organizational 

structure of 

the text to 

help me learn 

T 22 50.00 40 71.43 34 85.00 23 95.83 

F 22 50.00 16 28.57 6 15.00 1 4.17 

8 I ask myself if 

what I’m 

reading is 

related to 

what I already 

know 

T 24 54.55 39 69.64 34 85.00 22 91.67 

F 20 45.45 17 30.36 6 15.00 2 8.33 

9 I try to break 

studying 

down into 

smaller steps. 

T 22 50.00 40 71.43 37 92.50 22 91.67 

F 22 50.00 16 28.57 3 7.50 2 8.33 

10 I focus on T 29 65.91 46 82.14 32 80.00 22 91.67 

Univ
ers

ity
 of

 M
ala

ya



 

112 

 

overall 

meaning 

rather than 

specifics. 

F 15 34.09 10 17.86 8 20.00 2 8.33 

 

4.2.5.6 Comprehension Monitoring (CM) 

 

Comprehension monitoring can be referred to as an assessment of the learning 

strategy one uses. There are seven sub-attributes-that made up the comprehension 

monitoring, as shown in Table 4.13. The first attribute is about the progress assessment 

monitoring of goal achievement, followed by attributes that relate to considering 

alternative solutions before attempting to solve the problem. The last three attributes are 

about analyzing the strategies used while studying and monitoring the knowledge 

obtained. From the left to the right view of Table 4.13, it can be seen that the higher the 

GPA of the respondents the better the comprehension monitoring skills possessed by 

them.  

 

Only 27% out of 44 respondents from the group with a GPA between 2.0 and 2.49 

responded ‘TRUE’ for the first attribute while the other 73% responded ‘FALSE’; for 

the second attribute, 39% responded ‘TRUE’ and 61% responded ‘FALSE’. Out of 44 

respondents from this group 37% responded ‘TRUE’ for the third attribute and the other 

63% responded FALSE; 41% responded ‘TRUE’ and 59% responded ‘FALSE’ for the 

fourth and fifth attribute; 32% of 44 respondents from the group responded ‘TRUE’ for 

the sixth attribute and 68% responded ‘FALSE’; and 16% from this group responded 

‘TRUE’ for the last attribute and 84% responded ‘FALSE’. From the group with a GPA 

of between 2.5 and 2.99, 59% out of 56 respondents responded ‘TRUE’ for the first 

attribute while the other 41% responded ‘FALSE’. For the second attribute, 68% 

responded ‘TRUE’, 32% responded ‘FALSE’.  

 

Univ
ers

ity
 of

 M
ala

ya



 

113 

 

Out of 56 respondents from this group, 80% responded ‘TRUE’ for the third attribute 

and the other 20% responded FALSE; 82.14% responded ‘TRUE’ and 18% responded 

‘FALSE’ for the fourth attribute; 66% responded ‘TRUE’ and 34% responded ‘FALSE’ 

for the fifth attribute; 66% out of 56 respondents from the group responded ‘TRUE’ for 

the sixth attribute and 34% responded ‘FALSE’; while 59% from this group responded 

‘TRUE’ for the last attribute and 41% responded ‘FALSE’.  From the group with a GPA 

of between 3.0 and 3.4987.5%, 40 respondents responded ‘TRUE’ for the first attribute 

while the other 12.5% responded ‘FALSE’. For the second attribute, 92.5% responded 

‘TRUE’ and 7.5% responded ‘FALSE’. Out of 40 respondents from this group 100% 

responded ‘TRUE’. In addition, 95% responded ‘TRUE’ and 5% responded ‘FALSE’ 

for both the fourth and fifth attribute; 90% out of 40 respondents from the group 

responded ‘TRUE’ for the sixth attribute and 10% responded ‘FALSE’; 85% from this 

group responded ‘TRUE’ for the last attribute and 15% responded ‘FALSE’; 83% out of 

24 respondents from the group with a GPA of between 3.5 and 4.00 responded ‘TRUE’ 

for the first attribute while the other 17% responded ‘FALSE’. For the second attribute, 

91.7% responded ‘TRUE’, 8.3% responded ‘FALSE’.  

Out of 24 respondents from this group 87.5% responded ‘TRUE’ for the third attribute 

and the other 12.5% responded FALSE, 83% responded ‘TRUE’ and 17% responded 

‘FALSE’ for the fourth and fifth attribute; 92% responded ‘TRUE’ and 8% responded 

‘FALSE’ for the sixth attribute and 12.5% responded ‘FALSE’; while 75% from this 

group responded ‘TRUE’ for the last attribute and 25% responded ‘FALSE’. It can be 

concluded that from the results obtained that the better students performed in terms of 

the GPA obtained in Introductory Computer Programming the better comprehension 

monitoring skill possessed by them. 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

114 

 

Table 4.13: Comparison of ‘Comprehension Monitoring’ by respondent’s GPA 

Attr. 

No 

Comprehension 

Monitoring 

Attribute 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True 

(T)/ 

False 

(F) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I ask myself 

periodically if I 

am meeting my 

goals. 

T 12 27.27 33 58.93 35 87.50 20 83.33 

F 32 72.73 23 41.07 5 12.50 4 16.67 

2 I consider 

several 

alternatives to a 

problem before 

I answer. 

T 17 38.64 38 67.86 37 92.50 22 91.67 

F 27 61.36 18 32.14 3 7.50 2 8.33 

3 I ask myself if I 

have 

considered all 

options when 

solving a 

problem. 

T 16 36.36 45 80.36 40 100.00 21 87.50 

F 28 63.64 11 19.64 0 0.00 3 12.50 

4 I periodically 

review to help 

me understand 

important 

relationships. 

T 18 40.91 46 82.14 38 95.00 20 83.33 

F 26 59.09 10 17.86 2 5.00 4 16.67 

5 I find myself 

analyzing the 

usefulness of 

strategies while 

I study. 

T 18 40.91 45 80.36 38 95.00 20 83.33 

F 26 59.09 11 19.64 2 5.00 4 16.67 

6 I find myself 

pausing 

regularly to 

check my 

comprehension. 

T 14 31.82 37 66.07 36 90.00 22 91.67 

F 30 68.18 19 33.93 4 10.00 2 8.33 

7 I ask myself 

questions about 

how well I am 

doing while 

learning 

something new. 

T 7 15.91 33 58.93 34 85.00 19 79.17 

F 37 84.09 23 41.07 6 15.00 5 20.83 

 

4.2.5.7 Debugging Strategies (DBG) 

 

Debugging is one of the important skills that need to be developed by novice 

programmers. This knowledge refers to the ability to identify errors and correct them. In 

this study, there are five attribute/statements that relate to the debugging strategies 

Univ
ers

ity
 of

 M
ala

ya



 

115 

 

attributes. The first attribute is about novices’ agreement or disagreement that they seek 

help from others when they do not understand something. The second attribute is about 

students’ agreement or disagreement that they change their strategies when they fail to 

understand something during learning. The third attribute is about re-evaluation of 

strategies and assumption when getting confused about something during learning 

programming. The fourth and fifth attribute relate to the repetitive process of something 

that is unclear and confused (e.g. re-read). 

 

Table 4.14: Comparison of ‘Debugging Strategies’ by respondent’s GPA 

Attr. 

No 

Debugging 

Strategies 

Attributes 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True/ 

False 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I ask others 

for help 

when I 

don’t 

understand 

something  

T 13 29.55 45 80.36 28 70.00 24 100.00 

F 31 70.45 11 19.64 12 30.00 0 0.00 

2 I change 

strategies 

when I fail 

to 

understand. 

T 17 38.64 48 85.71 34 85.00 21 87.50 

F 27 61.36 8 14.29 6 15.00 3 12.50 

3 I re-

evaluate my 

assumptions 

when I get 

confused. 

T 23 52.27 42 75.00 35 87.50 23 95.83 

F 21 47.73 14 25.00 5 12.50 1 4.17 

4 I stop and 

go back 

over new 

information 

that is not 

clear. 

T 20 45.45 49 87.50 32 80.00 20 83.33 

F 24 54.55 7 12.50 8 20.00 4 16.67 

5 I stop and 

reread when 

I get 

confused. 

T 12 27.27 44 78.57 31 77.50 21 87.50 

F 32 72.73 12 21.43 9 22.50 3 12.50 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

116 

 

Table 4.14 presents a comparison of the debugging strategies group by GPA. All 

100% of respondents from the group with GPA between 3.5 and 4, say ‘TRUE’ that 

they seek help from others when they do not understand about something during 

learning, 87.5% agree on the second attributes by responding ‘YES’ that they will 

change strategies when they fail to understand something during learning while the 

other 12.5 responded ‘FALSE’, 96% responded true for the third attribute and only 4% 

responded ‘FALSE’, 83% responded ‘TRUE’ and 17% responded ‘FALSE’ for the 

fourth attribute, and 87.5% responded ‘TRUE’ for the last attribute and 12.5% 

responded ‘FALSE’.  

 

For the group of respondents with a GPA between 3.00 and 3.49, 70% out of 40 

respondents responded ‘TRUE’ and 30% responded ‘FALSE’ for the first attribute, 85% 

responded ‘TRUE’ for the second attribute and 15% responded ‘FALSE’; 87.5% 

responded ‘TRUE’ that they re-evaluate the assumption when get confused while 12.5% 

responded ‘FALSE’, while 80% from this group of respondents responded ‘TRUE’ and 

20% disagreed by responding ‘FALSE’.  Out of 56 respondents from the group with a 

GPA of between 2.5 and 2.99, 80% responded ‘TRUE’ and 20% responded ‘FALSE’ to 

the first attribute, 86% responded ‘TRUE’ to the second attribute and 14% responded 

‘FALSE’, 75% responded ‘TRUE’ and 25% responded ‘FALSE’ to the third attribute, 

87.5% responded ‘TRUE’ and 12.5% responded ‘FALSE’ to the fourth attribute and 

79% responded  ‘TRUE’ to the last attribute and 21% responded ‘FALSE’.  For the 

group of respondents with a GPA of 2.0 – 2.49, 30% responded ‘TRUE’ that they seek 

help from others when they don’t understand something while 70% responded 

‘FALSE’, 86% agreed with the second attribute by responding ‘TRUE’. From analysis 

of the results obtained, it can be concluded that the better students performed in 

Univ
ers

ity
 of

 M
ala

ya



 

117 

 

Introductory Computer Programming the better the procedural knowledge possessed by 

them.  

 

4.2.5.8 Evaluation (EVL) 

 

Evaluation refers to appraising the final task and the efficiency in which the task 

was performed. This can include re-evaluating strategies that were used after the 

learning episode. In this study, there are six attributes that make up the evaluation 

attribute. The first attribute concerns the self-evaluation after the test. The second 

attribute is about assessment of the easiest way to execute things after finishing a task. 

The third attribute is about a student’s ability to see what they have learned in a 

conceptual view.  The fourth attribute concerns the student’s ability to assess how well 

the goal is accomplished.  The fifth attribute is about the student’s ability to assess all 

the available options after solving the problem. The last attribute is about self-

evaluation concerning how much one has learned once they have completed a given 

task. Table 4.15 presents the comparison of evaluation knowledge group by GPA. Out 

of 44 respondents from the group with a GPA of between 2.0 and 2.49,  34% responded 

‘TRUE’ and 66% responded ‘FALSE’ for the first attribute, 50% responded ‘TRUE’ 

and 50% responded ‘FALSE’ for the second attribute, 45% responded ‘TRUE’ and 55% 

responded ‘FALSE’ for the third attribute, 57% responded ‘TRUE’ and 43% responded 

‘FALSE’ for the fourth attribute, 43% responded ‘TRUE’ and 57% responded ‘FALSE’ 

for the fifth attribute, and, for the last attribute, 45% of the respondents from this group 

responded ‘TRUE’ and 56% responded ‘FALSE’.  

 

From the total of 56 respondents from the group with a GPA of between 2.5 and 2.99, 

34% responded ‘TRUE’ and 66% responded ‘FALSE’ for the first attribute and second 

attribute, 79% responded ‘TRUE’ and 21% responded ‘FALSE’ for the third  attribute, 

Univ
ers

ity
 of

 M
ala

ya



 

118 

 

70% responded ‘TRUE’ and 30% responded ‘FALSE’ for the fourth attribute, 62.5% 

responded ‘TRUE’ and 37.5% responded ‘FALSE’ for the fifth attribute, 43% 

responded ‘TRUE’, and, for the last attribute, 59% of the respondents from this group 

responded ‘TRUE’ and  41% responded ‘FALSE’. From the total of 40 respondents 

from the group with a GPA between 3.0 and 3.49, 65% responded ‘TRUE’ and 35% 

responded ‘FALSE’ for the first attribute, 82.5% responded ‘TRUE’ and 17.5% 

responded ‘FALSE’ for the second attribute, 80% responded ‘TRUE’ and 20% 

responded ‘FALSE’ for the third attribute, the majority with 90% responded ‘TRUE’ 

and only 10% responded ‘FALSE’ for the fourth attribute, 80% responded ‘TRUE’ and 

20% responded ‘FALSE’ for the fifth attribute,  and, for the last attribute, 55% of the 

respondents from this group responded ‘TRUE’ and  45% responded ‘FALSE’. Out of 

24 respondents from the group with a GPA of between 3.0 – 3.49. The majority of the 

respondents with 92% responded ‘TRUE’ and only 8% responded ‘FALSE’ for the first 

four attributes, 87.5% responded ‘TRUE’ and 12.5% responded ‘FALSE’ for the fifth 

and the last  attribute.  

 

Table 4.15: Comparison of ‘Evaluation’ by respondent’s GPA 

Attr. 

No 

Evaluation 

Attributes 

GPA 2.0 – 2.49 2.5 – 2.99 3.0 – 3.49 3.5 – 4.00 

True 

(T)/ 

False 

(F) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

Freq Perct 

(%) 

1 I know how 

well I did 

once I finish a 

test. 

T 15 34.09 37 66.07 26 65.00 22 91.67 

F 29 65.91 19 33.93 14 35.00 2 8.33 

2 I ask myself if 

there was an 

easier way to 

do things after 

I finish a task. 

T 22 50.00 37 66.07 33 82.50 22 91.67 

F 22 50.00 19 33.93 7 17.50 2 8.33 

3 I summarize 

what I’ve 

learned after 

finishing 

T 20 45.45 44 78.57 32 80.00 22 91.67 

F 24 54.55 12 21.43 8 20.00 2 8.33 

4 I ask myself T 25 56.82 39 69.64 36 90.00 22 91.67 

Univ
ers

ity
 of

 M
ala

ya



 

119 

 

how well I 

accomplished 

my goals once 

I’m finished  

F 19 43.18 17 30.36 4 10.00 2 8.33 

5 I ask myself if 

I have 

considered all 

options after I 

solve a 

problem 

T 19 43.18 35 62.50 32 80.00 21 87.50 

F 25 56.82 21 37.50 8 20.00 3 12.50 

6 I ask myself if 

I learned as 

much as I 

could have 

once I 

finished a 

task. 

T 20 45.45 33 58.93 22 55.00 21 87.50 

F 24 54.55 23 41.07 18 45.00 3 12.50 

 

 

4.2.6 Types of Strategy in Learning Programming 

 

Learning strategies refer to any behavior or thought that facilitates encoding in such 

a way that knowledge integration and retrieval are enhanced (Weinstein, 1988). These 

thoughts and behaviors constitute organized plans of action designed to achieve a 

certain goal (Weinstein & Mayer, 1983). Table 4.16 presents the results of the type of 

strategies used by novices to deal with the perceived difficulties in learning computer 

programming. As shown in table 4.20, ‘Help-seeking’ and ‘Critical-Thinking’ are the 

two predominant strategies chosen by respondents with 80% of the responded rate 

followed by ‘peer-learning’ with a frequency of 123 out of 164 respondents and a 

response percentage of 75%. In ‘Help-seeking’ type of strategy, students read a book to 

learn more about a topic but if they are confused about the topic they will re-read and 

ask help from the instructor or someone expert in that area. Whereas in ‘Critical 

Thinking’ strategy, students try to solve the problem and distinguish the differences 

about a topic to learn. In this study, ‘Peer learning’ and ‘Help-seeking’ are categorized 

as help-seeking approaches, as described by (Newman, 2002).  Apart from that, 60% of 

Univ
ers

ity
 of

 M
ala

ya



 

120 

 

respondents said that ‘Metacognition Regulation’ is a strategy used to deal with the 

difficulties in learning computer programming. 

 

Table 4.16: Types of strategy in learning programming 

Strategy 

types 

Sub Strategy Example Frequency Percentage 

(%) 

Rehearsal Rehearsal “Read the text again and go 

over notes.”  

“Print some slides I have not 

already printed – do 

vocabulary words and 

definitions.” 

33 21 

Meaningful Elaboration “Study over them and make 

easy to remember 

examples.”  

“Read more carefully in the 

textbook and relate material 

to my own 

experience/knowledge.” 

38 23 

 Organization “read chapter, review notes, 

make a chart of information”  

“Read over notes and draw 

some diagrams. Use some 

memory tricks and apply to 

my background knowledge.” 

74 45 

 Critical 

Thinking 

“read over them more to 

distinguish the differences 

among  

them.”  

“work problem-solving”  

Study the schedules of 

reinforcement.” 

131 80 

Self-

regulatory 

Metacognition 

Regulation 

“I definitely need to learn 

my stages of thinking and  

reasoning. I need to define 

Piaget and Vygotsky/ likes 

vs.  

differences.”  

“Read it more thoroughly 

and try to apply it to 

different situations (quiz 

myself)” 

98 60 

 Time and 

Study 

Environment 

“Try to go over more  

concepts more in my own 

time.”  

“Preview before class” 

74 45 

 Effort 

regulation 

“I will go over at home and 

study correlations and try to 

74 45 

Univ
ers

ity
 of

 M
ala

ya



 

121 

 

figure  

out problems and focus on 

group activity.”  

“I will read the chapters 

involved with the lecture 

and make note cards 

covering the main topics to 

organize the info.” 

Help 

Seeking 

Peer Learning “Read the book and discuss 

with peers.”  

“I will go home and read 

over the material more and 

if I need more help I will 

either ask another student or 

the professor.” 

123 75 

  Help Seeking “I will read more about it in 

the book and if I am still 

confused  I will ask for 

help.”  

“Reread the chapter, look at 

the specifics, ask instructor 

if any questions after re-

reading.” 

131 80 

 

In this type of strategy, students learn by applying topic learning to the different 

situations. In addition, 40% of respondents used a ‘Time and Study Environment’. 

Students who select this strategy usually use more time to learn more concepts in the 

topic to learn and have a preview before class. These two strategies, ‘Metacognition 

Regulation’ and ‘Time and study environment’ fall under Self-regulatory strategy. In 

contrast, 45% of respondents responded to the ‘Organization’ and ‘Effort Regulation’ 

strategy. In the ‘Organization’ type of strategy, students usually translate the 

information on the chapter or topic learned with the use of a chart or diagram to reflect 

their understanding and apply to their background knowledge. Furthermore, 23% of the 

respondents responded to ‘Elaboration’ as a learning strategy in which the student 

usually studies the topic to learn and makes it easy to remember examples (e.g. short 

notes) and tries to relate it to their experience or knowledge. Only 21% of the 

respondents responded to ‘Rehearsal’. In this type of strategy, the student makes notes 

and does vocabulary on words and definitions 

Univ
ers

ity
 of

 M
ala

ya



 

122 

 

4.2.7 Motivational Factors  

 

Table 4.17 shows the results of the motivating factors that will encourage students in 

utilizing support system in learning computer programming. The explanations of the 

results are given in the next paragraph. 

Table 4.17: Motivating Factors of using support environment 

Attributes Definition Frequency (%) 

Efficiency The degree to which users feel that the software 

assists them in learning (Kirakowski & Corbett, 

1988) (Kirakowski & Corbett, 1988) 

98 60 

Affect The degree to which users feel that the software 

assists them in learning (Kirakowski & Corbett, 

1988) ((Kirakowski & Corbett, 1988) 

115 70 

Effort The degree to which the software is self-

explanatory, as well as more specific things like 

the adequacy of help facilities and 

documentation (Kirakowski, 1998) 

98 60 

Goal 

Orientation 

Individuals primarily strive to enhance their 

knowledge, skills, and competence, referred to 

as a learning orientation, or generally attempt to 

demonstrate their abilities and expertise, referred 

to as a performance orientation 

98 60 

Helpfullness The degree to which the software is self-

explanatory, as well as more specific things like 

the adequacy of help facilities and 

documentation (Kirakowski, 1998) 

131 80 

Learnability Measures the speed and facility with which the 

user feels that they have been able to master the 

system, or to learn how to use new features 

when necessary (Kirakowski, 1998) 

115 70 

Control Measures the extent to which the user feels in 

control of the software, as opposed to being 

controlled by the software, when carrying out 

the task (Kirakowski, 1998) 

98 60 

Self-

regulation 

Integrated learning process, consisting of the 

development of a set of constructive behaviors 

that affect one’s learning. 

115 70 

User-

friendly 

Refers to anything that makes it easier for 

novices to use a computer. Menu-driven 

programs, for example, are considered more 

user-friendly than command-driven systems. 

Graphical user interfaces (GUIs) are also 

considered user-friendly. Online help systems 

are another feature of user-friendly programs. 

164 100 

 

Univ
ers

ity
 of

 M
ala

ya



 

123 

 

From the results obtained, all the respondents (100%) are motivated to use a support 

system if it provided user-friendly features that made it easy to use the system. On the 

other hand, 80% preferred to have a ‘Helpfulness’ feature to motivate them to use the 

system. This ‘Helpfulness’ attribute refers to the degree to which the software is self-

explanatory, as well as more specific things like the adequacy of help facilities and 

documentation.  Approximately, 70% of the respondents are motivated if the system is 

able to provide the ‘Affect’, ‘Learnability’ and ‘Self-Regulation’ kind of features. 

‘Affect’ refers to the degree to which users feel that the software assists them in 

learning. ‘Learnability’ can be defined as the speed and facility with which the user 

feels that they have been able to master the system, or to learn how to use new features 

when necessary, whereas ‘Self-Regulation’ refers to the Integrated learning process, 

consisting of the development of a set of constructive behaviors that affect one’s 

learning. While 60% of the respondents are motivated to use the system that provides 

the attributes ‘Efficiency’, ‘Effort’, ‘Goal Orientation’ and ‘Control’.  

 

4.3  Further Analysis  

 

Table 4.18 presents the multiple linear regression results. The results revealed that 

Declarative Knowledge (DL) and Information Management Strategy (IMS) are the two 

strong subcomponents of MAI that contribute significantly to the effect of a student’s 

learning success in an introductory computer programming course at the University at 

the 1% level. The Conditional Knowledge is another subcomponent of MAI that makes 

a significant contribution towards the learning success at the 5% level. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

124 

 

Table 4.18: Multiple linear regression result 

Attribute Coef. std t(155) p-value 

Intercept 1.435311 0.111444 12.879183 0.000000 

P 0.018408 0.030892 0.595889 0.552118 

DL 0.062143 0.021997 2.825044 0.005350 

CDL 0.053789 0.028191 1.907979 0.058243 

PL 0.019846 0.025259 0.785687 0.433250 

IMS 0.064113 0.017725 3.617059 0.000403 

CM 0.030684 0.025590 1.199069 0.232331 

DBG 0.025224 0.028729 0.877980 0.381313 

EVL 0.017236 0.022784 0.756505 0.450495 

 

4.4  Reliability Test of Survey Result  

 

The alpha coefficient for the eight items of metacognition knowledge (Planning, 

Declarative knowledge, Conditional knowledge, Information Management Strategies, 

Comprehension Monitoring, Debugging and Evaluation) (see Table 4.19) is .912 (see 

Table 4.20), suggesting that the items have a relatively high internal consistency.  (Note 

that a reliability coefficient of .70 or higher is considered  "acceptable" in most social 

science research situations (Santos, 1999)). 

 

 

Table 4.19: Item-Total Statistics 

Attr. Scale Mean 

if Item 

Deleted 

Scale 

Variance if 

Item  

Deleted 

Corrected 

Item-Total 

Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if 

Item 

Deleted 

P 33.43 102.824 .494 .266 .918 

DL 31.52 79.540 .804 .708 .893 

CDL 32.70 95.107 .679 .510 .905 

PL 31.79 78.083 .856 .777 .887 

IMS 29.07 83.872 .693 .523 .904 

CM 31.71 78.390 .834 .787 .890 

DBG 32.52 90.889 .755 .633 .899 

EVL 32.45 90.973 .691 .492 .903 

 

Table 4.20:Reliability Statistics 

Cronbach's Alpha Cronbach's Alpha Based on 

Standardized Items 

N of Items 

.912 .915 8 

 

Univ
ers

ity
 of

 M
ala

ya



 

125 

 

The column named ‘Cronbach's Alpha if Item Deleted’ presents the value that 

Cronbach's alpha would be if that particular item was deleted from the scale. We can see 

that removal of any question, except question P (Planning), would result in a lower 

Cronbach's alpha. Therefore, we would not want to remove these questions. Removal of 

question P (Planning) would lead to a small improvement in Cronbach's alpha, and we 

can also see that the "Corrected Item-Total Correlation" value was low (0.494) for this 

item. This might lead us to consider whether we should remove this item.  

 

4.5  Discussion of the Survey  

 

The empirical research work examined the relationship between metacognition and 

student achievement in the Introductory Computer Programming course. It was realized 

that metacognitive awareness has a significant effect on the successful learning of 

introductory computer programming at universities. The conducted experiment 

answered the question, ‘Do metacognitive skills have an effect on students’ learning 

success in introductory computer programming at university?’ From this research work, 

the findings confirmed that metacognition has a positive effect on students’ introductory 

programming learning success at university and the results indicate that most of MAI 

subcomponents make a positive contribution towards the learning success. The test also 

shows that Knowledge of Cognition (KC) and Regulation of Cognition (RC) have a 

strong positive correlation, given the conclusion that the way students plan, strategic 

learning, monitor learning, correct comprehension errors and evaluate their learning 

have an impact on what learners know about their conceptual knowledge and vice versa. 

This study proved that the higher the degree of metacognitive awareness possessed by 

novice programmers the greater the learning success in Introductory Computer 

Programming at university. From the study, it was also found that that two subscales or 

subcomponents of MAI that have been identified as strong contributors to learning 

Univ
ers

ity
 of

 M
ala

ya



 

126 

 

success are Declarative Knowledge (DL) and Information Management Strategy (IMS).  

As discussed in the literature, declarative knowledge is the factual knowledge the 

learner needs before being able to process or use critical thinking related to the topic.   

 

The finding of this empirical study is similar to the results of other studies (Camahalan, 

2006; Donker, De Boer, Kostons, van Ewijk, & Van der Werf, 2014; Young & Fry, 

2012; Zimmerman & Kitsantas, 2014). In his research, (Camahalan, 2006) states that 

“students with given of appropriate or favorable time or occasion to think 

metacognitively and clearly expressed their thought of metacognitive strategies are 

more likely to be affected positively in their academic achievement.” With the given 

positive relationship result between MAI score and GPA, MAI can be a tool used by 

lecturers to screen students that need assistance to improve their metacognitive skills in 

learning computer programming. This may become useful when lecturers have little 

opportunity to know their students individually, especially in large classes as well as 

online classes.  The summary of the survey can be drawn as follows: 

 The analysis of the result shows that students that performed well in 

Introductory Computer Programming (Indicated by the GPA) possess good 

declarative knowledge and vice versa. Students that are lack declarative 

knowledge have a problem in recognizing their intellectual strength and 

weaknesses, are unable to digest information that is important when studying, 

lack organizing information, and are weak at remembering information and 

knowledge understanding judgement. 

o Solution: Provide a system that can trigger reflection in novices in order 

to make them realize the benefits of general strategies and available 

resources, as well as the degree of attention that is necessary to succeed 

in the problem-solving process and the activity 

Univ
ers

ity
 of

 M
ala

ya



 

127 

 

 The analysis of the results show that students with good procedural knowledge 

show good achievement in Introductory Computer Programming as indicated by 

the GPA obtained. Students that lack procedural knowledge, conditional 

knowledge and information management strategies are not aware of what 

strategies can be used and under what circumstances specific processes or skills 

should transfer and are unable to process information efficiently. 

o Solution: Provide a system that can make them reflect on available 

strategies in solving problems. This activity would trigger and help them 

to think of the strategies that are relevant to the problem and apply them 

appropriately 

 Students that have the ability in comprehension monitoring and debugging 

strategies are performed well in Introductory Computer Programming compared 

to those who lack these two skills.  Students that lack comprehension monitoring 

and debugging strategies are unable to evaluate their understanding as they read 

and correct the problem and they are also unable to use appropriate strategies to 

correct comprehension and performance errors. 

o Solution: Provide a system that can reflect their understanding on the 

concept of the given problem as well as their confidence to solve the 

problem correctly by solving the given problem and present the answer.  

 In this study, the findings show that students that have the ability to evaluate 

their knowledge performed well in Introductory Computer Programming, as 

indicated by the GPA obtained.  Students that lack evaluation knowledge are 

unable to analyze their own performance and strategy effectiveness after a 

learning episode 

Univ
ers

ity
 of

 M
ala

ya



 

128 

 

o Solution: Provide a system that includes the activity of checking answers 

and provides a library of solutions that are similar to the problem given 

for students to refer to, and evaluate their understanding. 

 Overall, it can be concluded that those who possess all eight knowledge skills –

declarative knowledge, procedural knowledge, conditional knowledge, planning, 

debugging strategies, information management strategies, evaluation, 

comprehension monitoring – that make up the metacognitive awareness, as 

described by (Tobias & Everson, 1995), have the potential to succeed in 

computer programming as proven in this study. Thus, providing a system to 

stimulate this knowledge is considered to be a valuable effort in computer 

science education.  

  ‘Help-seeking’ and ‘Critical-Thinking’ are the two predominant types of 

strategy   used in dealing with the difficulty in learning programming. Emphasis 

will be given to the features to support these two strategies during the design and 

implementation of the proposed system. 

 The results show that the majority of the students are motivated to use the 

support system if it provides criteria like ‘user friendly’, ‘helpfulness’, ‘affect’, 

‘learnability’ and ‘self-regulation’ 

o Solution: Provide a system that offers the required features for novices in 

learning computer programming metacognitively.  

 

4.6  Interview Findings  

 

This section is divided into two sections. The first section presents the findings of 

interviews with expert lecturers with the main objective being to investigate 

metacognitive implementation and metacognition awareness in teaching the computer 

programming course at universities.  The second section discusses the findings of the 

Univ
ers

ity
 of

 M
ala

ya



 

129 

 

interviews with the novice programmers with the objective being to gain further 

understanding concerning the learning behavior of the novice programmer in learning 

computer programming, which would help in refining the support features of the 

proposed system. 

 

4.6.1 Interview Findings with Expert Lecturers 

 

Data from the interview sessions were transcribed verbatim and analyzed.  Each 

participant conducted a transcript review before it was analyzed. The results of the 

interviewing sessions are presented in Appendix E. 

 

4.6.2 Demographic Study 

 

Five expert lecturers from local universities participated in this study (3 males and 2 

females). All the selected respondents are aged between 35 and 55 years. Three of them 

are PhD holders and the others are master degree holders.  The participation was 

voluntary in nature and each interview session lasted around 45 minutes. “Expert 

lecturers” in this study refers to someone who has more than 5 years’ experience in 

teaching various types of programming language and paradigms, such as JAVA and 

structured programming with C++ or C, and who are actively involved in research 

projects and consultation regarding artificial intelligence, software engineering or 

parallel processing.  

 

4.6.3  Expert Lecturer Definition of Metacognition 

 

In the beginning of the interviewing session, all the expert lecturers were asked 

whether they had heard the term ‘metacognition’.  All the expert lecturers’ responded 

that they had never heard about ‘metacognition’. A piece of paper presenting a 

Univ
ers

ity
 of

 M
ala

ya



 

130 

 

definition of ‘metacognition’ was provided to each of them. The definition of 

‘Metacognition’ is presented as follows: 

“Metacognition is a form of critical thinking that enables understanding, analysis and 

control of one’s cognition, especially when engaged in teaching and learning. It can 

take many forms that include knowledge about when and how to use particular 

strategies for learning or for problem-solving. It is about ‘cognition about cognition’ or 

‘knowing about knowing”(Metcalfe & Shimamura, 1994; Schraw, 1998). 

After reading the definition of metacognition, they were asked again what they 

understand about the terms. One of them responded to “applying learning theory” while 

others answered that metacognition is “the way learners learn and develop knowledge”, 

“Awareness of Cognition” with only one respondent giving an almost complete answer, 

that is, “Awareness of Cognition and Monitoring of Cognition”. The results indicate that 

most of the participants responded to “Awareness of cognition” and “Monitoring 

Cognition”.  Hence, it is feasible to discuss the appropriate definition of metacognition 

with expert lecturers 

4.6.4 The role of Metacognition in teaching Computer Programming 

 

All participants agreed that metacognition is one important factor in teaching 

success. Respondent 1 who had almost 15 years teaching C++ programming said that 

“Lecturers must think hard, as it is important for effective learning”. While other 

responses were as follows, “It is important and lecturers must think about their own 

thinking”, “Lecturers must think hard, it is important for effective learning”, “Educators 

must understand their own teaching processes”, “Lecturers must be aware of their own 

thoughts, emotions, and behaviors” 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

131 

 

4.6.5 Metacognition application before teaching Computer Programming 

 

All participants responded to “Planning”.  The answers given by the respondents to 

the question are “Design and plan lessons”, “lesson-plans”, “Prepare for class the day 

before and arrive in the classroom a few minutes early”, “Analyze the teaching material 

and confirm the content of the lesson”, “write outline for discussion in classroom” and 

“make notes and review activities”. All the activities stated above are the activities that 

take place  

 

4.6.6 Metacognition application during teaching Computer Programming 

 

All participants responded that the ‘student’ is the important variable in teaching. 

The example of respondents were as follows, “prepared well before teaching, monitor 

myself during teaching to ensure message can be conveyed effectively to the student”, 

“listening to student and trying to answer any questions in simplest way that can be 

easily understood”, “interaction with student” “writing,” “discussing,”, “questioning and 

thinking with students”, “problem-solving”, “book and journal reading”, “spotting 

obstacles”, “mapping concept”, ”modeling”, “direct instruction”, “presenting”, 

“thinking aloud”, “reciprocal teaching”. 

 

4.6.7 Metacognition application after teaching Computer Programming 

 

The highest response from all participants was “Evaluating” or “Assessing”. The 

examples from the respondents were as follows “Prepares for the following session and 

tries to add further information on content that was not sufficiently clarified in the 

previous session”, “Evaluating the strength and weakness of one’s own teaching”, 

“Assessing/evaluating student learning by giving short quizzes”, “assessing teaching 

and planning for next round teaching” and “remains in the classroom for 15 or 30 

Univ
ers

ity
 of

 M
ala

ya



 

132 

 

minutes after class to answer questions from students”. One of the respondents indicated 

that he reflects by asking himself “How do I feel about my teaching? Am I satisfied 

with my teaching? Where do I feel satisfied or unsatisfied? Why do I have this feeling? 

Where and how do I need to revise my lesson plan for the next session?” Another 

respondent said that he views teaching in three stages, before entering the classroom the 

instructor must plan the lesson, during teaching the instructor must act and think, and, 

after teaching, the instructor must reflect.  

 

4.6.8  Summary of the Interview with Expert Lecturer 

 

All the respondents were aware of metacognition. The study found that expert 

lecturers acknowledge and recognize the role of metacognition in teaching and learning 

in computer programming. Fourteen metacognition strategies employed during teaching 

were identified. These include coaching, questioning, mapping concept, problem-

solving, reciprocal teaching, thinking aloud, reading books, modeling, journal, 

presenting, direct instruction, writing, asking to think and discussing.  An efficient 

lecturer must understand himself, must be aware of each student and know the content 

of the knowledge as well as the pedagogical approach applied during teaching; this is to 

ensure that the knowledge can be conveyed effectively. 

 

4.6.9 Interview Findings with Novice Programmers  

 

As mentioned in Chapter three, the main objective of this study is to get further 

understanding on novices learning behavior in computer programming learning in order 

to gain a better insight of the support features for the suggested system. The recorded 

results were transcribed verbatim and analyzed. The respondents who participated in the 

survey were chosen from the undergraduate students that took the programming subject. 

Univ
ers

ity
 of

 M
ala

ya



 

133 

 

Out of ten invitations by email, only five responded and agreed to participate in this 

study. All of the respondents share the same background in that they have no experience 

in programming. The interviewing session took place at FSKM, Universiti Teknologi 

MARA (UiTM) Shah Alam. Appendix F provides the responses given by the 

respondents. The questions that were asked during the session are as follows: 

1. Do you know your own strengths and weakness in learning 

programming? 

2. How do you motivate yourself to learn programming? 

3. What are the types of resource that you usually refer to? 

4. What are the techniques used to process information in learning 

programming? 

5. What kind of help seeking method do you use to help you understand 

while learning programming? 

6. Do you track the amount of time taken for studying programming 

individually?  How long will you spend for the revision?  

7. How do you evaluate your own knowledge performance and 

understanding? 

For the first question, most of the respondents did not recognize their own strengths 

and weaknesses in learning programming. Only respondent R4 was aware of his 

strengths and weaknesses. As explained in the literature study, what the learner knows 

and does not know is related to the declarative knowledge as well as the ‘Person 

Variables’. Falvell (1979) indicates that it is important for one to be able to process or 

use his/her critical thinking that is related to the learning topic.  

 

Question 2 is about how they are motivated to learn programming. R1, R2 and R5 all 

responded to ‘cooperative learning’, such as knowledge sharing with peers to make 

Univ
ers

ity
 of

 M
ala

ya



 

134 

 

them motivated to learn programming. R3 claimed that programming is a difficult 

subject and he is not motivated to learn programming at all. In contrast, R4 is self-

motivated and enjoys learning programming.  Question 3 is about the main resources of 

reference for learning programming. The Internet is the predominant resource of 

reference for all respondents to learn programming. Apart from the Internet, books and 

materials given by the instructor are also the resources used by novices as references.  

 

Question 4 relates to the information management strategies to process information. It 

also relates to the ‘Strategies Variable’, as described by Flavell (1979), the strategies 

applied to understanding the knowledge. Respondent R1 translates the information 

obtained into the words that can be understood by him, whereas R3 uses the notes 

summarization technique to process information.  Respondents R2 and R4 use the 

picture and diagram to represent the information or knowledge obtained whereas 

respondent R5 uses organizational structure to represent the information.  

 

Question 5 also relates to the Strategies Variable; R1 uses the social media as the 

medium to seek help while learning; to seek help from the social media like forums and 

Facebook; to seek the help of the instructor; seek the help of the instructor or someone 

that has a good knowledge of programming; study with friends and comparing answers 

from the quizzes, tests and assignments given by lecturer; find similar problem solutions 

from the Internet and by trial and error.  

 

Question 6 pertains to the time consumed for learning computer programming 

individually. Most of the respondents did not record the time taken to learning 

programming individually. Only R1 responded that he spent about 2- 4 hours for 

learning programming individually.   

Univ
ers

ity
 of

 M
ala

ya



 

135 

 

Question 7 is about how students evaluate their own knowledge performance and 

understanding. R1 responded that he often communicates with the lecturer in order to 

know his strengths and weaknesses. R2 familiarizes himself with exercises and seeking 

help from the instructor when confused. R3 and R4 have almost similar answers – check 

quizzes, tutorials and test papers and comparing with instructor or others. R5 uses the 

Internet to check the answers of tests, exam papers or quizzes for similar problems. 

 

4.6.10 Summary of Interviews with Novices  

 

Based on the above study, several conclusions can be drawn as follows: 

 Most of the respondents were motivated to learn programming if there is 

‘Cooperative learning’ such as peer-learning and discussion 

o Proposed feature: Provide a forum where the student can share their 

knowledge and thoughts.   

 There is no proper medium for students to make reference in learning 

programming and the Internet is the main resource for the novice programmer to 

make reference:  

o Proposed a support system for them to learn programming. 

 The various skills and strategies of process information show that respondents 

are aware of their metacognitive skills:  

o Proposed a support system that can explicitly stimulate their 

metacognitive thinking in learning programming. 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

136 

 

4.7  Summary  

 

Consistent with other researchers (Donker et al., 2014; Scheier, Carver, Clark, & Fiske, 

2014; Schraw & Dennison, 1994; Young & Fry, 2012), there was a significant 

correlation between regulation of the cognition factor and the knowledge of the 

cognition factor. Correlations were also found between the MAI and academic 

achievement. The regulation of the cognition factor of the MAI correlated with the GPA 

and the same is true for the knowledge of the cognition factor. The results of the survey 

helps researchers to identify the relevant activities to be embedded in the proposed 

support system. The summary of the survey section is stated as follows: 

 Students that lack declarative knowledge have a problem in recognizing their 

intellectual strength and weaknesses, unable to digest information that is 

important when studying, lack of organizing information, weak at remembering 

information and knowledge understanding judgement: 

o Solution: Provide a system that can trigger the reflection of novices in 

order to make them realize the benefits of general strategies, available 

resources as well as the degree of attention that is necessary to succeed in 

the problem-solving process and the activity 

 Students that lack procedural knowledge, conditional knowledge and 

information management strategies are not aware of what strategies should be 

used and under what circumstances specific processes or skills should be 

transferred and are unable to process information efficiently: 

o Solution: Provide a system that can make them reflect on the available 

strategies for solving problems. This activity would trigger and help 

them to think of the strategies that are relevant to the problem and apply 

them appropriately 

Univ
ers

ity
 of

 M
ala

ya



 

137 

 

 Students that lack comprehension monitoring and debugging strategies are 

unable to evaluate their understanding as they read and correct the problem, and 

they are also unable to use appropriate strategies to correct comprehension and 

performance errors: 

o Solution: Provide a system that can reflect their understanding on the 

concept of the given problem as well as their confidence to solve the 

problem correctly by solving the given problem and presenting the 

answer.  

 Students that lack evaluation knowledge are unable to analyze their own 

performance and strategy effectiveness after a learning episode: 

o Solution: Provide a system that includes the activity of checking answers 

and providing a library of solutions that are similar to the problem given 

for students to refer to, and evaluate their understanding. 

 Overall, it can be concluded that those who possess all eight knowledge skills – 

the declarative knowledge, procedural knowledge, conditional knowledge, 

planning, debugging strategies, information management strategies, evaluation, 

and comprehension monitoring – that make up the metacognitive awareness, as 

described by (Tobias & Everson, 1995), have the potential to succeed in 

computer programming, as proven in this study. Thus, providing a system to 

stimulate such knowledge is considered as a valuable effort in computer science 

education 

 Expert lecturers apply metacognition in teaching, as well as teaching 

metacognition skills to the students to improve their learning in computer 

programming. Expert lecturers recognize the importance of metacognition in 

their teaching and computer science education, Metacognition is a learning 

Univ
ers

ity
 of

 M
ala

ya



 

138 

 

success factor of computer programming that must be done before, during and 

after instruction: 

o Solution: Provide a system that includes metacognitive activities that are 

covered before, during and after the learning process   

Based on the findings from the interviews, three stages have been identified to 

present the metacognitive activities within the MSSNP, before, after and during the 

teaching and learning. As suggested by (Thiede, Griffin, Wiley, & Redford, 2009; 

Zimmerman, 1990), the moment in time where the system provides metacognitive 

instruction is an important consideration. The findings of the interviews with expert 

lecturer helps researchers to design the activities to support the development of 

metacognition skill that takes place before, during and after teaching and learning, as 

shown in Table 4.21. 

Table 4.21: Metacognitive stages and activities 

Stages Description  Activity Example 

Before teaching and 

learning activity 

Self-reflection that takes 

place before the learning 

process leads to the 

potential to put the learner 

in the correct condition or 

frame of mind to perform 

the task 

- Planning  

- Goal setting 

- Selecting strategies 

- Identify potential 

obstacles 

During Teaching and  

learning  

Self-reflection occurs 

during the learning process 

and can help the student in 

the self-monitoring 

process. 

- Actual cognitive 

activities 

- Spotting obstacles 

- Spotting problems 

in solving 

cognitive problem 

After Teaching and 

learning 

Self-reflection that 

happens after the learning 

process is a natural time 

for the student to reflect on 

their learning process and 

performance. 

- Evaluation 

- Judging efficiency 

of the plan and the 

execution of a plan 

(Assessing the 

teaching 

effectiveness) 

 

Based on the conducted survey and interviews, we propose five stages of the 

MSSNP, namely, Pre-task, Familiarization, Production, Evaluation and Post-Task. 

Univ
ers

ity
 of

 M
ala

ya



 

139 

 

These five stages of the MSSNP are derived from the identified elements in supporting 

learning metacognitively,  such as (should take place before, during and after learning 

process), the two components of knowledge that made up the metacognitive skills 

(Knowledge of Cognition and Regulation of Cognition) and the eight components that 

made up these two types of knowledge (Knowledge of Cognition and Regulation of 

Cognition)  named as procedural knowledge, declarative knowledge, conditional 

knowledge, planning, information management strategies, comprehension monitoring, 

debugging strategies and evaluation. The mapping summarization of all these three 

elements in producing the MSSNP stages is presented in Table 4.22 and the desired 

effects for the MSSNP are shown in Figure 4.5.  

Table 4.22: The mapping of time, components of metacognition, metacognition sub-

components with the proposed stages in the MSSNP 

Time Components of 

Metacognition 

Sub-components of 

metacognition 

Proposed stages in the 

MSSNP 

Pre- learning 

Activity 

(Self-reflection 

that takes place 

before the 

learning process 

provides the 

potential to put 

the learner in the 

correct condition 

or frame of mind 

to perform the 

task) 

Knowledge of 

Cognition 

(The reflective 

aspect of 

learning that 

corresponds to 

what novices 

know about 

themselves, 

strategies, and 

conditions 

under which 

strategies are 

most useful.  

Declarative, 

procedural, and 

conditional 

knowledge can 

be thought of as 

the building 

blocks of 

conceptual 

knowledge) 

Procedural 

Knowledge 

(How to perform 

task) 

Pre-Task 

The objective of this 

stage is to trigger 

reflection on the 

student knowledge 

monitoring progress. It 

focuses on the past 

problem and 

performance (low, 

average or high) of the 

student and comparing 

their estimation and 

judgment to their actual 

knowledge 

understanding. 

Students will be 

provided with suitable 

conditions for making 

them realize the 

benefits of the general 

strategies, available 

resources as well as the 

degree of attention that 

is necessary to succeed 

in the problem-solving 

process and the activity  

 Knowledge 

Univ
ers

ity
 of

 M
ala

ya



 

140 

 

monitoring state 

(KMA applied 

(From the Concept 

of Tobias and 

Everson) 

Declarative 

knowledge  

(Information that a 

person knows ) 

Familiarization 

The objective of this 

phase is to make novice 

programmers reflect on 

strategies as this 

activity helps them 

identify the strategies 

that are relevant and 

apply them 

appropriately. This 

phase focuses on 

metacognitive 

strategies related to the 

process during 

problem-solving 

Actual learning 

Activity 

(Cognitive  

Strategy 

Instruction 

Approach 

(CSI)) 

(Self-reflection 

occurs during 

the learning 

process and can 

help the student 

in the self-

monitoring 

process.) 

Conditional 

Knowledge 

(Knowledge found 

in long-term 

memory)  

Production 

The objective of this 

stage is to reflect the 

student’s understanding 

concerning the concept 

as well as their 

confidence in solving 

the problem correctly. 

 

Regulation of 

Cognition 

(The term 

‘Regulation of 

Cognition’ 

refers to the 

Control aspect 

of learning that 

corresponds to 

knowledge 

about the way 

students plan, 

implement 

strategize, 

monitor, correct 

comprehension 

errors, and 

evaluate their 

learning) 

Planning (goal 

setting, allocating 

resources) 

Information 

Management 

Strategies (This is 

related to the skills 

and strategy 

sequences used to 

process information 

more efficiently 

(e.g. organizing, 

elaborating, 

summarizing, 

selective focusing)) 

Comprehension 

Monitoring 

(Assessment one’s 

learning or strategy 

used) 

 

 

Evaluation 

This stage only 

involves the activity of 

checking the solution 

provided by the 

lecturer, which is used 

as a comparison in 

studying the student’s 

solution 
Post-Learning 

Activity 

(Self-reflection 

happens after the 

learning process 

is a natural time 

for the student to 

Debugging 

Strategies 

(Strategies used to 

correct 

comprehension and 

performance errors) 

Evaluation Post-Task 

Univ
ers

ity
 of

 M
ala

ya



 

141 

 

reflect on their 

learning process 

and 

performance.) 

(Analysis of 

performance and 

strategy 

effectiveness after a 

learning episode) 

The activities designed 

in this stage provide the 

opportunity to the 

student to review their 

most recent experience, 

and explore what 

happened during the 

problem-solving 

activity. The aim is to 

assist the student in 

identifying the ‘cause 

of the mistake’ 

that relates to the 

problem, the resources 

used and the issues 

relating to time 

management. 

 

 

 

Figure 4.6: Theoretical model and the proposed desired effects for the MSSNP 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

142 

 

CHAPTER 5:  DESIGN AND IMPLEMENTATION OF METACOGNITIVE 

SUPPORT SYSTEM FOR NOVICE PROGRAMMERS (MSSNP) 

 

 

The analysis of the survey and interviews that were conducted resulted in the actual 

requirements of a metacognitive learning environment for novice programmers in 

learning computer programming. The requirements were then translated into the 

architectural design of a Metacognitive Support System for Novice Programmers 

(MSSNP). Figure 5.1 illustrates the proposed architectural design of a metacognitive 

support system for learning computer programming activities. Semantic Web is the 

underlying technology for supporting all the designed activities in the prototype system.

  

 

Figure 5.1: Proposed architectural design of the MSSNP 

 

Univ
ers

ity
 of

 M
ala

ya



 

143 

 

 

Figure 5.2: The decomposition of process by segments in developing the MSSNP 

 

We have decomposed the architectural design of the MSSNP into three segments, 

named as  Segment A, Segment B and Segment C  (as illustrated in Figure 5.2)  in order 

to accomplish a clear understanding of the process involved in designing and 

constructing the MSSNP. The process of realizing the system starts with segment A 

where the process involves the MSSNP Ontology being designed and used as the 

backbone of the MSSNP system in order to process the content related to the system. 

The MSSNP Ontology is used to facilitate machine interpretability of content that is 

supported by XML, RDF and RDF D by providing additional vocabulary along with a 

formal semantic. The process involved in segment A is discussed further in section 5.2. 

Segment B involves the process of developing the triplestore data storage, also known 

as Semantic storage. The process involved in segment B is discussed in section 5.3.  The 

last segment in this research work is Segment C. In this stage, the model, system 

framework, flow process, and software architecture design take place. The discussion of 

the process involved in this segment is provided in section 5.4.   

Univ
ers

ity
 of

 M
ala

ya



 

144 

 

5.2 Segment A- Ontology Construction  

 

Ontological analysis clarifies the structure of knowledge. Given a domain, its 

ontology forms the heart of any system of knowledge representation for that domain. As 

discussed in Chapter 2, the Semantic Web technology is employed for the following 

reasons:  

 Shared understanding of metacognitive skills and facilitate their development 

 Organize activities in cognitive skill and metacognitive skill 

 Promises a powerful approach to satisfy the E-learning requirement (e.g. 

material  semantically annotated according to user preference)  

Without ontologies, or the conceptualizations that underlie knowledge, there cannot 

be a vocabulary for representing knowledge. Thus, the first step in devising an effective 

knowledge representation system and vocabulary, is to perform an effective ontological 

analysis of the field, or domain. Weak analyses lead to incoherent knowledge bases. 

Ontologies are used in an increasing range of applications, notably the Semantic Web, 

and essentially have become the preferred modeling tool. However, the design and 

maintenance of ontologies is a formidable process. In this study, Protégé is the software 

tool used for authoring the MSSNP.  This software is supported by a strong community 

of academic, corporate and government users to build a knowledge-based solution.  

Protégé fully supports the latest OWL 2 Web Ontology Language and RDF. In this 

study, we define seven steps to develop the MSSNP Ontology as follows:  

 

Step 1. Define Scope and boundary (Discussed in Section 5.2.1)   

Step 2. Reuse consideration (Discussed in Section 5.2.2) 

Step 3. Class design/enumerate terms (Discussed in Section 5.2.3) 

Step 4. Taxonomic identification (Discussed in Section 5.2.4) 

Step 5. Property identification (Discussed in Section 5.2.5) 

Univ
ers

ity
 of

 M
ala

ya



 

145 

 

Step 6. Data property identification (Discussed in Section 5.2.6) 

Step 7. Anomaly validity check (Discussed in Section 5.2.7) 

 

5.2.1  Define Scope and Boundary  

 

 

Figure 5.3: The MSSNP Conceptual Stages 

 

Defining the scope of the ontology gives clear boundaries in respect of what should 

and should not be included in the Ontology. The scope will also determine the 

granularity of the ontology. One of the ways of determining the scope of the ontology is 

by sketching a list of questions, competency questions (Grüninger & Fox, 1995) 

concerning how to achieve its objectives. Later, the litmus test of using these questions 

will be used to determine whether the information depicted in the ontology is sufficient 

to correct the responses to these questions. Is a very specific representation of an answer 

needed. These competency questions do not need to be comprehensive as they are just a 

sketch. Following the MSSNP framework (Figure 5.3), the definition of each state and 

its objective with the possible competency questions at each stage is provided as 

follows: 

Univ
ers

ity
 of

 M
ala

ya



 

146 

 

 Pre-Task Stage, also called the Reflective Stage, caters for the metacognitive 

aspect that is necessary in solving a new problem. To make students reflect on 

what they know and do not know, this activity takes place before the process of 

learning happens and pertains to self-reflection. The appropriate conditions will 

be presented to the student to make them realize the importance of using suitable 

and possible strategies, resources that are available for them to refer to as well as 

the degree of focus that is necessary to succeed in solving a problem. The main 

objective of this stage is for students to be triggered by their own reflection in 

monitoring their knowledge. It focuses on the past experience in solving 

problems as well as the performance that is indicated by low, average or high. 

Students will be able to compare their estimation and judgment of their 

knowledge with the actual understanding through exposure to the following 

activities  

o Knowledge monitoring and performance comparison 

o Analysis of knowledge monitoring  

The competency questions that could possibly be derived from this stage are: 

o What is the student’s performance in learning? 

o What strategies should be used? 

o What are the appropriate resources to be used? 

o How should the student judge their own knowledge? 

o How difficult are the questions? 

 Familiarization stage is where students assess their understanding and strategy 

planning for problem-solving. During this stage, students are presented with a 

list of possible strategies for them to select and apply the most appropriate for 

solving the problem, alternatively they can compose the new strategies 

themselves. The primary objective of this stage is to make them reflect on the 

Univ
ers

ity
 of

 M
ala

ya



 

147 

 

strategies that may help them solve the problem. This activity emphasizes the 

metacognitive strategies that relate to the process of solving the problem. 

Students will be exposed to the activities that allow them to compare their own 

knowledge judgment with their actual knowledge and helps them to select the 

strategies that are provided to them to solve the problem. The possible 

competency questions that could be derived from this stage are: 

o What is the most suitable strategy to apply in solving the problem? 

o How can knowledge monitoring be measured? 

o How much time is needed for solving the problem? 

 Production stage is the stage for students to do self-assessment and problem 

comprehension. In this stage, students are required to solve the given problem by 

presenting the answer. The main objective of this stage is to reflect the students’ 

understanding concerning the concept as well as their confidence in solving the 

problem correctly. This activity relates to the actual assessment of student 

performance. The activities that take place during this stage are concentrate on 

translating the problem given into the pseudocode and monitoring the 

application of their planned strategies. The activities involved in this stage 

comprises of problem-solving, checking answer and quiz. The possible 

competency questions for this stage are as follows: 

o What is the correct answer for a particular problem? 

o How do you solve a problem? 

o How difficult is the problem? 

 Evaluation stage is the stage where students can evaluate their experience of 

past problem-solving. This stage only involves the activity of checking the 

solution provided by the lecturer, which is used as a comparison in studying the 

student’s solution. 

Univ
ers

ity
 of

 M
ala

ya



 

148 

 

 Post-Task stage takes place after the evaluation stage the main objective of 

which is for the student to reflect on the problem solved. The opportunity will be 

given to the students to review their most recent experiences as well as explore 

things that happened during the activity of solving the problem. Students will be 

able to identify the ‘cause of the mistakes’ that occur during the problem-solving 

activity, the time spent and the resources used. The self-questioning that will 

help students during this stage for triggering their learning experience are as 

follows:  

o Did I use the available resources in solving the problem? 

o How did I spend the time in solving the problem? 

o What is the possible plan of action to be used? 

 

5.2.2 Reuse consideration 

 

Ontology re-use is an agreed upon goal in ontology engineering. It reduces the cost 

of creating ontologies, improves the quality of the resulting ontologies, and eases later 

interaction between systems. The re-use of ontologies and of knowledge collected in the 

context of ontology creation comes in many forms Ontologies may be referenced, 

imported, taken as a starting point for extensions and revisions, or taken as a templates 

for the development of similar ontologies in other domains or for other purposes. 

However In this research work, the ontology is created from scratch since there is a lack 

of ontology in E-learning supporting the metacognitive learning environment. 

Considering what someone else has contributed can be worthwhile, in that we can 

extend the existing sources of particular tasks and domains by refining them to suit a 

particular scenario. Reusing existing sources may be a requirement for a system that 

needs to communicate with other applications that have already committed to a specific 

vocabulary that is controlled by the organization, field or domain. 

Univ
ers

ity
 of

 M
ala

ya



 

149 

 

5.2.3 Class design/enumerate terms 

 

Class is one of the types of construct in OWL that allow us to represent knowledge 

about the domain.  As discussed in section 5.2.1, the competency question derived from 

the scope and the boundary helped us in enumerating terms that could be used for 

building the classes for the MSSNP ontology. It is beneficial to list down all the terms 

that we intend to use to explain things to a user. Taking into consideration the properties 

of the terms; for example, in this study, important metacognitive learning related terms 

will include the student, syllabus, performance, knowledge monitoring, strategy and so 

on. First and foremost, it is important to comprehensively list down all the related terms, 

concepts or classes. The next step is to develop the association, class hierarchy between 

classes and defined properties. Based on the conceptual stages of the MSSNP, the 

identification of possible terms for each stage is presented in Table 5.1.  

 

Table 5.1: Part of Classes used in the MSSNP Ontology  

MSSNP Stages  Class Name Class Description 

PRODUCTION AnswerExplanation Class to describe the answer 

PRE-TASK 

FAMILIARIZATION 

PRODUCTION 

EVALUATION 

POST-TASK 

Lecturer Class to represent a lecturer 

FAMILIARIZATION 

PRODUCTION 

EVALUATION 

POST-TASK 

LibraryProblem Class that annotates the library 

of problems  

PRE-TASK 

FAMILIARIZATION 

PRODUCTION 

EVALUATION 

POST-TASK 

MetacognitiveStrategy Class of Metacognitive 

Strategies 

PRODUCTION 

EVALUATION 

POST-TASK 

Performance Class of range of performance 

and indicator 

PRODUCTION 

EVALUATION 

Problem Class of problem and question 

PRODUCTION 

EVALUATION 

ProblemMultipleAnswer Class of multiple answers for a 

problem 

Univ
ers

ity
 of

 M
ala

ya



 

150 

 

PRODUCTION 

EVALUATION 

ProblemSolution Class of problem solutions 

PRE-TASK 

FAMILIARIZATION 

PRODUCTION 

EVALUATION 

POST-TASK 

ProgrammingStrategy Class to represent the strategy in 

learning programming 

PRE-TASK 

FAMILIARIZATION 

PRODUCTION 

EVALUATION 

POST-TASK 

Student Class for Student 

PRODUCTION 

EVALUATION 

POST-TASK 

StudentPerformance Class of student performance in 

the form of KMA 

PRODUCTION 

EVALUATION 

POST-TASK 

TimeInterval Class that is used to capture the 

Time used by student to 

complete an answer 

 

AnswerExplanation is a class that describes the answer for a particular problem. The 

Class occurs during the PRODUCTION stage and is located in the library of solutions 

used by the student for reference. StudentPerformance is the class that is used to capture 

student performance in the form of KMA Value. This is used during the 

PRODUCTION, EVALUATION and POST-TASK stages. The MetacognitiveStrategy 

class represents the metacognitive strategies used by the student to solve a given 

problem. This class occurs in all the MSSNP stages, that is, during the PRE-TASK, 

FAMILIARIZATION, PRODUCTION, EVALUATION and POST-TASK. This is 

similar for other classes such as LibraryProblem, Student and ProgrammingStrategy. 

LibraryProblem is a class that is used to annotate the library of problems. Whereas 

ProgrammingStrategy is a class that is used to represent the strategy in learning 

programming. The sub-concept of Programming strategies is presented in Figure 5.4 

and Figure 5.5.  

Univ
ers

ity
 of

 M
ala

ya



 

151 

 

 

Figure 5.4: Basic Programming Strategy 

 

 

Figure 5.5: Compound Data Type programming strategy 

 

 

The diagrams presented in Figure 5.4 and Figure 5.5 are translated into the MSSNP 

Ontology and written in Web Ontology language (OWL). The value of this built-in 

OWL property is a list of individuals that are the instances of the class. This enables a 

class to be described by exhaustively enumerating its instances. A class description of 

the "enumeration" kind is defined with the owl:oneOf property. An example of part of 

the enumeration applied in the MSSNP Ontology is as follows: 

<owl:Class> 

  <owl:oneOf rdf:parseType="operators"> 

    <owl:Thing rdf:about="#Assignment"/> 

    <owl:Thing rdf:about="#Arithmethic"/> 

    <owl:Thing rdf:about="#Increment"/> 

    <owl:Thing rdf:about="#Decrement"/> 

Univ
ers

ity
 of

 M
ala

ya



 

152 

 

    <owl:Thing rdf:about="#Relational"/> 

    <owl:Thing rdf:about="#Comparison"/> 

    <owl:Thing rdf:about="#Comma"/> 

    <owl:Thing rdf:about="#Bitwise"/> 

    <owl:Thing rdf:about="#ExplicitTypeCasting"/> 

    <owl:Thing rdf:about="#sizeof"/> 

    <owl:Thing rdf:about="#precedence"/> 

  </owl:oneOf> 

</owl:Class> 

 

5.2.4. Taxonomic identification 

 

Ontology implies a broader scope of information. People often use taxonomies as a 

tree. An ontology might encompass a number of taxonomies with each taxonomy 

organizing a subject in a particular way. In this study, we have employed the 

combination of top-down and bottom-up. Bottom-up and top-down are two opposite 

approaches to developing a hierarchical structure. In the top-down approach, the 

broadest terms are identified first and then narrower terms are selected to reach the 

desired level of specificity. While the bottom-up approach occurs when a list of terms 

have been derived from a corpus of content. In this study, we generalized and 

specialized them appropriately after specifying the key concepts. We started with the 

top-level approach, such as programming strategies, before connecting them to a 

middle-level concept, such as object oriented programming and drill down to 

polymorphism as the specialization chapters. According to (Noy & McGuinness, 2001), 

none of these approaches (A top-down, bottom-up, combination) is superior to any of 

the others. The technique to choose strongly depends on the personal view of a 

particular domain (Noy & McGuinness, 2001).  

Univ
ers

ity
 of

 M
ala

ya



 

153 

 

 

Figure 5.6: C++ Educational Ontology  

The easiest technique for many ontology developers is using the combination 

approach top-down and bottom-up, since the “in the middle” concept tends to be the 

more descriptive concept in the domain (Rosch, 1999). Figure 5.6 depicts the sketch of 

C++ educational ontology that is composed of the main learning topic (e.g. basic, 

standard library, control structure) and sub-learning topic (e.g. arrays, character 

sequences, classes).   The three different levels (top level, middle level and bottom 

level) of the MSSNP ontology are presented in Figure 5.7.  The terms were extracted 

from (Deitel, Deitel, & Nieto, 1994). Univ
ers

ity
 of

 M
ala

ya



 

154 

 

 

Figure 5.7: The three different hierarchies of the MSSNP Ontology 

 

5.2.5 Property identification 

 

In order to answer the competency questions, classes alone will not be sufficient to 

provide the information. Once the classes have been identified, the concept’s internal 

structure must be described. In step 3, we have created classes selected from the list of 

terms. Most of the training terms are likely to be properties of these classes. These terms 

include, for example, a property in OWL describes the relationship among the classes. 

There are two main types of property: object and data type. The datatype properties link 

individuals to data value, while object properties are associated with the relationship 

between individuals. The third property is the annotation property, which can be utilized 

to add information. 

Univ
ers

ity
 of

 M
ala

ya



 

155 

 

 

Figure 5.8: ‘hasAccount’ functional property 

There are two types of object properties involved in the MSSNP ontology – the 

functional properties and inverse properties. As illustrated in Figure 5.8, functional 

properties are those that are limited to one unique relationship to another individual for 

a specified individual, i.e. there cannot be two distinct values y1 and y2 such that the 

pairs (x,y1) and (x,y2) are both instances of this property. In this study, the functional 

properties are applied in which a student and a lecturer can have one account to access 

the MSSNP application. In Inverse Functional Properties – Properties that describe the 

individual/domain are the inverse of another individual/domain. In the MSSNP 

ontology, the domain and the range for the hasSolution property and its inverse property 

is the isSolution. As shown in Figure 5.0, the domain of hasSolution is the problem and 

the range of hasSolution is ProblemSolution, the domain and range for isSolutionOf are 

the domain and range for hasSolution swapped over. Table 5.2 provides the list of all 

the object properties that the MSSNP comprises.  

 

Figure 5.9: The domain and range for the ‘hasSolution’ property 

Univ
ers

ity
 of

 M
ala

ya



 

156 

 

Table 5.2: List of the MSSNP Object Property 

Object Property Property Description 
hasAccount Functional properties of domain Student and 

Lecturer with range UserAccount 
hasAttemptedProblem Properties of domain Student with range 

ProblemAttempt 
hasKnowledgeComparison Properties of domain Student and Lecturer 

with range UserAccount 
hasLibraryProblem Properties of domain Problem and Lecturer 

with range LibraryProblem 
hasMultiAnswer Properties of domain Student and Lecturer 

with range UserAccount 
hasPerformance Properties of domain Student with range 

Performance 
hasProblem Properties of domain ProblemAttempt with 

range Problem 
hasProblemRelation Properties of domain Problem with range 

ProblemRelation 
hasProgrammingSyllybus Properties of domain Problem with range 

ProblemStrategy 
hasProgrammingTutorial Properties of domain Problem  with range 

ProblemStrategy 
hasProvideSolution Properties of domain Lecturer with range 

ProblemSolution 
hasSolution Inverse Properties of isSolution and domain 

Problem a with range ProblemSolution 
hasStudentPerformance Properties of domain Student range 

StudentPerformance 
hasTrainingSession Properties of domain Student with range 

TimeInterval 
isMetacognitiveStrategiesof Properties of domain MetacognitiveStrategy 

with range Problem 
isSolutionof Inverse Properties of hasSolution and domain 

ProblemSolution a with range Problem 
hasKMA Properties of domain Student with range 

StudentKMA 

 

An object property is defined as an instance of the built-in OWL class 

owl:ObjectProperty. A datatype property is defined as an instance of the built-in OWL 

class owl:DatatypeProperty. Both owl:ObjectProperty and owl:DatatypeProperty are 

subclasses of the RDF class rdf:Property. Figure 5.10 shows part of the object properties 

created in the MSSNP Ontology. 

 

Univ
ers

ity
 of

 M
ala

ya



 

157 

 

 

Figure 5.10: Part of object properties in the MSSNP Ontology 

 

5.2.6 Data property identification 

 

Data properties connect the individual to rdf or XML schema datatype. They 

describe relationships between an individual and data value. OWL, the ontology 

structure of the MSSNP in this study has several data properties. OWL makes use of the 

RDF datatyping scheme, which provides a mechanism for referring to XML Schema 

datatypes (XML Schema Datatypes). Data values are instances of the RDF Schema 

class rdfs:Literal. Literals can be either plain (no datatype) or typed. Datatypes are 

instances of the class rdfs:Datatype. Figure 5.11 presents part of the MSSNP datatypes 

created using Protégé.  

 Univ
ers

ity
 of

 M
ala

ya



 

158 

 

 

Figure 5.11: Data properties in the MSSNP 

Table 5.3 presents part of the MSSNP datatypes that are used to describe and 

connecting each classes with data value.  

Table 5.3: Part of the MSSNP Datatype 

Data Property Name Data Property Description 

Has_AnswerURL Properties of domain AnswerExplanation with range 

String 
Has_EndTime Properties of domain TimeInterval with range 

dateTime 
Has_FullName Properties of domain Student and Lecturer with 

range String 
Has_ID Properties of domain Lecturer, ProblemAttempt, 

Student, TimeInterval, LibraryProblem, 

StudentPerformance  with range String 
Has_LibraryURL Properties of domain LibraryProblem with range 

String 
Has_Password Properties of domain UserAccount with range String 

Has_PerformanceLevelDecs Properties of domain Performance with range String 

Has_PerformanceLevelID Properties of domain Performance with range Int 

Has_Estimation Properties of domain ProblemAttempt with range Int 

Has_ProblemDesc Properties of domain Problem with range String 

Has_ProblemID Properties of domain ProblemMultipleAnswer, 

ProblemSolution, AnswerExplanation, Problem and 

LibraryProblem with range Int 

Univ
ers

ity
 of

 M
ala

ya



 

159 

 

Has_SessionID Properties of domain TimeInterval,ProblemAttempt 

with range dateTime 
Has_SolutionDesc Properties of domain ProblemSolution with range 

String 
Has_SolutionID Properties of domain 

ProblemSolution,ProblemMultipleAnswer, 

ProblemAttempt with range int 
Has_TotalPrediction Properties of domain StudentPerformance with range 

int 
Has_TotalTimeInterval Properties of domain StudentPerformance with range 

int 
Has_Username Properties of domain UserAccount with range string 

 

 

 

The Has_AnswerURL is a data property that is used to describe a domain named 

AnswerExplanation class with the string type of data range. The Has_ID   

 
<owl:DatatypeProperty 

rdf:about="&Ontology1373265476454;Has_SyllabusDesc"> 

<rdfs:domain rdf:resource="&Ontology1373265476454;Advance"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;Arrays"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;Basic"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;BasicInputOutput"/> 

<rdfs:domain 

rdf:resource="&Ontology1373265476454;CharacterSequences"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;Classess"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;CompoundDataType"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;Constant"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;ControlStructure"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;DataStructure"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;DynamicMemory"/> 

<rdfs:domain rdf:resource="&Ontology1373265476454;Exception"/> 

 

The script presented above is part of the data property in the MSSNP ontology. The  

rdfs:domain axiom in the script above is a rdf built-in property that is used to link a 

property to a class description. The rdfs:range is used in this study to either link the 

property to the class description or a data range, whereas the rdfs:inverseof is used to 

define the relation between two classes.  

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

160 

 

5.2.7 Anomaly validity check 

 

Of the many applications that are developed using Semantic Web technology, 

reasoning is one of the crucially important features. Descriptive Logics provide 

effective algorithms for reasoning for handling the OWL DL fragment. DL reasoner 

existed long before OWL. DL lacks some of the features required by Semantic Web 

applications (e.g. individuals reasoning, nominal support and querying capabilities). 

With these objectives, (Horrocks & Sattler, 2001) developed an expressive descriptive 

logic called Pellet, which is based on tableaux algorithms that support the OWL DL 

constructs that include owl:hasValue and owl:oneOf. Pellet provides complete 

algorithms reasoning for OWL DL. Figure 5.12 shows the main components of the 

Pellet reasoner.  

 

Univ
ers

ity
 of

 M
ala

ya



 

161 

 

 

 

Figure 5.12: Pellet reasoned architecture 

 

Pellet has the capability to do validation while the triples of the ontology are converted 

to axioms and assertions in the knowledge base. Pellet can also provide the correction 

capability for the ontology if there is missing type of triple by using some heuristics. It 

stores the classes’ axiom in the TBox component and keeps the individual assertions in 

the ABox component. Pellet is available under the license of MIT and was implemented 

in pure Java. The anomalies check is the final step of the construction process to check 

the inconsistency of the ontology design. Using a reasoner Pellet, the process took 0.756 

seconds to check the consistency concept. The overall MSSNP ontology is illustrated in 

Figure 10 using OWLViz. Figure 5.13 is the final look at the MSSNP Ontology. 

Univ
ers

ity
 of

 M
ala

ya



 

162 

 

 

 

Figure 5.13: The final look at the MSSNP Ontology 

 

5.3 Segment B- Triplestore data or Semantic Storage   

 

A triplestore is a purpose-built database for the storage and retrieval of triples, a 

triple being a data entity composed of subject-predicate-object, like "Bob is 35" or "Bob 

knows Fred". Much like a relational database, one stores information in a triplestore and 

retrieves it via a query language. Unlike a relational database, a triplestore is optimized 

for the storage and retrieval of triples. In addition to queries, triples can usually be 

imported/exported using Resource Description Framework (RDF) and other formats. 

The next section will further discuss the steps as well as the technology for the 

development of semantic storage for the MSSNP’s system. 

 

Univ
ers

ity
 of

 M
ala

ya



 

163 

 

5.3.1 ARC2 Framework 

 

The ARC2 library available in PHP was used for parsing through the OWL file 

created in the previous module. ARC2 is a flexible RDF system for Semantic Web and 

PHP. It provides SPARQL and easy RDF parsing for LAMP systems. The ARC2 

library was made available in the PHP module, which was then used to query the 

ontology using SPARQL. ARC uses object-oriented code for its components and 

methods, but the processed data structures consist of simple associative arrays, which 

lead to faster operations and less memory consumption. Apart from a few special 

formats returned by the SPARQL engine (e.g. from SELECT or INSERT queries), ARC 

is built around two core structures: triple sets and resource indexes. A single triple array 

contains the following keys: 

 s the subject value (a URI, Bnode ID, or Variable) 

 p the property URI (or a Variable) 

 the object value (a URI, Bnode ID, Literal, or Variable) 

 s_type "uri", "bnode", or "var" 

 o_type "uri", "bnode", "literal", or "var" 

 o_datatype a datatype URI 

 o_lang a language identifier, e.g. ("en-us") 

Variables are generated by ARC's Turtle parser, which was implemented for the 

SPARQL processor and therefore extends the Turtle spec with support for features, such 

as single quotes around literals, and variables. Table 5.4 presents the file components of 

ARC2.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

164 

 

Table 5.4: ARC2 File components 

Class Description 

ARC2_SPARQLScriptProcessor ARC2 SPARQLScript Processor 

 ARC2_Store ARC2 RDF Store 

 ARC2_StoreQueryHandler ARC2 RDF Store Query Handler 

 ARC2_StoreDumper ARC2 Store Dumper 

 ARC2_MemStore ARC2 Memory Store 

 ARC2_RemoteStore ARC2 Remote RDF Store 

 ARC2_StoreHelper ARC2 base class 

 ARC2_TestHandler ARC2 base class 

 ARC2_Reader ARC2 Web Client 

 ARC2_RDFExtractor ARC2 base class 

 ARC2_Resource ARC2 Resource object 

 ARC2_LegacyXMLParser ARC2 base class 

 ARC2_RDFParser ARC2 RDF Parser (generic) 

 ARC2_LegacyJSONSerializer ARC2 base class 

 ARC2_LegacyHTMLSerializer ARC2 base class 

 ARC2_LegacyXMLSerializer ARC2 base class 

 ARC2_RDFSerializer ARC2 RDF Serializer 

 

5.3.2 ARC2 Installation 

 

The WAMPServer is used as a Windows web development environment. It allows 

Web applications to be developed with Apache2 and PHP, while a MySQL database 

and PHPMyAdmin allows it to easily manage a database. For Semantic Web code 

development, the installation of PHP libraries is required. The arc2-starter-pack was 

downloaded from https://github.com/tuukka/arc2-starter-pack. Figure 5 shows the 

directories and files in the arc2-starter-pack zip file. 

 

5.3.3 MySQL Schema Installation 

 

ARC2 is a PHP 5.3 library for working with RDF. It also provides a MySQL-based 

triple store with SPARQL support. ARC2 is a Semantic Web database layered over 

MySQL that facilitates the storage of extensible metadata imported or entered into a 

Scalar book. ARC2 uses MySQL for persistency and provides an endpoint for the 

Univ
ers

ity
 of

 M
ala

ya

http://bordercloud.github.io/pear/doc/arc2-1.0.4/ARC2/ARC2_Store.html
http://bordercloud.github.io/pear/doc/arc2-1.0.4/ARC2/ARC2_MemStore.html
http://bordercloud.github.io/pear/doc/arc2-1.0.4/ARC2/ARC2_Reader.html
http://bordercloud.github.io/pear/doc/arc2-1.0.4/ARC2/ARC2_LegacyHTMLSerializer.html
http://bordercloud.github.io/pear/doc/arc2-1.0.4/ARC2/ARC2_LegacyXMLSerializer.html
http://bordercloud.github.io/pear/doc/arc2-1.0.4/ARC2/ARC2_RDFSerializer.html


 

165 

 

SPARQL query. The following is the script used to create the database to store the 

OWL.  

 

Create schema metacognitiveDB; 

Grant all on metacognitiveDB.* to 'programmer_user'@'%' identified by 

'********'; 

 

5.3.4 Loading OWL Data via PHP code 

 

There are two ways to load OWL data into the RDF local store. The first is through 

the command line and the second is through the PHP application load. In this present 

work, we loaded the created MSSNP OWL via PHP application code. Below is the PHP 

script used to load the metacognitive.owl into MySQL.  

 
<?php 

include_once("/config/ARC2.php"); 

$config = array( 

 /* database info */ 

 'db_name' => 'metacognitiveDB', 

 'db_user' => 'arc2test_user' , 

  'db_pwd' => ‘***********', 

 /* store information */ 

 'store_name' => 'metacognitive', 

 /* stop after 100 errors */ 

 'max_errors' => 100, 

); 

$store = ARC2::getStore($config); 

if (!$store->isSetUp()) { 

 $store->setUp(); 

} 

 

$parser = ARC2::getSemHTMLParser(); 

$parser->parse('metacognitive.owl'); 

$parser->extractRDF('rdfa'); 

 

$triples = $parser->getTriples(); 

$rdfxml = $parser->toRDFXML($triples); 

?> 

 

As the script above is executed, all tables to store triple-based data are created, as shown 

in Figure 5.14.Figure 5.15 presents the ARC SPARQL endpoint. 

 

Univ
ers

ity
 of

 M
ala

ya



 

166 

 

 
Figure 5.14: Triple-based data store using MySQL 

 

 

Figure 5.15: ARC SPARQL endpoint 

 

The script below is part of the data inserting process using a combination of PHP code 

and SPARQL script to register student information in order to allow the student to use 

the system.  

 
$fullname = $_POST['fullname']; 

$icno = $_POST['icno']; 

Univ
ers

ity
 of

 M
ala

ya



 

167 

 

$age = $_POST['age']; 

$gender = $_POST['gender']; 

$email = $_POST['email']; 

$username = $_POST['username']; 

$password = $_POST['password']; 

$level = $_POST['level']; 

 

$store->query('LOAD <http://localhost/arc2-starter-

pack/metacognitive.owl>'); 

if($store->query(" 

PREFIX dc: <http://uitm.edu/E-learning/elements/learning/user/> 

PREFIX fc: <http://uitm.edu/E-

learning/elements/learning/user/profile/> 

INSERT INTO <metacognitive.owl> 

{ 

dc:$icno fc:fullname '$fullname'. 

dc:$icno fc:icno '$icno'. 

dc:$icno fc:age '$age'. 

dc:$icno fc:gender '$gender'. 

dc:$icno fc:email '$email'. 

dc:$icno fc:username '$username'. 

dc:$icno fc:password '$password'. 

dc:$icno fc:level '$level'. 

}")) 

 

5.4  Segment C- Metacognitive Support Information for Novice Programmer 

 

The main principles behind the MSSNP are to allow students to perform computer 

programming activities with minimal interference, following a metacognitive approach 

to learning.  The MSSNP consists of three modules as discussed in the following 

sections. 

 

5.4.1 Model for knowledge monitoring 

 

The primary target of this framework is scaffolding the knowledge monitoring skill, 

in other words, to give the ability to assess one’s knowledge, or, by extension, one 

understands. Promoting awareness of the novice’s level in knowledge monitoring 

accuracy is the first step to foster metacognitive skill. Improvements in knowledge 

monitoring give the ability, which, in turn, triggers the selection attention and facilitates 

better allocation of cognitive resources. For measuring the knowledge (we called it 

KMA), we adapted the empirically validated instrument developed by Tobias & 

Univ
ers

ity
 of

 M
ala

ya



 

168 

 

Everson (Tobias & Everson, 1995) and made a minimum change to the empirical 

instrument by giving a little flexibility to the possibility that the student predicts that 

they would partially solve the problem or that they partially understood it.  Table 5.5 

presents the KMA with a score value for a, b, c, d, e, f, g, h, i. The KMA exhibits nine 

scores that reflect the relationship between a student’s prediction of their knowledge and 

their actual performance.  A score of 1 is given for the following situations, as follows: 

a. Learner demonstrated not correct answer and estimated will not solve it 

(Condition a) 

b. Learner demonstrated partially correct answer and estimated will solve partially 

(Condition e) 

c. Learner demonstrated incorrect answer and estimated will solve (Condition i) 

A score of -1 is given for the following situations: 

a. Learner demonstrated incorrect answer and estimated will solve it (Condition c) 

b. Learner demonstrated correct answer and estimated will not solve it (Condition 

g) 

A score of -0.5 is given to the following situations: 

a. Learner demonstrated not correct answer and estimated will solve it partially 

(Condition b)  

b. Learner demonstrated partially correct answer and estimated will not solve it 

(Condition d)  

c. Learner demonstrated partially correct answer and estimated will solve it 

(Condition f)  

d. Learner demonstrated correct answer and estimated will solve it partially 

(Condition h) (Appendix K presents an example of flow for partially correct 

answer)  

Univ
ers

ity
 of

 M
ala

ya



 

169 

 

Table 5.5: KMA Score Condition 

Prediction Unable to Solve It Able to Solve 

It partially 

Able to 

Solve It Actual Performance 

Provides Incorrect Answer a b c 

Provides partial correct answer d e f 

Provides Correct Answer g h i 

 

The mean of the KMA scores over all the problems solved, yields the current KMA 

state of the Student. Table 5.6  presents the classification of the KMA value, students 

with a KMA value between -1 and -0.25 are categorized as someone with a weakness 

for estimating correctly their knowledge level in the majority of situations. Whereas a 

student who is average in correctly estimating their knowledge level is indicated by a 

KMA value between -0.25 and 0.5. A high KMA (0.5 -1) shows that they are able to 

estimate their knowledge level correctly most of the time. 

Table 5.6: Classification of KMA 

KMA Value KMA 

Classification 

Interpretation 

-1 to -0.25 Low  Weakness at estimating knowledge level 

correctly in majority of situations  

-0.25 to 0.5 Average Average in estimating knowledge level 

correctly, but makes frequent slightly wrong 

or completely wrong estimation 

0.5 to 1 High Most of the time makes correct estimation 

 

5.4.2 Model for the evaluation of learning 

 

The objective of this model is to develop awareness of how novices behave during 

problem-solving, which resources to use, how long one spends on each task, and which 

decisions novices make in the process of solving programming problem. 

 

5.4.3 Model for the Selection of metacognitive strategies 

 

The focus here is the general metacognitive heuristics that are connected to learning 

programming and the task. The focus is on developing students’ awareness of three 

kinds of metacognitive strategy: strategies for monitoring understanding, strategies for 

Univ
ers

ity
 of

 M
ala

ya



 

170 

 

monitoring the problem-solving process and controlling errors, and strategies for 

revising. The activities that the MSSNP comprises are discussed in the following 

sections. 

 

5.5  Overview of activities in the MSSNP with the layout screen 

 

The elements of metacognitive learning instruction involve actively thinking about 

what the learner knows and does not know, and how learners can get better at knowing 

and applying what they know. These elements have been considered in designing the 

MSSNP system. Following the MSSNP conceptual stages (as shown in Figure 5.3), the 

MSSNP system consists of five main activities, namely pre-task, familiarization, 

production, evaluation and post-task. The interaction with the MSSNP follows a pre-

determined sequence of activities whose emphasis is either on metacognitive training or 

on problem-solving skills. The flow of activities and sequence is shown in Figure 5.16. 

Each of the activities, represented by a rectangular box, is clearly signaled to the 

student. In fact, every transition from one activity to the next is accompanied by a 

noticeable change of the user interface in order to offer only those functionalities 

relevant to the activity at hand. The rest of this chapter is organized around these 

activities. 

 

Univ
ers

ity
 of

 M
ala

ya



 

171 

 

 

Figure 5.16: The MSSNP activities sequence performed in one iteration 

During the ‘Own judgement reflection of Knowledge of previous problem’, also called 

the ‘Pre-Task’ Stage, student is presented with the screen, as shown in Figure 5.17. As 

discussed in section 5.2.1 (Defining Scope and Boundary), the necessary metacognitive 

aspect is covered in this stage to start the new problem. This stage always concerns the 

self-reflection that happens before the learning process. Pre-task activity happens before 

the student embarks on the learning process.  In this stage, the student is required to 

make comparisons between her judgment of her actual knowledge and her estimation of 

their knowledge. Figure 5.17 is the screen layout for pre-task activities.  

Univ
ers

ity
 of

 M
ala

ya



 

172 

 

 

 

Figure 5.17: Reflect / Pre-Task Screenshot 

Students are provided with suitable conditions for making them realize the benefits of 

general strategies, available resources as well as the degree of attention that is necessary 

to succeed in the problem-solving process and the activity. The objective of this stage is 

to trigger reflection on the student knowledge monitoring progress. It focuses on the 

past problems and performance (low, average or high) of students and compares their 

estimation and judgment to their actual knowledge understanding. In this stage, the 

student is exposed to the following activities:  

 Knowledge monitoring and performance comparison   

 Analysis of knowledge monitoring state, this is where the KMA is applied 

<?php 

 

$rectify_prob = $_POST['rectify_prob']; 

$solve_prob = $_POST['solve_prob']; 

$prob_level = $_POST['prob_level']; 

$prob_relationship = $_POST['prob_relationship']; 

$icno = $_POST['icno']; 

 

$store->query('LOAD <http://localhost/arc2-starter-

pack/metacognitive.owl>'); 

if($store->query(" 

PREFIX dc: <http://uitm.edu/E-learning/elements/learning/user/> 

PREFIX km: <http://uitm.edu/E-

learning/elements/learning/user/KnowledgeMonitoring/> 

INSERT INTO <metacognitive.owl> 

{ 

dc:$icno km:rectify_prob '$rectify_prob'. 

dc:$icno km:solve_prob '$solve_prob'. 

Univ
ers

ity
 of

 M
ala

ya



 

173 

 

dc:$icno km:prob_level '$prob_level’. 

dc:$icno km:prob_relationship '$prob_relationship '. 

dc:$icno km:icno '$icno'. 

 

}")) 

 

Script above show the how the information in Pre-Task activities as showed in Figure 

5.17 semantically stored in semantic storage.  

 

Figure 5.18: Familiarization screenshot 

Referring to the activity flowchart in Figure 5.16, the next activity concerns 

‘Knowledge Monitoring’, which refers to the ‘Familiarization’ stage in the MSSNP 

system.  During this task, a list of possible strategies is presented to the students who are 

required to select the appropriate strategies in order to solve a given problem. The 

strategies are divided into three types, specifically, monitoring strategies, understanding, 

controlling error strategies and revising strategies, as shown in Figure 5.18. The 

objective of this stage is for the student to reflect on the cognitive strategies that are 

available to solve the problem. The next activity is the ‘self-assess difficulty and 

knowledge understanding’, which is referred to as the ‘Production’ stage; the screenshot 

is presented in Figure 5.20. In this stage, the given task needs to be solved and answers 

Univ
ers

ity
 of

 M
ala

ya



 

174 

 

need to be presented by the student. The objective of this stage is to reflect the student’s 

understanding of the concept of programming as well as their confidence in solving the 

problem correctly. The student’s performance takes place during this stage.  

 

Figure 5.19: Production screenshot 

 

There are four buttons provided on the Production screen, as shown in Figure 5.19. The 

‘Done and Submit’ button that allows the student to submit the answer and solution. 

The ‘Library of Problems’ presents all past problems solved. For each problem in the 

library, it shows the problem description, the student’s answer, and the teacher’s 

detailed solution. The ‘Show Time Left’ button displays or hides a countdown time. For 

each problem, the students have a maximum time to try the problem out. There are three 

distinct ways to reach the end of the problem attempt, as follows: 

1. Gave up – student will choose this option if they want to give up at any point or 

if they think they cannot solve the problem in the time remaining. If they choose 

Univ
ers

ity
 of

 M
ala

ya



 

175 

 

this option, they will skip the “Checking Answer” screen and go straight to the 

“Quiz” screen. 

2. Time is up – is an automatic option that appears if the student reaches the 

maximum time. A prompt window appears and the button ‘Answer to this 

problem’ is automatically enabled. 

3. Finish – student successfully finishes the problem before the time is up, they 

then move to the Checking Answer activity. 

The ‘Answer to this problem’ button is the solution for the given answer. By default the 

button is disabled, it is only enabled if the student fails to provide an answer within a 

given time. Figure 5.20 is the screen that displays the answer for the given question.  

 
Figure 5.20: Answer to the question 

 

The student is presented with a quiz (e.g. as shown in Figure 5.21) whenever the answer 

chosen in the multiple choice (in the Check Answer activity) is either incorrect or 

correct, but the student acknowledges that it is different from their worked out answer.  

In ‘Checking Answer’ activity, whenever a student provides an answer to a problem 

Univ
ers

ity
 of

 M
ala

ya



 

176 

 

they are asked to check if their answer is correct, and relate it to one of the answers 

provided in a multiple-choice question.  

 

Figure 5.21: Quiz Screenshot 

There are two activities involved in ‘Reflection of the past problem solution’, that is, the 

‘Evaluation’ (the screenshot of this activity is presented in Figure 5.22). The 

‘Evaluation’ and ‘Post-Task’ activities take place after the problem is finished and the 

solution provided by the instructor is presented as the answer. 

 

Figure 5.22: Evaluation Dashboard 

 

Univ
ers

ity
 of

 M
ala

ya



 

177 

 

The ‘Show Me advice’ button allows the student to see the advice that is auto-generated 

based on pre-defined variables (see Table 5.4). The student will be able to see the auto-

generated advice concerning their knowledge monitoring assessment and time 

management during the problem solutions. In the ‘Post-Task’ activity, students are able 

to examine the activities in the Timeline Graph, read the feedback message and write a 

journal concerning the chosen and used strategies with the objective of reflecting their 

knowledge, as shown in Figure 5.23. We have designed graphical reification to convey 

the learner’s metacognition information in the form of reflectometers to trigger their 

knowledge monitoring accuracy and time management. 

 

 

Figure 5.23: Post-Task Screenshot 

 

The final stage in the MSSNP is called the Post-stage where students will be given the 

opportunity to review their most recent experiences as well as explore things that 

happened during the activity of solving the problem. A timeline graph will be provided 

during this stage for the learner to be able to see the time spent on each task given. The 

content of the feedback message that is shown in the screen depends on a combination 

Univ
ers

ity
 of

 M
ala

ya



 

178 

 

of factors based on the values of certain variables. The possible values and their 

meaning are presented in Table 5.7 

Table 5.7: Pre-defined variables evaluated in the feedback message 

Variable  Values  Description (Meaning) 

Answer Wrong Student checked the wrong option in the multiple-

choice. 

Gave up No answer was provided because the student gave up 

on the problem. 

Partially-

correct 

Learner thinks worked-out answer is correct, but 

could not find equivalent equations from multiple 

choices, i.e. worked out solution had mistakes. 

Correct Answer checked was similar to worked out solution 

Check-

Time 

Not Low Time checking the teacher’s solution was greater or 

equal to 1.5 minutes 

Low Time spent checking the teacher’s solution was less 

than 1.5 minutes. 

 

Difficulty Low Student rated the problem as “very easy” or “not 

difficult” prior to starting the problem. 

Average-

High 

Student rated the problem as “bit difficult”, “very 

difficult” or “challenging”. 

 

5.6  Summary 

 

Table 5.8 presents the comparison of features provided by the existing system with 

the MSSNP.  This chapter has presented the principles and the design of the MSSNP, 

from the MSSNP ontological design, the semantic storage, and models to the 

application design. The existing work that has similar objectives for providing support 

tools for novice programmers in learning programming has been discussed in section 

2.14.1, such as Gidget (Lee & Ko, 2011), CALMS (Thota & Whitfield, 2009), Jeliot 

(Moreno et al., 2004), JAVANIS (Oechsle & Schmitt, 2002) and ANNET  (Liffick 

B.W. & Aiken R., 1996). 

Table 5.8: Comparison of features between existing System and the MSSNP 

System Scaffolding Modeling Self-

Assessment 

Graphic 

Organizer 

Self-

Directed 

Gidget (Lee & Ko, 

2011) 

√   √ √ 

CALMS (Liffick B.W. 

& Aiken R., 1996) 

√ √    

Univ
ers

ity
 of

 M
ala

ya



 

179 

 

Jeliot 3 (Moreno et al., 

2004) 

√ √  √ √ 

JAVAVIS (Oechsle & 

Schmitt, 2002) 

√   √  

ANNET (Liffick B.W. 

& Aiken R., 1996) 

√ √   √ 

MSSNP √ √ √ √ √ 

 

However, these systems focus more on cognitive activities and elements. It is 

valuable if the instructional system could incorporate the metacognitive activities that 

focus on both the cognitive and social aspects of student development, including 

learning strategies and creation of supportive social environment for teaching and 

learning, as suggested by (Lin, 2001). As discussed in section 2.13, there are a few 

teaching techniques and self-directed strategies that have been commonly applied in 

classrooms that can be deliberately incorporated in the instructional learning 

environment, such as reflective prompts and questions, self-questioning, self-assessment 

and graphic organizers, as a pictorial way to organize information. To measure the 

effectiveness of the MSSNP, an experimental study is conducted with the aim being to 

investigate the effect of the interacting reflective activities introduced in the MSSNP as 

a tool for improving knowledge monitoring accuracy. A usability test using Software 

Usability Measurement Inventory (SUMI) is also conducted with the objective to 

identify the user’s perception of MSSNP in terms of the affect, efficiency, control, 

helpfulness and learnability. The implementation and the result for both studies 

(experimental testing and usability testing) are discussed further in the next chapter. 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

180 

 

CHAPTER 6:  EXPERIMENTAL STUDY AND EVALUATION STUDY OF THE 

MSSNP 

 

 

This chapter provides the evaluation of the metacognitive support environment for 

novice programmers, which has been discussed in the previous chapters. The first part 

of this chapter presents the experimental studies and puts forward the experimental 

hypotheses, together with the organization of the experimental. The evaluation 

specifically focuses on the usability test with the objective being to evaluate the affect, 

efficiency, control, helpfulness and the learnability of the MSSNP. 

 

6.1 The effect of the MSSNP  

 

In the previous chapter, we discussed the difficulties in designing the metacognitive 

support system environment for novice programmers, as it is hard to measure the 

metacognitive state and therefore establish whether the prototype system is effective 

and can achieve the objective. The MSSNP has been developed with the rationale that 

the metacognitive support environment has a positive impact on their learning gains. 

With metacognitive awareness, the student is encouraged to acknowledge their ability in 

knowledge monitoring, to choose appropriate metacognitive strategies as well as to 

evaluate their learning experience to improve the awareness of the student in the 

problem-solving process. 

 

6.1.1  Experimental Design 

 

The experimental design had a pre- and post-test and the group of subjects was 

divided into two, each associated with a different conditions. Similar to the idea for 

evaluation of Tobias and Everson (Tobias S. et al., 1999), the pre- and post-test were 

Univ
ers

ity
 of

 M
ala

ya



 

181 

 

designed to measure the basic knowledge concepts in programming and knowledge 

monitoring. Table 6.1 shows the two groups of subjects each with specific conditions.  

Table 6.1: The groups of subject and conditions 

Group Conditions 

Experimental Four weeks training on Introductory Computer 

Programming and interacted with the MSSNP to 

perform metacognitive activities throughout the 

training session 

Control Four weeks training on Introductory Computer 

Programming without interaction with the MSSNP 

 

These tests (pre- and post-test) were divided into two sections: the first section (see 

Appendix G for Pre-Test Question Part 1 and Appendix I for Pre-Test Question Part 1) 

and the second section test (see Appendix H for Pre-Test Part 2 and Appendix J for 

Post-Test Part 2). In the first section, 3 minutes was given to the students to complete 

the section in which they were asked to estimate their knowledge in terms of whether or 

not they would be able to solve the problem given. For each problem, they had to 

answer “yes” or “no” for the question: “Do you think you can translate the problem 

given into pseudocode?” The participants were immediately redirected to the second 

section after completing the first section. In the second section, they were required to 

translate the same problems into pseudocode. The participants were given 10 minutes 

for the pre-test and 15 minutes for the post-test to complete the second section. The 

post-test was designed to be more difficult than the pre-test, given that the subjects 

would have gained more practice in solving those kinds of problem during the training. 

Both tests (pre-test and post-test) had five questions in total and were devised with the 

aid of a computer programming instructor. The scoring system is given as follows: 2.0 

points for a correct answer, 1.0 point for a partially correct answer, 0.5 points for an 

incomplete answer and 0 for an incorrect answer. In this study, we are interested in 

comparing between the experimental and the control group and not in absolute measures 

of performance improvement in either group separately. 

Univ
ers

ity
 of

 M
ala

ya



 

182 

 

6.1.2  Participants  

 

The participants consisted of a total of 33 first year undergraduate students of 

Computer Science who were divided into two groups – experimental and control. From 

the experimental group, 33.33% were male 66.67 were female from a total of 15 

subjects. Whereas of the total of 18 in the control group, 27.78% were male and 72.22% 

were female. Their ages ranged between 21 and 25 years. The selected respondents for 

the “Motivation for computer programming problem-solving” item in the demographic 

form were distributed as follows: the majority of 75.75% selected fairly motivated, 

21.21% very motivated and 3.04 % chose extremely motivated. Thus, no one in this 

group selected the not at all motivated or a bit motivated options in the 5-point scale. 

Table 6.2 presents the distribution of respondents by group and gender. 

Table 6.2: Distribution of respondents by group 

Group Frequency  Percentage % 

Male Female Total Male (%) Female (%) Total (%) 

Experimental group 5 10 15 33.33 66.67 100 

Control group  5 13 18 27.78 72.22 100 

Total 33 100 

 

For familiarity with computer assisted learning tools, 36.36% categorized 

themselves as having average familiarity, 33.33% stated unfamiliar, 12.12% identified 

themselves as newcomers and the other 13.52 as beginners. 

 

6.1.3  Materials 

 

Appendix N provides a list of all materials used for the experiment. 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

183 

 

6.1.4  Preparation for data analysis 

 

An exploratory examination of the data with inferential analysis was conducted with 

the use of SPSS Software. 

Table 6.3: The results of KMA Pre-test, Pre-Test score, KMA Post-Test, Absolute 

Difference, Relative Difference and KMA difference of Control group 

R
es

p
o

n
d

en
ts

 

KMA-Pre-

Test 

Pre-Test 

Score  

KMA-Post-

Test 

Post-Test-

Score 

Absolute 

Difference 

(Post-Test –

Pre-Test 

Relative-

Difference 

(Diff-Score-

Test/Pre-

Test Score) 

KMA-

differe

nt 

(KMA 

Post-

Test-

KMA 

Pre-

Test) 

R1 0.6 7 0.6 7 0 0.00 0 

R2 0 8 0 8 0 0.00 0 

R3 -0.3 3 -0.3 3 0 0.00 0 

R4 0.6 10 0.6 10 0 0.00 0 

R5 0 8 0 8 0 0.00 0 

R6 0.4 8 0.4 8 0 0.00 0 

R7 -0.1 7 0 6 -1 -0.14 0.1 

R8 0.7 5 0.3 4 -1 -0.20 -0.4 

R9 0.7 9 0.3 9 0 0.00 -0.4 

R10 0.6 7 0.6 7 0 0.00 0 

R11 0.3 3 0.3 3 0 0.00 0 

R12 0.4 6 0.4 6 0 0.00 0 

R13 0.1 6 0.1 6 0 0.00 0 

R14 0.3 6 0.3 6 0 0.00 0 

R15 0.4 7 0.4 7 0 0.00 0 

R16 0.4 6 0.4 6 0 0.00 0 

R17 0.7 10 0.7 10 0 0.00 0 

R18 0.3 6 0.3 6 0 0.00 0 

 

Table 6.3 and Table 6.4 show the scores of the KMA Pre-Test, Pre-Test, KMA Post-

Test, Post-test, Absolute difference between Post-test score and Pre-Test score, Relative 

Difference and KMA different score of subjects in the control group and experimental 

group. The value of the Score of Absolute Difference was derived from the subtraction 

of the Post-test and Pre-Test score. Eighteen subjects participated in the control group 

and were named as R1, R2, R3, R4…R 18, and 15 subjects participated in the 

experimental group named as R1, R2, R3… R15. The post-test scores were obtained 

Univ
ers

ity
 of

 M
ala

ya



 

184 

 

with the aid of a computer programming instructor using the scoring system discussed 

in the previous section. The Absolute Difference value refers to the different value of 

the post-test score and pre-test score (Gumbel, 2012). The zero value of absolute 

difference shows that there is no difference in the performance of subjects before and 

after the training, the positive value shows that there is an improvement of knowledge 

monitoring performance after the training, whereas a negative value shows that the 

performance of the student is better before the training is given. The relative difference 

is defined as the mean absolute difference divided by the Pre-test score.  

 

Table 6.4: The results of the KMA Pre-test, Pre-Test score, KMA Post-Test, Absolute 

Difference, Relative Difference and KMA difference of the Experimental group 

R
es

p
o

n
d

e
n

t 

KMA 

Pre-

Test 

Pre-Test 

Score 

KMA 

Post-

Test 

Post-

Test-

Score 

Absolute 

Difference 

(Post-Test 

–Pre-Test) 

Relative-

Difference 

(Diff-Score-

Test/Pre-Test 

Score) 

KMA-

different 

(KMA 

Post-

Test-

KMA 

Pre-

Test) 

R1 -0.2 3 -0.6 1 -2 -0.67 -0.4 

R2 0 8 0.3 8 0 0.00 0.3 

R3 -0.3 3 -0.3 3 0 0.00 0 

R4 0.6 10 0.7 10 0 0.00 0.1 

R5 0 8 0.3 8 0 0.00 0.3 

R6 0.4 8 1 10 2 0.25 0.6 

R7 -0.1 7 -0.1 5 -2 -0.29 0 

R8 -0.4 5 0.3 7 2 0.40 0.7 

R9 0.1 4 0.1 4 0 0.00 0 

R10 -0.2 6 -0.2 6 0 0.00 0 

R11 0.3 3 0.7 5 2 0.67 0.4 

R12 0.4 6 0.7 10 4 0.67 0.3 

R13 0.1 6 0.7 9 3 0.50 0.6 

R14 0.3 6 0.6 7 1 0.17 0.3 

R15 0.1 6 0.4 6 0 0.00 0.3 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

185 

 

6.1.5  Data Normality 

 

In statistics, a normality test is used to determine if a dataset is well-modeled by a 

normal distribution and to compute how likely it is for a random variable underlying the 

dataset to be normally distributed (Gumbel, 2012). Normality tests that involved 

Kolmogorov-Smirnov and Shapiro-Wilk were computed using SPSS on the main 

variables (e.g. pre-test scores, post-test scores, KMA in pre-test, and KMA in post-test). 

These revealed that most of the main variables are normally distributed (see results in 

Table 6.5 and Table 6.6), with  the small sample size (experimental (N)=15 and 

control(N)=18),  

Table 6.5: Normality Test for control group data 

 Kolmogorov-Smirnov
a
 Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

KMAPreTestExp .130 15 .200
*
 .973 15 .895 

PreTestScoreExp .179 15 .200
*
 .930 15 .270 

KMAPostTest .161 15 .200
*
 .945 15 .456 

PostTestScore .103 15 .200
*
 .950 15 .519 

diffscoretestExp .255 15 .010 .908 15 .128 

relativedifferenceExp .240 15 .020 .907 15 .121 

KMAdifferentExp .191 15 .146 .936 15 .332 

*. This is a lower bound of the true significance. 

a. Lilliefors Significance Correction 

 

 

Table 6.5 presents the results of the normality test for the control group data, for the 

Kolmogorov-Smirnov and Shapiro-Wilk Test. The Shapiro-Wilk Test is more 

appropriate for small sample sizes (<50 samples). For this reason, we take the results of 

the Shapiro-Wilk test as our numerical means of assessing normality. From the table we 

can see that all variables (KMAPreTestExp, PreTestScoreExp, KMAPostTest, 

diffscoretestExp relativedifferenceExp and KMAdifferentExp) have a sig. value greater 

than 0.05, which indicates that the data are normally distributed. Table 6.6 presents the 

results of the normality test for the experimental group. The results show that most 

Univ
ers

ity
 of

 M
ala

ya



 

186 

 

variables are normally distributed except absolutedifference, relativedifference and 

KMAdifferent. For further investigation, the paired sample t-tests were performed to 

investigate the group samples and the repeated measures differences, respectively to 

understand whether there was difference in student before and after 4 weeks training on 

Introductory Computer Programming and interaction with MSSNP. 

Table 6.6: Normality Test for experimental group 

Tests of Normality 

 Kolmogorov-Smirnov
a
 Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

KMAPreTest .170 18 .180 .923 18 .145 

PreTestScore .179 18 .133 .938 18 .267 

KMAPostTest .222 18 .019 .933 18 .218 

PostTestScore .205 18 .045 .934 18 .228 

absolutedifference .523 18 .000 .373 18 .000 

relativedifference .521 18 .000 .386 18 .000 

KMAdifferent .504 18 .000 .463 18 .000 

a. Lilliefors Significance Correction 

 

Type II errors can indicate a failure to reject a false null hypothesis, or, in other words, 

fail to detect an effect that is present. In order to avoid the possibility of Type II errors 

occurring due to the use of these less sensitive non-parametric tests, the paired sample 

tests were performed to determine whether there is a significant difference between the 

average values of the KMA pre-test and the post-test for both groups – experimental and 

control group.   

 

Table 6.7: Paired Samples Statistics for Experimental group 

Paired Samples Statistics for Experimental group 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 KMAPreTestExp .073 15 .2865 .0740 

KMAPostTest .307 15 .4511 .1165 

 

In the paired sample statistics for the experimental group, as shown in Table 6.7, the 

mean for KMAPreTest is 0.073; the mean for KMAPostTest is 0.307; the standard 

deviation for the KMAPreTest is 0.2865 and for the KMAPostTest it is 0.4511. 

Univ
ers

ity
 of

 M
ala

ya



 

187 

 

Basically, on average, a small value of standard deviation in the statistical data is close 

to the mean of the dataset, while a larger deviation is further away from the mean. 

Standard deviation as a single number that can be difficult to interpret. Therefore, the 

paired samples statistical analysis was performed and presented in the following section. 

 

Table 6.8: Paired Samples Test for Experimental group 

 
Paired Differences t df Sig. 

(2-

taile

d) 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

KMAPreTestExp 

- KMAPostTest 

-

.2333 

.2895 .0747 -.3937 -.0730 -

3.122 

14 .008 

 

Table 6.8 contains information about the paired sample t-test for the experimental 

group. The paired sample t-test is performed to compare the means between the 

KMAPreTest and KMAPostTest, or in simple words, to compare the differences of the 

performance indicated by the KMA values before and after the training. The Significant 

value (0.008 < 0.05) in Table 6.8 shows that there is statistically significant difference 

between the KMAPreTest and KMAPostTest for the experimental group or in other 

words there is a difference in terms of student KMA before and after the training. In the 

paired Sample statistics for the control group, as shown in Table 6.9, the mean for the 

KMAPreTest is 0.339. The mean for the KMAPostTest is 0.3. The standard deviation 

for the KMAPreTest is 0.2865 and for the KMAPostTest it is 0.4511. 

 

Table 6.9: Paired Samples Statistics for Control group 

 Mean N Std. 

Deviation 

Std. Error 

Mean 

Pair 1 
KMAPreTest .339 18 .2973 .0701 

KMAPostTest .300 18 .2590 .0610 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

188 

 

The Significant value (0.233 >0.05) in Table 6.10 indicated that there is no statistically 

significant difference between the KMAPreTest and KMAPostTest for the control 

group, or, in other words, there is no difference in the student performance in KMA 

before and after the training.  

 

Table 6.10: Paired Samples Test for the Control group 

 Paired Differences t df Sig. 

(2-

tailed) 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% 

Confidence 

Interval of the 

Difference 

Lower Upper 

Pair 

1 

KMAPreTest - 

KMAPostTest 

.0389 .1335 .0315 -.0275 .1053 1.236 17 .233 

 

 

 

Table 6.11: Descriptive Statistics for KMA in pre- and post-test for the experimental  

group 

 KMAPreTestExp KMAPostTest 

N 
Valid 15 15 

Missing 0 0 

Mean .073 .307 

Median .100 .300 

Mode .1 .7 

Std. Deviation .2865 .4511 

Minimum -.4 -.6 

Maximum .6 1.0 

Sum 1.1 4.6 

Percentiles 

25 -.200 -.100 

50 .100 .300 

75 .300 .700 

 

The descriptive values of KMA in the pre- and post-test for both groups (experimental 

and control) are shown in Table 6.11 and Table 6.12. In the experimental group an 

important two times increase was observed in the upper quartile (KMA Pre-test 75th 

Univ
ers

ity
 of

 M
ala

ya



 

189 

 

percentile=0.3 and Post-test 75th percentile=0.7) (See Table 6.11), suggesting an 

improvement in this metacognitive skill for this group.  

 

Table 6.12:  Descriptive Statistics for KMA in the pre- and post-test for the control 

group 

 KMAPreTest KMAPostTest 

N 
Valid 18 18 

Missing 0 0 

Mean .339 .300 

Median .400 .300 

Mode .4 .3 

Std. Deviation .2973 .2590 

Minimum -.3 -.3 

Maximum .7 .7 

Sum 6.1 5.4 

Percentiles 

25 .075 .075 

40 .300 .300 

75 .600 .450 

 

The descriptive values of KMA in the pre- and post-test for the control group are shown 

in Table 6.12. In the control group, a decrease in the upper quartile (KMA Pre-test 75th 

percentile=0.6 and Post-test 75th percentile=0.450) was observed. The Pre-Test and the 

Post-Test of KMA frequency for the control group are provided in Table 6.13 and Table 

6.14. 

 

Table 6.13: Pre-Test KMA frequency for the control group 

 Frequency Percent Valid Percent Cumulative Percent 

Valid 

-.3 1 5.6 5.6 5.6 

-.1 1 5.6 5.6 11.1 

.0 2 11.1 11.1 22.2 

.1 1 5.6 5.6 27.8 

.3 3 16.7 16.7 44.4 

.4 4 22.2 22.2 66.7 

.6 3 16.7 16.7 83.3 

.7 3 16.7 16.7 100.0 

Total 18 100.0 100.0  

 

Univ
ers

ity
 of

 M
ala

ya



 

190 

 

Table 6.14: Post-Test KMA frequency for the control group 

 Frequency Percent Valid Percent Cumulative Percent 

Valid 

-.3 1 5.6 5.6 5.6 

.0 3 16.7 16.7 22.2 

.1 1 5.6 5.6 27.8 

.3 5 27.8 27.8 55.6 

.4 4 22.2 22.2 77.8 

.6 3 16.7 16.7 94.4 

.7 1 5.6 5.6 100.0 

Total 18 100.0 100.0  

 

6.1.6 Correlation Observation 

 

In order to find the predictor factor or infer causality, a range of correlations were 

computed. The results are presented in a matrix (see Table 6.15 and Table 6.16) such 

that, as can be seen, the correlations are replicated. Nevertheless, the table presents 

Spearman's correlation, its significance value and the sample size that the calculation 

was based on: 

 Correlation between the scores for the post-test and pre-test (see Table 6.15 and 

Table 6.16): we intend to investigate whether the pre-test scores were a good 

predictor of the post-test scores. The computed result show (Spearman's 

correlation coefficient, rs, for experimental group is 0.753 with bilateral p-

value=0.001 N=15 and Spearman's correlation coefficient, rs, for control group 

is 0.981 experimental group with bilateral p-value=0.00 and N=18). 

 Correlation between scores of Pre-Test and Pre-test KMA (see Table 6.15 and 

Table 6.16): (Tobias and Everson, 2002) indicates that the level of KMA is a 

good predictor for measuring performance. From the computed result, we found 

a positive correlation for both groups (Spearman's correlation coefficient, rs, for 

the experimental group is 0.412 with bilateral p-value=0128 and N= 15. 

Spearman's correlation coefficient, rs, for the control group is 0.348 

experimental group with bilateral p-value=0.158 and N=18). 

Univ
ers

ity
 of

 M
ala

ya



 

191 

 

 Correlation between the post-test score and post-test KMA (seeTable 6.15  and 

Table 6.16 ).A closer look at the results showed that a positive correlation exists 

for both the experimental and the control group (Spearman's correlation 

coefficient, rs, for the experimental group is 0.779 with bilateral p-value=0.001 

and N= 15. Spearman's correlation coefficient, rs, for the control group is 0.438 

experimental group with bilateral p-value=0.069 and N=18). 

 

Table 6.15: Positive Correlation Test with Spearman for Pre-test vs. Post-test scores of 

Experimental  group 

 

Correlation 

 KMAPreTes

tExp 

PreTestScor

eExp 

KMAPost

Test 

PostTestS

core 

Spearm

an's rho 

KMAPreT

est 

Correlat

ion 

Coeffici

ent 

1.000 .412 .845
**

 .611
*
 

Sig. (2-

tailed) 

. .128 .000 .015 

N 15 15 15 15 

PreTestSc

ore 

Correlat

ion 

Coeffici

ent 

.412 1.000 .410 .753
**

 

Sig. (2-

tailed) 

.128 . .129 .001 

N 15 15 15 15 

KMAPost

Test 

Correlat

ion 

Coeffici

ent 

.845
**

 .410 1.000 .779
**

 

Sig. (2-

tailed) 

.000 .129 . .001 

N 15 15 15 15 

PostTestS

core 

Correlat

ion 

Coeffici

ent 

.611
*
 .753

**
 .779

**
 1.000 

Sig. (2-

tailed) 

.015 .001 .001 . 

Univ
ers

ity
 of

 M
ala

ya



 

192 

 

N 15 15 15 15 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

Table 6.16: Positive Correlation Test with Spearman for Pre-test vs. Post-test scores of 

the Control group. 

Correlation 

 KMAPreT

est 

PreTestSc

ore 

KMAPostT

est 

PostTestSc

ore 

Spearma

n's rho 

KMAPreTe

st 

Correlati

on 

Coefficie

nt 

1.000 .348 .792
**

 .416 

Sig. (2-

tailed) 

. .158 .000 .086 

N 18 18 18 18 

PreTestSco

re 

Correlati

on 

Coefficie

nt 

.348 1.000 .364 .981
**

 

Sig. (2-

tailed) 

.158 . .137 .000 

N 18 18 18 18 

KMAPostT

est 

Correlati

on 

Coefficie

nt 

.792
**

 .364 1.000 .438 

Sig. (2-

tailed) 

.000 .137 . .069 

N 18 18 18 18 

PostTestSc

ore 

Correlati

on 

Coefficie

nt 

.416 .981
**

 .438 1.000 

Sig. (2-

tailed) 

.086 .000 .069 . 

N 18 18 18 18 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

193 

 

6.1.7  Difference between Pre-test and Post-Test 

   

Wilcoxon tests were employed to investigate the repeated measures of difference 

between the group. An examination of the findings in Table 6.17 shows that there is a 

significant difference between the pre-test and post-test academic achievement scores of 

the students in the experimental group (Z=-2.292, p=.000<.001). The sum of their 

negative ranks for the experimental group students’ academic achievement scores is 

7.50, while their sum of positive ranks is 58.50. Given the sum of ranks for the 

difference scores, the observed difference is in favor of positive ranks, or, in other 

words, the is a significant improvement of post-test scores as compared to the pre-test 

scores  in the experimental group . Hence, it could be said that the use of the 

metacognitive activities in learning computer programming significantly increased the 

academic achievement levels of the experimental group students. 

Hypothesis:  

 

H0: µ PostTest - PreTest = µAfter 

or 

H0: µ PostTest - PreTest = 0 

or 

H0 :µ D = 0 

Ha: PostTest - PreTest > µ After Ha: µ PostTest - PreTest > 0 Ha :µ D > 0 

 

Significant Level at 0.05 reject the null hypothesis if p-value ≤ 0.05. Since p-value = 

0.011 ≤ 0.05, we reject the null hypothesis. At the level 0.05 of significance, on the 

basis of the results obtained, there is enough evidence to conclude that students in the 

experimental group significantly improved after the computer programming training 

together with the MSSNP interaction.  

 

 

Table 6.17: Wilcoxon Test – Changes in the Pre-test and Post-test for the experimental 

group 

Ranks 

 N Mean Sum of 

Univ
ers

ity
 of

 M
ala

ya



 

194 

 

Rank Ranks 

KMAPostTest - 

KMAPreTestExp 

Negative 

Ranks 

1
a
 7.50 7.50 

Positive 

Ranks 

10
b
 5.85 58.50 

Ties 4
c
   

Total 15   

a. KMAPostTest < KMAPreTestExp 

b. KMAPostTest > KMAPreTestExp 

c. KMAPostTest = KMAPreTestExp 

Test Statistics
a
 

 KMAPostTest - 

KMAPreTestExp 

Z -2.292
b
 

Asymp. Sig. (2-tailed) .022 

a. Wilcoxon Signed Ranks Test 

b. Based on negative ranks. 
 

 

A Wilcoxon signed-rank test showed that four weeks training for both groups elicited a 

statistically significant change in the knowledge monitoring of the individuals (Z = -

2.292b, p = .022) that was significant at the 5% level. An examination of the findings in 

Table 6.17 shows that there is a significant difference between the pre-test and post-test 

scores of the experimental group with Z=-2.292, p=.022<.005 and that the p value is 

significant at the 5% level. The sum of the negative ranks for the experimental group is 

7.50, while the sum of the positive ranks is 58.50 

 

Table 6.18: Wilcoxon Test – Changes in the Pre-test and Post-test for the control group 

Ranks 

 N Mean 

Rank 

Sum of 

Ranks 

KMAPostTest - 

KMAPreTest 

Negative 

Ranks 

2
a
 2.50 5.00 

Positive 

Ranks 

1
b
 1.00 1.00 

Ties 15
c
   

Total 18   

a. KMAPostTest < KMAPreTest 

b. KMAPostTest > KMAPreTest 

Univ
ers

ity
 of

 M
ala

ya



 

195 

 

c. KMAPostTest = KMAPreTest 

 

Test Statistics
a
 

 KMAPostTest - 

KMAPreTest 

Z -1.089
b
 

Asymp. Sig. (2-tailed) .276 

a. Wilcoxon Signed Ranks Test 

b. Based on positive ranks. 
 

 

An examination result of Table 6.18 shows that there is no difference between the pre-

test and post-test scores of the experimental group with Z=-1.089, p=.0276>.005 at the 

5% level. The sum of the negative ranks of the control group is 2.5 and the sum of the 

positive ranks is 1. Given the sum of ranks for the difference in scores, the observed 

difference is in favor of the positive ranks, or, in other words, the post-test scores of the 

experimental group with the significant difference between the pre-test and post-test.  

Hence, it can be concluded from this study that the use of the online instruction in 

metacognitive strategies in learning the Introductory Computer Programming 

throughout the four weeks training show the increase of the knowledge monitoring 

performance of novice programmers. 

 

6.2 Usability Test  

 

Usability testing is a technique used in user-centered interaction design to evaluate a 

product by testing it on users. In the context definition of ISO 9241, usability testing is 

defined as “the extent to which a product can be used by specified users to achieve goals 

with effectiveness, efficiency and satisfaction in the specified context of use” 

(Veenendaal, 1998). The Software Usability Measurement Inventory (SUMI) is chosen 

as the method to measure user acceptance of the prototype system. The five attributes 

that make up the SUMI that are described by (Kirakowski & Corbett, 1993) as follows: 

 Affect –  The user's general emotional reaction to the software  

Univ
ers

ity
 of

 M
ala

ya



 

196 

 

 Efficiency – The degree to which users feel that the software assists them in 

their work   

 Helpfulness – The degree to which the software is self-explanatory, as well as 

more specific things like the adequacy of help facilities and documentation 

 Control – Measures the extent to which the user feels in control of the software, 

as opposed to being controlled by the software, when carrying out the task 

 Learnability – Measures the speed and facility with which the user feels that 

they have been able to master the system, or to learn how to use new features 

when necessary   

 

6.2.1 Respondents 

 

Ten respondents volunteered to take part in this study. Most of the respondents share 

the same background, that is, first to third year semester students from the computer 

science field of study.  They were randomly selected from the survey participants. 

(Nielsen, 2000) indicated that the appropriate size of user per session in usability test is 

5 unless there are highly disparate conditions and that it should be conducted with 

distinct groups of users.  Because metacognition is hard to measure and because each 

person has a different level of metacognitive and cognitive knowledge and skill, having 

10 users in a usability study per session would help us to gain an insight for future 

direction in designing the software solution. 

 

6.2.2 Usability testing procedure 

 

The usability testing of the MSSNP was done in the computer-lab room with each 

participant being provided with a computer. Ten users who were invited via email 

agreed to take part in the study. The email stated the details of the testing session 

Univ
ers

ity
 of

 M
ala

ya



 

197 

 

information (i.e. time, venue and the objective). The experiment was conducted and 

administered in the computer-lab room. A verbal instruction was given to the 

respondents at the beginning of the session to present the SUMI method and to help 

them understand the objective of the evaluation test. They were also required to become 

well acquainted with the MSSNP environment. The respondents were not given any 

instruction concerning how to operate the MSSNP. An average of five minutes was 

given to the participants to try out the system. They were assisted by the experimenters 

in respect of any difficulties they encountered with the questionnaire. At the end of the 

test session, the participants were asked to complete the questionnaire. The 

questionnaire form was divided into three sections consisting of general information, 

evaluation criteria (SUMI questions) and suggestions or comments (see Appendix M). 

The general information section provided the information about the background of the 

respondents in terms of gender, age and level of study (Diploma or Bachelor Degree), 

the second section focused on the evaluation criteria of the MSSNP based on the SUMI 

attributes (affect, efficiency, helpfulness, learnability) and the last section consisted of 

one open-ended question on suggestions or comments. The sessions lasted about 20 

minutes. 

 

6.2.3 Results 

 

The overall scores for the various SUMI attributes are presented in Table 1. In 

general, the results indicate that user satisfaction with the system is encouraging in that 

the rating score was better than average and within the desired range of 40 to 60. The 

“global” in the SUMI scale is used as the benchmark for determining the overall 

judgement of usability. As shown in Table 6.19, the global score is 60, which exceeds 

the benchmark score.  

 

Univ
ers

ity
 of

 M
ala

ya



 

198 

 

 

 

Table 6.19: SUMI scores for the MSSNP 

Attr. Global Efficiency Affect Control Helpfulness Learnability 

Mean 59 62 60 59 57 59 

 

Table 6.20 presents the individual score rated by 10 users for various SUMI 

subscales. Based on the usability ratings, as shown in Table 6.20, the lowest score was 

for the “Helpfulness” attribute, which is 56. This might be due to the lack of help 

facilities and documentation for the software. Overall, the results indicate the desired 

range of 40 to 60, which shows that users are satisfied with the MSSNP as a supporting 

tool for learning introductory computer programming. In order to improve the score 

rating, the design has to emphasize all the attributes of SUMI, especially the 

“Helpfulness” and “Learnability” attributes.  

Table 6.20: Scores of SUMI subscales per user 

User Global Efficiency Affect Control Helpfulness Learnability 

User 1 63 67 68 61 57 60 

User 2 55 54 58 58 52 51 

User 3 59 59 52 52 60 70 

User 4 61 68 61 65 49 61 

User 5 60 67 57 57 68 51 

User 6 58 51 65 49 67 57 

User 7 60 65 60 60 51 65 

User 8 64 70 56 67 65 60 

User 9 58 71 57 61 40 62 

User 10 58 51 65 59 59 57 

 

Besides SUMI, as part of the usability test, an open-ended question of comments or 

suggestions for further improvements to the MSSNP presents varied feedback from the 

participants: 

Univ
ers

ity
 of

 M
ala

ya



 

199 

 

 It would be nice if the MSSNP provides a forum or platform to enable students 

and lecturers to communicate and discuss the programming method, strategies 

and planning, etc. 

 I think the MSSNP is a good system to make learners aware and apply their 

metacognitive skills appropriately in learning computer programming. 

 From my point of view, the MSSNP can be improved in terms of its look and 

feel, such as the layout, color as well as the behavior of the dynamic elements, 

such as menu and buttons. 

 It would be better if the MSSNP can be integrated with the compiler or syntax 

error checking library so that students could post their programming code to 

check syntax error and the system could provide recommendations or advice 

concerning how to fix the problems.  

 A search engine is something that the MSSNP should consider as a help support 

feature.  

Out of ten participants, four participants gave suggestions for further improvement of 

the MSSNP in terms of the functionality and the design aspects. One participant felt that 

the MSSNP would help novices to be aware of their metacognitive skills and apply it 

appropriately in learning computer programming. 

 

6.3  Summary  

 

The experimental results show that the MSSNP made an overall positive difference 

in the student interaction approach with the problem-solving environment. We believe 

that the presence of metacognitive skill and awareness was one of the elements that 

contributed to the quality of students’ attitude towards the problem-solving activity in 

the MSSNP. The experimental group performed better than the control group in terms 

of giving more correct answers in the post-test support for this claim. They 

Univ
ers

ity
 of

 M
ala

ya



 

200 

 

(experimental group) also presented better time management in problem-solving tasks 

as well as gave up on fewer problems, which indicates the high level of motivation 

possessed by them in handling difficult problems. The conducted experiment was quite 

intricate to execute as it involved system development together with the different 

materials, activities as well as information analyzed from different sources. Concerning 

the design, we acknowledge that our experiment has some limitations. The small 

number of participants in the experiment is one of the strong limitations. Hence, to draw 

a more definite conclusion concerning the influence and the benefits of the proposed 

metacognitive activities, another experimental study with a greater number of 

participants and better control is necessary to overcome the limitations mentioned 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

201 

 

CHAPTER 7:  CONCLUSION 

 

 

This chapter presents a summary of the research design and interpretation of the 

important research findings in relation to the research objective. The key findings from 

the previous chapter are discussed. Several suggestions are provided for possible 

extensions of this study in the future. Lastly, conclusions are drawn to wrap up the 

study. 

 

7.1 Summary of the study 

 

This section presents an overview of the study. The summary restates the problems, 

provides a brief description of how the study was conducted, and presents the major 

findings in relation to the research objective. The research aims to identify factors in 

supporting metacognitive activities in learning programming. The literature study 

revealed that teaching and learning computer programming was difficult for both the 

learner and the instructor and was indicated as being a universal problem. In Chapter 

three, we discussed the findings of observational study on the pedagogical approach in 

teaching and learning computer programming at university. The findings of the survey 

showed that three types of learning approach are commonly used by the instructor to 

teach computer programming; cooperative learning, discussion and dialog, and 

repetition where there are positive attributes and negatives attributes exhibited among 

the students from each of the  pedagogical approaches. We also conducted the survey 

using the MAI instrument with the following aims: 

1. To identify the metacognitive effect towards the learning success of computer 

programming 

2. To identify the novice programmer learning behavior 

Univ
ers

ity
 of

 M
ala

ya



 

202 

 

3. To identify the motivating factor of utilizing the support system in learning 

computer programming 

To investigate this issue in depth, interview sessions were conducted with expert 

lecturers with the objective of exploring the metacognitive implementation and 

metacognition awareness in teaching computer programming courses at universities. To 

gain further understanding on learning behavior of the novice programmer, interview 

sessions were also conducted with students.  

 

Figure 7.1: The MSSNP Conceptual Stages 

As a result of the findings and the literature review, we identify five main stages to 

represent the metacognitive activities in the MSSNP in supporting novice programmers 

in learning computer programming, as shown in Figure 7.1. Each has its own objectives 

as follows: 

1. Pre-Task – The main objective of this stage is for student to be stimulated by 

their own reflection in monitoring their knowledge. It focuses on the past 

experience in solving  problems  as well as the performance. 

2. Familiarization – The main objective of this phase is for them to reflect on the 

strategies that may help them in problem-solving activities. 

Univ
ers

ity
 of

 M
ala

ya



 

203 

 

3. Production – The main objective of this stage is to reflect the student’s 

understanding concerning the concept as well as their confidence to solve the 

problem correctly. 

4. Evaluation – This stage only involves the activity of checking the solution 

provided by the lecturer, which is used as a comparison in studying the student’s 

solution. 

5. Post-Task – The opportunity will be given to the students to review their most 

recent experiences as well as exploring things that happened during the activity 

of solving the problem. 

To support all these activities were support with Semantic Web as the underlying 

technology of the developed prototype system. With this technology information that 

relates to both of the skills; cognitive skills and metacognitive skills were expressed in 

precise form that can be interpreted by machine and ready for software agents to 

process, share that would enable the application to interoperate on the semantic as well 

as syntactic level. The developed primary ontology and domain ontology are used as the 

enabler technology to support the cognitive and metacognitive activities of the proposed 

system.  The research findings are further discussed in the next section. 

 

7.2 Discussion of the findings 

 

This study employed a quantitative approach that combines observation and 

interview techniques for data collection. Observation and Interview are used to 

understand complex social processes and capture the essential aspects of a phenomenon 

from the perspective of the study’s participants. Table 7.1 presents the results of this 

research work based on the mapping of research questions, research objectives and 

research methods.  

 

Univ
ers

ity
 of

 M
ala

ya



 

204 

 

Table 7.1: Mapping of research questions, research objectives, methods and results 

#  Research 

Question (s)  

Research 

Objective (s)  

Research 

Method (s)  

Results  

1  How does 

metacognition 

affect the learning 

success of 

computer 

programming at 

university?  

To ascertain the 

effect of 

metacognition in 

learning computer 

programming 

o Questionnaire 

Survey with 

Undergradua

te Students 

o Interviews 

with Expert 

Lecturers  

o Interviews 

with Students 

o Metacognitive 

awareness has a 

significant 

effect on the 

successful 

learning of 

Introductory 

Computer 

Programming at 

universities 

o Expert Lecturers 

recognize the 

importance of 

metacognition 

in  teaching and 

learning 

Computer 

Programming  

2  What is the role of 

metacognition in 

teaching and 

learning of 

computer 

programming?  

3  What are the 

characteristics of 

the metacognitive 

instruction and 

activities to be 

incorporated in 

the support system 

in learning 

programming? 

Identification of 

the support 

features for the 

metacognitive 

learning 

environment 

 

o Questionnaire 

Survey with 

Undergradua

te Students  

o Interviews 

with Expert 

Lecturers 

o Interviews 

with Students 

o Self-assessment, 

o Knowledge 

monitoring 

o Self-questioning 

o Graphic organizer 

o Scaffolding 

o Self-directed 

learning 

4  How can a 

metacognitive 

support 

environment 

benefit novice 

programmers in 

learning computer 

programming?  

Development of 

support features  

as identified in 

(2) using 

Semantic Web 

technology  

 

o MSSNP 

Ontology 

Design 

o Development 

of  modules 

of MSSNP  

o An ontology 

design of 

MSSNP. 

o A prototype 

system called 

Metacognitive 

Support 

Environment 

for Novice 

Programmers  

Evaluation on the 

effectiveness of 

the system 

prototype and its 

usability  

o Evaluation on 

the Usability 

and 

Experimental 

Study of the 

system 

before and 

after 

treatment  

o Good Usability 

Evaluation  

o Satisfactory on 

the 

effectiveness of 

the prototype 

system 

 

Univ
ers

ity
 of

 M
ala

ya



 

205 

 

These findings are subject to research limitations. Recommendations regarding the 

findings are provided: 

1. How does metacognition affect the learning success of computer 

programming at university?  

This section presents the findings related to the first objective of this research 

work, Identification of the effect of metacognition in learning computer 

programming’. The findings from the literature review, survey and in-depth 

interviews revealed that metacognition is one of the factors that determine the 

success of the academic achievement of novices, especially in learning computer 

programming. Consistent with the studies done by (Bernard & Bachu, 2015; 

Cetin et al., 2014; Mercado & Romo, 2011) and a few other researchers, the 

findings support the claim that the higher the degree of metacognitive awareness 

possessed by novice programmers the greater the learning success in Computer 

Programming subject at university and vice versa. The findings show that 

students with low metacognitive awareness lack the eight components of 

metacognitive skills described by (Tobias S. et al., 1999), that is – Declarative 

knowledge, Procedural knowledge, Planning, Information Management 

Strategies, Comprehension Monitoring, Debugging Strategies and Evaluation. 

Declarative knowledge refers to the factual information and knowledge that 

novices know.  It refers to facts or information stored in the memory that are 

considered static in nature. Declarative Knowledge also referred to as 

conceptual, propositional or descriptive knowledge, describes things, events, or 

processes, their attributes, and their relation to each other. Whereby procedural 

knowledge refers to how novices perform some task, also known as an 

imperative knowledge. This knowledge is considered as knowledge related to 

Univ
ers

ity
 of

 M
ala

ya



 

206 

 

methods, procedures or operations of specific task, whereas procedural is also 

known as implicit knowledge or know-know.    

 

2. What is the role of metacognition in teaching and learning of computer 

programming?  

From the conducted interviews, the expert lecturers recognized that 

metacognition is one of the factors that play an important role in the learning 

success of computer programming learning at university that must happen 

before, during and after instruction. 

 

3. What are the characteristics or features of metacognitive instruction to be 

incorporated in support system in learning programming? 

This research question concerns the identification of the support features for a 

metacognitive learning environment to be incorporated in the proposed system 

as follows: 

 Scaffolding – is the support given during the learning process that is 

tailored to the interactive learning environment that must be embedded in 

the system  

 Self-questioning – is the element that encourages the process of asking 

and answering while learning  

 Self-directed learning – individuals select, manage, and assess their own 

learning activities 

 Self-assessment – the process of having the learners critically reflect 

upon, and record the progress on their own learning 

 Graphic Organizer – is used to organize information during learning 

Univ
ers

ity
 of

 M
ala

ya



 

207 

 

 Timing – learning reflection should happen before, during and after 

instruction  

4. How can a metacognitive support environment benefit novice programmers 

in learning computer programming?  

Because we intend to measure the metacognitive state of novice programmers, 

an experimental study was conducted to determine how effective the proposed 

support system is in improving novice programmers’ metacognitve awareness. 

The conducted pre-test (before treatment) and post-test (after treatment) show 

that there are significant changes in terms of the metacognitive behavior of 

learners measured by the KMA. The conducted usability test on the prototype 

system also shows an encouraging result. 

 

7.3  Limitations and future research directions  

 

The metacognitive activities proposed in this study are limited in that they only 

pertain to information about the state of knowledge monitoring of the learner. Other 

aspects of  metacognition have to be overlooked, such as the evaluation of learning, 

planning strategies and ability, etc. Another flaw is the fact that it does not take the 

motivational state of the student into consideration, as this is another important factor 

for reflective and effective learning. There is also a lack of the interactivity in the 

system in terms of the graphical reification used to represent information (plain 

graphical). It would be more interesting if the system could use flash animation for a 

more user interactive experience, and gather feedback from the students regarding the 

‘look and feel of the system’. Although the study shows that there is a positive 

difference in terms of the way students interact with the environment regarding 

problem-solving, with a small number of participants it may not really represent the real 

Univ
ers

ity
 of

 M
ala

ya



 

208 

 

situation. Besides forums, collaborative support with peers is something that should be 

considered for future improvement. 

 

7.4  Contribution of this Research 

 

This research benefits novice programmers in the sense that it provides a 

metacognitive environment in learning computer programming. The major contributions 

of this study can be accessed from four perspectives.  This research work provides: 

 Identification of Novice Programmer’s metacognition awareness towards the 

learning success in learning Introductory Computer Programming at University 

 Identification of the role of metacognition in the learning success of teaching 

and learning Computer Programming at University 

 Development of instructional design for the instruction of metacognition in 

problem-solving environments that include the activities that relate to the 

reflection to be performed before as well as after problem-solving attempts 

 Evaluation of a fully working system. The system implements the knowledge 

measurement assessment introduced by Tobias and Everson 

 

The main research question was: Does a metacognitive support environment help 

novices to improve their metacognition? With the implementation of metacognition 

activities in the MSSNP, it is expected that the interaction would encourage novice 

programmers to be more effective and have the potential to: 

 encourage students to be more aware in allocating the cognitive resources 

efficiently in  problem-solving activities in learning computer programming 

 encourage students to think of appropriate metacognitive strategies in solving 

problems 

 motivate students to use their metacognitive skills in solving problems 

Univ
ers

ity
 of

 M
ala

ya



 

209 

 

7.5  Future work  

 

A wide range of studies was explored during the course of this research; however, 

these studies were excluded from this dissertation because of the limitations in the 

length and scope of the thesis. Nevertheless, the benefits of such a literature survey 

became very apparent, particularly towards the end of this study. There are several 

points in terms of direction that could be explored due to the limitation of the MSSNP 

and the insights that were gained from the experiment conducted for further 

investigation. Thus, we recommend that the following points be explored in future 

research: 

 Improvement of metacognitive model and activities by taking into account the 

novice programmers’ mental model and some additional information that is 

relevant to metacognition could also be considered, such as strategies selected, 

the time spent for each activity, novice programmer motivation and provide 

some mechanism to transform this data into the metacognition information of an 

individual. 

 One of our intentions in this research work is to measure the metacognitive 

states of an individual, thus, including collaborative activities, such as 

comparison of knowledge and information of individuals could result in deeper 

reflection and give a greater observable effect of this study 

 Selective reflective activities that rely on the student’s metacognitive state would 

be beneficial and make it even more attractive because a more precise picture to 

represent the state of student level would mean a more comprehensive set of 

conditions that are possible to explore. For instance, the activity ‘Metacognitive 

Selection’ and the KMA of the student is low, therefore, it is beneficial to offer 

when the problem is difficult instead of always, as is currently the case. 

 

Univ
ers

ity
 of

 M
ala

ya



 

210 

 

7.6  Conclusion 

 

This research has demonstrated the significance of metacognition as one of the 

factors to determine the learning success in computer science education. This research 

work has also shown the benefits of support tools that balance metacognitive and 

cognitive tasks. Semantic Web is an enabling technology that facilitates the process of 

distinguishing the ambiguity on the definition of cognition and metacognition in the 

development of Metacognitive Support Environment for Novice Programmer in 

learning Computer Programming. There are other aspects and factors of learning 

success in problem-solving computer programming and the metacognitive development 

of novice programmers that are still unexplored and that could possibly be taken into 

account. The embedding of the social component through collaborative activities would 

be a promising direction for making such an environment more effective and 

meaningful to students. As such this research work should be of interest to a broad 

range of researchers including those interested in educational psychology and computer 

science education, and we have an expectation that it can give motivation for people to 

take it further.  To conclude, this research work supports the utilization of 

metacognition in teaching and learning in the Computer Science field for effective and 

learning success. 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

211 

 

References 

 

Aleven, V., Roll, I., & Koedinger, K. R. (2012). Progress in Assessment and Tutoring of 

Lifelong Learning Skills. Adaptive technologies for training and education, 69.  

Aleven, V. A., & Koedinger, K. R. (2002). An effective metacognitive strategy: 

Learning by doing and explaining with a computer-based Cognitive Tutor. 

Cognitive Science, 26(2), 147-179.   

Allert, J. (2004). Learning style and factors contributing to success in an introductory 

computer science course. Paper presented at the Advanced Learning 

Technologies, 2004. Proceedings. IEEE International Conference on.  

Amulya, J. (2004). What is reflective practice. Center for Reflective Community 

Practice, Massachusetts Institute of Technology, Cambridge, MA.[Online]. 

Available at: http://www. itslifejimbutnotasweknowit. org. 

uk/files/whatisreflectivepractic e. pdf [Accessed 15 April 2009].   

Angelo, T. A., & Cross, K. P. (1993). Classroom assessment techniques.   

Apiola, M., Tedre, M., & Oroma, J. O. (2011). Improving programming education in 

Tanzania: Teachers' and students' perceptions. Paper presented at the Frontiers 

in Education Conference (FIE), 2011.  

Askell-Williams, H., Lawson, M. J., & Skrzypiec, G. (2012). Scaffolding cognitive and 

metacognitive strategy instruction in regular class lessons. Instructional Science, 

40(2), 413-443.   

Azevedo, R., & Aleven, V. A. (2013). International handbook of metacognition and 

learning technologies (Vol. 26): Springer.  

Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C., & Greene, J. A. (2005). 

Adaptive human scaffolding facilitates adolescents’ self-regulated learning with 

hypermedia. Instructional science, 33(5-6), 381-412.   

Baas, D., Castelijns, J., Vermeulen, M., Martens, R., & Segers, M. (2014). The relation 

between Assessment for Learning and elementary students' cognitive and 

metacognitive strategy use. British Journal of Educational Psychology.   

Baker, L., & Brown, A. L. (1984). Metacognitive skills and reading. Handbook of 

reading research, 1(353), V394.   

Univ
ers

ity
 of

 M
ala

ya

http://www/


 

212 

 

Banks, A. P., & Millward, L. J. (2007). Differentiating Knowledge in Teams: The 

Effect of Shared Declarative and Procedural Knowledge on Team Performance. 

Group Dynamics: Theory, Research, and Practice, 11(2), 95.   

Bannert, M., & Reimann, P. (2012). Supporting self-regulated hypermedia learning 

through prompts. Instructional Science, 40(1), 193-211.   

Bardach, E. (2011). Practical guide for policy analysis: the eightfold path to more 

effective problem solving: CQ press.  

Berges, M. (2015). Investigating Novice Programming Abilities with the Help of 

Psychometric Assessment. Paper presented at the Society for Information 

Technology & Teacher Education International Conference.  

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated 

learning on introductory programming performance. Paper presented at the 

Proceedings of the first international workshop on Computing education 

research.  

Berliner, D. C., & Calfee, R. C. (1996). Handbook of educational psychology: 

Macmillan Library Reference USA, Simon & Schuster Macmillan.  

Bernard, M., & Bachu, E. (2015). Enhancing the Metacognitive Skill of Novice 

Programmers Through Collaborative Learning Metacognition: Fundaments, 

Applications, and Trends (pp. 277-298): Springer.  

Berners-Lee, T., Fischetti, M., & Foreword By-Dertouzos, M. L. (2000). Weaving the 

Web: The original design and ultimate destiny of the World Wide Web by its 

inventor: HarperInformation.  

Bickhard, M. H. (2013). Scaffolding and self scaffolding: Central aspects of 

development. LT Winegar, Sc]. Valsiner (Eds), Chz'ldreri’sd U, 610, 33-52.   

Bielaczyc, K., Pirolli, P. L., & Brown, A. L. (1995). Training in self-explanation and 

self-regulation strategies: Investigating the effects of knowledge acquisition 

activities on problem solving. Cognition and instruction, 13(2), 221-252.   

Borkowski, J. G., Carr, M., & Pressley, M. (1987). “Spontaneous” strategy use: 

Perspectives from metacognitive theory. Intelligence, 11(1), 61-75.   

Boud, D., Keogh, R., & Walker, D. (2013). Promoting reflection in learning A modeli. 

Boundaries of adult learning, 1, 32.   

Univ
ers

ity
 of

 M
ala

ya



 

213 

 

Boyle, J. R., Rosen, S. M., & Forchelli, G. (2014). Exploring metacognitive strategy use 

during note-taking for students with learning disabilities. Education 3-13(ahead-

of-print), 1-20.   

Brand-Gruwel, S., & Stadtler, M. (2011). Solving information-based problems: 

Evaluating sources and information. Learning and Instruction, 21(2), 175-179.  

Bransford, J. (2000). How people learn: Brain, mind, experience, and school: National 

Academies Press.  

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: 

Washington, DC: National Academy Press.  

Briñol, P., & DeMarree, K. G. (2012). Social metacognition: Psychology Press.  

Brophy, J. E. (2013). Motivating students to learn: Routledge.  

Brown, A. (1987). Metacognition, executive control, self-regulation and other more 

mysterious mechanisms. Metacognition, motivation, and understanding, 65-116.  

Brown, A. (1987). Metacognition, executive control, self-regulation, and other more 

mysterious mechanisms. Metacognition, motivation, and understanding, 65-116.  

Brown, A. L. (1980). Metacognitive development and reading. Theoretical issues in 

reading comprehension, 453-481.   

Brown, J. S., Collins, A., & Newman, S. (1989). Cognitive apprenticeship: Teaching the 

crafts of reading, writing, and mathematics. Knowing, learning, and instruction: 

Essays in honor of Robert Glaser, 487.   

Bulu, S. T., & Pedersen, S. (2012). Supporting problem-solving performance in a 

hypermedia learning environment: The role of students’ prior knowledge and 

metacognitive skills. Computers in Human Behavior, 28(4), 1162-1169.   

Camahalan, F. M. G. (2006). Effects of a Metacognitive Reading Program on the 

Reading Achievement and Metacognitive Strategies of Students with Cases of 

Dyslexia. Reading improvement, 43(2), 77-93.   

Carr, M., Kurtz, B. E., Schneider, W., Turner, L. A., & Borkowski, J. G. (1989). 

Strategy acquisition and transfer among American and German children: 

Environmental influences on metacognitive development. Developmental 

Psychology, 25(5), 765.   

Univ
ers

ity
 of

 M
ala

ya



 

214 

 

Carver, S., & Mayer, R. (1988). Learning and transfer of debugging skills: Applying 

task analysis to curriculum design and assessment. Teaching and Learning 

Computer Programming: Multiple Research Perspectives. RE Mayer. Hillsdale, 

NJ, Lawrence Erlbaum Associates, 259-297.   

Cella, M., Swan, S., Medin, E., Reeder, C., & Wykes, T. (2014). Metacognitive 

awareness of cognitive problems in schizophrenia: exploring the role of 

symptoms and self-esteem. Psychological medicine, 44(03), 469-476.   

Cetin, I., Sendurur, E., & Sendurur, P. (2014). Assessing the Impact of Meta-Cognitive 

Training on Students' Understanding of Introductory Programming Concepts. 

Journal of Educational Computing Research, 50(4), 507-524.   

Chambliss, M. J., & Calfee, R. C. (1998). Textbooks for learning: Nurturing children's 

minds: Blackwell Publishers Malden, Massachusetts.  

Choi, M. J., & Jeong, D. Y. (2013). A Study on the Effect of Metacognition to the 

Information-Seeking Behavior of Undergraduate Students. Journal of the 

Korean Society for Library and Information Science, 47(2), 75-101.   

Cleary, T. J., Durning, S. J., Gruppen, L. D., Hemmer, P. A., & Artino Jr, A. R. (2013). 

Self-regulated learning. Oxford textbook of medical education, 465.   

Costa, C. J., Aparicio, M., & Cordeiro, C. (2012). A solution to support student learning 

of programming. Paper presented at the Proceedings of the Workshop on Open 

Source and Design of Communication.  

Coull, N. J. (2008). SNOOPIE: development of a learning support tool for novice 

programmers within a conceptual framework. University of St Andrews.     

Coull, N. J., & Duncan, I. M. (2011). Emergent requirements for supporting 

introductory programming. Innovation in Teaching and Learning in Information 

and Computer Sciences, 10(1), 78-85.   

Cross, D. R., & Paris, S. G. (1988). Developmental and instructional analyses of 

children's metacognition and reading comprehension. Journal of Educational 

Psychology, 80(2), 131.   

Dabarera, C., Renandya, W. A., & Zhang, L. J. (2014). The impact of metacognitive 

scaffolding and monitoring on reading comprehension. System, 42, 462-473.   

Davidson, J. E., Deuser, R., & Sternberg, R. J. (1994). The role of metacognition in 

problem solving.   

Univ
ers

ity
 of

 M
ala

ya



 

215 

 

Davis, E. A. (2000). Scaffolding students' knowledge integration: Prompts for reflection 

in KIE. International Journal of Science Education, 22(8), 819-837.   

Davis, E. A. (2014). Scaffolding Learning.   

De Backer, L., Van Keer, H., & Valcke, M. (2012). Fostering university students’ 

metacognitive regulation through peer tutoring. Procedia-Social and Behavioral 

Sciences, 69, 1594-1600.   

Dechant, E. (2013). Understanding and teaching reading: An interactive model: 

Routledge.  

Deejring, K. (2015). The Validation of Web-based Learning Using Collaborative 

Learning Techniques and a Scaffolding System to Enhance Learners’ 

Competency in Higher Education. Procedia-Social and Behavioral Sciences, 

174, 34-42.   

Deitel, H. M., Deitel, P. J., & Nieto, T. (1994). C++ how to program (Vol. 4): Prentice 

Hall Englewood cliffs.  

Deutskens, E., De Ruyter, K., Wetzels, M., & Oosterveld, P. (2004). Response rate and 

response quality of internet-based surveys: An experimental study. Marketing 

letters, 15(1), 21-36.   

Donker, A., De Boer, H., Kostons, D., van Ewijk, C. D., & Van der Werf, M. (2014). 

Effectiveness of learning strategy instruction on academic performance: A meta-

analysis. Educational Research Review, 11, 1-26.   

Dorça, F. A., Lima, L. V., Fernandes, M. A., & Lopes, C. R. (2013a). Comparing 

strategies for modeling students learning styles through reinforcement learning 

in adaptive and intelligent educational systems: An experimental analysis. 

Expert Systems with Applications, 40(6), 2092-2101.   

Dorça, F. A., Lima, L. V., Fernandes, M. A., & Lopes, C. R. (2013b). A new approach 

to discover students learning styles in adaptive educational systems. Revista 

Brasileira de Informática na Educação, 21(01), 76.   

Drucker, P. (2000). Need to know: Integrating e-learning with high velocity value 

chains. A Delphi Group White Paper, 1-12.   

Elshout-Mohr, M., Meijer, J., van Daalen-Kapteijns, M., & Meeus, W. (2003). A self-

report inventory for metacognition related to academic tasks. Paper presented at 

the 10th Conference of the European Association for Research on Learning and 

Instruction (EARLI) Padova, Italy.  

Univ
ers

ity
 of

 M
ala

ya



 

216 

 

Ennis, R. H. (1985). A Logical Basis for Measuring Critical Thinking Skills. 

Educational leadership, 43(2), 44-48.   

Ernst*, J., & Monroe, M. (2004). The effects of environment‐based education on 

students' critical thinking skills and disposition toward critical thinking. 

Environmental Education Research, 10(4), 507-522.   

Ertmer, P. A., & Newby, T. J. (1996). The expert learner: Strategic, self-regulated, and 

reflective. Instructional science, 24(1), 1-24.   

Eysenck, M. W., Ellis, A. W., Hunt, E. B., & Johnson-Laird, P. N. E. (1994). The 

Blackwell dictionary of cognitive psychology: Basil Blackwell.  

Falkner, K., & Palmer, E. (2009). Developing authentic problem solving skills in 

introductory computing classes. Paper presented at the ACM SIGCSE Bulletin.

  

Feyzi-Behnagh, R., Azevedo, R., Legowski, E., Reitmeyer, K., Tseytlin, E., & Crowley, 

R. S. (2014). Metacognitive scaffolds improve self-judgments of accuracy in a 

medical intelligent tutoring system. Instructional science, 42(2), 159-181.   

Flavell, J. (1987). Speculations about the nature and development of metacognition. En 

FE Weinert & RH Kluwe (Eds.), Metacognition, Motivation and Understanding 

(pp. 21-29). Hillside: New Jersey: Lawrence Erlbaum Associates.[Links].  

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–

developmental inquiry. American psychologist, 34(10), 906.   

Foley, J. D., Van Dam, A., Feiner, S. K., Hughes, J. F., & Phillips, R. L. (1994). 

Introduction to computer graphics (Vol. 55): Addison-Wesley Reading.  

Ford, C. L., & Yore, L. D. (2012). Toward convergence of critical thinking, 

metacognition, and reflection: Illustrations from natural and social sciences, 

teacher education, and classroom practice Metacognition in science education 

(pp. 251-271): Springer.  

Francom, G. M. (2010). Teach me how to learn: principles for fostering students’ self-

directed learning skills. International Journal of Self-Directed Learning, 7(1), 

29-44.   

Frensch, P. A., & Funke, J. (2014). Complex problem solving: The European 

perspective: Psychology Press.  

Univ
ers

ity
 of

 M
ala

ya



 

217 

 

Frith, C. D. (2012). The role of metacognition in human social interactions. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 

367(1599), 2213-2223.   

Gaddis, S. E. (1998). How to design online surveys. Training & Development, 52(6), 

67-71.   

Gan, M. J., & Hattie, J. (2014). Prompting secondary students’ use of criteria, feedback 

specificity and feedback levels during an investigative task. Instructional 

Science, 42(6), 861-878.   

Garner, R. (1990). When children and adults do not use learning strategies: Toward a 

theory of settings. Review of educational research, 60(4), 517-529.   

Garner, R., & Alexander, P. A. (1989). Metacognition: Answered and unanswered 

questions. Educational Psychologist, 24(2), 143-158.   

Garner, S. (2007). A program design tool to help novices learn programming. ICT: 

Providing choices for learners and learning. Proceedings ascilite Singapore.   

Garrison, D. R. (2011). E-learning in the 21st century: A framework for research and 

practice: Taylor & Francis.  

Garrison, D. R., & Akyol, Z. (2013). Toward the development of a metacognition 

construct for communities of inquiry. The Internet and Higher Education, 17, 

84-89.   

Ghaleb, F., Daoud, S., Hasna, A., ALJa’am, J. M., El-Seoud, S. A., & El-Sofany, H. 

(2006). E-learning model based on semantic web technology. International 

Journal of Computing & Information Sciences, 4(2), 63-71.   

Giora, R. (1996). Language comprehension as structure building. Journal of 

pragmatics, 26(3), 417-436.   

Goh, C. C., & Hu, G. (2014). Exploring the relationship between metacognitive 

awareness and listening performance with questionnaire data. Language 

Awareness, 23(3), 255-274.   

Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during 

narrative text comprehension. Psychological review, 101(3), 371.   

Univ
ers

ity
 of

 M
ala

ya



 

218 

 

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P., & Kreuz, R. (1999). 

AutoTutor: A simulation of a human tutor. Cognitive Systems Research, 1(1), 

35-51.   

Greene, J. A., Robertson, J., & Costa, L. C. (2011). Assessing self-regulated learning 

using think-aloud methods. Handbook of self-regulation of learning and 

performance, 313-328.   

Gruber, T. R. (1993). A translation approach to portable ontology specifications. 

Knowledge acquisition, 5(2), 199-220.   

Grüninger, M., & Fox, M. S. (1995). Methodology for the Design and Evaluation of 

Ontologies.   

Guarino, N. (1998). Formal ontology in information systems: proceedings of the first 

international conference (FOIS'98), June 6-8, Trento, Italy (Vol. 46): Ios Pr Inc. 

Gumbel, E. J. (2012). Statistics of extremes: Courier Corporation.  

Halpern, D. F. (2002). Thought and knowledge: An introduction to critical thinking: 

Routledge.  

Halpern, D. F. (2014). Critical Thinking Across the Curriculum: A Brief Edition of 

Thought & Knowledge: Routledge.  

Hannafin, M., Land, S., & Oliver, K. (1999). Open learning environments: Foundations, 

methods, and models. Instructional-design theories and models: A new 

paradigm of instructional theory, 2, 115-140.   

Harb, J. N., Durrant, S. O., & Terry, R. E. (1993). Use of the Kolb learning cycle and 

the 4MAT system in engineering education. Journal of Engineering Education, 

82(2), 70-77.   

Hartman, H. J. (2001). Developing students’ metacognitive knowledge and skills 

Metacognition in learning and instruction (pp. 33-68): Springer.  

Havenga, M. (2011). Problem-solving processes in computer programming: a case 

study. Paper presented at the Southern African Computer Lecturers’ Association 

(SACLA) Conference Proceedings.  

Havenga, M., Mentz, E., Breed, B., Govender, D., Govender, I., Dignum, F., & 

Dignum, V. (2012). A case study regarding teachers' problem-solving activities 

and approaches towards computer programming in diverse learning 

Univ
ers

ity
 of

 M
ala

ya



 

219 

 

environments. Paper presented at the 3rd International Conference on Society 

and Information Technologies ICSIT, Orlando (USA), 25-28 March, 2012.  

Haynie, J. M., Shepherd, D. A., & Patzelt, H. (2012). Cognitive adaptability and an 

entrepreneurial task: The role of metacognitive ability and feedback. 

Entrepreneurship Theory and Practice, 36(2), 237-265.   

Hazzan, O., Lapidot, T., & Ragonis, N. (2011). Guide to Teaching Computer Science: 

An Activity-Based Approach: Springer.  

Henderson, P. (1987). Modern introductory computer science. ACM SIGCSE Bulletin, 

19(1), 183-190.   

Hill, M., & Greive, C. (2011). The Potential to Promote Social Cohesion, Self-Efficacy 

and Metacognitive Activity: A Case Study of Cross-Age Peer-Tutoring. TEACH 

Journal of Christian Education, 5(2), 10.   

Hoc, J. M. (1990). Psychology of programming: Academic Pr.  

Horrocks, I., & Sattler, U. (2001). Ontology reasoning in the SHOQ (D) description 

logic. Paper presented at the IJCAI.  

Horton, S. V., Lovitt, T. C., & Bergerud, D. (1990). The effectiveness of graphic 

organizers for three classifications of secondary students in content area classes. 

Journal of Learning Disabilities, 23(1), 12-22.   

Hu, M., Winikoff, M., & Cranefield, S. (2012). Teaching novice programming using 

goals and plans in a visual notation. Paper presented at the Proceedings of the 

Fourteenth Australasian Computing Education Conference-Volume 123.  

Hughes, A. J. (2015). Impact of Online Self-regulated Professional Development on 

Technology and Engineering Educators Metacognitive Awareness.   

Ifenthaler, D. (2012). Determining the effectiveness of prompts for self-regulated 

learning in problem-solving scenarios. Journal of Educational Technology & 

Society, 15(1), 38–52.   

Ismail, M. A., Yaacob, M., Kareem, S. A., & Halim, A. H. A. Domain Specific 

Ontology Construction: Falbo’s Approach.   

Ismail, M. N., Azilah, N., Naufal, U., & Kelantan, U. T. M. C. (2010). Instructional 

strategy in the teaching of computer programming: a need assessment analyses. 

TOJET, 9(2), 125-131.   

Univ
ers

ity
 of

 M
ala

ya



 

220 

 

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010). The effects of mind mapping with 

cooperative learning on programming performance, problem solving skill and 

metacognitive knowledge among computer science students. Journal of 

Educational Computing Research, 42(1), 35-61.   

Jacobse, A. E., & Harskamp, E. G. (2012). Towards efficient measurement of 

metacognition in mathematical problem solving. Metacognition and Learning, 

7(2), 133-149.  

Jones, B. F., & Idol, L. (2013). Dimensions of thinking and cognitive instruction: 

Routledge.  

Joseph, L. M., Alber-Morgan, S., Cullen, J., & Rouse, C. (2015). The effects of self-

questioning on reading comprehension: A literature review. Reading & Writing 

Quarterly(ahead-of-print), 1-22.   

Kalyanpur, A. (2004). SWOOP (Semantic Web Ontology Overview and Perusal): 

MindSwap, Maryland Information and Network Dynamics Lab Semantic Web 

Agents Project, http://www. mindswap. org/people/, v2.  

Katz, Y. J. (2002). Attitudes affecting college students' preferences for distance 

learning. Journal of Computer Assisted Learning, 18(1), 2-9.   

Kessler, C. M., & Anderson, J. R. (1986). Learning flow of control: Recursive and 

iterative procedures. Human-Computer Interaction, 2(2), 135-166.   

Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology-

enhanced learning environments (TELEs): Bridging research and theory with 

practice. Computers & Education, 56(2), 403-417.   

Kirakowski, J., & Corbett, M. (1988). Measuring user satisfaction. Paper presented at 

the Proceedings of the Fourth Conference of the British Computer Society on 

People and computers IV.  

Kirakowski, J., & Corbett, M. (1993). SUMI: The software usability measurement 

inventory. British journal of educational technology, 24(3), 210-212.   

Kölling, M., & Rosenberg, J. (1996). Blue—a language for teaching object-oriented 

programming.  

Koss, M. (2002). Apollo-The user guide 1.0. Knowledge Media Institute, The Open 

University.   

Univ
ers

ity
 of

 M
ala

ya

http://www/


 

221 

 

Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the 

classroom: The effects of cooperative learning and metacognitive training. 

American Educational Research Journal, 40(1), 281-310.   

Kranch, D. A. (2012). Teaching the novice programmer: A study of instructional 

sequences and perception. Education and Information Technologies, 17(3), 291-

313.   

Kuhn, D., & Dean, J., David. (2004). Metacognition: A bridge between cognitive 

psychology and educational practice. Theory into practice, 43(4), 268-273.   

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of 

novice programmers. Paper presented at the ACM SIGCSE Bulletin.  

Lai, G. (2008). Examining the effects of selected computer-based scaffolds on 

preservice teachers' levels of reflection as evidenced in their online journal 

writing.   

Latva-karjanmaa, R. (2001). Mediated Learning in Virtual Learning Environments.   

Laurillard, D. (2013). Rethinking university teaching: A conversational framework for 

the effective use of learning technologies: Routledge.  

Lee, D. M. C., Rodrigo, M. M. T., d Baker, R. S., Sugay, J. O., & Coronel, A. (2011). 

Exploring the relationship between novice programmer confusion and 

achievement Affective Computing and Intelligent Interaction (pp. 175-184): 

Springer.  

Lee, H. W., Lim, K. Y., & Grabowski, B. L. (2010). Improving self-regulation, learning 

strategy use, and achievement with metacognitive feedback. Educational 

Technology Research and Development, 58(6), 629-648.   

Lee, M. J., & Ko, A. J. (2011). Personifying programming tool feedback improves 

novice programmers' learning. Paper presented at the Proceedings of the 

seventh international workshop on Computing education research.  

Lee, T. B., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific American, 

284(5), 34-43.  

Liffick, B. W., & Aiken, R. (1996). A novice programmer's support environment. Paper 

presented at the ACM SIGCSE Bulletin.  

Univ
ers

ity
 of

 M
ala

ya



 

222 

 

Liffick, B. W., & Aiken, R. (1996). A novice programmer's support environment. ACM 

SIGCSE Bulletin, 28(SI), 49-51.   

Lin, X. (2001). Designing metacognitive activities. Educational Technology Research 

and Development, 49(2), 23-40.   

Linn, M. C., & Clancy, M. J. (1992). The case for case studies of programming 

problems. Communications of the ACM, 35(3), 121-132.   

Livingston, J. (1996). Effects of metacognitive instruction on strategy use of college 

students. Unpublished manuscript, State University of New York at Buffalo.   

Madureira, A., Gomes, S., Cunha, B., Pereira, J., Santos, J., & Pereira, I. (2014). 

Prototype of an Adaptive Decision Support System for Interactive Scheduling 

with MetaCognition and User Modeling Experience. Paper presented at the 

Nature and Biologically Inspired Computing (NaBIC), 2014 Sixth World 

Congress on.  

Mangione, G. R., Gaeta, M., Orciuoli, F., & Salerno, S. (2010). A Semantic 

Metacognitive Learning Environment.  

Markova, G., & Legerstee, M. (2013). Implicit Confusions in Metacognition. Infant and 

Child Development, 22(1), 105-107.   

Mason, R. (2012). Designing introductory programming courses: the role of cognitive 

load.   

Mathan, S. A., & Koedinger, K. R. (2005). Fostering the intelligent novice: Learning 

from errors with metacognitive tutoring. Educational Psychologist, 40(4), 257-

265.   

Mayer, R. E. (2003). Learning and instruction: Prentice Hall.  

Mayer, R. E. (2011). Applying the science of learning: Pearson/Allyn & Bacon Boston. 

Mayer, R. E. (2013). Teaching and learning computer programming: Multiple research 

perspectives: Routledge.  

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986). Learning to program and learning to 

think: what's the connection? Communications of the ACM, 29(7), 605-610.   

Mazzoni, G., & Nelson, T. O. (2014). Metacognition and cognitive neuropsychology: 

Monitoring and control processes: Psychology Press.  

Univ
ers

ity
 of

 M
ala

ya



 

223 

 

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B. D., . . 

. Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of 

programming skills of first-year CS students. ACM SIGCSE Bulletin, 33(4), 125-

180.   

McGill, T. J., & Volet, S. E. (1997). A conceptual framework for analysing students' 

knowledge of programming. Journal of Research on Computing in Education, 

29(3), 276-297.   

McGilly, K. (1996). Classroom lessons: Integrating cognitive theory and classroom 

practice: The MIT Press.  

McIlraith, S. A., Son, T. C., & Zeng, H. (2001). Semantic web services. Intelligent 

Systems, IEEE, 16(2), 46-53.   

McNie, E. C. (2007). Reconciling the supply of scientific information with user 

demands: an analysis of the problem and review of the literature. Environmental 

Science & Policy, 10(1), 17-38.   

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science 

concepts with scratch. Computer Science Education, 23(3), 239-264.   

Mercado, C. A. A., & Romo, L. I. S. (2011). Mental Models, Strategies and 

Metacognition in Programming, and it’s relation to Verbal Protocols as a 

learning mechanism3. Analysis of State-of-the-Art Solutions for Personalised 

Learning Support, 32.   

Merriam, S. B., Caffarella, R. S., & Baumgartner, L. M. (2012). Learning in adulthood: 

A comprehensive guide: John Wiley & Sons.  

Metallidou, P., & Efklides, A. (2002). The effects of general success-related beliefs and 

specific metacognitive experiences on causal attributions Trends and prospects 

in motivation research (pp. 325-347): Springer.  

Metcalfe, J. E., & Shimamura, A. P. (1994). Metacognition: Knowing about knowing: 

The MIT Press.  

Miller, T. M., & Geraci, L. (2011). Training metacognition in the classroom: The 

influence of incentives and feedback on exam predictions. Metacognition and 

learning, 6(3), 303-314.   

Mishra, S., & Director, C. (2013). Learning and Technology: Emerging Trends to 

Democratise Education.  

Univ
ers

ity
 of

 M
ala

ya



 

224 

 

Molenaar, I., Roda, C., van Boxtel, C., & Sleegers, P. (2012). Dynamic scaffolding of 

socially regulated learning in a computer-based learning environment. 

Computers & education, 59(2), 515-523.   

Molenaar, I., van Boxtel, C. A., & Sleegers, P. J. (2011). Metacognitive scaffolding in 

an innovative learning arrangement. Instructional Science, 39(6), 785-803.   

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with 

Jeliot 3. Paper presented at the Proceedings of the working conference on 

Advanced visual interfaces.  

Murray, T., Stephens, L., Woolf, B. P., Wing, L., Xu, X., & Shrikant, N. (2013). 

Supporting social deliberative skills online: the effects of reflective scaffolding 

tools Online Communities and Social Computing (pp. 313-322): Springer.  

Nett, U. E., Goetz, T., Hall, N. C., & Frenzel, A. C. (2012). Metacognitive Strategies 

and Test Performance: an experience sampling analysis of students' learning 

behavior. Education Research International, 2012.   

Newman, R. S. (2002). How self-regulated learners cope with academic difficulty: The 

role of adaptive help seeking. Theory into Practice, 41(2), 132-138.   

Nickerson, R. S. (2012). Aspects of rationality: Reflections on what it means to be 

rational and whether we are: Psychology Press.  

Nielsen, J. (2000). Why you only need to test with 5 users: Alertbox.  

Noy, N., & McGuinness, D. L. (2001). Ontology Development 101. Knowledge Systems 

Laboratory, Stanford University.   

Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., & Musen, M. A. 

(2001). Creating semantic web contents with protege-2000. IEEE intelligent 

systems, 16(2), 60-71.   

Oechsle, R., & Schmitt, T. (2002). Javavis: Automatic program visualization with 

object and sequence diagrams using the java debug interface (jdi) Software 

Visualization (pp. 176-190): Springer.  

Ornstein, P. A., Baker-Ward, L., & Naus, M. (1988). The development of mnemonic 

skill. Memory development: Universal changes and individual differences, 31-

50.   

Univ
ers

ity
 of

 M
ala

ya



 

225 

 

Özsoy, G. (2011). An investigation of the relationship between metacognition and 

mathematics achievement. Asia Pacific Education Review, 12(2), 227-235.   

Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-

fostering and comprehension-monitoring activities. Cognition and instruction, 

1(2), 117-175.  

Papert, S., & Solomon, C. (1971). Twenty things to do with a computer.   

Paris, S. G., & Winograd, P. (1990). How metacognition can promote academic 

learning and instruction. Dimensions of thinking and cognitive instruction, 1, 15-

51.   

Paul, R. (1992). Critical thinking: What, why, and how. New Directions for Community 

Colleges, 1992(77), 3-24.  

Pishghadam, R., & Khajavy, G. H. (2013). Intelligence and metacognition as predictors 

of foreign language achievement: A structural equation modeling approach. 

Learning and Individual Differences, 24, 176-181.   

Poli, R., & Koza, J. (2014). Genetic Programming: Springer.  

Polikoff, I. (2003). Ontology Tool Support (Ontology Development Lifecycle and 

Tools): TopQuadrant Technology Briefing, TopQuadrant, Inc, Alexandria, VA, 

USA.  

Puntambekar, S., & Du Boulay, B. (1997). Design and Development of MIST: A 

System To Help Students Develop Metacognition. Journal of Educational 

Computing Research, 16(1), 1-35.   

Ramaha, N. T., & Ismail, W. M. F. W. (2012). Assessment of Learner’s Motivation In 

Web Based E-Learning. International Journal of Scientific & Engineering 

Research, 3(8).   

Rea, L. M., & Parker, R. A. (2012). Designing and conducting survey research: A 

comprehensive guide: John Wiley & Sons.  

Reder, L. M. (2014). Implicit memory and metacognition: Psychology Press.  

Reusser, K. (1993). Tutoring systems and pedagogical theory: Representational tools for 

understanding, planning, and reflection in problem solving. Computers as 

cognitive tools, 1, 143-177.   

Univ
ers

ity
 of

 M
ala

ya



 

226 

 

Reynolds, M. (2011). Reflective practice: origins and interpretations. Action Learning: 

Research and Practice, 8(1), 5-13.   

Rist, R. S. (1996). Teaching Eiffel as a first language. Journal of Object-Oriented 

Programming, 9(1), 30-41.   

Roberts, M. J., & Erdos, G. (1993). Strategy selection and metacognition. Educational 

Psychology, 13(3-4), 259-266.   

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: 

A review and discussion. Computer Science Education, 13(2), 137-172.   

Roll, I., Aleven, V., McLaren, B. M., & Koedinger, K. R. (2011). Improving students’ 

help-seeking skills using metacognitive feedback in an intelligent tutoring 

system. Learning and Instruction, 21(2), 267-280.   

Rosch, E. (1999). Principles of categorization. Concepts: core readings, 189-206.   

Rosenzweig, C., Krawec, J., & Montague, M. (2011). Metacognitive Strategy Use of 

Eighth-Grade Students With and Without Learning Disabilities During 

Mathematical Problem Solving A Think-Aloud Analysis. Journal of learning 

disabilities, 44(6), 508-520.   

Rouse, C. A., Alber‐Morgan, S. R., Cullen, J. M., & Sawyer, M. (2014). Using Prompt 

Fading to Teach Self‐Questioning to Fifth Graders with LD: Effects on Reading 

Comprehension. Learning Disabilities Research & Practice, 29(3), 117-125.   

Rum, M., Nurulain, S., & Ismail, M. A. (2014). Ontology development of metacognitive 

support system for novice programmers (MSSNP). Paper presented at the 

Technology Management and Emerging Technologies (ISTMET), 2014 

International Symposium on.  

Rum, S. N. M., & Ismail, M. A. (2014). Usability Evaluation of Metacognitive Support 

System for Novice Programmers (MSSNP) using SUMI. Asian Journal of 

Education and e-Learning, 2(5).   

Sampson, D. G., Lytras, M. D., Wagner, G., & Diaz, P. (2004). Ontologies and the 

Semantic Web for E-learning. Educational Technology & Society, 7(4), 26-28.  

Sandi-Urena, S., Cooper, M., & Stevens, R. (2012). Effect of cooperative problem-

based lab instruction on metacognition and problem-solving skills. Journal of 

Chemical Education, 89(6), 700-706.   

Univ
ers

ity
 of

 M
ala

ya



 

227 

 

Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. 

Journal of extension, 37(2), 1-5.   

Scardamalia, M., & Bereiter, C. (1985). Fostering the development of self-regulation in 

children's knowledge processing. Thinking and learning skills: Research and 

open questions, 2, 563-577.   

Scheid, K. (1993). Helping Students Become Strategic Learners. Guidelines for 

Teaching. Cognitive Strategy Training Series: ERIC.  

Scheier, M. F., Carver, C. S., Clark, M., & Fiske, S. (2014). Cognition, affect, and 

self‐regulation. Paper presented at the Affect and Cognition: 17th Annual 

Carnegie Mellon Symposium on Cognition.  

Schellenberg, S., Negishi, M., & Eggen, P. (2011). The Effects of Metacognition and 

Concrete Encoding Strategies on Depth of Understanding in Educational 

Psychology. Teaching Educational Psychology, 7(2), 17-24.   

Schellings, G. L., van Hout-Wolters, B. H., Veenman, M. V., & Meijer, J. (2013). 

Assessing metacognitive activities: the in-depth comparison of a task-specific 

questionnaire with think-aloud protocols. European journal of psychology of 

education, 28(3), 963-990.   

Scherer, R., & Tiemann, R. (2012). Factors of problem-solving competency in a virtual 

chemistry environment: The role of metacognitive knowledge about strategies. 

Computers & Education, 59(4), 1199-1214.   

Schneider, W. (1985). Developmental trends in the metamemory-memory behavior 

relationship: An integrative review. Metacognition, cognition, and human 

performance, 1, 57-109.   

Schonlau, M., Ronald Jr, D., & Elliott, M. N. (2002). Conducting research surveys via 

e-mail and the web: Rand Corporation.  

Schraw, G. (1998). Promoting general metacognitive awareness. Instructional science, 

26(1-2), 113-125.   

Schraw, G. (2006). Knowledge: Structures and processes. Handbook of educational 

psychology, 2, 245-260.   

Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. 

Contemporary educational psychology, 19(4), 460-475.   

Univ
ers

ity
 of

 M
ala

ya



 

228 

 

Schraw, G., & Gutierrez, A. P. (2015). Metacognitive Strategy Instruction that 

Highlights the Role of Monitoring and Control Processes Metacognition: 

Fundaments, Applications, and Trends (pp. 3-16): Springer. 

Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational psychology 

review, 7(4), 351-371.   

Schraw, G., & Sperling Dennison, R. (1994). Assessing metacognitive awareness. 

Contemporary educational psychology, 19, 460-460.   

Scott, K. M. (2014). Taking over someone else's e-learning design: challenges trigger 

change in e-learning beliefs and practices. Research in Learning Technology, 22.  

Scott, M. J., & Ghinea, G. (2013). Educating programmers: A reflection on barriers to 

deliberate practice. Learning and Teaching in STEM Disciplines.   

Semerari, A., Cucchi, M., Dimaggio, G., Cavadini, D., Carcione, A., Battelli, V., . . . 

Ronchi, P. (2012). The development of the Metacognition Assessment 

Interview: Instrument description, factor structure and reliability in a non-

clinical sample. Psychiatry research, 200(2), 890-895.   

Slavin, R. E., & Davis, N. (2006). Educational psychology: Theory and practice.   

Soloway, E. (1984). A cognitively-based methodology for designing 

languages/environments/methodologies. Paper presented at the ACM SIGPLAN 

Notices.  

Soloway, E., & Spohrer, J. C. (1989). Studying the novice programmer: Lawrence 

Erlbaum Hillsdale, NJ.  

Soloway, E., & Spohrer, J. C. (2013). Studying the novice programmer: Psychology 

Press.  

Son, L. K., & Simon, D. A. (2012). Distributed learning: data, metacognition, and 

educational implications. Educational Psychology Review, 24(3), 379-399.   

Song, J. (2013). Knowing the knowing: Exploring the relationship between 

metacognition and intelligence.   

Sternberg, R. J., & Frensch, P. A. (2014). Complex problem solving: Principles and 

mechanisms: Psychology Press.  

Univ
ers

ity
 of

 M
ala

ya



 

229 

 

Stewart, P. W., & Hadley, K. (2014). INVESTIGATING THE RELATIONSHIP 

BETWEEN VISUAL IMAGERY, METACOGNITION AND 

MATHEMATICS PEDAGOGICAL CONTENT KNOWLEDGE. Journal of the 

International Society for Teacher Education, 18(1).   

Stojanovic, L., Staab, S., & Studer, R. (2001). eLearning based on the Semantic Web.  

Stojanovic, L., Stojanovic, N., & Volz, R. (2002). Migrating data-intensive web sites 

into the semantic web. Paper presented at the Proceedings of the 2002 ACM 

symposium on Applied computing.  

Stull, A. T., & Mayer, R. E. (2007). Learning by doing versus learning by viewing: 

Three experimental comparisons of learner-generated versus author-provided 

graphic organizers. Journal of educational psychology, 99(4), 808.   

Su, A., Yang, S. J., Hwang, W. Y., Huang, C. S., & Tern, M. Y. (2014). Investigating 

the role of computer‐supported annotation in problem‐solving‐based teaching: 

An empirical study of a Scratch programming pedagogy. British Journal of 

Educational Technology, 45(4), 647-665.   

Sure, Y., Angele, J., & Staab, S. (2003). OntoEdit: Multifaceted inferencing for 

ontology engineering Journal on Data Semantics I (pp. 128-152): Springer.  

Thiede, K. W., Griffin, T. D., Wiley, J., & Redford, J. S. (2009). Metacognitive 

monitoring during and after reading. Handbook of metacognition in education, 

85-106.   

Thompson, V. A., Prowse Turner, J. A., & Pennycook, G. (2011). Intuition, reason, and 

metacognition. Cognitive psychology, 63(3), 107-140.   

Thota, N., & Whitfield, R. (2009). Use of CALMS to enrich learning in introductory 

programming courses. Paper presented at the Proceedings of the 17th 

International Conference on Computers in Education.  

Tobias, S., & Everson, H. (1995). Development and Validation of an Objective Measure 

of Metacognition.   

Tobias, S., Everson, H., Laitusis, V., & Fields, M. (1999). Metacognitive knowledge 

monitoring: Domain specific or general. Paper presented at the annual meeting 

of the Society for the Scientific Study of Reading, Montreal.  

Tobias, S., Everson, H. T., & Laitusis, V. (1999). Towards a Performance Based 

Measure of Metacognitive Knowledge Monitoring: Relationships with Self-

Reports and Behavior Ratings.   

Univ
ers

ity
 of

 M
ala

ya



 

230 

 

Tsai, M. J. (2009). The model of strategic e-learning: Understanding and evaluating 

student e-learning from metacognitive perspectives. Educational Technology & 

Society, 12(1), 34-48.   

Tunmer, W. E., & Bowey, J. A. (1984). Metalinguistic awareness and reading 

acquisition. Metalinguistic awareness in children: Theory, research, and 

implications, 144-168.   

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., . . . Sorva, J. 

(2013). A fresh look at novice programmers' performance and their teachers' 

expectations. Paper presented at the Proceedings of the ITiCSE working group 

reports conference on Innovation and technology in computer science education-

working group reports.  

Uysal, M. P. (2014). Improving First Computer Programming Experiences: The Case of 

Adapting a Web-Supported and Well-Structured Problem-Solving Method to a 

Traditional Course. Contemporary Educational Technology, 5(3).   

Van den Boom, G., Paas, F., van Merriėnboer, J. J. G., & Van Gog, T. (2004). 

Reflection prompts and tutor feedback in a web-based learning environment: 

Effects on students' self-regulated learning competence. Computers in Human 

Behavior, 20(4), 551-567.   

Van der Meij, J., & de Jong, T. (2011). The effects of directive self‐explanation prompts 

to support active processing of multiple representations in a simulation‐based 

learning environment. Journal of Computer Assisted Learning, 27(5), 411-423.  

Van Heijst, G., Schreiber, A. T., & Wielinga, B. J. (1997). Using explicit ontologies in 

KBS development. International Journal of Human Computer Studies, 46, 183-

292.   

Van Zile-Tamsen, C. (1994). The role of motivation in metacognitive self-regulation. 

Unpublished manuscript, State University of New York at Buffalo.   

Van Zile-Tamsen, C. (1996). Metacognitive self-regulation and the daily academic 

activities of college students. State University of New York at Buffalo.     

Veenman, M. V. (2011). Alternative assessment of strategy use with self-report 

instruments: a discussion. Metacognition and Learning, 6(2), 205-211.   

Veenman, M. V., Van Hout-Wolters, B. H., & Afflerbach, P. (2006). Metacognition and 

learning: Conceptual and methodological considerations. Metacognition and 

learning, 1(1), 3-14.   

Univ
ers

ity
 of

 M
ala

ya



 

231 

 

Visser, P. S., Krosnick, J. A., Marquette, J., & Curtin, M. (1996). Mail surveys for 

election forecasting? An evaluation of the Columbus Dispatch poll. Public 

Opinion Quarterly, 60(2), 181-227.   

Vohs, J., Lysaker, P., Francis, M., Hamm, J., Buck, K., Olesek, K., . . . Liffick, E. 

(2014). Metacognition, social cognition, and symptoms in patients with first 

episode and prolonged psychoses. Schizophrenia research, 153(1), 54-59.   

Volet, S. E. (1991). Modelling and coaching of relevant metacognitive strategies for 

enhancing university students' learning. Learning and Instruction, 1(4), 319-336.  

Vygotskiĭ, L. L. S. (1978). Mind in society: The development of higher psychological 

processes: Harvard university press.  

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & 

Hübner, S. (2001). Ontology-based integration of information-a survey of 

existing approaches. Paper presented at the IJCAI-01 workshop: ontologies and 

information sharing.  

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & 

Hübner, S. (2001). Ontology-based integration of information-a survey of 

existing approaches.  

Weinstein, C. E. (1988). Assessment and training of student learning strategies: 

Springer.  

Weinstein, C. E., & Mayer, R. E. (1983). The Teaching of Learning Strategies. Paper 

presented at the Innovation abstracts.  

Willer, D., Eisenberg, M., & Sadzewicz, J. Using Metacognition to Improve 

Information Literacy Skills. Paper presented at the The Second European 

Conference on Information Literacy (ECIL).  

Williams, P. E., & Hellman, C. M. (2004). Differences in self-regulation for online 

learning between first-and second-generation college students. Research in 

Higher Education, 45(1), 71-82.   

Wilson, N. S., & Bai, H. (2010). The relationships and impact of teachers’ 

metacognitive knowledge and pedagogical understandings of metacognition. 

Metacognition and Learning, 5(3), 269-288.  

Winne, P. H. (2011). A cognitive and metacognitive analysis of self-regulated learning. 

Handbook of self-regulation of learning and performance, 15-32.   

Univ
ers

ity
 of

 M
ala

ya



 

232 

 

Wu, L., & Looi, C.-K. (2011). Design of Agent Prompts as Scaffolding for Productive 

Reflection in an Intelligent Learning Environment. International Journal of 

Information Technology, 17(2).   

Wu, L., Valcke, M., & Van Keer, H. (2012). Validation of a Chinese version of 

metacognitive awareness of reading strategies inventory. Egitim Arastirmalari-

Eurasian Journal of Educational Research, 12(48), 117-134.   

Xie, K., & Bradshaw, A. C. (2008). Using question prompts to support ill-structured 

problem solving in online peer collaborations. International Journal of 

Technology in Teaching and Learning, 4(2), 148-165.   

Young, A., & Fry, J. (2012). Metacognitive awareness and academic achievement in 

college students. Journal of the Scholarship of Teaching and Learning, 8(2), 1-

10.   

Zile-Tamsen, V., & Marie, C. (1996). Metacognitive self-regulation and the daily 

academic activities of college students.   

Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An 

overview. Educational psychologist, 25(1), 3-17.   

Zimmerman, B. J., & Kitsantas, A. (2014). Comparing students’ self-discipline and self-

regulation measures and their prediction of academic achievement. 

Contemporary Educational Psychology, 39(2), 145-155.   

Zimmerman, B. J., & Schunk, D. H. (2001). Reflections on theories of self-regulated 

learning and academic achievement. Self-regulated learning and academic 

achievement: Theoretical perspectives, 2, 289-307.   

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

233 

 

List of Publications and Papers Presented 

 

Journal  

 Usability Evaluation of Metacognitive Support System for Novice 

Programmer using SUMI (Asian Journal of Education and E-learning 

(AJEEL) 

 Metacognitive Awareness Assessment and Introductory Computer 

Programming Course Achievement at University, The International Arab 

Journal of Information Technology   (Indexed by ISI) 

 Metacognitive Support features in Computer Assisted Learning for 

Novice Programmers, Journal of Computer Assisted Learning, Siti 

Nurulain Mohd Rum, Maizatul Akmar Ismail (Indexed by ISI) 

 A Semantic Web Approach to the Design of a Metacognitive Support 

Tool for Novice Programmers, Journal of Semantic Web and Information 

System (Indexed by ISI) 

Proceeding  

 Siti Nurulain Mohd Rum and Ismail M.A (2014), Ontology Development 

of Metacognitive Support System for Novice Programmers (MSSNP), 

International Symposium on Technology Management and Emerging 

Technologies (ISTMET), 27th - 29th May 2014, Bandung, Indonesia, 

IEEE (SCOPUS-Cited Publication) 

 Mohd Rum, S.N and Ismail, M.A (2013), Promoting Metacognitive 

Learning Environment in Supporting Novice Programmer Using 

Semantic Web, International Conference on Emerging Trends in 

Computer Science & Information Technology, Kuala Lumpur, pp45-

48 (Non-ISI/Non-SCOPUS Cited Publication) 

 A Framework Design of Metacognitive Support System for Novice 

Programmers (MSSNP) PROCEEDINGS OF KNOWLEDGE 

MANAGEMENT INTERNATIONAL CONFERENCE (KMICE) 2014 

(ISI-Cited Publication) 

 Mohd Rum, S.N and Ismail, M.A (2014), Development of a 

Metacognitive Support System for Novice Programmers (MSSNP) Using 

the Semantic Web (ScienceAsia)  

 

 

Univ
ers

ity
 of

 M
ala

ya



 

234 

 

Appendix A 

Consent Request Letter 

 

Dear Sir, 

 

I am a Phd candidate from the University of Malaya, and am writing to request 

permission to conduct a study during your class session in Introduction to Computer 

Programming. The objective of this study is to get further understanding on how a 

pedagogical approach assists students during the Introductory Computer Programming 

Class. 

 

In order to complete this study, observation on several different class sessions is 

required. Any information obtained in connection with this study will remain 

confidential and will only be disclosed with your permission. No names or information 

on the individual will be recorded as I am only interested in group results. Such a report 

will be used for research purposes only. 

 

 

Your consideration in this matter will be greatly appreciated,  

 

Thank You. 

 

Yours  sincerely, 

Siti Nurulain Mohd Rum (Mrs.) 

PhD Candidate, 

Faculty of Computer Science and Information Technology, 

University of Malaya. 

snurulain@siswa.um.edu.my 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya

mailto:snurulain@siswa.um.edu.my


 

235 

 

Appendix B 

MAI Questionnaire 

 

Introduction  

 

This questionnaire is part of the research project in Information Science, University of 

Malaya.  

You have been chosen to take part in this research and I will be very grateful if you can 

spend some of your precious time completing the given questionnaire. All the gathered 

information is confidential and will only be used for academic purposes. 

 

“Metacognition is generally defined as the activity of monitoring and controlling one's 

cognition. In learning programming, this skill is essential to successful learning because 

its enables individual to better manage their programming skills and to determine 

weaknesses that can be corrected by constructing a new skills. The objective of this 

study is to relate the metacognitive awareness with the fundamental programming 

course achievement in Universities. Kindly look over the questionnaire and spare some 

of your time to complete the survey. I wish to thank you for your participation in this 

study” 

 

 

 

 

Yours Faithfully;  
Siti Nurulain Mohd Rum 

Email: snurulain@um.edu.my  

Department of Information Science  

University Of Malaya 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

236 

 

 

 

Section 1 – Personal and Education Background  

 

 

1. Your Age? 20 – 25 years 

26 – 30 years 

31 – 35 years 

2. Gender       Male      Female 

3. University  

 

4. Year/Semester of Study  

5 GPA For Introductory 

Programming Course 

Regardless the language 

used  

2.0 – 2.49  

2.5 – 2.99  

3.0 – 3.49  

3.5 – 4.00 

 

Section 2 – Metacognitive Awareness Assessment  

This section consists of 52 statements that relate to your experience in learning the 

Introductory Computer Programming course at your university, and you are required  to 

rate each as True or False 

 

No Declarative Knowledge Statement 

DCL1 I understand my intellectual strengths and weaknesses.          Yes      No 

DCL2 I know what kind of information is most important to 

learn. 

     Yes      No 

DCL3 I am good at organizing information.      Yes      No 

DCL4 I know what the teacher expects me to learn.      Yes      No 

DCL5 I am good at remembering information.      Yes      No 

DCL6 I have control over how well I learn.      Yes      No 

DCL7 I am a good judge of how well I understand something.      Yes      No 

Univ
ers

ity
 of

 M
ala

ya



 

237 

 

DCL8 I learn more when I am interested in the topic.      Yes      No 

No Procedural Knowledge Statement 

P1  I try to use strategies that have worked in the past.      Yes      No 

P2 I have a specific purpose for each strategy I use.      Yes      No 

P3 I am aware of what strategies I use when I study.      Yes      No 

P4 I find myself using helpful learning strategies 

automatically. 

     Yes      No 

No Conditional Knowledge Statement 

CDL1 I learn best when I know something about the topic.      Yes      No 

CDL2 I use different learning strategies depending on the 

situation. 

     Yes      No 

CDL3 I can motivate myself to learn when I need to.      Yes      No 

CDL4 I use my intellectual strengths to compensate for my 

weaknesses. 

     Yes      No 

CDL5 I know when each strategy I use will be most effective.      Yes      No 

No Planning Statement 

PL1 I pace myself while learning in order to have enough 

time. 

     Yes      No 

PL2 I think about what I really need to learn before I begin a 

task.        

     Yes      No 

PL3  I set specific goals before I begin a task.      Yes      No 

PL4 I ask myself questions about the material before I begin.      Yes      No 

PL5 I think of several ways to solve a problem and choose the 

best one. 

     Yes      No 

PL6 I read instructions carefully before I begin a task.      Yes      No 

PL7  I organize my time to best accomplish my goals.      Yes      No 

No Information Management Strategies Statement 

IMS1 I slow down when I encounter important information.      Yes      No 

IMS2 I consciously focus my attention on important      Yes      No 

Univ
ers

ity
 of

 M
ala

ya



 

238 

 

information. 

IMS3 I focus on the meaning and significance of new 

information. 

     Yes      No 

IMS4 I create my own examples to make information more 

meaningful. 

     Yes      No 

IMS5 I draw pictures or diagrams to help me understand while 

learning. 

     Yes      No 

IMS6 I try to translate new information into my own words.      Yes      No 

IMS7 I use the organizational structure of the text to help me 

learn 

     Yes      No 

IMS8 I ask myself if what I’m reading is related to what I 

already know. 

     Yes      No 

IMS9 I try to break studying down into smaller steps.      Yes      No 

IMS10 I focus on overall meaning rather than specifics.      Yes      No 

No Comprehension Monitoring  Statement 

CM1 I ask myself periodically if I am meeting my goals.      Yes      No 

CM2 I consider several alternatives to a problem before I 

answer. 

     Yes      No 

CM3 I ask myself if I have considered all options when solving 

a problem. 

     Yes      No 

CM4 I periodically review to help me understand important 

relationships. 

     Yes      No 

CM5 I find myself analyzing the usefulness of strategies while 

I study. 

     Yes      No 

CM6 I find myself pausing regularly to check my 

comprehension. 

     Yes      No 

CM7 I ask myself questions about how well I am doing while 

learning something new. 

     Yes      No 

Univ
ers

ity
 of

 M
ala

ya



 

239 

 

No Debugging Strategies  Statement 

DBG1 I ask others for help when I don’t understand something.      Yes      No 

DBG2 I change strategies when I fail to understand.      Yes      No 

DBG3 I re-evaluate my assumptions when I get confused.      Yes      No 

DBG4 I stop and go back over new information that is not clear.      Yes      No 

DBG5 I stop and reread when I get confused.      Yes      No 

No Evaluation  Statement 

EVL1  I know how well I did once I finish a test.      Yes      No 

EVL2 I ask myself if there was an easier way to do things after I 

finish a task. 

     Yes      No 

EVL3 I summarize what I’ve learned after I finish.      Yes      No 

EVL4 I ask myself how well I accomplished my goals once I’m 

finished. 

     Yes      No 

EVL5 I ask myself if I have considered all options after I solve a 

problem. 

     Yes      No 

EVL6 I ask myself if I learned as much as I could have once I 

finish a task. 

     Yes      No 

 Strategies used for learning Computer Programming Answer options 

i.  Rehearsal  

ii.  Elaboration  

iii.  Organization  

iv.  Critical Thinking  

v.  Metacognition Regulation  

vi.  Time & Study Environment  

vii.  Effort regulation  

viii.  Peer Learning  

ix.  Help-Seeking  

 What is the   

i.  Efficiency  

ii.  Affect  

iii.  Effort  

iv.  Goal Orientation  

Univ
ers

ity
 of

 M
ala

ya



 

240 

 

v.  Helpfulness  

vi.  Learnability  

vii.  Control     

viii.  Self-regulation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

241 

 

Appendix C 

Distribution of Respondents 

 

Distribution by Gender 

Gender Frequency Percentage (%) 

Male 62 37.8 

Female 102 62.2 

Total 164 100 

 

Distribution by GPA 

GPA Frequency Percentage (%) 

2.00 – 2.49 44 26.83 

2.50 – 2.99 56 34.15 

3.00 -  3.49 40 24.39 

3.50 – 4.00 24 14.63 

Total 164 100 

 

Academic year of study 

GPA  Frequency Percentage (%) 

Year 2 75 45.73 

Year 3 38 23.17 

Year 4 35 21.34 

Year 5 10 6.1 

Year 6  6 3.66 

Total 164 100 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

242 

 

Appendix D 

Results of Correlation Coefficient between all variables 

 

Y X r r
2
 t Pr(>|t|) 

GPA MAI 0.8226 0.6767 18.4136 0.0000 

GPA P 0.4387 0.1925 6.2140 0.0000 

GPA DL 0.7358 0.5413 13.8274 0.0000 

GPA CDL 0.6134 0.3762 9.8843 0.0000 

GPA PL 0.7061 0.4986 12.6917 0.0000 

GPA IMS 0.6882 0.4737 12.0747 0.0000 

GPA CM 0.7025 0.4935 12.5629 0.0000 

GPA DBG 0.6023 0.3627 9.6027 0.0000 

GPA EVL 0.5679 0.3225 8.7816 0.0000 

GPA KC 0.7483 0.5599 14.3562 0.0000 

GPA RC 0.8224 0.6763 18.3987 0.0000 

MAI P 0.6186 0.3827 10.0207 0.0000 

MAI DL 0.8638 0.7462 21.8251 0.0000 

MAI CDL 0.7519 0.5654 14.5175 0.0000 

MAI PL 0.8469 0.7172 20.2709 0.0000 

MAI IMS 0.7848 0.6159 16.1173 0.0000 

MAI CM 0.8639 0.7463 21.8309 0.0000 

MAI DBG 0.6545 0.4283 11.0177 0.0000 

MAI EVL 0.7317 0.5354 13.6633 0.0000 

MAI KC 0.9257 0.8570 31.1568 0.0000 

MAI RC 0.9764 0.9534 57.5703 0.0000 

P DL 0.4464 0.1993 6.3503 0.0000 

P CDL 0.4717 0.2225 6.8085 0.0000 

P PL 0.4368 0.1908 6.1811 0.0000 

P IMS 0.4024 0.1619 5.5945 0.0000 

P CM 0.5232 0.2737 7.8140 0.0000 

P DBG 0.4059 0.1647 5.6521 0.0000 

P EVL 0.3645 0.1329 4.9825 0.0000 

P KC 0.6698 0.4486 11.4797 0.0000 

P RC 0.5523 0.3051 8.4328 0.0000 

DL CDL 0.6192 0.3834 10.0363 0.0000 

DL PL 0.7193 0.5174 13.1786 0.0000 

DL IMS 0.5926 0.3511 9.3628 0.0000 

DL CM 0.7939 0.6303 16.6180 0.0000 

DL DBG 0.4806 0.2310 6.9761 0.0000 

DL EVL 0.5728 0.3281 8.8934 0.0000 

DL KC 0.9071 0.8228 27.4249 0.0000 

DL RC 0.7878 0.6206 16.2789 0.0000 

CDL PL 0.6276 0.3938 10.2591 0.0000 

CDL IMS 0.5709 0.3259 8.8508 0.0000 

CDL CM 0.5649 0.3191 8.7130 0.0000 

CDL DBG 0.4589 0.2106 6.5732 0.0000 

CDL EVL 0.4760 0.2266 6.8886 0.0000 

CDL KC 0.8289 0.6870 18.8584 0.0000 

CDL RC 0.6815 0.4644 11.8528 0.0000 

Univ
ers

ity
 of

 M
ala

ya



 

243 

 

PL IMS 0.5884 0.3462 9.2618 0.0000 

PL CM 0.7752 0.6010 15.6212 0.0000 

PL DBG 0.5579 0.3112 8.5562 0.0000 

PL EVL 0.5663 0.3207 8.7459 0.0000 

PL KC 0.7347 0.5398 13.7840 0.0000 

PL RC 0.8615 0.7423 21.6000 0.0000 

IMS CM 0.5442 0.2961 8.2553 0.0000 

IMS DBG 0.5533 0.3061 8.4541 0.0000 

IMS EVL 0.5896 0.3477 9.2918 0.0000 

IMS KC 0.6548 0.4288 11.0268 0.0000 

IMS RC 0.8199 0.6723 18.2308 0.0000 

CM DBG 0.5071 0.2572 7.4888 0.0000 

CM EVL 0.5277 0.2785 7.9076 0.0000 

CM KC 0.7810 0.6099 15.9145 0.0000 

CM RC 0.8521 0.7262 20.7263 0.0000 

DBG EVL 0.4684 0.2194 6.7472 0.0000 

DBG KC 0.5446 0.2966 8.2648 0.0000 

DBG RC 0.6866 0.4714 12.0204 0.0000 

EVL KC 0.6087 0.3705 9.7643 0.0000 

EVL RC 0.7451 0.5551 14.2175 0.0000 

KC RC 0.8347 0.6967 19.2897 0.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

244 

 

Appendix E 

Interview Result with Expert Lecturer 

Interview Result with Respondent 1 and Respondent 2 

No Questions description Respondent 1 Respondent 2 

Q1 Have you ever heard of 

metacognition?  

“Haven’t heard” “Yes, but not sure 

what it is” 

 After reading the definition, 

would you describe what 

metacognition is? 

“Cognition awareness” “Monitoring of 

cognition and it 

awareness” 

Q2 How is metacognition 

important for a lecturer in 

teaching? 

“It is important and the 

lecturer must think about 

their own thinking” 

“Lecturer  must think 

hard, it is important 

for effective 

learning” 

Q3 Do you think metacognition 

is an important factor in 

computer science education 

success? Why? 

“It is important for 

students to  be 

independent learners, 

therefore nurturing 

students with 

metacognition skills is 

something that is 

crucial” 

“We have to educate  

students to act and 

think” 

Q4 How are metacognitive skills 

been taught to your students 

for learning improvement? 

“Encourage students to 

ask questions” 

“Ask students to read 

books or find 

information from the 

Internet and write 

down their thinking” 

 

Q5 How do you apply 

metacognition in your own 

teaching? 

“Prepare well before 

teaching, monitor myself 

during teaching to ensure 

message can be 

conveyed effectively” 

 

“Listening to student 

and try to answer any 

questions in simplest 

way that can be easily 

understood”  

Q6 When you teach, what is 

important to you? 

“Students are able to 

extract the important 

information given during 

class and able write it 

down” 

“Know what students 

need to know and 

learn, how the best to 

teach it and how to 

tell if they have 

learned it” 

Q7 What are you thinking about 

when you are teaching? 

“Always keep this old 

proverb, ‘if you feed a 

person a fish, then the 

person eats only then.  

But if you teach a person 

how to catch fish, then 

the person will eat well 

in the future’, students 

need to be independent 

learners” 

“Asking myself, do I 

provide enough 

information for them 

to understand?” 

Q8 Before you teach, what do “Analyze and confirm “Do preparation for 

Univ
ers

ity
 of

 M
ala

ya



 

245 

 

you usually do? the lesson content as 

well as appropriate 

teaching material” 

class the day before 

and try to come early 

a few minutes in the 

classroom” 

Q9 What do you think about 

before you teach? 

Prepare handouts and 

material  

Prepare learning 

content 

Q10 After you teach, what do you 

usually do? 

“Add content 

information that was 

insufficiently provided 

and clarified in last 

session and prepare 

lesson for the following 

session.” 

“Evaluate the 

strengths and 

weaknesses of own 

teaching” 

Q11 Common problems faced by 

novice programmers? 

“Lack of  skill for 

analyzing problem  and 

unable to apply similar 

or past problem solutions 

into new problem” 

“Most student fail to 

understand the 

concept of 

programming in 

bigger picture” 

 

Interview Results with Respondent 3 and Respondent 4 

No Questions description Respondent 3 Respondent 4 

Q1 Have you ever heard of 

metacognition?  

Never Never 

 After reading the article given, 

would you describe the definition of 

metacognition ?  

“knowledge of 

cognition” 

“Applying learning 

theory” 

Q2 How is metacognition important for 

a lecturer in teaching? 

 

“Educator must 

understand their 

own teaching 

processes” 

“Lecturer must be 

aware of their own 

thoughts, emotions, 

and behaviors” 

Q3 Do you think  metacognition is as an 

important factor in computer science 

education success? Why? 

“Ask students to 

take notes and 

prepare a lesson 

plan” 

“Suggest YouTube 

/Internet for students 

to be independent 

learner” 

Q4 How have metacognitive skills been 

taught to your students for learning 

improvement? 

“Give more 

assignments”  

“Let students know 

the whole process of 

problem-solving” 

Q5 How do you apply metacognition in 

your own teaching? 

“Interaction with 

Students” 

“Writing,” 

“Discussing,” 

Q6 When you teach, what is important 

to you? 

“Everything must 

be in order in the 

classroom 

“Effective Classroom 

environment” 

Q7 What are you thinking about when 

you are teaching? 

“How student 

learns best” 
 

Q8 Before you teach, what do you 

usually do? 

“Write outline for 

discussion in 

classroom” 

“Make notes and 

review activities” 

Q9 What do you think about before you 

teach? 

“Plan for outline 

and material for 

discussion during 

“Lesson-plans” 

Univ
ers

ity
 of

 M
ala

ya



 

246 

 

lesson” 

 

Q10 After you teach, what do you 

usually do? 

“assess teaching 

and plan for next 

round teaching” 

“Spend another 15 or 

30 minutes after class 

to answer questions 

from students” 

Q11 Common problems faced by novice 

programmers? 

Lack of skills in 

analyzing 

problems 

Difficult to 

understand 

programming concept 

 

Interview Result with Respondent 5 

No Question description Respondent 5 

Q1 Have you ever heard of metacognition?  “No, haven’t heard” 

 After reading the definition, would you 

describe what metacognition is? 

“Knowledge Monitoring” 

Q2 How is metacognition important for a lecturer 

in teaching? 

 

“Lecturers must be aware of 

their own thoughts, emotions 

and behavior”  

Q3 Do you think metacognition is an important 

factor in computer science education success? 

Why? 

“Yes, it’s crucial for effective 

teaching and learning” 

Q4 How do you teach metacognitive skills to your 

students to improve their learning? 

“Students need to be taught 

how to act and think” 

Q5 How do you apply metacognition in your own 

teaching? 

“Thinking and questioning with 

students” 

Q6 When you teach, what is important to you? “Students’ requirements are 

first priority.” 

Q7 What are you thinking about when you are 

teaching? 

“How to make students learn 

and understand” 

Q8 Before you teach, what do you usually do?  “Design and plan lessons” 

Q9 What do you think about before you teach? “How to finish the lesson 

within the given time” 

Q10 After you teach, what do you usually do? “Assess/evaluate student 

learning by giving short 

quizzes” 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

247 

 

Appendix F 

Interview Result with Novice Programmer 

 

Respondents’ answers for Question 1 to Question 4 

Respondent  Question 

1 

Question 2 Question 3 Question 4 

R1 No “To stay motivated, study 

with others through 

knowledge sharing 

session”  

Internet, 

Books 

Translate 

information 

into my own 

words 

R2 No “Try to discover the 

context on why such 

knowledge is important 

and exchange knowledge 

with others” 

Internet, 

Materials 

given by 

instructor 

Draw pictures 

or diagrams 

R3 No “Not motivated to learn 

this subject, very difficult 

to understand “ 

Internet Write summary 

note 

R4 Yes “Just enjoy coding that can 

keep me motivated “ 

Internet, 

Books 

make stories 

and pictures 

R5 No “Study with peer” Internet  used 

organizational 

structure 

 

 

Respondents’ answer for Question 5 to Question 7 

Respondent Question 5 Question 6 Question 7 

R1 Seek help from the social 

media like forum and 

Facebook  

Yes, usually it 

will take about 

2 - 4 hours a 

day 

Always communicates 

with lecturer to get to 

know strengths and 

weakness  

R2 Seek the help of instructor No Do more exercises and 

seek help from instructor 

R3 Seek the help of instructor 

or someone that has good 

knowledge in 

programming  

No Check quizzes and test 

paper and comparing 

with others  

R4 Study with friends and 

comparing answer from 

quiz, test and assignment 

given by lecturer 

No Do tutorial and check 

answer with instructor  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

248 

 

Appendix G 

Pre-Test Question (Part1) 

 

Participant ID: __________________ 

 

Pre Test (PART 1) 

Instructions- Read each problem given and provide answer in each box. Please do not 

solve the problems. 

 

1. Write a pseudocode that reads two numbers and multiplies them together and prints 

out their product 

 

 

 

 

2. Write a pseudocode that performs the following. Ask a user to enter a number. If the 

number is between 0 and 10, write the word blue. If the number is between 10 and 20, 

write the word red. If the number is between 20 and 30, write the word green 

 

 

 

 

3. Write a pseudo code to print all multiples of 5 between 1 and 100 (including both 1 

and 100) 

 

 

 

 

4. Write a pseudo code that will count all the even numbers up to a user defined stopping 

point. For example, say we want to see the first 5 even numbers starting from 0.  

 

 

 

 

5. Write pseudocode that performs the following. Ask a user to enter Year of birth and 

printout user generation as follows: 

                 IF year 1946 – 1964 = ‘Baby Boomers’ 

Question: Based on the problem given, do you think you can provide the answer? 

                                [  ] Yes    [ ] No 

Question: Based on the problem given, do you think you can provide the answer? 

                                [  ] Yes    [ ] No 

Question: Based on the problem given, do you think you can provide the answer? 

                                [  ] Yes    [ ] No 

Question: Based on the problem given, do you think you can provide the answer? 

                                [  ] Yes    [ ] No 

Univ
ers

ity
 of

 M
ala

ya



 

249 

 

                 IF year 1965 – 1984 = ‘Generation X’ 

                 IF year 1985 – 2000 = ‘Generation Y’ 

                 IF year > 2000 = ‘Generation Z’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Question: Based on the problem given, do you think you can provide the answer? 

                                [  ] Yes    [ ] No 

Univ
ers

ity
 of

 M
ala

ya



 

250 

 

Appendix H 

Pre-Test Question (Part 2) 

 

Participant ID: ___________________________________ 

 

Pre-Test – PART 2 

 

Instruction: You are given 1 hour to solve all the problems. The experimenter will alert 

you  when the time is up. You are alloweed to solve the problems given in any order. 

. 

 

Kindly read the box given below before you start. 

 

 

 

 

 

 

 

 

6. Write pseudocode that reads two numbers and multiplies them together and prints out 

their product 

 

 

 

 

7. Write a pseudocode that performs the following. Ask a user to enter a number. If the 

number is between 0 and 10, write the word blue. If the number is between 10 and 20, 

write the word red. If the number is between 20 and 30, write the word green 

 

 

 

 

8. Write a pseudocode to print all multiples of 5 between 1 and 100 (including both 1 

and 100) 

 

 

Pseudocode: is an artificial and informal language that helps programmers 

develop algorithms. Pseudocode is a “text-based” detail (algorithmic) design tool. 

The rules of Pseudocode are reasonably straightforward. All Statements showing 

“dependency” are to be indented. These include WHILE, DO, FOR, IF and 

SWITCH. 

Univ
ers

ity
 of

 M
ala

ya



 

251 

 

9. Write a pseudocode that will count all the even numbers up to a user defined stopping 

point. For example, say we want to see the first 5 even numbers starting from 0.  

 

The first 5 even numbers are 0,2,4,6,8. 

The first 8 even numbers are 0,2,4,6,8,10,12,16 

 

             READ count 

 

10. Write a pseudocude that performs the following. Ask a user to enter Year of birth and 

printout user generation as follows: 

                 IF year 1946 – 1964 = ‘Baby Boomers’ 

                 IF year 1965 – 1984 = ‘Generation X’ 

                 IF year 1985 – 2000 = ‘Generation Y’ 

                 IF year > 2000 = ‘Generation Z’ 

   

               DISPLAY “ Please enter year of birth” 

               RECEIVE  birth year from KEYBOARD 

               IF year >=  1946 and year <= 1964 

                     DISPLAY ‘Baby Boomers’ 

               IF year >=  1945 and year <= 1984 

                     DISPLAY ‘Generation X’ 

                 IF year >=  1985 and year <= 2000 

                     DISPLAY ‘Generation Y’ 

             IF year >=  2000 

                     DISPLAY ‘Generation Z’ 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

252 

 

Appendix I 

Post-Test Question (Part 1) 

Participant ID: __________________ 

 

Pre Test – PART 1 

Instructions- Read each problem given and provide answer in each box. Please don’t 

solve the problems 

 

1.Read in a number representing a temperature in degrees Celsius and write it out as a 

value in degrees Fahrenheit. If the Celsius value is C, then the Fahrenheit value, F, 

is calculated as follows: F = ( 9 / 5 ) * C + 32. 

 

 

 

 

2.Read in 10 numbers and write out the average of those number 

 

 

 

 

3.Store and process the race times of the finalists in a 100 m sprint so that the winner’s 

time is output. Given all the 10 times as follows [10.23, 

10.1,10.29,9,9,10.12,10.34,9.99,9.58] 

 

 

 

 

4.Write pseudocode that reads in the three numbers and writes them all in sorted order 

 

 

 

 

5.Write pseudocode that will count all the even numbers up to a user defined stopping 

point. For example, say we want to see the first 5 even numbers starting from 0. 

Well, we know that the even numbers are 0, 2, 4, etc.  The first 5 even numbers are 

0, 2, 4, 6, 8. The first 8 even numbers are 0, 2, 4, 6, 8 ,10 ,12, 16 

 

 

 

 

Question: Based on the problem given, do you think you can provide the answer?                                

[  ] Yes    [ ] No 

Question: Based on the problem given, do you think you can provide the answer?                                

[  ] Yes    [ ] No 

Question: Based on the problem given, do you think you can provide the answer?                                

[  ] Yes    [ ] No 

Question: Based on the problem given, do you think you can provide the answer?                                

[  ] Yes    [ ] No 

Question : Based on the problem given, do you think you can provide the answer?                                

[  ] Yes    [ ] No 

Univ
ers

ity
 of

 M
ala

ya



 

253 

 

Appendix J 

Post-Test Question (Part 2) 

Participant ID: ___________________________________ 

Post-Test – PART 2 

 

Instruction: You are given 1 hour to solve all the problems. The experimenter will alert 

you  when the time is up. You are allowed to solve the problems given in any order. 

 

Kindly read the box given below before you start. 

 

 

 

 

 

 

 

1. Read in a number representing a temperature in degrees Celsius and write it 

out as a value in degrees Fahrenheit. If the Celsius value is C, then the 

Fahrenheit value, F, is calculated as follows: F = ( 9 / 5 ) * C + 32. 

 

 

2. Read in 10 numbers and write out the average of those numbers 

3. Store and process the race times of the finalists in a 100 m sprint so that the 

winner’s time is output. Given all the 10 times as follows [10.23, 

10.1,10.29,9,9,10.12,10.34,9.99,9.58] 

 

 

4. Write a pseudocode that reads in the three numbers and writes them all in 

sorted order 

 

 

5. Write a pseudocode that will count all the even numbers up to a user defined 

stopping point. 

For example, say we want to see the first 5 even numbers starting from 0. 

well, we know that the even numbers are 0, 2, 4, etc.  

The first 5 even numbers are 0, 2, 4, 6, 8. 

The first 8 even numbers are 0, 2, 4, 6, 8 ,10 ,12, 16 

 

 

 

 

Pseudocode: is an artificial and informal language that helps programmers 

develop algorithms. Pseudocode is a “text-based” detail (algorithmic) design tool. 

The rules of Pseudocode are reasonably straightforward. All Statements showing 

“dependency” are to be indented. These include WHILE, DO, FOR, IF and 

SWITCH. 

Univ
ers

ity
 of

 M
ala

ya



 

254 

 

Appendix K 

Sample Schema Answer for Pre-Test (Part 2) 

 

1. Write a pseudocode that reads two numbers and multiplies them together and 

prints out their product 

 

RECEIVE num1, num2 FROM KEYBOARD 

SET multi to num1 * num2 

SEND multi TO DISPLAY 

 

2. Write a pseudocode that performs the following. Ask a user to enter a number. If 

the number is between 0 and 10, write the word blue. If the number is between 

10 and 20, write the word red. If the number is between 20 and 30, write the 

word green 

 

DISPLAY “Please enter a number” 

RECEIVE numColor FROM KEYBOARD 

IF  numColor > 0 AND numColor <=10 

      DISPLAY Blue 

ELSEIF numColor > 10 and numColor  <=20 

      DISPLAY Red 

ELSE numColor > 10 and numColor <=30 

      DISPLAY Green 

 

3.  Write a pseudocode to print all multiples of 5 between 1 and 100 (including 

both 1 and 100) 

 

     SET x to 1 

     WHILE ( x < 20) 

      DISPLAY x  

      SET x = x * 5 

4. Write a pseudocode that will count all the even numbers up to a user defined 

stopping point. For example, say we want to see the first 5 even numbers starting 

from 0.  

 

The first 5 even numbers are 0,2,4,6,8. 

The first 8 even numbers are 0,2,4,6,8,10,12,16 

 

 

5. Write a pseudo code to find the factorial of N where the value of N is input 

through the keyboard.? 

fact=1  

n=input(“Please, Enter a number\n”)  

c=1  

while(c<=n):  

fact=fact*c  

c=c+1  

print “The factorial of “, n , “ is “, fact 

 

Univ
ers

ity
 of

 M
ala

ya



 

255 

 

Appendix L 

Sample Schema Answer for Post-Test (Part 2) 

 

1.Read in a number representing a temperature in degrees Celsius and write it out as a 

value in degrees Fahrenheit. If the Celsius value is C, then the Fahrenheit value, F, 

is calculated as follows: F = ( 9 / 5 ) * C + 32. 

 

Using our pseudocode, this would be written as follows: 

RECEIVE c FROM KEYBOARD 

SET f TO ( 9 / 5 ) * c + 32 

SEND f TO DISPLAY 

 

2.Read in 10 numbers and write out the average of those number 

This would be presented as follows: 

  SET total TO 0 

SET count TO 0 

 

WHILE count < 10 DO 

           RECEIVE nextInput FROM KEYBOARD 

              SET total TO 0 

SET count TO count + 1 

          END WHILE 

          SEND total / 10 to display 

 

 

3.Store and process the race times of the finalists in a 100 m sprint so that the winner’s 

time is output. Given all the 10 times as follows: 

[10.23, 10.1,10.29,9,9,10.12,10.34,9.99,9.58] 

 

SET allTimes TO [10.23, 10.1,10.29,9,9,10.12,10.34,9.99,9.58] 

SET fastest FROM allTimes 

FOR EACH time FROM allTimes DO 

      IF fastest TO time 

           SET fastest to time 

      END IF 

          END FOR EACH 

          SEND  “The winner time was” fastest TO DISPLAY 

 

  

4.Write a pseudocode that reads in the three numbers and writes them all in sorted order 

 

Read num1, num2, num3 

If (num1 < num2) 

    If(num2 < num3) 

        Write num1 , num2, num3 

Univ
ers

ity
 of

 M
ala

ya



 

256 

 

    Else 

        If(num3 < num1) 

            Write num3, num1, num2 

        Else 

            Write num1, num3, num2 

else  

    If(num1 < num3) 

        Write num2 , num1, num3 

    Else 

        If(num3 < num2) 

            Write num3, num2, num1 

        Else 

            Write num2, num3, num1 

 

5.Write a pseudocode that will count all the even numbers up to a user defined stopping 

point. 

      For example, say we want to see the first 5 even numbers starting from 0. 

      well, we know that evens numbers are 0, 2, 4, etc.  

      The first 5 even numbers are 0, 2, 4, 6, 8. 

      The first 8 even numbers are 0, 2, 4, 6, 8 ,10 ,12, 16 

 

Read count 

Set x to 0; 

While(x < count) 

    Set even to even + 2 

    x = x + 1 

    write even 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

257 

 

Appendix M 

Questionnaire Survey For MSSNP Usability 

 

This survey is part of a study to evaluate the usability of Metacognitive Support System 

for Novice Programmer. You were specially selected as part of a random representative 

sample to take this survey. By responding to the survey, you will provide essential 

information about your perception on the usability factor of MSSNP. Please answer all 

questions 

 

 

Metacognitive Support System for Novice Programmer (MSSNP) is a tool developed to 

support novice programming for learning programming metacognitively. Metacognition 

refers to a learner’s ability automatic  awareness of their own knowledge and their 

ability to understand, control, and manipulate their own cognitive process (Flavell, 

1979). This role of metacognition in learning programming is one important in 

determining learning success. Five stages of metacognitive activities have been 

identified as being useful in supporting learners in learning computer programming as 

follows:  

1. Pre-Task – The main objective of this stage is for student to be stimulated by 

their own reflection in monitoring their knowledge. It focuses on the past 

experience in solving  problems  as well as the performance 

2. Familiarization – The main objective of this stage is to encourage students to 

reflect  on the strategies that may help them in problem-solving process 

3. Production – The main objective of this stage is to reflect the student’s 

understanding concerning the concept as well as their confidence in solving the 

problem correctly 

4. Evaluation- This stage only involves the activity of checking the solution 

provided by the lecturer, which is used as a comparison in studying the student’s 

solution. 

5. Post-Task - The opportunity will be given to the students to review their most 

recent experiences as well as explore things that happened during the activity of 

solving the problem. 

 

 

Thank you for participating in this study! 

 

 

Yours Sincerely,  

Siti Nurulain Mohd Rum (Mrs.)  

PhD Candidate  

Faculty of Computer Science and Information Technology  

University of Malaya  

snurulain@siswa.um.edu.my 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya

mailto:snurulain@siswa.um.edu.my


 

258 

 

No.  Rating Score 

Affect  

AF1  Working with this software is satisfying   

AF2  This software is awkward when I want to do something, which is not standard.   

AF3  Sometimes the MSSNP environment gives me a headache   

AF4  There are too many steps required to get something  

to work  

 

AF5  Sometimes MSSNP behaves in a way that I don’t understand   

AF6  I enjoy my sessions with MSSNP   

AF7  I would recommend this learning environment to my  

friends  

 

AF8  Working with this learning environment is mentally  

stimulating  

 

Efficiency  Rating Score 

E1  The MSSNP has helped me to overcome any problems  

I have had by using it  

 

E2  The MSSNP is attractively presented   

E3  Using MSSNP reduces the time I spend in finding the right information for my early 

stage of research work  

 

E4  MSSNP allows me to find the information that I need for my research more quickly   

E5  Using MSSNP save my time   

Helpfulness  Rating Score 

H1  The instructions and prompts are helpful   

H2  The way that information is presented is clear and  

understandable  

 

H3  The MSSNP instructions are very informative   

H4 There is enough information on the screen when it is needed  

H5 I can understand and act based on the information  

provided by MSSNP 

 

Control Rating Score 

C1  MSSNP responds too slow to inputs   

C2  I think MSSNP is inconsistent   

C3  The speed of  MSSNP  is appropriate   

C4  It is relatively easy to move from one part of a task to  

another  

 

C5  I can see at a glance what are the options at each stage   

Learnability Rating Score 

L1  It is hard to use new functions   

L2 The help information given by MSSNP is very useful  

L3 I’m sure in choosing the right command to use  

L4 It is easy to make MSSNP do exactly what I want  

L5 Learning to operate MSSNP is full of problems initially   

 

Do you have any other comments on the MSSNP system?  
______________________________________________________________________

______________________________________________________________________ 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

259 

 

Appendix N 

Experiment Materials 

 

This appendix provides the list of all the materials used in the experiment with MSSNP   

 

List of Materials 

The materials used in this research work are presented in the following order: 

1. Consent Form 

2. Participation Information 

3. Pre-test session for Part 1 

4. Pre-test session for Part 2 

5. Observation Form. 

6. MSSNP manual (step-by-step tutorial). 

7. Problem Solution workout sheet. 

8. Post-test for Part 1 

9. Post-test for Part 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

260 

 

Appendix O 

Observation Sheet (For Experimenter Only) 

 

Participant No:______________________ 

 

Pre-Test result 

(Prediction) 
Unable to 

Solve it 

Able to Solve it 

partially 

Able to fully 

solve it 
(Performance) 

Provides correct answer 
   

Provides partial correct 

answer    

Provides Incorrect 

answer    

 

 

Post-Test result 

 

(Prediction) 
Unable to 

Solve it 

Able to Solve it 

partially 

Able to fully 

solve it 
(Performance) 

Provides correct answer 
   

Provides partial correct 

answer    

Provides Incorrect 

answer    

Univ
ers

ity
 of

 M
ala

ya



 

1 

 

 

Univ
ers

ity
 of

 M
ala

ya




