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ABSTRACT 

The solution to power dispatch problem has been an important and basic optimization 

procedure in both conventional and restructured power systems. The main objectives of 

the power dispatch problem are to minimize the generation cost and emission amount of 

generators as well as to meet the power demand. The goal is to determine the most 

optimal power sharing among the generating units in a power system.  

The practical power dispatch problems consider the technical operating constraints of 

generators such as ramp-up and ramp-down limits, lower and upper limits of generators, 

and prohibited operating zones. The accurate cost function needs to be taken into 

account in the problems for real-world applications by considering the valve-point 

loading effects and multiple fuel options. In this thesis, the power dispatch problems 

with the aforementioned constraints and cost functions are considered. Several case 

studies varied in size and complexity are employed in the power dispatch problems. 

Backtracking search algorithm (BSA) as the new evolutionary technique of optimization 

is used for solving the problems. Since the power dispatch problem is a constrained 

problem, two constraint handling mechanisms are proposed in the optimizer and are 

compared to each other in terms of solution quality they produce. BSA with two 

constraint handling mechanisms is applied to solve the power dispatch problems to 

select the better mechanism in power dispatch problems. Then, a microgrid with several 

renewable and conventional generating units is modeled for the purpose of optimal 

power dispatch. The problem is solved by BSA with the selected constraint handling 

mechanism to minimize the generation cost of the microgrid for a specific period of 

time. The multi-objective BSA is also developed to solve the economic and emission 

dispatch problems (EED) in a power system. The EED problem is solved by three 

methodologies including economic and emission dispatch separately, combined 
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economic and emission dispatch, and economic and emission dispatches 

simultaneously. 

The high performance of the proposed technique with the proposed constraint handling 

mechanism is validated by solving the power dispatch problem in the large-scale test 

systems with the most complex cost functions. The proposed method is also compared 

with other well-known optimization methods from the literature in terms of the solution 

quality. The results show that the proposed method is highly robust when it deals with 

the practical power dispatch problems and its convergence characteristics make it a 

promising solution approach for power dispatch problems.  
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ABSTRAK 

Penyelesaian kepada masalah penghantaran kuasa telah menjadi satu perkara penting 

dan prosedur pengoptimuman asas dalam kedua-dua sistem kuasa konvensional dan 

disusun semula. Objektif utama masalah penghantaran kuasa adalah untuk 

mengurangkan kos penjanaan dan jumlah pelepasan penjana disamping untuk 

memenuhi permintaan kuasa. Prosedur ini adalah untuk menentukan perkongsian kuasa 

yang paling optimum di antara unit-unit penjanaan dalam sistem kuasa. 

Masalah penghantaran kuasa yang praktikal mempertimbangkan kekangan operasi 

teknikal penjana seperti had jalan ke atas dan had jalan ke bawah, had penjanaan yang 

lebih rendah dan lebih tinggi, dan zon operasi larangan. Fungsi kos yang tepat perlu 

diambil kira dalam masalah ini untuk aplikasi dunia sebenar dengan mempertimbangkan 

kesan loading injap dan pelbagai pilihan bahan api. Dalam tesis ini, masalah 

penghantaran kuasa dengan kekangan yang dinyatakan di atas dan fungsi kos akan 

dipertimbangkan. Beberapa kajian kes yang mempunyai pelbagai saiz dan kerumitan 

telah di ambil kira dalam masalah penghantaran kuasa ini. Algoritma Carian Pengesan-

belakang (BSA) sebagai teknik evolusi baru pengoptimuman telah digunakan untuk 

menyelesaikan masalah ini. Oleh kerana masalah penghantaran kuasa mempunyai 

masalah kekangan, dua mekanisme untuk pengendalian kekangan telah dicadangkan 

dalam pengoptimum dan turut dibandingkan antara satu sama lain dari segi kualiti 

penyelesaian. BSA dengan dua mekanisme pengendalian kekangan ini digunakan untuk 

menyelesaikan masalah penghantaran kuasa untuk memilih mekanisme yang lebih baik. 

Kemudian, satu grid mikro dengan beberapa unit penjanaan boleh diperbaharui dan 

konvensional telah dimodelkan untuk menyelesaikan masalah penghantaran kuasa ini. 

Masalah ini dapat diselesaikan dengan menggunakan BSA beserta mekanisme 

pengendalian kekangan yang dipilih untuk mengurangkan kos penjanaan grid mikro 

untuk tempoh masa yang tertentu. BSA dengan pelbagai objektif turut dibangunkan 
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untuk menyelesaikan masalah penghantaran ekonomi dan pelepasan (EED) di antara 

unit-unit penjanaan. Masalah EED diselesaikan melalui tiga metodologi termasuk 

ekonomi dan pelepasan penghantaran secara berasingan, gabungan penghantaran 

ekonomi dan pelepasa penghantaran, serta ekonomi dan pelepasan penghantaran secara 

serentak. 

Prestasi tinggi yang ditunjukkan oleh teknik yang dicadangkan dengan mekanisme 

pengendalian kekangan disahkan dengan penyelesaian masalah berskala besar dengan 

fungsi kos yang paling rumit. Kaedah yang dicadangkan juga dibandingkan dengan lain-

lain kaedah pengoptimuman yang terkenal yang sedia ada dari segi kualiti penyelesaian. 

Hasil kajian menunjukkan bahawa kaedah yang dicadangkan adalah sangat mantap 

apabila ia berkaitan dengan masalah penghantaran kuasa yang praktikal dan ciri-ciri 

penumpuannya menjadikan ia satu pendekatan yang terjamin untuk menyelesaikan 

masalah penghantaran kuasa. 
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

The efficient and optimal operation of power system has always occupied an important 

position in electric networks. For many years in both conventional and modern power 

systems, the system operators (SOs) have tried to run the power system with the 

minimum cost of energy supply while satisfying the system constraints. They have tried 

to reduce the electricity cost imposed on the costumers by efficient procedures in the 

power system operation. In this regard, several approaches such as optimal power flow 

(OPF), unit commitment (UC), and economic dispatch problem (ED) have been 

considered so far. The economic dispatch problem is always considered as the basic and 

important task for the optimal operation of power system.  It is employed to determine 

the power sharing of committed generating units in an economic manner to supply the 

power demand by considering technical constraints of power system elements. 

Solutions to traditional power dispatch problems aimed for economic operation of the 

generating units of the power system to minimize the cost of power generation. When 

environmental concerns are considered, the economic dispatch may not produce the best 

results. This calls for economic and emission dispatch that considers both generation 

cost and emission minimizations. 

1.2 Problem Description 

Economic dispatch (ED) problem as an optimization problem is composed of an 

objective function and several constraints. Previous attempts to solve the ED problems 

have employed the classical methods of optimization known as conventional 

techniques.  In these methods, technical and practical constraints of the units and the 

network have to be simplified/ignored owing to the limits of the classical methods. Such 

simplifications divide into two sections. One is associated with the accuracy of the cost 
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model of the generating units especially for different types of fuels or to consider the 

valve-point loading effects (Cai et al., 2012b). Another relates to the network topology, 

either ignored or limited to considering only the total transmission network loss 

(Haiwang et al., 2013). 

The objective of economic dispatch is usually to minimize the generation cost in the 

power system. Traditionally, the cost function of a generating unit is modeled by a 

quadratic cost function for the applicability of conventional techniques for solving 

economic dispatch problems. However, an accurate cost function addresses the valve 

point loading effects by adding a sinusoidal term to the generator cost function 

(quadratic function). In this case, the cost function becomes non-convex and solving 

economic dispatch with the non-convex objective function is a challenging issue for the 

conventional approaches. In addition, some generators have several fuel options in their 

operations and the cost function of a generator becomes more complex by considering 

the multiple fuel options. Finally, the practical economic dispatch problem is the 

problem in which the valve-point effects and multiple fuel options are taken into 

account in the cost functions of the generators. 

The constraints of power dispatch problem consist of an equality and several 

inequalities. The equality constraint illustrates the balance between the power demand, 

the transmission loss, and the generations. The inequalities include the boundary limits, 

the ramp rate limits, and the prohibited operating zones. The basic power dispatch 

problem considers only the boundary limits while the ramp rate limits and prohibited 

operating zones are addressed in the practical economic dispatch problems. 

The methods of solving the power dispatch problems include the classical methods of 

optimization (usually known as the conventional techniques), the metaheuristic 

methods, and hybrid methods. The classical methods suggested for solving the 
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economic dispatch problems are linear programming (LP) (Jabr et al., 2000), Lagrange 

relaxation (LR) (Zhigang et al., 2013), quadratic programming (QP) (M. Q. Wang et al., 

2014), dynamic programming (DP) (Z. X. Liang et al., 1992), etc. The metaheuristic 

methods include variety of techniques such as evolutionary algorithms (EAs), particle 

swarm inspired algorithms such as particle swarm optimization (PSO) (Niknam et al., 

2010), ant colony optimization (ACO) (Pothiya et al., 2010), artificial bee colony 

algorithm (ABC) (Basu, 2013), glowworm swarm optimization (GSO) (Nelson 

Jayakumar et al., 2014), and shuffled frog-leaping algorithm (SFLA) (P. Roy et al., 

2013), socio-human or socio-political inspired algorithms such as imperialist 

competitive algorithm (ICA) (Mohammadi-ivatloo et al., 2012), and natural-

phenomena-inspired algorithms including charged system search (CSS) (Özyön et al., 

2012), and harmony search (HS) (Jeddi et al., 2014). The hybrid methods are 

combinations of either two or more metaheuristic methods or metaheuristic with 

classical methods. 

For many years the classical methods of optimization have been the only approaches to 

solving ED problems. They usually consider the forms of linear, piece-wise linear, and 

quadratic functions for the generator cost function; the network topology is ignored or 

only the network loss is considered. However, an ED problem is non-convex with high 

complexity in the real world applications, so the application of the classical methods is 

restricted. Although Maclaurin series (Hemamalini et al., 2010) approximation is 

employed to solve the non-convex ED problems, it leads to a non-optimal solution. In 

addition, Dynamic programing (DP) (Z. X. Liang & Glover, 1992) among the classical 

methods has been proposed to solve the ED problem with no restriction on the forms of 

generators’ cost functions; however, its performance is increasingly affected by problem 

size (Zwe-Lee, 2003). 
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Metaheuristic techniques can solve ED problems with fewer/no restrictions on the shape 

of the cost functions, also cope with the difficulties of classical optimization techniques. 

They have been deployed to solve practical ED problems with a high degree of 

nonlinearity and more constraints than before. In this case, the application of these 

methods have shown promising solutions for complex ED problems, since they could 

handle various operating constraints, such as prohibited operating zones (POZ), 

generators’ ramp-up and ramp-down. Some metaheuristic methods suffer from 

premature convergence and high computation time in the case of increasing system size 

which impedes their applications for real time operation. Therefore, the hybrid methods, 

such as the combination of two or more methods, have been proposed to eliminate each 

method’s drawback. 

The environmental effect of power generation has become an important issue of today’s 

power system operation. Fossil-based power plants produce significant amount of the 

air pollutions in the atmosphere. The negative effects of various pollutants have 

attracted serious concerns in public so that the environmental impacts of power 

generation cannot be ignored in the operation of the power system. In this case, the US 

Clean Air Amendment of 1990 is imposed on power industry to control and minimize 

the emission amount realised by the generators (El-Keib et al., 1994; Srinivasan et al., 

1997). Several strategies can be considered to decrease the harmful gases produced by 

the power plants such as enhancing the quality of burners, installing the pollution 

cleaning equipment, investing in renewable energy technologies or modern generators 

with low emissions, and performing emission power dispatch. Unlike the first three 

options, the emission dispatch does not require high capital investment. It can be 

performed on an existing system as a short term solution. Therefore, the optimal 

operation of power system would be achieved by not only minimizing the generation 

cost but also minimizing the emission amount. To handle both objective minimizations, 
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various multi-objective approaches have been proposed. Such approaches address the 

economic-emission dispatch problems (EED). So far, the classical, metaheuristic, and 

hybrid methods have been employed for solving the EED problems. In this regard, the 

application of new methods especially the metaheuristics is encouraged to deal with this 

multi-objective problem.   

1.3 Research objectives 

The main objectives of this study are: 

1. To propose the backtracking search algorithm (BSA) for solving the convex/non-

convex power dispatch problems by considering the valve point loading effect, 

multiple fuel options, and practical operating constraints of the generating units 

2. To propose suitable constraint handling mechanism for solving power dispatch 

problems by BSA  

3. To evaluate the proposed method for large-scale applications especially for solving 

highly nonlinear and complex ED problems and to  solve power dispatch problem for 

microgrid with renewable and conventional generators 

4. To develop multi-objective BSA for solving the economic and emission dispatch 

problems (EED) through methodologies including weighted sum method (WSM) and 

non-dominated approach (NDA). 

1.4 Scope of work 

The following items are considered in this research: 

1. The formulation of power dispatch problem is based on mathematical model of 

generators and electric network 

2. For solving the economic dispatch problems, six test systems different in cost 

model and system operating constraints are tested.  
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3. For large scale power dispatch problem, four systems with up to 160 generating 

units are employed. The valve-point loading effects and multiple fuel options are 

considered in these systems. 

4. For solving power dispatch problem in microgrid, a system including two wind 

power plants, three fuel cell plants, and two diesel generators are considered.  

5. For solving the multi-objective power dispatch problems, three systems including 

IEEE 30-bus 6-unit, 10unit, and IEEE 118-bus 14-unit systems are tested. 

6. All the simulations are done in Matlab environment on a personal computer with 

Pentium 2.70 GHz processor and 2GB RAM. 

1.5 Organization of thesis 

The rest of the thesis is organized as follows: 

Chapter 2 provides background on the concepts involved in this work and a literature 

review that covers the types of power dispatch problems and the optimization methods 

for solving these problems. Chapter 3 focuses on the mathematical modeling and 

problem formulation of power dispatch problems. It also explains the methodology of 

solving the power dispatch problems with two constraint handling mechanisms 

incorporated in backtracking search algorithm. Chapter 4 provides findings of 

optimization by backtracking search algorithm (BSA) for solving economic dispatch 

problems in power system and a microgrid, respectively. Chapter 5 describes the results 

of multi-objective power dispatch problems. Chapter 6, as the last chapter, presents 

conclusions and future works. A comprehensive list of reference is provided at the end 

of the thesis. 

 



7

CHAPTER 2 : LITERATURE REVIEW 

2.1 Introduction 

The problem of power dispatch is to determine the generation schedule of generators to 

supply a specific level of power demand. This problem is considered as an optimization 

problem which is to minimize a single objective or multiple objectives. The objective of 

power dispatch problem is usually assumed to be the generation cost referred to as 

economic dispatch problem (ED). When the environmental concern is to be taken into 

consideration, the emission amount produced by the generators should be also 

minimized. This concern changes the ED problem to the economic/emission dispatch 

problem (EED). In this chapter, the attempts to solve both ED and EED problems are 

described from the literature. At first, the concept of optimization is presented. 

2.2 The concept of optimization 

The optimization refers to minimize or maximize objective function(s) to find the best 

solution to a problem while satisfying several inequality and quality constraints. In one 

view, the optimization problems are divided into either constrained or unconstrained 

problems but most of the real-world optimization problems are from the first type. In 

another view, the optimization problems fall into single objective or multi-objective 

problems. 

The formulation of a single objective optimization problem is shown by Eq. (2.1) which 

is usually represented as the minimization of function f(X) subjected to equality and 

inequality constraints. 
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Where X is the vector of optimization variables, g(X) and h(X) are respectively the 

vectors of inequalities and equalities. 

In the multi-objective optimization problem, several functions need to be optimized 

simultaneously. Eq. (2.2) shows the general form of a multi-objective problem subjected 

to equality and inequality constraints. 
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When it comes to multi-objective optimization, there is no unique solution 

corresponding to the optimal value of each objective. Instead, there is a set of solutions 

known as the pareto optimal set. Assuming that Φ=(Φ1,…,Φn) and Ψ=(Ψ1,…,Ψn) are 

two solutions included in the pareto optimal set and correspond to the objectives 

F(Φ)=(f1(Φ),…,fk(Φ)) and F(Ψ)=(f1(Ψ),…,fk(Ψ)),, the solution Φ dominates the 

solution Ψ, denoted by Φ≺Ψ or F(Φ)≺F(Ψ), if and only if the following conditions of 

Eq. (2.3) are satisfied. In this case, the solution Φ is the non-dominated solution. 
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where i and k represent the solution number and the number of objectives, respectively. 

In Figure 2.1, the circled points represent the pareto optimal set of two objectives. The 

black circles represent the non-dominated solutions and the connected line of these 

points is the pareto front. The set of pareto front represented by P is described 

mathematically by Eq. (2.4). 
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Figure 2.1 The pareto optimal set for two objective functions 

2.3 Economic dispatch problem (ED) 

 Economic operation has been a challenging issue to both conventional and smart grid 

systems. Economic dispatch (ED) refers to optimizing the power share of each 

generating unit to meet power demand within the technical constraints of the generators 

and the electrical network.  

ED problem are convex or non-convex based on the system and its elements’ models. In 

a convex ED problem, the cost function of a generating unit is considered as a quadratic 

function. Practical and non-convex ED problems, however, contain non-convex cost 

functions that are due to the valve-point effect of the generating units. Classical methods 

have been adopted to solve conventional ED problems (i.e., containing convex cost 

functions) but instead produce non-optimal solutions because of the non-convexity/non-

linearity of practical ED problems (Basu et al., 2013). Dynamic programming, for 

example, has been proposed in addressing non-convex ED problems because it does not 

restrict the form of the cost function; the increased dimension of the problem, however, 

may demand higher computational efforts (Cai et al., 2012b; Zwe-Lee, 2003). 

f1

f 2

Non-dominated solutions
Dominated solutions
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Maclaurin series (Hemamalini & Simon, 2010) approximation is employed to solve the 

non-convex ED problems, but it leads to a non-optimal solution. 

Unlike classical methods, metaheuristic methods are better options because they can 

handle more constraints and are able to explore the search domain effectively in finding 

the optimum. Among these techniques, differential evolution (DE) is especially very 

effective because it does not need derivative information from the cost function; instead 

it sub-optimally or prematurely converges (Niknam, Mojarrad, Meymand, et al., 2011). 

Other drawbacks associated with metaheuristics are high sensitivity to the control 

parameters, long computational time, and slow convergence to approximately optimum 

solution (Subathra et al., 2014). 

Recent hybrid methods overcome those drawbacks of single metaheuristic or classical 

approaches, able to handle the high complexities of practical ED problems. One method 

might be adopted for its high convergence, another for its provision of a suitable initial 

guess for the problem. The hybrid methods are combinations of either two or more 

metaheuristic methods or metaheuristic with classical techniques and perform better 

than individual techniques. In the following sections, the aforementioned techniques are 

discussed based on their categories. 

2.3.1 Classical methods 

(Waight et al., 1981) have used the Dantzig-Wolfe decomposition method to resolve the 

ED problem into a master problem and a set of smaller linear programming sub-

problems. The sub-problems are solved by revised simplex method. 

(Aoki et al., 1982) have solved economic load dispatch problem by quadratic 

programming technique. The problem contains a large number of linear constraints. The 

parametric quadratic programming is proposed as the extension of the quadratic 
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programming method in order to deal with the transmission loss in the ED problem. The 

execution time and memory requirements suggest this method for real time applications.    

(Lin et al., 1984) have formulated the economic dispatch problem with piecewise 

quadratic cost  functions. The solution approach is hierarchical and the results show that 

the solution method is practical and valid for real time applications.  

(Ramanathan, 1985) has proposed simple and efficient solution technique for solving 

economic dispatch problem based on lambda calculation. The penalty factors used in 

the procedure of algorithm is determined by Newton’s method. The algorithm has also 

considered transmission network loss in the dispatch problem. Based on the results, 

there have not been any convergence and oscillations problems in the execution of the 

algorithm.  

(Gherbi et al., 2011) have proposed a quadratic programming technique to solve the 

economic dispatch problem with several objective functions including emission, cost, 

and loss reductions. The proposed algorithm was applied on a six-unit power system. 

Compared to several methods of optimization, less computational time and best optimal 

solution have been achieved. 

(Lin et al., 1992) have developed a classical method to solve the real-time economic 

dispatch problem through alternative Jacobian matrix considering the system 

constraints. The transmission loss is taken into account in the problem and the proposed 

method was tested on a case study resulting fast-convergence with accurate results. 

(Papageorgiou et al., 2007) have used mixed integer quadratic programming for solving 

economic dispatch problem with prohibited operating zones constraints. In deregulated 

power systems, increasing the profit through the optimized generation schedules is the 

main objective for the generators owners whereas the demand satisfaction is not a 

commitment. 
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(Irisarri et al., 1998) have solved the economic dispatch problem using interior point 

technique. The reference considered the generation ramp rate and transmission line flow 

limits in the ED problem so the security and economic features of system operation are 

satisfied at the same time. 

A fast lambda iteration method is suggested by (Zhan et al., 2014) to solve ED problems 

with prohibited operating zones. The method is applied on 15-unit systems and also a 

Korean 140-unit test system to verify the efficiency of the proposed method. 

2.3.2 Metaheuristic methods 

The non-convex economic dispatch problem caused by non-smooth fuel cost function 

has been solved by tabu search algorithm (TS) by (Khamsawang et al., 2002) and 

compared with the conventional techniques. An improved tabu search is also 

implemented by (Whei-Min et al., 2002) for solving ED problem with multiple minima.  

(Zwe-Lee, 2003) has proposed particle swarm optimization (PSO) method for solving 

ED problem considering non-smooth cost functions, ramp rate limits, and prohibited 

operating zone constraints. The proposed PSO is also compared with genetic algorithm 

in terms of solution quality resulting high performance of the proposed method. 

An improved PSO (IPSO) technique was introduced by (Jong-Bae et al., 2010)  to solve 

ED problem with non-convex cost functions. The applicability of the proposed method 

is verified by applying on large-scale power system of Korea. 

(Sum-Im, 2004) introduced ant colony search algorithm (ACSA) to solve the ED 

problem considering transmission network loss. The most prominent advantage of 

ACSA is to optimize while searching. ACSA has been examined on IEEE 30-bus 

system and the results compared to those attained by Lambda iteration and genetic 

algorithm. 
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(Pothiya et al., 2010) presented a solution to ED problem with non-smooth cost 

functions by ant colony optimization (ACO). The algorithm outperformed other 

heuristic methods in terms of less computation time and accurate results. 

(Tankasala) utilized artificial bee colony (ABC) optimization technique to solve ED 

dispatch problem in coal fired power plants. ABC is one of the intelligent techniques 

that can cover the defects of conventional methods. In this reference, the ABC is 

compared with several intelligent techniques. The results indicate that ABC ensures the 

global minimum of the solution while other intelligent techniques may lead to local 

minimum. 

Artificial bee colony has also been applied for solving multi-area economic dispatch 

(MAED) problem by (Basu, 2013). The constraints of tie lines, transmission loss, 

multiple fuel options, valve point loading effects, and prohibited operating zones have 

been taken into account in this reference. The performance of the method has been 

examined on three test systems with different degree of complexity and compared with 

evolutionary programming in terms of the solution quality. The results represented the 

proposed method to be a promising solution for solving of practical ED problems. 

Genetic algorithm (GA) is used by (Sheble et al., 1995; Walters et al., 1993) to solve 

ED problem considering valve-point effects in generator cost function.  

(Hong et al., 2002) have considered the ED problem in a deregulated market with 

multiple buyers and co-generators and solved the problem by genetic algorithm (GA). 

The IEEE 30-bus and 118-bus systems are used to analyze the performance of the 

proposed method.   

GA is also used by (Abido, 2003b) for solving multi-objective ED problems for 

minimizing the fuel cost and the emission by considering valve-point effects and 



14 

transmission loading restrictions. The IEEE 30-bus system is the case study to validate 

the performance of GA.  

(Po-Hung et al., 1995) has suggested  GA for solving of ED problem in large-scale 

system in Taiwan electric network composed of 40 generating units. The transmission 

loss, ramp rate limits and prohibited operating zones are addressed in the ED problem. 

The high robustness and powerfulness of the proposed method are proved by 

comparison to the lambda iteration method. 

Particle swarm optimization method is presented by (Kumar et al., 2003) to solve multi-

objective economic dispatch considering emission and fuel cost. 

The problems of ED with valve point loading effects and multiple fuel options are 

solved by (Jong-Bae et al., 2005) through modified PSO (MPSO). The equality 

constraint is handled by an appropriate treatment mechanism and the inequalities are 

handled by position adjustment strategy. A dynamic search space reduction strategy is 

employed to accelerate the optimization process. 10-unit test system with multiple fuel 

options and 40-unit system with non-convex cost functions are use as the case studies 

and the results of MPSO are compared with those of numerical techniques such as tabu 

search, and evolutionary programming, genetic algorithm. 

An improved PSO is proposed by (Park et al., 2010) to solve ED problems considering 

the power balance constraint and generators boundary limits. Although PSO is capable 

of handling heavily constraints ED problems, it may trap in local optimum in the 

solution space, the chaotic sequence combined with the conventional linearly decreasing 

inertia weights is employed in this reference and the crossover operation scheme is 

adopted to enhance both exploration and exploitation capability of the proposed method. 

The effective constraint handling framework is also used in the optimization. Several 

case studies with valve-point effect, prohibited operating zones as well as transmission 
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network loss, and multiple fuel options are employed to validate the performance of the 

proposed method and the results are compared with well-known optimization methods. 

The power system of Korea as the large-scale system is also considered to evaluate the 

proposed method.  

Another version of PSO with the use of linearly decreasing inertia weight factor is 

suggested by (Jeyakumar et al., 2006) to solve multi area, multiple fuel, and multi-

objective economic dispatch problems and ED problems with prohibited operating 

zones. Several case studies corresponding to the aforementioned ED problems are 

adopted to test the performance of the proposed method. The results of the PSO are 

compared with the results of classical evolutionary programming. The results show that 

the proposed PSO can produce high quality solutions with reduced computation time.  

A chaotic PSO with an implicit filtering techniques (IF) is proposed as the hybrid 

approach by (dos Santos Coelho et al., 2007) to solve ED problems with valve point 

loading effects considering the power balance and generators boundary limits. The 

chaotic PSO is the global optimizer and the IF is to fine-tune the chaotic PSO run in a 

sequential manner. The proposed hybrid approach is validated by a test system 

consisting of 13 units taking into account the valve point loading effects in generators 

cost functions. 

Two versions of chaotic PSO named CPSO1 and CPSO2 are proposed by (Cai et al., 

2007) to solve ED problem by considering the transmission line flow, ramp rate, 

generation limits, and prohibited operating zones. Each CPSO is a two phase iterative 

strategy (based on the proposed PSO with AIWF and CLS) in which PSO with the 

adaptive inertia weight factor (AIWF) is employed for global exploration and chaotic 

local search (CLS) is applied for locally oriented search (exploitation) for the solutions 

that PSO results. By applying the proposed method on 15-unit test system, the results 
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show the reduction in the convergence iterative numbers and also produce great 

economic effort compared to the traditional PSO.   

Three types of ED problems addressing prohibited operating zones, valve-point loading 

effects, and valve-point effects with multiple fuel options are solved by a new PSO 

(NPSO) (A. I. Selvakumar et al., 2007).  

A chaotic and Gaussian based PSOs are used to solve ED problems to minimize the fuel 

cost considering prohibited operating zones, line flow constraints, transmission loss, and 

ramp rate limits (Coelho et al., 2008). Seven versions of PSO along with the original 

PSO based on the Gaussian distribution function or chaotic sequences in social and 

cognitive parts are developed and tested on 15- and 20-unit systems to analyze the 

performance of the proposed PSOs. The results of comparison with the techniques from 

the literature confirm the applicability of the proposed PSO for solving of ED problems. 

An adaptive PSO (APSO) is employed to solve non-smooth ED problems with 

prohibited operating zones and ramp rate limits by (B. K. Panigrahi et al., 2008). The 

anti-predatory PSO (APSO) is adopted by (A. Immanuel Selvakumar et al., 2008) to 

solve ED problems taking into account the valve-point effects and multiple fuel options 

in generators cost functions. 10-unit test system with multiple fuel options and 40-unit 

system with non-convex cost functions are used as case studies and the satisfactory 

results compared to the previous approaches are obtained. 

A versions of PSO named CRAZYPSO is introduced by (Roy et al., 2008) for solving 

of ED problem addressing the valve point loading effects. A system with 40 generating 

units with three types of cost coefficients; non-convex, convex, and non-convex and 

convex mixed, is considered as the case study. 

Classical PSO methods are capable of solving non-convex ED problems, but they may 

lead to sub-optimal solutions. The practical ED problems are solved by (Chaturvedi et 
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al., 2009) through a modified PSO in which the time varying acceleration coefficients 

(TVAC) are used to control the global and local search of the problem. In this case, the 

PSO avoids premature convergence and the global solutions are obtained. The proposed 

PSO is tested on 3-, 13-, 15-, and 38-unit case studies and the results are compared with 

a few PSO variants and some other methods. The comparisons verify the superiority of 

the proposed method compared to other approaches for solving of non-convex ED 

problems. 

 A fuzzy system is proposed by (Cai et al., 2012a) to tune the control parameters of 

chaotic ant swarm optimization (CASO) for solving ED problems considering valve-

point effects and transmission system loss. The applicability of the proposed approach 

for handling non-convex ED problems is demonstrated by applying on 3-, 20-, and 40-

unit test systems. 

Non-convex ED problems with valve-point effects are solved by firefly algorithm (FA) 

(Cai et al., 2012a), modified group search optimizer method (Zare et al., 2012), shuffled 

differential evolution (SDE) (Srinivasa Reddy et al., 2013), cuckoo search (CSA) (Basu 

& Chowdhury, 2013), real-coded chemical reaction optimization method (RCCRO) (K. 

Bhattacharjee et al., 2014), theta PSO (θ-PSO) (Hosseinnezhad et al., 2013), differential 

evolution (DE) (Noman et al., 2008), seeker optimization algorithm (SOA) (Shaw et al., 

2012), and continuous quick group search optimizer (QGSO) (Moradi-Dalvand et al., 

2012).  

2.3.3 Hybrid methods 

(Attaviriyanupap et al., 2002) have suggested a hybrid method as the combination of 

evolutionary programming and sequential quadratic programming (SQP) for solving ED 

problems. The EP is considered as the base level search and the SQP is a fine-tuner to 

determine the optimum solution. The proposed method has been validated on a 10-unit 
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system to solve dynamic economic dispatch problems with non-smooth fuel cost 

functions.  

(Niknam, 2010) combined fuzzy adaptive particle swarm optimization (FAPSO) 

algorithm with Nelder–Mead (NM) simplex search to solve non-smooth and non-

convex economic dispatch problems. The proposed method used the NM algorithm as a 

local search algorithm around the global point determined by FAPSO at each iteration 

of the solution procedure. 

Another hybrid approach (Huang et al., 2007) combines the algorithms of orthogonal 

least-squares (OLS) and enhanced particle swarm optimization (EPSO) for real-time 

power dispatch. The OLS algorithm was applied to determine the number of centers in 

the hidden layer and the EPSO algorithm for tuning the parameters in the optimization 

process. 

A combined differential evolution (DE) algorithm and sequential quadratic 

programming (SQP) was developed by (dos Santos Coelho et al., 2006) where DE with 

chaos sequences was the global optimizer and the SQP was used to fine-tune the DE 

sequentially. This applicability of the method was validated by applying on 13- and 40-

unit systems in which the valve-point loading effect were incorporated in the fuel cost 

functions. 

A hybrid method as the combination of genetic algorithm (GA) and simulated annealing 

(SA) is investigated by (Wong et al., 1994) and called genetic annealing algorithm 

(GAA). Two versions of hybrid are developed, GAA and GAA2. In the former, the 

application of SA is to eliminate premature convergence and avoid the negative effects 

of mutation. In the latter, it aims to reduce the memory requirement by decreasing the 

population size to two individuals. Both versions outperform other GA and SA based 

methods in terms of economic effect. The GAA2 leads to less computation time as well.  
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The implementing of improved evolutionary director (IEDO) and multiplier updating 

(MU) in real-coded genetic algorithm is proposed by (C. L. Chiang, 2007). IEDO is 

employed in the selection process before applying the crossover and mutation operators 

and MU is used to overcome the drawbacks of using penalty parameters. The 

applicability of the proposed method is verified by applying on 15-, 30-, 60, and 90-unit 

test systems and the results show the higher performance of the proposed method 

compared to conventional genetic algorithm in terms of economic effect and 

computation time. 

A hybrid of PSO and sequential quadratic programming (SQP) is proposed by (Victoire 

et al., 2005) to solve economic dispatch problem considering valve-point loading 

effects. The active power balance, ramp rate limits of generators, voltage limit at load 

bus, transmission line constraints and spinning reserve are the considered constraints in 

the ED problem. The main optimizer is PSO while the SQP is to fine-tune the solution 

region as the local optimizer. SQP guide PSO for better performance in the complex 

solution space. A ten unit system with three different load patterns is used to validate 

the effectiveness and computation performance of the proposed method in general. 

In addition, the combination of the traditional PSO with Gaussian mutation (GM) is 

suggested as a hybrid method by (Sriyanyong, 2008) to solve the ED problems with 

non-smooth cost functions. In the hybrid PSO-GM, the Gaussian mutation is used to 

enhance the global search capability of the PSO. Compared to the traditional PSO, the 

proposed hybrid method has higher global search capability. 

A hybrid method including distributed Sobol PSO and tabu search algorithm (TSA), 

named DSPSO-TSA, is suggested to solve ED problems with non-smooth and non-

continuous fuel cost curves of generators by (Khamsawang et al., 2010). Three 

mechanisms are employed in the process of optimization; Sobol sequence is used to 
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produce an inertia factor rather than existing process at first, followed by a distributed 

process to reach the global solution rapidly, and finally, TSA is used to guarantee the 

global solution by adjusting the solution obtained by DSPSO. The proposed hybrid 

technique is applied on 6-, 10-, 13-, and 15-unit systems and compared with the 

conventional methods. The results of comparisons verify that the proposed method can 

reach higher solution quality in terms of economic effect and computation time among 

other methods. 

Combination of three methods; genetic algorithm (GA), pattern search (PS), and 

sequential quadratic programming, is presented by (Alsumait et al., 2010) to solve non-

convex ED problems. The robustness of the proposed GA-PS-SQP is analyzed and the 

outcomes show the proposed hybrid method as a high-efficient technique for the 

purpose of solving practical ED problems. 3-, 13-, and 40-unit systems are the case 

studies in this reference. 

A hybrid method composed of PSO and real-valued mutation operator (RVM) is 

proposed by (Lu et al., 2010). The proposed method is applied on the mathematical 

benchmarks at first and then it is applied on case studies with 10 and 40 unit systems by 

considering the valve-point effects and multiple fuel options.  

Non-convex ED problems are addressed by (Niknam, Mojarrad, & Meymand, 2011) 

and solved by a hybrid method as the combination of variable differential evolution 

(VDE) and fuzzy adaptive PSO named FAPSO-VDE. In the proposed hybrid method, 

the DE is the main optimizer and PSO acts as the preventer from sub-optimal 

convergence. Two case studies with 13 and 40 generating units are employed to validate 

the high performance of the proposed method. 

Some other hybrid methods for solving ED problems are: fuzzy adaptive chaotic ant 

swarm optimization with sequential quadratic programming (FCASO-SQP) (Cai et al., 
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2012c), chaotic PSO and SQP (CPSO-SQP) (Cai et al., 2012b), DE with PSO (DEPSO) 

(Sayah et al., 2013), incremental artificial bee colony and local search (IABC-LS) 

(Aydın et al., 2013), modified shuffled frog leaping algorithm with genetic algorithm 

(MSFLA-GA) (P. Roy et al., 2013).  

2.4 Economic/Emission Dispatch problem (EED) 

Solutions to traditional power dispatch problems aim for economic operation of the 

generating units of a power system to minimize the cost of power generation. When 

environmental concerns are considered, the power dispatch may not produce the best 

results. This calls for a multi-objective optimization approach that considers both 

generation cost and emission minimizations. 

Reducing the emission of power plants requires proper planning. One approach is to 

invest in new power plants that produce low emissions or to use renewable energy 

technologies, however, can be costly and thus are suitable as long-term options. Another 

way of reducing emission is to optimize power system operation by considering the 

emission amount as a constraint or as an objective function (Mandal et al., 2015). 

Consideration of emission in a power dispatch problem is a multi-objective 

Economic/Emission Dispatch (EED) problem, which can be formulated in several ways. 

One way, known as the ε-constraint technique, is to consider one objective as the 

constraint and minimize the other objective. Another way, known as the scalarization 

method, is to convert the multi-objective problem to a single objective problem (Özyön 

et al., 2012), by goal programming, goal attaining, objective weighting to form a single 

objective, and so on. The problem can also be solved as a multi-objective problem in 

which a trade-off curve between all the objectives has been found. This curve is known 

as the pareto-front and proposes all the optimal solutions to the problem (Vahidinasab et 

al., 2009). In multi-objective approach, if an optimal solution has to be defined, a 
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decision maker that assigns a merit order to any solution of the pareto front selects the 

best compromise solution from the whole pareto-front solutions (Abido, 2006). 

Methods of solving economic/emission dispatch problems (EED) can be categorized in 

several ways. In one way, they are categorized into three groups. The first group 

includes the methods applied to the EED problems in their original versions. Few 

examples are genetic algorithm (GA) (Y.-C. Liang et al., 2014), particle swarm 

optimization (PSO) (Zwe-Lee, 2003), glowworm swarm optimization (Nelson 

Jayakumar & Venkatesh, 2014), virus optimization algorithm (VOA) (Y.-C. Liang & 

Cuevas Juarez, 2014), and spiral optimization algorithm (SOA) (Benasla et al., 2014). 

The methods of the second group are the modified versions of the first group including 

modified harmony search algorithm (MHSA) (Jeddi & Vahidinasab, 2014), modified 

artificial bee colony (MABC) (Secui, 2015),  artificial bee colony with dynamic 

population size with local search (ABCDP-LS) (Aydin et al., 2014), chaotic interactive 

artificial bee colony (CIABC) (Shayeghi et al., 2014), self-organizing hierarchical 

particle swarm optimization with time-varying acceleration coefficients (SOHPSO-

TVAC) (Mandal et al., 2015), and real coded chemical reaction algorithm (RCCRO) as 

the modified version of CRO (Kuntal Bhattacharjee et al., 2014). The last group consists 

of the hybrid methods as the combination of methods from the previous groups. This 

group includes ant-colony optimization and steady state genetic algorithm (ACO-

SSGA) (Mousa, 2014), differential evolution with biogeography-based optimization 

(DE-BBO) (Bhattacharya et al., 2011), and hybrid bacterial foraging algorithm with the 

Nelder-Mead method (BF-NM) (Hooshmand et al., 2012), particle swarm optimization 

with differential evolution (PSO-DE) (Gong et al., 2010), particle swarm optimization 

with gravitational search algorithm (PSO-GSA)(Jiang et al., 2014), and differential 

evolution with harmony search (DE-HS) (Sayah et al., 2014). 
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In terms of the types of the methods, they can also be categorized into three groups: 

classical, metaheuristic, and hybrid. In problems having nonlinear objectives or 

constraints, finding the optimal can be difficult by classical methods (Zwe-Lee, 2003). 

The difficulties can be handled by metaheuristic methods but at the expense of 

computation time during optimization. Hybrids combine methods so they perform better 

than they do individually. Examples of classical methods are quadratic programming 

(Ji-Yuan et al., 1998) and linear programming (Farag et al., 1995). Second category 

includes genetic algorithm (GA) (Y.-C. Liang & Cuevas Juarez, 2014), particle swarm 

optimization (PSO) (Zwe-Lee, 2003), some derivatives of GA and PSO such as non-

dominated sorting genetic algorithm (NSGA-II) (Basu, 2014a) and fuzzified multi-

objective particle swarm optimization algorithm (FMOPSO) (L. Wang et al., 2007), 

modified harmony search algorithm (MHSA) (Jeddi & Vahidinasab, 2014), glowworm 

swarm optimization (Nelson Jayakumar & Venkatesh, 2014), interactive honey-bee 

mating optimization (IHBMO) (Ghasemi, 2013), and multi-objective differential 

evolution (MODE) (Basu, 2011; Wu et al., 2010). The third group is the set of hybrid 

methods which is the same as the one described in the previous paragraph. 

2.4.1 Scalarization methods 

A multi-objective optimization problem can be converted to a single objective problem. 

In this case, several objectives are combined to form a new objective. The optimal 

solution of the new single objective problem is considered as the optimal solution to the 

original multi-objective problem. 

(Hooshmand et al., 2012) have developed a hybrid method as the combination of 

bacterial foraging algorithm (BF) and Nelder-Mead (NM) method to solve the EED 

problems through weighted sum method. The simulation is performed with different 

weighting factors used in the proposed method. The authors have presented a new 
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formulation to power dispatch problem by considering the spinning reserve constraint, 

maximum emission limit of each generator and power system at specific hours, and 

frequency deviation limit. The results of optimization show higher performance of the 

proposed method compared to several optimization algorithms. 

Modified harmony search algorithm is used by (Jeddi & Vahidinasab, 2014) to solve the 

EED problems by weighted sum method. Seven test systems are considered in this 

reference considering valve point effects and transmission loss for solving of multi-

objective power dispatch problems. Pareto front solutions are obtained by solving the 

EED problems for different values of weighting factor. The proposed method has shown 

a competitive performance with high robust results. 

(Bhattacharya & Chattopadhyay, 2011) have converted the EED problem into a single 

objective problem by weighting the objectives equally. The best compromise solutions 

of the proposed method and several methods from the literature are compared to each 

other confirming that the proposed technique outperforms other methods. 

The solution to EED problem is performed by (Özyön et al., 2012) through scalarizing 

the problem with weighted sum method. The charged system search algorithm is used as 

the optimization techniques and the EED problem is solved for different weighting 

factors. The results show the satisfactory performance of the proposed method for 

solving the EED problems. 

EED is converted to a single objective problem by (Nelson Jayakumar & Venkatesh, 

2014) through incorporating the technique for order preference similar to an ideal 

solution (TOPSIS) as a multi criterion decision maker in glowworm swarm optimization 

algorithm (GSO). The decision maker identifies the positive and negative ideal solutions 

in each iteration of the optimization and attempts to selects solutions with shortest 

geometric distance from the positive one and farthest geometric distance from the 
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negative one. The GSO is also applied to solve EED problem through the weighted sum 

method which is called WGSO. The superiority of the proposed method (GSO-T) is 

discussed with other methods from the literature and WGSO confirming the high 

potential of GSO-T for handling the EED problem.  

The weighted sum method is used by (Benasla et al., 2014) for solving the EED 

problems. The spiral optimization algorithm (SOA) is used as the proposed optimizer 

and its results are compared with other methods to show its effectiveness in solving 

EED problems. It seems that the tuning of control parameters is paramount for the 

convergence of the proposed algorithm. 

Modified artificial bee colony algorithm is employed by (Secui, 2015) for solving the 

EED problem formulated as a single optimization problem through weighted sum 

method. The simulation is carried out for different weighting factors and the best 

compromise solution is identified by a fuzzy based decision maker. Two mechanisms 

are employed in the determination of the best compromise solution and compared to 

each other.  It is found that the proposed method outperforms other metaheuristic 

methods as it has a better balance between exploration and exploitation to produce 

higher quality of solutions. 

(Mandal et al., 2015) have solved the EED problem by weighted sum method.  The 

price penalty factor is used in the problem’s formulation and the weighting factors are 

considered equally for the objectives resulting one optimal solution to the EED 

problem. However, (Kuntal Bhattacharjee et al., 2014) have ignored to apply the price 

penalty factor since they have normalized the objective functions in the formulation of 

weighted sum method and have considered different values for the weighting factors in 

the simulations. The pareto front solutions are produced for different weighting factors 
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while the best compromise solution corresponds to the solution with the medium 

weighting factor. 

The EED problem is formulated differently by (Jiang et al., 2014) to minimize an 

overall objective function including emission amount, generation cost, transmission 

loss, and penalized equality constraint’s violation. Several test systems with various 

practical operational constraints are used and the results show that the proposed method 

is a viable method for solving the EED problems. 

(Hamedi, 2013) has formulated the EED problem as a single objective problem by 

considering the price penalty factor for two objectives of EED problem and weighting 

them equally. Parallel synchronous particle swarm optimization algorithm is used to 

solve the EED problem and the results show better computation efficiency of the 

proposed method compared to several techniques. 

Some other attempts addressing the weighted sum method for solving the EED 

problems are  artificial bee colony with dynamic population size with local search 

(ABCDP-LS) (Aydin et al., 2014), differential evolution with harmony search (DE-HS) 

(Sayah et al., 2014), and virus optimization algorithm (VOA) (Y.-C. Liang & Cuevas 

Juarez, 2014). 

2.4.2 Non-dominated approach 

Unlike a single optimization problem which has only one optimal solution as the global 

optimal, the multi-objective problem has no unique optimal and the optimization 

product is pareto front as a set of optimal solutions. In each generation of the 

optimization process, the solutions are generated and an external archive is used to store 

and update the non-dominated solutions. When the optimization reaches the stopping 

criteria, the pareto front as the set of final non-dominated solutions is considered as the 

optimal solutions to the problem. Then, a decision maker is employed to apply to the 
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pareto front solutions to identify the best compromise solution as the selected optimal to 

the problem. 

(Wu et al., 2010) have presented a scheme of non-dominated approach by differential 

evolution method. An external elitist archive with three rules is employed to store the 

non-dominated solutions produced within the optimization. A crowding entropy-based 

diversity measure as the modified crowding distance index is also considered to remove 

extra members of the archive. The authors have used a fuzzy based decision maker to 

select the best compromise solution among the pareto front members. The method is 

applied on IEEE test systems to show the performance of the proposed method. Multi-

objective differential evolution is also employed for solving the EED problems by 

(Basu, 2011) and is applied on 6-, 10-, and 40-unit test systems. It is compared with 

several methods confirming its high performance for solving the EED problems. 

A hybrid method as the combination of PSO and DE is presented by (Gong et al., 2010) 

to solve the EED problems. The crowding distance is used to remove the extra members 

of external archive and the proposed method is applied on IEEE 30-bus 6-generator 

system. The quality of pareto front and the convergence characteristics of the proposed 

method are compared with several methods to show the high performance of the 

proposed hybrid technique. 

The minimization of transmission loss along with minimizations of generation cost and 

emission amount are performed by (Shayeghi & Ghasemi, 2014). A chaotic local search 

(CLS) mechanism is added to artificial bee colony algorithm to form a stronger 

technique to solve the EED problems. The best compromise solution is determined by a 

fuzzy-based decision maker and the pareto front is obtained for two and three objectives 

of the problem. The results show that the local search improves the performance of the 

artificial bee colony algorithm. 
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(Mousa, 2014) has proposed a hybrid method which combines the ant colony 

optimization approach and steady state genetic algorithm for solving the EED problems. 

The decision maker named “technique for order preference by similarity to the ideal 

solution (TOPSIS)” is used to identify the best compromise solution from the pareto 

front. The results show that the proposed method can produce stable pareto front with 

satisfactory diversity among its solutions.  

The fuel supply limitations in thermal power plants are considered in the EED problem 

by (Basu, 2014a). It is solved by non-dominated sorting genetic algorithm with fuzzy 

based decision maker to determine the best compromise solution and with the 

application of crowding distance to unload the archive. The proposed method is 

compared with strength pareto evolutionary algorithm 2 (SPEA 2) to show its better 

performance of producing the pareto front optimal set. 

Other optimization methods in this category are interactive honey bee mating 

optimization (IHBMO) (Ghasemi, 2013), improved scatter search (ISS) (de Athayde 

Costa e Silva et al., 2013), quasi-oppositional teaching learning based optimization 

(QOTLBO) (P. K. Roy et al., 2013), and enhanced multi-objective cultural algorithm 

(EMOCA) as the combination of cultural algorithm (CA) with particle swarm 

optimization (PSO)  (R. Zhang et al., 2013). 
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CHAPTER 3 RESEARCH METHODOLOGY 

3.1 Introduction 

In this chapter, the mathematical formulation of power dispatch problem is explained at 

first. The backtracking search algorithm is then explained as the proposed method for 

solving the single objective and multi-objective power dispatch problems. The 

mechanism of constraint handling for both equality and inequality constraints by the 

proposed method is described as well. 

3.2 Problem formulation 

In the power dispatch problem, there are usually two objectives to be minimized, 

generation cost and emission amount. The power dispatch problem to minimize the 

generation cost is called economic dispatch problem and the emission dispatch problem 

is the minimization of the emission amount of the generating units. The power dispatch 

problem is explained in both power system and microgrid as follows. The formulation 

includes several types of power dispatch problem considering valve-point effects and 

multiple fuel options in cost functions, prohibited operating zones, and ramp rate limits 

as the operation constraints. The transmission network loss is also included in the 

formulation of the problems.  

3.2.1 Power dispatch problem in power system 

In this section, the economic dispatch problem, the emission dispatch problem, and the 

economic/emission dispatch problem are explained. In all problems, the constraints are 

same while the objectives are different. 

3.2.1.1 Economic dispatch problem (ED) 

ED is an optimization problem to determine the power sharing among the generating 

units to supply the power demand in an economical manner. The objective function of 
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the basic economic dispatch is to minimize the generation cost while satisfying the 

network and generators’ constraints. The conventional ED assumes quadratic cost 

functions for generating units while the practical problems take into account the valve-

point effects and multiple fuel options to model the accurate cost functions. Eq. (3.1) 

shows the simple form of cost function while the Eq. (3.2) considers the valve-point 

effects by adding a sinusoidal term to the quadratic cost function. Eq. (3.3) illustrates 

the cost function including valve-point effects and multiple fuel options. Figure 3.1 also 

shows the convex and non-convex cost functions due to valve-point effects. 
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where a, b, c, e, and f are cost coefficients, and also subscripts i and k denote the ith 

generating unit and kth fuel type, respectively. 

The generation cost as the objective function is defined as Eq. (3.4). 
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where P(t) is the generation vector representing the generations of all units. 
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(a) 

 
(b) 

Figure 3.1. a) Convex and non-convex generation cost function of a generator; b) 
generation cost of a 2-unit system with non-convex cost functions 

 

3.2.1.2 Emission dispatch problem (EMD) 

The emission dispatch problem aims to minimize the emission amount produced by the 

generators subject to the operating constraints of the network and generators. The 

emission functions of all the pollutants including CO2, NOX, SO2 are usually 

represented by quadratic functions. However, the combination of both quadratic and 

exponential functions is considered in determining the total emission caused by the 

generators. Eq. (3.5) shows the total emission level of the pollutants. 
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where α, β, γ, ζ, and λ are the coefficients of the ith generator emission function. 

The total emission level of N generating units is defined by Eq. (3.6). 
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where P(t) is a vector including the power outputs of the generators.  

3.2.1.3 Economic/emission dispatch problem (EED) 

Satisfying power demands while minimizing objective functions, emission and 

generation cost, requires treating the challenge as a multi-objective economic/emission 

dispatch problem. There are different methodologies to solve the EED problems. In this 

study, the weighted sum method and non-dominated approach are employed for dealing 

with EED problems. 

3.2.1.3.1 weighted sum method (WSM) 

The weighted sum method transforms a set of objective functions into a single objective 

(Jubril et al., 2014). Each objective is multiplied by a user-supplied weight which is 

usually in proportion to the importance of the objective. It is thus assigned a different 

order of magnitude in the combined economic/emission dispatch problem. Eq. (3.7) is 

the combined objective function that considers the price penalty factor σ ($/ton) 

necessary to reflect the different ranges of values of each objective. 

ec σFwwFF )1( −+= (3.7) 

Where w is the weighting factor, which can be any number between 0 and 1. The factor 

σ is determined by Eq. (3.8), which represents the ratio of the maximum generation cost 

to the maximum emission amount. 
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3.2.1.3.2 Multi-objective optimization: non-dominated approach (NDA) 

The objective function is written as the vector of both objectives and neither is inferior 

to the other, i.e., the generation cost and emission amount are minimized 

simultaneously. This method of formulation is called non-dominated approach (NDA), 

detailed in Section  3.6.6. Eq. (3.9) specifies the objective function F as the objective 

vector to be minimized. NDA aims to find the dispatch that satisfies the constraints and 

minimizes the vector function F (Abido, 2003a; Li et al., 2015). 

),( ec FF=F (3.9) 

3.2.1.4 Constraints 

The constraints of power dispatch problem are as follows: 

A. Power Balance Constraint: 

The whole power demand should be equal to the total power generated minus total 

transmission loss. 
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where Pi(t) is the ith generator output power, PD(t) and Ploss(t) are respectively the power 

demand and total transmission loss in the scheduled period t.  

Generally, the total transmission loss (Ploss(t)) is calculated by Kron’s loss formula as 

demonstrated in Eq. (3.11).  
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where B, B0, and B00 are the loss coefficients. 

B. Generation Limits 

The generation limit for each unit is given by Eq. (3.12). 
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where Pi
min and Pi

max are respectively the minimum and the maximum production limits 

of ith generator. 

C. Ramp rate limits 

In real operating conditions, the operating range of each generating unit is restricted by 

its ramp-up and ramp-down limits as shown by Eqs. (3.13) and (3.14). 

• If the generation increases 

iii UR)1t(P)t(P ≤−− (3.13) 

• If the generation decreases 

iii DR)t(P)1t(P ≤−− (3.14) 

where Pi(t-1) and Pi(t) are respectively, the previous and current output powers at time 

period t. URi and DRi are ramp-up and ramp-down limits of ith generating unit. 

D. Prohibited operating zones 

Each generator contains some prohibited operating zones in its operation due to the 

valve-point effects. In the practical operation of the power system, the output power of 

each unit should avoid operation in the prohibited zones. The feasible operating zone of 

ith generator can be demonstrated by Eq. (3.15). 
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where Pl
i,k and Pu

i,k are respectively the lower and upper bounds of kth prohibited 

operating zones of ith generating unit. ni is the number of prohibited zones of unit 

number i. 
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3.2.2 Power dispatch problem in Microgrid 

Microgrids are composed of the micro-sources and storage systems to supply the power 

demand. Variety of micro-sources including conventional generators and renewable 

energy technologies are used in microgrids. The problem is to minimize the generation 

cost of the microgrid within the schedule period. It is considered as a single objective 

optimization problem subject to operation constraints of generators and the system. The 

main components of this problem are described as follows. 

3.2.2.1 Models of Microgrid elements 

In this thesis, a typical microgrid with diesel generators, wind power plants, and fuel-

cell plants is considered and the models of these generating units are explained as 

follows:   

A. Diesel generator 

Diesel generator is the conventional power producer and its generation cost is modeled 

by a cubic or quadratic cost function. However, the quadratic form is usually taken into 

account. The Eq. (3.16) shows the cost function of the diesel generator.  

)t(Pc)t(Pba)t(F 2
i,dieselii,dieseliii,diesel ++= (3.16)  

where Fdiesel,i(t)  and Pdiesel,i(t) are respectively the generation cost and the output power 

of the ith diesel unit in the scheduled period t,. The corresponding cost coefficients are 

ai, bi, and ci.

B. Wind power plant 

The power production of a wind turbine depends on the strength of the wind speed. Eq. 

(3.17) shows the relation between the wind speed and the output power of the wind 

power plant.  
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where r
i,wtP is the rated power of the wind turbine number i, v is the wind speed in (m/s), 

and vcut-in, vr, vcut-out represent the cut-in, nominal, and cut-out wind speeds,  

respectively.  

The cost function of the wind power plant is usually represented by a linear function as 

demonstrated by Eq. (3.18). The coefficient of the cost function is the operation and 

maintenance cost of the power plant. 

)t(Pb)t(F i,wtii,wt = (3.18) 

where the Pwt,i(t) and Fwt,i(t) are respectively the power and generation cost of ith wind 

power plant in the scheduled period t. The cost coefficient is also bi.

C. Fuel-cell plant 

The fuel-cell plant is another technology with high efficiency for energy production. Its 

generation cost model is demonstrated by the Eq. (3.19) which shows the linear relation 

between the generated power and the generation cost of the fuel-cell plant. 

i,fc

i,fci
i,fc

)t(Pb
)t(F

η
= (3.19) 

where Ffc,i(t) and Pfc,i(t) are the generation cost and output power of fuel-cell plant at 

time t, respectively. The coefficient bi is also the cost of natural gas in ($/kg) and the 

ηfc,i is the fuel-cell efficiency.  

3.2.2.2 Objective function 

The objective function is to optimize microgrid operation through its generation cost 

minimization. Eq. (3.20) shows the objective function for a microgrid including diesel, 

wind power, and fuel-cell generators. The horizon of 24 hours is considered for the 

generation scheduling problem.   
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where ND, Nwt, and Nfc are numbers of diesel units, wind turbines, and fuel-cell plants, 

respectively. Parameter T is the scheduling period and the Ftotal is the total generation 

cost within period T. 

3.2.2.3 Constraints 

The problem of microgrid optimization consists of two types of constraints; equality 

constraints and boundary limits. 

A. Power balance constraints 

The power generated by all distributed generations should meet the power demand in 

each scheduled period t shown in Eq. (3.21). 

{ }T,...,3,2,1t

)t(P)t(P)t(P)t(P D
N

1i
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N

1i
i,wt

N

1i
i,diesel

fcwtD

=

=∑+∑+∑
=== (3.21) 

B. Boundary limits 

The output power of each generator should be within a lower limit and an upper limit. 

Eq. (3.22)-(3.24) show the boundary limits for different technologies. 

max
i,dieseli,diesel

min
i,diesel P)t(PP ≤≤ (3.22) 

{ }T,...,2,1tP)t(PP max
i,wti,wt

min
i,wt =≤≤ (3.23) 

max
i,fci,diesel

min
i,fc P)t(PP ≤≤ (3.24) 

3.3 Backtracking Search Optimization Algorithm (BSA) 

BSA is an evolutionary optimization tool developed by (Civicioglu, 2013) to solve 

optimization problems. The structure of BSA is simple and its only control parameter 

makes it a suitable approach to solve even multimodal optimization problems. The 

performance of BSA is not over sensitive to its control parameter and it does not suffer 

from high computation time or premature convergence unlike many evolutionary 
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methods. BSA utilizes crossover and mutation operators to effectively explore the 

search domain. These operators are completely different from the ones used by other 

evolutionary methods, such as genetic algorithm and evolutionary programming, etc. 

BSA also has the advantage of a memory that defines the search direction based on the 

previous generations. 

Figure 3.2 shows the flowchart of BSA, which comprises five main steps: initialization, 

selection-I, mutation, crossover, and selection-II, as mentioned next. 

Start

Set general data of BSA
and problem parameters

Selection-I

Stopping 
condition

Mutation

Crossover

Boundary control

Selection-II

End

Initialization

YesNo

Figure 3.2. Flowchart of BSA 

3.3.1 Initialization 

The population and each individual are represented by � = [�� �� … �	
��]′ and 

�� = [x�� 	… 	x�� … x� 	���]′ where i and j respectively denote the individual and 

element numbers. The initial population including nPop individuals is generated by Eq. 

(3.25). Each individual includes nVar optimization variables. 

),(~ jjij uplowUx (3.25) 
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where: 

i: stands for individual. i=(1,2,…, nPop) 

j: stands for optimization variable. j=(1,2,3,…, nVar) 

lowj and upj: lower and upper limits of variable j 

U: uniform distribution function 

xij: is the jth element of the ith individual as the member of population 

3.3.2 Selection-I 

A historical population (histX) is generated in this step. histX and X have the same size 

and the element of histxij in histX is considered as the counterpart of xij in X. First, it is 

initialized by Eq. (3.26) to create histX and then, the historical population is redefined 

through the “if-then” rule (by comparing two random numbers a and b) according to Eq. 

(3.27). Finally, the order of individuals of the population histX is changed randomly 

through Eq. (3.28). A random shuffling function is employed as the permuting function 

in the aforementioned equation. The historical population (histX) is used to determine 

the search direction at each iteration. 

),(~ jjij uplowUhistx
 (3.26) 

XhistX =→<
)1,0(~, Uba

baif (3.27) 

)(histXhistX permuting= (3.28) 

3.3.3 Mutation 

An initial form of trial population (Mutant) is generated in the mutation process through 

Eq. (3.29). The subtraction of X from histX determines the search direction and the 

function α controls the amplitude of the search direction. The function of α=3.randn is 

considered where randn is a random number based on the standard normal distribution. 
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).( XhistXX −+= αMutant  (3.29) 

3.3.4 Crossover 

The Mutant, as the initial form of trial population set in the previous step, is finalized in 

the crossover process. The crossover process changes the Mutant to the final trial 

population T through the crossover operator. The value of T is set to the Mutant at first. 

A binary matrix (map) is then generated randomly with nPop rows and nVar columns. 

Each row of the matrix “map” is relevant to an individual. The number of elements of 

any individual to be engaged in the crossover process is controlled by the single control 

parameter of BSA named “mixrate”. This control parameter (ranges from 0-100% of 

nVar elements) determines the maximum number of elements in each row of the binary 

matrix “map” to be equal to 1. There are two strategies in BSA crossover process: one is 

to only engage a random element of each individual in this process, and another one is 

to select maximum mixrate numbers of elements of the individuals to be manipulated in 

the crossover process. Based on the strategy, the binary matrix (map) is created at first 

and those elements of T with the corresponding value of 1 in the matrix (map) are to be 

manipulated. In this case, these elements of T are set to be equal to the relevant 

elements of P. In other words, if mapij=1 then Tij=Pij.

3.3.5 Boundary control 

At the end of the crossover process, it may occur that some elements of individuals 

violate their boundary limits. In this situation, they are regenerated by Eq. (3.25) or they 

are set to the upper or lower limits. The strategy of the boundary control is defined by 

an if-then rule. Two random numbers are generated at first. If one of the numbers is 

greater than another one, then the violated element of the individual is fixed to the upper 

or lower limit, otherwise, it is regenerated by Eq. (3.25). 



41 

3.3.6 Selection-II 

In Selection-II stage, each individual of T is compared with the relevant individual of P 

in terms of better fitness value. Then, the individuals of P are updated based on the 

comparison. The best individual among the population members is also updated in this 

process. 

3.3.7 BSA’s control parameter and stopping condition 

The parameter “mixrate” used in the crossover process is the only control parameter of 

BSA during optimization. The value of this parameter varies between 0-100% of the 

number of individuals. Although the optimization by BSA is not over sensitive to this 

parameter, it should be tuned properly to get the best optimal.  

A stopping condition also has to be defined to control the optimization process. The 

maximum number of iterations is considered as the stopping condition. 

3.4 Constraint handling mechanisms by BSA 

Before implementing BSA for solving the power dispatch problems, the mechanisms of 

constraints handling needs to be described. There are two ways of constraint handlings 

in optimization. The first way is to aggregate the penalized constraints with the 

objective function and to create a fitness function (Zare et al., 2012). In this case, the 

optimization method is to optimize the fitness function rather than the objective 

function. The second way is to start the optimization with the feasible set of solutions 

and to work with only feasible solutions within the optimization process (Basu, 2013, 

2014b; Basu & Chowdhury, 2013; A. Bhattacharya et al., 2010a, 2010b; Cheng-Chien, 

2008; Ciornei et al., 2012; Vo et al., 2013). Each way can be done by different 

mechanisms. In this thesis, the second way is adopted and two mechanisms for this way 

of constraint handling are taken into account for solving the power dispatch problems 

described next. 
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3.4.1 Constraint handling through feasible search space exploration-static slack 

generator 

 
In this mechanism, the optimization is initialized by feasible set of solutions and the 

optimizer searches only the feasible search space within the optimization process. In 

each iteration of optimization, the individuals of population may violate the equality and 

inequality constraints. A strategy needs to be employed to repair the individual to make 

it as a feasible solution. 

To generate an individual of the population, P=[P1,P2,..,PN], a specific generator (i.e. Nth 

generator) is selected as the slack generator. The power levels of first (N-1) generators 

are generated randomly by considering the inequality constraints and the power level of 

Nth generator is calculated through the following method.  

Assume that the (N-1) elements of a solution, P=[P1, P2, P3, …, PN],  is known. The last 

element of generation vector P is then calculated in such a way that the equality 

constraint is satisfied. The first (N-1) elements are considered as independent variables, 

so the equality constraint makes the last element as the dependent variable. This element 

PN is calculated by Eq. (3.30) which is achieved by extracting the PN from the Eq. 

(3.10).  
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where B, B0, and B00 are transmission loss coefficients. 

The Eq. (3.30) is polynomial and the value of PN is calculated by Eq. (3.34). The 

positive root is chosen as PN in order to satisfy the equality constraint. 
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If the value of this element violates the constraints specified in Eqs. (3.12)-(3.15) then 

the procedure needs to be repeated again until the positive root satisfies the operation 

limit and other inequality constraints. 

Since the slack generator is fixed in this mechanism and it is not changed within the 

optimization process, this mechanism is called static slack generator (SSG). BSA with 

this mechanism of constraint handling is called BSASSG.

3.4.2 Constraint handling through feasible search space exploration-dynamic slack 

generator 

The difference between this mechanism and the previous one is the way that the feasible 

solution is generated and modified within the optimization. In this mechanism of 

constraint handling, the optimization is also initialized by feasible set of solutions and 

the optimizer searches only the feasible search space. In this case, an individual of the 

population, P=[P1,P2,..,PN], is generated by considering the generation limits, ramp rate 

limits, and the prohibited operating zones according to the Eqs. (3.12)-(3.15). While the 

equality constraint with loss considered as shown in Eq. (3.10) is not satisfied, a random 

generator is chosen as the slack generator and its output is fixed to meet the equality 

constraint. If the output of the slack generator violates its boundary limits, another 

random generator from (N-1) pool is chosen as the slack generator. If no one can cover 

the difference to satisfy the equality constraint, then two slack generators are chosen and 

share the difference. When a generator is in a prohibited operation zone, the closest 

feasible bound is set as the output. 

In this mechanism of constraint handling, the slack generator is dynamically changed to 

make the solutions feasible. This mechanism is called dynamic slack generator (DSG) 

in this thesis. BSA with this mechanism of constraint handling is called BSADSG.
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3.5 Implementing of BSA for solving the single objective power dispatch problems 

Backtracking search algorithm (BSA) is a population based metaheuristic method. It 

starts with an initial population and converges to an optimal solution through crossover 

and mutation operators. In this method, each individual stands for a solution and the 

population is composed of a specific number of individuals. Since two mechanisms of 

constraint handling are taken into account, this section represents the BSA 

implementation for solving the power dispatch problems based on the mechanism 

considered for the constraint handling. In these two mechanisms of constraint handling, 

BSA explores only the feasible search space of the problem. The algorithm’s steps are 

as follows. 

Step 1: initialization 

The initialization of population X is performed by considering the constraint handling 

mechanism to generate the feasible individuals in the population.  

Step 2: selection I 

The historical population is generated in the same way that X is initialized. It is 

redefined through the Eqs. (3.27) and (3.28). 

Step 3: Mutation  

The mutation operator is applied on the population to generate the initial trial 

population. 

Step 4: Crossover 

The crossover operator is applied on the initial trial population by setting the control 

parameter to form the final trial population. 

Step 5: Making the new solutions feasible 

The individuals of the final trial population may violate the inequalities, so, the 

mechanism of constraint handling is applied on the final trial population to make the 

individuals as feasible solutions. 
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Step 5: Selection-II 

The objective function of the power dispatch problem is used to update the population’s 

individuals. 

Step 5: Stopping condition 

The algorithm stops when the maximum number of iterations during the optimization 

had reached a predetermined value.  

Figure 3.3 shows the flowchart of BSA for solving the power dispatch problem through 

the mechanism of feasible search space exploration by employing the static slack 

generator. As mentioned, BSA with this mechanism is called BSASSG. The flowchart of 

the proposed method with considering the dynamic slack generator in the constraint 

handling mechanism is depicted in Figure 3.4. BSA with the second mechanism 

incorporated in its algorithm is called BSADSG.
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Figure 3.3. flowchart of BSA for solving the ED problem through the mechanism of 
feasible search space exploration-static slack generator 
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3.6 Multi-objective Backtracking Search Algorithm (MOBSA) 

Each evolutionary algorithm uses techniques inspired by natural or biological evolutions 

to generate superior solutions through optimization. Such techniques include mutation, 

crossover, and selection, to be applied to each individual of a population. Among these 

algorithms, BSA is a new evolutionary method to solve multimodal optimization 

benchmarks. In this section, the multi-objective BSA is developed to solve the 

economic/emission dispatch problem. The mathematical formulation of BSA needs to 

be described at first for the purpose of developing the multi-objective BSA.  

3.6.1 Basic BSA 

BSA starts with a population of individuals, generated randomly in the search space. It 

leads to a better population specified by a fitness function in the next iteration. It uses a 

control parameter and several operators in the optimization process. The five major 

steps of BSA, described briefly next, are initialization, selection-I, mutation, crossover, 

and selection-II. Each iteration begins from the Selection-I step and ends in the 

Selection-II step. 

Let us assume Ω⊂Rn to be the search space of the problem. BSA uses nPop individuals 

as the population in each generation of the algorithm. The population and each 

individual are represented by �� = [��� ��� … �	
��� ]′ and ��� = [x��� x��� … x�	� ]′ where t 

and i respectively denote the iteration and the individual number. The population is 

initialized randomly so the individuals are uniformly distributed in the search space. 

Step 1: Initialization 

The iteration number is set as t=0, randomly initializing the population X in the search 

space Ω.
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Step 2: Selection-I 

The historical population (histXt) is generated in this step. It is initialized the same way 

that population X is initialized.  The histXt is then redefined through a simple “if-then” 

rule according to Eq. (3.35). 

tt
Uba

baif XhistX =→<
)1,0(~, (3.35) 

Note that the historical population histXt is initialized randomly in this step. If the rule 

of Eq. (3.35)  is satisfied, then the value of histXt is changed to Xt, otherwise, its initial 

value is used in the next calculation. 

Finally, a permuting function is applied to the historical population to change the order 

of the individuals randomly. A random shuffling function is used as the permuting 

function in Eq. (3.36). 

)( tt permuting histXhistX = (3.36) 

Step 3: Mutation 

The mutation operator generates the initial form of the trial population ���� =

[�����	����� … �	����]′ through Eq. (3.37). Each individual of Vt+1 is relevant to an 

individual of Xt.

).(1 tttt XhistXXV −+=+ α (3.37) 

Where α is a function to control the amplitude of the term (histXt-Xt) as the search 

direction matrix. The function of α=3.randn, where randn~N(0,1) (N is the standard 

normal distribution), is usually used.  

Step 4: Crossover 

The initial trial population Vt+1 (as the mutant matrix) is finalized in this step by 

applying the crossover operator. In the process, BSA uses a control parameter called 

mixrate to determine the maximum number of elements of each individual of Vt+1 to be 

engaged and manipulated. The random binary matrix ‘map’ with the same size of Vt+1 is 
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generated. The parameter ‘mixrate’ controls the maximum number of elements in each 

row of matrix ‘map’ with the value of 1. The final trial population Ut+1 is then 

determined through Eq. (3.38). 
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where i and j denote the element of the ith row and the jth column of the matrices; Ut+1 is 

the finalized form of the trial population. 

After the crossover, some individuals of Ut+1 might violate the boundaries of the 

optimization variables, so they need to be checked and modified by an appropriate 

mechanism. 

Step 5: Selection-II 

In the Selection-II step, each individual of population Ut+1 is compared in terms of 

fitness value with its counterpart in Xt to update Xt. The global minimum within the 

individuals is also updated. The optimization process again repeats from step 2 unless 

the stopping criteria are satisfied. 

3.6.2 Pareto optimal set 

In the multi-objective optimization approach, several functions need to be optimized 

simultaneously. So, there is no unique solution corresponding to the optimal value of 

each objective. Instead, there is a set of solutions known as the pareto front set. In the 

procedure of multi-objective optimization, the pareto front is updated in each iteration 

and its members are stored in an archive described next. 

3.6.3 External elitist archive 

The pareto front set including the non-dominated solutions is obtained in each 

generation of the evolutionary algorithm. These solutions, compared with those in the 

preceding iterations, might not be non-dominated. An external elitist archive is thus 
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required to store and update the pareto front members in each iteration. The external 

archive, initially empty, stores the non-dominated solutions as the optimization 

progresses. The archive has three rules for when a new solution (the trial vector) enters 

it: (1) the trial vector dominates some of the archive members such that the dominated 

ones are deleted from the archive; (2) the trial vector is dominated by at least one 

member from the archive such that it is rejected from inclusion in the archive; (3) the 

trial vector is not dominated by the archived members and the archived members are not 

dominated by the trial vector, i.e., the trial vector belongs to the archive so it enters the 

archive as a collection of the latest non-dominated solutions. The number of archive 

members increases as the optimization progresses. When the population of the elitist 

archive reaches its maximum capacity, a measure called crowding distance removes 

extra members to keep the archive to its maximum size. 

3.6.4 Crowding distance 

The crowding distance (CD) is a quality measure for pareto front distribution. When the 

external elitist archive overloads, the extra members of the archive can be removed 

according to the values of the crowding distance. The measure estimates the density 

around a solution in the pareto front. It usually is the average distance of two neighbor 

points around the solution along each of the objectives. It is calculated by Eq. (3.39) for 

the ith solution of the pareto front (de Athayde Costa e Silva et al., 2013). 
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where fj is the jth objective function, k the number of objectives, and fj
max and fj

min 

respectively the maximum and minimum values of the jth objective function. Since there 

is only one neighbor point for the boundary solutions (solutions with the smallest and 

largest objective values) of the pareto front, the value of the crowding distance is set to 

infinite for the boundaries. The solution with the greater CD is preferred to be in the 
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archive, i.e., the solution with the lowest crowding distance value is subject to deletion 

when the archive unloads. 

3.6.5 Best compromise solution 

Multi-objective optimization yields pareto front as a set of optimal solutions rather than 

a single optimal. Any solution in the pareto front is not inferior to another, and 

improvement to one objective cannot be achieved without sacrificing another. There 

should thus be a mechanism of choosing a solution that satisfies each objective to some 

extent. A trade-off between solutions should lead to the best compromise solution. 

A challenging way of selecting the best compromise solution is to use fuzzy set theory 

to determine the best candidate among the pareto front efficiently. Usually a member 

function is assigned to each objective function according to Eq. (3.40) (Abido, 2006). 
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where fj(Xi) is the value of the jth objective function for the ith solution (Xi) and fj
max and 

fj
min respectively the maximum and minimum values of the jth objective function. The 

membership function represents the objective function’s degree of optimal achievement 

ranging from zero to one. The values of µ=1 and 0 correspond to completely satisfactory 

and unsatisfactory conditions, respectively. Figure 3.5 shows the membership function 

for the objective function f. To specify the best compromise solution among the non-

dominated solutions, a normalized membership function needs to be calculated first by 

Eq. (3.41). 
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Figure 3.5. Fuzzy-based membership function 
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where m and k are respectively the number of non-dominated solutions and the number 

of objective functions. The solution with the highest value of µ is selected as the best 

compromise solution. 

3.6.6 Procedure of multi-objective BSA: non-dominated approach 

As mentioned, BSA deals with the population �� = [��� ��� … �	
��� ]′, where ��� =

[x��� x��� … x�	� ]′, in each generation of the whole evolution process. The mutation and 

crossover operators are first applied to produce the offspring population Ut+1, then the 

individuals of Xt and of Ut+1 are compared in the Selection-II step of the algorithm. To 

extend the BSA to multi-objective optimization application, the comparison needs to be 

modified according to the concept of pareto dominance. When the individual Xi
t is 

compared with the individual Ui
t+1, up to three situations may occur: (1) Xi

t is 

dominated by Ui
t+1 (Ui

t+1≺Xi
t); (2) Xi

t dominates Ui
t+1 (Xi

t≺Ui
t+1); and (3) neither Xi

t

dominates Ui
t+1 nor Ui

t+1 dominates Xi
t (Xi

t⊀Ui
t+1 and Ui

t+1⊀Xi
t). In the first situation, 

Ui
t+1 is selected as the individual of the next population Xi

t+1 but the in the second and 
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third situations, Xi
t is selected. The following steps represent the multi-objective BSA 

method with external elitist archive and crowding distance measure. 

Step 1: Set the iteration number t=0, randomly initialize the population �� =

[��� ��� … �	�� ]′ where ��� = [x��� x��� … x�	� ]′ in the search space Ω.

Step 2: Evaluate the objective function of each individual of ��and save the non-

dominated solutions from among the population members into the external elitist 

archive. 

Step 3: Initialize the historical population (histXt) similar to Xt and redefine and modify 

it through Eqs. (3.35) and (3.36). 

Step 4: Apply the mutation operator to the population to determine the trial population 

���� = [�����	����� … �	����]′ through Eq. (3.37). 

Step 5: Apply the crossover operator to the trial population Vt+1 to obtain the final trial 

population ���� = [�����	����� … �	����]′ through Eq. (3.38) and then check and modify 

the constraints. 

Step 6: Compare each individual of ����with its counterpart from �� to determine the 

individuals of ����. Use Eq. (3.42) for the comparison. 
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Step 7: Update the external elitist archive through its three aforementioned update rules. 

If the archive exceeds its capacity, remove the less crowded solutions one by one from 

the archive. 

 Step 8: set t=t+1 and then check the stopping criteria, If algorithm needs to be 

repeated, return to step 3.  
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CHAPTER 4 : OPTMIZATION RESULTS OF ECONOMIC DISPATCH 

4.1 Introduction 

Economic dispatch (ED) problems are solved by backtracking search algorithm (BSA) 

with two constraint handling mechanisms and simulation results are discussed in this 

chapter. In the ED problems, the valve-point effects are addressed in the generators cost 

functions for considering an accurate cost model. The prohibited operating zones as 

well as ramp-up and ramp-down constraints are also taken into account for practical 

purposes of the economic dispatch among the generating units. In addition, the ED 

problem with multiple fuel options and valve point effects is also solved by the 

proposed method because it is a real-world situation in the system operation. For 

validating the proposed method for large-scale applications, the highly nonlinear ED 

problem including valve-point effects and multiple fuel options is also investigated. 

Several case studies by considering the valve-point effects and transmission loss are 

discussed in the first part of this chapter and the next part is related to the ED problems 

with prohibited operating zones and multiple fuel options. The ED results of the 

proposed method with the constraint handling mechanisms for large-scale test systems 

with the most nonlinear cost functions are explained in the second part of this chapter. 

The performance of BSA with each constraint handling mechanism is analyzed. The 

solution quality of the optimization results of each mechanism is compared with the 

other one to select the suitable mechanism for constraint handling of the power dispatch 

problem. Then, the power dispatch problem of a microgrid with several renewable and 

conventional power plants is solved and the results are compared with other methods 

from the literature. The programming code was written in Matlab and executed on a 

personal computer with Pentium 2.70 GHz processor and 2 GB RAM. 
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4.2 ED problems with valve-point effects and transmission network loss 

The proposed method’s robustness and capability for solving ED problems with valve-

point effects and transmission loss are validated through four case studies. The total 

transmission loss is modeled to consider the electric network whereas the valve-point 

effect is incorporated for accuracy of the cost model of each generating unit. As 

mentioned in chapter 3, BSA has only one control parameter named “mixrate”. This 

parameter controls the maximum number of elements of the individuals to be engaged 

in the crossover process and it ranges from 0% to 100% of problem dimension. 

Although the performance of BSA is not over sensitive to this parameter, the tuned 

value is employed in each case study to achieve the best solutions. The constraint 

handling mechanisms described in the chapter 3 are employed for solving the ED 

problems in case 1 to case 4 and the results are compared to each other in terms of 

solution quality. 

4.2.1 Case 1: 3-unit system with non-convex cost function 

This case study consists of three generating units with non-convex cost functions. The 

total demand in this case study is 850 MW and the transmission system loss is 

neglected. The system data is as shown in Appendix (Table A.1). The ED problem is 

solved by BSA with two constraint handling mechanisms (BSASSG and BSADSG) and 

the results are discussed as follows. 

4.2.1.1 Solution to ED problem by BSASSG and BSADSG 

The optimization parameters need to be set properly to improve the performance of 

BSA. For both constraint handlings, different values of parameters including the 

maximum iteration, population size, and mixrate are chosen and the optimization has 

been run for 50 trials. In each case corresponding to the specific values of the 

parameters, the statistical indices of the results of ED have been calculated. Table 4.1 
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and Table 4.2 list the parameters and the statistical indices of both the generation cost 

(as the objective function) and the computation time for BSASSG and BSADSG.

Table 4.1 shows that the solution quality of BSASSG improves either by increasing 

population size or maximum iteration number. The computation time also increases 

when the population size or maximum iteration number increases.  

Table 4.1. Statistical results of BSASSG for case 1 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

50 10 0 8234.0718 8236.6492 8241.6486 3.3689 0.01 0.01 0.01 0.00 
50 10 0.2 8234.0717 8235.1169 8241.5875 2.2572 0.01 0.01 0.01 0.00 
50 10 0.4 8234.0717 8235.2689 8241.5876 2.5819 0.01 0.01 0.01 0.00 
50 10 0.6 8234.0717 8235.6072 8241.5876 2.9807 0.01 0.01 0.01 0.00 
50 10 0.8 8234.0717 8235.4328 8241.5875 2.7310 0.01 0.01 0.01 0.00 
50 10 1 8234.0717 8234.7643 8241.5875 2.0584 0.01 0.01 0.01 0.00 
50 50 0 8234.0718 8234.3039 8241.5875 1.0580 0.03 0.03 0.03 0.00 
50 50 0.2 8234.0717 8234.0780 8234.1325 0.0125 0.03 0.03 0.03 0.00 
50 50 0.4 8234.0718 8234.0769 8234.1947 0.0174 0.03 0.03 0.03 0.00 
50 50 0.6 8234.0717 8234.0740 8234.1184 0.0074 0.03 0.03 0.04 0.00 
50 50 0.8 8234.0717 8234.0726 8234.0900 0.0029 0.03 0.03 0.03 0.00 
50 50 1 8234.0717 8234.0721 8234.0815 0.0014 0.03 0.03 0.04 0.00 

100 10 0 8234.0718 8235.1068 8241.5877 2.3534 0.02 0.02 0.02 0.00 
100 10 0.2 8234.0717 8234.7094 8241.5875 1.8231 0.02 0.02 0.02 0.00 
100 10 0.4 8234.0717 8235.1678 8241.5875 2.5483 0.02 0.02 0.02 0.00 
100 10 0.6 8234.0717 8234.8303 8241.5875 2.0817 0.02 0.02 0.02 0.00 
100 10 0.8 8234.0717 8234.4333 8241.5875 1.5039 0.02 0.02 0.02 0.00 
100 10 1 8234.0717 8234.2298 8241.5875 1.0621 0.02 0.02 0.02 0.00 
100 50 0 8234.0718 8234.0752 8234.1195 0.0077 0.05 0.06 0.06 0.00 
100 50 0.2 8234.0717 8234.0719 8234.0768 0.0007 0.06 0.06 0.07 0.00 
100 50 0.4 8234.0717 8234.0721 8234.0819 0.0015 0.06 0.06 0.07 0.00 
100 50 0.6 8234.0717 8234.0726 8234.1019 0.0045 0.06 0.06 0.07 0.00 
100 50 0.8 8234.0717 8234.0717 8234.0718 0.0000 0.06 0.06 0.07 0.00 
100 50 1 8234.0717 8234.0717 8234.0718 0.0000 0.06 0.07 0.07 0.00 

Table 4.2 shows the results of ED by BSADSG confirming that it can also produce 

solutions with high qualities for this test system. It converges to almost the same 

optimal value in all runs. 



58 

Table 4.2. Statistical results of BSADSG for case 1 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

50 10 0 8234.0724 8235.6664 8241.5890 2.9923 0.01 0.01 0.01 0.00 
50 10 0.2 8234.0711 8236.0682 8241.5875 3.3052 0.01 0.01 0.01 0.00 
50 10 0.4 8234.0715 8235.6521 8241.5873 2.9757 0.01 0.01 0.01 0.00 
50 10 0.6 8234.0711 8235.1619 8241.5871 2.6066 0.01 0.01 0.01 0.00 
50 10 0.8 8234.0709 8235.4675 8241.5869 2.9000 0.01 0.01 0.01 0.00 
50 10 1 8234.0708 8235.8905 8241.5872 3.2337 0.01 0.01 0.01 0.00 
50 50 0 8234.0721 8234.0946 8234.2057 0.0309 0.02 0.02 0.02 0.00 
50 50 0.2 8234.0717 8234.0791 8234.2209 0.0227 0.02 0.02 0.02 0.00 
50 50 0.4 8234.0717 8234.0790 8234.2209 0.0259 0.02 0.02 0.02 0.00 
50 50 0.6 8234.0717 8234.0782 8234.2209 0.0228 0.02 0.02 0.02 0.00 
50 50 0.8 8234.0717 8234.0749 8234.1394 0.0109 0.02 0.02 0.02 0.00 
50 50 1 8234.0717 8234.0748 8234.2037 0.0187 0.02 0.02 0.02 0.00 

100 10 0 8234.0710 8236.0610 8241.5873 3.3093 0.01 0.02 0.02 0.00 
100 10 0.2 8234.0709 8235.5229 8241.5868 2.9219 0.01 0.02 0.02 0.00 
100 10 0.4 8234.0708 8235.4560 8241.5868 2.8249 0.01 0.02 0.02 0.00 
100 10 0.6 8234.0708 8235.5823 8241.5867 3.0328 0.01 0.02 0.02 0.00 
100 10 0.8 8234.0708 8234.6888 8241.5866 2.0551 0.01 0.02 0.02 0.00 
100 10 1 8234.0708 8234.9941 8241.5868 2.4600 0.02 0.02 0.02 0.00 
100 50 0 8234.0717 8234.0758 8234.1311 0.0118 0.03 0.04 0.04 0.00 
100 50 0.2 8234.0717 8234.0718 8234.0744 0.0004 0.04 0.04 0.04 0.00 
100 50 0.4 8234.0717 8234.0725 8234.0982 0.0040 0.04 0.04 0.04 0.00 
100 50 0.6 8234.0717 8234.0718 8234.0722 0.0001 0.04 0.04 0.04 0.00 
100 50 0.8 8234.0717 8234.0722 8234.0941 0.0032 0.04 0.04 0.04 0.00 
100 50 1 8234.0711 8234.0718 8234.0739 0.0004 0.04 0.04 0.04 0.00 

Based on the tables, BSASSG and BSADSG reaches almost the same optimal of 8234.07 

($/h). However, the computation time increases by either higher population size or by 

the higher maximum iteration number for both BSASSG and BSADSG.
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4.2.1.2 Convergence Characteristics 

From the optimization results of this case, the convergence characteristics are plotted to 

compare both constraint handling mechanisms. The results of both mechanisms with 

same parameters (maximum iteration=100, popsize=50, mixrate=1) are used for plotting 

the convergence. Figure 4.1 shows the convergence of the generation cost for the best 

solutions of BSASSG and BSADSG. The figure shows that BSADSG performs better 

compared to BSASSG as it converges to the optimal in early iterations. 

 

Figure 4.1. Convergence characteristic of BSASSG and BSADSG in Case 1 

4.2.1.3 Robustness 

Both BSASSG and BSADSG show the high robustness in this small size case study for 

solving of ED problem. Figure 4.2 shows the optimal obtained in 50 trials by BSASSG 

and BSADSG for the same optimization parameters. Both mechanisms confirm that BSA 

is robust for solving ED in this case study. Based on the results from Table 4.1 and 

Table 4.2, It is shown that the robustness of BSA is improved by increasing the 

population size in each constraint handling mechanism. 
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Figure 4.2. Optimal results of BSASSG and BSADSG for 50 trials in Case 1 

4.2.1.4 Computational efficiency 

Table 4.1 and Table 4.2 show that the computation time of BSADSG is lower than 

BSASSG when both methods have been run with the same parameters.  However, the 

computation times of both methods are very low since the system size is small. 

4.2.1.5 Comparison of BSA with other methods 

The results of BSASSG and BSADSG and their comparisons with GA (Walters & Sheble, 

1993), EP (Yang et al., 1996), MPSO (Jong-Bae et al., 2005), PS (Al-Sumait et al., 

2007), GA-PS-SQP (Alsumait et al., 2010), and GA-API (Ciornei & Kyriakides, 2012) 

are as in Table 4.3, which shows BSA succeeding in finding the best solution for the 

test system. The system size is small, hence most of the methods converged to the same 

optimal. 
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Table 4.3. Best solution for Case 1 (3-unit system) 

Generation GA1 EP2 MPSO3 PS4 GA-PS-
SQP5

GA-
API6 BSASSG BSADSG 

P1 (MW) 300.00 300.26 300.27 300.3 300.27 300.25 300.2669 300.2665 
P2 (MW) 400.00 400.00 400.00 400.00 400.00 399.98 400.0000 400.0000 
P3 (MW) 150.00 149.74 149.73 149.7 149.73 149.77 149.7331 149.7334 

Total 
generations 

(MW) 
850.00 850.00 850.00 850.0 850.00 850.00 850.0000 850.0000 

Total cost 
($/MW) 8237.60 8234.07 8234.07 8234.1 8234.07 8234.07 8234.07 8234.07 

1 (Walters & Sheble, 1993) 
2 (Yang et al., 1996) 
3 (Jong-Bae et al., 2005) 
4 (Al-Sumait et al., 2007) 
5 (Alsumait et al., 2010) 
6 (Ciornei & Kyriakides, 2012) 

4.2.2 Case 2: 6-unit system with transmission loss 

This system comprises 6 generating units. The power demand to be met by all the units 

in this case study is 283.4MW. The cost function is non-convex and the transmission 

loss is considered. The system data is as summarized in Appendix (Table A.2 and Table 

A.3) (Yaşar et al., 2011).  

4.2.2.1 Solution to ED problem by BSASSG and BSADSG 

BSASSG and BSADSG have been run with different parameter settings in this case study. 

The maximum iterations of 200 and 500 are selected and two population sizes of 10 and 

50 are chosen. The values of 0 to 1 with the step of 0.20 are selected for the mixrate as 

the BSA’s control parameter. In each case corresponding to the specific values of the 

parameters, the optimization is run for 50 times and the statistical indices of the results 

are calculated. Table 4.4 and Table 4.5 show the simulation parameters and the 

statistical indices of the optimization results for BSASSG and BSADSG. The results show 

that both mechanisms reach the approximate optimal in all runs. For the same 

population size and maximum iteration number, BSA with each mechanism shows its 

best performance when the mixrate is set to 1. The solution quality again improves by 

increasing either population size or maximum iteration number. 



62 

Table 4.4. Statistical results of BSASSG for case 2 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

200 10 0 925.6473 929.5551 955.2194 6.7008 0.34 0.40 0.44 0.02 
200 10 0.2 925.4671 926.4058 928.1238 0.5344 0.50 0.55 0.62 0.03 
200 10 0.4 925.4741 926.1482 927.6255 0.4463 0.47 0.58 0.67 0.04 
200 10 0.6 925.4262 925.9691 926.9111 0.4257 0.48 0.61 0.67 0.04 
200 10 0.8 925.4156 926.6591 963.0449 5.2710 0.40 0.60 0.72 0.05 
200 10 1 925.4157 925.7960 926.8127 0.4323 0.47 0.59 0.66 0.05 
200 50 0 925.4592 926.2068 926.7298 0.3569 1.86 2.07 2.28 0.09 
200 50 0.2 925.4444 925.7300 926.4621 0.2794 2.73 2.94 3.12 0.10 
200 50 0.4 925.4308 925.5408 926.3061 0.1381 2.96 3.13 3.29 0.08 
200 50 0.6 925.4143 925.5339 926.3217 0.1813 3.06 3.26 3.42 0.09 
200 50 0.8 925.4145 925.5179 926.2994 0.1914 3.10 3.28 3.45 0.09 
200 50 1 925.4154 925.4361 925.5441 0.0257 2.84 3.17 3.57 0.17 
500 10 0 925.4207 926.4318 937.7516 1.7673 0.83 0.93 1.04 0.05 
500 10 0.2 925.4140 925.5996 926.3741 0.2953 1.06 1.28 1.40 0.08 
500 10 0.4 925.4137 925.5629 926.3039 0.2995 1.04 1.34 1.47 0.09 
500 10 0.6 925.4137 925.4720 926.2955 0.2108 0.94 1.27 1.47 0.13 
500 10 0.8 925.4137 925.5558 926.2971 0.3261 0.83 1.11 1.48 0.15 
500 10 1 925.4137 925.5196 926.2952 0.2893 0.80 1.01 1.23 0.12 
500 50 0 925.4218 925.5582 926.3021 0.1841 4.62 4.84 5.07 0.13 
500 50 0.2 925.4138 925.4157 925.4220 0.0019 6.51 6.76 7.14 0.15 
500 50 0.4 925.4137 925.4143 925.4223 0.0012 6.08 6.93 7.41 0.27 
500 50 0.6 925.4137 925.4138 925.4147 0.0002 5.48 6.65 7.18 0.39 
500 50 0.8 925.4137 925.4313 926.2952 0.1247 4.79 5.70 6.46 0.37 
500 50 1 925.4137 925.4137 925.4137 0.0000 4.55 5.16 5.91 0.34 

Table 4.5. Statistical results of BSADSG for case 2 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

200 10 0 925.4374 925.7109 928.4320 0.4542 0.44 0.62 0.80 0.06 
200 10 0.2 925.4160 925.4390 925.4992 0.0196 0.78 1.08 1.34 0.15 
200 10 0.4 925.4154 925.4484 925.6070 0.0354 0.76 1.09 1.31 0.12 
200 10 0.6 925.4157 925.4370 925.5495 0.0246 0.75 1.12 1.40 0.17 
200 10 0.8 925.4153 925.4319 925.5259 0.0239 0.75 1.05 1.39 0.17 
200 10 1 925.4140 925.4258 925.5224 0.0165 0.80 1.06 1.37 0.15 
200 50 0 925.4291 925.5135 925.8053 0.0734 3.06 3.78 4.49 0.31 
200 50 0.2 925.4140 925.4195 925.4366 0.0048 6.54 7.11 8.33 0.34 
200 50 0.4 925.4145 925.4186 925.4284 0.0033 6.24 7.16 7.86 0.33 
200 50 0.6 925.4140 925.4179 925.4267 0.0032 5.88 7.09 8.10 0.47 
200 50 0.8 925.4140 925.4171 925.4290 0.0034 5.63 6.89 7.74 0.49 
200 50 1 925.4138 925.4161 925.4220 0.0020 5.13 6.69 7.96 0.67 
500 10 0 925.4138 925.4273 925.5157 0.0175 1.15 1.54 1.81 0.15 
500 10 0.2 925.4137 925.4140 925.4167 0.0005 1.56 2.72 3.28 0.37 
500 10 0.4 925.4136 925.4146 925.4540 0.0057 1.45 2.49 3.32 0.55 
500 10 0.6 925.4136 925.4138 925.4148 0.0002 1.51 2.29 3.15 0.51 
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500 10 0.8 925.4136 925.4137 925.4140 0.0001 1.58 2.14 3.23 0.39 
500 10 1 925.4135 925.4136 925.4141 0.0001 1.45 2.10 3.07 0.43 
500 50 0 925.4139 925.4160 925.4218 0.0017 8.36 9.36 10.48 0.55 
500 50 0.2 925.4137 925.4137 925.4138 0.0000 14.98 17.28 19.05 0.76 
500 50 0.4 925.4137 925.4137 925.4138 0.0000 12.89 16.58 18.44 1.19 
500 50 0.6 925.4136 925.4137 925.4138 0.0000 12.21 15.79 18.06 1.32 
500 50 0.8 925.4136 925.4137 925.4137 0.0000 11.08 14.45 17.38 1.61 
500 50 1 925.4135 925.4136 925.4137 0.0001 10.00 12.95 16.12 1.50 

4.2.2.2 Convergence Characteristics 

The results of BSASSG and BSADSG with the same parameters should be used to 

compare their convergence characteristics. In this case, the best ED results of both 

methods with maximum iteration=100, popsize=50, and mixrate=1 are selected. Figure 

4.3 illustrates the convergence of the generation cost versus the iteration number for the 

best solutions of BSASSG and BSADSG. It is shown that the convergence characteristic of 

BSADSG is better than BSASSG as it converges to the optimal earlier. 

 

Figure 4.3. Convergence characteristic of BSASSG and BSADSG in Case 2 
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BSADSG produce higher quality solutions than BSASSG as its optimal values in 50 trials 

are lower.  

 

Figure 4.4. Optimal results of BSASSG and BSADSG for 50 trials in Case 2 
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solution corresponding to mixrate=0.2 with same values of other two parameters is good 

enough for comparison purpose. Table 4.6 shows the optimal results of BSASSG and 

BSADSG for the case study compared with those via GA (Nadeem Malik et al., 2010), 

GA-APO (Nadeem Malik et al., 2010), PSO (Yaşar & Özyön, 2011), and MSG-HS 

(Yaşar & Özyön, 2011). BSASSG and BSADSG reach respectively, the generation costs of 

925.4671 ($/h) and 925.4374 ($/h), which are less than those achieved by the other 

methods.  

Table 4.6. Best solution for Case 2 (6-unit system) 
Generation GA1 GA-APO1 PSO2 MSG-HS2 BSASSG BSADSG
P1 (MW) 150.724 133.981 197.865 199.633 199.5993 199.6002 
P2 (MW) 60.870 37.216 50.337 20.000 20.0000 20.0000 
P3 (MW) 30.896 37.768 15.000 23.762 24.0783 24.4664 
P4 (MW) 14.214 28.350 10.000 18.393 19.2869 18.8002 
P5 (MW) 19.489 18.792 10.000 17.102 18.7680 17.6946 
P6 (MW) 15.915 38.052 12.000 15.692 12.7503 13.9329 

Total generation (MW) 292.110 294.160 295.202 294.583 294.4828 294.4943 
PL (MW) 8.706 10.756 11.802 11.183 11.0828 11.0943 

Minimum generation cost ($/h) 996.037 1101.491 925.758 925.640 925.4671 925.4374 
Average generation cost ($/h) - - 925.76 925.64 926.4058 925.7109 

Maximum generation cost ($/h) 1117.13 1101.49 928.43 928.6 928.1238 928.4320 
CPU time (s) 0.578 0.156 0.353 0.621 0.53 0.62 

1 (Nadeem Malik et al., 2010) 
2 (Yaşar & Özyön, 2011) 

4.2.3 Case 3: 20-unit system with transmission loss 

This system has 20 generating units and the system demand is 2500MW. The units’ data 

are summarized in Appendix (Table A.4). The transmission loss is considered and the 

loss coefficients are as in Appendix (Table A.5). 

4.2.3.1 Solution to ED problem by BSASSG and BSADSG 

In this case study, the maximum iteration is set to 500 for all runs of both methods. Two 

values of 10 and 50 as the low and high values of population size are considered and the 

optimization has been run for different values of mixrate as they vary from 0 to 1 with 

steps of 0.20. The statistical indices of the optimal generation cost and computation time 

are listed along with the simulation parameters in Table 4.7 and Table 4.8. The results 

show that BSA with both constraint handling mechanisms have reached almost the same 
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optimal values. However, BSASSG and BSADSG show better performance when the 

mixrate=1. 

Table 4.7. Statistical results of BSASSG for case 3 with different parameters 
Max. 

iteration popsize mixrate Generation cost ($/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

500 10 0 62468.0240 62480.7068 62500.0666 7.2095 1.26 1.42 1.53 0.06 
500 10 0.2 62458.1314 62461.9857 62467.2614 2.0540 2.12 2.31 2.48 0.09 
500 10 0.4 62457.5697 62459.7333 62463.1708 1.2733 2.14 2.35 2.64 0.13 
500 10 0.6 62457.3357 62458.8035 62463.3494 1.1441 1.93 2.27 2.65 0.18 
500 10 0.8 62456.8713 62458.0208 62460.5240 0.8684 1.65 2.08 2.53 0.19 
500 10 1 62456.8937 62457.5267 62458.6013 0.4068 1.37 1.78 2.22 0.19 
500 50 0 62463.9207 62472.1355 62479.4234 3.8803 6.77 7.31 7.77 0.23 
500 50 0.2 62457.4815 62459.1898 62461.2972 0.8901 11.00 11.91 12.62 0.42 
500 50 0.4 62457.1291 62458.2178 62460.4153 0.6791 10.79 12.18 13.38 0.54 
500 50 0.6 62456.9222 62457.3594 62458.4320 0.3278 9.97 11.56 12.54 0.71 
500 50 0.8 62456.7547 62457.1015 62457.8991 0.3114 8.36 11.03 12.79 0.98 
500 50 1 62456.7152 62456.8474 62457.1302 0.0965 7.41 9.25 10.61 0.68 

Table 4.8. Statistical results of BSADSG for case 3 with different parameters 
Max. 

iteration popsize mixrate Generation cost ($/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

500 10 0 62459.6886 62464.6892 62473.1335 2.9602 1.06 1.19 1.29 0.05 
500 10 0.2 62456.8596 62457.6093 62458.7701 0.4067 1.76 1.88 2.07 0.06 
500 10 0.4 62456.7729 62457.3546 62458.2779 0.3018 1.81 1.93 2.14 0.06 
500 10 0.6 62456.7654 62457.1267 62457.8195 0.2377 1.72 1.92 2.06 0.07 
500 10 0.8 62456.6928 62456.8970 62457.9149 0.1958 1.72 1.85 2.00 0.07 
500 10 1 62456.6540 62456.8084 62457.4365 0.1554 1.61 1.79 1.97 0.09 
500 50 0 62458.6758 62460.9385 62464.0995 1.2059 5.62 6.32 7.13 0.32 
500 50 0.2 62456.7274 62457.0914 62457.6479 0.1833 9.47 10.18 11.26 0.38 
500 50 0.4 62456.7435 62456.9371 62457.3414 0.1343 9.31 10.23 11.29 0.39 
500 50 0.6 62456.6751 62456.7799 62457.1216 0.0834 9.08 10.03 11.51 0.45 
500 50 0.8 62456.6389 62456.7049 62456.7922 0.0418 8.81 9.79 11.00 0.48 
500 50 1 62456.6359 62456.6736 62456.9008 0.0434 8.27 9.38 11.15 0.57 

4.2.3.2 Convergence Characteristics 

Figure 4.5 shows the convergence characteristics of BSASSG and BSADSG for their best 

optimal runs. It corresponds to maximum iteration=500, popsize=50, and mixrate=1. 

The figure shows that the speed of convergence of BSADSG is higher than BSASSG even 

it is initialized from a higher value of objective function. 
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Figure 4.5. Convergence characteristic of BSASSG and BSADSG in Case 3 

4.2.3.3 Robustness 

Figure 4.6 illustrates the optimal results of 50 run for BSASSG and BSADSG. The figure 

shows that BSADSG converged to almost the same results and most of the runs led to 

lower values than BSASSG. It confirms that the BSADSG produces better optimal results 

than BSASSG. However, BSASSG and BSADSG show high robustness in solving the ED 

problem in this case. 

 

Figure 4.6. Optimal results of BSASSG and BSADSG for 50 trials in Case 3 
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4.2.3.4 Computational efficiency 

Table 4.7 and Table 4.8 show the statistical indices of computation time for BSASSG and 

BSADSG, respectively. Based on these tables, the computation time of BSADSG is lower 

than BSASSG in most of the cases when they are compared with the same optimization 

parameters. But, BSADSG converges to a same optimal of BSASSG in shorter 

computation time.  For example, BSASSG converges to the optimal of 62456.8713 ($/h) 

with SD=0.87 ($/h) in an average time of 2.08 (s) while BSADSG converges to a bit 

lower optimal and lower standard deviation (62456.8596 ($/h) and SD=0.41) in shorter 

average time, 1.88 (s). 

4.2.3.5 Comparison of BSA with other methods 

BSADSG performs much better than BSASSG in this case in terms of better solution 

quality. So, the best solution of ED by BSADSG is compared with other methods from 

the literature. 

Figure 4.9 shows the best ED schedule by BSADSG and some methods (for this 

particular case study: λ iteration (Su et al., 2000), NR (Abdelaziz et al., 2008), and 

EHNN (Abdelaziz et al., 2008)). Comparison shows BSADSG converging to the lowest 

optimal value among the other methods.  

Table 4.9. Best solution for Case 3 (20-unit system considering transmission loss) 
Generation λ method1 NR2 EHNN2 BSADSG
P1 (MW) 512.7805 524.0166 403.3043 513.1610 
P2 (MW) 169.1033 160.9879 134.4348 169.1839 
P3 (MW) 126.8898 130.2168 134.4348 126.8718 
P4 (MW) 102.8657 100.4129 134.4348 102.9243 
P5 (MW) 113.6386 115.2559 107.5478 113.9064 
P6 (MW) 73.5710 78.7385 67.2174 73.5339 
P7 (MW) 115.2878 118.1765 84.0217 115.4571 
P8 (MW) 116.3994 118.9390 100.8261 116.3941 
P9 (MW) 100.4062 104.7037 134.4348 100.3602 
P10 (MW) 106.0267 113.7706 100.8261 106.0799 
P11 (MW) 150.2394 148.7055 201.6522 150.2741 
P12 (MW) 292.7648 295.9623 336.0869 292.6492 
P13 (MW) 119.1154 118.0200 107.5478 118.9574 
P14 (MW) 30.8340 35.4054 87.3826 30.6032 
P15 (MW) 115.8057 121.3720 124.3522 115.5427 
P16 (MW) 36.2545 36.0465 53.7739 36.2612 
P17 (MW) 66.8590 72.4530 57.1348 66.7651 
P18 (MW) 87.9720 42.2129 80.6609 87.7428 
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P19 (MW) 100.8033 102.6087 80.6609 100.9375 
P20 (MW) 54.3050 55.7560 67.2174 54.3725 

Total generations (MW) 2591.9670 2593.7615 2597.9520 2591.9781 
PL (MW) 91.9670 93.7615 97.9520 91.9781 

Minimum generation cost ($/h) 62456.6391 62489.5000 62610.0000 62456.6359 
Average generation cost ($/h) - - - 62456.6736 

Maximum generation cost ($/h) - - - 62456.9008 
CPU time (s) 33.7570 0.4000 0.1100 8.74 

1 (Su & Lin, 2000) 
2 (Abdelaziz et al., 2008) 

4.2.4 Case 4: 40-unit system with non-convex cost function 

This case is a large test system with non-convex cost functions in any of the generating 

units. The system demand is 10500MW. The units’ data are as shown in Appendix 

(Table A.6).  

4.2.4.1 Solution to ED problem by BSASSG and BSADSG 

In this non-convex case study, the maximum iteration is set to 5000 with two values of 

10 and 50 for the population size. Again, the values of 0 to 1 with steps of 0.2 are 

assigned to the mixrate. The whole results with the values of optimization parameters 

are shown in Table 4.10 and Table 4.11. In this case study, BSADSG shows much better 

performance than BSASSG because it converges to lower optimal even in lower 

computation time. 

Table 4.10. Statistical results of BSASSG for case 4 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

5000 10 0 122246.7000 122928.1000 123540.9000 306.8176 1.14 1.15 1.17 0.01 

5000 10 0.2 121624.4000 121857.1000 122200.7000 108.0424 1.25 1.26 1.30 0.01 

5000 10 0.4 121586.5000 121776.3000 122041.4000 107.0172 1.25 1.28 1.31 0.02 

5000 10 0.6 121512.6000 121762.5000 122177.3000 133.7590 1.23 1.28 1.33 0.02 

5000 10 0.8 121585.7000 121789.0000 122502.1000 156.2368 1.22 1.26 1.31 0.02 

5000 10 1 121562.8000 121918.8000 122540.2000 241.4585 1.15 1.22 1.28 0.03 

5000 50 0 122241.7000 122588.5000 122935.8000 176.2929 4.29 4.33 4.42 0.04 

5000 50 0.2 121607.7000 121706.6000 121893.9000 56.7192 4.85 4.94 5.07 0.06 

5000 50 0.4 121537.9000 121672.0000 121775.1000 57.2171 4.93 5.08 5.24 0.06 

5000 50 0.6 121599.6000 121661.8000 121809.1000 45.2183 5.01 5.11 5.29 0.06 

5000 50 0.8 121503.3000 121631.4000 121781.2000 61.3481 4.96 5.10 5.27 0.08 

5000 50 1 121457.6000 121591.8000 121776.9000 78.1484 4.62 4.89 5.18 0.15 
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Table 4.11. Statistical results of BSADSG for case 4 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

5000 10 0 121472.1000 121594.1000 121845.7000 82.2230 2.78 2.98 3.23 0.11 

5000 10 0.2 121431.0000 121481.8000 121544.2000 32.3614 4.92 5.54 6.27 0.26 

5000 10 0.4 121419.5000 121467.4000 121573.9000 36.1049 4.74 5.50 6.10 0.30 

5000 10 0.6 121418.3000 121460.1000 121541.1000 31.6806 4.63 5.31 5.93 0.33 

5000 10 0.8 121416.2000 121479.0000 121646.6000 50.0701 4.13 5.06 6.02 0.43 

5000 10 1 121412.7000 121504.3000 121891.4000 87.1812 3.46 4.73 6.21 0.61 

5000 50 0 121446.0000 121488.2000 121559.5000 25.7294 6.29 6.61 6.97 0.14 

5000 50 0.2 121417.5000 121440.8000 121475.5000 13.9638 10.34 10.90 11.31 0.22 

5000 50 0.4 121416.2000 121432.0000 121461.2000 9.5355 10.33 10.93 11.58 0.24 

5000 50 0.6 121414.7000 121427.5000 121449.8000 7.9664 10.16 10.83 11.68 0.32 

5000 50 0.8 121416.3000 121425.6000 121448.0000 8.5699 9.75 10.53 11.26 0.35 

5000 50 1 121412.9000 121423.0000 121446.6000 7.1345 9.24 10.09 11.26 0.40 

Table 4.12 lists the optimal schedules of the generating units for the best solutions of 

BSASSG and BSADSG among the 50 runs on the 10500MW demand. 

Table 4.12. Best solution for Case 4 (40-unit system with valve-point loading 
effect) 
BSASSG

Generation (MW) Generation (MW) Generation (MW) Generation (MW) 
P1 111.3042 P11 168.8013 P21 523.4286 P31 190.0000 
P2 111.2151 P12 168.7957 P22 523.5551 P32 189.9959 
P3 97.4428 P13 214.1913 P23 523.4421 P33 190.0000 
P4 179.7882 P14 304.5236 P24 523.3284 P34 165.9914 
P5 89.4604 P15 392.1322 P25 523.4877 P35 165.1608 
P6 140.0000 P16 394.2844 P26 523.3424 P36 165.2852 
P7 259.6982 P17 489.2890 P27 10.0000 P37 110.0000 
P8 284.9202 P18 489.3243 P28 10.0024 P38 109.9967 
P9 284.8293 P19 511.4300 P29 10.0000 P39 110.0000 
P10 130.0000 P20 511.3184 P30 88.8952 P40 511.3396 

Total generations (MW)  Total generation cost ($/h)  CPU time (s) 
10500  121457.5960  4.84 

BSADSG
Generation (MW) Generation (MW) Generation (MW) Generation (MW) 

P1 110.7997 P11 94.0014 P21 523.2791 P31 190.0000 
P2 110.7994 P12 94.0002 P22 523.2779 P32 189.9999 
P3 97.4001 P13 214.7598 P23 523.2791 P33 189.9999 
P4 179.7334 P14 394.2792 P24 523.2791 P34 164.8007 
P5 87.8043 P15 394.2782 P25 523.2797 P35 194.4222 
P6 139.9998 P16 394.2760 P26 523.2793 P36 199.9780 
P7 259.5990 P17 489.2792 P27 10.0000 P37 109.9999 
P8 284.5997 P18 489.2794 P28 10.0000 P38 109.9993 
P9 284.5996 P19 511.2796 P29 10.0002 P39 109.9989 
P10 130.0005 P20 511.2794 P30 87.7994 P40 511.2796 

Total generations (MW)  Total generation cost ($/h)  CPU time (s) 
10500  121412.9104  10.11 
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4.2.4.2 Convergence Characteristics 

The convergences of generation cost are depicted in Figure 4.7 for the best solutions 

obtained by BSASSG and BSADSG. The figure confirms the superiority of BSADSG in 

terms of better convergence characteristic for solving of ED problem in this case. 

 

Figure 4.7. Convergence characteristic of BSASSG and BSADSG in Case 4 
 

4.2.4.3 Robustness 

Figure 4.8 shows the distribution of the optimal results obtained by BSASSG and 

BSADSG. The figure clearly shows that BSADSG performs better than BSASSG as its 

optimal results are lower than those of BSASSG which means BSADSG is more robust 

than BSASSG.

Figure 4.8. Optimal results of BSASSG and BSADSG for 50 trials in Case 4 
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4.2.4.4 Computational efficiency 

In this case study, the worst optimal achieved by BSADSG is 121472.1000 ($/h) which 

took an average time of 2.98 (s) while the best optimal achieved by BSASSG is 

121457.6000 ($/h) which took an average time of 4.89 (s). As a result, the 

computational efficiency of BSADSG is better than BSASSG.

4.2.4.5 Comparison of BSA with other methods 

As mentioned before, BSADSG performs better than BSASSG in this case study. So, 

BSADSG is used for the comparison. Table 4.13 shows the statistical indices of optimal 

results of BSADSG and of the other methods (for this case study: PSO, APSO1, and 

APSO2 (A. Immanuel Selvakumar & Thanushkodi, 2008), CEP (Sinha et al., 2003), 

BBO (A. Bhattacharya & P. K. Chattopadhyay, 2010a), DEC-SQP (dos Santos Coelho 

& Mariani, 2006), FEP (Sinha et al., 2003), CSO (A. Immanuel Selvakumar et al., 

2009), TSARGA (Subbaraj et al., 2011), ACO (Pothiya et al., 2010), IFEP (Sinha et al., 

2003), PS (Al-Sumait et al., 2007), GA-PS-SQP (Alsumait et al., 2010), BBO 

(Aniruddha Bhattacharya et al., 2010), PSO-LRS, NPSO, and NPSO-LRS (A. I. 

Selvakumar & Thanushkodi, 2007), SA-PSO (Cheng-Chien, 2008), SOH-PSO 

(Chaturvedi et al., 2008), BF-NM (K. B. Panigrahi et al., 2008), and CSA (Basu & 

Chowdhury, 2013)).  

Table 4.13. statistical indices of optimal results of BSADSG and other methods in Case 4 
Method Total generation cost ($/h) Average CPU time (s) 

Minimum Average Maximum  
PSO1 121735.4736 122513.9175 123467.4086 4.58 
APSO11 121704.7391 122221.3697 122995.0976 4.71 
APSO21 121663.5222 122153.6730 122912.3958 5.05 
CEP2 123488.29 124793.48 126902.89 1956.93 
BBO3 121426.95 121735.28 122869.51 145.35 
DEC-SQP4 121749.1892 122294.1825 123722.1237 14.39 
FEP2 122679.71 124119.37 127245.59 1039.16 
CSO4 121461.6707 121936.1926 122844.5391 - 
TSARGA5 121463.0700 122928.3100 124296.5400 696.01 
ACO6 121811.3700 121930.5800 122048.0600 92.54 
IFEP2 122624.3500 123382.0000 125740.6300 1167.35 
PS7 121415.14 122332.65 125486.29 42.98 
GA-PS-SQP8 121458.14 122039 - 46.98 
BBO9 121479.5029 121512.0576 121688.6634 - 
PSO-LRS10 122035.7946 122558.4565 123461.6794 15.86 
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NPSO10 121704.7391 122221.3697 122995.0976 4.71 
NPSO-LRS10 121664.4308 122209.3185 122981.5913 16.81 
SA-PSO11 121430 121525 121645 26.58 
SOH-PSO12 121501.14 121853.57 122446.30 - 
BF-NM13 121423.63 121814.94 - - 
CSA14 121425.61 - - - 
BSADSG 121412.9000 121423.0000 121446.6000 10.09 
1 (A. Immanuel Selvakumar & Thanushkodi, 2008) 
2 (Sinha et al., 2003) 
3 (A. Bhattacharya & P. K. Chattopadhyay, 2010a) 
4 (A. Immanuel Selvakumar & Thanushkodi, 2009) 
5 (Subbaraj et al., 2011) 
6 (Pothiya et al., 2010) 
7 (Al-Sumait et al., 2007) 
8 (Alsumait et al., 2010) 
9 (Aniruddha Bhattacharya & Pranab Kumar Chattopadhyay, 2010) 
10 (A. I. Selvakumar & Thanushkodi, 2007) 
11 (Cheng-Chien, 2008) 
12 (Chaturvedi et al., 2008) 
13 (K. B. Panigrahi & Pandi, 2008) 
14 (Basu & Chowdhury, 2013) 

The table above shows BSADSG achieving the minimum cost of 121412.9000 ($/h), with 

acceptable CPU solving time of the ED problem. 

4.3 ED problems with valve-point effects, prohibited operating zones, and multiple 

fuel options 

Two case studies are used to validate the applicability of the proposed method with the 

proposed constraint handlings for solving ED problems by considering valve point 

effects, prohibited operating zones, and multiple fuel options. As mentioned in chapter 3 

section 3.4, two constraint handling mechanisms have been employed for solving the 

ED problems. Both mechanisms are considered in BSA to solve the ED problems. 

These BSA methods are named “BSASSG” and “BSADSG”. 

For each case study, the number of 50 trials is considered to validate the robustness of 

the proposed methods (BSASSG and BSADSG). In order to check the performance of 

BSASSG and BSADSG for the solving of ED in large-scale systems, it was applied on 20, 

40, 80, 160 unit systems with both valve-point effect and multiple fuel options making 

the problem of ED very complex. 
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4.3.1 Case 5: 15-unit system 

This case study is the system with prohibited operating zone constraints. The system 

comprises 15 generating units with quadratic cost functions. The data are shown in 

Appendix (Table A.7). The transmission loss coefficients are taken from (Zwe-Lee, 

2003) and are listed in Appendix (Table A.8).  

4.3.1.1 Solution to ED problem by BSASSG and BSADSG 

ED problem is solved for this case study with different values of parameters. The 

optimization results with parameter settings are shown in Table 4.14 and Table 4.15. 

The statistical indices of optimization results are calculated for the purpose of 

comparison and the analysis of the performance of BSASSG and BSADSG.

Both methods converge to the approximate optimal by proper parameter settings. 

Comparison between the optimal values found by BSA with two constraint handling 

mechanisms show that BSADSG reaches lower optimal value with higher quality (e.g. 

lower standard deviation) than BSASSG with the same parameters settings. 

Table 4.14. Statistical results of BSASSG for case 5 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

300 10 0 32853.5205 32891.9654 32930.1542 19.8243 0.94 1.04 1.14 0.05 

300 10 0.2 32735.0463 32793.0593 32862.8144 29.1480 1.67 1.82 1.97 0.07 

300 10 0.4 32714.3380 32765.4514 32838.5366 28.3578 1.78 1.96 2.08 0.07 

300 10 0.6 32726.8841 32768.9438 32826.2507 23.7973 1.90 2.03 2.15 0.06 

300 10 0.8 32724.3553 32772.3689 32828.8484 23.8340 1.84 2.07 2.26 0.08 

300 10 1 32731.9286 32775.4526 32834.1100 23.8947 1.89 2.07 2.20 0.07 

300 50 0 32806.8605 32860.5921 32886.8724 16.5482 4.88 5.44 5.88 0.21 

300 50 0.2 32718.6527 32756.8529 32787.8951 14.8924 9.06 9.56 10.26 0.21 

300 50 0.4 32714.0910 32735.5075 32768.3256 12.0188 9.76 10.29 10.69 0.22 

300 50 0.6 32712.7520 32738.5042 32769.5875 12.7135 10.22 10.80 11.22 0.24 

300 50 0.8 32711.6398 32739.2387 32762.6794 12.0875 10.50 11.13 11.64 0.25 

300 50 1 32717.5894 32744.9666 32778.7565 13.7964 10.51 11.11 12.04 0.30 

500 10 0 32828.9118 32868.8467 32908.1272 18.6609 1.54 1.72 1.83 0.07 

500 10 0.2 32714.6086 32762.3507 32819.9658 24.8477 2.75 2.91 3.15 0.08 

500 10 0.4 32708.0537 32735.8102 32792.7922 18.5470 2.85 3.09 3.34 0.11 

500 10 0.6 32714.7826 32731.3652 32769.5539 12.4490 3.04 3.21 3.42 0.09 

500 10 0.8 32708.9555 32730.4905 32766.3650 11.9146 2.93 3.27 3.48 0.11 

500 10 1 32709.5243 32735.6693 32775.9442 15.7160 2.92 3.25 3.56 0.14 
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500 50 0 32789.1948 32832.7903 32861.1787 15.5300 8.21 8.86 9.48 0.28 

500 50 0.2 32709.5685 32730.6099 32761.1794 12.6940 14.80 15.30 15.71 0.24 

500 50 0.4 32704.8642 32714.9796 32726.0053 5.5789 16.04 16.58 17.49 0.29 

500 50 0.6 32706.1312 32713.8911 32725.4731 4.8103 16.50 17.16 18.05 0.32 

500 50 0.8 32707.2850 32716.2224 32733.5033 5.7907 16.41 17.68 18.80 0.40 

500 50 1 32705.3537 32717.5492 32729.5674 5.4326 17.13 17.76 18.70 0.35 

Table 4.15. Statistical results of BSADSG for case 5 with different parameters 
Max. 

iteration popsize mixrate Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

300 10 0 32704.6057 32714.0649 32735.3949 6.8454 0.90 1.11 1.26 0.09 

300 10 0.2 32704.4600 32704.7814 32706.5097 0.4420 1.93 2.08 2.25 0.07 

300 10 0.4 32704.4525 32704.7401 32706.2177 0.3340 2.03 2.21 2.42 0.08 

300 10 0.6 32704.4513 32704.7619 32705.7463 0.3042 1.97 2.33 2.54 0.11 

300 10 0.8 32704.4512 32705.0381 32706.7851 0.4928 2.20 2.39 2.57 0.08 

300 10 1 32704.4678 32705.1895 32707.9025 0.7848 2.25 2.47 2.70 0.11 

300 50 0 32704.7392 32706.4176 32709.9520 1.3527 5.63 6.58 7.39 0.39 

300 50 0.2 32704.4508 32704.5100 32704.8440 0.0795 11.95 12.66 13.85 0.38 

300 50 0.4 32704.4510 32704.5180 32704.9421 0.0905 12.49 13.35 14.27 0.37 

300 50 0.6 32704.4503 32704.5019 32704.6037 0.0420 13.20 13.99 14.74 0.35 

300 50 0.8 32704.4522 32704.5274 32704.7416 0.0607 13.51 14.48 15.44 0.45 

300 50 1 32704.4507 32704.5382 32704.7764 0.0686 13.59 14.86 15.96 0.59 

500 10 0 32704.4576 32705.6885 32710.1464 1.2352 1.65 1.83 2.00 0.08 

500 10 0.2 32704.4502 32704.5155 32704.9712 0.0908 3.12 3.37 3.54 0.09 

500 10 0.4 32704.4501 32704.4781 32704.6884 0.0461 3.46 3.62 3.85 0.09 

500 10 0.6 32704.4501 32704.4832 32704.6239 0.0381 3.54 3.77 4.03 0.12 

500 10 0.8 32704.4501 32704.4859 32704.8908 0.0660 3.64 3.91 4.21 0.12 

500 10 1 32704.4521 32704.4934 32704.7034 0.0514 3.79 4.02 4.26 0.10 

500 50 0 32704.4501 32704.6725 32705.3322 0.2321 9.73 10.60 12.34 0.51 

500 50 0.2 32704.4501 32704.4538 32704.4756 0.0050 19.55 20.36 21.11 0.39 

500 50 0.4 32704.4501 32704.4529 32704.4661 0.0041 20.51 21.65 22.71 0.43 

500 50 0.6 32704.4501 32704.4524 32704.4625 0.0029 21.53 22.65 24.09 0.57 

500 50 0.8 32704.4501 32704.4556 32704.4761 0.0063 22.04 23.53 24.62 0.59 

500 50 1 32704.4501 32704.4552 32704.4738 0.0046 22.92 24.12 25.88 0.60 

4.3.1.2 Convergence Characteristics 

Figure 4.9 shows the convergence characteristics of BSASSG and BSADSG for their best 

solutions. The figure shows much difference between two mechanisms for the 

constraints handling. BSADSG converges to the optimal earlier than BSASSG which 

proves its better convergence characteristic. 
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Figure 4.9. Convergence characteristic of BSASSG and BSADSG in Case 5 
 

4.3.1.3 Robustness 

The optimal solutions among 50 trials BSASSG and BSADSG are depicted in Figure 4.10. 

It clearly shows that both BSASSG and BSADSG are robust as they converge to almost 

same optimal values. Also, it is shown that BSADSG is much robust than BSASSG as it 

converges to the same optimal values in 50 trials. 

 

Figure 4.10. Optimal results of BSASSG and BSADSG for 50 trials in Case 5 
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4.3.1.4 Computational efficiency 

As shown in the previous section, BSADSG converges to the lower optimal values than 

BSASSG with same optimization parameters. But when both BSASSG and BSADSG are to 

be compared, the computation time of each to reach the same optimal (with almost same 

solution quality, i.e., same standard deviation) should be considered. For example, 

BSADSG reaches 32704.6057 ($/h) in about 1.11 (s) while the other one reaches 

32704.8642 in about 16.58 (s) confirming the better performance of BSADSG than 

BSASSG in terms of computational efficiency. 

4.3.1.5 Comparison of BSA with other methods 

Although both BSASSG and BSADSG show high performance for solving the ED problem 

in this case study, the results of BSADSG is used for the comparison with other methods. 

The results achieved by BSADSG are compared with PSO and GA (Zwe-Lee, 2003), 

MTS (Pothiya et al., 2008), SOH-PSO (Chaturvedi et al., 2008), GAAPI (Ciornei & 

Kyriakides, 2012), AIS (B. K. Panigrahi et al., 2007), APSO (B. K. Panigrahi et al., 

2008), and SGA (Kuo, 2008) as shown in Table 4.16. The results confirm that BSADSG 

achieves the lowest generation cost among other methods.  

The variations in optimal results obtained by BSADSG and other methods are presented 

in Table 4.17. Again, the similar optimal results with low standard deviations validate 

the robustness of BSADSG for solving the ED problems. Note that the authors of BF-NM 

(K. B. Panigrahi & Pandi, 2008) did not report the power generations of units, so Table 

4.17 excludes the detailed results of this method.  
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Table 4.16. Best solution for Case 5 (15-unit test system) 
Generation PSO1 GA1 MTS2 SOH-

PSO3 GAAPI4 AIS5 APSO6 SGA7 BSADSG 

P1 (MW) 439.1162 415.3108 453.9922 455.00 454.70 441.1587 455.00 455.00 455.0000 
P2 (MW) 407.9727 359.7206 379.7434 380.00 380.00 409.5873 380.0100 380.00 380.0000 
P3 (MW) 119.6324 104.425 130.0000 130.00 130.00 117.2983 130.00 130.00 130.0000 
P4 (MW) 129.9925 74.9853 129.9232 130.00 129.53 131.2577 126.5228 130.00 130.0000 
P5 (MW) 151.0681 380.2844 168.0877 170.00 170.00 151.0108 170.0131 170.00 170.0000 
P6 (MW) 459.9978 426.7902 460.0000 459.96 460.00 466.2579 460.00 460.00 460.0000 
P7 (MW) 425.5601 341.3164 429.2253 430.00 429.71 423.3678 428.2836 430.00 430.0000 
P8 (MW) 98.5699 124.7867 104.3097 117.53 75.35 99.948 60.00 106.25 64.4275 
P9 (MW) 113.4936 133.1445 35.0358 77.90 34.96 110.684 25.00 25.00 66.2023 
P10 (MW) 101.1142 89.2567 155.8829 119.54 160.00 100.2286 159.7893 160.00 160.0000 
P11 (MW) 33.9116 60.0572 79.8994 54.50 79.75 32.0573 80.00 80.00 80.0000 
P12 (MW) 79.9583 49.9998 79.9037 80.00 80.00 78.8147 80.00 80.00 80.0000 
P13 (MW) 25.0042 38.7713 25.0220 25.00 34.21 23.5683 33.7038 25.00 25.0083 
P14 (MW) 41.414 41.9425 15.2586 17.86 21.14 40.2581 55.00 15.00 15.0000 
P15 (MW) 35.614 22.6445 15.0796 15.00 21.02 36.9061 15.00 15.00 15.0002 
Total Gen. 

(MW) 2662.4 2668.4 2661.36 2662.29 2660.36 2662.04 2658.3226 2661.3 2660.6383 

PL (MW) 32.4306 38.2782 31.3523 32.28 30.36 32.4075 28.3655 31.258 30.6383 
Generation 
cost ($/h) 32858 33113 32716.87 32751.39 32732.95 32854 32742.7774 32711 32704.6057 

1 (Zwe-Lee, 2003) 
2 (Pothiya et al., 2008) 
3 (Chaturvedi et al., 2008) 
4 (Ciornei & Kyriakides, 2012) 
5 (B. K. Panigrahi et al., 2007) 
6 (B. K. Panigrahi et al., 2008) 
7 (Kuo, 2008) 

Table 4.17. Convergence results (for 50 trial runs) of Case 5 (15-unit test system) 
Method Total generation cost ($/h) 

Minimum Average Maximum Standard deviation 
PSO1 32858 33039 33331 - 
GA1 33113 33228 33337 - 
MTS2 32716.87 32767.21 32796.15 17.51 
SOH-PSO3 32751.39 32878 32945 - 
GAAPI4 32732.95 32735.06 32756.01 - 
AIS5 32854 32873.25 32892 10.8079 
APSO6 32742.777 32976.681 - 133.9276 
SGA7 32711 32802 33005 35.584 
BF-NM8 32784.502 32976.81 - 85.7743 
BSADSG 32704.6057 32714.0649 32735.3949 6.8454 
1 (Zwe-Lee, 2003) 
2 (Pothiya et al., 2008) 
3 (Chaturvedi et al., 2008) 
4 (Ciornei & Kyriakides, 2012) 
5 (B. K. Panigrahi et al., 2007) 
6 (B. K. Panigrahi et al., 2008) 
7 (Kuo, 2008) 
8 (K. B. Panigrahi & Pandi, 2008) 

4.3.2 Case 6: 10-unit system 

This system comprises ten units with both valve-point effects and multiple fuel options. 

The generators’ cost functions are non-convex for all fuel options. Note that the original 

cost coefficients of the generators were convex but the sinusoidal terms were added to 

make them non-convex. The system data are given as Appendix (Table A.9) (C.-L. 
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Chiang, 2005). The first generator has two fuel options and the rest have three fuel 

options. The power demand is 2700 MW and the transmission network loss is ignored. 

4.3.2.1 Solution to ED problem by BSASSG and BSADSG 

Two versions of BSA are again employed to solve the ED problem. The parameters are 

set first and both BSASSG and BSADSG are run for 50 trials. The statistical indices are 

obtained for the analysis of the results. Table 4.18 and Table 4.19 show the whole 

results achieved by BSASSG and BSADSG for this test system. The results show that both 

BSASSG and BSADSG converge to approximate optimal in all cases. The results show the 

high performance of both methods for solving the ED problem. 

Table 4.18. Statistical results of BSASSG for case 6 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 
500 10 0 624.1954 624.9051 627.3295 0.6500 0.25 0.26 0.38 0.02 
500 10 0.2 623.9604 624.0500 624.2157 0.0530 0.25 0.26 0.27 0.01 
500 10 0.4 623.9378 624.0252 624.1716 0.0574 0.25 0.26 0.27 0.01 
500 10 0.6 623.9185 623.9929 624.0875 0.0388 0.25 0.26 0.27 0.01 
500 10 0.8 623.9126 623.9822 624.1457 0.0451 0.23 0.25 0.27 0.01 
500 10 1 623.9236 623.9819 624.0937 0.0426 0.25 0.25 0.27 0.01 
500 50 0 624.0865 624.3568 625.1259 0.2098 0.47 0.49 0.51 0.01 
500 50 0.2 623.9161 623.9648 624.0101 0.0218 0.48 0.49 0.51 0.01 
500 50 0.4 623.8984 623.9612 624.0546 0.0342 0.47 0.49 0.53 0.01 
500 50 0.6 623.8977 623.9416 623.9816 0.0212 0.47 0.48 0.51 0.01 
500 50 0.8 623.9016 623.9417 623.9965 0.0209 0.47 0.49 0.50 0.01 
500 50 1 623.8999 623.9327 623.9808 0.0182 0.47 0.48 0.50 0.01 

Table 4.19. Statistical results of BSADSG for case 6 with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 
500 10 0 624.1141 624.4840 625.3923 0.2508 0.25 0.27 0.34 0.02 
500 10 0.2 623.9278 624.0049 624.0949 0.0414 0.25 0.26 0.28 0.01 
500 10 0.4 623.9205 623.9916 624.0635 0.0349 0.25 0.27 0.30 0.01 
500 10 0.6 623.9337 623.9952 624.0747 0.0355 0.25 0.26 0.28 0.01 
500 10 0.8 623.9143 623.9884 624.0618 0.0328 0.25 0.26 0.30 0.01 
500 10 1 623.9283 623.9830 624.0626 0.0340 0.25 0.26 0.28 0.01 
500 50 0 623.9847 624.1839 624.3559 0.0915 0.39 0.41 0.42 0.01 
500 50 0.2 623.9042 623.9386 624.0013 0.0186 0.39 0.41 0.59 0.03 
500 50 0.4 623.8991 623.9452 624.0038 0.0230 0.39 0.41 0.42 0.01 
500 50 0.6 623.8964 623.9432 624.0395 0.0233 0.39 0.41 0.42 0.01 
500 50 0.8 623.8758 623.9420 623.9764 0.0174 0.39 0.41 0.44 0.01 
500 50 1 623.8853 623.9297 623.9707 0.0186 0.39 0.41 0.42 0.01 
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4.3.2.2 Convergence Characteristics 

The convergence characteristics of BSASSG and BSADSG are depicted in Figure 4.11 

showing that both of them reach the optimal in almost the same iteration numbers. It has 

been seen from the figure that BSADSG is better than BSASSG in early iterations in terms 

of convergence but it is inferior in the late iterations. 

 
Figure 4.11. Convergence characteristic of BSASSG and BSADSG in Case 6 

4.3.2.3 Robustness 

Figure 4.12 shows the optimal results of BSASSG and BSADSG in 50 trials. The figure 

shows no superiority of one method to another. But it confirms that BSA is a robust 

method as all results are very close to each other. 

 

Figure 4.12. Optimal results of BSASSG and BSADSG for 50 trials in Case 6 
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4.3.2.4 Computational efficiency 

The results of computation time show that both BSASSG and BSADSG are almost same in 

terms of computational efficiency in this case study with ten generating units. The low 

standard deviation of computation time in all runs of both methods shows that BSASSG 

and BSADSG reach the optimal in almost same computation time. 

4.3.2.5 Comparison of BSA with other methods 

The results of economic dispatch by BSASSG and BSADSG are compared with different 

PSO techniques (A. I. Selvakumar & Thanushkodi, 2007; A. Immanuel Selvakumar & 

Thanushkodi, 2008), CGA_MU and IGA_MU (C.-L. Chiang, 2005), BBO (A. 

Bhattacharya & P. K. Chattopadhyay, 2010a), and BBO (Aniruddha Bhattacharya & 

Pranab Kumar Chattopadhyay, 2010) in terms of optimal generation cost for this case 

study, as shown in Table 4.20. The optimal results of 623.8977 and 623.8853 ($/MW) 

are achieved by BSASSG and BSADSG (within 0.48 (s) and 0.41 (s), respectively), which 

are the lowest among all methods. The comparison between BSASSG and BSADSG and 

others confirms that the both BSAs outperform other approaches for solving the ED 

problems. 

To analyze the proposed method’s robustness, the results of 50 trials are also considered 

in this case study and the statistical indices are calculated. Table 4.21 shows the 

minimum, average, and maximum of optimal values achieved by BSASSG, BSADSG, and 

the other methods. Based on the table, the differences between the maximum and 

minimum results of BSASSG and BSADSG for 50 trials are the lowest among the other 

methods confirming the high degree of robustness of the proposed methods for solving 

the ED problem in this case study. 
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Table 4.20. Best solution for Case 6 (10-unit test system) 
Generation CGA_MU1 IGA_MU1 PSO-LRS2 NPSO2 NPSO-LRS2

P1 (MW) 222.0108 219.1261 219.0155 220.6570 223.3352 
P2 (MW) 211.6352 211.1645 213.8901 211.7859 212.1957 
P3 (MW) 283.9455 280.6572 283.7616 280.4026 276.2167 
P4 (MW) 237.8052 238.4770 237.2687 238.6013 239.4187 
P5 (MW) 280.4480 276.4179 286.0163 277.5621 274.6470 
P6 (MW) 236.0330 240.4672 239.3987 239.1204 239.7974 
P7 (MW) 292.0499 287.7399 291.1767 292.1397 285.5388 
P8 (MW) 241.9708 240.7614 241.4398 239.1530 240.6323 
P9 (MW) 424.2011 429.3370 416.9721 426.1142 429.2637 
P10 (MW) 269.9005 275.8518 271.0623 274.4637 278.9541 

generation cost ($/h) 624.7193 624.5178 624.2297 624.1624 624.1273 
Generation PSO3 APSO13 APSO23 BSASSG BSADSG
P1 (MW) 224.7063 220.6570 223.3377 220.6475 218.4251 
P2 (MW) 212.3882 211.7859 212.1547 211.9557 211.2092 
P3 (MW) 283.4405 280.4026 276.2203 281.6679 280.6552 
P4 (MW) 239.9530 238.6013 239.4176 239.3705 239.2388 
P5 (MW) 283.8190 277.5621 274.6411 276.4148 279.8106 
P6 (MW) 241.0024 239.1204 239.7953 240.1796 239.3703 
P7 (MW) 287.8671 292.1397 285.5406 287.1455 290.1094 
P8 (MW) 240.6245 239.1530 240.6270 239.7760 240.0426 
P9 (MW) 407.9870 426.1142 429.3104 427.0714 425.3852 
P10 (MW) 278.2120 274.4637 278.9553 275.7711 275.7537 

generation cost ($/h) 624.3506 624.1624 624.0145 623.8977 623.8758 
1 (C.-L. Chiang, 2005) 
2 (A. I. Selvakumar & Thanushkodi, 2007) 
3 (A. Immanuel Selvakumar & Thanushkodi, 2008) 

Table 4.21. Convergence results (for 50 trial runs) of Case 6 (10-unit test system) 
Method Total generation cost ($/h) 

Minimum Average Maximum 
CGA_MU1 624.7193 627.6078 633.8652 
IGA_MU1 624.5178 625.8692 630.8705 
PSO-LRS2 624.2297 625.7887 628.3214 
NPSO2 624.1624 625.2180 627.4237 
NPSO-LRS2 624.1273 624.9985 626.9981 
PSO3 624.3506 625.8198 629.1037 
APSO13 624.1624 625.2180 627.4237 
APSO23 624.0145 624.8185 627.3049 
BSASSG 623.8977 623.9416 623.9816 
BSADSG 623.8758 623.9420 623.9764 
1 (C.-L. Chiang, 2005) 
2 (A. I. Selvakumar & Thanushkodi, 2007) 
3 (A. Immanuel Selvakumar & Thanushkodi, 2008) 

4.3.3 Large scale system test: 20, 40, 80, and 160 unit systems 

This test verifies the applicability of the proposed methods for solving practical ED 

problems with high complexities in large-scale systems. The 10-unit system is expanded 

to create four systems with 20, 40, 80, and 160 unit systems. Since the BSA is 

metaheuristic and its nature is stochastic, the results of 50 trials are obtained and 

statistical analysis is also performed.  
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The systems studied in this test are highly non-convex because the valve-point effects 

and multiple fuel options are addressed in the cost functions. In the ED problem for 

these test systems, there are no prohibited operating zones for generators. However, it 

does not reduce the difficulty of the ED problem because the large size and multiple 

fuel options make the problem highly nonlinear and hard to solve.  

4.3.3.1 Solution to ED problem by BSASSG and BSADSG 

In this test, the ED problem is solved with different parameters to show the 

performances of BSASSG and BSADSG. The systems have 20, 40, 80, 160 units and the 

optimization parameters are described in the related tables for each system. The 

optimization is run again for each set of values by BSASSG and BSADSG and the 

statistical indices of the results of both methods are calculated based on the 50 trials 

according to Table 4.22 to Table 4.29. The parameters shown in the tables are the 

optimization parameters and the minimum, average, maximum, and standard deviations 

of generation cost and computation time.  

Table 4.22 and Table 4.23 show the ED results of BSASSG and BSADSG for 20-unit 

system. The comparison of each row of Table 4.22 with the same row of Table 4.23 

shows that BSADSG is better than BSASSG in terms of solution quality and computation 

time. 

Table 4.22. Statistical results of BSASSG for 20-unit system with different parameters 

Max. 
iteration popsize mixrate 

Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

500 10 0 1255.0375 1264.9783 1278.0216 5.8455 0.47 0.51 0.58 0.03 
500 10 0.2 1249.2534 1250.9888 1254.6616 1.2900 0.47 0.53 0.64 0.04 
500 10 0.4 1248.8453 1250.0771 1251.9648 0.8260 0.45 0.48 0.50 0.01 
500 10 0.6 1248.6999 1249.5609 1251.5860 0.6282 0.45 0.47 0.50 0.01 
500 10 0.8 1248.3896 1249.5468 1251.8038 0.7006 0.45 0.47 0.48 0.01 
500 10 1 1248.2463 1249.3784 1251.7006 0.8163 0.45 0.47 0.48 0.01 
500 50 0 1251.2871 1257.3629 1263.5526 3.1030 0.76 0.78 0.81 0.01 
500 50 0.2 1248.4281 1249.2714 1250.1936 0.3671 0.79 0.82 0.86 0.01 
500 50 0.4 1248.4366 1249.0517 1250.2687 0.3602 0.79 0.82 0.86 0.02 
500 50 0.6 1248.3272 1248.8087 1249.3019 0.2347 0.78 0.82 0.86 0.02 
500 50 0.8 1248.2946 1248.6514 1249.1632 0.2286 0.78 0.81 0.86 0.02 
500 50 1 1248.2397 1248.5776 1249.2751 0.2143 0.78 0.81 0.86 0.02 
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Table 4.23. Statistical results of BSADSG for 20-unit system with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

500 10 0 1251.9479 1256.5459 1264.4377 2.8842 0.42 0.44 0.47 0.01 
500 10 0.2 1248.4367 1249.4490 1251.1406 0.5006 0.42 0.44 0.45 0.01 
500 10 0.4 1248.3163 1249.1137 1250.1396 0.3939 0.42 0.44 0.45 0.01 
500 10 0.6 1248.5591 1249.0034 1250.4996 0.3793 0.42 0.44 0.45 0.01 
500 10 0.8 1248.3610 1248.7712 1249.4484 0.2536 0.42 0.43 0.45 0.01 
500 10 1 1248.1862 1248.6780 1250.4436 0.4214 0.42 0.43 0.45 0.01 
500 50 0 1249.8642 1252.6155 1255.9166 1.2210 0.64 0.66 0.69 0.01 
500 50 0.2 1248.2646 1248.7013 1249.2159 0.1818 0.64 0.66 0.69 0.01 
500 50 0.4 1248.2981 1248.7092 1249.3120 0.2213 0.64 0.67 0.80 0.02 
500 50 0.6 1248.1791 1248.5438 1249.0370 0.1635 0.64 0.66 0.69 0.01 
500 50 0.8 1248.1938 1248.4624 1248.9708 0.1654 0.64 0.66 0.69 0.01 
500 50 1 1248.1453 1248.3290 1248.6370 0.1043 0.64 0.65 0.67 0.01 

The results of 40-unit systems are also listed in Table 4.24 and Table 4.25 show that the 

superiority of BSADSG to BSASSG. The former reaches better optimal in lower 

computation time than the latter. 

Table 4.24. Statistical results of BSASSG for 40-unit system with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

1000 10 0 2518.1308 2547.0642 2574.1238 11.5433 1.67 1.68 1.72 0.01 

1000 10 0.2 2499.1426 2502.6650 2510.7832 2.3213 1.64 1.67 1.69 0.01 

1000 10 0.4 2498.1572 2500.2201 2505.9942 1.3731 1.62 1.67 1.73 0.02 

1000 10 0.6 2497.5865 2500.1403 2508.9780 1.8709 1.59 1.64 1.70 0.02 

1000 10 0.8 2497.6835 2500.1704 2508.9057 2.1536 1.59 1.63 1.69 0.02 

1000 10 1 2498.1261 2500.5732 2509.5537 2.2794 1.54 1.60 1.65 0.02 

1000 50 0 2518.4533 2529.8780 2540.9606 5.5968 2.74 2.78 2.84 0.02 

1000 50 0.2 2498.2545 2499.7500 2502.8189 0.8900 3.04 3.14 3.23 0.04 

1000 50 0.4 2497.2422 2498.2539 2499.9283 0.5022 3.01 3.14 3.28 0.06 

1000 50 0.6 2496.9829 2497.8669 2499.6734 0.4694 2.92 3.09 3.31 0.08 

1000 50 0.8 2496.8659 2497.6402 2498.6142 0.4455 2.90 3.04 3.18 0.07 

1000 50 1 2496.9036 2497.7294 2499.0354 0.5155 2.81 2.95 3.12 0.07 

In the 80-unit system as relatively large system, the same situation occurs where 

BSADSG outperforms BSASSG in terms of solution quality and computation burden as 

shown in Table 4.26 and Table 4.27. The results also show that BSA with two 

constraint handling mechanisms (BSASSG and BSADSG) has high robust results since the 

standard deviations of the objective function within 50 trials are low in all runs. 
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Table 4.25. Statistical results of BSADSG for 40-unit system with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

1000 10 0 2507.5284 2516.2992 2526.6359 4.4152 1.56 1.58 1.67 0.02 

1000 10 0.2 2498.2450 2499.2928 2501.5787 0.7197 1.53 1.54 1.62 0.02 

1000 10 0.4 2497.3885 2498.3519 2499.1647 0.4341 1.51 1.53 1.64 0.02 

1000 10 0.6 2497.1850 2498.0639 2499.5803 0.5134 1.51 1.53 1.62 0.02 

1000 10 0.8 2496.9064 2498.0175 2507.5277 1.4613 1.51 1.53 1.62 0.02 

1000 10 1 2496.8542 2498.1133 2502.3255 1.0285 1.50 1.52 1.61 0.02 

1000 50 0 2504.3214 2510.3037 2517.5198 2.7773 2.20 2.24 2.28 0.02 

1000 50 0.2 2497.5654 2498.1691 2499.5713 0.4245 2.17 2.21 2.25 0.02 

1000 50 0.4 2496.7812 2497.5425 2498.1992 0.3437 2.15 2.20 2.25 0.02 

1000 50 0.6 2496.6781 2497.1168 2497.7004 0.2277 2.15 2.19 2.23 0.02 

1000 50 0.8 2496.3035 2496.8852 2497.5973 0.2290 2.14 2.17 2.23 0.02 

1000 50 1 2496.4570 2496.8160 2497.2197 0.1904 2.12 2.16 2.21 0.02 

Table 4.26. Statistical results of BSASSG for 80-unit system with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

1000 10 0 5211.9274 5262.1288 5319.2514 27.9245 3.59 3.66 3.71 0.03 

1000 10 0.2 5025.4973 5055.4010 5085.7051 11.8063 4.26 4.44 4.65 0.08 

1000 10 0.4 5023.9435 5044.7604 5074.5861 10.8753 4.13 4.49 4.77 0.11 

1000 10 0.6 5017.7210 5039.7622 5065.1061 8.7699 4.07 4.38 4.81 0.15 

1000 10 0.8 5022.6053 5042.3238 5070.4591 8.7051 3.96 4.24 4.62 0.13 

1000 10 1 5026.0640 5045.7995 5061.5270 9.0886 3.82 4.10 4.59 0.14 

1000 50 0 5169.3123 5208.7844 5253.0797 20.1026 6.72 6.95 7.22 0.10 

1000 50 0.2 5019.8619 5038.4750 5054.8079 7.7689 11.03 11.67 12.20 0.26 

1000 50 0.4 5012.3942 5023.9540 5041.4472 5.7647 11.17 12.03 13.03 0.44 

1000 50 0.6 5011.9564 5020.9812 5030.0716 3.3188 10.69 11.69 12.59 0.48 

1000 50 0.8 5014.5030 5020.6437 5029.5994 3.5312 9.91 11.21 12.73 0.57 

1000 50 1 5012.0322 5021.2600 5030.7266 3.6542 9.34 10.45 11.67 0.54 

1500 10 0 5134.2125 5176.2895 5216.8774 22.6360 5.32 5.39 5.48 0.03 

1500 10 0.2 5007.9167 5017.6560 5027.8647 5.4684 5.88 6.28 6.46 0.12 

1500 10 0.4 5004.2637 5010.8245 5020.4011 3.6873 5.85 6.23 6.60 0.16 

1500 10 0.6 5003.7425 5011.2656 5025.6752 4.7815 5.77 6.11 6.51 0.18 

1500 10 0.8 5004.9470 5011.5037 5020.0088 4.0289 5.57 5.86 6.15 0.14 

1500 10 1 5008.7374 5018.0506 5042.2250 7.0633 5.30 5.68 6.01 0.14 

1500 50 0 5091.9568 5130.7945 5165.6476 20.2771 9.89 10.18 10.48 0.11 

1500 50 0.2 5002.4375 5007.8307 5014.1690 2.8031 14.96 15.89 16.99 0.42 

1500 50 0.4 4999.6825 5002.8240 5006.2930 1.6856 14.93 15.88 16.80 0.44 

1500 50 0.6 4999.0457 5001.9771 5005.6237 1.4501 13.60 15.36 17.22 0.67 

1500 50 0.8 4999.8638 5002.2836 5006.8362 1.5663 13.12 14.55 15.77 0.65 

1500 50 1 5000.3818 5004.0541 5007.9935 1.8733 12.20 13.60 15.15 0.61 



86 

Table 4.27. Statistical results of BSADSG for 80-unit system with different parameters 
Max. 

iteration popsize mixrate Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

1000 10 0 5104.3890 5131.8013 5168.1898 15.5154 2.99 3.03 3.07 0.02 

1000 10 0.2 5011.8646 5023.9407 5035.9196 5.6527 2.87 2.91 2.96 0.02 

1000 10 0.4 5004.2288 5014.4560 5026.2583 4.8871 2.84 2.89 3.00 0.03 

1000 10 0.6 5004.2714 5011.6998 5024.9503 5.0644 2.82 2.88 2.93 0.03 

1000 10 0.8 5003.0572 5012.2557 5027.2366 5.1646 2.98 3.17 3.90 0.16 

1000 10 1 5003.1986 5012.2591 5021.1475 4.1699 2.81 2.85 2.90 0.02 

1000 50 0 5073.6132 5100.3073 5126.7556 11.9308 4.20 4.25 4.29 0.03 

1000 50 0.2 5007.4881 5014.4494 5030.9684 4.6286 4.04 4.13 4.27 0.03 

1000 50 0.4 5000.8989 5006.0616 5015.1413 3.2664 4.01 4.11 4.18 0.03 

1000 50 0.6 4999.6415 5002.6834 5009.1097 2.0521 3.99 4.07 4.17 0.04 

1000 50 0.8 4997.0874 5001.6440 5011.5286 2.4351 3.95 4.03 4.12 0.04 

1000 50 1 4997.7045 5002.6038 5012.6891 2.4827 3.93 4.00 4.10 0.04 

1500 10 0 5043.5259 5071.3963 5103.0180 12.3984 4.38 4.44 4.52 0.03 

1500 10 0.2 5000.6298 5004.9875 5016.7164 2.7251 4.21 4.28 4.34 0.03 

1500 10 0.4 4996.6534 5000.4797 5003.5417 1.5341 4.20 4.25 4.32 0.03 

1500 10 0.6 4997.1275 4999.5974 5012.5151 2.3250 4.17 4.22 4.29 0.03 

1500 10 0.8 4996.6008 5001.1499 5009.7997 3.1064 4.17 4.22 4.29 0.03 

1500 10 1 4997.1673 5001.7921 5014.1940 3.6428 4.17 4.23 4.27 0.03 

1500 50 0 5035.6009 5054.6392 5073.0533 6.9553 6.18 6.24 6.32 0.03 

1500 50 0.2 4997.3141 5000.5114 5004.2657 1.4514 5.94 6.00 6.08 0.03 

1500 50 0.4 4995.5202 4996.9250 4999.1282 0.8026 5.87 5.94 6.05 0.04 

1500 50 0.6 4994.9557 4996.2497 4997.9209 0.7311 5.82 5.90 6.04 0.05 

1500 50 0.8 4994.3509 4996.2641 4998.9630 0.9805 5.82 5.88 5.98 0.03 

1500 50 1 4994.7991 4996.6582 4999.4305 0.9762 5.73 5.83 5.93 0.04 

In the last test system with 160 units, the results of BSA with two constraint handling 

mechanisms are also obtained. Table 4.28 and Table 4.29 list the results of ED problem 

for BSASSG and BSADSG, respectively. The comparison between each row of Table 4.28 

with its counterpart in Table 4.29 (representing same optimization parameters) shows 

that BSADSG has better performance for solving ED problem in terms of the solution 

quality and the computation time. The results for this largest test system also verify that 

BSA can produce the highly similar solution (as the standard deviations are low in most 

cases) for ED problem. 
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Table 4.28. Statistical results of BSASSG for 160-unit system with different parameters 
Max. 

iteration popsize mixrate 
Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

1000 10 0 10776.7706 10859.4353 10924.6567 37.4072 19.42 20.60 22.01 0.72 

1000 10 0.2 10312.4185 10391.5353 10503.8339 41.1664 51.18 54.64 57.56 1.56 

1000 10 0.4 10245.7692 10353.4075 10446.7467 38.3126 50.71 56.50 60.64 2.29 

1000 10 0.6 10264.3712 10346.3854 10443.2934 32.3836 46.75 55.00 61.51 2.81 

1000 10 0.8 10309.0188 10355.2241 10432.1893 28.6748 44.27 50.99 60.45 4.10 

1000 10 1 10317.8203 10379.0681 10450.4340 29.1314 39.81 45.71 54.68 3.44 

1000 50 0 10695.8663 10784.0658 10847.3354 30.9674 77.16 83.35 89.86 2.65 

1000 50 0.2 10244.4973 10307.8580 10379.2700 30.1687 258.23 273.59 286.17 6.40 

1000 50 0.4 10207.1126 10258.6842 10331.0952 26.2604 262.85 284.44 306.48 9.30 

1000 50 0.6 10196.8813 10238.4526 10316.3750 21.3173 248.99 280.05 305.28 12.17 

1000 50 0.8 10183.6574 10234.3396 10282.0816 20.9132 242.33 267.46 315.82 15.28 

1000 50 1 10205.3845 10231.4049 10268.6910 15.6615 196.58 238.66 264.93 15.23 

1500 10 0 10625.6657 10720.5243 10819.4522 50.8761 27.57 29.71 31.90 1.01 

1500 10 0.2 10151.7202 10206.9719 10280.1953 30.1632 71.04 76.02 80.57 2.45 

1500 10 0.4 10146.4750 10183.8230 10261.6870 21.9153 66.16 76.48 87.13 3.80 

1500 10 0.6 10144.8022 10187.1353 10237.7761 19.6193 63.96 71.78 82.26 4.19 

1500 10 0.8 10161.4954 10214.2831 10283.0330 25.9582 55.71 65.58 76.02 4.88 

1500 10 1 10198.7856 10247.9572 10311.2219 28.2745 49.95 57.02 67.89 3.82 

1500 50 0 10570.5424 10628.1592 10690.4889 26.7274 113.24 122.91 130.18 3.55 

1500 50 0.2 10107.1725 10142.3342 10189.0290 17.7816 355.90 380.45 404.60 10.95 

1500 50 0.4 10088.5056 10113.4368 10133.9297 10.2673 351.19 385.10 413.96 14.08 

1500 50 0.6 10087.4428 10108.0590 10129.2866 9.4871 324.73 362.42 417.52 21.25 

1500 50 0.8 10093.7569 10109.5108 10132.5933 10.2241 287.81 327.83 373.67 20.35 

1500 50 1 10094.3681 10114.5133 10136.4680 10.0498 259.38 295.90 347.08 19.02 

Table 4.29. Statistical results of BSADSG for 160-unit system with different parameters 

Max. 
iteration popsize mixrate 

Generation cost ($/h) CPU time (s) 

Min. Ave. Max. SD Min. Ave. Max. SD 

1000 10 0 10470.7070 10576.9745 10674.4064 50.9706 5.87 5.93 6.11 0.04 

1000 10 0.2 10126.9475 10173.0554 10228.2211 22.8334 5.65 5.73 5.91 0.04 

1000 10 0.4 10095.4022 10139.7191 10172.3120 19.2826 5.60 5.68 5.91 0.05 

1000 10 0.6 10098.8107 10134.7547 10172.7379 18.5277 5.51 5.65 5.94 0.06 

1000 10 0.8 10109.9106 10147.1996 10199.0463 19.6789 5.49 5.60 5.91 0.07 

1000 10 1 10123.5153 10170.8714 10219.0900 22.3042 5.49 5.58 5.85 0.06 

1000 50 0 10394.9876 10485.1197 10562.0295 33.8475 8.13 8.29 10.55 0.37 

1000 50 0.2 10093.2489 10123.7596 10172.2868 18.5204 7.99 8.06 8.11 0.03 

1000 50 0.4 10056.1957 10074.1474 10098.6619 10.4140 7.96 8.04 8.19 0.05 

1000 50 0.6 10051.5383 10072.4907 10101.6652 11.6284 7.86 7.99 8.14 0.07 

1000 50 0.8 10052.7716 10074.5923 10100.1199 10.3926 7.78 7.90 8.11 0.07 

1000 50 1 10061.9178 10085.1404 10137.7639 14.4760 7.69 7.83 8.02 0.07 

1500 10 0 10301.6394 10389.7675 10464.2289 31.7355 8.71 8.78 9.05 0.05 

1500 10 0.2 10049.9547 10079.3910 10118.4112 13.1757 8.32 8.43 8.77 0.06 

1500 10 0.4 10032.7670 10057.4398 10097.2990 11.8278 8.27 8.36 8.78 0.08 

1500 10 0.6 10041.1413 10059.0141 10087.4439 10.5288 8.17 8.34 8.72 0.07 
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1500 10 0.8 10044.9393 10066.4113 10093.6247 10.2564 8.13 8.22 8.77 0.09 

1500 10 1 10054.8117 10082.1959 10113.5916 12.7171 8.11 8.21 8.63 0.08 

1500 50 0 10294.3621 10336.5439 10406.7472 24.1430 12.06 12.20 12.32 0.06 

1500 50 0.2 10029.6351 10048.0984 10070.5260 8.4074 11.61 11.79 11.92 0.07 

1500 50 0.4 10015.0728 10026.3329 10044.1186 5.8135 11.56 11.68 11.92 0.08 

1500 50 0.6 10012.3647 10024.7362 10037.4700 5.7331 11.39 11.58 11.79 0.09 

1500 50 0.8 10013.7428 10027.1207 10040.6493 6.4317 11.40 11.57 11.87 0.09 

1500 50 1 10016.1525 10033.1987 10047.2147 6.5896 11.31 11.49 11.65 0.08 

For each system from 20-unit to 160-unit systems, the best setting of optimization 

parameters is determined. The statistical indices of 50 trials of optimization with the 

best parameters are listed in Table 4.30. The optimal schedules of generators as well as 

the generation cost and computation time for the best solutions in these systems by the 

proposed BSASSG and BSADSG are listed in Appendix (Table A.19 and Table A.20). 

Table 4.30. Optimization results of 20 to 160 unit systems by BSASSG, and BSADSG 
20-unit 40-unit 80-unit 160-unit 

BSASSG 

Generating 
cost ($/h) 

Minimum 1248.2946 2496.8659 4999.0457 10087.443 
Average 1248.6514 2497.6402 5001.9771 10108.059 

Maximum 1249.1632 2498.6142 5005.6237 10129.287 
Standard 
deviation 0.2286 0.4455 1.4501 9.4871 

CPU time 
(s) 

Minimum 0.78 2.9 13.6 324.73 
Average 0.81 3.04 15.36 362.42 

Maximum 0.86 3.18 17.22 417.52 
Standard 
deviation 0.02 0.07 0.67 21.25 

BSADSG 

Generating 
cost ($/h) 

Minimum 1248.1791 2496.3035 4994.3509 10012.365 
Average 1248.5438 2496.8852 4996.2641 10024.736 

Maximum 1249.037 2497.5973 4998.963 10037.47 
Standard 
deviation 0.1635 0.229 0.9805 5.7331 

CPU time 
(s) 

Minimum 0.64 2.14 5.82 11.39 
Average 0.66 2.17 5.88 11.58 

Maximum 0.69 2.23 5.98 11.79 
Standard 
deviation 0.01 0.02 0.03 0.09 

4.3.3.2 Convergence Characteristics 

The convergence characteristics of BSASSG and BSADSG are plotted for their best 

solutions for the purpose of comparison. Figure 4.13 shows the convergence of BSASSG 

and BSADSG for 20-unit system. BSADSG converges to the optimal earlier than BSASSG 

which confirms again the higher performance of BSADSG.
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Figure 4.13. Convergence characteristic of BSASSG and BSADSG in 20-unit test 
system 

For 40-unit test system, the comparison between BSASSG and BSADSG shows that the 

latter has better convergence characteristic as it converges to the optimal earlier as 

shown in Figure 4.14.The convergence characteristics of the third system as relatively 

large system are also shown in Figure 4.15. The figure shows that BSADSG’s 

convergence is better than BSASSG. In the largest test system with 160 units, the 

situation is same. BSADSG again outperforms BSASSG in terms of convergence 

characteristic as illustrated in Figure 4.16. 

 

Figure 4.14. Convergence characteristic of BSASSG and BSADSG in 40-unit test 
system 

50 100 150 200 250 300 350 400 450 500

1240
1260
1280
1300
1320
1340
1360
1380
1400

Iterations

G
en

er
at

io
n

co
st

($
/h

)

BSASSG

BSADSG

100 200 300 400 500 600 700 800 900 1000

2450

2500
2550

2600

2650
2700

2750
2800

Iterations

G
en

er
at

io
n

co
st

($
/h

)

BSASSG

BSADSG



90 

 

Figure 4.15. Convergence characteristic of BSASSG and BSADSG in 80-unit test 
system 

 

Figure 4.16. Convergence characteristic of BSASSG and BSADSG in 160-unit test 
system 
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handling mechanisms converges to the similar optimal, even for the 160-unit system as 

the largest system with the highest degree of nonlinearity among the case studies. 

Therefore, the robustness of BSA (especially BSADSG) can be validated by just the 

results mentioned in the tables. 

 

Figure 4.17. Optimal results of BSASSG and BSADSG for 50 trials in 20-unit test system 

 
Figure 4.18. Optimal results of BSASSG and BSADSG for 50 trials in 40-unit test system 
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Figure 4.19. Optimal results of BSASSG and BSADSG for 50 trials in 80-unit test system 

 
Figure 4.20. Optimal results of BSASSG and BSADSG for 50 trials in 160-unit test system 
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are mentioned in Table 4.31. This table also lists the average of optimal results by 

CGA_MU  and IGA_MU (C.-L. Chiang, 2005) and compares them with BSADSG. The 

table shows that BSADSG is capable of solving the ED with high quality optimal as well 

as the others. Since the programming codes of CGA_MU and IGA_MU are written in 

FORTRAN, as the high speed programing language, and the code of BSADSG is run on 

Matlab, the computation times cannot be compared based only on the speeds of the 

CPU processors. However, the computation times of BSADSG compared to the 

computation times in the CGA_MU for these systems are the lowest. 

Table 4.31. average total generation costs and CPU times for 20, 40, 80, and 160 
unit systems 

Method Number of units 20 40 80 160 

CGA_MU1 Average generating cost ($/h) 1249.3893 2500.9220 5008.1426 10143.7263 
Average CPU time (sec) 80.48 157.39 309.41 621.30 

IGA_MU1 Average generating cost ($/h) 1249.1179 2499.8243 5003.8832 10042.4742 
Average CPU time (sec) 21.64 43.71 85.67 174.62 

BSADSG Average generating cost ($/h) 1248.5438 2496.8852 4996.2641 10024.736 
Average CPU time (sec) 0.66 2.17 5.88 11.58 

1 (C.-L. Chiang, 2005) 

4.3.4 Selection of constraint handling mechanism 

The ED problem has been solved by BSA with two constraint handling mechanisms. 

They are called BSASSG and BSADSG. Both mechanisms have been applied on different 

ED problems in size and complexity. In most cases, BSADSG has shown better 

performance based on the solution quality and computational burden. Therefore, the 

suitable mechanism for BSA to solve the ED problems is to use the dynamic slack 

generator which corresponds to BSADSG.

4.4 Power dispatch problem in microgrid 

Based on the previous sections, BSADSG is proposed as the method for power dispatch 

problem. It is applied on a microgrid as the case study including conventional and 

renewable energy technologies. The microgrid comprises of two diesel generators, two 

wind power plants, and three fuel-cell systems. The  system data are taken from (Basu 
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& Chowdhury, 2013) and shown in Appendix (Table A. 10 and Table A.11). The cut-in, 

rated, and cut-out wind speeds are respectively equal to 5, 10, and 15 (m/s). 

4.4.1 Solution to power dispatch problem 

The economic power dispatch problem in power system is considered to find the 

optimal generation schedule for usually as time frame of one hour, however, the 

economic power dispatch in microgrid is usually to optimize the performance of 

microgrid by minimizing its generation cost within a longer time frame.  In this section, 

the problem of economic power dispatch in microgrid is solved to minimize the 

generation cost of the generating units in the microgrid for the period of 24 hours.  

 BSADSG is applied on this case study and the optimal schedule for the whole day is 

obtained. BSADSG reached the optimal generation cost of 30597.92 ($) corresponding to 

the optimal schedule in Table 4.32. According to the table, there is no power mismatch 

for the solution in 24 hours which represents that the solution is feasible. The 

computation time for this best solution is 1.22 (s).  

Table 4.32. Optimal generation scheduling of generating units within 24 hours 
Hour Pdiesel,1 

(kWh) 
Pdiesel,2 
(kWh) 

Pwt,1 
(kWh) 

Pwt,2 
(kWh) 

Pfc,1 
(kWh) 

Pfc,2 
(kWh) 

Pfc,3 
(kWh) 

Total Gen. 
(kWh) 

PD

(kWh) 
1 36.1537 0.0000 192.0000 192.0000 37.1776 96.2687 100.0000 653.6000 653.6000 
2 2.3003 0.0000 114.0000 114.0000 150.0000 87.0690 83.0307 550.4000 550.4000 
3 110.4162 133.1821 36.0000 36.0000 150.0000 84.8949 94.5068 645.0000 645.0000 
4 57.6594 0.0000 165.0000 165.0000 136.2827 100.0000 64.0579 688.0000 688.0000 
5 62.1367 0.0000 252.0000 252.0000 76.6633 100.0000 100.0000 842.8000 842.8000 
6 260.7345 507.2655 0.0000 0.0000 150.0000 100.0000 100.0000 1118.0000 1118.0000 
7 289.8453 564.5547 60.0000 60.0000 150.0000 100.0000 100.0000 1324.4000 1324.4000 
8 308.4265 365.7414 186.0000 186.0000 150.0000 97.0321 100.0000 1393.2000 1393.2000 
9 400.0000 677.6000 0.0000 0.0000 150.0000 100.0000 100.0000 1427.6000 1427.6000 

10 303.6203 403.5797 168.0000 168.0000 150.0000 100.0000 100.0000 1393.2000 1393.2000 
11 155.7922 312.6078 210.0000 210.0000 150.0000 100.0000 100.0000 1238.4000 1238.4000 
12 121.6223 251.9777 180.0000 180.0000 150.0000 100.0000 100.0000 1083.6000 1083.6000 
13 287.8524 394.1476 0.0000 0.0000 150.0000 100.0000 100.0000 1032.0000 1032.0000 
14 268.2803 283.3197 48.0000 48.0000 150.0000 100.0000 100.0000 997.6000 997.6000 
15 141.7502 375.8498 108.0000 108.0000 150.0000 100.0000 100.0000 1083.6000 1083.6000 
16 72.0937 159.9063 225.0000 225.0000 150.0000 100.0000 100.0000 1032.0000 1032.0000 
17 234.2482 353.9136 90.0000 90.0000 150.0000 99.8381 100.0000 1118.0000 1118.0000 
18 252.6059 389.3941 192.0000 192.0000 150.0000 100.0000 100.0000 1376.0000 1376.0000 
19 381.3091 541.0909 198.0000 198.0000 150.0000 100.0000 100.0000 1668.4000 1668.4000 
20 400.0000 661.2000 120.0000 120.0000 150.0000 100.0000 100.0000 1651.2000 1651.2000 
21 400.0000 764.0000 60.0000 60.0000 150.0000 100.0000 100.0000 1634.0000 1634.0000 
22 286.1119 585.8881 120.0000 120.0000 150.0000 100.0000 100.0000 1462.0000 1462.0000 
23 136.1680 399.4320 228.0000 228.0000 150.0000 100.0000 100.0000 1341.6000 1341.6000 
24 191.9126 287.9358 120.0000 120.0000 150.0000 96.5516 100.0000 1066.4000 1066.4000 

The convergence to the optimal cost is shown in Figure 4.21. BSADSG converges to the 

optimal within 500 iterations and the objective value decreased from around 40000 ($) 
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to the optimal of 30597.92 ($). 

 

Figure 4.21. Convergence characteristics of economic dispatch for the microgrid 
 

Since BSADSG is initialized randomly, the number of 50 independent runs is considered 

and the optimal results of these trials are taken into consideration for robustness test of 
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The standard deviation of the optimal values in the 50 trials is 148.2827 ($) which is 
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Figure 4.22. Generation cost obtained in 50 trials for the microgrid 
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other methods for the microgrid. 

Table 4.33. Comparison between methods for the microgrid 
Method Total generation within 24 hours (kWh) Generation cost ($) Diesels Wind Turbines Fuel-cells 
CSA1 14482.64 8860.61 4477.75 33824.10 
DE1 14664.50 6144.00 7012.51 33930.94 
PSO1 15842.18 6144.00 5834.82 38189.31 
BSADSG 13573.63 6144.00 8103.37 30597.92 
1 (Basu & Chowdhury, 2013) 

4.4.2 Sensitivity analysis 

The performance of the proposed method is affected by the control parameters which 

should be tuned properly to reach the best result. There are three parameters considered 

in the sensitivity analysis: mixrate as the control parameter of BSADSG, popsize as the 

population size, and the maximum iteration as the stopping criterion. For the purpose of 

sensitivity analysis, the values of 0 to 1 with the step of 0.10 are chosen for the mixrate 

and the population size values are considered to be 10, 20, 30, 40, and 50. The 

maximum iterations of 100 to 500 with the step of 100 are also considered in the 

optimization. In each case, for the specific values of the parameters, the problem of 

economic power dispatch is run for 50 times and the statistical indices such as 

minimum, average, maximum, and standard deviation values of the optimal results are 

recorded. The sensitivity results to each parameter are described next.  

4.4.2.1 Effect of increasing mixrate on the optimal result 

In this case, the population size and maximum iteration number are set to 50 and 500, 

respectively. The optimization is run by changing the control parameter of BSADSG. In 

each scenario corresponding to each value of mixrate, the results are obtained for 50 

runs. Table 4.34 shows the results which are the statistical indices of objective function 

and the CPU time for different values of mixrate. It shows that the BSADSG reaches the 

better optimal by selecting relatively small but non-zero value for the mixrate as it is 

equal to 0.1 in this case.  
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Table 4.34. Results of 50 trials with different mixrate values (popsize=50 and maximum 
iteration=500) 

mixrate 
Generation cost ($/h) 

mixrate 
CPU time (sec) 

Minimum Average Maximum 
Standard 
deviation Minimum Average Maximum 

Standard 
deviation 

0.0 32702.1236 34915.3251 35770.3801 574.4739 0.0 0.9360 0.9541 0.9980 0.0152 
0.1 30597.9188 31018.0047 31324.2270 148.2827 0.1 1.1230 1.1681 1.2170 0.0214 
0.2 30898.1287 31154.5812 31532.6623 145.3945 0.2 1.1700 1.2130 1.2640 0.0220 
0.3 30853.0553 31267.3362 31589.9021 152.0787 0.3 1.1860 1.2390 1.2950 0.0218 
0.4 31030.3332 31353.8876 31674.8362 164.6578 0.4 1.2320 1.2702 1.3260 0.0215 
0.5 30914.8256 31407.8317 31770.0641 178.7407 0.5 1.2170 1.2683 1.3110 0.0219 
0.6 31096.8382 31415.3266 31769.8880 151.3406 0.6 1.2160 1.2787 1.3410 0.0261 
0.7 31246.2520 31514.2922 31864.7202 151.8819 0.7 1.2320 1.2814 1.3570 0.0260 
0.8 31277.5373 31536.0011 31826.4793 146.5708 0.8 1.2010 1.2720 1.3260 0.0297 
0.9 31226.9186 31556.4996 31999.8204 164.4045 0.9 1.2170 1.2680 1.3420 0.0308 
1.0 31357.7892 31679.9594 32150.5044 165.9389 1.0 1.2160 1.2795 1.3420 0.0322 

4.4.2.2 Effect of increasing population size on the optimal result 

In this case, the maximum iteration and mixrate are set to 500 and 0.1, respectively and 

the effect of population size on the optimal results is analyzed by increasing the 

population size from 10 to 50. The optimization is run 50 times for each scenario and 

the statistical indices of the results are shown in Table 4.35. Based on the average 

values of optimal results in the scenarios, it is concluded that the increasing the popsize 

leads to a better result. However, it increases the computation time. For example, the 

CPU time is doubled when the population size is changed from 10 to 50. 

Table 4.35. Results of 50 trials with different population size values (maximum 
iteration=500 and mixrate=0.10) 

popsize 
Generation cost ($/h) 

popsize 
CPU time (sec) 

Minimum Average Maximum 
Standard 
deviation Minimum Average Maximum 

Standard 
deviation 

10 31113.0764 31516.2391 31976.3947 199.9088 10 0.5300 0.5604 0.5930 0.0150 
20 30730.2450 31275.0794 31675.7497 204.0237 20 0.6860 0.7276 0.8260 0.0212 
30 30938.3465 31154.0229 31429.5831 120.0041 30 0.8270 0.8706 0.9360 0.0224 
40 30752.5836 31102.2400 31473.0241 162.3033 40 0.9830 1.0287 1.0780 0.0196 
50 30597.9188 31018.0047 31324.2270 148.2827 50 1.1230 1.1681 1.2170 0.0214 

4.4.2.3 Effect of increasing maximum iteration number on the optimal result 

Although it is clear that the increasing the maximum iteration will help the optimizer 

produce better optimal, the simulation is done to show the degree of effectiveness of 

this parameter on the optimal results. The results are shown in Table 4.36. Based on this 

table, the average optimal value within 50 trials shows about %7 decrease when the 

maximum iteration is changed from 100 to 200. These decreases are about %10, %12, 

and %13 for increasing the maximum iteration to 300, 400, and 500, respectively. 
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Table 4.36. Results of 50 trials with different mixrate values (popsize=50 and 
mixrate=0.10) 

Max. 
iteration 

Generation cost ($/h) Max.  
iteration 

CPU time (sec) 

Minimum Average Maximum 
Standard 
 deviation Minimum Average Maximum 

Standard 
deviation 

100 34289.6436 35759.0459 36804.4492 604.2561 100 0.2180 0.2434 0.2810 0.0134 
200 32607.4449 33411.4807 34131.6563 382.0320 200 0.4520 0.4851 0.5300 0.0158 
300 31440.6210 32168.2643 32838.0958 300.7334 300 0.6700 0.7164 0.7640 0.0185 
400 31105.4997 31509.3459 31938.6107 191.7159 400 0.9050 0.9379 0.9820 0.0189 
500 30597.9188 31018.0047 31324.2270 148.2827 500 1.1230 1.1681 1.2170 0.0214 

For better sensitivity analysis, the values of all parameters are changed. Again, the 

problem is solved in each scenario corresponding to specific values of parameters for 50 

times and the results are obtained. In each scenario, the average of optimal results and 

computation time are recorded for the comparison purpose. Figure 4.23 shows a 3-

dimension surface illustrating the effects of the parameters on the average of optimal 

results of economic power dispatch problem in 50 trials. When the mixrate is fixed, the 

solution is improved either by increasing the population size or the maximum iteration. 

When the maximum iteration is fixed to a specific value, the algorithm reaches better 

optimal either in a low and non-zero value of mixrate or high value of population size. 

 

Figure 4.23. Average optimal results of BSADSG for different values of popsize, 
mixrate, and maximum iteration value in 50 trials 
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4.5 Summary 

In this chapter, backtracking search algorithm (BSA) has been used to solve economic 

dispatch problem (ED). The performance of the proposed algorithm has been validated 

on six different power system benchmarks for minimizing the generation cost among 

the generating units. Two constraint handling mechanisms are incorporated in the 

proposed method and the suitable mechanism is selected based on the solution quality 

they produced. Application of BSA on large-scale test systems with up to 160 

generating units has also reconfirmed the effectiveness of the proposed method for 

solving economic dispatch problems. BSA has been employed for solving the power 

dispatch problem in microgrids validating the robustness and high performance of the 

proposed method. The promising results of BSA compared to other optimization 

methods from the literature show the capability of the proposed method for solving the 

power dispatch problems in microgrid and power system. Due to high performance of 

BSA in solving the ED problem as the single objective optimization problem, it is used 

for multi-objective purpose to solve economic emission dispatch problem in the next 

chapter.  
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CHAPTER 5 : OPTMIZATION RESULTS OF ECONOMIC EMISSION 

DISPATCH 

5.1 Introduction  

In this chapter, the problem of economic and emission dispatch (EED) is solved by 

backtracking search algorithm (BSA). The proposed constraint handling mechanism 

selected in the previous chapter is incorporated into single-objective and multi-objective 

BSA for solving the EED problem.  

Three case studies including 6-, 10-, and 14- unit power systems are used to validate the 

performance of BSA with the proposed constraint handling mechanism for solving of 

economic/emission dispatch (EED) problems. Since the method of optimization is 

metaheuristic using random number generations, 50 runs are considered for each 

problem and robustness checked by statistical indices. The value of the control 

parameter “mixrate” is tuned in each system to achieve high quality results. Matlab 

software is used for code programming and the program is run on a personal computer 

with Pentium 2.70GHz processor and 2GB RAM. 

Transmission loss is considered in both of the test systems. In the first case study, 

optimization is done with/without considering transmission network loss. For solving 

the EED problem, three methodologies are considered to demonstrate the high 

performance and effectiveness of the proposed method and to compare the results with 

those reported in literatures. 

Methodology 1 - Solution to EED problem by minimizing generation cost and emission 

amount separately; 

Methodology 2 - Solution to EED problem by weighted sum method (WSM); 

Methodology 3 - Solution to EED problem by non-dominated approach. 

In the first methodology, the problems of economic dispatch and emission dispatch are 

solved to achieve minimum generation cost and minimum emission separately. In the 
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second methodology, the problem of EED is also solved by weighted sum method, 

which combines both objectives of the problem into a single objective. Finally, the 

multi-objective BSA is used to minimize both objectives of EED problem 

simultaneously. It uses an elitist external archive to store non-dominated solutions 

within optimization and produces the pareto front as the optimal solution set.  

5.2 Test system 1: IEEE 30-bus 6-unit system 

This test system is the IEEE 30-bus power system with 6 generating units with a power 

demand of 283.4MW. The data is taken from (de Athayde Costa e Silva et al., 2013) 

and listed in Appendix (Table A.12 and Table A.13). For comparison with the method 

from the literature, optimization of the system is performed with/without total 

transmission network loss. 

5.2.1 Control parameter tuning 

As mentioned before, BSA has one control parameter named mixrate which affects the 

quality of optimal solution. The best value of control parameter should be determined to 

achieve the best optimal. In this case, the economic dispatch and emission dispatch 

problems are solved with different values of mixrate. The maximum iteration and 

population size are set to 500 and 10, respectively. The economic dispatch and emission 

dispatch problems are run 50 times for this test system with/without considering the 

transmission network loss. The statistical indices of optimal objective and computation 

time within these trials are obtained to determine the best value of control parameter. 

Table 5.1 shows the results of economic dispatch and emission dispatch for this system 

without transmission network loss. According to this table, the standard deviation of 

each objective(generation cost or emission amount) is the lowest when the mixrate is 

equal to 1so the mixrate=1 is selected. The same situation occurs for this system when 

the transmission network loss is considered. So the mixrate=1 is selected for this system 
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with/out considering the transmission network loss as it leads to the best quality of 

solutions. 

Table 5.1. statistical indices of optimal results of BSA for Test system 1 with 
different values of mixrate 

Economic Dispatch 

mixrate Generation cost ($/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

0 600.1135 600.2124 600.4262 0.0835 0.14 0.15 0.16 0.01 
0.2 600.1115 600.1148 600.1299 0.0043 0.14 0.15 0.17 0.01 
0.4 600.1114 600.1120 600.1186 0.0012 0.13 0.15 0.17 0.01 
0.6 600.1114 600.1115 600.1124 0.0002 0.12 0.15 0.16 0.01 
0.8 600.1114 600.1114 600.1118 0.0001 0.12 0.14 0.16 0.01 

1 600.1114 600.1114 600.1115 0.0000 0.12 0.14 0.16 0.01 
Emission Dispatch 

mixrate Emission (ton/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

0 0.194203 0.194218 0.194245 1.1E-05 0.12 0.14 0.16 0.01 
0.2 0.194203 0.194203 0.194204 1.9E-07 0.13 0.14 0.16 0.01 
0.4 0.194203 0.194203 0.194203 3.2E-08 0.12 0.14 0.19 0.01 
0.6 0.194203 0.194203 0.194203 1.3E-08 0.12 0.14 0.16 0.01 
0.8 0.194203 0.194203 0.194203 3.9E-09 0.12 0.14 0.16 0.01 

1 0.194203 0.194203 0.194203 9.1E-10 0.13 0.14 0.16 0.01 

5.2.2 Methodology 1 

The total generation cost and total emission are minimized separately by a single-

objective BSA. Table 5.2 shows the best solution for the test system with/without 

transmission network loss. When generation cost is the only objective function, BSA 

reaches the optimal values of 600.1114 ($/h) and 605.9984 ($/h) for lossless and lossy 

systems, respectively. In emission minimization, the optimal values are 0.194179 

(ton/h) and 0.194203 (ton/h) respectively for with/without transmission loss 

consideration.  

Table 5.2. Best solution of the EED problem in Test System 1 
Objective  Generations (MWh) PL

(MWh) 
Generation 
cost ($/h) 

Emission 
(ton/h) P1 P2 P3 P4 P5 P6

Generation 
cost 

Minimization 

Lossless 10.9726 29.9767 52.4300 101.6192 52.4296 35.9719 0 600.1114 0.222144 

Lossy 12.0970 28.6317 58.3554 99.2853 52.3964 35.1903 2.5562 605.9984 0.220729 

Emission 
Minimization 

Lossless 40.6073 45.9068 53.7941 38.2952 53.7938 51.0027 0 638.2734 0.194203 
Lossy 41.0926 46.3670 54.4416 39.0372 54.4463 51.5483 3.5330 646.2072 0.194179 

To check the robustness of the proposed method, 50 runs are performed. Their statistical 

indices are listed in Table 5.3 and show the proposed method producing a high quality 

solution in the test system. 
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Table 5.3. Statistical indices of the optimal results of 50 trials in Test System 1 

Objective Transmission 
Network 

Generation cost ($/h) Average 
CPU 
time 
(sec) 

Minimum Average Maximum Standard 
deviation 

Generation 
cost 

Minimization 

Lossless 600.1114 600.1114 600.1115 1.03E-05 0.14 

Lossy 605.9984 605.9984 605.9985 1.52E-05 0.77 

Objective Transmission 
Network 

Emission (ton/h) Average 
CPU 
time 
(sec) 

Minimum Mean Maximum Standard 
deviation 

Emission 
Minimization 

Lossless 0.194203 0.194203 0.194203 9.12E-10 0.14 
Lossy 0.194179 0.194179 0.194179 2.83E-09 0.70 

The results of the proposed method are compared with those of other methods including 

NSGA-II (Y. Zhang et al., 2012), BB-MOPSO (Y. Zhang et al., 2012), PSO (Jiang et 

al., 2014), GSA (Jiang et al., 2014), MBFA (Hota et al., 2010), and  MODE (Wu et al., 

2010), and listed in Table 5.4.  

Figure 5.1 shows the convergence characteristics of both the generation cost and the 

emission amount, with the transmission network loss neglected. The figure confirms the 

speedy convergence of BSA in solving a power dispatch problem. The approximate 

optimal occurs at around iteration numbers 50 and 100, respectively for emission and 

generation cost minimizations. The maximum iteration of 500 is considered enough to 

achieve a high quality solution among 50 trials. Figure 5.2 demonstrates the 

convergence characteristics with the transmission loss considered. 
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Table 5.4. Comparison between the methods in Test System 1 

Method 
Lossless transmission network 

Minimum 
Generation cost ($/h) Minimum Emission (ton/h) 

NSGA-II 1 600.155 0.1942 
BB-MOPSO 1 600.112 0.1942 
PSO 2 600.11 (600.1127) 0.1942 
GSA 2 601.06 0.1969 
BSA  600.1114 0.1942 

Method 
Lossy transmission network 

Minimum 
Generation cost ($/h) Minimum Emission (ton/h) 

MBFA 3 606.17 0.1942 
MODE 4 606.416 0.1942 
BSA 605.9984 0.1942 
1 (Y. Zhang et al., 2012) 
2 (Jiang et al., 2014) 
3 (Hota et al., 2010) 
4 (Wu et al., 2010) 

Figure 5.1. Convergence characteristics of economic dispatch and emission 
dispatch in Test System 1 (lossless) 

 
Figure 5.2. Convergence characteristics of economic dispatch and emission 

dispatch in Test System 1 (lossy) 
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5.2.3 Methodology 2 (BSA-WSM) 

The problem of EED is solved by combining minimization of generation cost and 

emission to create a new objective function according to Eq. (3.7) to minimize the new 

objective function by selecting values between 0 and 1 for parameter w. The parameters 

of optimizer are set to maximum iteration=500, population size=10, and mixrate=1. The 

value of σ for this test system is calculated by Eq. (3.8). Different values are assigned to 

w and the optimal is achieved. All the optimal obtained by this method build the pareto 

front depicted in Figure 5.3. Figure 5.4 is a similar graph for lossy Test System 1. 

 
Figure 5.3. Pareto front in Test System 1 obtained by BSA-WSM with transmission 

network loss neglected 

 
Figure 5.4. Pareto front in Test System 1 obtained by BSA-WSM with transmission 

network loss considered 
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Table 5.5 reports the pareto front solutions for this test system. The best compromise 

solution needs to be specified among the pareto front solutions. The values of µFc, µFe , 

and µ are calculated first and then the solution corresponding to the highest µ is chosen 

as the best compromise solution (shown in bold). 

 
Table 5.6 is the generation schedule of Test System 1 for the best compromise solutions 

with/without transmission network loss considered. The results show that the best 

compromise solution is achieved by assigning w=0.6 to lossy/lossless networks, but still 

optimization is needed to find the value of w that gives the best compromise solution. 

Table 5.5. Pareto front solutions obtained by BSA-WSM in Test System 1 

w
Lossy 

w
Lossless 

Generation cost 
($/h) 

Emission 
(ton/h) µFc µFe µ Generation 

cost ($/h) 
Emission 
(ton/h) µFc µFe µ

0.0 646.2073 0.1942 0.0000 1.0000 0.0696 0.0 638.2733 0.1942 0.0000 1.0000 0.0698 
0.1 640.4203 0.1943 0.1439 0.9948 0.0793 0.1 633.2512 0.1943 0.1316 0.9957 0.0787 
0.2 634.8396 0.1948 0.2827 0.9780 0.0878 0.2 628.2998 0.1947 0.2613 0.9815 0.0867 
0.3 629.5092 0.1956 0.4153 0.9478 0.0949 0.3 623.4593 0.1954 0.3882 0.9554 0.0938 
0.4 624.4790 0.1968 0.5404 0.9018 0.1004 0.4 618.7781 0.1966 0.5109 0.9147 0.0995 
0.5 619.8125 0.1985 0.6564 0.8369 0.1040 0.5 614.3199 0.1982 0.6277 0.8558 0.1035 
0.6 615.5878 0.2008 0.7615 0.7492 0.1052 0.6 610.1700 0.2005 0.7364 0.7738 0.1054 
0.7 611.9087 0.2039 0.8530 0.6330 0.1035 0.7 606.4445 0.2037 0.8340 0.6619 0.1044 
0.8 608.9169 0.2080 0.9274 0.4801 0.0980 0.8 603.3136 0.2079 0.9161 0.5096 0.0995 
0.9 606.8254 0.2134 0.9794 0.2771 0.0875 0.9 601.0442 0.2138 0.9756 0.2997 0.0890 
1.0 605.9984 0.2207 1.0000 0.0000 0.0696 1.0 600.1114 0.2221 1.0000 0.0000 0.0698 

Table 5.6. Generation schedule of the best compromise solution in Test System 1 
 Lossless Lossy 
w 0.6 0.6 
P1 (MWh) 26.10587 25.27943 
P2 (MWh) 37.55198 37.16403 
P3 (MWh) 53.94769 56.5829 
P4 (MWh) 68.6181 68.89557 
P5 (MWh) 53.94869 54.95793 
P6 (MWh) 43.22768 43.12355 
Total Gen. (MWh) 283.4 286.0034 
PL (MWh) 0 2.603403 
Generation cost ($/h) 610.17 615.5878 
Emission (ton/h) 0.200523 0.200837 

5.2.4 Methodology 3 (BSA-NDA) 

The EED problem is solved by a non-dominated approach. The pareto front solutions 

are generated by optimization and updated as optimization progresses. The best 

compromise solution to the EED problem is obtained from the pareto front by a fuzzy-

based decision maker which evaluates the solutions and picks the solution with the 

highest index of µ. For setting the parameters, the maximum size of the external elitist 
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archive is set to 50 non-dominated solutions and the control parameter is also set to its 

maximum to obtain the best objective values. The maximum iteration number and 

population size are also set to 1000 and 20, respectively. 

Figure 5.5 and Figure 5.6 show the pareto front solutions for Test System 1, 

respectively with the transmission loss ignored and considered. Use of the crowding 

distance measure is to have approximate uniform pareto front solutions. The best 

compromise solution is determined on the index µ of the non-dominated solutions. 

Table 5.7 is the generation schedule and lists the objectives’ values that correspond to 

the best compromise solutions. 

 
Figure 5.5. Pareto front in Test System 1 obtained by BSA-NDA with the 

transmission network loss neglected 

 
Figure 5.6. Pareto front in Test System 1 obtained by BSA-NDA with the 

transmission network loss considered 
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Table 5.7. Optimization results for the best compromise solutions in Test System 1 

Network 
Generations (MWh) Total  

Gen. 
(MWh) 

PL

(MWh) 
Generation 
cost ($/h) 

Emission 
(ton/h) P1 P2 P3 P4 P5 P6

Lossless 24.9127 36.1931 54.9855 70.9295 52.6095 43.7697 283.4000 0.0000 608.8043 0.20156 
Lossy 25.7366 40.1405 57.4497 64.8216 53.6242 44.2741 286.0466 2.6466 618.3255 0.19932 

In order to compare the qualities of optimal solutions obtained by BSA-WSM and BSA-

NDA, the pareto front sets of these two methodologies are shown in Figure 5.7 and 

Figure 5.8 for lossless/lossy test system 1. The pareto front set of BSA-WSM includes 

11 points corresponding to different values of weighting factor (w) but the pareto front 

of BSA-NDA has 50 points. Comparison between the pareto front sets of BSA-NDA 

and BSA-WSM confirms that BSA-NDA can produce optimal solutions with the same 

qualities of BSA-WSM. 

 

Figure 5.7. Pareto front sets in Test System 1 with the transmission network loss 
neglected 

 

Figure 5.8. Pareto front sets in Test System 1 with the transmission network loss 
considered 
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5.3 Test system 2: 10-unit system 

This test system consists of 10 generating units. The power demand is 2000MW. The 

valve point effects are modeled on the cost functions and the transmission loss is 

considered through loss coefficients. The generator data is taken from (Basu, 2011) and 

listed in Appendix (Table A.14 and Table A.15). The transmission loss coefficients are 

listed in Appendix (Table A.16).  

5.3.1 Control parameter tuning 

Although the performance of BSA is not over sensitive to its control parameter, the 

economic dispatch and emission dispatch problems are run with different values of 

mixrate to find its best value. Again, the maximum iteration and population size are set 

to 500 and 10, respectively. The values of 0 to 1 with steps of 0.2 are selected for 

mixrate and the problems of economic dispatch and emission dispatch are run 50 with 

each value of this parameter. The statistical indices of optimal results and computation 

time within the trials are obtained for the analysis. Table 5.8 shows the indices including 

minimum, average, maximum, and standard deviation values of optimal results and 

computation time for this test system. According to the table, the value of mixrate=1 is 

again selected since it produces the optimal solutions with lowest. However, other 

values of this parameter lead to almost the same results. 

As with the preceding test system, three methodologies are considered for this system 

and their results analyzed in each part. 

Table 5.8. statistical indices of optimal results of BSA for Test system 2 with different 
values of mixrate 
Economic Dispatch 

mixrate Generation cost ($/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

0 111497.6409 111498.6230 111501.6076 1.05E+00 1.92 2.26 2.61 0.14 
0.2 111497.6295 111497.6341 111497.6533 5.41E-03 3.40 3.77 4.24 0.18 
0.4 111497.6278 111497.6310 111497.6414 2.39E-03 3.56 3.92 4.34 0.17 
0.6 111497.6278 111497.6295 111497.6332 1.19E-03 3.60 4.05 4.52 0.20 
0.8 111497.6279 111497.6290 111497.6311 8.08E-04 3.65 4.10 4.46 0.23 

1 111497.6276 111497.6286 111497.6307 7.96E-04 3.40 4.29 4.74 0.30 
Emission Dispatch 
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mixrate Emission (ton/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

0 3932.2866 3932.6151 3933.6049 0.2716 1.81 2.22 2.53 0.17 
0.2 3932.2433 3932.2485 3932.2630 0.0050 2.99 3.36 3.70 0.18 
0.4 3932.2432 3932.2451 3932.2559 0.0023 3.06 3.41 3.82 0.20 
0.6 3932.2432 3932.2445 3932.2532 0.0018 3.04 3.47 4.01 0.20 
0.8 3932.2433 3932.2440 3932.2483 0.0011 3.03 3.46 4.10 0.26 

1 3932.2432 3932.2435 3932.2444 0.0003 2.92 3.46 4.48 0.26 

5.3.2 Methodology 1 

Table 5.9 lists the best solutions in Test System 2 for individual minimizing of 

generation cost and emission. BSA reached the values of 111497.6276 ($/h) and 

3932.2432 (ton/h) as minimum generation cost and emission, respectively. 

Table 5.10 lists the statistical indices of 50 independent runs. BSA reached the optimal 

values of the generation cost and emission with very low standard deviations, proving 

the high robustness of the proposed method. 

Table 5.9. Best solution of the EED problem in Test System 2 
 Generation cost Minimization Emission Minimization 

P1 (MWh) 55.0000 55.0000 
P2 (MWh) 80.0000 80.0000 
P3 (MWh) 106.9295 81.1749 
P4 (MWh) 100.6028 81.3585 
P5 (MWh) 81.4990 160.0000 
P6 (MWh) 83.0074 240.0000 
P7 (MWh) 300.0000 294.4430 
P8 (MWh) 340.0000 297.2970 
P9 (MWh) 470.0000 396.8075 
P10 (MWh) 470.0000 395.5131 
Total Gen. (MWh) 2087.0387 2081.5940 
PL (MWh) 87.0388 81.5941 
Generation cost ($/h) 111497.6276 116412.3843 
Emission (ton/h) 4572.2607 3932.2432 

Table 5.10. Statistical indices of the optimal results of 50 trials in Test System 2 

Objective 

Generation cost ($/h) Average 
CPU 
time 
(sec) 

Minimum Average Maximum Standard 
deviation 

Generation 
cost 

Minimization 
111497.6276 111497.6286 111497.6307 0.0008 4.29 

Objective 

Emission (ton/h) Average 
CPU 
time 
(sec) 

Minimum Average Maximum Standard 
deviation 

Emission 
Minimization 3932.2432 3932.2435 3932.2444 0.0003 3.46 
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A comparison between the proposed method and others from literature, i.e., with 

EMOCA (R. Zhang et al., 2013), MODE (R. Zhang et al., 2013), and NSGAII (R. 

Zhang et al., 2013), is made in Table 5.11. The results confirm high performance of the 

proposed method. The convergence characteristics of both objectives are achieved 

separately and shown by Figure 5.9. Again, high-speed convergence to the optimal is 

demonstrated. 

Table 5.11. Comparison between methods in Test System 1 

 

Figure 5.9. Convergence characteristics of economic dispatch and emission 
dispatch in Test System 2 
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Method Generation cost Minimization Emission Minimization 
Generation cost ($/h) Emission (ton/h) Generation cost ($/h) Emission (ton/h) 

EMOCA 1 111,509.43  4528.08  116,418.8300  3934.5400  
MODE 1 112,198.22 4308.7500  115,434.8000  3979.7700  
NSGAII 1 112,497.45  4263.4100  115,157.7400  4021.9500  
BSA 111497.6276 4572.2607 116412.3843 3932.2432 
1 (R. Zhang et al., 2013) 
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emission while the value of w=1 is set to minimize the generation cost. Figure 5.10 

shows the pareto front for this test system and the best compromise solution is selected 

among these solutions based on the fuzzy-based decision maker. The points 

corresponding to the values of w between 0 and 0.4 are so close to each other. Table 

5.12 shows the generation cost and emission amount for all the pareto solutions. The 

parameter µ is calculated to determine the best compromise solution among the pareto 

front set. The best compromise solution corresponds to w=0.8 (shown in bold) and the 

generation schedule is Table 5.13.   

 

Figure 5.10. Pareto front in Test System 2 obtained by BSA-WSM 
 

Table 5.12. Pareto front solutions obtained by BSA-WSM in Test System 2 
w Generation cost ($/h) Emission (ton/h) µFc µFe µ

0.0 116412.2490 3932.2431 0.0000 1.0000 0.0823 
0.1 116406.8390 3932.2555 0.0011 1.0000 0.0824 
0.2 116400.1944 3932.3035 0.0025 0.9999 0.0825 
0.3 116392.5652 3932.4060 0.0040 0.9997 0.0826 
0.4 116382.7030 3932.6195 0.0060 0.9994 0.0827 
0.5 115805.7789 3952.9053 0.1234 0.9677 0.0898 
0.6 114859.9425 3998.6481 0.3159 0.8962 0.0997 
0.7 113727.5885 4084.3365 0.5463 0.7624 0.1077 
0.8 112559.8061 4223.7248 0.7839 0.5446 0.1093 
0.9 111689.3742 4419.8193 0.9610 0.2382 0.0987 
1.0 111497.6276 4572.2340 1.0000 0.0000 0.0823 
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Table 5.13. Generation schedule of the best compromise solution in Test System 2 
w 0.8 
P1 (MWh) 55.0000 
P2 (MWh) 80.0000 
P3 (MWh) 86.9822 
P4 (MWh) 85.0431 
P5 (MWh) 124.1857 
P6 (MWh) 140.1938 
P7 (MWh) 300.0000 
P8 (MWh) 322.0647 
P9 (MWh) 444.0322 
P10 (MWh) 447.4826 
Total Gen. (MWh) 2084.9842 
PL (MWh) 84.9842 
Generation cost ($/h) 112559.8061 
Emission (ton/h) 4223.7248 

5.3.4 Methodology 3 (BSA-NDA) 

The non-dominated approach is applied to the test system and the pareto front is 

generated as the optimization product. The population size is set to 20 and the control 

parameter of BSA is set to its maximum value. The maximum iteration number is set to 

1000.

Figure 5.11 shows the pareto front optimal solutions for Test System 2. The best 

compromise solution is selected among the pareto members according to the fuzzy 

membership function. The solution corresponds to the generation cost of 112807.3733 

($/h) and emission of 4188.0926 (ton/h). The generation schedule of this solution is 

Table 5.14. The 50 non-dominated solutions of the pareto front are listed in Table 5.15 

with the index µ and the best compromise solution is shown in bold. 

Table 5.14. Optimization results for the best compromise solutions in Test System 
2

Generations (MWh) 
Total Gen. (MWh) Generation cost ($/h) 

P1 P2 P3 P4 P5

55.0000 80.0000 86.5308 86.9844 129.1542 2084.5042 112807.3733 

P6 P7 P8 P9 P10 PL (MWh) Emission (ton/h) 

146.9258 300.0000 323.9002 435.9938 440.0149 84.5042 4188.0926 
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Table 5.15. Pareto front solutions obtained by BSA-NDA in Test System 2 
Non-

dominated 
Solution 

Generation 
cost ($/h) 

Emission 
(ton/h) µFc µFe µ

1 111498.8712 4563.3844 1.0000 0.0000 0.01646 
2 111503.9712 4544.1570 0.9990 0.0305 0.01695 
3 111518.7118 4518.0852 0.9959 0.0718 0.01758 
4 111524.9000 4507.6570 0.9947 0.0884 0.01783 
5 111554.5969 4482.5119 0.9886 0.1283 0.01839 
6 111579.5973 4467.0597 0.9835 0.1528 0.01871 
7 111615.4200 4451.6393 0.9762 0.1772 0.01899 
8 111626.0628 4444.7880 0.9740 0.1881 0.01913 
9 111689.8847 4422.1498 0.9610 0.2240 0.01951 

10 111760.4104 4397.4059 0.9466 0.2633 0.01992 
11 111880.6535 4367.4000 0.9220 0.3108 0.02030 
12 111931.4511 4351.6543 0.9116 0.3358 0.02054 
13 112016.3930 4332.9628 0.8943 0.3655 0.02074 
14 112074.3744 4316.7676 0.8825 0.3911 0.02097 
15 112166.1585 4301.2681 0.8637 0.4157 0.02106 
16 112227.9067 4282.9632 0.8511 0.4448 0.02133 
17 112308.2886 4269.6754 0.8347 0.4658 0.02141 
18 112378.1214 4254.3592 0.8204 0.4901 0.02158 
19 112456.2578 4241.7779 0.8045 0.5101 0.02164 
20 112534.9153 4228.7445 0.7884 0.5308 0.02172 
21 112619.4639 4215.1500 0.7711 0.5523 0.02179 
22 112723.0062 4199.9595 0.7500 0.5764 0.02184 
23 112807.3733 4188.0926 0.7328 0.5952 0.02186 
24 112989.2872 4166.5250 0.6956 0.6294 0.02181 
25 113082.6571 4154.3583 0.6765 0.6487 0.02182 
26 113211.0269 4139.1445 0.6503 0.6729 0.02178 
27 113299.3022 4129.6698 0.6323 0.6879 0.02173 
28 113380.8091 4122.2379 0.6156 0.6997 0.02165 
29 113542.4002 4107.2632 0.5826 0.7234 0.02150 
30 113678.9075 4092.8555 0.5547 0.7463 0.02142 
31 113817.1649 4081.0124 0.5265 0.7651 0.02126 
32 113917.1383 4072.3223 0.5061 0.7788 0.02115 
33 113988.3540 4064.7308 0.4915 0.7909 0.02111 
34 114080.6635 4058.2750 0.4727 0.8011 0.02097 
35 114194.9102 4049.7594 0.4494 0.8146 0.02081 
36 114299.4185 4046.9598 0.4280 0.8191 0.02053 
37 114350.5049 4034.6881 0.4176 0.8385 0.02068 
38 114497.3544 4024.8994 0.3876 0.8541 0.02044 
39 114654.0939 4015.0634 0.3556 0.8697 0.02017 
40 114864.6593 4007.2616 0.3126 0.8820 0.01967 
41 114987.9375 3997.2219 0.2874 0.8980 0.01951 
42 115133.3062 3989.4398 0.2577 0.9103 0.01923 
43 115198.1311 3982.0203 0.2445 0.9221 0.01920 
44 115350.0015 3978.5845 0.2134 0.9275 0.01878 
45 115558.8710 3974.3960 0.1708 0.9342 0.01819 
46 115663.8117 3965.7522 0.1493 0.9479 0.01806 
47 115878.7444 3952.5330 0.1055 0.9688 0.01769 
48 116070.8317 3944.8237 0.0662 0.9811 0.01724 
49 116224.9607 3939.6831 0.0347 0.9892 0.01686 
50 116395.0552 3932.8879 0.0000 1.0000 0.01646 
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Figure 5.11. Pareto front  in Test System 2 obtained by BSA-NDA 

 

Pareto front solutions of BSA-NDA and BSA-WSM are shown in Figure 5.12 to 

compare these two methods. Although number of solutions in the pareto front are set 

differently, the figure confirms that BSA-NDA produces the same solutions as BSA-

WSM does. 

 
Figure 5.12. Pareto front sets in Test System 2 obtained by BSA-NDA and BSA-WSM 
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The system is an IEEE 118-bus 14-unit test system with a power demand of 950 (MW). 
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Appendix (Table A.18). As in the other test systems, three methodologies of solving the 

EED problem are considered in this system. 

5.4.1 Control parameter tuning 

The economic dispatch and emission dispatch problems are solved for this test system 

with different values of mixrate. The maximum iteration and population size are set to 

500 and 10, respectively and mixrate is changed from 0 to 1 with the step of 0.2. Table 

5.16 shows the statistical indices of the optimal results of both economic dispatch and 

emission dispatch problems. As shown in the table, the value of mixrate=0 corresponds 

to the optimal solutions with lowest computation burden while the value of mixrate=1 

produces the highest quality of solutions (minimum objective with lowest standard 

deviation).  

Table 5.16. statistical indices of optimal results of BSA for Test system 3 with 
different values of mixrate 

Economic Dispatch 

mixrate Generation cost ($/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

0 4303.5861 4304.5020 4306.8824 0.6899 2.65 2.97 3.43 0.16 
0.2 4303.5119 4303.5284 4303.5707 0.0140 4.41 4.97 5.65 0.27 
0.4 4303.5116 4303.5188 4303.5517 0.0078 4.87 5.37 5.93 0.27 
0.6 4303.5114 4303.5161 4303.5486 0.0070 4.91 5.66 6.57 0.36 
0.8 4303.5114 4303.5144 4303.5337 0.0039 5.34 5.90 6.51 0.29 

1 4303.5111 4303.5120 4303.5172 0.0011 5.43 6.05 7.10 0.34 
Emission Dispatch 

mixrate Emission (ton/h) CPU time (s) 
Min. Ave. Max. SD Min. Ave. Max. SD 

0 26.0240 30.1449 39.1676 2.6136 1.96 2.35 2.65 0.15 
0.2 25.2476 25.3372 25.4887 0.0619 3.21 3.63 4.17 0.22 
0.8 25.2379 25.2582 25.2985 0.0169 3.67 4.28 5.07 0.30 
0.6 25.2431 25.2751 25.3794 0.0289 3.76 4.20 4.90 0.26 
0.4 25.2450 25.3070 25.4870 0.0548 3.56 3.97 4.45 0.24 

1 25.2372 25.2494 25.3218 0.0166 3.87 4.45 5.20 0.30 

5.4.2 Methodology 1 

Single objective optimizations to minimize generation cost and emission are performed 

in the test system. The transmission network loss is considered in the problem 

formulation. The emission dispatch and economic dispatch are run separately and the 
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results are listed in Table 5.17. The minimum generation cost and emission are 

4303.5111 ($/h) and 25.2372 (ton/h), respectively. 

Table 5.17. Best solution of the EED problem in Test System 3 
Generations Generation cost 

Minimization 
Emission 

Minimization 
P1 (MWh) 104.1756 70.9358 
P2 (MWh) 92.1099 50.0000 
P3 (MWh) 50.0000 77.8758 
P4 (MWh) 50.0000 88.8994 
P5 (MWh) 50.0001 67.5382 
P6 (MWh) 50.0000 50.0000 
P7 (MWh) 50.0000 73.3419 
P8 (MWh) 50.0000 72.2040 
P9 (MWh) 62.8778 73.7542 
P10 (MWh) 63.0931 90.1769 
P11 (MWh) 62.6157 50.0000 
P12 (MWh) 177.6497 72.8619 
P13 (MWh) 50.0000 72.4039 
P14 (MWh) 50.0000 50.0000 
Total Gen. 
(MWh) 962.5218 959.9921 
PL (MWh) 12.5218 9.9921 
Generation cost 
($/h) 4303.5111 4548.8981 
Emission (ton/h) 402.4739 25.2372 

Owing to the stochastic nature of BSA, the optimization is run 50 times with various 

initial populations. The statistical indices of the optimal solutions are then obtained to 

check the robustness of the proposed method. Table 5.18 lists the statistical indices of 

the optimal generation cost and emission for 50 trials proving BSA’s high robustness. 

The low values of the standard deviations of both objectives confirm that BSA achieves 

the same optimal in any run, i.e., it is a highly robust method whether for economic or 

emission dispatch. 

Table 5.18. Statistical indices of the optimal results of 50 trials in Test System 3 

Objective 
Generation cost ($/h) 

Minimum Mean Maximum Standard 
deviation 

Generation 
cost 

Minimization 
4303.5111 4303.5120 4303.5172 0.0011 

Objective 
Emission (ton/h) 

Minimum Mean Maximum Standard 
deviation 

Emission 
Minimization 25.2372 25.2494 25.3218 0.0166 
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The performance of the proposed method is compared with another method from the 

literature according to Table 5.19. The comparison between MHSA (Jeddi & 

Vahidinasab, 2014) and BSA reconfirms that BSA solves the problem better. 

Table 5.19. Comparison between the methods in Test System 3 

Method 
Generation cost Minimization Emission Minimization 

Generation cost 
($/h) 

Emission 
(ton/h) 

Generation cost 
($/h) 

Emission 
(ton/h) 

MHSA 
1 4304.95 357.339 4539.228 27.892 

BSA 4303.5111 402.4739 4548.8981 25.2372 
1 (Jeddi & Vahidinasab, 2014) 

The convergence characteristics of both generation cost and emission objectives are 

shown by Figure 5.13.  

 
Figure 5.13. Convergence characteristics of economic dispatch and emission 

dispatch in Test System 3 
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front of the third system including the minimum generation cost and emission. The best 

compromise solution, however, is not the minimum of one objective but of two 

objectivesand is chosen by the fuzzy-based decision maker.  

 
Figure 5.14. Pareto front in Test System 3 obtained by BSA-WSM 

Table 5.20 lists the generation cost, emission, and µ values of all the pareto front 

members . The solution with the highest µ is the best compromise solution, i.e., the one 

with the generation cost of 4372.1966 ($/h) and emission of 122.8286 (ton/h) as shown 

in bold.  

Table 5.20. Pareto front solutions obtained by BSA-WSM in Test System 3 
w Fc ($/h) Fe (ton/h) µFc µFe µ

0.0 4549.3002 25.2366 0.0000 1.0000 0.0724 
0.1 4529.7706 26.1576 0.0795 0.9976 0.0780 
0.2 4507.3461 29.6199 0.1707 0.9884 0.0839 
0.3 4482.8310 36.7372 0.2704 0.9695 0.0898 
0.4 4451.9612 51.2739 0.3960 0.9310 0.0961 
0.5 4414.6407 77.7713 0.5479 0.8608 0.1020 
0.6 4372.1966 122.8286 0.7206 0.7415 0.1058 
0.7 4345.1388 165.1185 0.8306 0.6294 0.1057 
0.8 4321.8336 226.0575 0.9255 0.4680 0.1009 
0.9 4309.7319 285.1559 0.9747 0.3114 0.0931 
1.0 4303.5113 402.7157 1.0000 0.0000 0.0724 

Table 5.21 is the generation schedule for the best compromise solution. It shows the 

optimal solution to the EED problem in Test System 3 by weighted sum method. 
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Table 5.21. Generation schedule of the best compromise solution in Test System 3 
w=0.6 

P1 (MWh) 96.2082 P8 (MWh) 52.2584 
P2 (MWh) 61.2375 P9 (MWh) 84.9164 
P3 (MWh) 51.7180 P10 (MWh) 100.0596 
P4 (MWh) 72.4543 P11 (MWh) 56.6517 
P5 (MWh) 65.7665 P12 (MWh) 116.4102 
P6 (MWh) 50.0000 P13 (MWh) 51.0225 
P7 (MWh) 51.1225 P14 (MWh) 50.0000 
Total Gen. 
(MWh) 959.8258 
PL (MWh) 9.8258 
Generation 
cost ($/h) 4372.1966 
Emission 
(ton/h) 122.8286 

5.4.4 Methodology 3 (BSA-NDA) 

The solution to the EED problem is done by the non-dominated approach in this test 

system. Pareto front members as non-dominated solutions are generated in each 

iteration of the algorithm. As the optimization progresses, the non-dominated solutions 

are updated and the pareto members are stored in an elitist external archive. The archive 

capacity is set to 20 non-dominated solutions and the extra members are removed from 

the archive according to the crowding distance measure. The maximum iteration and 

population size are set to 1000 and 20, respectively. Figure 5.15 shows the pareto front 

of the test system.  

 
Figure 5.15. Pareto front in Test System 3 obtained by BSA-NDA 
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Table 5.22 is the generation schedule for the best compromise solution known as the 

optimal of the EED problem. The optimal generation cost and emission of this solution 

are respectively 4405.8321 ($/h) and 88.8972 (ton/h), as selected from the pareto front.  

Table 5.23 lists the 20 non-dominated solutions of the pareto front with the index of µ

for the selection of best compromise solution shown in bold. 

Table 5.22. Optimization results for the best compromise solutions in Test System 
3

Generations (MWh) Total Gen. 
(MWh) 

Generation 
cost ($/h) P1 P2 P3 P4 P5 P6 P7

93.8800 58.2196 64.9233 71.2120 59.5934 50.0000 56.9709 959.9005 4405.8321 

P8 P9 P10 P11 P12 P13 P14 PL (MWh) Emission 
($/h) 

54.1604 84.1674 99.2756 54.4040 107.0259 56.0681 50.0000 9.9005 88.8972 

Table 5.23. Pareto front solutions obtained by BSA-NDA in Test System 3 
Non-

dominated 
Solution 

Generation 
cost ($/h) 

Emission 
(ton/h) µFc µFe µ

1 4321.5187 248.7270 1.0000 0.0000 0.0410 
2 4330.7133 225.6469 0.9582 0.1039 0.0435 
3 4339.7436 214.8277 0.9172 0.1526 0.0438 
4 4340.7387 192.9437 0.9126 0.2510 0.0477 
5 4351.7883 178.0005 0.8624 0.3183 0.0484 
6 4359.5601 162.8372 0.8271 0.3865 0.0497 
7 4360.1234 150.3973 0.8245 0.4425 0.0519 
8 4365.5677 134.0489 0.7998 0.5161 0.0539 
9 4377.0985 122.1169 0.7474 0.5698 0.0540 

10 4389.8520 111.5653 0.6894 0.6172 0.0536 
11 4394.5365 105.4518 0.6681 0.6448 0.0538 
12 4405.8321 88.8972 0.6168 0.7193 0.0548 
13 4414.0492 83.2398 0.5794 0.7447 0.0543 
14 4424.9766 70.7215 0.5298 0.8011 0.0545 
15 4451.9535 53.0732 0.4071 0.8805 0.0528 
16 4461.8115 46.4532 0.3623 0.9103 0.0522 
17 4475.8416 39.9495 0.2986 0.9395 0.0507 
18 4479.6491 39.1007 0.2813 0.9434 0.0502 
19 4496.6951 32.7392 0.2038 0.9720 0.0482 
20 4541.5267 26.5126 0.0000 1.0000 0.0410 

In this test system, the pareto front solutions of BSA-NDA and BSA-WSM are 

compared to those solutions of MHSA (Jeddi & Vahidinasab, 2014) method. Figure 

5.16 shows the pareto front solutions of these three methods confirming that both BSA-

NDA and BSA-WSM produce higher quality of optimal solutions than MHSA. Almost 

all the pareto front solutions of BSA-NDA and BSA-WSM dominate the solutions 

obtained by MHSA validating the high performance of BSA for solving of the EED 

problem in this test system. 
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Figure 5.16. Pareto front sets in Test System 3 obtained by BSA-NDA, BSA-WSM, 
and MHSA 

5.5 Summary 

In this chapter, multi-objective backtracking search algorithm (MOBSA) is developed 

to solve an economic emission dispatch (EED) problem. Valve point effects are 

considered in the generation cost model. The EED problem is solved by weighted sum 

method and non-dominated approach. The proposed method is applied on IEEE 30-bus 

6-unit system and its results affirm its high performance in solving EED problems 

individually. It outperforms other optimization techniques in lossless and loss-

considered cases. The results of the economic dispatch and emission dispatch in 10-unit 

and IEEE 118-bus 14-unit systems also confirm its effectiveness. The solution to the 

EED problem by weighted sum and non-dominated methods in the test systems produce 

high-quality pareto front set with well-distributed non-dominated solutions including 

solutions for minimum generation cost and minimum emission. A number of 50 trials is 

considered a fair test of robustness of the proposed method. Their results for the test 

systems confirm that the proposed method is highly robust in solving EED problems.
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CHAPTER 6 : CONCLUSION 

6.1 Conclusions 

Backtracking search algorithm (BSA) is applied on power dispatch problem with two 

constraint handling mechanisms in power system and microgrid. The conclusion is 

described for each of thesis objectives as follows. 

The power dispatch problem with two objectives has been considered. The objectives 

have been the minimizations of the generation cost and the emission amount of 

generating units. Operating constraints of generators such as generation limits, ramp 

rate limits, and prohibited operating zones are modeled. The valve point loading effects 

and multiple fuel options in generator cost function are also considered.  

First, backtracking search algorithm with two constraint handling mechanisms are 

employed to solve the economic power dispatch problem in power system. These 

approaches have been called BSASSG and BSADSG. They have been applied on test 

systems to show the performance of BSA for solving the power dispatch problems. Six 

case studies varied in size and complexity are used to apply the proposed methods for 

solving the economic dispatch problems. In each test system, the optimal results 

obtained by BSASSG and BSADSG have been compared to each other in terms of solution 

quality and computational burden.  

The case studies have been divided into two groups. In the first group including 3-, 6-, 

20, and 40-unit systems, the valve point loading effects and the transmission network 

loss have been considered in the dispatch problem. Two proposed methods, BSASSG and 

BSADSG, have been applied to solve the ED problem with different parameter settings 

for the comparison purpose. Also, the convergence characteristics, robustness, and 

computational efficiencies of these methods have been used for comprehensive analysis. 

The results have shown that BSADSG can produce higher quality of optimal solutions 

than BSASSG.
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In the second group with more complex systems, 15 and 10-unit test systems, the 

optimal results have been achieved by BSASSG and BSADSG. Comparison of the results 

has reconfirmed the superiority of BSADSG over BSASSG. It has been shown that 

BSADSG can solve the economic dispatch problems (ED) effectively and efficiently. 

Since the valve-point loading effects and multiple fuel options have been considered in 

10-unit system making this system as highly non-linear case study, it is used for 

additional analysis. In this case, four test systems including 20, 40, 80, and 160 

generating units have been created through expanding the 10-unit system. Again, both 

BSASSG and BSADSG have been employed to solve the ED problems in these large 

systems. The results have shown that BSADSG has better performance than BSASSG. In 

all case studies, BSADSG has been compared to other optimization methods from the 

literature of ED confirming its strong capability for producing high quality of optimal 

solutions.  

Since BSADSG has shown better performance than BSASSG for solving economic 

dispatch problem in all case studies. It has been selected for solving the power dispatch 

problem in microgrid. The power dispatch problem is solved with different parameter 

settings to tune the parameters to achieve the best optimal. The optimization is run 50 

times for the statistical analysis of the optimal solutions. The results have shown that 

BSADSG can produce highly robust optimal solutions within 50 trials for minimizing the 

generation cost of microgrid. Also, it has been shown that BSADSG has outperformed the 

methods from the literature confirming its applicability for solving the power dispatch 

problem in microgrid. 

BSADSG as the proposed method for solving the economic dispatch problem is 

developed for multi-objective approaches. In this case, the problem of economic and 

emission dispatch problem (EED) is modeled and solved by multi-objective 

backtracking search algorithm. Three case studies including IEEE 30-bus 6-unit system, 
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10-unit system, and IEEE 118-bus 14-unit system have been used to validate the 

performance of the proposed method for solving the EED problems. Three 

methodologies have been employed for solving the problems by multi-objective BSA.  

In the first methodology, the problems of economic dispatch and emission dispatch have 

been solved to achieve minimum generation cost and minimum emission separately. A 

number of 50 trials has been considered as a fair test of robustness of the proposed 

method. The results on IEEE 30-bus 6-unit system have affirmed BSA’s high 

performance in solving the EED problem individually since it has outperformed other 

optimization techniques in lossless and loss-considered cases. The results on 10-unit and 

IEEE 118-bus 14-unit systems in the first methodology have reconfirmed BSA’s 

effectiveness. 

In the second and third methodologies, the EED problems have been solved by BSA 

with weighted sum method and non-dominated approaches. It has been shown that the 

proposed method has produced pareto front optimal set with well-distributed optimal 

solutions including the points corresponding to the approximate optimal of each 

objective. Finally, the proposed method has shown high performance for solving the 

EED problem as the multi-objective optimization problem. 

6.2 Future works 

The following tasks can be carried out as the future works. 

1. The power dispatch problem in power system can be developed by considering 

the renewable energies to investigate the cost and environmental impacts of 

employing clean energy technologies. 

2. The proposed algorithm can be applied in electricity market environment to 

determine the optimal generation schedules of generators. 

3. The proposed algorithm can be utilized to solve dynamic power dispatch 

problem with the specific period such as 24 hours. 
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4. The proposed algorithm can also be investigated for other optimization problems 

such as price-based and cost-based unit commitment and optimal power flow 

(OPF). 

5. The proposed method can be combined with other metaheuristic or classical 

methods to create more powerful technique of optimization.  
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APPENDIX A 

Table A.1 Unit parameters for Case 1 (3-unit system) 
Unit Pmin (MW) Pmax(MW) ai ($/MW2) bi ($/MW) ci ($) ei ($) fi

(rad/MW) 

1 100 600 0.001562 7.92 561 300 0.0315 
2 100 400 0.00194 7.85 310 200 0.042 
3 50 200 0.00482 7.97 78 150 0.063 

Table A.2 Unit parameters for Case 2 (6-unit system) 
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1 50 200 150 2 0.0016 50 0.063 4 10 35 0 3.25 0.00834 0 0
2 20 80 25 2.5 0.01 40 0.098 5 10 30 0 3 0.025 0 0
3 15 50 0 1 0.0625 0 0 6 12 40 0 3 0.025 0 0

Table A.3 Transmission loss coefficients for Cases 2 (6-unit system) 
 

B=

0.0224 0.0103 0.0016 -0.0053 0.0009 -0.0013
0.0103 0.0158 0.0010 -0.0074 0.0007 0.0024 
0.0016 0.0010 0.0474 -0.0687 -0.0060 -0.0350
-0.0053 -0.0074 -0.0687 0.3464 0.0105 0.0534 
0.0009 0.0007 -0.0060 0.0105 0.0119 0.0007 
-0.0013 0.0024 -0.0350 0.0534 0.0007 0.2353 

B0= -0.0005 0.0016 -0.0029 0.0060 0.0014 0.0015 

B00= 0.0011 
 

Table A.4 Unit parameters for Case 3 (20-unit system) 
Unit Pmin

(MW) 
Pmax

(MW) 
ai

($/MW2)
bi

($/MW) 
ci

($) Unit Pmin

(MW) 
Pmax

(MW) 
ai

($/MW2)
bi

($/MW) 
ci

($) 

1 150 600 0.00068 18.19 1000 11 100 300 0.0048 16.69 800 
2 50 200 0.00071 19.26 970 12 150 500 0.0031 16.76 970 
3 50 200 0.0065 19.8 600 13 40 160 0.0085 17.36 900 
4 50 200 0.005 19.1 700 14 20 130 0.00511 18.7 700 
5 50 160 0.00738 18.1 420 15 25 185 0.00398 18.7 450 
6 20 100 0.00612 19.26 360 16 20 80 0.0712 14.26 370 
7 25 125 0.0079 17.14 490 17 30 85 0.0089 19.14 480 
8 50 150 0.00813 18.92 660 18 30 120 0.00713 18.92 680 
9 50 200 0.00522 18.27 765 19 40 120 0.00622 18.47 700 

10 30 150 0.00573 18.92 770 20 30 100 0.00773 19.79 850 
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Table A.5 Transmission loss coefficients for Case 3 (20-unit system)

B=10-
5×

8.70 0.43 -4.61 0.36 0.32 -0.66 0.96 -1.60 0.80 -0.10 3.60 0.64 0.79 2.10 1.70 0.80 -3.20 0.70 0.48 -0.70
0.43 8.30 -0.97 0.22 0.75 -0.28 5.04 1.70 0.54 7.20 -0.28 0.98 -0.46 1.30 0.80 -0.20 0.52 -1.70 0.80 0.20
-4.61 -0.97 9.00 -2.00 0.63 3.00 1.70 -4.30 3.10 -2.00 0.70 -0.77 0.93 4.60 -0.30 4.20 0.38 0.70 -2.00 3.60
0.36 0.22 -2.00 5.30 0.47 2.62 -1.96 2.10 0.67 1.80 -0.45 0.92 2.40 7.60 -0.20 0.70 -1.00 0.86 1.60 0.87
0.32 0.75 0.63 0.47 8.60 -0.80 0.37 0.72 -0.90 0.69 1.80 4.30 -2.80 -0.70 2.30 3.60 0.80 0.20 -3.00 0.50
-0.66 -0.28 3.00 2.62 -0.80 11.80 -4.90 0.30 3.00 -3.00 0.40 0.78 6.40 2.60 -0.20 2.10 -0.40 2.30 1.60 -2.10
0.96 5.04 1.70 -1.96 0.37 -4.90 8.24 -0.90 5.90 -0.60 8.50 -0.83 7.20 4.80 -0.90 -0.10 1.30 0.76 1.90 1.30
-1.60 1.70 -4.30 2.10 0.72 0.30 -0.90 1.20 -0.96 0.56 1.60 0.80 -0.40 0.23 0.75 -0.56 0.80 -0.30 5.30 0.80
0.80 0.54 3.10 0.67 -0.90 3.00 5.90 -0.96 0.93 -0.30 6.50 2.30 2.60 0.58 -0.10 0.23 -0.30 1.50 0.74 0.70
-0.10 7.20 -2.00 1.80 0.69 -3.00 -0.60 0.56 -0.30 0.99 -6.60 3.90 2.30 -0.30 2.80 -0.80 0.38 1.90 0.47 -0.26
3.60 -0.28 0.70 -0.45 1.80 0.40 8.50 1.60 6.50 -6.60 10.70 5.30 -0.60 0.70 1.90 -2.60 0.93 -0.60 3.80 -1.50
0.64 0.98 -0.77 0.92 4.30 0.78 -0.83 0.80 2.30 3.90 5.30 8.00 0.90 2.10 -0.70 5.70 5.40 1.50 0.70 0.10
0.79 -0.46 0.93 2.40 -2.80 6.40 7.20 -0.40 2.60 2.30 -0.60 0.90 11.00 0.87 -1.00 3.60 0.46 -0.90 0.60 1.50
2.10 1.30 4.60 7.60 -0.70 2.60 4.80 0.23 0.58 -0.30 0.70 2.10 0.87 3.80 0.50 -0.70 1.90 2.30 -0.97 0.90
1.70 0.80 -0.30 -0.20 2.30 -0.20 -0.90 0.75 -0.10 2.80 1.90 -0.70 -1.00 0.50 11.00 1.90 -0.80 2.60 2.30 -0.10
0.80 -0.20 4.20 0.70 3.60 2.10 -0.10 -0.56 0.23 -0.80 -2.60 5.70 3.60 -0.70 1.90 10.80 2.50 -1.80 0.90 -2.60
-3.20 0.52 0.38 -1.00 0.80 -0.40 1.30 0.80 -0.30 0.38 0.93 5.40 0.46 1.90 -0.80 2.50 8.70 4.20 -0.30 0.68
0.70 -1.70 0.70 0.86 0.20 2.30 0.76 -0.30 1.50 1.90 -0.60 1.50 -0.90 2.30 2.60 -1.80 4.20 2.20 0.16 -0.30
0.48 0.80 -2.00 1.60 -3.00 1.60 1.90 5.30 0.74 0.47 3.80 0.70 0.60 -0.97 2.30 0.90 -0.30 0.16 7.60 0.69
-0.70 0.20 3.60 0.87 0.50 -2.10 1.30 0.80 0.70 -0.26 -1.50 0.10 1.50 0.90 -0.10 -2.60 0.68 -0.30 0.69 7.00

B0=0

B00=0
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Table A.6 Unit parameters for Case 4 (40-unit system) 
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1 36 114 0.0069 6.73 94.705 100 0.084 21 254 550 0.00298 6.63 785.96 300 0.035 
2 36 114 0.0069 6.73 94.705 100 0.084 22 254 550 0.00298 6.63 785.96 300 0.035 
3 60 120 0.02028 7.07 309.54 100 0.084 23 254 550 0.00284 6.66 794.53 300 0.035 
4 80 190 0.00942 8.18 369.03 150 0.063 24 254 550 0.00284 6.66 794.53 300 0.035 
5 47 97 0.0114 5.35 148.89 120 0.077 25 254 550 0.00277 7.1 801.32 300 0.035 
6 68 140 0.01142 8.05 222.33 100 0.084 26 254 550 0.00277 7.1 801.32 300 0.035 
7 110 300 0.00357 8.03 287.71 200 0.042 27 10 150 0.52124 3.33 1055.1 120 0.077 
8 135 300 0.00492 6.99 391.98 200 0.042 28 10 150 0.52124 3.33 1055.1 120 0.077 
9 135 300 0.00573 6.6 455.76 200 0.042 29 10 150 0.52124 3.33 1055.1 120 0.077 

10 130 300 0.00605 12.9 722.82 200 0.042 30 47 97 0.0114 5.35 148.89 120 0.077 
11 94 375 0.00515 12.9 635.2 200 0.042 31 60 190 0.0016 6.43 222.92 150 0.063 
12 94 375 0.00569 12.8 654.69 200 0.042 32 60 190 0.0016 6.43 222.92 150 0.063 
13 125 500 0.00421 12.5 913.4 300 0.035 33 60 190 0.0016 6.43 222.92 150 0.063 
14 125 500 0.00752 8.84 1760.4 300 0.035 34 90 200 0.0001 8.95 107.87 200 0.042 
15 125 500 0.00708 9.15 1728.3 300 0.035 35 90 200 0.0001 8.62 116.58 200 0.042 
16 125 500 0.00708 9.15 1728.3 300 0.035 36 90 200 0.0001 8.62 116.58 200 0.042 
17 220 500 0.00313 7.97 647.85 300 0.035 37 25 110 0.0161 5.88 307.45 80 0.098 
18 220 500 0.00313 7.95 649.69 300 0.035 38 25 110 0.0161 5.88 307.45 80 0.098 
19 242 550 0.00313 7.97 647.83 300 0.035 39 25 110 0.0161 5.88 307.45 80 0.098 
20 242 550 0.00313 7.97 647.81 300 0.035 40 242 550 0.00313 7.97 647.83 300 0.035 
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Table A.7 Generating units’ parameters for Case 5 (15-unit system) 
Unit Pmin (MW) Pmax(MW) ai ($/MW2) bi ($/MW) ci ($) Pi

0 URi DRi Prohibited zones
1 150 455 671 10.1 0.000299 400 80 120  
2 150 455 574 10.2 0.000183 300 80 120 [185, 225], [305, 335],[420, 450] 
3 20 130 374 8.8 0.001126 105 130 130  
4 20 130 374 8.8 0.001126 100 130 130  
5 150 470 461 10.4 0.000205 90 80 120 [180, 200], [305, 335],[390, 420] 
6 135 460 630 10.1 0.000301 400 80 120 [230, 255], [365, 395],[430, 455] 
7 135 465 548 9.8 0.000364 350 80 120  
8 60 300 227 11.2 0.000338 95 65 100  
9 25 162 173 11.2 0.000807 105 60 100  

10 25 160 175 10.7 0.001203 110 60 100  
11 20 80 186 10.2 0.003586 60 80 80  
12 20 80 230 9.9 0.005513 40 80 80 [30, 40], [55, 65] 
13 25 85 225 13.1 0.000371 30 80 80  
14 15 55 309 12.1 0.001929 20 55 55  
15 15 55 323 12.4 0.004447 20 55 55  
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Table A.8 Transmission loss coefficients for Case 5 (15-unit system)

B=10-

5×

0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002 0.0004 0.0003 -0.0001
0.0012 0.0015 0.0013 0.0000 -0.0005 -0.0002 0.0000 0.0001 -0.0002 -0.0004 -0.0004 0.0000 0.0004 0.0010 -0.0002
0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0.0000 -0.0008 -0.0012 -0.0017 0.0000 -0.0026 0.0111 -0.0028
-0.0001 0.0000 -0.0001 0.0034 -0.0007 -0.0004 0.0011 0.0050 0.0029 0.0032 -0.0011 0.0000 0.0001 0.0001 -0.0026
-0.0003 0.0005 -0.0013 -0.0007 0.0090 0.0014 -0.0003 -0.0012 -0.0010 -0.0013 0.0007 -0.0002 -0.0002 -0.0024 -0.0003
-0.0001 -0.0002 -0.0009 -0.0004 0.0014 0.0016 0.0000 -0.0006 -0.0005 -0.0008 0.0011 -0.0001 -0.0002 -0.0017 0.0003
-0.0001 0.0000 -0.0001 0.0011 -0.0003 0.0000 0.0015 0.0017 0.0015 0.0009 -0.0005 0.0007 0.0000 -0.0002 -0.0008
-0.0001 0.0001 0.0000 0.0050 -0.0012 -0.0006 0.0017 0.0168 0.0082 0.0079 -0.0023 -0.0036 0.0001 0.0005 -0.0078
-0.0003 -0.0002 -0.0008 0.0029 -0.0010 -0.0005 0.0015 0.0082 0.0129 0.0116 -0.0021 -0.0025 0.0007 -0.0012 -0.0072
-0.0005 -0.0004 -0.0012 0.0032 -0.0013 -0.0008 0.0009 0.0079 0.0116 0.0200 -0.0027 -0.0034 0.0009 -0.0011 -0.0088
-0.0003 -0.0004 -0.0017 -0.0011 0.0007 0.0011 -0.0005 -0.0023 -0.0021 -0.0027 0.0140 0.0001 0.0004 -0.0038 0.0168
-0.0002 0.0000 0.0000 0.0000 -0.0002 -0.0001 0.0007 -0.0036 -0.0025 -0.0034 0.0001 0.0054 -0.0001 -0.0004 0.0028
0.0004 0.0004 -0.0026 0.0001 -0.0002 -0.0002 0.0000 0.0001 0.0007 0.0009 0.0004 -0.0001 0.0103 -0.0101 0.0028
0.0003 0.0010 0.0111 0.0001 -0.0024 -0.0017 -0.0002 0.0005 -0.0012 -0.0011 -0.0038 -0.0004 -0.0101 0.0578 -0.0094
-0.0001 -0.0002 -0.0028 -0.0026 -0.0003 0.0003 -0.0008 -0.0078 -0.0072 -0.0088 0.0168 0.0028 0.0028 -0.0094 0.1283
0.0014 0.0012 0.0007 -0.0001 -0.0003 -0.0001 -0.0001 -0.0001 -0.0003 -0.0005 -0.0003 -0.0002 0.0004 0.0003 -0.0001
0.0012 0.0015 0.0013 0.0000 -0.0005 -0.0002 0.0000 0.0001 -0.0002 -0.0004 -0.0004 0.0000 0.0004 0.0010 -0.0002
0.0007 0.0013 0.0076 -0.0001 -0.0013 -0.0009 -0.0001 0.0000 -0.0008 -0.0012 -0.0017 0.0000 -0.0026 0.0111 -0.0028

B0= -0.0001 -0.0002 0.0028 -0.0001 0.0001 -0.0003 -0.0002 -0.0002 0.0006 0.0039 -0.0017 0.0000 -0.0032 0.0067 -0.0064

B00 0.0055



146

Table A.9 Unit parameters for Case 6 (10-unit system)

Unit
Generation

Fuel type Cost coefficientsPmin P1 P2 Pmax

F1 F2 F3 ai ($/MW2) bi ($/MW) ci ($) ei ($) fi (rad/MW)

1 100 196 250 1 2.1760e-3 -3.9750e-1 2.6970e1 2.6970e-2 -3.9750e+0
1 2 2 1.8610e-3 -3.0590e-1 2.1130e1 2.1130e-2 -3.0590e+0

2 50 114 157 230 1 4.1940e-3 -1.2690e+0 1.1840e2 1.1840e-1 -1.2690e+1
2 1.1380e-3 -3.9880e-2 1.8650e0 1.8650e+1 -3.9880e-1

2 3 1 3 1.6200e-3 -1.9800e-1 1.3650e1 1.3650e+0 -1.9800e+0

3 200 332 388 500 1 1.4570e-3 -3.1160e-1 3.9790e1 3.9790e+0 -3.1160e+0
2 1.1760e-5 4.8640e-1 -5.9140e1 -5.9140e+0 4.8640e+0

1 3 2 3 8.0350e-4 3.3890e-2 -2.8760e0 -2.8760e+1 3.3890e-1

4 99 138 200 265 1 1.0490e-3 -3.1140e-2 1.9830e0 1.9830e+1 -3.1140e-1
2 2.7580e-3 -6.3480e-1 5.2850e1 5.2850e+0 -6.3480e+0

1 2 3 3 5.9350e-3 -2.3380e+0 2.6680e2 2.6680e-1 -2.3380e+1

5 190 338 407 490 1 1.0660e-3 -8.7330e-2 1.3920e1 1.3920e+0 -8.7330e-1
2 1.5970e-3 -5.2060e-1 9.9760e1 9.9760e+0 -5.2060e+0

1 2 3 3 1.4980e-4 4.4620e-1 -5.3990e1 -5.3990e+0 -4.4620e+0

6 85 138 200 265 1 2.7580e-3 -6.3480e-1 5.2850e1 5.2850e+0 -6.3480e+0
2 1.0490e-3 -3.1140e-2 1.9830e0 1.9830e+1 -3.1140e-1

2 1 3 3 5.9350e-3 -2.3380e+0 2.6680e2 2.6680e-1 -2.3380e+1

7 200 331 391 500 1 1.1070e-3 -1.3250e-1 1.8930e1 1.8930e+0 -1.3250e+0
2 1.1650e-3 -2.2670e-1 4.3770e1 4.3770e+0 -2.2670e+0

1 2 3 3 2.4540e-4 3.5590e-1 -4.3350e1 -4.3350e+0 3.5590e+0

8 99 138 200 265 1 1.0490e-3 -3.1140e-2 1.9830e0 1.9830e+1 -3.1140e-1
2 2.7580e-3 -6.3480e-1 5.2850e1 5.2850e+0 -6.3480e+0

1 2 3 3 5.9350e-3 -2.3380e+0 2.6680e2 2.6680e-1 -2.3380e+1

9 130 213 370 440 1 1.5540e-3 -5.6750e-1 8.8530e1 8.8530e+0 -5.6750e+0
2 7.0330e-3 -4.5140e-2 1.5300e1 1.4230e+0 -1.8710e-1

3 1 3 3 6.1210e-4 -1.8170e-2 1.4230e1 1.4230e+0 -1.8710e-1

10 200 362 407 490 1 1.1020e-3 -9.9380e-2 1.3970e1 1.3970e+0 -9.9380e-1
2 4.1640e-5 5.0840e-1 -6.1130e1 -6.1130e+0 5.0840e+0

1 3 2 3 1.1370e-3 -2.0240e-1 4.6710e1 4.6710e+0 -2.0240e+0
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Table A. 10 Cost function coefficients and boundary limits of microgrid elements 
DG a

($/h) 
b

($/kWh) 
c

($/(kW)2h) 
Pmin

(kW) 
Pmax

(kW) 
Efficiency 

(%) 
Diesel 1 0.2731 0.1453 0.0042 0 800 0 
Diesel 2 0.4333 0.2333 0.0074 0 400 0 
Wind 1 0 0.022 0 0 300 0 
Wind 2 0 0.032 0 0 300 0 
Fuel-cell 1 0 0.05 0 0 150 90 
Fuel-cell 2 0 0.05 0 0 100 90 
Fuel-cell 3 0 0.07 0 0 100 85 

Table A.11 Load profile and wind speed within 24 hours 
Hour PD (kW) v (m/s) Hour PD (kW) v (m/s) 
1 653.6 8.20 13 1032.0 4.80 
2 550.4 6.90 14 997.6 5.80 
3 645.0 5.60 15 1083.6 6.80 
4 688.0 7.75 16 1032.0 8.75 
5 842.8 9.20 17 1118.0 6.50 
6 1118.0 4.20 18 1376.0 8.20 
7 1324.4 6.00 19 1668.4 8.30 
8 1393.2 8.10 20 1651.2 7.00 
9 1427.6 4.30 21 1634.0 6.00 
10 1393.2 7.80 22 1462.0 7.00 
11 1238.4 8.50 23 1341.6 8.80 
12 1083.6 8.00 24 1066.4 7.00 

Table A.12 The generating units’ parameters in Test System 1 
(IEEE 30-bus 6-unit system) 

Unit Pmin (MW) Pmax(MW) ai bi ci αi βi γi ζi λi

G1 5 150 10 200 100 4.091 -5.554 6.49  2.0E-4 2.86   
G2 5 150 10 150 120 2.543 -6.047 5.638 5.0E-4 3.33   
G3 5 150 20 180 40 4.258 -5.094 4.586 1.0E-6 8.00   
G4 5 150 10 100 60 5.326 -3.55  3.38  2.0E-3 2.00   
G5 5 150 20 180 40 4.258 -5.094 4.586 1.0E-6 8.00   
G6 5 150 10 150 100 6.131 -5.555 5.151 1.0E-5 6.667 

Table A.13 Transmission loss coefficients in Test System 1 
(IEEE 30-bus 6-unit system) 

B=

0.1382 -0.0299 0.0044 -0.0022 -0.0010 -0.0008 
-0.0299 0.0487 -0.0025 0.0004 0.0016 0.0041 
0.0044 -0.0025 0.0182 -0.0070 -0.0066 -0.0066 
-0.0022 0.0004 -0.0070 0.0137 0.0050 0.0033 B00= 0.00098573 
-0.0010 0.0016 -0.0066 0.0050 0.0109 0.0005 
-0.0008 0.0041 -0.0066 0.0033 0.0005 0.0244 

B0= -0.0107 0.0060 -0.0017 0.0009 0.0002 0.0030 

Table A.14 Generation limits and cost coefficients in Test System 2 (10-unit 
system) 

Unit Pmin (MW) Pmax(MW) ai bi ci ei fi

G1 10 55 0.12951 40.5407 1000.403 33 0.0174 
G2 20 80 0.10908 39.5804 950.606 25 0.0178 
G3 47 120 0.12511 36.5104 900.705 32 0.0162 
G4 20 130 0.12111 39.5104 800.705 30 0.0168 
G5 50 160 0.15247 38.539 756.799 30 0.0148 
G6 70 240 0.10587 46.1592 451.325 20 0.0163 
G7 60 300 0.03546 38.3055 1243.531 20 0.0152 
G8 70 340 0.02803 40.3965 1049.998 30 0.0128 
G9 135 470 0.02111 36.3278 1658.569 60 0.0136 
G10 150 470 0.01799 38.2704 1356.659 40 0.0141 
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Table A.15 Emission coefficients in Test System 2 (10-unit system) 
Unit αi βi γi ζi λi

G1 0.04702 −3.9864 360.0012 0.25475 0.01234 
G2 0.04652 −3.9524 350.0056 0.25475 0.01234 
G3 0.04652 −3.9023 330.0056 0.25163 0.01215 
G4 0.04652 −3.9023 330.0056 0.25163 0.01215 
G5 0.0042 0.3277 13.8593 0.2497 0.012 
G6 0.0042 0.3277 13.8593 0.2497 0.012 
G7 0.0068 −0.5455 40.2669 0.248 0.0129 
G8 0.0068 −0.5455 40.2669 0.2499 0.01203 
G9 0.0046 −0.5112 42.8955 0.2547 0.01234 
G10 0.0046 −0.5112 42.8955 0.2547 0.01234 

Table A.16 Transmission loss coefficients in Test System 2 (10-unit system) 

B=

0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.00002  
0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018 
0.000015 0.000016 0.000039 0.00001  0.000012 0.000012 0.000014 0.000014 0.000016 0.000016 
0.000015 0.000016 0.00001  0.00004  0.000014 0.00001  0.000011 0.000012 0.000014 0.000015 
0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016 
0.000017 0.000015 0.000012 0.00001  0.000011 0.000036 0.000012 0.000012 0.000014 0.000015 
0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018 
0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.00004  0.000015 0.000016 
0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019 
0.00002  0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044 

B0=0 B00=0        

Table A.17 The generating units’ parameters in Test System 3 (IEEE 118-bus 14-
unit system) 

Unit Pmin (MW) Pmax(MW) ai ($/MW2) bi ($/MW) ci ($) αi (ton/MW2) βi (ton/MW) γi (ton)
G1 50 300 0.005 1.89 150 0.016 -1.5 23.333
G2 50 300 0.0055 2 115 0.031 -1.82 21.022
G3 50 300 0.006 3.5 40 0.013 -1.249 22.05
G4 50 300 0.005 3.15 122 0.012 -1.355 22.983
G5 50 300 0.005 3.05 125 0.02 -1.9 21.313
G6 50 300 0.007 2.75 70 0.007 0.805 21.9
G7 50 300 0.007 3.45 70 0.015 -1.401 23.001
G8 50 300 0.007 3.45 70 0.018 -1.8 24.003
G9 50 300 0.005 2.45 130 0.019 -2 25.121
G10 50 300 0.005 2.45 130 0.012 -1.36 22.99
G11 50 300 0.0055 2.35 135 0.033 -2.1 27.01 
G12 50 300 0.0045 1.3 200 0.018 -1.8 25.101 
G13 50 300 0.007 3.45 70 0.018 -1.81 24.313 
G14 50 300 0.006 3.89 45 0.03 -1.921 27.119 
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Table A.18 Transmission loss coefficients in Test System 3 (IEEE 118-bus 14-unit system)

B=

0.042741 0.03010 0.019242 0.02150 -0.00280 -0.00400 -0.00447 -0.00272 -0.00323 -0.00694 -0.00745 -0.01952 -0.01217 -0.01718
0.030108 0.03794 0.02071 0.02091 -0.00363 -0.00525 -0.00448 -0.00366 -0.00359 -0.00695 -0.01018 -0.02004 -0.01844 -0.02057
0.019242 0.02071 0.02678 0.02469 -0.00247 -0.00378 -0.00298 -0.00239 -0.00231 -0.00467 -0.00786 -0.01583 -0.01529 -0.01688
0.002151 0.02091 0.024696 0.02439 -0.00232 -0.00352 -0.00309 -0.00223 -0.00230 -0.00475 -0.00715 -0.01600 -0.01346 -0.01588
-0.00288 -0.00360 -0.00247 -0.00232 0.00954 0.00365 0.00295 0.00311 0.00420 0.00206 0.00036 -0.00365 -0.00381 -0.00424
-0.00400 -0.00525 -0.00378 -0.00352 0.00365 0.01067 0.00576 0.00374 0.00334 0.00248 0.00119 -0.00279 -0.00288 -0.00331
-0.00447 -0.00448 -0.00298 -0.00309 0.00295 0.00576 0.00809 0.00337 0.00356 0.00305 0.00129 -0.00252 -0.00192 -0.00270
-0.00272 -0.00366 -0.00239 -0.00223 0.00311 0.00374 0.00337 0.00387 0.00374 0.00293 0.00206 0.00152 -0.00142 -0.00188
-0.00323 -0.00359 -0.00231 -0.00230 0.00420 0.00334 0.00356 0.00374 0.00540 0.00286 0.00147 -0.00225 -0.00189 -0.00254
-0.00694 -0.00695 -0.00467 -0.00475 0.00206 0.00248 0.00305 0.00293 0.00286 0.00673 0.00305 0.001212 0.00133 0.00095
-0.00745 -0.01018 -0.00786 -0.00715 0.00036 0.00119 0.00129 0.00206 0.00147 0.00305 0.00857 0.006171 0.00817 0.00726
-0.01952 -0.02004 -0.01583 -0.01600 -0.00360 -0.00279 -0.00252 -0.00152 -0.00225 0.00121 0.00617 0.036153 0.01839 0.02001
-0.01217 -0.01844 -0.01529 -0.01346 -0.00381 -0.00288 -0.00192 -0.00142 -0.00189 0.00133 0.00817 0.018390 0.03311 0.02941
-0.01718 -0.02057 -0.01688 -0.01588 -0.00424 -0.00331 -0.00272 -0.00188 -0.00254 0.00095 0.00726 0.020017 0.02941 0.04129

B0= -0.53852 -0.28322 -0.19294 -0.26424 0.01775 0.02191 0.0405 0.012212 0.014 0.004407 0.03273 0.21782 0.03256 0.15563

B00= 2.8378×102
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Table A.19 Optimal schedule of generators for 20 to 160 unit systems by BSASSG
20-unit system

P1-P10 219.7671 212.7222 280.6532 238.2787 283.9578 238.6999 292.8871 240.5839 421.9002 269.9529
Total cost ($/h)

1248.2397

P11-P20 217.8332 210.4506 283.9112 240.5795 280.0957 241.3875 288.5782 238.9506 424.4087 274.4018
CPU time (sec)

0.79
40-unit system

P1-P10 222.0332 210.2307 281.6883 241.6554 279.1071 236.5557 290.8729 239.7710 421.3593 275.1036 Total cost ($/h)
P11-P20 216.5717 211.9823 285.7532 238.8356 279.6614 245.2844 292.5826 239.6505 413.6237 278.6363 2496.8659
P21-P30 216.3161 211.2128 282.5971 239.1361 275.6980 237.7755 287.7618 238.4277 426.8209 279.2932 CPU time (sec)
P31-P40 216.5550 212.2361 282.3718 238.1609 280.8594 236.9570 294.8501 239.5188 427.3421 275.1504 2.93

80-unit system
P1-P10 211.7730 211.9542 287.4358 240.8190 282.1493 241.3657 292.9100 235.7365 415.2154 279.1587 Total cost ($/h)P11-P20 215.3697 211.2690 285.3739 240.9444 278.2706 243.1187 302.0590 239.4786 417.0782 282.2017
P21-P30 217.6631 211.0960 280.8370 240.7373 284.3263 242.8734 287.8340 236.3153 416.5748 278.9608 4999.0457
P31-P40 215.7012 211.3331 281.7605 239.5176 284.6463 239.3536 299.7515 238.0326 405.6357 278.7047
P41-P50 219.1773 211.3825 295.0928 238.9605 285.2824 237.1135 291.0461 240.9833 351.9422 280.3064 CPU time (sec)P51-P60 216.4608 209.3899 289.4735 239.2463 281.4682 238.9721 299.6301 238.0090 412.7909 273.0213
P61-P70 223.4988 210.9925 290.0260 238.0167 279.8484 236.0993 296.1642 239.2831 422.9927 288.5793 14.51
P71-P80 218.3306 210.7261 286.5050 234.8012 284.4863 242.4455 294.5071 243.5406 418.8718 285.1993

160-unit system
P1-P10 202.2032 202.4297 306.2753 235.2074 302.6879 224.3898 311.1536 230.1319 392.9888 296.1695

Total cost ($/h)P11-P20 205.3916 205.3757 309.6440 230.2822 296.7428 229.7940 328.8390 236.0031 357.3814 293.3437
P21-P30 210.2336 225.6432 301.0066 233.0128 300.8074 240.2860 310.0996 239.8052 342.0785 306.3580
P31-P40 229.7808 197.3762 302.6330 235.0480 310.1700 236.1441 320.4908 234.0459 379.8179 293.4056 10087.4428
P41-P50 209.3525 206.5760 314.5931 233.5537 295.1580 230.7823 308.2672 233.4446 379.9108 294.1745
P51-P60 208.6034 207.0728 284.7928 234.6733 324.7294 236.5145 348.1098 233.2546 343.3661 292.9139
P61-P70 201.7658 200.4688 295.8267 242.4500 305.4322 235.2406 284.1962 239.2183 405.0659 302.0974
P71-P80 197.8818 208.1495 323.7749 232.4051 289.7633 230.3446 277.7043 234.0824 399.5172 275.9810
P81-P90 206.7836 205.5714 290.2083 244.6197 291.7909 233.9181 329.4566 239.8547 345.4127 303.2068

CPU time (sec)P91-P100 214.1528 211.2541 341.1428 238.7184 299.6403 233.3615 310.5329 230.1601 355.2073 294.5722
P101-P110 216.2259 207.9471 294.3139 234.7216 289.7269 236.8112 326.7190 243.6999 348.7615 306.2862
P111-P120 208.4848 183.4425 325.2267 236.5676 294.0858 235.3494 311.6296 236.5329 341.9216 291.2247 369.85
P121-P130 205.9502 207.1268 315.8594 232.8726 291.1034 230.7047 306.2548 240.7582 351.8221 295.2698
P131-P140 213.5268 206.1726 320.3274 231.5516 286.3316 234.1113 331.5197 235.4227 392.2890 296.0792
P141-P150 206.0794 201.3791 298.5889 228.3235 306.0366 234.1205 290.3136 237.0395 340.8845 289.1702
P151-P160 211.4258 209.7217 298.9931 237.8873 333.0782 230.2063 313.4609 230.0930 364.9168 278.0961
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Table A.20 Optimal schedule of generators for 20 to 160 unit systems by BSADSG
20-unit system

P1-P10 218.9178 213.8795 285.8630 241.2548 279.1774 240.7137 288.4542 238.8320 426.5724 275.4027 Total cost ($/h)
1248.1453

P11-P20 218.4643 211.9649 278.5724 240.4512 276.8115 240.2980 285.8821 241.1206 425.2776 272.0900 CPU time (sec)
0.66

40-unit system
P1-P10 217.8568 209.9764 286.0263 240.5807 281.5315 239.6401 289.5725 237.8891 419.0965 272.8705 Total cost ($/h)
P11-P20 216.7302 214.9427 283.6904 238.7024 275.6014 238.0246 289.8033 238.0279 427.2484 275.8248 2496.3035
P21-P30 219.7518 212.2630 282.7475 239.9060 283.7729 241.5325 285.4285 239.2433 426.0293 275.7341 CPU time (sec)
P31-P40 217.8648 208.2430 279.9359 240.8460 278.9933 241.9220 291.5432 238.1663 426.7901 275.6502 2.14

80-unit system
P1-P10 215.6189 209.7779 285.0787 237.8887 277.7138 238.9706 295.9757 235.6062 420.1685 272.7289 Total cost ($/h)P11-P20 215.3171 209.7458 281.1461 240.2904 278.3413 241.3797 293.7423 238.3365 417.2607 276.3105
P21-P30 223.0809 212.4608 275.7111 241.5217 281.2978 237.5079 294.0365 239.5126 422.4768 281.8983 4994.9557
P31-P40 219.5026 210.7075 284.5098 240.0392 278.2803 237.8360 288.0220 240.1735 431.3259 276.8823
P41-P50 213.4147 214.9315 283.9003 238.8416 280.2366 241.1186 291.9470 238.1655 420.4565 280.0774 CPU time (sec)P51-P60 222.6125 211.7017 277.4362 241.3586 282.1998 237.0626 290.1570 239.0831 420.2180 280.0403
P61-P70 216.6938 211.9546 282.3265 239.0978 277.5993 242.4432 293.3349 237.8883 421.0045 277.7303 5.85
P71-P80 212.7801 208.5878 281.9587 243.5013 281.2760 239.6700 295.3165 237.2130 422.0826 274.3993

160-unit system
P1-P10 213.3154 217.9365 279.6972 234.6801 286.0825 235.5030 297.0552 240.0225 393.5987 291.4255

Total cost ($/h)P11-P20 215.9499 208.2972 289.6518 241.7031 275.4550 239.9928 307.9677 238.8504 405.3307 270.7644
P21-P30 214.0176 215.7387 284.6693 240.5951 283.1078 236.4856 298.1299 238.2628 400.3873 288.9676
P31-P40 219.7961 212.0315 296.3531 245.4464 288.3457 238.0285 290.8944 238.6270 427.4251 290.7521 10012.3647
P41-P50 217.1316 211.2258 288.2594 237.1250 278.8438 239.7715 319.4746 235.2588 399.3670 271.9939
P51-P60 205.2969 208.8629 273.3884 239.7990 291.6607 244.2671 301.4060 241.3461 388.1976 287.5318
P61-P70 216.1869 218.6080 290.0877 239.0759 277.3323 238.8271 297.1195 241.5370 419.8877 275.9252
P71-P80 212.4911 208.7471 298.1080 239.2211 294.3494 238.6580 300.3954 239.0868 359.2010 278.8633
P81-P90 213.5014 213.9618 286.0409 244.3282 286.2588 237.4384 297.1249 236.9481 393.6126 276.2214

CPU time (sec)P91-P100 209.7774 209.7711 295.8599 238.3123 291.4598 237.7293 296.8692 234.9386 424.8349 275.3398
P101-P110 211.8832 212.9496 299.2506 241.7764 282.3988 240.4313 293.3109 238.2175 399.5035 286.6827
P111-P120 221.3860 211.2175 290.1538 239.1217 300.9559 240.1449 298.9756 239.8996 353.7955 276.3682 11.43
P121-P130 217.5293 214.6254 291.1154 233.9054 295.3239 236.8402 296.7349 239.6124 404.9985 289.8484
P131-P140 213.1689 208.7775 278.8388 238.4477 289.9966 241.3061 280.2280 238.2935 408.7167 290.5945
P141-P150 219.8485 209.1395 280.5446 240.6016 292.2154 245.5636 302.4715 237.8971 391.7630 281.9428
P151-P160 212.4485 208.9148 295.8053 235.5864 294.7699 237.8997 304.4153 236.4934 402.8272 285.9406
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Table A.21 Generations list for optimal solutions by weighted sum method in Test 
System 1 without transmission network loss considered 

w Generation (MW) Fc
($/h) 

Fe
(ton/h) P1 P2 P3 P4 P5 P6

0.0 40.6076 45.9068 53.7937 38.2955 53.7942 51.0023 638.2733 0.1942 
0.1 38.6263 44.6931 53.8294 42.5397 53.8300 49.8816 633.2512 0.1943 
0.2 36.4985 43.4157 53.8697 47.0477 53.8696 48.6988 628.2998 0.1947 
0.3 34.2067 42.0693 53.9102 51.8543 53.9103 47.4492 623.4593 0.1954 
0.4 31.7286 40.6480 53.9448 57.0065 53.9450 46.1270 618.7781 0.1966 
0.5 29.0383 39.1451 53.9641 62.5661 53.9633 44.7232 614.3199 0.1982 
0.6 26.1059 37.5520 53.9477 68.6181 53.9487 43.2277 610.1700 0.2005 
0.7 22.8904 35.8573 53.8694 75.2853 53.8688 41.6289 606.4445 0.2037 
0.8 19.3437 34.0461 53.6739 82.7547 53.6749 39.9068 603.3136 0.2079 
0.9 15.4022 32.0977 53.2629 91.3374 53.2638 38.0360 601.0442 0.2138 
1.0 10.9722 29.9767 52.4290 101.6198 52.4307 35.9717 600.1114 0.2221 

Table A.22 Generations list for optimal solutions by weighted sum method in Test 
System 1 with transmission network loss considered 

w Generation (MW) Fc 
($/h) 

Fe  
(ton/h) P1 P2 P3 P4 P5 P6

0.0 41.09263 46.36656 54.4418 39.03704 54.44635 51.54862 646.2073 0.194179 
0.1 38.69643 45.05724 54.70911 43.34046 54.58919 50.34573 640.4203 0.194317 
0.2 36.21497 43.6676 55.01136 47.86408 54.72648 49.07167 634.8396 0.194762 
0.3 33.6415 42.19181 55.34925 52.63624 54.84929 47.72091 629.5092 0.195564 
0.4 30.96773 40.62115 55.72504 57.69563 54.94401 46.28548 624.479 0.196786 
0.5 28.18469 38.94863 56.13626 63.09234 54.99051 44.75688 619.8125 0.198508 
0.6 25.27943 37.16403 56.5829 68.89557 54.95793 43.12355 615.5878 0.200837 
0.7 22.24 35.25691 57.05296 75.20586 54.79793 41.37274 611.9087 0.203922 
0.8 19.04687 33.21191 57.53661 82.17407 54.42924 39.48625 608.9169 0.207983 
0.9 15.67661 31.01276 57.99504 90.0519 53.71413 37.43886 606.8254 0.213372 
1.0 12.09757 28.63112 58.35646 99.28456 52.39602 35.19044 605.9984 0.220729 
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Table A.23 Generations list for optimal solutions by non-dominated approach
in Test System 1 without transmission network loss considered

w Generation (MW) Fc
($/h)

Fe
(ton/h)P1 P2 P3 P4 P5 P6

1 11.8421 30.0493 51.8808 101.0912 52.3204 36.2162 600.1226 0.2214
2 11.8953 30.0493 50.5319 100.0109 52.4131 38.4995 600.2138 0.2204
3 12.6463 31.0088 51.6233 97.7254 53.0172 37.3791 600.2670 0.2186
4 14.8953 30.9610 51.8381 98.3011 50.2779 37.1266 600.3763 0.2183
5 14.5875 31.8397 50.7346 96.8072 51.4152 38.0157 600.4801 0.2172
6 14.9915 31.1842 52.7574 93.7055 52.7317 38.0298 600.7094 0.2154
7 14.1415 35.9613 49.7274 93.6582 52.4537 37.4579 601.0733 0.2150
8 15.8131 33.8028 51.5839 92.9759 49.9267 39.2976 601.1083 0.2141
9 16.0547 33.0921 52.3168 90.9849 51.7963 39.1552 601.2678 0.2131

10 17.0340 35.2335 50.4757 90.0367 51.2793 39.3408 601.7496 0.2120
11 14.3000 36.0645 52.2634 86.1767 56.9021 37.6933 602.2076 0.2111
12 14.6433 35.8333 53.6882 85.2597 53.1928 40.7827 602.5038 0.2101
13 18.7050 34.3199 51.7523 85.4580 52.6033 40.5616 602.7156 0.2092
14 17.7587 36.5169 54.8302 83.3395 51.9551 38.9996 603.2060 0.2084
15 20.2243 35.2335 51.5974 83.2415 52.4103 40.6930 603.5513 0.2076
16 20.2243 35.2335 51.5974 81.6537 52.4103 42.2808 604.0918 0.2068
17 19.7256 37.2313 51.1005 79.4235 55.5606 40.3585 604.7040 0.2060
18 21.9086 37.2313 50.0815 79.4235 51.5476 43.2076 605.4439 0.2052
19 20.6983 37.7735 54.1966 75.3385 52.9790 42.4142 606.3599 0.2039
20 22.2941 38.1641 51.7396 74.3099 54.2967 42.5957 607.1274 0.2031
21 28.0274 37.5811 51.1005 75.5072 52.2267 38.9571 607.9018 0.2028
22 23.9058 38.3744 51.5688 73.4550 51.3019 44.7941 608.1765 0.2023
23 24.9127 36.1931 54.9855 70.9295 52.6095 43.7697 608.8043 0.2016
24 28.6678 37.3996 51.9829 70.5082 50.8646 43.9770 610.3631 0.2006



154

25 28.9814 39.3050 51.8852 69.9052 48.1851 45.1381 611.3474 0.2002
26 29.0014 39.1456 53.6109 67.9000 51.4644 42.2776 611.6000 0.1998
27 27.7701 39.1456 54.4964 65.4420 52.1080 44.4379 612.5293 0.1991
28 29.0374 39.1593 53.0514 64.7269 51.4569 45.9681 613.5580 0.1987
29 28.4975 38.6331 54.7607 62.7331 53.2536 45.5221 614.0916 0.1984
30 31.4007 39.3050 51.8852 63.4461 50.2105 47.1525 615.3433 0.1980
31 31.7217 39.5883 52.0852 62.8983 50.7786 46.3279 615.6056 0.1979
32 28.8735 39.7665 59.9917 58.6522 50.7266 45.3894 616.6707 0.1976
33 31.8688 39.5474 55.5226 58.8821 50.1575 47.4216 617.9064 0.1970
34 31.8688 39.5474 55.4521 58.8821 50.1575 47.4921 617.9209 0.1970
35 32.4533 40.2633 55.7257 57.4207 50.2380 47.2990 619.0628 0.1966
36 30.5552 41.2106 55.4377 53.9014 55.9348 46.3603 620.2878 0.1962
37 34.4808 42.7739 50.6477 54.8207 57.6130 43.0639 621.3675 0.1962
38 33.7713 39.0553 56.2576 52.6548 54.5866 47.0744 621.9940 0.1959
39 33.4962 41.8732 52.4687 52.6072 54.4450 48.5096 622.8848 0.1956
40 32.0178 41.6007 56.6094 49.5783 54.2967 49.2972 624.2715 0.1954
41 34.7164 42.6759 54.8302 49.5783 54.2967 47.3025 625.2554 0.1951
42 36.3911 42.4771 52.7809 49.5783 54.3991 47.7735 626.1066 0.1950
43 34.0555 43.6648 56.2811 46.5901 52.9929 49.8155 627.8350 0.1949
44 35.7546 43.9395 52.4943 46.7373 54.5622 49.9121 628.6268 0.1947
45 37.0708 45.0077 52.7708 46.1256 52.7441 49.6810 629.9920 0.1946
46 38.3977 43.9040 55.8028 43.9899 52.3036 49.0021 631.6315 0.1945
47 38.3977 43.9040 54.1423 43.9899 52.3036 50.6626 632.0581 0.1944
48 39.8290 45.1268 55.5810 41.3285 51.6091 49.9256 634.9928 0.1943
49 38.7496 46.9577 52.9155 39.8313 53.9615 50.9844 636.4587 0.1942
50 39.7860 47.4533 52.9644 37.8069 53.2980 52.0914 639.1142 0.1942
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Table A.24 Generations list for optimal solutions by non-dominated approach
in Test System 1 with transmission network loss considered

Point
No.

Generation (MW) Fc
($/h)

Fe
(ton/h)P1 P2 P3 P4 P5 P6

1 9.1083 29.6470 60.5982 96.9104 55.0729 34.5989 606.2220 0.2205

2 13.8189 29.5546 55.0970 95.6803 56.6045 35.2295 606.2470 0.2177

3 12.5137 29.8406 54.8785 92.6817 57.5875 38.4936 606.5694 0.2159

4 13.0834 31.6097 58.8860 89.9624 55.7115 36.6330 606.7352 0.2143

5 14.3959 32.8958 57.7614 90.2695 55.2594 35.3337 606.8369 0.2139

6 16.9122 30.0542 54.2101 91.2047 51.9200 41.7074 607.2474 0.2131

7 20.3171 31.2035 52.0910 90.2775 56.0263 36.1184 607.6728 0.2122

8 14.2338 32.7279 59.3684 85.1383 56.0491 38.3355 607.6837 0.2112

9 16.1912 33.1460 61.0878 82.7500 56.1140 36.4980 608.2956 0.2098

10 19.5307 34.1516 55.2796 84.3017 54.9272 37.7616 608.6069 0.2088

11 17.7371 33.9917 58.5133 81.1288 54.8920 39.6007 609.0536 0.2078

12 17.6268 34.4085 58.4698 79.7787 55.6025 39.9768 609.4656 0.2072

13 21.7424 34.5080 58.9433 80.3647 54.9336 35.3697 609.8906 0.2070

14 20.4234 33.1460 58.8860 78.2565 56.0845 39.0392 610.1202 0.2062

15 23.2968 35.0261 52.4002 80.5163 53.5412 41.2928 610.8300 0.2056

16 23.1827 34.7018 52.5597 77.7651 57.9054 39.9113 611.3884 0.2049

17 26.0436 34.3088 56.0129 77.3303 54.8232 37.4747 612.0013 0.2045

18 22.5846 36.6436 57.3448 76.0679 51.0603 42.2680 612.1136 0.2039

19 26.4236 33.1055 53.9712 75.5942 56.5399 40.4052 612.8124 0.2036

20 21.3823 36.8042 57.7607 71.9901 55.6084 42.3700 613.1689 0.2028

21 26.5943 36.5410 52.5535 73.1511 56.9682 40.2900 614.1892 0.2022

22 26.9202 37.3659 58.7444 70.6910 55.1353 37.1116 614.9517 0.2018

23 25.4919 37.1453 52.2371 69.3936 55.2522 46.6123 616.2963 0.2007

24 28.7708 37.4998 52.0910 69.3936 56.0263 42.4014 616.8320 0.2004

25 27.6973 37.7502 58.3742 67.3315 50.2599 44.6523 617.5177 0.1999
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26 25.7366 40.1405 57.4497 64.8216 53.6242 44.2741 618.3255 0.1993

27 29.4935 35.4851 51.7388 65.0190 58.1780 46.2907 619.3687 0.1991

28 27.0981 38.9680 52.5535 63.1014 56.9682 47.4835 620.1456 0.1986

29 27.1571 42.7902 55.7066 62.4990 52.2074 45.8146 621.0547 0.1982

30 30.4144 38.0753 58.6543 59.8270 57.4037 41.7116 621.7039 0.1980

31 28.9300 41.8541 55.2759 59.2149 54.6411 46.2873 623.1559 0.1973

32 30.0969 43.0543 54.7174 58.6807 55.6031 44.0925 623.9189 0.1971

33 30.0969 40.8064 53.6627 57.4712 55.6031 48.6324 624.8959 0.1967

34 29.5710 42.5484 55.8068 55.5551 54.4835 48.2790 626.0874 0.1964

35 31.7153 39.3399 56.5378 54.2209 56.1327 48.3024 626.9126 0.1962

36 33.3390 40.5617 55.8777 53.9934 55.3879 47.1755 627.9207 0.1959

37 32.5566 38.8859 59.7443 49.4313 58.5116 47.0762 629.8874 0.1959

38 31.8774 43.0906 56.3902 51.3288 53.9717 49.6822 630.1997 0.1955

39 35.3563 41.0396 56.1280 51.3736 53.2244 49.3422 631.3196 0.1953

40 35.3563 41.0396 55.5813 49.9314 53.2244 51.3653 632.8446 0.1951

41 36.2780 41.7422 53.6405 48.6617 56.0263 50.2131 634.1069 0.1949

42 35.4519 43.9740 57.3225 47.6261 52.9955 49.1261 634.6462 0.1948

43 36.9406 43.5309 54.8025 46.8755 55.1012 49.3467 635.9777 0.1946

44 38.2681 43.7503 55.8777 46.4716 53.1627 49.1318 637.1085 0.1946

45 38.2681 43.9740 53.9635 45.9451 52.9955 51.5810 638.3430 0.1945

46 38.9657 44.8104 55.3566 44.2176 52.5779 50.8249 640.0408 0.1944

47 39.2450 45.0232 56.0407 42.4125 53.3799 50.6595 641.5270 0.1943

48 40.0283 46.1595 54.1623 41.8964 53.6933 50.9162 643.0202 0.1942

49 40.4720 46.2149 54.4533 40.4872 54.1224 51.1342 644.4603 0.1942

50 41.1132 46.6672 54.1574 39.1396 54.4138 51.4506 646.2466 0.1942
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Table A. 25 Generations list for optimal solutions by weighted sum method in Test System 2
w Generation (MW) Fc

($/h)
Fe

(ton/h)P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
0.0 55.0000 80.0000 81.1468 81.3598 160.0000 240.0000 294.4634 297.2275 396.8194 395.5788 2081.5957 116412.2490
0.1 55.0000 80.0000 81.1371 81.2568 160.0000 240.0000 293.5600 297.1437 397.2910 396.2257 2081.6144 116406.8390
0.2 55.0000 80.0000 81.0926 81.1359 160.0000 240.0000 292.4800 296.9525 397.9022 397.0762 2081.6393 116400.1944
0.3 55.0000 80.0000 81.0836 80.9841 160.0000 240.0000 291.1857 296.7463 398.6776 397.9901 2081.6674 116392.5652
0.4 55.0000 80.0000 81.0466 80.7743 160.0000 240.0000 289.4903 296.4834 399.5806 399.3310 2081.7062 116382.7030
0.5 55.0000 80.0000 81.6213 81.1174 160.0000 225.2107 290.5912 299.6481 404.3836 404.4480 2082.0203 115805.7789
0.6 55.0000 80.0000 82.6923 81.8929 160.0000 197.4371 293.7951 305.5651 412.7794 413.4693 2082.6313 114859.9425
0.7 55.0000 80.0000 84.3543 83.0925 147.8849 169.1079 298.3585 314.0968 424.9651 426.7163 2083.5763 113727.5885
0.8 55.0000 80.0000 86.9822 85.0431 124.1857 140.1938 300.0000 322.0647 444.0322 447.4826 2084.9842 112559.8061
0.9 55.0000 80.0000 89.9002 86.6725 98.4057 106.3700 300.0000 331.1661 469.2615 470.0000 2086.7759 111689.3742
1.0 55.0000 80.0000 106.9188 100.6089 81.4977 83.0133 300.0000 340.0000 470.0000 470.0000 2087.0386 111497.6276
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Table A. 26 Generations list for optimal solutions by non-dominated approach in Test System 2
Point
No.

Generation (MW) Fc
($/h)

Fe
(ton/h)P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

1 55.0000 80.0000 105.3833 100.3286 83.9216 82.4033 300.0000 340.0000 470.0000 470.0000 111498.8712 4563.3844

2 55.0000 80.0000 101.1560 100.4524 83.5346 86.8608 300.0000 340.0000 470.0000 470.0000 111503.9712 4544.1570

3 55.0000 80.0000 101.1559 94.0354 83.5346 93.2740 300.0000 340.0000 470.0000 470.0000 111518.7118 4518.0852

4 55.0000 80.0000 97.7997 95.1142 88.1211 90.9600 300.0000 340.0000 470.0000 470.0000 111524.9000 4507.6570

5 55.0000 80.0000 95.7760 90.3935 88.5407 97.2747 299.9976 340.0000 470.0000 470.0000 111554.5969 4482.5119

6 55.0000 80.0000 91.6339 90.3935 92.6666 97.2806 299.9976 340.0000 470.0000 470.0000 111579.5973 4467.0597

7 55.0000 80.0000 92.9804 87.7972 89.9900 105.0514 300.0000 336.0702 470.0000 470.0000 111615.4200 4451.6393

8 55.0000 80.0000 92.9456 87.7972 94.9463 102.1990 300.0000 333.9752 470.0000 470.0000 111626.0628 4444.7880

9 54.9998 79.9971 89.8831 87.3455 97.6306 104.8777 300.0000 340.0000 461.9685 470.0000 111689.8847 4422.1498

10 54.9963 79.9998 89.8831 86.4213 97.5729 113.3523 299.9913 331.3205 463.0241 470.0000 111760.4104 4397.4059

11 55.0000 80.0000 89.3667 87.6369 112.5327 106.4595 300.0000 331.7148 455.4625 468.1183 111880.6535 4367.4000

12 55.0000 80.0000 90.5544 86.5103 103.2938 122.2943 295.5173 329.2450 454.0638 469.6631 111931.4511 4351.6543

13 55.0000 80.0000 86.3011 83.9851 107.1679 126.8738 295.9281 318.2804 463.5755 469.1230 112016.3930 4332.9628

14 55.0000 80.0000 88.2269 82.9606 110.2645 126.9958 298.8706 319.4418 458.5091 465.7648 112074.3744 4316.7676

15 55.0000 80.0000 85.5307 83.8169 120.7644 122.2969 294.7246 321.4844 452.6941 469.6633 112166.1585 4301.2681

16 54.9999 80.0000 89.8884 85.8074 118.4590 126.2785 300.0000 325.7596 447.7680 456.5392 112227.9067 4282.9632

17 55.0000 79.9981 86.3727 91.1921 119.2404 129.1833 299.9999 327.4975 444.9644 451.7939 112308.2886 4269.6754

18 55.0000 80.0000 86.3727 85.5264 119.2404 134.5401 300.0000 327.4974 445.2931 451.7939 112378.1214 4254.3592

19 55.0000 80.0000 86.8658 85.0399 118.9375 138.9457 299.8809 329.1691 440.4072 450.8593 112456.2578 4241.7779

20 55.0000 79.9111 87.8026 85.1352 124.2880 137.5378 299.8415 329.1628 440.4072 445.8530 112534.9153 4228.7445

21 54.9821 80.0000 86.6279 84.4453 124.1436 143.3827 300.0000 323.1029 438.1086 450.1201 112619.4639 4215.1500

22 54.9997 80.0000 86.0944 84.4453 124.4657 148.4897 300.0000 321.1156 438.1085 447.0469 112723.0062 4199.9595

23 55.0000 80.0000 86.5308 86.9844 129.1542 146.9258 300.0000 323.9002 435.9938 440.0149 112807.3733 4188.0926

24 55.0000 80.0000 86.3036 83.8629 129.4367 155.5861 299.9435 324.5508 424.6213 445.0547 112989.2872 4166.5250

25 54.9996 80.0000 82.0695 84.3678 140.5455 148.4897 299.9954 321.1614 438.1086 434.6217 113082.6571 4154.3583
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26 55.0000 80.0000 86.3453 83.8629 139.6980 156.2529 299.9435 313.4160 424.6240 445.0547 113211.0269 4139.1445

27 55.0000 80.0000 83.7797 84.1096 139.6980 160.2115 300.0000 313.4306 422.8538 445.0559 113299.3022 4129.6698

28 55.0000 80.0000 83.9947 82.8010 150.6844 151.0153 300.0000 313.5393 432.0845 434.9828 113380.8091 4122.2379

29 55.0000 80.0000 84.7169 82.8606 140.5115 169.2911 299.9435 313.4194 413.0653 445.0547 113542.4002 4107.2632

30 55.0000 80.0000 87.0673 82.1493 155.9107 157.7896 299.9348 308.7697 425.5074 431.6055 113678.9075 4092.8555

31 55.0000 80.0000 83.3958 82.1829 159.9138 158.8920 299.8865 307.5864 425.5074 431.3461 113817.1649 4081.0124

32 55.0000 80.0000 84.3637 87.5612 153.5771 171.9198 288.9835 300.1636 431.0177 430.9399 113917.1383 4072.3223

33 55.0000 80.0000 82.6380 82.1829 160.0000 166.1338 299.9282 304.2406 422.0866 431.3461 113988.3540 4064.7308

34 55.0000 80.0000 84.3636 81.4598 159.7432 171.9179 288.9835 300.1636 431.0177 430.9198 114080.6635 4058.2750

35 54.9949 80.0000 84.3636 81.2121 159.7432 176.7584 285.2440 299.2455 431.0173 430.9198 114194.9102 4049.7594

36 55.0000 80.0000 84.3670 80.0068 159.7432 179.0957 300.0000 282.9113 431.0177 431.3722 114299.4185 4046.9598

37 55.0000 79.9899 86.6475 81.8728 159.9983 179.1099 299.9774 305.4112 423.5708 411.3795 114350.5049 4034.6881

38 55.0000 80.0000 82.9148 81.7789 160.0000 186.9935 286.9271 298.7634 425.4001 425.3908 114497.3544 4024.8994

39 54.9964 80.0000 80.6874 80.8472 159.8831 191.9530 288.9927 300.1635 431.0177 414.4850 114654.0939 4015.0634

40 54.7283 80.0000 83.3913 82.1471 159.9999 196.4253 299.9347 305.5099 389.1862 431.3460 114864.6593 4007.2616

41 55.0000 80.0000 82.7978 83.3735 159.8831 202.2261 289.1049 300.1636 397.7484 432.3935 114987.9375 3997.2219

42 55.0000 80.0000 85.8626 80.7926 160.0000 205.1808 299.9998 289.9941 425.5074 400.1079 115133.3062 3989.4398

43 55.0000 80.0000 79.1565 82.1471 159.8452 206.7761 299.9348 308.7697 402.0857 408.6135 115198.1311 3982.0203

44 55.0000 79.9811 83.8680 81.1664 160.0000 212.4721 288.9776 297.5721 428.8174 394.4525 115350.0015 3978.5845

45 54.9999 80.0000 84.3636 81.4470 159.5470 219.4777 288.9828 276.7611 431.0177 405.8595 115558.8710 3974.3960

46 54.9999 79.9985 82.7891 81.0707 159.8831 220.9833 288.9927 300.1636 426.6866 386.4828 115663.8117 3965.7522

47 55.0000 80.0000 79.8293 76.5852 159.7834 226.4122 300.0000 300.6874 404.9434 398.7972 115878.7444 3952.5330

48 55.0000 80.0000 75.6288 81.4598 160.0000 232.3253 289.0666 300.1641 402.5936 405.7724 116070.8317 3944.8237

49 55.0000 80.0000 83.7654 81.4911 160.0000 235.7229 289.0010 297.6757 409.4393 389.5684 116224.9607 3939.6831

50 55.0000 80.0000 79.8771 80.7748 160.0000 240.0000 289.9925 300.1690 402.9551 392.8856 116395.0552 3932.8879
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Table A. 27 Generations list for optimal solutions by weighted sum method in Test System 3
Generation

(MW)
weighting factor (w)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P1 71.0869 73.7523 77.2353 80.9762 85.4235 90.3636 96.2082 100.7348 105.2513 105.6764 104.1361
P2 50.0000 50.0000 50.0000 50.0034 52.2357 56.0302 61.2375 66.2282 73.0899 79.9992 92.0856
P3 78.0789 75.3321 72.2795 68.4726 64.0655 58.3948 51.7180 50.0000 50.0000 50.0000 50.0000
P4 88.7805 87.2869 85.4006 83.3296 80.6711 76.9629 72.4543 62.8433 50.0000 50.0000 50.0000
P5 67.6217 67.6768 67.7018 67.6517 67.4286 66.6986 65.7665 61.1102 53.5271 50.0000 50.0000
P6 50.0000 50.0000 50.0000 50.0000 50.0002 50.0000 50.0000 50.0000 50.0000 50.0001 50.0000
P7 73.3571 71.1666 68.5885 65.5610 61.7110 56.8874 51.1225 50.0000 50.0000 50.0000 50.0000
P8 72.3424 70.3759 67.9883 65.5676 62.2324 57.8103 52.2584 50.0000 50.0000 50.0000 50.0000
P9 73.6873 74.9973 76.5036 78.3766 80.1768 82.3973 84.9164 84.8918 83.6362 76.5325 62.9985
P10 90.1281 91.5097 93.3257 95.3218 96.8928 98.4038 100.0596 97.8736 92.8696 80.9591 62.9325
P11 50.0000 50.0000 50.0011 50.0000 50.7750 53.3537 56.6517 59.0981 61.6544 62.5527 62.6548
P12 72.6566 77.3716 82.7842 89.1202 96.5257 105.3751 116.4102 127.2848 140.5235 155.5280 177.7163
P13 72.2628 70.4298 68.0074 65.3607 61.5717 57.0394 51.0225 50.0000 50.0000 50.0000 50.0000
P14 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0001

Fc ($/h) 4549.30 4529.77 4507.35 4482.83 4451.96 4414.64 4372.20 4345.14 4321.83 4309.73 4303.51
Fe (ton/h) 25.24 26.16 29.62 36.74 51.27 77.77 122.83 165.12 226.06 285.16 402.72



161

Table A. 28 Generations list for optimal solutions by non-dominated approach in Test System 3
Point
No.

Generation (MW) Fc
($/h)

Fe
(ton/h)P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

1 73.5414 50.0000 74.7688 88.9730 69.4963 50.0000 72.4295 74.4695 76.1607 92.3970 50.0000 71.3104 66.4623 50.0000 4541.53 26.51

2 108.7074 88.8316 50.0000 50.6733 50.2061 50.0000 50.0000 50.0007 74.2964 95.6712 58.7564 133.6938 50.0316 50.0000 4321.52 248.73

3 75.8700 50.0000 67.9691 87.2383 69.1940 50.0000 68.0030 67.4313 76.5939 94.5953 50.0000 86.8551 65.9057 50.0000 4496.70 32.74

4 92.2251 77.9771 50.0000 52.8523 60.8191 50.0000 50.0000 50.0000 101.0716 75.7305 62.6589 136.6914 50.0000 50.0000 4330.71 225.65

5 93.8800 66.2565 56.6621 71.4044 59.5934 50.0000 50.0000 54.1662 84.1091 77.9254 54.4040 142.0076 50.0000 50.0000 4351.79 178.00

6 108.3975 78.4201 50.0000 58.2605 50.0000 50.0000 50.0000 50.5313 90.1578 102.1269 50.0000 122.6406 50.0000 50.0000 4340.74 192.94

7 94.4564 66.2565 59.0228 71.4049 59.5801 50.0000 56.9709 52.8750 84.1674 93.0335 53.8378 118.3482 50.0000 50.0000 4377.10 122.12

8 94.4763 66.2568 52.8060 71.4049 59.5751 50.0000 50.0000 55.0304 84.1674 99.7474 56.6156 119.7946 50.0000 50.0000 4365.57 134.05

9 120.9615 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 99.9313 94.2819 64.8050 130.8403 50.0000 50.0000 4339.74 214.83

10 93.8800 58.2196 64.9233 71.2120 59.5934 50.0000 56.9709 54.1604 84.1674 99.2756 54.4040 107.0259 56.0681 50.0000 4405.83 88.90

11 100.3220 51.8977 54.7023 70.1668 56.7534 50.0000 55.3667 63.3793 87.4923 94.6655 56.5417 114.1553 54.3790 50.1811 4394.54 105.45

12 82.2554 51.1867 66.5701 83.8651 68.2795 50.0000 61.6994 63.7379 77.5820 94.8262 50.0000 97.0650 62.6492 50.0000 4461.81 46.45

13 86.7838 63.9121 50.0000 58.5055 52.6689 50.0000 52.5119 50.0000 92.9543 121.9022 57.4056 122.9151 50.0000 50.0000 4359.56 162.84

14 90.8053 58.5475 50.0000 77.6603 61.6292 50.0000 50.0000 50.7666 86.6425 98.4693 50.9899 134.4869 50.0000 50.0012 4360.12 150.40

15 93.8800 72.0309 56.6621 71.4047 59.5934 50.0000 56.9709 54.1662 84.1674 93.4809 54.5576 107.0259 56.0681 50.0008 4389.85 111.57

16 84.5550 51.7562 68.0947 81.6671 71.3123 50.0000 64.4712 63.3272 78.1649 95.9770 50.1660 85.7879 64.5731 50.0000 4479.65 39.10

17 84.6387 50.0000 58.8190 82.6321 63.5749 50.0000 62.1935 64.9085 81.2878 98.1714 54.4040 96.4071 62.6219 50.0000 4451.95 53.07

18 81.1589 51.5167 65.3947 83.2366 70.8055 50.0000 64.4996 64.9020 78.1564 96.3262 50.0000 89.6485 64.0217 50.0000 4475.84 39.95

19 88.3057 52.4351 59.4612 80.1233 64.5202 50.0000 60.5317 59.1425 80.7738 101.2160 50.0409 106.6240 56.5099 50.0000 4424.98 70.72

20 87.9139 59.7167 62.7370 73.2544 60.8191 50.0000 55.0599 54.0651 83.8603 109.0213 55.1778 100.7694 57.2622 50.0000 4414.05 83.24


