

A PATTERN-BASED RELEASE PLANNING METHODOLOGY FOR
MARKET-DRIVEN SOFTWARE

AMIR SEYED DANESH

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2016

Univ
ers

ity
 of

 M
ala

ya

ii

UNIVERSITY MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: AMIR SEYED DANESH

Registration/Matric No: WHA070031

Name of Degree: DOCTOR OF PHILOSOPHY

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

A PATTERN-BASED RELEASE PLANNING METHODOLOGY
FOR MARKET-DRIVEN SOFTWARE

Field of Study: SOFTWARE RELEASE PLANNING

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing

and for permitted purposes and any excerpt or extract from, or reference to or
reproduction of any copyright work has been disclosed expressly and
sufficiently and the title of the Work and its authorship have been
acknowledged in this Work;

(4) I do not have any actual knowledge nor ought I reasonably to know that the
making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the
University of Malaya (“UM”), who henceforth shall be owner of the copyright
in this Work and that any reproduction or use in any form or by any means
whatsoever is prohibited without the written consent of UM having been first
had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any
copyright whether intentionally or otherwise, I may be subject to legal action
or any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:

Designation:

Univ
ers

ity
 of

 M
ala

ya

iii

ABSTRACT

In software development, release planning is performed in order to select important

features and requirements based on resource and technical constraints and the

relationships between requirements. Several methods have been developed for release

planning, but the most challenging part of release planning methods is dealing with

unique complexities and varying characteristics of problem scope and domain. This has

made the existing methods and approaches only applicable to a limited range of

software projects. As a result, a more flexible and adaptive approach is required for

release planning that can be customized in accordance to different domains and can be

employed in a variety of software development projects. Achieving a highly customized

release planning methodology requires an effective planning process that covers all

release planning tasks and can be customized according to project specifications for

each parameter. This study aims to, firstly, assemble a general and comprehensive

process for release planning which covers all the important tasks and, secondly, identify

parameters which can be used to customize the process for various projects, and thirdly

introduce and apply release planning patterns based on process model steps and the

identified parameters to facilitate customization. Thus, available release planning

approaches have been studied and four common tasks i.e. requirements prioritization,

resource estimation, release pre-planning, and trade-off analysis were identified and

assembled in the form of a process model. Subsequently, various relevant parameters

for each step which are related to project specifications were identified. In order to

customize each step of the process model for various projects, each parameter was

determined precisely and its current instances were identified. Some of the parameters

are shared between process model steps. The notion of "pattern" was employed in order

to facilitate the customization of the steps of the process model and several patterns

were identified. Every release planning pattern has constraints based upon parameter

Univ
ers

ity
 of

 M
ala

ya

iv

instances of the step of process model, and suggests a solution as the selected method to

apply to the step. Using this notion, the release planner only has to select a release

planning pattern based on selected parameters that suit his circumstance. To validate the

proposed methodology, two methods are used. At first, five software companies with 31

projects were used to implement method to their projects. The companies were asked to

apply the pattern-based methodology to at least two releases and, for each step of the

methodology, apply PRP tool suggested method. Secondly, numbers of 13 experts in the

software development domain are answered questions in a survey on the results of the

methodology and their satisfaction. Results showed that in most cases -more than 87%

of the cases, the methodology suggested by the pattern release planner produce better

releases and make the release planning process easier and faster than those used

previously.

Univ
ers

ity
 of

 M
ala

ya

v

ABSTRAK

Dalam pembangunan perisian, perancangan keluaran dilakukan untuk memilih ciri dan

keperluan yang penting berdasarkan kekangan sumber dan teknikal serta perkaitan

antara keperluan-keperluan. Beberapa metod telah dibangunkan untuk perancangan

keluaran tetapi tugas paling mencabar bagi metodologi perancangan keluaran ialah

menangani kerumitan yang unik dan pelbagai ciri skop dan domain masalah. Ini

menjadikan metodologi sedia ada hanya boleh digunakan kepada projek perisian yang

terbatas. Akibatnya, metod yang lebih adaptif dan anjal diperlukan untuk perancangan

keluaran yang boleh di selaraskan kepada domain yang berbeza-beza dan digunakan

dalam pelbagai projek pembangunan perisian. Dalam keberhasilan metodologi

perancangan keluaran yang beradaptasi tinggi memerlukan proses perancangan yang

berkesan yang mengandungi semua tugas perancangan keluaran dan boleh

diadaptasikan berdasarkan spesifikasi projek untuk setiap satu parameter. Kajian ini

bermatlamat untuk pertamanya; menghimpunkan satu proses yang umum dan

komprehensif yang mencakupi semua tugas tugas penting bagi perancangan keluaran,

keduanya; mengenalpasti parameter parameter yang boleh digunakan untuk

mengadaptasikan proses perancangan keluaran bagi pelbagai projek and ketiganya;

memperkenalkan dan menggunapakai pattern berdasarkan peringkat peringkat proses

umum dan parameter-parameter yang dikenalpasti untuk membantu adaptasi. Oleh itu,

metodologi perancangan keluaran sedia ada telah dikaji dan empat tugas am iaitu

pengutamaan keperluan, penganggaran sumber, pra-perancangan keluaran dan analisis

timpal-balik telah dikenalpasti dan dihimpunkan dalam bentuk proses umum.

Kemudian, berjenis-jenis parameter penting bagi setiap peringkat yang berkaitan dengan

spesifikasi projek telah dikenalpasti. Untuk mengadaptasi setiap peringkat bagi proses

umum untuk pelbagai projek, setiap parameter ditentukan dengan tepat dan contoh

terkini dikenalpasti. Pengertian "pattern" digunakan untuk memudahkan adaptasi setiap

Univ
ers

ity
 of

 M
ala

ya

vi

peringkat bagi proses umum itu dan beberapa pattern telah ditakrifkan. Takrifan pattern

dikemukakan menggunakan contoh parameter yang ditentukan dalam peringkat adaptasi

dan metod perancangan keluaran untuk perlaksanaan setiap peringkat dicadangkan.

Dalam kata lain, setiap pattern perancangan keluaran mengandungi kekangan kekangan

berdasarkan contoh parameter bagi setiap peringkat dan mencadangkan penyelesaian

iaitu metod untuk perlaksanaan peringkat tersebut. Menggunakan idea ini, perancang

keluaran cuma perlu memilih pattern perancangan keluaran berdasarkan parameter yang

sesuai dengan keadaannya. Untuk mengesahsahihkan kaedah yang dicadangkan, dua

metod digunakan. Pertamanya, lima syarikat perisian dengan 31 projek digunakan untuk

melaksanakan kaedah tersebut untuk projek-projek mereka. Syarikat-syarikat tersebut

diminta untuk menggunakan kaedah 'pattern-based' untuk sekurang-kurangnya dua

lepasan dan untuk setiap langkah kaedah , menggunakan metod yang dicadangkan oleh

alatan PRP. Keduanya, 13 pakar dalam domain pembangunan perisian diminta untuk

menjawab set soalan tinjauan tentang kepuasan mereka menggunakan kaedah

tersebut. Keputusan menunjukkan yang dalam kebanyakn kes, lebih 87% kes, metod

yang dicadangkan oleh PRP menghasilkan lepasan yang lebih baik dan menjadikan

proses perancangan lepasan lebih mudah dan cepat daripada proses yang tidak

menggunakan cadangan daripada PRP.

Univ
ers

ity
 of

 M
ala

ya

vii

ACKNOWLEDGEMENT

First, I would like to thank Dr. Rodina Ahmad, with whom I have enjoyed

working and who is a great advisor. Thank you for your encouragement, support, and

directions you have provided during the past four years. I have been very grateful to

have you as a counsellor and advisor.

 I am deeply grateful to my wife, Mahgol, for her on-going moral support, and

acceptance of my long hours away from our family. Thank you so much for your

constant encouragement and never-ceasing patience.

I wish to thank my parents for the encouragement and for providing me with so

many opportunities to progress in academics. Thank you for the invaluable support you

have given me in the course of my life and studies.

My special thanks go to my friends in the Faculty of Computer Science and

Information Technology (FSKTM) at University of Malaya for the helpful discussions

we had about my project.

Kuala Lumpur, 8thSeptember

Amir Seyed Danesh Univ
ers

ity
 of

 M
ala

ya

viii

TABLE OF CONTENTS

Abstract .. iii

Abstrak .. v

Acknowledgement ... vii

Table of Contents ... viii

List of Figures .. xiii

List of Tables .. xvi

CHAPTER 1: INTRODUCTION .. 1

1.1. Background and motivation .. 1

1.2. Problem statements ... 3

1.3. Research objective .. 7

1.4. Research Methodology ... 9

1.4.1. A review on literature .. 10

1.4.2. Developing the new release planning methodology 11

1.4.3. Developing the tool ... 12

1.4.4. Validating the methodology by case studies ... 13

1.4.5. Presenting results ... 14

1.5. Research contribution ... 15

1.6. Results .. 16

1.7. Thesis structure ... 17

CHAPTER 2: LITERATURE REVIEW... 19

2.1. Introduction .. 19

2.2. Release planning methods ... 20

2.2.1. Ad-Hoc Approach ... 20

2.2.2. Planning Game Approach .. 21

2.2.3. Incremental Funding Method (IFM)... 22

2.2.4. Optimization-Based Techniques .. 23

2.2.5. Hybrid Intelligence Approach .. 23

2.2.6. Lightweight Re-planning ... 24

2.3. Release planning researches .. 25

Univ
ers

ity
 of

 M
ala

ya

ix

2.4. Requirements prioritization methods ... 30

2.4.1. Nominal Scale ... 33

2.4.2. Ordinal Scale ... 34

2.4.3. Ratio Scale .. 36

2.4.4. Compound techniques.. 38

2.5. Resource estimation methods .. 39

2.5.1. Non-algorithmic methods .. 42

2.5.2. Algorithmic methods ... 43

2.6. Software development patterns ... 46

2.7. Summary .. 50

CHAPTER 3: SOFTWARE RELEASE PLANNING IN INDUSTRY 53

3.1. Overview .. 54

3.2. Software release planning challenges in software development 55

3.2.1. Related Work... 57

3.2.2. Research Design .. 59

3.2.3. Software Projects ... 62

3.2.4. Challenges identification ... 66

3.2.5. Challenges identified in industry .. 70

3.2.6. Discussion and validity of results ... 82

3.2.7. Conclusion .. 85

3.3. Companies’ Approaches in Software Release Planning 86

3.3.1. Companies and software releases ... 86

3.3.2. Objective ... 88

3.3.3. Research design ... 88

3.3.4. Results ... 90

3.3.5. Findings and discussions.. 94

3.3.6. Discussion on the findings ... 100

CHAPTER 4: SOFTWARE RELEASE MANAGEMENT IN INDUSTRY 101

4.1. Overview .. 101

4.2. Software release management ... 101

4.3. Objective .. 104

4.4. Research Method .. 104

Univ
ers

ity
 of

 M
ala

ya

x

4.4.1. Research question .. 105

4.5. Challenges in industry .. 106

4.5.1. Categorization of releases .. 106

4.5.2. The need for some support tool in release management 107

4.5.3. Appropriate tools ... 108

4.5.4. Foreseeing a new release before real execution 109

4.5.5. Release manager’s role .. 109

4.5.6. Proper understating of Request for Changes (RFC) 110

4.5.7. Release policy ... 111

4.6. Threats to validity ... 111

4.7. Summary and conclusion .. 114

CHAPTER 5: DESCRIPTION OF THE PATTERN-BASED RELEASE

PLANNING METHODOLOGY .. 115

5.1. Introduction .. 115

5.2. The process model of release planning .. 115

5.2.1. Requirements prioritization .. 121

5.2.2. Resource estimation ... 123

5.2.3. Pre-release planning... 124

5.2.4. Analysis of pre-release plan and selecting the final release................... 127

5.2.5. The process model of release planning ... 127

5.3. Release planning process model customization ... 130

5.3.1. Customization of requirements prioritization 130

5.3.2. Customizing resource estimation ... 150

5.3.3. Customization of pre-release plan .. 160

5.4. Pattern-based release planning methodology ... 175

5.4.1. Definition of release planning patterns ... 178

5.4.2. The structure of release planning patterns .. 179

5.4.3. Development method of release planning patterns 181

5.4.4. Algorithms of using release planning patterns 181

5.5. Release planning patterns.. 188

5.5.1. Requirements prioritization patterns .. 188

5.5.2. Resource estimation patterns.. 197

5.5.3. Patterns of pre-release planning ... 204

Univ
ers

ity
 of

 M
ala

ya

xi

5.5.4. Release planning patterns .. 210

5.6. Release planning anti-patterns... 218

5.6.1. Anti-patterns of requirements prioritization ... 220

5.6.2. Anti-patterns of resource estimation ... 222

5.6.3. Anti-patterns of pre-release planning ... 225

5.7. Summary .. 227

CHAPTER 6: EVALUATION OF THE METHODOLOGY 228

6.1. Introduction .. 228

6.2. Evaluation Objectives ... 228

6.3. Evaluation method .. 229

6.3.1. Case studies evaluation method ... 230

6.3.2. Experts review evaluation method ... 232

6.4. Evaluation Success Factors ... 233

6.5. Case studies Selection ... 234

6.5.1. Company A description ... 235

6.5.2. Company B description ... 237

6.5.3. Company C description ... 239

6.5.4. Company D description ... 241

6.5.5. Company E description .. 244

6.6. Effective parameters in case studies .. 245

6.7. Case studies patterns usage ... 252

6.8. Experts Demography .. 254

6.9. Summary .. 255

CHAPTER 7: EVALUATION RESULTS .. 256

7.1. Introduction .. 256

7.2. Requirements prioritization pattern evaluation .. 256

7.3. Resource estimation pattern evaluation ... 261

7.4. Pre-release planning pattern evaluation ... 266

7.5. Release planning pattern evaluation .. 272

7.6. Overall evaluation results.. 277

7.7. Summary of evolution results ... 279

Univ
ers

ity
 of

 M
ala

ya

xii

CHAPTER 8: RESULTS AND FUTURE WORK .. 280

8.1. Achievement objectives .. 280

8.2. Research findings and contribution ... 280

8.3. Research executive constraints .. 284

8.4. Future works ... 284

References ... 285

Appendix A: Questionaries .. 296

Appendix B: Pattern-based release planning methodology questionaries 298

Appendix C: Pattern Release Planning (PRP) tool.. 299

Univ
ers

ity
 of

 M
ala

ya

xiii

LIST OF FIGURES

Figure 1-1: Main steps of the research ... 10

Figure 2-1: Planning software releases .. 19

Figure 2-2: Generic process model for the Light-Weight Re-planning 25

Figure 2-3: Computation of Function Point ... 41

Figure 3-1: The Research Procedure ... 60

Figure 3-2: Challenges during the discussion, interview and meeting 69

Figure 3-3: Categorization of the challenges ... 83

Figure 3-4: Categorization by view of planning... 95

Figure 3-5: Tendency of companies to re-planning and new planning 97

Figure 3-6: Grouping human resources ... 98

Figure 3-7: Tendency of companies to human or systematic approaches 99

Figure 4-1: Overview of release planning process ... 102

Figure 4-2: Respondents ... 108

Figure 4-3: Level of importance .. 113

Figure 5-1: Taxonomy of requirements selection factors ... 128

Figure 5-2: Inputs, outputs and activities in the release planning process model 130

Figure 5-3: Relations between requirements prioritization parameters instances in tool .. 149

Figure 5-4: Relations between resource estimation parameters instances in tool 159

Figure 5-5: Relations between pre-release planning parameters instances in tool 174

Figure 5-6: Relationships between release planning process model and the method .. 176

Figure 5-7: Using pattern in release planning .. 177

Figure 5-8: Requirements prioritization pattern for large projects 189

Figure 5-9: Requirement prioritization pattern with medium level of requirements ... 192

Figure 5-10: Requirements prioritization pattern with huge number of customers 194

Figure 5-11: Requirements prioritization pattern for small projects 196

Figure 5-12: Resource estimation pattern in large projects .. 199

Figure 5-13: Resource estimation pattern for projects with unlimited customers........ 201

Figure 5-14: Resource estimation pattern in small projects .. 203

Figure 5-15: Release planning pattern in large projects ... 205

Figure 5-16: Pre-release planning pattern with large number of customers 207

Figure 5-17: Pre-release planning pattern with single-variable methods 209

Figure 5-18: Release planning pattern in large projects ... 212

Figure 5-19: Release planning pattern with large number of customers 215

Figure 5-20: Release planning pattern in small projects ... 217

Figure 6-1: Method of peforming case studies ... 232

Figure 6-2: Development environment in studied projects ... 246

Univ
ers

ity
 of

 M
ala

ya

xiv

Figure 6-3: Development methodology in studied projects .. 246

Figure 6-4: Input and output volume in studied projects .. 247

Figure 6-5: Market type in studied projects ... 247

Figure 6-6: Requirements prioritization input number in studied projects 248

Figure 6-7: Team size in studied projects .. 248

Figure 6-8: Number of release planning parameters in studied projects 249

Figure 6-9: Requirements level in studied projects .. 250

Figure 6-10: Requirements number in studied projects .. 250

Figure 6-11: Team experience in studied projects.. 251

Figure 6-12: Team size in studied projects .. 252

Figure 6-13: Usage of different patterns in the studied projects 253

Figure 7-1: Results of using requirements prioritization patterns in the projects 256

Figure 7-2: Experts' reviews for the requirements prioritization patterns 257

Figure 7-3: Results of using PR1 in the projects .. 258

Figure 7-4: Experts' reviews for PR1 pattern ... 258

Figure 7-5: Results of using PR2 in the projects .. 259

Figure 7-6: Experts' reviews for PR2 pattern ... 259

Figure 7-7: Results of using PR3 in the projects .. 260

Figure 7-8: Experts' reviews for PR3 pattern ... 261

Figure 7-9: Results of using resource estimation patterns in the projects 262

Figure 7-10: Experts' reviews for the resource estimation patterns 262

Figure 7-11: Results of employing PE1 in the projects .. 263

Figure 7-12: Experts' reviews for PE1 pattern ... 263

Figure 7-13: Results of employing PE2 in the projects .. 264

Figure 7-14: Experts' reviews for PE2 pattern ... 265

Figure 7-15: Results of employing PE3 in the projects .. 265

Figure 7-16: Experts' reviews for PE3 pattern ... 266

Figure 7-17: Results of using pre-release planning patterns in the projects 267

Figure 7-18: Experts' reviews for the pre-release planning patterns 267

Figure 7-19: Results of employing PP1 in the projects .. 268

Figure 7-20: Experts' reviews for PP1 pattern ... 269

Figure 7-21: Results of employing PP2 in the projects .. 269

Figure 7-22: Experts' reviews for PP2 pattern ... 270

Figure 7-23: Results of employing PP3 in the projects .. 271

Figure 7-24: Experts' reviews for PP3 pattern ... 271

Figure 7-25: Results of using release planning patterns in the projects 272

Figure 7-26: Experts' reviews for the release planning patterns 273

Univ
ers

ity
 of

 M
ala

ya

xv

Figure 7-27: Results of using P1 in the projects... 273

Figure 7-28: Experts' reviews for P1 pattern .. 274

Figure 7-29: Results of using P2 in the projects... 274

Figure 7-30: Experts' reviews for P2 pattern .. 275

Figure 7-31: Results of employing P3 in the projects .. 276

Figure 7-32: Experts' reviews for P3 pattern .. 276

Figure 7-33: Results of employing patterns in the projects .. 277

Figure 7-34: Experts' reviews for the patterns ... 278

Figure 7-35: Experts' reviews for the methodology ... 278

Univ
ers

ity
 of

 M
ala

ya

xvi

LIST OF TABLES

Table 1-1: Main inputs, activities and outputs in reviewing literature 11

Table 1-2: Main inputs, activities and outputs in developing methodology 12

Table 1-3: Main inputs, activities and outputs in tool development 13

Table 1-4: Main inputs, activities and outputs in validating the method 14

Table 2-1: Essential scales used for AHP .. 37

Table 2-2: Categorization of algorithmic methods ... 44

Table 3-1: Summary of the conducted interviews .. 61

Table 3-2: Projects and their application areas .. 66

Table 3-3: Participants in the survey ... 89

Table 3-4: Companies characterized.. 90

Table 3-5: Individual’s responses in companies .. 96

Table 3-6: Individual’s responses in companies .. 99

Table 4-1: The responders’ numbers ... 105

Table 4-2: A Questioner sample .. 112

Table 5-1: Steps of implementing release planning methodologies 117

Table 5-2: Classification of prioritization methods .. 133

Table 5-3: Comparison parameters of requirements prioritization methods 134

Table 5-4: Parameters of requirements prioritization ... 135

Table 5-5: Effect of instances on the requirements prioritization method 137

Table 5-6: Relations between "market type" instances and other parameters 140

Table 5-7: Relations between "development methodology" and other parameters...... 142

Table 5-8: Relations between "team size" and other parameters 144

Table 5-9: Relations between "requirements number" and other parameters 145

Table 5-10: Relations between "requirements level" and other parameters 146

Table 5-11: Relations between "number of prioritization inputs" and other parameters ... 147

Table 5-12: Relations between "team experience" and other parameters 148

Table 5-13: Classification of different resource estimation methods 152

Table 5-14: Characteristics of resource estimation method .. 153

Table 5-15: Effective parameters on resource estimation ... 154

Table 5-16: Effect of parameters and instances on resource estimation method 155

Table 5-17: Relations between "development methodology" and other parameters 156

Table 5-18: Relations between "requirements number" and other parameters 158

Table 5-19: Relations between "team experience" and other parameters 158

Table 5-20: Characteristics of release planning methods ... 164

Table 5-21: Effective parameters on pre-release planning ... 165

Table 5-22: Effect of parameters and instances on pre-release planning method 166

Univ
ers

ity
 of

 M
ala

ya

xvii

Table 5-23: Relations between "market type" and other parameters........................... 168

Table 5-24: Relations between "development methodology" and other parameters 170

Table 5-25: Relations between "project size" and other parameters 171

Table 5-26: Relations between "requirements number" and other parameters 172

Table 5-27: Relations between "number of plan generation parameters" and other
parameters ... 173

Table 6-1: Characteristics of projects in company A ... 236

Table 6-2: Characteristics of projects in Company B ... 238

Table 6-3: Characteristics of projects in Company C ... 241

Table 6-4: Characteristics of projects in Company D... 243

Table 6-5: Characteristics of projects in Company E ... 245

Table 6-6: Pattern codes .. 252

Table 6-7: Expert demographic data .. 254

Univ
ers

ity
 of

 M
ala

ya

1

CHAPTER 1: INTRODUCTION

1.1. Background and motivation

In two recent decades, software development processes and methodologies have been

significantly enhanced and from among the new activities introduced to the software

development teams, release planning is the most important. The history of release

planning originates in the old concept of version in classic software development

methodologies(Sommerville, 2010). In the waterfall model, that is the best known

classic methodology in software development, requirements, design, implementation,

and verification were performed sequentially, and the whole software was its final

output. The output was then known as a version of the software and every

accomplishment of this classic cycle resulted in a newer version(Sommerville, 2010).

By introducing the 'iteration' concept and iterative development, the classic waterfall

methodology was replaced by newer methodologies and there was no necessity to

develop a whole final output every time the cycle was over. Thereafter the concept of

'release' was introduced into software development.

A release in software development domain is known as a product output that meets

certain features and requirements determined by customers’ demands. In most cases,

releases are developed iteratively and incrementally and finally lead to a software

version or an external release for customers. In each release, new features and

requirements are inserted. In current software development methodologies, numerous

releases are developed and the specifications of each release should be elaborated;

hence, release planning is considered as a key task in software development. Briefly, it

is selecting a series of features and requirements in sequential time period, considering

resources and technical constraints(A. G. Jadallah, 2010). The gradual increase in the

size and complexity of software systems adds to the importance of release planning, and

Univ
ers

ity
 of

 M
ala

ya

2

it is considered as a main task at the beginning of every software project. Release

planning is a trade-off analysis task due to the need for continuous changes to later

releases of software which meet customers’ needs and are effective regarding the

development time and costs. Hence, determining which features need to be considered

in which release has been called a wicked problem by many experts(A. G. Jadallah,

2010). A worthy release plan can easily wipe out weeks or even months of activities of

a team, impose heavy expenditures on developers and make teams exhausted.

Release planning starts by emerging new features or requirements, and then a project

manager or domain expert estimates the time and cost required for each one to prioritize

them and finally selects requirements with higher priorities in accordance with technical

and human resource constraints to generate a release. Some release planning methods

consider the score of requirements from users’ viewpoint and also the relationship

between different requirements since they may be interdependent. Sorted requirements

based on one or more parameters are selected until budget, time or human resource

constrains inhibit adding a new requirement. This set of requirements forms a release

with specific time and costs.

Generally, there are two main methods for release planning based on Ruhe’s views

which are presented in (Ruhe & Saliu, 2005a). The first is the manual method -art of

release planning- which, in fact, relies on human judgment and is used when small

numbers of features are available. Individuals make decisions on release features

through negotiations and meetings. However, considering the increasing number of

features and users, it is difficult to rely on manual methods to generate proper solutions

(Dybå & Dingsøyr, 2008). The second method is the hybrid release planning which

relies on both human and computational intelligence to systematically generate release

planning solutions. In recent years, various formal models, such as Planning Game

(Ruhe & Saliu, 2005b), Incremental Funding Method (IFM) (Denne & Cleland-Huang,

Univ
ers

ity
 of

 M
ala

ya

3

2004), optimization-based techniques (Bagnall, Rayward-Smith, & Whittley, 2001),

Hybrid Intelligence approach (Przepiora, Karimpour, & Ruhe, 2012; G. Ruhe & A.

Ngo, 2004; Saliu & Ruhe, 2005a), and Lightweight Re-planning (AlBourae, Ruhe, &

Moussavi, 2006), have been developed in which systematic methods are able to present

several alternative solutions. Reading through several of these models mentioned in

Stahlberg's survey (Svahnberg et al., 2010), one notices that the process is getting more

and more systematic. But Mohebzada (Mohebzada, 2012) proposes a recommendation

system for release planning in which human play the main role besides the presented

systematic method and the recommendation system assists the product manager or

release planner.

Most release planning methods present various releases in order to select the best one.

Generally, choosing the final release plan is a selection among multiple plans in which

management viewpoints are more effective than technical parameters. On the other

hand, it should be emphasized that release planning cannot be a totally automatic task

and primary values and parameters based on which the task is performed are entered by

users and experts.

1.2. Problem statements

As part of any incremental and iterative software development, the question which new

features should be offered in upcoming releases is of key importance for product

success (Felderer, Beer, Ho, & Ruhe, 2014). The most important consideration in

release planning is to find the best set of features and requirements to generate releases

and release plans. The definition of the best set is different in every project and depends

upon the project’s characteristics. This definition leads into a description of the best

release plan for every certain project. The best release plan for a project is one which,

for example, covers most requirements in every release, distributes costs equally in all

releases, has the optimal distribution of the human resources in all releases, or is a

Univ
ers

ity
 of

 M
ala

ya

4

combination of these or other cases. Product release decisions (what to release?, when

to release?, how good is the release?) are inherently complex because of their

comprehensive information needs, the diversity of criteria, the variety of stakeholders

involvement, and the presence of all types of resource and dependency constraints that

have to be taken into(Ho, Shahnewaz, & Ruhe, 2014). Therefore, generating different

release plans is not the main goal of release planning; it is rather to generate the best

plans based on the project’s characteristics or features considered by the project

manager.

Despite the presence of incremental and iterative methods, the release planning process

is complicated due to the possible influence of various factors such as: types of

requirements, implementation strategies, value for the developing company, urgency for

the client, risk management and personal decisions (Ruhe, 2005). In addition, deciding

on features to be included in a specific release is a complicated task and is referred to as

a wicked problem which is difficult to clearly define and often has no clear-cut solution

(Carlshamre, 2002; Rittel & Webber, 1984). Bagnall et al. (Bagnall et al., 2001) discuss

release planning factors and show that the problem of selecting an optimal next release

is NP-hard. Svahnberg (Svahnberg et al., 2010) studies release planning methods and

parameterizes the process. The author introduces some requirement selection factors

and concludes that it may be difficult to find a release planning model that suits a

company’s needs while addressing the desired requirements selection factors.

Moreover, a fully systematic approach is never sufficient and needs to be combined

with the experience of professional practitioners. For this reason, Ruhe and Saliu (Ruhe

& Saliu, 2005a) have discussed release planning from two different dimensions, art and

science. The art of release planning refers to human and his capabilities while the

science refers to the algorithms and methods.

Univ
ers

ity
 of

 M
ala

ya

5

Various studies are performed on the field of release planning trying to create the best

release plans. Based on literature, the most important weaknesses of these methods

include:

• Lack of attention to project characteristics

One of the most significant aspects neglected in most release planning methods is

paying attention to project characteristics. Release planning methods and

approaches usually notice requirements and their related features such as priority,

time and costs and do not attend characteristics of the project or the project's team.

As an example, suppose suggesting AHP method (Perini, Susi, Ricca, &

Bazzanella, 2007) for an agile team with less than 5 members and a huge number

of requirements. Generally, human resource is the great issue for agile teams and

they prefer to use rapid and effective methods. However, the huge number of

requirements makes the use of manual methods impossible and thus the optimal

method of release planning should be specified according to the team and project

characteristics. Methods that focus on cost and resource optimization, in a

different way, cannot be used in every project since they are not solely focusing

on projects and are performed in respect to other features(Ngo-The & Ruhe,

2009). It must be noted that project and team features are sometimes opposite,

such as in the above-mentioned example of a team with a small number of

members who are supposed to deal with a huge number of requirements.

Insufficient attention to this issue results a method which is impractical or

encounters many problems during implementation.

• Weak customization

In its simplest form, customization of release planning methods is the capability

of the method to be parametric. Although most presented methods have tried to be

parameterized, the parametric form was only used to display the problems and

Univ
ers

ity
 of

 M
ala

ya

6

used in problem areas, not to present different solutions. In other words,

parameterization does not affect the solution selection and is only used to show

different parameters of the problem. To be effective, the users are expected to

reach other solutions or proposed methods through changing the inputs. This issue

has not been addressed in most studies and the only research dealing with this is

(Slooten, 2012), which is actually not about presenting a release planning method

and presents a framework to evaluate the maturity of a release planning process.

Therefore, most methodologies only emphasize the method they present and do

not care about the variety of input parameter values, for example, when the

number of requirements changes. In case of parameter variation, the release

planning method must take it into consideration and make possible customizations

while most methods cannot be customized and only look at the method regardless

of input parameters values. Hence, parameter variety does not influence the

concluding method and is not used in the development of the solution. In addition,

project characteristics should be considered in the method customization and the

concluding solution presented by that method.

• Lack of attention to problem domain complexity

Release planning, like most tasks in software engineering, is an executive task that

involves different, and sometimes unknown, parameters and hence creates various

practical complications. Identifying these parameters and their roles help to

recognize release planning process better and, hence, the presented solution will

be more tended towards reality. In most existing release planning methods, only

the requirements prioritization and resource constraints are considered and

therefore, lack of real parameters makes the planning problem simplistic and the

presented solution not practical. (Ruhe, 2005) and (Marjaie & Kulkarni, 2010)

investigated effective parameters on release planning and hidden parameters of

Univ
ers

ity
 of

 M
ala

ya

7

requirements' prioritization, which is a main step in release planning. Parameters

such as the risk of implementing every requirement, requirement difficulty degree

and requirement repetition rate in users’ demands are those neglected in most

research and thus the presented methods are not practical (to some extent) and

software developing teams prefer to use simple and manual methods. This is one

of the major challenges facing release planning (Seyed Danesh & Ahmad, 2012).

Weaknesses of current release planning methods make many of them inapplicable in

various environments. Besides, differences of software projects and their characteristics

make these methods unsuitable for various project types. Therefore, a release planning

methodology is needed which removes or decreases the weaknesses mentioned above

while being applicable in various projects.

1.3. Research objective

Complications and difficulties of available release planning methods mentioned earlier

led the present research toward developing an inclusive, highly customizable

methodology for a release planning to be used in various projects. Thus, this research

seeks a release planning methodology based on effective parameters in every project

with the use of successful experiences in this field. The leading objective of this

research is to present a release planning methodology to be used in a variety of project

types. Considering the main objective, following goals are met throughout this thesis:

• Developing a process model for Release Planning in order to cover the

procedures and tasks involved in current methods and approaches. This process

model is based on the common steps in current methodologies.

• Customizing every step of the process model by identifying parameters,

objectives, inputs, outputs, and the relation between them in order to increase

flexibility for individual projects.

Univ
ers

ity
 of

 M
ala

ya

8

• Developing and introducing the concept of release planning pattern to customize

a process model to reach the desirable method for every step.

• Validating the proposed release planning methodology using different case

studies in the PRP developed tool.

There is no need to mention that the proposed methodology has a significant effect on

the quality of release planning since a “pattern” of successful past experiences has been

observed in this methodology. In addition, this methodology significantly decreases

time, which is an important factor in current release planning methodologies. The

reason is that many of the defined parameters can be saved for future planning.

The main advantage of this methodology is its capability to a release based on the

characteristics of the project. In other words, solutions are proposed according to the

project characteristics. In contrast to other current methodologies, which are not flexible

and customizable, this method provides solutions based on values, resources and other

project parameters.

As we know, there are two Software development situations. In the first type, which is

called bespoke development, the main purpose is to meet a specific company’s needs to

facilitate running its business. Here, the customers are known and there is usually only

one release because it is targeting a specific group. Of course, there is always

maintenance for that single release.

On the other hand, there are market-driven products; similar to what we are aiming in

this research. In this type of development, there are often a larger number of releases as

long as there is a market for the product. Customers are unknown here, and the main

goal of the product is long term. In this kind of development, releases and their plays

are significant because there are always market demands for new and unpredicted

Univ
ers

ity
 of

 M
ala

ya

9

releases for a product. The present dissertation mainly focuses on market-driven

products, which have various releases for a single product.

1.4. Research Methodology

Every research requires an integrated and well-structured methodology to achieve the

main goals. In this research has, in fact, two main sections: the first one deals with

challenges in software release planning. In this section, the challenges have been

discussed from the point of view of software companies. Qualitative approach has been

used in this section of the study using direct interviews, emails, and questionnaires. Due

to the ambiguousness and lack of clarity of parameters significant in release planning,

an empirical study was felt needed.

The second section introduces, develops, and validates the PBRP methodology in five

different steps that will be discussed further below. A specific procedure is conducted,

which is composed of five main steps and some sub-steps as shown in Figure 1-1. This

section uses case studies in all the subsections of introduction, development, and

validation.

These steps are explained in detail below.

Univ
ers

ity
 of

 M
ala

ya

10

Figure 1-1: Main steps of the research

1.4.1. A review on literature

The research initially began with a review on previously implemented methods, studies

and reports in the area of release planning. Naturally, the large number of these studies

necessitated the study to be performed in a systematic manner. To do so, release

planning area is divided into two main parts: release planning and release management.

Methods presented in each of these are evaluated independently. In order to investigate

every method, it is tried to study basic methods first and then go to newer methods or

methods based upon old ones or their modifications. Besides, the specific challenges

that these methods were trying to solve are classified and then common challenges are

studied.

The main expectation of the literature review is to obtain an almost complete knowledge

of release planning and management, their challenges and methods presented to solve

them. As a result, an ordered set of all challenges, problems and their solutions is

provided. The solutions cover some issues but still not able to solve the others.

Moreover, the review shows issues not being considered so far in the field of release

Review literatures

Develop methodology

Develop release planning tool

Validate the methodology by case-studies

Present results

Univ
ers

ity
 of

 M
ala

ya

11

planning and also the reasons they are neglected. It also provides an initial evaluation of

the release planning and its efficacy to identify more applicable methods in the field.

The final report of this review indicates the core problems of release planning and how

the presented methodology tries to solve them. Table 1-1 shows a summary of the main

inputs, activities and outputs of this step.

Table 1-1: Main inputs, activities and outputs in reviewing literature

Main Inputs Main Activities Main Outputs
- Academic and

professional books,
periodical journals,
conference proceedings,
technical reports, online
documentation

- Studying concepts of release planning

- Studying release planning methods

- Reviewing challenges and weaknesses
of release planning methods

- Investigating the origins of release
planning problems

- Evaluating release planning methods

- Report on review of
release planning
methods

- Report on release
planning challenges

1.4.2. Developing the new release planning methodology

Having literature reviewed and current release planning methods evaluated, it is

necessary to develop a new methodology based on findings in order to solve previous

problems. This step aims at presenting a customizable methodology based upon project

features and team characteristics. To do so, common tasks in implementing release

planning are gathered from various methods, and after that a process model is generated

which covers all main activities of release planning. Then, the process is customized

using specifications concluded through the review. These specifications include project

or team characteristics and other effective features on release planning, which can affect

one or more tasks. Having identified these effects, they are specified as much as

possible at the parameter level to obtain a comprehensive image of every parameter

range. This helps to understand parameter variety and see the influence of parameters on

the final solution. A new concept, release planning pattern, is used in the process of

methodology development, which increases the customization speed and makes use of

Univ
ers

ity
 of

 M
ala

ya

12

previous experiences to improve the quality of the method and guarantee its

applicability and functionality. Moreover, with the help of effective parameters on every

task of release planning process, the methodology maintains expandability and new

parameters and patterns can be easily added. At the end of the process, the presented

methodology is generated in association with a set of release planning patterns and

patterns of every step of the process model to be used in release planning. Table 1-2

shows a summary of the main inputs, activities and outputs of this step.

Table 1-2: Main inputs, activities and outputs in developing methodology

Main Inputs Main Activities Main Outputs
- Academic and professional

books, periodical journals,
conference proceedings,
technical reports, online
documentation

- Report on review of release
planning methods

- Report on release planning
challenges

- Reviewing common tasks of
release planning methods

- Presenting the release planning
process model

- Investigating effective
parameters on release planning

- Investigating the effect of
parameters on every task of the
process model

- Investigating the effect of
release planning parameters on
selecting the method to perform
every step of the process model

- Investigating the interaction of
planning’s effective parameters

- Defining the concept of release
planning and its application

- Presenting the Pattern based
release planning methodology

- Effective parameters on
the process model

- Release planning patterns

- Pattern based release
planning methodology

1.4.3. Developing the tool

The presented release planning methodology needs to be used in practice. For this

reason, a certain tool is developed. The tool must be capable of keeping record of all

steps, parameters and instances of the process model and their relationships as well as

Univ
ers

ity
 of

 M
ala

ya

13

the relation between distinct interacting parameters. Furthermore, the tool must be able

to define a release planning pattern and assign different steps based on various

parameters. It should also feature searching different patterns using parameters to enable

users to find and employ suitable patterns through entering their data and project

specifications.

Table 1-3: Main inputs, activities and outputs in tool development

Main Inputs Main Activities Main Outputs
- The general methodology of

release planning

- Effective parameters on the
process model

- Release planning patterns

- Pattern based release
planning methodology

- Developing a tool based on
the process model

- Expanding the tool to enter
relationships between
parameters and their
instances

- Expanding the tool to enter
release planning patterns

- Expanding the tool to search
for patterns based upon
parameters and instances

- Pattern based release
planning tool

1.4.4. Validating the methodology by case studies

It is necessary to evaluate applicability and effectiveness of the methodology after

developing its suited tool. Among all evaluation methods, performing case studies is the

most effective and efficient one, especially in the area of software engineering and

release planning, which are considered executive and practical fields. The number of

case studies is determined by the method and the probable errors. Since the pattern

based release planning methodology has various patterns and each of them must be

evaluated as much as possible, more than one case study are performed and various

projects are tried as case studies. Therefore, companies selected for case studies are

those which have numerous projects to find common characteristics (project and team)

and this is considered as the main criterion for selecting case studies. This is important

Univ
ers

ity
 of

 M
ala

ya

14

because identical patterns are more likely to be used in these companies, and more data

is available. Every project must have the following characteristics to be selected: there

are at least 4 members in every team, each team has an approach, and the project is

repeated at least twice. Every team selected as the case study is trained with the

prepared release planning tool, and members are asked to enter specifications and

parameters to perform the planning according to the pattern proposed by the software.

Then, they are asked to evaluate the proposed pattern and the pattern based release

planning methodology and to state its strengths and weaknesses.

Table 1-4: Main inputs, activities and outputs in validating the method

Main Inputs Main Activities Main Outputs
- The pattern-based release

planning methodology

- Pattern based release
planning tool

- Making use of the tool for
planning

- Searching for the considered
pattern in the tool based on
project parameters

- Performing release planning
according to tool proposed
method

- Recording results of using
tool proposed method

- Results of evaluating the use
of every pattern

- Results of evaluating the use
of pattern based release
planning methodology

1.4.5. Presenting results

Having case studies performed and the methodology evaluation results obtained from

different teams, it is time to evaluate all results and achievements to identify strengths

and weakness of the methods and their reasons. Results are usually conducted and

documented in the form of charts and recorded as research results.

Univ
ers

ity
 of

 M
ala

ya

15

1.5. Research contribution

Release planning has become one of the most important tasks in software development

projects since it shows the costs and time required to accomplish the project. Various

methods are proposed for release planning but none of them are customizable and they

mostly have paid no attention to effective parameters on release planning originating

from project specifications. For this reason, this study introduces a pattern based

methodology for release planning which is, first, highly customizable and can be used in

a wide range of software projects. Second, the methodology uses project and team

specifications effective on release planning to determine the exact method in order to

enhance efficacy and applicability, and third, the methodology builds upon previous

experiences and uses them along with the concept of pattern for release planning.

Currently, there is no methodology available having these capabilities and providing

teams with the same possibilities and hence the present thesis can be used by various

software teams. Moreover, the methodology can be expanded, and more parameters and

patterns can be added to it, thus teams can develop the methodology according to their

own needs.

In summary, here are the contributions of the research for:

• Practitioners

o Agility to choose best fitted method for release planning of each project

o Using pattern based development to select the release planning method

o Enhancing the method to add new release planning patterns

• Project Managers

o Attaining the best release plan for a project

o Incorporating user requests in release planning as required

• Knowledge and research people

Univ
ers

ity
 of

 M
ala

ya

16

o Enhancing an adaptive release planning method

1.6. Results

The presented methodology is generated by planning patterns and characteristics and

parameters effective on every stage of the process model. It is accompanied by a set of

achievements, including:

• Improvement in quality of release plans

Pattern-based release planning methodology enables making use of previous

successful experiences in the field of release planning, and this enhances the

quality of developed plans.

• Reduction in time spent on release planning

Pattern-based release planning methodology provides (simply and rapidly) the

release planner or project manager with successful experiences of other projects

considering a set of predetermined parameters and, as a result, reduces release

planning time.

• Release planning relative to project characteristics

Pattern-based release planning methodology uses a project's specific features and

the best of past experiences to present a methodology suiting the project and

hence increases the success rate of accomplished projects.

• Making use of the best experiences in release planning

It is possible, using pattern-based release planning and developing new release

plans, to transfer the experience and acquired knowledge of successful projects.

• Omission of decisions made without technical support

Pattern-based release planning methodology aids project managers or release

planners to achieve a better understanding of release planning and its different

Univ
ers

ity
 of

 M
ala

ya

17

methods introduced in the form of release planning patterns and prevents wrong

or technically unsupported decisions.

1.7. Thesis structure

Chapter 1 includes thesis introduction, background and the overall image of the

presented methodology as well as the thesis objectives.

Chapter 2 introduces a state of the art release planning in software release planning and

argues current methods. The overall view of this chapter is based upon common steps

and parameters.

Chapter 3 investigates the problem statement in details, including definitions,

hypotheses and research questions.

Chapter 4 evaluates challenges in software developing companies and how to deal with

them while preparing for new releases. Employed methods are also discussed here.

Chapter 5 includes release planning management and investigation of management

challenges in this area.

In Chapter 6, a set of common steps and tasks of various methodologies are gathered as

the process model of release planning. This process model covers all the tasks to be

accomplished in release planning but it should be customized for every individual

project. Hence, customization of the process and the parameters involved in the

customization of every step are described. Having customization accomplished, due to

the large number of parameters in every step to select the required method of release

planning, a new concept, pattern, is used to narrow down the parameters. The patterns

are based upon the concept and are conducted according to the parameters in every step

(considering all the tasks in the process model) to use previous experiences and

determine the most effective method for performing every step of release planning by

Univ
ers

ity
 of

 M
ala

ya

18

simply using parameter regulation. A set of three patterns are selected as examples for

every step.

Chapter 7 evaluates pattern-based release planning methodology. To do so, five big

software companies with various projects are selected. The results of implementing

these methods were then evaluated. Besides, the results for every specific pattern and

patterns of every step of the process model indicated that patterns pertaining to

requirements prioritization step were more precise than the others.

Chapter 8 presents the results of the case studies and findings of the thesis.

Chapter 9 discusses the good characteristics or advantages of the methodology and

suggestions for future improvements.

Univ
ers

ity
 of

 M
ala

ya

19

CHAPTER 2: LITERATURE REVIEW

2.1. Introduction

Release planning is one of the main tasks in software development which plays an

important role in forming releases and the outputs of a developer team. In a highly

abstracted level, release planning is the process of selecting the best set of assigned

features in a certain release. This means that instead of developing new and perfect

software, it is tried to plan to develop a number of new features in incremental series

which improve functionality and performance as shown in Figure 2-1.

Figure 2-1: Planning software releases (Ruhe & Saliu, 2005a)

In this section, we review the current status of research and studies on release planning

and, especially, methods, models and characteristics of planning in order to provide a

clear insight into the task and its techniques. Below, we first explain common and

widely used release planning methods and describe release re-planning techniques, and

then characterize methods of requirements prioritization and resource estimation. In

addition, software development patterns are discussed.

Univ
ers

ity
 of

 M
ala

ya

20

2.2. Release planning methods

Today, large companies in software development face many problems in their new

releases. Various methodologies addressing the release planning challenges have been

used in industry and many more approaches have been proposed in academic research.

Although there are various methods and approaches to develop a new release, a new

version has always its own problems and challenges. The next section studies and

reviews these available methods.

2.2.1. Ad-Hoc Approach

Some organizations do not see release planning activity as independent, and they think

basic decisions in their organization are based on business rule and needs. Decision-

making process is mostly haphazard with an emphasis on guessing, discussion, business

rules, and customers’ needs instead of a systematic way based on formulation and

quantitative ways.

In Ad-hoc approach, that is the easiest form to practice, there is no clear order for

scheduling, planning and prioritization of requirements and findings are manual and

usually based on negotiation but Anton in(Ruhe & Saliu, 2005a) reported that a

complex project would likely fail without a plan. Many release plans focus only on the

target release contents (Anton, 2003) rather than on defining incrementally releasable

products.

Ruhe in(Nejmeh & Thomas, 2002) did a comparison between Ad-hoc planning and

Systematic planning to know the level of reliability and validity of their research and

found out that Systematic planning based on tools is more reliable than Ad-hoc

planning.

Univ
ers

ity
 of

 M
ala

ya

21

The Ad-hoc manner is more common and maybe suitable for a relatively small in-house

project that includes a few features only and no serious constraints. It can be said that

prioritization in this approach is based on many factors such as project managers’

judgment and ideas of stakeholders. Therefore, this approach depends more on

individuals.

2.2.2. Planning Game Approach

The planning game (PG) refers to the process of planning and deciding what to develop

in extreme programming (XP) project (Du, 2006). The main goal of XP is to lower the

costs of change in software requirements (Du, 2006). With traditional system

development methodologies, like Waterfall Methodology, the requirements for the

system are determined often at the beginning of the project .The first Extreme

Programming project was started on March 6, 1996. Extreme Programming is one of

several popular agile development processes, and it has already proved to be very

successful at many companies of all different sizes and industries worldwide.

Extreme planning (Ruhe & Saliu, 2005b) conducts release planning by performing

planning games techniques. It has been successful in many companies because it

emphasizes on customer satisfaction. Its aim is to deliver maximum value to the

customer in the shortest time possible.

Customers write story cards describing the features they want, and developers assign

important features and estimate the time required to develop those features. The most

promising story cards are chosen for the next release by either setting a release date and

adding the cards until the estimated total matches the release date, or selecting the

highest value cards first and setting the release date based on the estimates given on the

cards.

Univ
ers

ity
 of

 M
ala

ya

22

PG’s strength is in the simplistic and straightforward approach it adopts, which works

well in smaller projects. However, as the size and the complexity of the projects

increase, the decisions involved in planning releases become very complex.

According to (Anton, 2003), XP (and thus PG) does not provide guidance on some key

issues. XP does not:

• Address how a development group should interact with key stakeholders

• Describe how to produce consistent features and priorities that satisfy multiple

stakeholders

• Provide a suggested technique to balance conflicting demands of multiple

stakeholders

• Provide a technique for managers to assess the value of proposed features.

2.2.3. Incremental Funding Method (IFM)

These days, software companies’ investigations in software development need to return

in much shorter time and take more revenues. These companies do not invest in

software development without clear returns. That means, they first look at the market

and its demands and start their developments based on that. IFM is a financially

informed approach to software development, designed to maximize returns through

delivering functionality in ‘chunks’ of customer valued features, and carefully

sequenced to optimize Net Present Value (NPV) (Beck, 2001). The Incremental

Funding Method is a software engineering method that emphasizes financial

considerations in a software project. The method was introduced by Mark Denne and

Jane Huang.

This method decomposes the system into units of customer-value functionality known

as minimum marketable feature that can be delivered quickly and provides market value

Univ
ers

ity
 of

 M
ala

ya

23

to the customer (Denne & Cleland-Huang, 2004). An MMF’s value is typically

measured in terms of both tangible and intangible factors such as revenue generation,

cost savings, competitive differentiation, brand name projection, and enhanced customer

loyalty. MMFs are identified by customers, developers, and business stakeholders

according to the adopted software development process (Denne & Cleland-Huang,

2003).

2.2.4. Optimization-Based Techniques

Considering the complex nature of RP, several studies have modelled the problem of

selecting release features as a specialized optimization problem. In formulating an

optimization model for RP, Bagnall et al. (Bagnall et al., 2001) assign weights to

customers based on their importance to the software company. The objective is to find a

subset of customers whose demands are to be satisfied within the available cost. Ho-

Won Jung (Ho-Won, 1998) follows a similar footing with the goal of selecting features

that give maximum value for minimum costs within allowable cost limits of a software

system.

These optimization approaches cope better with bigger problems, but customers are not

given an opportunity to participate in RP decisions. The importance of customers to a

company is not the only issue RP should try to satisfy. Most of the problems discussed

above for “planning games” arise equally here.

2.2.5. Hybrid Intelligence Approach

The hybrid intelligence approach for RP proposed by Ruhe et al. (G. Ruhe & A. Ngo,

2004) is an extension of the optimization-based techniques. The belief that

computational intelligence cannot replace a human decision maker was the driving force

of this approach. A synergy between the two decision strategies was explored.

Univ
ers

ity
 of

 M
ala

ya

24

The overall architecture of this approach called EVOLVE* (G. Ruhe & A. Ngo, 2004)

is designed as an iterative and evolutionary procedure mediating between the real world

problem of software RP, the available tools of computational intelligence for handling

explicit knowledge and crisp data, and the involvement of human intelligence for

tackling tacit knowledge and fuzzy data. At all iterations of EVOLVE*, three phases are

passed: modelling, exploration, and consolidation. We will later illustrate the approach

in a case study example.

2.2.6. Lightweight Re-planning

Lightweight re-planning was first introduced by Thamer AlBourae in (AlBourae et al.,

2006) and emphasizes adding new features in re-planning. In fact, in this process model

old features are compared with newly added ones using Analytical hierarchy process. In

Incremental software development, changes are very important and new change

requests arrive during the process. These changes include modification of some features

or addition of new ones.

The main goal of the light re-planning model is to develop a new product plan that

achieves higher stakeholder satisfaction. Figure 2-2 shows a generic process model that

is describing main release re-planning activities including their input and output.

In this model, three main roles are considered: Product manager, who is responsible for

the whole development process; Stakeholders, which include any team member who are

concerned with the product development; and the supporting environment, which

facilitates the achievement of the process’s goals.

Univ
ers

ity
 of

 M
ala

ya

25

Figure 2-2: Generic process model for the Light-Weight Re-planning

In the next section, we will explain each activity in detail. The main steps are (AlBourae

et al., 2006):

New features: When developments are going to start, the new features are collected.

The requested changes are added to the old sets of features and are categorized by the

feature categorization process.

Feature categorization: Adopted framework changes requested should be categorized

to distinguish between duplicated features, on-going, or newly-added ones.

Stakeholders’ vote: Stakeholders are people who are effective in the development

process and can include different groups, such as managers, developers or end users.

Resource estimation: Resource capacities are one of the areas that should be

considered when re-planning product releases. The main goal is to determine the likely

usage of effort Effort (fi), and time Time (fi) for each feature fi for the next release.

2.3. Release planning researches

Release planning is an important part of development activity, specially in large

software development organizations. A release plan contains features and needs which

Univ
ers

ity
 of

 M
ala

ya

26

must be developed in the next iteration and is influenced by several factors such as the

types of requirements, implementation strategies, value for the developing company,

urgency for the client, etc. (Ruhe, 2005). Generally, software development

organizations perform release planning as an ad-hoc task by project managers, when the

number of requirements is small (Seyed Danesh & Ahmad, 2012). When there is a large

number of requirements, the uncertainty of factors causes the release planning be

classified as NP-hard problem and, like other such problems, it often needs a search-

based approach to find the optimal or near optimal solution (Bagnall et al., 2001;

Durillo, Zhang, Alba, Harman, & Nebro, 2011; Mohebzada, 2012; Saleem & Shafique,

2008). Researchers address a release planning problem in two levels. First, they present

a systematic model based on factors and parameters and/or find out effective factors;

next, they focus on proposing new algorithms to optimize the results of release

planning.

The uncertainty of factors in release planning is a major concern in the first class of

studies. Al-Emran et al. (Al-Emran, Kapur, Pfahl, & Ruhe, 2010) examine the impact of

uncertainty in operational release planning and present a method for analyzing and

estimating the impact of uncertainty on planning parameters. They find out that the

uncertainty of release planning parameters increases – both in magnitude and variance –

with an increase of pessimism level as well as an increase of the number of uncertainty

factors. Also, Lindgren et al. (Lindgren, Land, Norstrom, & Wall, 2008) and Saliu et al.

(Saliu & Ruhe, 2005b) study the key aspects of software release planning in industries

and list them as: objectives, resource constraints, technology constraints, system

constraints, time horizon, stakeholder involvement, and short- and long-term planning.

In addition, Wohlin and Aurum (Wohlin & Aurum, 2005) study decision-making

criteria to choose the best parameters for a release and conclude that the business-

oriented (customer and market focused criteria) and management-oriented criteria

Univ
ers

ity
 of

 M
ala

ya

27

(related to cost-benefit and timeliness of delivery) are more important than technical

concerns (related to software architecture and interdependency of requirements).

Bagnall et al. (Bagnall et al., 2001) define a mathematical model to describe the

parameters' effect on release planning and try to find a systematic approach to overcome

the next release problem (NRP). They compare three general approaches and conclude

that on the large scale, yielding an optimal solution in reasonable time may fail, but with

a small set of requirements, the techniques will be sufficient. Also, Carlshamre

(Carlshamre, 2002) proposes a pragmatic tool utilizing a selection algorithm which,

based on value, estimated resources and interdependencies between requirements,

presents a number of valid release suggestions. He emphasizes, though, that this tool

has several serious shortcomings because in the study, the size of the product is small,

companies involved have a fairly good picture of their customers, and all results are

organization-dependent to some extent. Colares et al. (Colares, Souza, Carmo, Padua, &

Mateus, 2009) present a mathematical model that takes into account several important

aspects of release planning, such as stakeholders’ satisfaction, costs, deadlines, available

resources, efforts needed, risk management and requirements interdependencies. This

model is validated by experimental data and is not empirical.

On the other hand, the algorithmic solutions try to handle the specified factors by using

heuristic algorithms. Greer and Ruhe (Greer & Ruhe, 2004) present the EVOLVE

method based on genetic algorithm that generates a typically small set of most

promising candidate solutions from which the actual decision-makers can choose. In

fact, the EVOLVE searches the requirements, constraints, and priorities based on

defined parameters and the data provided by users and presents candidate release plans.

The EVOLVE is a well-known method for release planning that resolves the release

planning problem by using the genetic algorithm (Maurice, Ruhe, Ngo-The, & Saliu,

2005; G. Ruhe & A. Ngo, 2004). AlBourae et al. (AlBourae et al., 2006) propose a

Univ
ers

ity
 of

 M
ala

ya

28

lightweight re-planning process model based on AHP and greedy algorithm. During the

AHP process, the Weight Average Satisfaction (WAS) method is used to justify

requirements’ importance. In reality, this process model provides a basis for

incorporating changes instantly into the development lifecycle. It has not been validated

empirically and needs real-world industrial experiments. Also, Freitas et al. (Freitas,

Coutinho, & Souza, 2011) study release planning techniques, especially heuristic

algorithms that are search-based, and propose to use exact optimization techniques

based on Simplex method instead of using meta heuristic genetic algorithms and

Simulated Annealing.

Hybrid methods handle the release planning problem by breaking down the problem to

various sub-problems or various views. Because of the complexity of effective factors

in release planning, Ruhe and Saliu (Ruhe & Saliu, 2005a) introduce a hybrid release

planning framework that features both human and computational intelligence (Ruhe,

2005). The human intelligence may overcome the release planning methodology’s

weakness around the relationship between various factors as well as unknown factors.

Saliu and Ruhe (Saliu & Ruhe, 2007) also present Bi-Objective Release Planning for

Evolving Systems (BORPES) to optimize the value of release plans from both the

business perspective and the implementation perspective by a trade-off between the two

perspectives and feature coupling detection method to reduce cognitive effort during

implementation. Jadallah et al. (A. Jadallah, Al-Emran, Moussavi, & Ruhe, 2009) break

down the release re-planning problem into "How", "When" and "What" (H2W) and

propose an algorithm for each one. H2W provides a new approach for re-planning of an

existing product, but the quality of release plans is not validated by industrial

evaluation. Another hybrid method to overcome the uncertainty of planning factors is

the recommendation system. Mohebzada (Mohebzada, 2012) presents a

recommendation system named SRP-Plugin 2.0 to assist product managers with better

Univ
ers

ity
 of

 M
ala

ya

29

release decisions. Because of the large volume of requirements data and dependency of

release planning factors to input parameters, machine learning is used in the SRP-Plugin

that is realized through four techniques. The recommendation system is based on

EVOLVE II release planning that can learn the human intelligence and use it in decision

making.

Related studies on release planning methods show that using human intelligence can

lead to better decision making in release planning and methods that use it can

demonstrate a better performance (Greer & Ruhe, 2004; Maurice et al., 2005; Ruhe,

2005; G. Ruhe & A. Ngo, 2004; Ruhe & Saliu, 2005a), but this is not intended to solve

every problem of release planning (Mohebzada, 2012). Human intelligence as applied in

the release planning method is used in two ways. In some methods, human intelligence

is used to rank input requirements or select the best plan, but in

Mohebzada(Mohebzada, 2012), it is used to train the machine in recommendation

systems. Therefore, human intelligence can be used as the driver of release planning

method to make decision making. This idea can lead to a better method for release

planning.

Looking at the studies done on release planning and examining current methodologies

and approaches, one can see that various parameters, that are sometimes unclear or even

unknown, affect a project. Although the proposed solutions almost always improve the

release, they may not be the optimal ones.

In fact, present studies can be divided into two categories: the first group, which attempt

to identify and solve the unexpected problems, often deals with parameters and the

problems afflicting them. There are numerous valuable examples of empirical studies in

this category.

Univ
ers

ity
 of

 M
ala

ya

30

The second group’s main focus is on introducing methodologies or general frameworks

to improve or modify release planning. This group of studies has shown less flexibility

in general and requires new methodologies and frameworks.

One important element which is missing in these studies and in practical software

business is providing solutions based on a project’s characteristics and parameters,

which can significantly increase flexibility and can customize the solution for individual

projects. In other words, specific solutions can be drawn on a project’s characteristics

that are often the optimal ones since they originate from the parameters of a specific

project.

2.4. Requirements prioritization methods

Requirements prioritization is performed in order to identify and recognize more prior

requirements. Sommerville (Sommerville, 2010) identifies requirements prioritization

as a task performed to identify important requirements but Firesmith (Firesmith, 2004)

describes this task as the process of determining requirements implementation order for

the sake of system implementation. A comparison of the two definitions demonstrates

that Sommervile (Sommerville, 2010) emphasizes the importance of requirements for

users. Of course, it must be born in mind that requirements also have interdependencies

which influence the system implementation order in stakeholders' viewpoint. However,

Firesmith considers requirements interdependencies in a systematic manner in his

definition since he emphasizes implementation and notices their implementation order.

Different aspects of features can be considered in requirements prioritization. These are

known as "requirements prioritization measures" the most important of which are

mentioned below:

• Importance

Univ
ers

ity
 of

 M
ala

ya

31

 Stakeholders can observe the requirements and determine which one is more

important to them. This is usually considered as a multi-dimensional measure and

can lead to various perceptions using different views. For example, importance

can be considered in terms of the value for the market, the value for

accomplishing routine tasks of a stakeholder, or the value for product quality. It is

of high significance to define ‘importance’ well to the stakeholders to be able to

process their data.

• Time

Time is one of the most important and widely used measures of requirements

prioritization. It is estimated and entered into the prioritization procedures using

certain methods. Of course, it is influenced by other factors such as

implementation techniques or team experience. In most cases, time is estimated

by the project manager or requirements manager or experimentally by the

development team, unless the resource estimation technique differs from the

requirements prioritization technique. In this case, time estimation is omitted from

prioritization activity.

• Costs

Cost can also be considered as one of the important parameters in requirements

prioritization. In fact, cost is a computation parameter that is directly influenced

by the time needed for implementation of a certain requirement. It is also

influenced by other factors such as extra resources, predicted and even

unpredicted costs not related to human resources. Moreover, expenditures on

purchasing licenses for some components or prerequisite software can affect costs

of a requirement. For instance, to implement a requirement like sending SMS in

Univ
ers

ity
 of

 M
ala

ya

32

the software it is necessary to purchase the software and components related to

SMS sending system and then embed this capability in the main software.

• Penalty

Penalty is, simply, the costs of delay in implementing a certain requirement. This

can have great significance in developers' work if the penalty resulted from

unimplemented requirements which can be lead to financial or physical costs.

Furthermore, penalty can originate from not presenting a product adequately to

the market which causes financial loss to the developer team or the user

(customer).

• Risk

The risk originating from every requirement is related to the risks of a project.

Requirement-originated risk encompasses different aspects such as the market

value, the required resources and the requirement variability. Requirement's risk is

an estimated value that is assigned by project manager or requirement manager.

Other aspects of a requirement, such as stability, market value and available resources,

may also be considered as requirement prioritization measures. Requirements are

mostly prioritized based on only one parameter, but this depends on project features and

expectations of requirement prioritization. Clearly, prioritization based on multiple

measures is more difficult than that based on only one. Moreover, it must be kept in

mind that requirement variations and interdependencies can also influence measures,

and this complicates multiple-measure prioritization.

Followings are some essential requirements prioritization techniques, which are

classified into three groups: nominal scales, ordinal scales and ratio scales.

Univ
ers

ity
 of

 M
ala

ya

33

2.4.1. Nominal Scale

Requirements in this technique are assigned to various priority groups, and all

requirements in a group have the same priority. The technique is usually very simple

and requirements are often categorized in several defined levels.

2.4.1.1. Numerical Assignment

This method is mentioned in studies such as Berander and Andrews (Berander &

Andrews, 2005) and Karlsson et al.(L. Karlsson, Host, & Regnell, 2006). This is a

simple technique based on categorizing requirements into various priority groups. The

number of priority groups can vary but there are commonly three groups: critical,

standard and optional requirements. The outcome of numerical assignment is a type of

nominal scale and the groups are prior only in terms of their name-based categorization

and there is no extra information on higher or lower priority of a certain requirement to

others in the same group.

2.4.1.2. MoScoW

MoScoW is a type of numerical assignment suggested by DSDM1 consortium and

Hatton (Hatton, 2007), (Hatton, 2008). Currently, it is employed in DSDM software

development method. The main idea of MoScoW is to classify all requirements into

four groups: "MUST have", "SHOULD have", "COULD have" and "WON'T have".

• "MUST have" means requirements of this group must be present in the project.

Lack of these requirements results into the failure of the project.

• "SHOULD have" means the project succeeds if it includes requirements of this

group.

1Dynamic System Development Method

Univ
ers

ity
 of

 M
ala

ya

34

• "COULD have" means the project succeeds if it includes requirements of this

group. But, this group is less prior than the previous one.

• "WON'T have" is like an "interest list". This means that requirements of this

group are good but are not implemented in the current stage and may be

employed in the next version.

Results of MoScoW are obtained in nominal scale. All requirements in a certain group

are of the same priority and there is no excess information on higher or lower priority of

a certain requirement to others in a single group.

2.4.1.3. Top-10 requirements

This is a simple and coarse technique in terms of complexity and granularity,

respectively (Berander & Andrews, 2005)and determines top-10 more prior

requirements from a bigger set. The technique does not specify an internal order for

requirements and this is considered as its main weakness. However, it can be useful in

cases with numerous stakeholders of the same importance (Lausen, 2002). Throughout

prioritization, procedure interferences lead to numerous states. Therefore, it is important

to neglect averaging since some requirements may be omitted consequently (Berander

& Andrews, 2005). This method should be used when the lowest level of interference is

present.

2.4.2. Ordinal Scale

Methods of the ordinal scale lead to an ordered and arranged list of requirements. The

list can be arranged based on a certain parameter (usually preference). This method

develops requirements more precise than methods of nominal scale, but can result in

more errors if not performed carefully.

Univ
ers

ity
 of

 M
ala

ya

35

2.4.2.1. Simple Ranking

Ranking elements can be easily understood by most individuals and can occur in daily

life and that is why the method is well-accepted. Bernarder and Adnrews (Berander &

Andrews, 2005) and Hatton (Hatton, 2008) showed that in this method N requirements

can be easily ranked in the form of 1….N, in which 1 is the most prior requirements and

N is the least prior one. This is the most widely used method in ordinal scale.

2.4.2.2. Bubble Sort

This method is described by Aho, Hopcroft and Ullman (Aho, Hopcroft, & Ullman,

1983) and is used to sort different factors. Karlsson et al.(J. Karlsson, Wohlin, &

Regnell, 1998) first introduced the method for the requirements prioritization field. The

main idea in Bubble Sort is to enable users to compare two requirements and change

their places if in a wrong order. The comparison continues until no more replacements

are needed. Its outcome is a list of requirements prioritization. The average complexity

of Bubble Sort is O(n2).

2.4.2.3. Binary Search Tree

This is another technique used to sort factors which is described by Aho et al.(Aho et

al., 1983). In this tree, every node has at last two sub-trees. The method was introduced

by Karlsson et al.(J. Karlsson et al., 1998) in order requirements prioritization and

sorting. The idea in this method is that every node represents a requirement and all

requirements under the left sub-tree of the node are less priori and all requirements

under the right sub-tree of the node are more prior than the node. During the

implementation of this method, a requirement is first selected as an initial node. Then,

an unsorted requirement is compared to the initial node and placed under left sub-tree if

it is les prior than the upper node. If it is more prior than the node, it is placed under the

right sub-tree. This continues until no other node requires comparison and all

Univ
ers

ity
 of

 M
ala

ya

36

requirements are placed correctly. Average complexity of binary search tree is O (n log

n).

The three above-mentioned techniques are used to rank requirements. Ranking is very

simple and understandable to individuals. But, Bubble Sort and Binary Search Tree

seem to be more difficult. Simple ranking can be employed when a relatively small

number of requirements are being prioritized but an increase in their number leads

individuals to fail to remember all the requirements and their priorities. If a huge

number of requirements are being prioritized, Bubble Sort and Binary Search Tree seem

more efficient in achieving a high precision.

2.4.3. Ratio Scale

Results of this scale can represent relative differences between necessities. In fact,

methods of this scale compare requirements and try to measure and quantify their

priorities to one another.

2.4.3.1. 100-Dollar method

The 100-Dollar method (cumulative voting) is proposed by Bernarder and Andrews

(Berander & Andrews, 2005) and Hatton (Hatton, 2008) and is considered as a simple

method of requirements prioritization. Its main idea is that every stakeholder assumes

he/she has 100 $ to distribute among requirements. Results are obtained in ratio scale

and show the importance of a requirement relative to another.

2.4.3.2. Analytic Hierarchy Process

Analytic Hierarchy Process (AHP) is another well-known prioritization method which

bases upon the results of ratio scale. Developed by Saaty (Saaty, 1980), the method is

designed for complicated decision-making. Its main idea is to compare all requirement

pairs to determine their priorities. While using AHP, the user first specifies substitute

items and features for every certain requirement and employs them to build the

Univ
ers

ity
 of

 M
ala

ya

37

hierarchy. Then, he/she clarifies his/her preference for every feature pair by attributing a

priority ranging from 1 to nine, where 1 represents equal value and 9 represents

supreme value. The scale is shown in Table 2-1. After AHP changed users’ evaluation

to numerical values, the numerical priority of every factor of the hierarchy is generated.

If n requirements are being prioritized, then N*(N-1) / 2 measures are required. Thus,

the method complexity equals O (n2).

Empirical studies by Karlsson and Ryan (J. Karlsson & Ryan, 1997) and Karlsson et al.

(J. Karlsson et al., 1998) indicate that AHP is highly time-consuming. Some methods

are proposed and developed to reduce the number of comparisons and to minimize AHP

required time; two important ones include hierarchical AHP and the Minimum

Spanning Tree.

Table 2-1: Essential scales used for AHP (J. Karlsson & Ryan, 1997)

Relative
Intensity Definition Explanation

1 Of equal value Two requirements are of equal value

3 Slightly more value Experience slightly favors one requirement over another

5 Essential or strong value Experience strongly favors one requirement over another

7
Very strong value A requirement is strongly favored and its dominance is

demonstrated in practice

9
Extreme value The evidence favoring one over another is of the highest

possible order of affirmation

2, 4, 6, 8 Intermediate values between
two adjacent judgments When compromise is needed

Reciprocals If requirement i has one of the above numbers assigned to it when compared with
requirement j, then j has the reciprocal value when compared with i.

2.4.3.3. Hierarchical AHP

Davis (Davis, 1993) suggests that requirements in large projects are mostly presented in

a hierarchy in which more general requirements are on top and more precise ones are

placed at lower levels. Hierarchical AHP, introduced by Karlsson et al. (J. Karlsson et

al., 1998) uses AHP to prioritize requirements only in the same level of the hierarchy.

This method can reduce the number of decisions compared to AHP. Since all

Univ
ers

ity
 of

 M
ala

ya

38

requirements are not paired together and are not compared, the method can decline

repetitive comparisons but the ability to identify contrary judgments decreases.

2.4.3.4. Minimum Spanning Tree

This is another prioritization technique introduced by Karlsson et al. (J. Karlsson et al.,

1998). Its main idea is that in the case of consistent decisions no excess is available. In

such a case, the number of comparisons declines to N-1 (N = number of requirements).

This tree is composed of unique requirement pairs and is a directional graph. Compared

to AHP, the Minimum Spanning Tree considerably reduces the number of comparisons.

However, the ability to identify contrary judgment is weak.

2.4.3.5. Cost–Value Approach

Karlsson and Ryan (J. Karlsson & Ryan, 1997) proposed a method for requirements

prioritization called "Cost–Value Approach". The essential idea underlying this method

is to examine every requirement from two aspects: its value to users and its

implementation costs. The method employs AHP to compare requirement pairs

consistent with cost and relative value. Empirical studies of Karlsson and Ryan (J.

Karlsson & Ryan, 1997) demonstrate that the Cost–Value Approach is highly time-

consuming.

2.4.4. Compound techniques

2.4.4.1. Planning Game

Beck (Beck, 1999) proposed a prioritization method called "Planning Game" which is

based upon a combination of several requirements prioritization techniques. This

method is mostly used in agile projects and its underlying idea is to employ a

combination of Numerical Assignment and Ranking methods to prioritize requirements.

Requirements are first divided into three groups: (1) those unable to function without

the system, (2) those of less necessity but with justified business value, and (3) those

Univ
ers

ity
 of

 M
ala

ya

39

presence of which is good. After the classification, requirements are easily ranked in

their groups.

2.5. Resource estimation methods

Correct estimation of the costs of a software production provides the project manager

with a strong support to make different decisions during software's lifecycle. Project

manager, analyst, release planner, programmer and other team members recognize the

amount of work and time required to present a proper product. Without appropriate

estimation of costs, the project manager often fails to identify the required time, work

and required resources to accomplish a project. Wrong estimation leads the project fails

totally.

One of the most important factors in estimating costs of a software system is its size.

Five methods are proposed to estimate software size, which are described below.

• Line of Code

Number of lines of codes in the source of the program presented to user, except for

explanations and empty lines, is known as LOC. This is independent from the

programming language. The precise size of LOC is specified after the project is

accomplished. A common method to estimate LOC is to use experience along with

PERT technique. In this method, three variables are considered for program code size: L

(the lowest possible size), H (the highest possible size) and M (the mean or medium

possible size). The code size S is obtained by the following equation (Sommerville,

2010):

S = (L + H + 4M) / 6

It is possible to estimate and sum the code size of different components.

Univ
ers

ity
 of

 M
ala

ya

40

• Software Science

In this method, two measures are used to estimate software size: code length and

volume (Sommerville, 2010). Code length is employed to calculate the code length of

the program source and is obtained by following equation (Sommerville, 2010):

N = P + Q

Where P is the total count of operators and Q is the total count of operands. Volume

represents the used space and is calculated by:

V = N log (p + q)

Where p and q are the total number of independent operators and operands,

respectively.

• Function Point

This estimation method is based upon software function (or functional value) and

results for an empirical relationship based on measurable (direct) scales of software

information and evaluations of its complexity. The measurable scales include

(Sommerville, 2010):

• Number of user inputs

• Number of user outputs

• Number of user inquiries

• Number of files

• Number of external interfaces (files shared with or delivered to external systems)

Each of the above scales is assigned a complexity class of 1 (simple), 2 (medium), and 3

(complicated) and a weight value ranging from 3 (for simple inputs) to 15 (for

complicated files). Computation of the total count is shown in Figure 2-3. Then, the

function is calculated through the following equation (Pressman, 2001):

Univ
ers

ity
 of

 M
ala

ya

41

FP = count total × [0.65 + 0.01 ×Σ (Fi)]

The main advantage of this method is that it can be employed based on system

requirements and in initial steps of the project.

Figure 2-3: Computation of Function Point (Pressman, 2001)

• Feature Point

This method can both develop an algorithm and add it as a new class to the five classes

of Function Point method. Every used algorithm is assigned a weight ranging from 1

(for simple algorithm) to 10 (for complicated algorithms). This method best suits

programs with few inputs and outputs and high algorithmic complexity.

• Object point

This method acts based on number and complexity of forms, reports and software

components of new generation languages. Each of these objects adopts a weight

(according to its number) ranging from 1 (for simple forms) to 10 (for components of

new generation languages) and the result is weight sum of these items. This method can

also be implemented in initial steps of a project.

Methods of estimation software costs are divided into two general groups: algorithmic

and non-algorithmic methods. Non-algorithmic methods are based on a set of steps and

tasks which do not follow a certain algorithm and are mostly based upon experience.

Univ
ers

ity
 of

 M
ala

ya

42

Algorithmic methods follow certain algorithms and the estimation procedure is well

specified in them. Although past experiences are also used here, the methods are mainly

based upon algorithms.

2.5.1. Non-algorithmic methods

2.5.1.1. Analogy Costing

In this method, costs of a new project are estimated based on experiences of similar

previous projects. The method can be employed in a whole project or subsystems. In the

former, costs of all components are studied and in the latter, similarities and differences

between the current system and previous ones are investigated, and hence the estimation

is more precise. One of the advantages of this system is its implementation based on

previous real experiences. The disadvantage is that because of the inconsistency of

previous systems with the current one, the wrong comparison may turn aside the

estimation.

2.5.1.2. Expert Judgment

In this method, costs are estimated based on personal methods and innovative

techniques of experts of software development. Then, techniques such as Delphi and

PERT which result in estimation aggregation are used to remove probable

inconsistencies in the estimations of different individuals. For example, Delphi

technique runs in this way:

1) System features are described for every individual.

2) Individuals present their estimations independently (without any consultancy).

3) Presented estimations are listed and communicated to individuals. Then, they are

asked to present the estimation again and explain its rationale.

4) Steps 2 and 3 repeat until a proper result is achieved.

Univ
ers

ity
 of

 M
ala

ya

43

2.5.1.3. Parkinson

Software costs are not estimated in this method but are determined considering

available resource (regardless of project objectives). For example, if the time required to

accomplish is 12 months and there are 5 persons available, the rate of 60 persons per

month is estimated. Although it provides acceptable estimation in some cases, it is not

considered as a proper technique for costs estimation.

2.5.1.4. Price-to-Win

In this method, costs are estimated based on employer's budget instead of software, its

capabilities and applications. For instance, if the real estimation of project equals 100

person-months but the employer has sufficient budget only for 60 person-months, the

estimation is performed based on the latter.

2.5.1.5. Button-up

In this method, every system component is estimated independently and then the sum of

estimations is considered as the total costs estimation. In order to employ this method, it

is necessary to first have a primary plan of the system to identify its components.

2.5.1.6. Top-Down

This is contrary to the previous method and project costs are estimated by algorithmic

and non-algorithmic methods in an integrated form based on general measures. The cost

can be distributed between different system components in the next stage.

2.5.2. Algorithmic methods

Algorithmic methods use mathematical models to estimate project costs. Every

algorithmic model is defined as a function of cost factors. Current algorithmic methods

differ in two aspects: first, selection of cost factors and, second, definition of cost

calculation function. Cost factors directly affect cost estimation and include the

following groups:

Univ
ers

ity
 of

 M
ala

ya

44

1) Product Factors, such as: reliability, complexity rate, database volume,

reusability, coordinating project documentations with its lifecycle needs.

2) Computer Factors, such as: time limit for system running, limited storage

capacity, limitations in computer restarting, platform diversity.

3) Personnel Factors, such as: skills of the analysis team, skills of coders, fluency

in the platform, fluency in programming language and its tools, coordination of

team members.

4) Project Factors such as: using Multisite Development, using software tools.

Table 2-2 shows the categorization of algorithmic methods:

Table 2-2: Categorization of algorithmic methods (Briand & Wieczorek, 2002)

Algorithmic Models

Others Discrete Power Function Multiplicative Linear

Price-S
Aron

Boeing
Molverton

COCOMOs Walston-Felix Nelson Empirical

Soft-Cost Putnam Analytical

2.5.2.1. COCOMO method

This method was first proposed by Bohem in 1981 (Boehm, 1981). In his model,

Bohem defined the following factors as effective on costs of a software project:

1) Product's reliability

2) Product's complexity

3) Run-time limit

4) Main memory limitation

5) Machine availability

Univ
ers

ity
 of

 M
ala

ya

45

6) Analysis team's capability

7) Experience in developing applied software

8) Programming team's capability

9) Rate of using modern planning tools

10) Rate of using modern programming tools

In this method, the effect rate of every factor on the project is ranked from "low" to

"very high" and they are assigned certain weights. In this way, a matrix is generated in

which rows represent effective factors and columns represent their effect rates. Figures

representing the weight of every factor are written in the table. The method considers

numerous factors in estimations and hence it has a high error probability.

The general formula of this method is (Briand & Wieczorek, 2002):

PersonMonth = a(KDSI)b

Where "a" and "b" depend on COCOMO modeling level (simple, medium, detailed)

and the state of estimated project (organic, semi-detached, embedded).

In addition to basic COCOMO, there are also other models available for this method,

the newest of which is COCOMO II. This is a combination of "Applications

Composition", "Early Design" and "Post Architecture" models. In this model, the

exponent "b" of the formula changes based on factors such as project flexibility,

software architecture, risk conflict methods, coherence and effective relationships in the

project team. Besides, new cost factors are defined in order to integrate project

architecture and risk reduction.

2.5.2.2. Putnam's Model

The main specification of this method is the software equation defined as:

Univ
ers

ity
 of

 M
ala

ya

46

E = y(T) = 0.3945 * K

K = area under curve [0, 1) measured in programmer year

T = optimal development time in years

D = K / T2 difficulty

P = ci * D –2/3productivity

S = c * K –1/3 * T 4/3lines of code

Project accomplishment time, E, is an environmental factor representing development

capability. S is based on LOC and represents person-year in the project. E is a parameter

called "labor reinforcement" varying from 8 (for new software with high interface) to 27

(for rebuilt software).

2.6. Software development patterns

The current use of the term "pattern" is originated from writings of an architect named

Christopher Alexander (Alexander, Ishikawa, & Sara Ishikawa, 1977) who has many

books in urban planning and building architecture. In 1987, two researchers, Ward

Cunningham and Kent Beck (Beck & W., 1987), who were working on designing user

interface with Smalltalk programming language decided to use some of Alexander's

ideas to develop a 5-pattern small language. Later, Jim Coplein (Coplien, 1992) used

published results of the two researchers to prepare a catalogue of idioms in C++

language and published it in one of his books. Between 1990 and 1992 members of

"Gang of Four" (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides) met

each other frequently and tried to prepare a catalogue of patterns and introduced it in a

materialist workshop in 1991. In August 1993 Kent Beck and Grady Booch met in

Colorado, a meeting which formed the basis of Hillside group. Not long afterward the

famous book of Designing Patterns was published by the GoF (Gamma, Helm,

Johnson, & Vlissides, 1995).

Univ
ers

ity
 of

 M
ala

ya

47

Several definitions of pattern are presented in various texts. Generally, it can be said

that every pattern shows how a certain problem is solved through a specific solution.

But pattern is more than a solution and indicates that the problem in consideration

occurs in a certain context in which there are other interests. In fact, the solution

proposed by a pattern contains a type of structure which brings about a balance between

specific interests or constraints to present the best solution for a problem. A good

pattern:

• solves the problem - Patterns show the solution not guidelines or notions.

• is a proved concept - Patterns are proved solutions of problems.

• is not the evident and obvious solution - Many solution methods try to

differentiate solution and primary concepts. The best patterns develop indirect

solutions for a problem.

• describes a relationship - Patterns not only describe modules but also deepen

system's structures and mechanisms.

Patterns are generally divided into three classes but because of wide adoptions from the

book of "Gang of Four" (Gamma et al., 1995) and the fact that it is the first book on

architecture patterns, the focus has been on a certain type of pattern (namely designing

patterns) only. Every pattern in the field of architecture is called a designing pattern. In

addition to these classifications in architecture, other patterns are presented in the field

of software engineering and information technology (e.g. implementation through a

specific programming language and information system integration) to help use

successful experiences.

Every pattern has its own form which shows that pattern's specifications. The Gang of

Four (Gamma et al., 1995) presented a form for architecture patterns which is widely

Univ
ers

ity
 of

 M
ala

ya

48

used and is called "GoF form". Of course, there are also other patterns available but

mostly consent on some basic specifications which must be clear for the pattern in each

form. These include (Gamma et al., 1995):

• Name: Every pattern must have a specific name. Pattern's name allows a word

or a short term to be used to refer to the pattern, its specifications and the

knowledge it associates with.

• Problem: A sentence describing the intention of a problem considered by the

pattern. In other words, pattern problem concerns objectives and issues the

pattern is meant to address in a certain context or force. Most pattern forces are

in contradiction with objectives proposed in the problem.

• Context: A precondition under which the problem and solution seem to be

repeated and the presented solution fits the problem. Context shows pattern

application. In other words, context indicates an atmosphere in which the pattern

is repeated and pattern repetition means the frequency of problem and pattern

solution.

• Forces: A description of relevant forces and how they interact / contradict each

other and their considered objectives. In other words, a force is an objective

scenario applied as a reason for using the considered pattern. Forces show the

problem's difficulty and define a variety of equilibriums to be considered in

presence of forces and external stresses.

• Solution: Permanent relationships and dynamic rules describing realization of a

good result. In fact, this indicates certain commands which describe how

required working products are made. The descriptions may be associated with

images, charts and explanations on pattern structure, its participation mode and

Univ
ers

ity
 of

 M
ala

ya

49

colleagues. They also show how the problem is solved. Not only the solution

must describe a permanent structure but also the dynamic behavior. The

permanent structure shows the form and regulations of a pattern but usually it is

the dynamic behavior which resurrects the pattern. Description of pattern

solution may indicate guidelines to be considered or avoided while

implementing the real pattern solution.

• Resulting Context: System's position or configuration after pattern

implementation including results of pattern implementation and other troubles

and patterns which may occur in the new context. This step is sometimes called

"forces analysis" since it shows solved forces and those not solved or unable to

implement.

• Examples: One or more pattern applications in a certain context which show

how the pattern is implemented and transmitted to the resulting context.

• Rationale: It is the justified explanation of steps or rules in a pattern and

describes how and why the pattern, as a whole, solves its forces in a certain

manner and in consistency with desired philosophy, concepts and objectives.

The pattern rationale explains how forces and constraints coordinate to achieve a

harmony. In fact, this section suggests how the pattern really works, why it

works and why it is good. The solution component of the pattern may specify

visible structures and pattern's behavior based on appearance, but rationale

describes basic structures and key mechanisms of the inner pattern.

• Relevant Patterns: show dynamic and static relationships between this pattern

and others in that language or system. Most relevant patterns have common

forces, initial context and a text consistent with other patterns.

Univ
ers

ity
 of

 M
ala

ya

50

• Known use: As the name clarifies, this section states known uses of the pattern

and its applications in available systems.

Consequently, the patterns help to reuse solutions and prior experiences instead of

rediscovering them. In software development, various patterns are used such as

design, architecture, process, and project pattern. The process patterns are used to

make a process or a set of activities, actions, and work tasks in software

development (Khaari & Ramsin, 2010; Tran, Coulette, & Bich Thuy, 2007; Zhao,

2010). Often, the process pattern used to make a generic process involves the

common stages of development such as software design and, to make that, a set of

common activities or stages and their relations should be identified and determined.

2.7. Summary

In this chapter, major concepts in release planning, e.g. release planning methods,

requirements prioritization methods and resource estimation methods are discussed. In

addition, an overview of software development patterns is presented.

• There are some major methods for planning various releases, including ad-hoc

approach, planning game approach, incremental funding method, optimization-

based techniques, hybrid intelligence approach and lightweight re-planning.

• Requirements prioritization methods are discussed and categorized in three

major categories: Nominal scale, ordinal scale, ratio scale. In the nominal scale,

techniques are assigned to various priority groups, and all requirements in a

group have the same priority. Methods like numerical assignment, MoScoW and

Top-10 requirements are in this category. Methods of the ordinal scale lead to an

ordered and arranged list of requirements. Methods like Simple Ranking, Bubble

Sort, and Binary Search Tree are in this category. The ratio scale contains

Univ
ers

ity
 of

 M
ala

ya

51

methods like 100-Dollar method, Analytic Hierarchy Process, Hierarchical

AHP, Minimum Spanning Tree, and cost–value approach.

• Resource estimation methods focus on correct estimation of costs of a software

production. There are two categories of methods: non-algorithmic and

algorithmic. Algorithmic methods use mathematical models to estimate project

costs.

• Software development patterns are used to show how a certain problem is solved

through a specific solution. A good pattern can solve the problem, has a proved

concept, has more than the obvious solutions, and describes a relationship.

In release planning problem, the process pattern can be used and help it in three ways.

At first, the process pattern can break down the release planning problem to solvable

sub-problems. Breaking the problem to well-defined sub-problems can lead to smaller

and highly reachable solutions based on the circumstance (A. Jadallah, Al-Emran, et al.,

2009). Defining the process pattern for release planning and identifying the set of

activities and their relations can be a basis for improving the release planning process,

and the method of breaking can be based on a planning process such as H2W and

EVOLVE (A. Jadallah, Al-Emran, et al., 2009; Maurice et al., 2005; G. Ruhe & A. Ngo,

2004; Ruhe & Saliu, 2005a) or another new method. Secondly, a process pattern can

help to improve using past experiences. In comparison to Mohebzada (Mohebzada,

2012) and Ruhe and Saliu (Ruhe & Saliu, 2005a) that used past experiences by

recommendation system or direct human involvement in planning, process patterns use

the more specific experiences, because the planning problem is broken down to sub-

problems that are more specific. Thirdly, in each activity, best experiences (method) can

be used as a solution based on specific parameters that make the process pattern more

adoptable. Unlike most of release planning methods that cannot be justified or adopted

Univ
ers

ity
 of

 M
ala

ya

52

by project specifications, every activity of the process pattern can be adopted based on

project specifications and can lead to a more adjustable approach.

In the next chapters, current release planning methods are discussed and used to define

the process model of release planning. Also, requirements prioritization and resource

estimation methods are used to identify parameters to customize each step of the

process model. In addition, software development patterns are used to define release

planning patterns.

Univ
ers

ity
 of

 M
ala

ya

53

CHAPTER 3: SOFTWARE RELEASE PLANNING IN INDUSTRY

One of the most important issues of release planning is to explore challenges and

problems of the process in industries. Various challenges may occur in this field due to

time, budget and many other constraints. Most of the challenges can't be determined or

specified by systematic methods or available approaches. New challenges are faced by

software developers from an applied and empirical viewpoint. In general, when-to-

release decisions are often made ad-hoc based on business needs and project manager’s

experience (Ho & Ruhe, 2013). It can be said that the existing systematic methods are

not efficient without this empirical look or at least marginal problems specific to a

certain product or organization must be considered in software release planning. A

variety of papers are published on the subject, each of which investigates challenges

with a different look. Accordingly, this chapter contains two main sections:

The first section is an empirical study which explores available challenges in software

release planning. This is a qualitative approach and its main methodology is composed

of an interview with employees. In fact, the main objective is to investigate and find

release planning challenges, which are classified into two groups: human-originated and

system-originated. The second section studies the subject from companies' viewpoint

and categorizes available methods of software release planning considered by most

companies. It also examines how companies treat developing a new release from an

applied and empirical view. Here, their experience plays an important role.

In order to validate our approach, multiple case studies were conducted. The data were

collected using questionnaires. Direct interviewers have also been conducted with

representatives of seven software companies with different levels of software

development experiences. Results showed that experienced companies prefer to

improve their existing software products rather than creating a new plan. The reason for

this was the invaluable existing trust among clients or customers in their products.

Univ
ers

ity
 of

 M
ala

ya

54

3.1. Overview

Software development is a complicated process and requires careful planning to

produce high quality software. In large software development projects, release planning

may involve a lot of unique challenges. Due to time, budget and some other constraints,

potentially there are many problems that may occur. Subsequently, project managers

have been trying to identify and understand release planning, challenges and possible

resolutions which might help them in developing more effective and successful software

products. Although there are several approaches for release planning, which are used by

software companies to generate new releases, companies are still unable to determine

which exact methods are more suitable for their release planning.

Variety and significant increase of companies active in software release and

consequently the quantity of products bring about new challenges and confusions.

These challenges either have not been addressed by systematic approaches or have not

been accounted as a dominant parameter. This chapter includes two sections:

The first section presents findings from an empirical study which investigates release

planning challenges. It takes a qualitative approach using interviews and observations

with practitioners and project managers at five large banking software projects in

Informatics Services Corporation (ISC) in Iran. The main objective of this part is to

explore and increase the understanding of software release planning challenges in

several software companies in a developing country. A number of challenges were

elaborated and discussed in this study within the domain of banking software projects.

These major challenges are classified into two main categories: the human-originated

including people cooperation, disciplines and abilities, and the system-oriented

including systematic approaches, resource constraints, complexity, and interdependency

among the systems.

Univ
ers

ity
 of

 M
ala

ya

55

The second part investigates the methods companies use to plan for new software

releases and the approach they use. In this work, the current approaches used in the

software industry have been categorized in order to select the most appropriate

approach. In order to validate our approach, multiple case studies were conducted. The

data were collected using questionnaires. Direct interviewers have also been conducted

with representatives of seven software companies with different level of software

development experiences. Results showed that experienced companies prefer to

improve their existing software products rather than creating a new plan. The reason for

this was the invaluable existing trust among clients or customers in their products.

Doing so, they intend to improve their condition by increasing the reliability of the

software produced. These companies generally prefer to use systematic approaches,

when they come to decide for a development process. In contrast, newer companies

with less experience prefer to rely more on human experience for their releases. Newer

companies, therefore, are not able to foresee the future of the software market. These

companies do not just rely on systematic approaches for their development, but they

rather use the best available plans to produce good quality products.

3.2. Software release planning challenges in software development

Release planning is considered a company-wide optimization problem involving many

stakeholders in which the goal is to maximize utilization of the often limited resources,

of a company and turn them into business benefit (Ruhe & Saliu, 2005a).

Release planning can also be perceived as a decision for selecting important and

necessary features for a new product. Since implementation of all the features is

impossible in one release, we need to know which features should be implemented in

the subsequent release and which one can be further postponed. If there is no proper or

sufficient planning for a new release, ‘critical’ features might be delayed into the release

late in the cycle which might subsequently affect the overall release schedule. The

Univ
ers

ity
 of

 M
ala

ya

56

potential effect might result in unsatisfied customers, time and budget overruns, and a

loss in market share (Penny, 2002). Delivering software in an incremental fashion

suggests increased customer satisfaction and reduction of many risks associated with

delivering large software projects (G. Ruhe & A. Ngo, 2004).

Release planning for a new release of software includes assigning important

requirements by investigating time, resources, budget and constraints. Software release

planning is a complex task because many different factors must be considered in order

to have good quality software, and project managers always face many problems for a

new release. According to Ruhe and Saliu (Ruhe & Saliu, 2005b), the complexity of

release planning is partly due to the incompleteness and uncertainty of the information

that characterizes the problems. They discuss product release planning and use the word

“endless” to describe the challenges in any software development. This means that in

every software development project these challenges exist and there should be some

ways to manage and mitigate these problems.

Without a proper software release planning, software projects are prone to fail because

of the problems with new features that are not really necessary and urgent in a new

release. Generating a new release is difficult to plan and becomes even more difficult

with an increase in demand. Sometimes, a new release may have less efficiency

compared to the previous releases because of misunderstanding of challenges in the

process of coming up with a new release. This study explains the findings of an

industrial qualitative study in Iran, focusing on current practice and challenges of

software release planning in five large banking software projects.

Univ
ers

ity
 of

 M
ala

ya

57

3.2.1. Related Work

In large software companies, besides focusing on the main steps of software

development such as requirements definition, analysis, design, implementation and

testing, a plan for a new release is needed to make sure that the produced software is

able to cope with new demands and is able to evolve gradually with the increased

understanding of the developers and the users. The ability to be agile and aggressive in

the development team is becoming necessary to ensure that the product is able to meet

the ever-changing needs of stakeholders.

However, performing the release planning process is not simple. The tools and methods

that are used to support release planning are very intricate and complex. Since we do not

have sufficient understanding or even fundamental mechanisms that cover most of the

problems that may occur in this process, there is a necessity for a study to be performed

in this area. Empirical studies are a key way to gather information and move towards

well-known decision (Perry, Porter, & Votta, 2000). Surveys, experiments, case studies,

are examples of empirical methods that are used to investigate software development

processes. Empirical study is an attempt to learn something useful by comparing theory

to reality and to improve our theories as a result(Perry et al., 2000).

According to Ruhe (Ruhe, 2005), a release plan is influenced by several factors such as:

types of requirements, implementation strategies, urgency for the client, value for the

developing company, risk management and personal decisions. Investigation and

evaluation of these factors and proposed algorithms which can help us in decision

making is very important. There are also tools implementing these algorithms, a

comparison of them can be found in (Saliu & Ruhe, 2005b). These methods are based

on a number of variables to be estimated by experts. In its most basic form, customer

value and cost are estimated (Ho-Won, 1998), while other works consider more

parameters (Ruhe & Saliu, 2005a). There are varying definitions in the literature on

Univ
ers

ity
 of

 M
ala

ya

58

what constitutes the release planning problem. Ruhe and Saliu in (Saliu & Ruhe, 2005b)

have provided a set of key aspects for release planning methods to be able to compare

and understand them. Their paper describes ten technical and non-technical aspects that

are significant to provide an impact on release planning process. These aspects are a

useful guideline for us to evaluate our challenges as well as to identify ways to

overcome them. There are also various methodologies which aim at detecting release

planning problems from industry and academic research which are categorized in (Ruhe

& Saliu, 2005b). Saliu and Ruhe (Ruhe & Saliu, 2005b) discuss current challenges in

release planning, main characteristics of a release plan and present a form description of

a release planning process.

 According to Carlshamre (Carlshamre, 2002), there is always a possibility that

problems occur for a next release which are not predicted and are different in each

software development project. Carlshamre (Carlshamre, 2002) has classified release

planning as a “wicked problem”. The concept of a wicked planning problem was first

introduced by Rittel and Webber in (Rittel & Webber, 1984). Wicked problems are

difficult to clearly define and there is often no clear-cut solution to wicked problems.

For this reason, only a systematic approach can be used and we need human ability and

experience of professional practitioners in the world of software as well. Ruhe and Saliu

have discussed release planning from two different dimensions: art and science (Ruhe &

Saliu, 2005a). The art of release planning refers to human and his capabilities and the

science refers to the algorithms and methods. Based on their understanding, Ruhe and

Saliu have designed, implemented and evaluated a support tool for release planning as a

means of developing a rich understanding of the task.

Ruhe and An Ngo-The in (Ngo-The & Ruhe, 2009) proposed a systematic approach for

solving the wicked problem of software release planning and a new method EVOLVE+

for decision support for software release planning.

Univ
ers

ity
 of

 M
ala

ya

59

To facilitate the release planning process, Wohlin and Aurum have recognized the

importance of 13 criteria used in deciding when to include a software requirement in a

release (Wohlin & Aurum, 2005). They show the motivation for the criteria and that

there are indeed some criteria that are more important than others in the decision-

making process when deciding which requirements to include in a specific project or

release. Their work concludes that business and management criteria are ranked higher

than system criteria and that this is not an indication of this area being less important,

rather that there is a need for better tools and methods for addressing these issues. In

another related research, the importance of software architecture in release planning

process is investigated and release planning process is discussed (Lindgren, Norstrom,

Wall, & Land, 2008).

Based on the noted works in this area, this research focuses on a deeper understanding

of the release planning process. Hence, it intends to carry out an investigation to

identify challenges and problems in release planning process. The main objective of the

study is to explore the release planning problems and challenges in banking software

projects specifically in Iran. The findings might be useful for others to make

comparison and analysis with the current understanding of release planning process.

3.2.2. Research Design

Due to the fact that there are many problems and challenges in developing a new release

in software projects, this research has focused on challenges associated with five large

banking projects. Investigation of these challenges needs a proper and comprehensive

study on software projects. A qualitative case study is performed to understand and

identify challenges in banking software projects. Qualitative research methods are

useful when the purpose is to explore an area of interest, to obtain an overview of a

complex area, and to discover diversities and varieties rather than similarities (Robson,

2011). Qualitative data sources include observation and participant observation

Univ
ers

ity
 of

 M
ala

ya

60

(fieldwork), interviews and questionnaires, documents and texts, and the researcher's

impressions and reactions (Myers, 2009). It is also preferable to use a qualitative

approach when the aim is to improve the understanding of a phenomenon about which

little is known. This is due to the fact that the case study focuses on gaining in-depth

information (Hoepfl, 1997). The quality of a qualitative study relies on the quality of the

investigator (Robson, 2011). For this study, we interviewed 27 experienced software

developers, analysts and designers and 5 project managers. Release challenges and

problems with current release cycles, have been identified. This study consists of three

steps which are described in the following figure.

Figure 3-1: The Research Procedure

• Step 1: Interview practitioners in the software projects

In the first step, semi-structured interview (Robson, 2011) and direct observation

for data collection that included introductory and technical questions were

performed with project team members. This was done through discussion among

the interviewer and the interviewees. For each project, at least five persons

attended the interview, but the number varies in each project. The interviews

varied between 70 to 80 minutes in length. All their ideas were transcribed and

later sent to them by e-mail to be approved and verified. Summary of interview

questions are available in table A in Appendix.

Univ
ers

ity
 of

 M
ala

ya

61

• Step 2: Analyse and verify in group meetings

The second step was investigating and analysing data collected from step1 in three

long meetings with four project managers. Each meeting lasted between 120 to

180 minutes. In fact, the purpose of these meetings was to collect additional

information, as well as to verify and confirm the information gained from the

practitioners in the first step. Another objective was to obtain feedback from

project managers’ views. In this step, project managers’ experiences were also of

great value to us.

• Step 3: Re-analyse and identify the challenges

In this final step, we had a comprehensive view of all projects and their

characteristics. All data received in two previous steps were re-analysed and

challenges were identified. We found 12 challenges that were faced in the new

release process and were very important to all interviewees. All the staff agreed

that these challenges existed in their projects. Summary of the conducted

interviews is shown in Table 3-1.

Table 3-1: Summary of the conducted interviews

Project Name Interviewees
Interview

type
Additional

information
Damoon Project Manager Meeting -

Damoon System Analyst, Developer Individual
Sending e-mail to

get approvals

Saba Project Manager Meeting -

Saba System Analyst, Developer Individual
Sending e-mail to

get approvals
PKI /CA Project Manager Meeting -

PKI /CA
System Analyst, Developer,

Security Manager
Individual

Sending e-mail to
get approvals

EXIMBILLS Project Manager Meeting -

EXIMBILLS
System Analyst, Developer,

Designer
Individual

Sending e-mail to
get approvals

Univ
ers

ity
 of

 M
ala

ya

62

Project Name Interviewees
Interview

type
Additional

information
Islamic Loan

systems
Project Manager Meeting -

Islamic Loan
systems

System Analyst, Developer Individual
Sending e-mail to

get approvals

3.2.3. Software Projects

This research was conducted in five banking software projects in Informatics Services

Corporation (ISC) Company in Iran. ISC was established in 1993 and a new phase of

renovation and modernization of different sections in the banking system started in this

company. In this section, projects were selected based on the team size and the number

of releases in each project. These projects have had at least 8 members and developed at

least 2 releases. Table 3-2 shows the projects descriptions as well as their applications.

The old deficient structure of banking system was transformed to an efficient new one

through the executive and technical power of ISC.

Here is an overview of the five projects that are still under development and have

produced a few releases so far:

A. Project 1: Damoon

The PGS (Payment Gateway Solution) system is for both internet shops and offline

shops. In case of an internet shop, it allows to set up a work place for credit card

payments operator. When used in offline stores, it would be a good replacement for a

regular POS machine for more modern payment terminal. The main functionalities of

the systems are:

• Credit card transactions with manual data input using the keyboard;

• Credit card transactions using the second magnetic strip

(provided that the PC has a reader connected to it);

Univ
ers

ity
 of

 M
ala

ya

63

• Getting cardholder information from PGS SYSTEM server provided that the

cardholder is registered with PGS SYSTEM or has purchased earlier paying

through PGS SYSTEM;

• Processing transactions data locally without requesting from the PGS SYSTEM

servers.

B. Project 2: Saba

Internet banking systems (Saba) is a web-based Banking Application developed by ISC,

on an Intranet/Internet environment. An intranet/internet banking application could be

part of an e-banking application. In e-banking applications, the users can perform their

banking needs through different kinds of channels, such as Mobile, ATM, POS, etc.

internet banking systems. Currently, it can interact to any Retail Banking Systems and

deliver appropriate transactions.

C. Project 3: PKI (public key infrastructure)

At present, many on-going processes are transaction-oriented. Transactions in the

broadest sense of the word cover the elementary messaging for processes like Internet

banking, B2B and B2C exchanges, online notary services, e-invoices, online tax

declarations, etc. All of these business processes can be handled faster and more cost

effectively electronically. Not only for security and privacy reasons but also because of

government regulations, it has become increasingly important to guarantee the

authenticity and integrity of these transactions by means of digital signatures.

Performing transactions electronically can be a huge cost saver compared to traditional

paper based procedures. It can also yield better and faster results and thus lead to higher

customer satisfaction. Several industry and government initiatives stimulate businesses

to increase the level of automation in their internal and external processes. Well-known

examples are Bolero.net for global trading and Identrus and Swift TrustAct for global e-

commerce.

Univ
ers

ity
 of

 M
ala

ya

64

On the government front, the European Council has prepared a new directive on VAT

and invoicing that enables companies to replace paper based invoicing with exclusive

electronic invoicing even for cross-border transactions. Electronic signatures are

explicitly mentioned as one of the means to implement such a system. Although less

fancy than other applications, e-invoicing is easier to implement and yields an

immediate and predictable return on investment.

D. Project 4: EXIMBILLS

Trade Finance Systems (EXIMBILS) is an integrated system that audits and automates

the complete cycle of trade finance transactions, in real time and in accordance with

SWIFT and UCP standards. This allows for a rapid yet comprehensive installation for

banks wishing to implement on a strict time scale. The system is able to save bank's

time and money by straight processing to automate the creating of records from

incoming SWIFT messages, passing accounting entries, producing customer advices,

and making payments with little or no user intervention.

E. Project 5: Islamic Loan systems

Islamic Banking is now well into its stride and there is no longer any doubt that it has

earned a respected place in the world of banking. Some leading international

organizations, including the International Monetary Fund, have carried out extensive

research in order to understand and evaluate the characteristics of this newly established

banking practice. Islamic Banking, which bases itself on the principle of fair profit

sharing and claims to be the most stable method of banking, provides a range of deposit

and loan products to its customers.

Although there are similarities between Islamic Banking practices and the traditional

western banking methods, the principles lying behind Islamic products as well as the

technicalities involved in the day to day business are entirely different. This stems from

Univ
ers

ity
 of

 M
ala

ya

65

the fact that Islamic banks do not regard their customers purely as their creditors or

debtors. An Islamic bank customer participates in all investment activities of the bank

and shares the profits as well as the business risks involved. A certificate of deposit is a

document of participation and investment and not purely a debt-reclaim document. A

loan granted to a customer is regarded as an investment, which involves risk, and not a

debt burden on the customer.

The Islamic Loan Products cover a range of customer financial requirements including

consumer loans, commercial loans, mortgages, corporate loans and investments. They

are divided into some major categories, which may differ from bank to bank although

the main principles and procedures remain unchanged. The main categories, referred to

as “Aghd”, are “Ghard-Ol-Hassane” , “Mozaribbe” , “Morabehe” , “Joale” ,

“Moshareka” , “ Ijare” , and “Salaf” .

The widespread use of Islamic Banking both in Islamic and non-Islamic countries has

created demand for computer based systems supporting Islamic Banking procedures.

The traditional retail banking systems, which mainly cover the western banking

products, do not encompass the requirements of an Islamic bank. The deficiencies of the

existing software systems have forced Islamic banks to invest heavily on improving the

traditional systems. However, this has not proved successful mainly due to the nature of

the Islamic Loan products. On the other hand, modern international banks with local

presence in Islamic countries have recently shown an interest in Islamic transactions and

products. However, their limited knowledge of Islamic banking has hindered a powerful

competition with local banks. The software projects and their application areas are

introduces in Table 3-2.

Univ
ers

ity
 of

 M
ala

ya

66

Table 3-2: Projects and their application areas

Project Name

Number of

project

members

Application

domain

Number of

releases

until now

End users

Long-

term

planning

Damoon 8
Internet payment

systems
2

Banks and

financial institute
Yes

Saba

15

Internet banking

systems

6
Banks and

financial institute
yes

PKI /CA 12
Public Key

Infrastructure
2 Central bank yes

EXIMBILLS 18
Trade finance

systems
2

Banks and

financial institute
yes

ILS 26
Retail banking

systems
9

Banks and

financial institute

and central bank

yes

3.2.4. Challenges identification

In this study, the objective is to find and understand problems and challenges that team

members and project managers usually face in the process of release planning. As it was

mentioned earlier, this study includes three steps. In the first step, we had several face-

to-face interviews and discussions with the team members, e.g. developers and

analyzers, those who were inside the system and those who were in close contact with

the system. In this step, we interviewed 27 interviewees and issues about development

process and possible problems faced in release planning were discussed. Then,

interview transcripts were refined and e-mailed to all the interviewees to be verified.

During the interviews, two researchers were involved to ensure that the researchers are

able to verify their collected information.

In the second step, interviews were conducted in three meetings with five project

managers in which researchers verified the data collected from the first step and tried to

identify release planning challenges related to the outside environment of the system.

Besides, discussions were done on the requirements for durability and sustainability of

Univ
ers

ity
 of

 M
ala

ya

67

the systems. In this step, experiences of the managers and their concerns about the

future of the systems were identified and illustrated in Figure 3-2.

The final step was about re-analysing and investigating the findings of the two previous

steps to identify the challenges shown in Figure 3-2. For the identification process, all

related transcripts for each step were compiled and arranged in a readable format as

seen in afore-mentioned table.

Having an accurate project deadline means schedules can be planned. One of the most

important factors both for the team members and the managers was discussing the

deadlines for the future releases because it cannot be decided easily and estimated with

accuracy and this estimation can trigger problems for the personnel. Sometimes, the

managers were very strict in deciding on the deadlines because of the pressures from the

organizations. They believed that the time of a new release was of importance because

of the tough competition and the high demands of the stakeholders.

Proper communication and coordination among the members is significant in successful

software development process. In the meetings with managers, they mentioned that

communication and coordination are among the most important elements for the success

of the product.

Chatzoglou in (Chatzoglou, 1997) discusses that a lack of resources i.e. people

involved, time and money as the requirements of the activity. Lack of resources

including human or financial was also discussed in meetings, but the discussions were

more on the human resources. The survey by Hall et al. (Hall, Beecham, & Rainer,

2002) also confirms that lack of skilled personnel is one of the organizational problems

in the process of software development. Lack of experienced and know-how personnel

has a great impact on the release time in the future and sometimes it has been observed

that because of this problem the new release may be delayed for a few months.

Univ
ers

ity
 of

 M
ala

ya

68

Ruhe and Saliu (Ruhe & Saliu, 2005a) mentioned that complexity is one of the

difficulties in release planning. Complexity and constraints of the system are of the

factors seen in every software development project and members know that there is no

systematic approach to solve it. In this study, during the discussion with the members,

creative and experimental approaches were suggested as possible ways to tackle these

problems. Most of the managers agreed that they could not avoid the inherent

complexity of the software system and the complexity can result in delays of the future

releases.

Another challenge is in terms of the interdependency of the systems and the related sub-

systems in a web-based project, especially banking projects. This is one of the main

topics discussed in the interviews and meetings since a few of these systems are almost

ready to be utilized but are delayed to be installed due to their non-adaptability with the

related systems.

Identification and discovery of significant new features for a system which would be the

base for new releases was also one of the major challenges to the team members and

managers. There is always this question that how we can spot important features and

prioritize them for future releases. Managers defined systematic approaches and tools as

the basic way to cater this question. In all projects, some were worried about changes in

strategies and lack of clarity in the goals. Sometimes, the pressure on staff for

generating a new release was regulated due to the importance of the project, and

sometimes the same project was halted for a long time. Many of these strategic changes

were devised by the top level managers based on certain organizational policies which

the team members were not aware of and may result in problems for the new release.

Ruhe in (Saliu & Ruhe, 2005b) has mentioned stakeholder involvement as one of the

key aspects for release planning. Although there are many stakeholders who are

Univ
ers

ity
 of

 M
ala

ya

69

interested in the content of the release, the definition of stakeholder is different for

different organizations. These types of different definitions will be further discussed in

the next section.

Most of the time, manager is the main person in charge and has the full responsibility to

think about the future of the products. Their concern is that the new release should have

better quality and performance. Therefore, they need to foresee the future of the product

and decide whether the new release can cover all the inefficiencies of previous releases.

In our meetings with the managers, they mentioned that they usually paid special

attention to the process of the development of projects. Most of the managers already

had regular weekly and monthly meetings to evaluate the tasks of the personnel so that

they are able to keep track of the project’s progress. They should be the first one to

know if anything goes wrong with the project. The following figure shows the topics

discussed in each step.

As it was previously shown in Figure 3-1, the first step is the interview in which

challenges in projects are identified first, and then analyzed and verified in meetings

with managers. Finally, these challenges are re-analyzed and categorized for every

project.

Figure 3-2: Challenges during the discussion, interview and meeting

Univ
ers

ity
 of

 M
ala

ya

70

3.2.5. Challenges identified in industry

A satisfactory release for software can be attributed to a well-organized and planned

process. Software quality can be achieved through identification of real software defects

and adding suitable features for the new release. This section presented the challenges

identified during re-analysis in step 3. The twelve challenges presented in the following

section are the findings from the discussions and the analyses made in the study.

Projects and all their characteristics are available in Appendix A, Table B.

3.2.5.1. Target time of releases

One of the most important questions that project managers are challenged with in

release planning is when to release the next software version. The time from when the

software is conceptualized until it is being available for new version is important to be

planned to ensure that the software is not outmoded in more than one release. This time

refers to the time needed for a new release of product or project, and setting this period

of time effectively is a particularly crucial ingredient in a successful release plan. The

challenge is to determine an acceptable time of release for a project.

All the interviewees were mainly concerned about time scheduling and one of the

developers mentioned that he always faced problem with the amount of time allocated

to him to finish his work. Setting time for release planning can be with fixed intervals or

flexible ones. For some projects, this time is fixed and pre-determined and in others, it

is flexible or based on new demands or the condition of the project.

In Damoon project, the time for release is fixed and is determined twice a year. Based

on the new requirements of the users, a new release is provided. In Saba, the release

time is considered crucial and it is determined to be three times a year. Three new

releases have been provided annually and so far they have had a total of 6 releases based

on their customers’ requests.

Univ
ers

ity
 of

 M
ala

ya

71

The release time for PKI/CA is fixed and is once a year. Its project manager intends to

concentrate more on security aspects for each new release, because security is one of the

most important considerations in this type of projects. In EXIMBILLS, the time of new

release is flexible and depends on many factors. Creating a new release for

EXIMBILLS is based on new functions and new requirements of banks and Swift

organizations. There are many functions planned in this system that must be

implemented in the future. In the ILS, a new release is flexible due to the changes in

rules and regulations. For this project, they have already made 9 releases. To set the

target time of releases is so much dependent on many realistic factors of the projects.

Hence, the manager has to be aware of and sensible to the project they are handling.

3.2.5.2. Cooperation and discipline among project team members

During the group meetings, one of the shared concerns among project managers was the

lack of proper cooperation and discipline among different members of a project team.

Some of the developers show little interest in making a new release. The developers

may not feel the need for a new release directly because they are not the main users.

Most managers agree that if their team members or the developers are not able to work

together and harmonically, they may have difficulties in meeting deadlines. Many

problems may potentially arise due to the team disability to work together. Therefore,

trying to improve on the cooperation and discipline of the team will be one of the

important and crucial challenges in release planning as well.

In Damoon project, the developers did not get on very well together because of

insufficient information about the requirements. Hence, to improve the situation more

regular meetings with project managers were conducted to obtain more information

about these requirements. This makes it possible to build a better relationship amongst

them as the project progresses. In Saba project, the cooperation among developers is

well-maintained due to the clarity in the definition of requirements. During the

Univ
ers

ity
 of

 M
ala

ya

72

interview meeting, the project manager of Saba told us that Saba is one of the successful

projects at ISC and he is satisfied with all the members’ work and behavior. He

attributed the project success to the cooperation and the discipline of the project team

members. In this project, the number of releases is 6, as it is shown in Appendix A table

B. In PKI /CA, the cooperation and discipline of development team is satisfactory. This

might be due to the fact that the project is new and the team is following the manager’s

instructions accordingly. In EXIMBILLS, enthusiasm among the members was not

satisfactory and the work flow was very slow due to the lack of qualified staff which led

to employment of new members. As the literature indicates, new members take some

time to get used to the company’s procedures and methodology. This slows down the

software development process as a whole. IILS project is having a similar problem as in

EXIMBILLS but for a different reason. In IILS, the problem is that changes during the

construction phase are time consuming. It is a large project with a large number of staff

and cooperation among all of the members is not that well. The management is taking

extra effort to ensure that the project team members are able to work cooperatively

together. At this point in time, ILS project is still struggling with the problems and still

looking for ways to increase cooperation among its team members.

3.2.5.3. Resource constraints

One of the main issues that all of the interviewees complained about, was the problem

of resource constraints. If the needed resources are available in abundance, the project

duration can be shortened to achieve a new release. On the other hand, if the needed

resources are severely limited, the project is more likely to be delayed. When a new

requirement or feature is decided and planned for a next release, many constraints like

time and effort must be faced and planned. Resource constraints are clearly a key aspect

of release planning (Ruhe & Saliu, 2005b), since without considering resource

constraints the consequence would be an unrealistic release. In all these projects, there

Univ
ers

ity
 of

 M
ala

ya

73

were no serious financial constraints, because most of the customers were banks and

government institutes but sometimes payments to the client companies were delayed

due to some avoidable circumstances. In Damoon and Saba projects they face expertise

constraints. The projects have difficulties trying to find required expertise in the area.

Project managers believed that they were “always behind technology” in these two

projects. In EXIMBILLS, there is always the risk of being behind the new version of the

system software, because EXIMBILLS is a new Trade Finance system for Iranian banks

and it is not yet fully understandable in their requirements and directions.

In the PKL/CA project, the project manager perceives that the project’s security aspects

are hard to attain and achieve. Thus, the project manager is always willing to increase

his investments to improve the overall security aspects of the system. Unavailability of

the new technology was one of their problems in this area as well. In ILS because of the

complexity of the systems, every change needed a lot of budget and time, either from

financial or human resources aspects. The project manager is scared of new changes and

sometimes tries to keep the old system. Developers always feel that they are working in

an old technology environment and they wish either to change these old technologies or

leave the project.

3.2.5.4. Unclear objective of the system

The objectives as stated in (Saliu & Ruhe, 2005b) describe the desired properties for a

product, or stated differently, the goals of the product. Sometimes these objectives are

related to a project strategy, features, content, quality, aims and satisfaction. In many

large software projects, the ambiguity in the objectives can lead to many problems in

generating releases. Unclear project goals and objectives, and frequent change of the

objectives during the project are key factors in failures for release planning.

Univ
ers

ity
 of

 M
ala

ya

74

In Saba, the managers, initially were not sure of how secure their system would be. The

reason was that the system was supposed to be the first Internet banking solution to be

used in Iran and there happened to be many new changes which were unpredictable and

unplanned for at the beginning of the project.

The bank which will be using the system is actually the largest bank in the country with

over 40 million customers. So, many uncertainties and worries arise around the project

that can lead to a poor progress. Like Saba, Damoon faced some changes in objectives

which were not planned before. In Trade Finance (EXIMBILLS), all operations were

performed manually in Iran before implementing this system. Therefore, they always

fear the risk of customer dissatisfaction or reactions to the system. At this point, the

project is expected to face many changing objectives which might be driven by the

customers’ responses to the system.

The stakeholders of ILS project have so much concern about its return on investment

(ROI). At the same time, the project has many requirements which are changing

regularly and the rules and regulations set by CBI are constantly being modified.

Therefore, the project management has to endlessly put lots of man/days effort to ensure

the project is able to meet the demands. ILS project eventually managed to break even

financially this year. In PKI/CA, the security risks are always the main issue in the

system, as the project management is not very sure how complete the project’s security

requirements are set up.

In general, it can be observed from the projects that frequent changes and unclear

policies and strategies of the system can cause hindrance and difficulties in the process

of development of future releases.

Univ
ers

ity
 of

 M
ala

ya

75

3.2.5.5. Project monitoring by managers

One of the main concerns of the managers in all these projects is monitoring the

progress of the projects. It is crucial for project managers to have an accurate progress

report to make release planning successful.

Almost all the project managers believe that project monitoring would have a

significant effect on the quality of the new releases. The important element is the ability

to identify or recognize a problem in software development process. Once a problem is

detected, it can be tackled and it can be no longer present in the new release. If the

monitoring is done properly and thoroughly, achieving the final goal would be much

easier.

In all projects, after constructing a Gantt chart, the project managers is responsible to

update the tasks and if any of the tasks are behind schedule, the required resources are

called to overcome the shortfall.

The monitoring process in Damoon and Saba was taking place on regular weekly basis,

with the exception that in Saba the resources could be modified according to project

needs. In PKI/CA, that process was done regularly on a monthly and occasionally every

two weeks. In EXIMBILLS, since it was a new system and the system’s main structure

was not defined yet, there was no fixed schedule for the monitoring or reporting

process. In ILS, the monitoring process was regular and was performed once a month.

In short, project managers monitored the work progress in order to evaluate the flow of

the project under development, with the aim of improving future project functionalities.

The managers emphasized that project monitoring was a challenge and the monitoring

process helped them tremendously to plan more easily for the next release.

Univ
ers

ity
 of

 M
ala

ya

76

3.2.5.6. Complexity of the system

One of the important hindrances that can delay or cause problems in large projects for

delivering a new release is the complexity of the system. This complexity can be innate

and is usually seen in most large software projects. Most project complexities cannot be

eliminated completely and can only be reduced. Sometimes, technical constraints can

also cause complexity. Technical constraints refer to any of a number of technical issues

and obstacles that will impact the new release. For example, a company might be trying

to connect many banking branches to a central location via links and this can produce

complexity to the system. Size of the project is another concept that affects the

complexity in each system, because some projects may have hundreds to thousands of

features.

In Saba project, the complexity of the system increased due to the need to connect the

application server to the mainframe running on COBOL/CICS/IMS environment.

Project managers strived hard to decrease this complexity by using the IBM CICS

Transaction Gateway (CTG).

This connection problem was also observable in Damoon. In Trade Finance, no big

complex issue was found in the system as the platform was on PC environment and the

connectivity to mainframe was always on batch mode and via file transfer (FTP), but

the swift messages in EXIMBILLS were not received on time. The complexity in the

ILS was in its data base. They had two choices; one was to use the existing IMS and the

other was to use a better and new engine such as Oracle, DB2 or Informix. Eventually,

they decided to use the DB2. In PKI /CA, the complexity was the construction of the

security room for their system as the room must had been designed in a particular

setting and arrangement with specialized software and hardware platform with high

level of security in mind. As it was a new platform they always felt the risk of things not

going according to plan. PKI /CA is one of the largest projects in Iran with a lot of

Univ
ers

ity
 of

 M
ala

ya

77

requirements and new demand features, and this cause the project’s complexity. This

complexity is expected to delay the new release for a few months and even a year. For

this reason, an innovative solution to decrease these complexities is required.

3.2.5.7. Foreseen future releases

Most software projects in long-term development process require new features or

requirements that cannot be implemented in one release and must be considered for

several future releases. In this case, pro-activity is needed to ensure a successful release

planning in the future and it is advisable to have a plan for later releases. It has been

observed that planning for only one release (i.e., next one) is usually not enough

(Carlshamre, 2002).Sometimes, stakeholders’ features may not be considered in the

next release and a planned schedule is not available. This may result in dissatisfaction,

so it is advisable to plan in advance for two or more releases to provide a clearer picture

to the stakeholders.

Hence, necessity of current release management that is able to predict the issues and

requirements in following releases arise. For example, there can be customer requests

that can impact a release project, such as, the need to add more features or

functionalities required by a specific customer.

In all projects, planning for the future is considered difficult for project managers due to

many uncertainties in the industries and, more specifically, banking projects are greatly

affected by customer and banking demands. One of the professional developers

mentioned the uncertainties by saying that their prediction is subject to change every

day. For Damoon project, the plan for one release ahead is always on calendar and the

stakeholder knows about the details of the next release. For the personal Internet

banking solution, Saba has also one release ahead and similarly the stakeholders know

the details of the coming release. In PKI /CA, as the project only has one release a year,

Univ
ers

ity
 of

 M
ala

ya

78

the details are usually set by CBI and that is a well-known fact to all. Due to the

flexibility and the newness of the releases in EXIMBILLS, no exact calendar is set and

the project rolls out the releases whenever the timing is considered right. This situation

is true for ILS too because of its flexible nature. However, most managers agree that it

is much easier to plan for releases if the schedule is set ahead of time or there is a set

direction towards producing several releases within the specified time.

3.2.5.8. Stakeholder involvements

A stakeholder is a person or group of people that may significantly influence the

success of a project. It is clear that the stakeholders are interested in having their ideas

being considered in the contents of a release. Thus, the presence of the stakeholders and

trying to attend to requirements is effective in a new release. For all these projects, there

are three types of stakeholders involved.

The Steering Committee meetings involve three people from the customers’ side and

three from developer’s side. The meetings take place once a month and the strategic

planning and resource planning for the projects are usually discussed there.

The Operational meetings usually take place once every week and in these meetings

they discuss how to finalize the new requirements and how to reach the deadlines.

The Technical meetings usually happen whenever is needed and sometimes twice a day.

In these meetings, they discuss the technical details of the requirements with the

customers and business analysts which are usually from the customers’ side. As

illustrated in Appendix A, the main customers for these projects are banks and

governmental organizations. Damon Project is an Internet shopping project with

Saderat, Melli and Mine and Industry Banks as the major clients. These banks use the

users and customers’ viewpoints to improve the system. Saba project, an Internet

Banking project in terms of banking transactions that are performed via a secured

Univ
ers

ity
 of

 M
ala

ya

79

Internet application, is running in Melli, Export and Development, Mine and Industry,

and Saderat banks. Central bank of Iran with the most foreign transactions in the

country uses PKI/CA to do so. EXIMBILLS which is foreign currency software is used

by Saderat and Melli banks for their international transactions and trades. It can be said

that all the foreign currency transactions in the country are done by these two banks and

this system exclusively. Melli, Export and Development, Mine and Industry, and

Saderat banks use ILS for their financial requirements.

In fact, there are generally three levels of stakeholders who are important to be

considered as inputs to future releases. The first ones are developers and creators of the

system. The second ones are banks and their experts whose opinions are very important.

The third level is the customers and users of the banking services. Customers of each

bank are shown in table B of Appendix A. Hence, it is critical to ensure there are

sufficient involvements of stakeholders in the project development. The involvement

will not only ensure the valid requirements have been understood but also enables better

planning for the progress of the project and more specifically better plan for future

releases.

3.2.5.9. Interdependency among systems

 Many web applications are interdependent to each other. When looking after older

applications or creating new ones, it seems very difficult to synchronize a system which

relies on other systems. For example, a finance system depends on the wage and salary

system, etc. Therefore, one of the important and considerable issues in a new release is

to fully investigate and understand the relationships among systems and the related sub-

systems. Most of these systems and sub-systems have to work integratively within the

new release.

Univ
ers

ity
 of

 M
ala

ya

80

In Damoon and Saba, the interdependency among systems is high due to online/real

time connections and interfaces to other systems such as card and core banking system.

So, the understanding of these relationships and their mapping to the new release is of

high importance.

In PKI/CA, the dependency degree is low due to its being a closed system. In fact, these

systems are somehow independent and their transactions are not related to other

systems. In EXIMBILLS, the dependency is medium. Only one interface is in existence

and that is to General Ledger (GL) system. Dependency in ILS is high because the

existing interface is with five other systems which cover customer financial

requirements including consumer loans, commercial loans, mortgages, corporate loans

and investments. Therefore, we can conclude that most large software projects which

are related to other systems and sub-systems require full synchronization and adoption

to those systems for generating a new release. This is actually a great challenge to

project managers in terms of systems understanding and cooperation of various entities

of the system. Producing a new release in this context usually requires not only

cooperation from the technical groups and managerial people of the system but also full

support from the users of the system.

3.2.5.10. Prioritization of requirements or features

Prioritizing requirements can be seen as the process of deriving an order relation on a

given set of requirements, with the ultimate goal of obtaining a shared rationale for

partitioning them into subsequent product releases (Perini, Susi, & Avesani, 2012).

A project manager has to balance the project scope against the constraints of the

schedule, budget, resources, and goals. One balancing strategy is prioritization to drop

or postpone low priority requirements to a later release when there are new, higher

priority requirements. Therefore, it is very important to decide what the prioritization is

Univ
ers

ity
 of

 M
ala

ya

81

based on. Different prioritization techniques can be used in different projects depending

on different parameters. In release planning tools, there have been a few techniques

used for prioritizing the requirements. Some comparisons are made in (J. Karlsson et al.,

1998). Requirement prioritization is used in software release planning for assigning

which candidate requirements of a software project should be included in a certain

release. When customer expectations are high, time is short, and budget is limited, you

want to make sure the product contains the most necessary features only. So, it is

important for managers to prioritize what to include in a next release. The team must

collaborate on requirements prioritization. Damoon, Saba, EXIMBILLS and ILS are

Customer centric. They allow the customers to dictate the priorities for the projects’

requirements. These projects have many customers or end users for their banking

operations, so the customers’ demands are high and the necessity of prioritization is

considered important.

PKI/CA project is more government centric. The government always has the upper hand

in dictating the priorities. This system is crucial for Central Bank of Iran and hence they

have the first word in setting the priorities. The project manager mentioned to us that

usually during the meeting with the Central Bank, the bank will instruct them on what

to do and the development team has to follow the orders obediently.

3.2.5.11. Supporting old releases

One of the issues that always worry project managers is the capability of a new release

to support older releases. Most of the time, it is expected that a new release is expanded

to cover all of the previous releases.

However, there are occasions that the new releases are less efficient than the older ones

and the users might find out later on and demand to use the old releases. Therefore,

managers are always striving to have the best possible features in the last release.

Univ
ers

ity
 of

 M
ala

ya

82

Usually, a new release is produced when there are many requests or requirements made

by customers on the product. As a result, the teams may suggest bundling the

appropriate features together and then constructing a new release to be deployed. On the

other hand, according to the project managers, whenever there is a new release many

possibilities might occur even though many testing and quality assurance procedures

have been performed. The most concerning issue is to ensure that a new release always

supports old releases.

3.2.5.12. Software support tool for release planning

Release planning is a complex process which needs intensive human expertise and

knowledge. It includes many demanding tasks like resource estimation and setting

objectives in release plan generation and decision making. These tasks altogether call

for an intelligent tool support that would be of great value to a project manager who is

making release decisions.

Most project managers agree that the whole process of preparing, constructing, resource

allocating and so on are very formidable tasks that need to be well planned to be

executed. Most of the time, they do not have a proper tool in order to assist them in

these difficult operations. Most managers are looking for some support tools to assist

them in this process. Many of them believe that software tools might give them extra

advantages to possibly create a more effective plan for their releases.

3.2.6. Discussion and validity of results

This section is divided in two parts. The first part presents our experience and view

from qualitative research in banking projects and the second part discusses the threats to

the validity of our research.

The qualitative research approach is usually used for the investigation of social

phenomena or, in other words, situations in which people are involved and different

Univ
ers

ity
 of

 M
ala

ya

83

kinds of processes take place (Dyba, Prikladnicki, Ronkko, Seaman, & Sillito, 2011). In

software engineering that includes various domains for developing a software product,

evaluation of every domain can give us some new insights and experiences. Thus, it is

advisable to always go searching for new knowledge even though some of these

findings cannot be generalized for all situations. In this study, banking software projects

were investigated and a group of people were interviewed with regard to their

experiences. We performed two rounds of interviews to provide us with different points

of views and at the same time to increase the reliability and validity of the study. After

performing the interviews and data collection, the data transcripts were almost 60 pages.

The 12 challenges which were identified were later categorized into two main categories

as seen in Figure 3-3. The first category is referred to as human-oriented challenges,

which are related to stakeholders, customers, their duties and their cooperation, and the

way the tasks are done. The second category is referred to as system-oriented challenges

that are related to problems and the issues of the developed system, e.g. limitations and

complexities. The duration of the time for a new release, which was introduced as the

first challenge, can be grouped into both of these categories.

Figure 3-3: Categorization of the challenges

As we observed earlier, nearly all the challenges found in software development

projects come under these two groups. In the first one, which is related to human,

Univ
ers

ity
 of

 M
ala

ya

84

people and their attributes have a significant impact on software release planning. Some

of the roles which are performed by humans involved in release planning, like

functional analyst, development lead, and quality assurance are very complex. Tasks in

which they perform require innovation and previous project experience. As we

acknowledge, innovation is a difficult ability to be measured and to be defined. Hence,

these tasks which are essential in release planning are obviously difficult and might

suggest to the research community to perform more studies to identify ways to facilitate

these activities or tasks. From another aspect in the second group which is related to

system, many challenges with regards to inherent qualities of the system and the

environment are identified. Similarly, system and environment understanding requires a

more systematic approach and support tools to be used. These two categories of

challenges might lead the practitioners and the research communities to explore more

opportunities and ways in order to overcome these challenges in the future with the aim

to produce better quality product releases.

When a researcher performs a qualitative research, he or she must pay attention to the

validity of the research. There are many different ways of establishing validity,

including: interviewer corroboration, negative case analysis, and conformability. Most

of these methods were described by Lincoln and Guba in (Lincoln & Guba, 1985).

Validity of the result needs to be examined by introducing proper counter measures. We

have followed the recommendations by Yin (Yin, 2003) where he has chosen four

possible ways for the validation. The first one is referred as construct validity. In this

case, this study used two main researchers for interviews and discussions in order to

reduce misconception or misunderstanding of the information gained from the

interviewees. After each interview, both researchers and interviewers sat down to

discuss the data and information gained. Resolution in terms of terminologies or words

used by the interviewees was discussed. Data were collectively gathered and organized

Univ
ers

ity
 of

 M
ala

ya

85

by both researchers. Unclear data were also discussed and resolved before the next

meeting with the interviewees.

The second important measurement was trying to demonstrate the internal validity of

the study. There was always a meeting with project managers to confirm information

from step 1. In this second meeting, the interviewees (developers) were not invited. This

was purposely planned to counter check the validity of the data gathered from the

developers. In step 3, the researchers re-analysed the data collected from step 1 and

added in the data or information gathered from the project managers in step 2. The third

validity measure is to show the reliability of this study. The first author actually is a full

time employee in three of five projects from 2005 to 2007 at ISC. The author has had

the opportunity of recognizing the issues that have been raised by project managers and

developers in the projects. The author was aware of the possible problems in many of

the projects. These entire have, in a way or another, helped to increase the external

validity of the study results.

3.2.7. Conclusion

This study has presented 12 challenges in a release planning process from banking

software project domain. Due to the fact that there are many different aspects to be

considered for a new release, this study is conducted with the aim to better understand

and identify main challenges faced by people in development teams.

Some of the challenges can be considered common problems faced by software

development teams and some are quite rare. The study also exposes that there are cases

in which, a new release is not always better in functionality than the older ones and may

even have more problems than the previous release. This circumstance might indicate

that there are certain unresolved issues in the release planning process. Even though, the

findings of the study are not generalizable to all release planning processes which are

Univ
ers

ity
 of

 M
ala

ya

86

taking places in other companies, the findings can at least provide us with the possible

understanding that these problems might occur during the process. Essentially, this

study is able to identify 12 challenges and those challenges are divided into human-

oriented and system-oriented categories.

Although these identified challenges have been observed in special domains (i.e.

banking), the present study can be investigated further by increasing the number of

sample projects in order to spot more detailed challenges in other areas from both

human and system point of views. This work can be a useful guide for release planning

process in order to have an improved product and more satisfied customers.

In the next section, we tried to find how companies deal with developing new releases.

For instance, how do younger companies, which are less experienced, decide for

developing their new releases? Do they choose systematic methods or decide according

to the views of their managers and experts?

3.3. Companies’ Approaches in Software Release Planning

Nowadays, numerous methods of release planning are available in software companies

each of which use methods based on their own viewpoint. Despite this, managers still

find themselves confused in developing a new release. This research project investigates

the methods companies use to plan for new software releases and the approaches they

take.

3.3.1. Companies and software releases

The concept of software improvement is still one of the worries that software managers

commonly face. Companies try to improve their software products by understating the

new requirements and then implementing them in their future software releases. It has

been shown that investment in process improvement has had significant benefits for

companies, including improvements in product quality, reduction in time-to-market

Univ
ers

ity
 of

 M
ala

ya

87

products and improvements in the productivity (Zahran, 1998). Release planning can be

seen as company-wide optimization problem involving many stakeholders where the

goal is to maximize utilization of the companies’ often limited resources and turn them

into business benefit (Ruhe & Saliu, 2005a). A major problem faced by companies,

developing or maintaining large and complex systems, is to decide which features

should be added to which release of the software (Bagnall et al., 2001). Although there

are many existing release planning approaches for generating new releases, there are

still lots of problems such as lack of a precise and systematic way to produce optimal

products. Carlshamre (Carlshamre, 2002) has classified release planning as a “wicked

problem”. The concept of a wicked planning problem was first introduced by Rittel and

Webber in (Rittel & Webber, 1984). Wicked problems are difficult to define and there is

often no clear-cut solution to them. Companies are, therefore, always confused and have

many problems with the generation of new releases. The aim of this research is to

investigate how companies deal with new software releases and what methods are used

by different companies with different experiences in software development to cut down

on the level of confusion. For this reason, using a systematic approach alone is not

enough. Companies also need human capability and the experience of professional

practitioners to carry out such a task. One of the possible topics discussed within

software companies' media is to what extent the human factor is important for release

planning. Another question is whether systematic approach alone can be adequate to

respond to various requests, including demands for new features; and is there still need

for human creativity and resources for decision makings. For example, a new company,

which has not yet defined all of its tasks and needs, cannot rely on a systematic

approach for release planning. In order to fill the gap, this company needs human

resources. Another significant point to consider is the type of planning used by software

companies. This largely depends on their experience and type of product concerned. For

Univ
ers

ity
 of

 M
ala

ya

88

example, in some experienced companies, project managers do not have to concentrate

much on new plans, because they usually have positive expectations on the future of

their current product and its reliability. Instead, they always look for ways to improve

the product quality. Project managers usually tend to avoid exposure to a risky market.

In this research, we study different companies’ approaches for generating new releases

in a release planning concept based on multiple case-studies taken from different

software companies.

3.3.2. Objective

The aim of this study is to investigate how companies plan new releases, and what

approaches are used by software companies. Based on this, we categorized and analyzed

approaches currently used by software companies. Choosing an appropriate approach

can help with the quality of the product in a new release. For example, for some

software companies, release planning depends solely on management and members of

software developing team, but some other companies rely on the use of automation for

their new release. Therefore, there are difficulties to identify suitable methods for a new

software release because release planning does not have a specific rule and it is

impossible to have a comprehensive method for release planning to cover all

companies. This research compared software companies with different products and

experiences in software development and found some useful results which can help

software companies to choose an appropriate method in delivering a new release.

3.3.3. Research design

This research analysed seven cases (software companies) in industry. Further, we

investigated their current release planning approaches and their plans for new releases.

Software development is a complicated process, and requires careful planning and

execution to meet the goals. Therefore, it is very important to see how companies

choose methods for their optimal release planning. Some companies prefer to choose

Univ
ers

ity
 of

 M
ala

ya

89

only human-based approaches and rely on the judgment of management and staff, and

others prefer to use just the systematic approach. However, we cannot say which one is

better and more useful. This study was conducted in seven software companies in Iran

with different experiences and products. The goal of this work was to identify ways

companies deal with the release of a new generation of software. We have used semi-

structured interviews as the primary data collection method, and asked the staff to fill

out the questionnaires after we explained to them what exactly they were expected to

do. We interviewed and discussed with fifty-one software professionals, working for

software companies, including: 8 project managers, 17 developers, 15 analysts and 11

quality assurances managers. The role of the survey respondents are shown in

Table 3-3. For the reason of confidentiality, we did not reveal names of participating

companies. Instead, we referred to these companies as: A, B, C, D, E, F, and G.

Table 3-3: Participants in the survey

Role of respondent Number Companies

Project managers 8 A,B,C,D,E,F,G

Developers 17 A,B,C,D,E,F,G

Analyzers 15 A,B,C,E,F,G

Quality Assurance 11 A,B,C,D,G

All the companies studied in this research develop software with different experience in

software development. As shown in Table 3-4, some of them are old companies and

have great experiences in software development. Others are major but new international

organizations who have established their activities in banking software in Iran. Their

projects vary in team size, experience and duration as well.

Univ
ers

ity
 of

 M
ala

ya

90

Table 3-4: Companies characterized

Company Type of product experience

A Banking software 1 year

B Database systems 3 years

C Web-based application 8 months

D Banking software 9 years

E Banking software 12 years

F Database systems 1 year

G Medical systems 2.5years

In this project, semi-structured interviews (Robson, 2011) with technical questions was

conducted with the team members for data collection and sometimes we asked some

complementary questions to have more elaboration on the answers. As mentioned

before, 51 staff including project managers, developer analysers and quality managers

attended the interviews. The time spent on interviews and filling forms varied between

30 to 45 minutes long for each one.

Here is a summary of questions that were asked:

1- When do you generate a new application?

2- What approaches do you prefer more to plan for new releases?

3- How do you rate the role of human in generating a new release? (Indicate

your score with percentage)

4- How do you make decisions for a new release?

5- Does your previous experience affect a new release? If yes, how?

3.3.4. Results

Analysis of this research is presented here with the data collected from the companies.

Following is a summary of the companies’ behaviours in release planning:

Univ
ers

ity
 of

 M
ala

ya

91

3.3.4.1. Company A

This company has about one year experience in developing banking software. This new

company develops cutting edge banking systems. The company’s goal is to come up

with new ideas and new plans in the banking domain, both offline and online. Based on

the information gathered from practitioners and considering the newness of the

company in software development, developing new application follows orders received

from banks and governmental organizations. The role of human in creating a new plan

is highlighted here because they do not rely on a systematic approach for new plans.

The company's goal is to automate banking operations and add new relevant features.

This company does not follow any specific regulations related to release planning. They

make decisions based on the existing circumstances and needs. This company tends

more towards the human resources and according to data collected from responders of

company A (see Table 3-4), 85.7% of the responders believe that human resources are

very essential for the process of release planning. 57% of them agree to use both human

and systematic resources, while 28.6% of the responders just want to use human

resources.

3.3.4.2. Company B

This company has been producing database systems for over 3 years. They usually take

a systematic approach for their release planning and have been successful to some

extent. Their main focus is on maintenance and improvement of current products rather

than developing new products. The reason for this lies in the satisfaction they have with

their current products. Without the specific need for any new and profitable product,

they usually do not concentre on new plans. They have developed special regulations

for a new release, including several meetings with the clients for every new plan. In

company B, which has just passed its third year of being in business, 45% of the

Univ
ers

ity
 of

 M
ala

ya

92

responders like to use a combination of human and systematic resources, 22% of them

prefer only systematic approach, while 33% of them like to use human resources.

3.3.4.3. Company C

This company produces and designs web-based applications and websites. Since this

company is very new in the market, they do not have a comprehensive plan for new

releases. Their activities are based on customers’ orders and new releases are based on

customers’ requests. They prefer to have new contracts and adjust themselves to various

plans to improve their development process. As a result of their newness in this

industry, the role of human is high. With numerous meetings and discussions with

customers they try to achieve more systematic approaches. But because they do not

have enough feedback, most of the decisions are based on the agreements between the

customers and system developers. They also do not have a specific regulation for a new

release. Company C is new in business, and therefore human resources play a major

role in their decision makings. 60% of the members use a blend composite of human

and systematic methods, and 40% of them believe in human methods only. In this

company, a new release without human intervention is baseless.

3.3.4.4. Company D, E

These two companies which are supported by the government have a long experience in

banking projects and cooperation with each other. They have an interdependent

relationship and work together to develop projects in the area of banking software.

Nearly all the software that are used by the banks and financial institutions affiliated

with the government have been developed by these companies. Therefore these

companies are more inclined to support and improve their own software with an

emphasis on re-planning new release. Systematic approaches are utilized in developing

a new release; for example, parts like requirement elicitation, requirement estimation,

Univ
ers

ity
 of

 M
ala

ya

93

and requirement prioritization are defined to complete this systematic approach. Role of

human is more dominant in requirement elicitation, and older releases are very

important because improvements are done in those releases. Creating a new release is

based on the customers’ request and is usually done twice a year. In companies D and

E, which are in the business of producing banking software relatively for a long time, as

we can see from the Table 3-4, 40% to 50% of the responders from these companies see

the use of systematic approach as a necessity, and only 18% of the responders from

company D and 20% of the responders from company E still prefer to use human

resources in their planning.

3.3.4.5. Company F

This company has one year of experience in database systems and information retrieval

for governmental and private organizations and institutions. This is a private company

that creates a new application based on the requests from clients. Since this company is

relatively new, and it does not have a specific plan for a new release in the foreseeable

future, the role of human in decision makings and investigating the requirements is very

significant. They must decide what features to add in the new release and when it is

going to be released. Since they have only one year experience in software

development, developers try to create samples and libraries to move to a systematic

approach. 42% of the responders from company F prefer to use human resources, and

25% of them just like systematic approach.

3.3.4.6. Company G

This company develops medical software. Due to the fact that the software is used in

hospitals and medical centres, creating a new release is based on the requirements and

features that are elicited from the real environment. It can be said that the method used

in this company is like INF; it determines the value of each new feature that is going to

Univ
ers

ity
 of

 M
ala

ya

94

be added to the new system. The role of human in their release planning is fading and it

is needed only for collecting the requirements from the environment. Previous

experiences are actually the base for creating new releases. After reviewing the data we

received from the companies we were able to achieve the following important findings

that will be proved in the next section using statistical methods: older and experienced

software companies tend to focus on improving their current products rather than to

create a new product or a new release. For them improving the quality of their products

and satisfaction of their customers are more important, and in fact they do not want to

take the risk of developing a new product. This is because their products have reached

an acceptable level of reliability in the market. A new release could be produced based

on the feedback they get from their products. These kinds of companies use more

systematic approach than human approach when making decisions. Newer companies

usually have no experience in developing software, therefore they start from ground

zero, and they come up with a new plan. For them, to be successful in the market means

to be creative and their plan should cover the best capabilities. Manager of this kind of

companies usually think that using the systematic approach only is not enough and they

believe using human abilities bring stability to their companies. As we can see from

Table 3-4, 50% of the responders from company G like to use a blend of human and

systematic approach, 17% of them prefer human resources and 35% of them just want

to use systematic approach.

3.3.5. Findings and discussions

This section presents our findings discovered during the interviews and discussions.

Based on the data collected from different companies, there are two recognizable

categories:

Univ
ers

ity
 of

 M
ala

ya

95

• Categorization of software release planning approaches from the viewpoint of

either re-planning or new plan

Software development planning is crucial to the success of a project (Sommerville,

2010). A software development plan aims to define various tasks such as phases and

releases of software development. One of the most important tasks of developing

software is requirement elicitation from the customers. The extent of knowing these

requirements and the percentage of implementation depends on the company's plan.

Applying the requirements may lead to either creating a new plan or to improving the

existing plan. As mentioned before, there are many release planning approaches for

implementing requirements, some of them function based on new plans and new

releases, and others are based on product background.

Figure 3-4 illustrates that collected data are divided into two main groups: the first one

is called re-planning and is used for new release without any background, meaning there

is no need for past details. Newly established companies use these methods, because

they do not have any history or experience with their products, i.e. their products are

new. They need to estimate resources, efforts and everything needed for defining a good

plan for future production. These companies prefer to use new plans for their start,

because they are in a risky situation; they do not know whether their product will be a

success or not.

Figure 3-4: Categorization by view of planning

Univ
ers

ity
 of

 M
ala

ya

96

Second group, which is called new planning, are methods that have improved versions

of the older releases and decision making in them is based on the improvement of

previous releases and re-planning that most of older companies try to do. They get

customers’ feedback and attempt to improve current software. Re-planning means

creating a new plan to solve an application's malfunctioning. It can be seen as a

procedural use of past work, which is a special kind of plan reuse. In plan reuse, the

current plan is used to solve a new problem by changing the initial goal.

Table 3-5 shows the individuals' preferences for planning of a new release. It shows that

people in newer companies such as A, C and F prefer more to select new planning, and

older companies such as B, D, and E that have a longer experience in software

development, don’t want to be exposed to any risk and try to improve their products

because they have already paved their way into the market.

Table 3-5: Individual’s responses in companies

Company New planning Re-planning

A 57% 42%

B 34% 66%

C 80% 20%

D 28.6% 71.4%

E 30% 70%

F 71.4% 28.6%

G 16.7% 83.3%

Reliable software products force managers to continue and focus more on their existing

products. Based on the survey done on 51 people, including project managers,

developers, etc. and from the following diagram, we can see that with the increase of

companies’ experience from C to E the tendency goes toward re-planning and company

E shows the highest score. For example, in company C that is a newer company in our

Univ
ers

ity
 of

 M
ala

ya

97

research, 80% of respondents are in favour of re-planning and 20% of them prefer new

planning.

Figure 3-5: Tendency of companies to re-planning and new planning

As illustrated in Figure 3-5 (see the solid line), the tendency to re-planning goes up

steadily with the increase of companies’ experience. This means such companies like to

focus on re-planning and improving their products. On the other hand, the dashed line,

which shows the tendency to new planning, comes down with the increase of

experience.

• Categorization of software release planning approaches based on usage of

human resource

Nowadays, most software companies tend to develop their software by using a

systematic and automated methodology, and this applies to release planning as well,

which is a part of software development process, but in the real world this might be

impossible to carry out.

As mentioned before, Carlshamre in (Carlshamre, 2002) has classified release planning

as a wicked problem. This means there are different ambiguous issues that are

unpredictable in software development process which may make moving to systematic

approaches not always practical and may require human based approaches as well.

Univ
ers

ity
 of

 M
ala

ya

98

Release planning is known to be a cognitively and computationally difficult problem

(Ngo-The & Ruhe, 2009). Real-world release planning problems may include several

hundred features potentially offered in the next releases (Ngo-The & Ruhe, 2009).

Based on the case studies, we observed a pattern of the differing role that can be played

by human in release planning; we categorized the release planning approaches used in

all the studied companies into three groups: 100% human based approaches, 100%

systematic approaches and a blend of human and systematic approaches. We also

observed the correlation between the length of the experience of the company and the

categories. Figure 3-6 shows three groups: first one denoted as "100% systematic

based", represents the approach used by older and experienced companies. They use

systematic methods only. Second group, named "100% human based", shows the

methods used by new companies. They usually focus on the role of human creativity,

and as such, they do not consider release planning as a separate activity. Therefore, they

rely 100% on decisions made by leaders and human experience. Last group which is

called "blends of human and systematic" shows a combination of systematic and

humanistic role in release planning.

Figure 3-6: Grouping human resources

Table 3-6 illustrates that at company B, which has a relatively good experience in

software development, only 22 % of the interviewees believe in the role of human and

33% of them believe in systematic approach, whereas 45% of them prefer a

combination of both approaches for release planning. This table shows that new

Univ
ers

ity
 of

 M
ala

ya

99

companies consider the necessity of human role in release planning much higher than

systematic approach.

Table 3-6: Individual’s responses in companies

Company Only systematic approaches
Only human based

approaches

Blend of human and

systematic

A 14.3% 28.6% 57.1%

B 33% 22% 45%

C 0% 40% 60%

D 40% 18% 42%

E 50% 20% 30%

F 23% 35% 42%

G 33% 17% 50%

As shown in Figure 3-7, we can also see that from company C (with least experience)

on the far left to company E (with most experience) on the far right, the tendency of

using automation approach increases and the role of human decreases.

Figure 3-7: Tendency of companies to human or systematic approaches

From Figure 3-6, we can see that as companies’ experience increases, use of “only

human” resources decreases. It is shown with the solid line and this means the tendency

toward the only human based approaches is low. On the other side, the dot-dash line

that shows only systematic approaches correlates positively with the experience. The

Univ
ers

ity
 of

 M
ala

ya

100

dashed line, as it is observed in the Figure 3-6, is more common because it is a

combination of human and systematic approaches.

3.3.6. Discussion on the findings

Since there is no unified comprehensive approach for software development planning,

this study investigated planning approaches that are normally used by companies on

new software releases. The studied companies had different levels of experience and

their products were different in nature. The results of this study showed that companies

with more experience focus more on improving their existing products and try to avoid

taking new risks. These companies believe that their product reliability is quite

sufficient to compete in the market. With increasing experience, companies prefer

automation and avoid human resources. On the other hand, newer companies with not

enough experience need more human involvement to achieve that goal. This study could

be further expanded by increasing the number of companies under investigation. Further

researches could also be carried out to inspect the challenges that software companies

confront during the development processes. Results could eventually improve the

process of release planning.

Univ
ers

ity
 of

 M
ala

ya

101

CHAPTER 4: SOFTWARE RELEASE MANAGEMENT IN

INDUSTRY

4.1. Overview

Release management has an essential role in the success of large software projects and

there is no doubt that correct and efficient management of producing a new release can

help the quality of the product and the satisfaction of the customers to a great extent.

But still there exist problems in many companies for generating a new release. Despite

the presence of all necessary resources like human, financial, and time, sometimes a

new release has a lower quality than the older ones. This can be because of the lack of

management in release planning.

In this chapter, after a definition of release management, some possible challenges that

can affect management of software release projects will be shown. In other words, we

investigate what needs to be strengthened in management of a release to have a better

release in software companies. This study is an exploration of software projects in small

companies in Malaysia. This research was conducted to investigate and understand

effective challenges in release management that have been identified by effective role

players in release management within software domain.

4.2. Software release management

In simple words, a release is a set of features of a software application, implemented

during a software development process. Release management is an important part of

quality management, since it is concerned with the delivery of high quality software to

users (Levin & Yadid, 1990). Release management consists of technical and

management activities that are needed to take a release from a set of requirements to the

delivery of a software application that implements these requirements.

Univ
ers

ity
 of

 M
ala

ya

102

The development of software applications is an incremental process, moving towards a

series of sequenced and unknown goals. These goals are usually provided in the form of

a release. Release management is about monitoring how changes flow into systems.

Whenever these changes are updated, new features may be added in the next release.

Release management is generally not just a management effort. It often includes a great

deal of collaboration and automated arrangement of complex computer systems. If you

want to generate a new release, you might look at release candidates before and perhaps

investigate the ambiguities before going to full production.

Software Release Management is the process of ensuring releases that can be reliably

planned, scheduled and successfully deployed to real environments. Figure 4-1 gives a

clear overview of release management during a release planning process. As seen in

Figure 4-1, there are three main steps in release planning process.

Figure 4-1: Overview of release planning process

The first step is release goals, which includes: requirements, updates, patches, and the

main goals of releases, services and business policies of the organization. It can also be

called the targets of releases. Release management plays a great role, too. It includes:

standardization, control, approval for implementation of features and investigation of

correctness of the new changes for a release. After changes and modifications are done

and features are implemented, it is time to execute the release in real environment in

order to get feedback from customers. In fact, release execution step is the behavior of

new release. The main idea of Figure 4-2 is adapted from (Drapeau & Oudi, 2007).

Univ
ers

ity
 of

 M
ala

ya

103

This part is in fact an exploratory study to find the challenges of release management in

software industry among small software companies in Malaysia. For the purpose of this

study, we interviewed with developers and release managers of different projects

individually to identify release management challenges that affect release planning.

Once the basic release of software is delivered to the market, a number of new features

and enhancements can be identified. Release management is necessary to investigate

and evaluate these new demands. Although release management is the main part of

release planning process for improving the quality of a product, few surveys have been

conducted in the area of release management practices and challenges. Michlmayr

(Michlmayr, Hunt, & Probert, 2007) finds problems and practices for release

management in free software projects. An exploratory study was performed to get a

better view of actual practices and problems associated with release management in free

and open source software projects. In fact we explored release practices employed by

volunteer free software projects and showed their problems. Hall et al. (Hoek, Hall,

Heimbigner, & Wolf, 1997) discussed and identified the issues encountered in software

release management, and presented an initial set of requirements for a software release

management tool. They described a prototype of such a tool that supports both

developers and users in the software release management process. On the other hand,

(Hoek & Wolf, 2003) have discussed the problems of release management for

component-based software and proposed SRM, a prototype software release

management tool; it supported both developers and users during the software release

management process. Mayuram S. Krishna in (Krishnan, 1994) with a business

perspective introduced an economic model to capture the various trade-offs involved in

software release decisions and further discussed methods to obtain optimal software

release time.

Univ
ers

ity
 of

 M
ala

ya

104

4.3. Objective

One of the biggest problems faced by software projects is that, although enough experts

or skilful human resources, sufficient budget and resources are available during

software development, there are still chances of having problems in a new release and

this may return to the management desk for further decisions(Levin & Yadid, 1990).

In this study, we studied the most probable challenges in software release management

by interviewing developers, managers, and release managers. The main goal of this

chapter is to find challenges that are related to management of a new release in small

software companies in Malaysia. Every software company must face these challenges,

understand these obstacles and try to resolve them. They are effective during release

planning process and consequently the success of the release depends on them.

4.4. Research Method

In this study, we have presented exploratory results on software projects to find release

management challenges in small software companies in Malaysia. Definition of a

“small” business varies by industry (Fayad, Laitinen, & Ward, 2000). However, as our

focus is on the size of organizations, we defined an organization’s size based on the

number of employees. Organizations with less than 100 employees are usually

considered small. Exploratory studies are used when the “research looks for patterns,

ideas, or hypotheses rather than research that tries to test or confirm hypotheses” (Vogt,

1993). The aim of this study is to identify the challenges that can affect and improve

release management process in practice. This research was conducted as semi-structured

based on interviews with eleven software organizations. We interviewed 41

practitioners, including release managers, project managers, analyzers and developers of

various projects. These 41 people were selected from among those who had

management positions in new releases. In some larger projects, a release manager, and

in some others, a project manager was responsible for managing the release. In smaller

Univ
ers

ity
 of

 M
ala

ya

105

projects, the system analyzer managed the development of the new release for the

market. Our selection was based on the management role people played in new release

projects. Although the size of these companies was small, sensitive projects such as

web-based systems, database systems and some tools for organizations. As Table 4-1

shows, the participants are mainly Project Managers (12.2%), Release managers (9.7%),

Software developers (41.5%), and software analyzers (36.6%). The duration of each

interview that included discussions about research question was 15-25 minutes.

Table 4-1: The responders’ numbers

Role of respondent Number

Project managers 5

Release managers 4

Developers 17

Analysers 15

4.4.1. Research question

In addition to the interview, we had discussions with some practitioners for clarifying

purposes. We asked, for instance, the following question: “what challenges, in your

opinion, can improve or affect release management?”

Since the intent of this research was to investigate the effective challenges that could

affect release management, we had a pertinent research question:

Q: Which challenges are significant in release management?

This question deals with the investigation of significant challenges of release

management in small software companies. The question was operationalized by asking

the participants of the study to find challenges.

Univ
ers

ity
 of

 M
ala

ya

106

4.5. Challenges in industry

After interviews and observation with practitioners, we found out their ideas of what

can be effective in release management of small software companies. Although some of

them were mentioned in the journal articles or past researches, there were some new

helpful ones, which can improve release management to a great extent. In the following

section, we organize our findings based on data collected from small software

companies in Malaysia. The main challenges are:

4.5.1. Categorization of releases

One of the most important challenges that were discussed in interviews and the

practitioners tried to focus on, was type of releases. It is clear and obvious that

management of different types of releases is different. As mentioned in (Michlmayr et

al., 2007), general term of release management is used to refer to three different types of

releases: Development release that is aimed at developers, who are interested in

working with cutting-edge technology. It means developers try to move towards latest

technology in their release. A major release usually introduces new capabilities and

functions or some new and significant changes, and a minor release incorporates a

number of fixes for known problems into the baseline, updated to the existing release.

When we talked to members about release management, the first thing that they told us

was about the types of releases and they agreed that management for developing a new

release based on some minor changes is easier.

As one can see, the type of release we are going to deliver is important. For instance, a

release which is developed after one year and is getting feedback from various

customers is different from a release with some minor defects only. Obviously, the

management of these releases cannot be the same. Sometimes a release is planned for

special features and takes time and effort, but sometimes it is only a different language.

These projects are mostly based on the requests of the customers.

Univ
ers

ity
 of

 M
ala

ya

107

From forty-one participants coming from eleven companies who we met, thirty-seven of

them strongly agreed that the type of release has a great role in release management, and

categorization of changes for a new release in order to identify types of release can be

effective in release management. Therefore, one of the most important challenges that

has value and has always been discussed in release managements is type of release.

4.5.2. The need for some support tool in release management

Automation enables you to do tasks without dependency to human resources, and

standardization of the process ensures that your automation works well and the results

are consistent.

In this study, nine out of eleven companies liked to have a systematic approach for their

release management. Even one of the project managers said he preferred to have at least

two new releases per year, because maintenance is easier and new demands will not

accumulate.

In the participants’ opinion, automation for release planning means having standard

cycles for releases. They do not like to face unexpected events, although they may

occur. After several years of experience, release mangers try to develop a standard

process for release delivery. Their goal is to have systematic rules for managing their

releases.

One of the issues that was discussed with the practitioners, was the ability to manage

releases automatically in a standard cycle. However, it can be very hard for release

managers to achieve this. In fact, (Carlshamre, 2002) classified release planning as a

“wicked problem”, which means it is not predictable. As one can see in Figure 4-2,

eleven out of forty-one respondents agreed to have automated process for release

management, and twenty-two of them liked ad-hoc approach for release management.

Ad-hoc signifies a solution designed for a specific problem in release management.

Univ
ers

ity
 of

 M
ala

ya

108

They think that release management problems are not foreseeable, and based on

customers’ demands they use specific solutions. Nine of participants told that their

release management depends on the release type.

Figure 4-2: Respondents

4.5.3. Appropriate tools

Surprisingly, release management is lacking tools that would help automate the process.

Using a proper tool for release management in a software company means an acceptable

approach for release management. So it can be said that the right tool, to some extent, is

related to automation of release management. Despite the importance of release

management for delivering a good quality software release, responders are still

wondering how to find proper tool(s) for new releases.

Therefore, one of the major challenges that practitioners were talking about was having

a suitable tool for release managers to plan a new release, and this is very difficult as

each release has different conditions and problems.

For example, one release may need minor changes, but another release may even need a

change in functions. Therefore, the need for a suitable tool that can satisfy all conditions

is strongly felt.

Univ
ers

ity
 of

 M
ala

ya

109

Among investigated companies, only one company used specific tools for release

management and that is because they have a systematic approach for new releases. The

rest, to some extent, depended on release managers but they are trying to have a suitable

tool and they admit that it is very hard.

4.5.4. Foreseeing a new release before real execution

Release managers have the duty to predict the proper execution of a new release in the

real world, and one of their worries is to predict it correctly.

Sometimes new releases have lower qualities than the previous releases. Therefore, it is

the responsibility of release managers to determine whether or not the new release will

outperform the previous ones. They must be able to predict the future of the release,

before it gets to the market.

Participants in this survey agreed that testing their product, at least once, before

releasing it to the market is very important for predicting the quality of their products.

They emphasized that this prediction is necessary for software companies to determine

the future of their products.

So all of the investigated companies try to have solutions for their products in a real

environment, and sometimes they try to predict the level of satisfaction with some tools

before sending the product to the market.

4.5.5. Release manager’s role

The role of the release manager is diverse and demanding, because they have to interact

with different people, understand technical issues, and also know how to plan and

coordinate (Michlmayr et al., 2007).

In a small project, a release manager usually has an administrative role, which involves

preparation of the release in different formats to be distributed. He/she is also

Univ
ers

ity
 of

 M
ala

ya

110

responsible for creating release notes and actual distribution of the software (Michlmayr

et al., 2007).

One of the most important issues, that has a great role in both release planning process

and release management, is having qualified release managers. Michlmayr (Michlmayr

et al., 2007) states that having different skills such as community building, strong

vision, discipline, judgement, good communication, and management skills are very

important.

Participants in the survey acknowledged that having good project managers plays an

important role in the quality of the products. It is desirable for managers to say

something once and everyone understands it, but this does not always happen in reality.

 The role of the release manager is diverse and demanding, because they have to interact

with a large number of different people, understand technical issues and also know how

to plan and coordinate (Michlmayr et al., 2007). In small projects that we were targeting

on, some properties of release managers were also discussed. For example, they must

have discipline, need a lot of experience in software development, and sometimes have

to know the details. They are responsible for transferring new demands to developers

and team managers, and in a new release they must adjust the new release and the

requested requirements.

Based on the data collected from practitioners, 65% of responders agree that the most

important factor in delivering a successful release is the release manager.

4.5.6. Proper understating of Request for Changes (RFC)

Request for changes (RFC) is a change request that captures the details of a change that

is needed to be made to existing releases based on customer demands. The reason for

generating a new release is implementing a series of these changes and modifying the

behavior of a release due to normal business values because there are some problems in

Univ
ers

ity
 of

 M
ala

ya

111

the current release. One of the important challenges that companies are worried about

and want to improve is the true understanding of proper changes. In release

management, this is very sensitive and must be done carefully because

misunderstanding of new requirements may lead to low quality and less satisfaction.

4.5.7. Release policy

Release policies are high-level statements of how releases are to be managed, organized,

and performed in the environment. Policies include management goals, objectives,

beliefs, and responsibilities. One of the main topics that we discussed with practitioners

was release policies and, although these policies are different in each company and

depend on many factors, recognizing and understating them can help us to have a better

release management. For instance, in some companies that are related to the

government, it is helpful to know the government policies like specific goals or rules for

a software release.

Based on the interviews, although every company obeys some policies and they are

important to the release planning process, sometime these polices lead into limitations

and restrictions for release management.

In eleven investigated companies, there are only 4 companies developing software for

some governmental organizations and have to accept their policies. In the other 7

companies, policies are based on the managers.

4.6. Threats to validity

Validity of the results needs to be planned by gauging proper counter measures. We

have followed the recommendations by Yin (Yin, 2003) where he chooses four possible

ways for the validation. The first one which is referred to as construct validity is a test

or a measurement tool that is established by demonstrating its ability to identify or

measure the variables or constructs that it proposes to identify or measure. For this

Univ
ers

ity
 of

 M
ala

ya

112

research, we have used two main researchers for interviews in order to reduce the risk of

misunderstanding the information gained from the interviewees. One of the researchers

is the first author and the second one is a master student.

The second important measurement is trying to demonstrate the internal validity of the

study. Internal validity checks the "true" causes of the outcomes extracted in the

research. After investigating and finding the challenges in release management, we send

our findings to the same participants (41 people) in those companies to approve and

determine the level of importance. The third validity measure is to show the reliability

of the study. To increase the reliability of our study, all collected data and derivations

are stored in a database accessible only to the researchers in the study.

The last validity measure is external validity that is related to generalizing. As

mentioned before, our findings are based on small software companies in Malaysia.

Hence, they may not be generalized to medium and large companies. We think,

however, some of the main points of our findings might be valuable for software

companies of all sizes.

After investigating and finding our challenges, as already mentioned before, we send the

findings to the same participants in those companies to understand their importance. As

you can see in appendix A Table 4-2 we have prepared a questionnaire to check their

ideas about our findings.

Table 4-2: A Questioner sample
Univ

ers
ity

 of
 M

ala
ya

113

In this step, we sent the questionnaires to the participants by email and asked them to

fill the forms and send them back to us. We gave them reminders by telephone to fill up

the questionnaires. The main goal of this step was to internally validate our result and

know the level of importance of our findings.

After analyzing the data collected from the same practitioners, as Figure 4-3 illustrates

the level of importance of the challenges, type of releases and understating RFC are

shown to be the most important challenges and investigation of these challenges is

necessary for release management process. Based on Figure 4-3, some other challenges

that are important have less importance in release management.

Figure 4-3: Level of importance

Univ
ers

ity
 of

 M
ala

ya

114

Release management plays a great role in delivering a successful release. There are

several issues and challenges in release management that knowing about and improving

on them can affect management of a new release. We found some possible challenges

that can affect the management in software release projects. This study was an

exploration of small software projects in Malaysia and was conducted in order to

understand critical challenges in release management. These challenges were identified

by key role players in release management in software domain. We found some

challenges that are important in release management and their improvement and

investigation can be of great value. In fact, success of the release management depends

on them. The findings of this study can offer several important components which can

be a good basis for future analysis. Future research will extend the number of

participants and further investigate medium and large size companies to find a general

framework for release management process.

4.7. Summary and conclusion

This chapter discusses about challenges and problems of release planning somehow

ignored in today's systematic methods. The challenges and problems present in both

applied and managerial aspects of release planning are always focused on lack of

integrity and confidence in systematic methods. Highlighting and analysing these

challenges highly depends on the fact that systematic methods cannot help in software

development without considering problems specific to every certain project. Therefore,

it is possible to achieve a general view of present systematic methods through a

comprehensive examination of them. Through this general comprehensive process, one

can define patterns and consequently achieve pattern-based release planning approach

which, indeed, involves all present methods.

Univ
ers

ity
 of

 M
ala

ya

115

CHAPTER 5: DESCRIPTION OF THE PATTERN-BASED

RELEASE PLANNING METHODOLOGY

5.1. Introduction

In this section, the pattern-based release planning methodology is explained and

customization of the release planning process model is described to clarify activities

involved and the quality of pattern formation in this methodology. The customization

can be used for new patterns developed in every activity of the process model. Of

course, more patterns are going to be presented later in other parts of the thesis.

5.2. The process model of release planning

A great deal of research has been accomplished in the field of release planning and

management in most of which release planning is considered an issue in decision

making and seeking optimized solutions (Bagnall et al., 2001; Durillo et al., 2011;

Ruhe, Eberlein, & Pfahl, 2003). During the software development process many

technical documents are produced. Such documents and their evolution history contain

rich information about the development process (Junji & Ruhe, 2013). There are two

points here that need to be emphasized. First, there are various ambiguous and uncertain

parameters that influence the solutions. Second, there is no single solution for any

problem. Various solutions can be found that differ in their performance (e.g., time

performance, complexity performance, etc.).

Parameter variation in the field of release planning originates from the nature of

software engineering and its activities. Although there are companies which work only

in a certain field of software development, but still various parameters influence their

release planning projects (Seyed Danesh & Ahmad, 2012). Effective parameters on

release planning adopt certain values in a project but, as a result of ambiguity, they may

take different values in a similar project or company (J. Li & Ruhe, 2003). This

Univ
ers

ity
 of

 M
ala

ya

116

originates from differences in release planning projects which, per se, refers to the

nature of software engineering. Although most parameters have been identified in this

field, due to its nature, eventually a certain parameter (or more) influences a specific

project of release planning.

Research on release planning can be divided into two main groups. First are those

studies that try to present or extend the parametric atmosphere of planning challenges

and problems in order to propose points, guidelines and methods to figure one (or more)

parameter out. (Al-Emran, Jadallah, Paikari, Pfahl, & Ruhe, 2010; Al-Emran, Kapur, et

al., 2010; Al-Emran, Pfahl, & Ruhe, 2010; A. Jadallah, Galster, Moussavi, & Ruhe,

2009; Mc Elroy & Ruhe, 2010; Michlmayr et al., 2007; Ngo-The & Ruhe, 2009; Seyed

Danesh & Ahmad, 2012) are typical among these investigations. The second group

involves studies focused on developing a methodology, a generalized framework or a

certain objective for release planning in order to improve it. Among these studies,

(AlBourae, 2007; AlBourae et al., 2006; Colares et al., 2009; Lindgren, Land,

Norström, & Wall, 2008; Przepiora et al., 2012; Ruhe & Saliu, 2005a; Slooten, 2012)

are remarkable. From another viewpoint, the first and second groups can be called

singular-to-general and general-to-singular methods respectively. Examining the first

group results in a creation set of effective parameters on planning, while investigating

the second group leads to formation of common steps in release planning development.

These results are used in building steps of pattern-based release planning methodology.

In other words, the first step (conducting the process model of release planning)

employs results of investigating planning methodologies and the second step, in which

developing a pattern (or more) for each stage of the process model is considered, results

of the first group of studies are mostly used.

The main objective of release planning is selecting a set of requirements or properties to

be included in a product. Hence, the set of received requirements must first be

Univ
ers

ity
 of

 M
ala

ya

117

prioritized, and estimations and forces related to various resources must be identified.

Finally, high priority requirements or properties with the evaluating estimations and

forces are selected to be developed in the release (Carlshamre, 2002). These three steps

can be considered as the basis for all release planning methods. It must be noted that

requirement reception is prior to release planning. Various methods only differ in the

order of these three steps, details of each step, inputs and outputs of each step, being

general or specific, and the procedure of each activity within the steps. Table 5-1

summarizes the steps of the most known methods of release planning. They are selected

with regards to the relationship between the release planning methods presented in

(Svahnberg et al., 2010). Other than method 1 in which tasks and steps are not clearly

specified, the three steps mentioned above are underlined in all the other release

planning methods. In methods 4 and 5, the prioritization and selection of requirements

or properties are integrated with higher priorities which evaluate estimations and forces.

Moreover, the "Release Planner" software is used in methods 3 and 4 to accomplish

these steps. Most release planning methods in Table 5-1use the stakeholders' viewpoints

to perform a part of the planning activities, particularly in specifying the primary

priority of requirements and their properties which method 4 does not use.

Table 5-1: Steps of implementing release planning methodologies

Implementation steps Methodology Order

Steps are not clearly specified. Ad-Hoc (Seyed
Danesh, 2011)

1

1. Primary evaluation of requirements feasibility using
primary constraints
2. Per each repetition
2-1. Determining candidate requirements per repetition
2-2. Determining requirement priority by stakeholders
2-3. Prioritization among and inside requirement groups
using AHP method and based on stakeholders' view
2-4. Prioritization of all selected requirements using steps
2 and 3
2-5. Reviewing selected requirements

Quantitative
WinWin (Ruhe et

al., 2003)
2

Univ
ers

ity
 of

 M
ala

ya

118

Implementation steps Methodology Order
2-6. Examining feasibility of requirements
3. Evaluating all repetitions to determine their

consistency with specified forces

1. Introducing project environment and characteristics
including main qualitative features.
2. Problem definition
2-1. Determining stakeholders
2-2. Determining requirements
2-3. Determining the importance of each stakeholder
2-4. Determining various forces
2-5. Attributing priority to requirements by stakeholders
3. Planning and completing primary information
4. Running the software Release Planner
5. Result analysis
6. Recording results for next release planning

Quality
Improvement

Paradigm
(Amandeep, Ruhe,
& Stanford, 2004)

3

1. Determining costs and effort required to implement
requirements
2. Specifying structural dependency constraints among
requirements (Coupling, Precedence)
3. Determining costs and effort required for each
repetition
4. Specifying the precision threshold for structural
dependency among requirements
5. Running Release Planning Software with various
parameters
6. Selecting a proper plan respecting evaluation curve of

dependency and meeting goals

Release Planning
under Fuzzy Effort
Constraints(Ngo &

Saliu, 2005)

4

1. Estimating required resources by developers
2. Selecting the most prior requirement by stakeholders

until estimations and forces are met

Planning Game
(Seyed Danesh,

2011)
5

1. Determining the dependency between requirements
2. Calculating implementation costs for each requirement
3. Specifying implementation priority by stakeholders
4. Attributing weight to requirements based on
stakeholders' priorities, dependency and implementation
costs
5. Selecting the most prior requirements with optimizer

algorithm

Optimization-Based
Techniques (Bagnall

et al., 2001)
6

1. Modeling
1-1. Grouping properties and requirements
1-2. Determining the relationship between properties and
requirements

Hybrid Intelligence
Approach

(EVOLVE Family)
(Saleem &

Shafique, 2008) ,

7

Univ
ers

ity
 of

 M
ala

ya

119

Implementation steps Methodology Order
1-3. Specifying resource constraints
1-4. Estimating required resources
1-5. Determining priorities by stakeholders
2. Identification (detection)
2-1. Producing various release plans using algorithm
3. Integration
3-1. Evaluating various release plans using algorithm
3-2. Producing various scenarios for release re-planning
3-3. Selecting the best release plan to implement

(Greer & Ruhe,
2004)

1. Determining the importance, necessity and value of
requirements by stakeholders
2. Specifying the relationship between requirements
3. Calculating SD-Coupling between requirements
4. Determining Trade-off parameters (satisfying SD-
Coupling)
5. Evaluating the systematic value of requirements
6. Implementing Bio-objective Release Planning Model
6-1. Implementing the business-based value function
6-2. Implementing a function based on requirements'
counter effect (Synergy)
7. Producing different release plans
8. Evaluating different release plans based on Trade-off

parameters and selecting the best plan

Bi-Objective
Release Planning
(Saliu & Ruhe,

2007)

8

In investigating the release planning methods listed in Table 5-1, it was discovered that

most of the methods have emphasized implementing the three steps mentioned earlier.

This finding can be considered from two aspects. Firstly, it was noticed that every

release planning method consists of these three common steps, which vary from one

method to another based on the focus of the method. Secondly, these steps need to

receive information or parameters from users in order to produce the results and

parameters required, such as the primary constraints of the requirements and the

requirements’ priority from the stakeholders’ viewpoint. In fact, without this

information, release planning can only be performed with low precision or may produce

improper results.

Univ
ers

ity
 of

 M
ala

ya

120

A more detailed look at the release planning methods indicates that they have other

common specifications which can be used for a better understanding of the release

planning properties. The followings are the common properties of release planning:

• Most release planning methods make use of requirement priorities determined

by stakeholders as input.

• Most methods produce more than one release plan or scenario and will consider

the analysis and selection of these plans as one of the steps toward final

implementation.

• Most methods consider the interdependency of requirements and use them for

release planning.

Similar to the three mentioned steps, these can also be regarded as common points in

release planning methodologies but, indeed, they cannot be referred to as key steps and

hence some methodologies can be found that do not respect these or acquire and

produce their required data in a different manner. However, considering these points

and previously mentioned common activities, the following (approximately common)

activities can be considered for accomplishment of a release planning process model:

• Requirements prioritization

• Resource estimation, i.e. estimating the required resources for implementation of

requirements

• Pre-release planning

• Trade-off analysis of plans

An important point to be considered here is that whether a process model of release

planning can be obtained by putting these steps together or not. As shown earlier, the

steps and points are common in almost all release planning methods; hence, putting

them together may result in the main steps of a process model of release planning,

Univ
ers

ity
 of

 M
ala

ya

121

regardless of how they are implemented. To answer this question, three things must be

specified: 1) the objective of each step's inputs and outputs, 2) whether the mentioned

steps provide required inputs for release planning, and 3) whether the considered output

of release planning is produced, regardless of the performance of the outputs.

To answer the first question, each common step must be explained and its objective,

inputs and outputs should be clear. Answering the second question requires a

comparison between inputs of these common general steps with those of the release

planning methodologies. The comparison, on one hand, allows for investigation of input

deficiencies and, on the other hand, helps in clarifying whether the deficiencies are

resulted from incomplete steps or whether they can be produced with primary inputs

through other processes. Response to this question confirms the inclusion and

generalizability of common steps. Answering the third question ensures production of

outputs for the sake of release planning goals by the common steps. Putting all the

answers together demonstrates that the common steps can involve a process model of

release planning and customization of this process leads to different release planning

methodologies. Now, we first explain common steps, their objectives, inputs and

outputs and then present the general release planning process.

5.2.1. Requirements prioritization

Often, the primary priority of requirements is taken from the stakeholders’ viewpoint.

The prioritization parameters are identified in this step based on which requirement

priorities are determined. From the software developer’s viewpoint, some stakeholders

are more significant than the others and this is specified by the weight given to them.

Stakeholders' weight can be determined based on certain rules and principles. If

stakeholders are not prioritized, from the developer organization's viewpoint, all of them

are considered to have the same weight. Set C contains n stakeholders and set W

involves weight of each stakeholder and wn shows the weight of stakeholder n.

Univ
ers

ity
 of

 M
ala

ya

122

 = { , , , … , } = { , , , … , }

As such, set R contains m requirements and mij shows the requirement i related to

stakeholder j.

 = , , , , … , , , , , , , … , , , , , , , … , , , , , , , … , ,
And set P contains priorities of each requirement from every stakeholder's perspective.

 = , , , , … , , , , , , , … , , , , , , , … , , , … , , , , , … , ,
Priorities determined by each stakeholder are prioritized again (based on requirement

prioritization parameters) and finally every requirement's priority is specified. Release

planning methodologies have different parameters for requirement prioritization since

the parameters are dependent on such issues as software type, number of involved

stakeholders, developer organization size, team experience, organizational development

strategy, and many other aspects. These parameters, in general, can be classified into

three categories: parameters related to the project, to the developer organization, and to

external parameters. The first class includes those parameters which contribute to a

certain project and, hence, can vary in every certain project of the organization. Team

experience and size can be mentioned as examples of this class (Akker, Brinkkemper,

Diepen, & Versendaal, 2008). The second class involves some parameters over the first

class. They are highly effective on company's software projects and are more permanent

than the previous ones. Examples of such parameters are company's specialty and

number of projects (Seyed Danesh & Ahmad, 2012). External or environmental

parameters, as the name shows, originate from outside the developer organization and

influence release planning. The most important parameters in this class are competition

in presenting releases and environmental complexity, particularly in web-based software

(J. Li & Ruhe, 2003).

Univ
ers

ity
 of

 M
ala

ya

123

5.2.2. Resource estimation

For every determined requirement, the required resources to implement it must be

estimated. This is not always respected since some resources can be calculated using

several parameters or other resources. For instance, a project's required costs can be

estimated by determining the effort required to accomplish it. Although most

methodologies try to limit resources to time and budget (Svahnberg et al., 2010), it must

be noticed that other resources can also have a significant effect on release planning and

bring about serious harms.

Set E is employed to show estimations of resources needed to implement a requirement

in which en,k shows the kth estimation for nth requirement. In fact, it is assumed that for

every certain resource a corresponding estimation of resources exists. For example, if

time and costs are being considered, the required time and cost is perceived as

estimation for every requirement.

 = , , , , … , , , , , , , … , , , , , , , … , , , … , , , , , … , ,

Having perceived estimations of every certain requirement, it is also necessary to

perceive constraints of each requirement; a task which is performed in next step.

Perceived estimations can be classified using estimation parameters. These parameters

are not considered in many release planning methodologies and only one estimation for

every certain requirement has sufficed already. Moreover, there are other parameters

affecting resource estimation that depend, indeed, on decisions of the developer

organization and project characteristics. In general, like effective parameters on

requirement prioritization, parameters effective on estimation are divided into three

groups with the same classification. In other words it can be said that estimation

parameters are regarded similar to requirement prioritization parameters but with a

particular look at resource estimation. For example, team experience which is effective

on requirement prioritization as a project-related parameter impacts resource estimation

Univ
ers

ity
 of

 M
ala

ya

124

too, but in prioritization it results in faster or slower implementation of some specific

requirements. In resource estimation, it leads to earlier or later allocation of specific

resources and determines the amount of resources allocated to a certain requirement.

Moreover, some effective parameters on requirement prioritization cannot influence

constraint prioritization or resource estimation, and vice versa. For instance, the team

size which is an effective parameter on requirement prioritization is mentioned as a

resource constraint in resource estimation but not an estimation parameter. Therefore,

resource estimation looks at this prioritization parameter in a different way.

Considering the priority of every requirement and other relevant inputs, a requirement

can be stated based on the triplet set of R, P and E. in other words, every requirement

includes requirement code, priority from different stakeholders' viewpoint and

estimations of resources required for implementation.

 = {< >, < >, < >}

Up to this stage, it is necessary to find a set of release planning requirements that: 1)

have higher priorities, 2) have less resource estimations, and 3) are selected by

customers with more weight. It is necessary to search in the project environment to find

and select such requirements. Most release planning methodologies try to optimally

solve this problem and hence a variety of algorithms are presented.

5.2.3. Pre-release planning

Estimations and constraints are determinant parts of every release planning

methodology. Constraints show the number of requirements that can be selected for

every release. If a release is already planned, then a certain set of constraints are to be

used. On the other hand, if a release is planned gradually and repeatedly like most

software methodologies, new constraints should be identified for every software

development iteration. It must be noted though, that every release needs re-planning as a

Univ
ers

ity
 of

 M
ala

ya

125

result of a probable change in users' constraints, requirements and demands in different

iterations. However, if the constraints are assumed to be stable, they can be determined

for each iteration. Budget and time are the most important constraints for every release

development but other constraints such as technical and human resources are also

influential (Saleem & Shafique, 2008).

Set Z is used to display requirement implementation constraints and Zk is the kth

constraint.

 = { , , , … , }

Once resource constraints have been determined, an algorithm is used to plan the release

in this step. A review of the literature on release planning methods shows that

determining the dependency between requirements should be considered prior to the

implementation of the release plan(Svahnberg et al., 2010). This dependency is

determined by the developer team and shows which requirements are dependent on each

other. If the requirement Ri is dependent on requirement Rj, it is shown as → or , . Therefore, set D which holds a series of all requirement

interdependencies can be defined as:

 = ∀ , ∈ →
Respecting requirements' interdependencies, for every certain requirement i there must

be a set of requirements developed on which i is dependent. This completes as well as

complicates the release planning issue mentioned above.

The algorithm used in release planning receives the set Req and requirements inter-

relationships to find a set of pre-release plans meeting following goals:

• Having higher priorities

Univ
ers

ity
 of

 M
ala

ya

126

• Having lower resource estimations

• Their estimations being equal to (or lower than) resource constraints

• Being selected by customers with heavier (higher order) weights

• Relative requirements being developed maintaining the relationship.

The algorithm must present one or more release plans using inputs from previous steps.

Of course, the algorithm is likely to receive no plans. If so, one must modify parameters

of estimated resources or increase resource constraints.

 = {∀ ∈ | }

Similar to other mentioned steps, various parameters affect the development of a good

release plan. Some effective parameters on release planning algorithm include: type of

planning in terms of repetition, type of algorithm, precision, and the way input data are

used for computation. In fact, this step is the main difference between various release

planning methodologies. Varying release planning algorithms result in different outputs

of planning methodologies. No specific classification can be developed for effective

parameters on release planning at this stage, but they can be partly recognized based on

past experiences. Besides, most effective parameters on the two previous steps are no

more effective here since they focused on algorithm inputs and data prioritization. Thus,

they cannot be used in algorithm implementation unless they are being considered in a

specific condition. In other words, while implementing an algorithm, parameters that

are regarded the most are those which change the implementation manner not the

algorithm implementation inputs. This will be discussed in details in the section on

"describing effective parameters on release planning".

Univ
ers

ity
 of

 M
ala

ya

127

5.2.4. Analysis of pre-release plan and selecting the final release

Pre-release planning can be investigated and analysed from various perspectives. This is

accomplished by the project manager in an Ad-Hoc. The most important ideas in

analysing pre-release plans include: type of resources used in every planning, amount of

resources used (particularly time and budget) and flexibility of each plan.

In addition to ideas from analysis of pre-release plan, management decisions also affect

release plans. In fact, these decisions cannot be considered as ideas and are more a

selection between final release plans likely to originate from ideas and management

preferences of the developer organization; for instance, a selection between a plan

requiring less time, a plan requiring less costs and a plan requiring less human labour.

Although parameters can prioritize plans, the organization's manager or project manager

makes the final decision on selecting the proper plan.

5.2.5. The process model of release planning

Based on the definition of each common step in release planning, it can be observed that

there is a conceptual dependency between the outputs and inputs of these steps which

will lead to the pre-planning step and the final release plan accordingly. Regardless of

the release planning algorithm used in the third step and how each step is implemented,

these steps can be called the "release planning process steps" which receive a set of

inputs in various phases and produce a release plan as the output. Explaining how each

step is implemented and describing the release planning algorithm will convert release

planning process model to a precise or customized methodology.

To complement this perspective in which presented steps can be used as a release

planning process and to answer the second and third questions asked earlier, we need to

examine outputs and inputs of various methodologies and compare them with those of

the present method. Svahnberg et al. (Svahnberg et al., 2010) studied different release

Univ
ers

ity
 of

 M
ala

ya

128

planning methods and classified a series of their required input parameters (Figure 5-1).

From the figure, it is observed that "requirements dependencies" is one of the most

important parameters used in about 75% of the presented release planning methods.

This is followed by “effort constraints” (50%), “value factors” (37.5%), “resource

constraints” (33.3%), “stakeholders' influence factors” (29.2%) and “budget and cost

constraints” (29.1%). These inputs, which are considered the most typical inputs of

release planning methods, are received and determined in steps 1 and 2 of the process

model.

Figure 5-1: Taxonomy of requirements selection factors (Svahnberg et al., 2010)

In addition, Shafique and Saleem (Saleem & Shafique, 2008) examined the parameters

of release planning methods. They concluded that requirements dependencies, resource

consumption factors, effort constraints and stakeholders' influence factors, respectively,

were the most important common parameters in the methods they studied. These were

followed by other parameters such as budget and time. Since the number and type of

constraints and estimations vary in the common steps, they do not encounter any

difficulties in receiving other inputs and are considered "perfect" in terms of receiving

inputs. With regard to the output, most of the releases planning methods produce one or

more primary plans where the best one is then selected, and this is also supported by the

common steps.

Univ
ers

ity
 of

 M
ala

ya

129

Therefore, the common steps of release planning methods can be used as the process

model of release planning considering the fact that they receive various inputs and

produce the expected outputs. Moreover, it has to be noted that these steps must be

customized and their implementation has to be precise to achieve the proper plan. In

other words, the process model explains a series of required steps to achieve a release

planning but every step and its implementation mode must be described carefully.

Therefore, it is necessary to determine every effective parameter in customization and

explain their effects.

Figure 5-2 presents common steps in the process model of release planning, along with

their inputs and outputs. Note that some common activities which solely receive inputs

are not considered as an independent step and their key input is left to the appropriate

key common steps. In addition, the figure shows all the input data that are significant in

making the best decisions on requirements for an effective release.

This type of presentation separates the input data from the effective parameters in every

certain step. The parameters in each step help the proper and precise implementation of

the step. Moreover, they can be used to customize the planning process for a certain

project or company. To do this, they must have specific values. As mentioned earlier,

the parameter value can be identified and classified using past experiences in release

planning and reviewing release planning literature. The next section describes how this

is done in every step. Univ
ers

ity
 of

 M
ala

ya

130

Figure 5-2: Inputs, outputs and activities in the release planning process model

5.3. Release planning process model customization

The defined process model of release planning is the result of a series of common steps

in release planning methodologies. It contains a definition of every certain step and its

inputs and outputs, but lacks any explanation on how every step is implemented. The

process shows the tasks needed to implement a premium release planning methodology.

Effort has been made to define its specifications and parameters so that it can cover

most methodologies by simply altering inputs and outputs. Covering various release

planning tasks highly depends on the customization of release planning process model.

This customization means to correctly value effective parameters on every step in order

to develop a precise guide for that step. To do this, the effective parameters must be

identified, described and valued and it is necessary to determine their effect on method

selection. Below, we will first describe parameters effective on every step of release

planning process model and then will examine their influence on method selection in all

steps. Finally, we will examine the influence of parameters' inter-relationship.

5.3.1. Customization of requirements prioritization

Requirements prioritization is the first step in regulating requirements, the objective of

which is to facilitate requirement analysis in the next steps. Various steps of this task

are presented below.

Final
Release Plan Requirements

Stakeholders
Voting

Requirements
Prioritization

Resource
Estimation

Requirements
Estimation &

Resources
Constraints

Release
Pre-planning

Requirement
Dependency

Strategic
Decisions

Planning
Parameters

Trade-off
Analysis

Prioritization
Parameters

Estimation
Parameters

Trade-off
Parameters

Univ
ers

ity
 of

 M
ala

ya

131

5.3.1.1. Effective parameters on requirement prioritization

In its simplest form, this task is accomplished in an ad-hoc manner regardless of any

given parameters. In its current form, which is adopted in most release planning

methods, priority is given by the stakeholders and is then integrated with the developers'

vote, hence, requirement priority is determined (Svahnberg et al., 2010). The most

popular requirement prioritization method used in release planning methodologies is

"Analytical Hierarchy Process" (AHP) (Berander & Andrews, 2005; Slooten, 2012),

which was introduced by Thomas Saaty in 1970s. The process in this method is

designed in a way that it is consistent and can be associated with human intellect and

nature. Technically, AHP is one of the most comprehensive systems designed for

decision-making with multiple measures since it allows the formulation of the problem

in a hierarchical manner and enables one to consider various quantitative and qualitative

measures (Saaty, 1980; Slooten, 2012). In addition, there are other methods for

requirements prioritization, some of which are mentioned below (Berander & Andrews,

2005; Durillo et al., 2011):

• Cumulative Voting or the 100-Dollar test

• Numerical Assignment (Grouping)

• Ranking

• Top-Ten Requirements

• Quality Function Development (QFD)

• Cost-Value Approach

These are not the only existing methods, of course; other prioritization techniques are

B-Tree based methods, Quality-based methods, genetic Algorithm or Value-based

methods (Chatzipetrou, Angelis, Rovegard, & Wohlin, 2010; Iqbal, Zaidi, & Murtaza,

Univ
ers

ity
 of

 M
ala

ya

132

2010; Marjaie & Kulkarni, 2010; Ninaus, 2012; Otero, Dell, Qureshi, & Otero, 2010;

Perini et al., 2012; Racheva, Daneva, Herrmann, & Wieringa, 2010; Tonella, Susi, &

Palma, 2010). These methods try to increase the requirements prioritization quality by

decreasing the number of comparisons, emphasizing certain specifications in

prioritization, and lessening the complexity. Nevertheless, many software development

teams are wondering how to select the proper method to prioritize their software. Most

teams seek a simpler prioritization method and go for methods such as ad-hoc and

Numerical Assignment (Svensson et al., 2011). Finding the answer to the above

question can clarify some requirements prioritization parameters, which are also related

to method selection.

Aasem, M. et al. (Aasem, Ramzan, & Jaffar, 2010) compared existing requirements

prioritization methods and suggested measures to evaluate them. Some of these

measures, including scale and granularity, are considered parameters for prioritization

and implementation type. Table 5-2 shows this classification, which helps to find best-

fitted requirements prioritization methods based upon specific parameters.

Requirements manager can determine the value of each parameter for his/her project

and find out the proper method quickly.

According to these measures, every prioritization method is only suitable for certain

cases. For example, since AHP, B-Tree and 100-Dollar Test are complicated methods,

small-size companies with a limited number of stakeholders are not expected to be able

to use them. Therefore, the number of stakeholders involved in requirements

prioritization and the size of the software development team or company can partly

determine or limit a certain prioritization method. This is also true about granularity

which shows the precision of every output, e.g. fine, medium, coarse or extremely

coarse. If the requirements are to be prioritized carefully, the methods with a fine

Univ
ers

ity
 of

 M
ala

ya

133

granularity are preferred; but when precision is less important, the methods with a

coarse granularity can be employed.

The identified parameters can be used as a classifier for requirements prioritization

methods. In fact, finding such specifications that can narrow down the prioritization

methods and identify the parameters to be used in prioritization will help customize the

requirements prioritization step and therefore, can determine various customization

parameters. In addition, similar to Aasem, M. et al. (Aasem et al., 2010) in which every

parameter was classified and methods were placed in these classes, primary

classifications must be made for every requirement prioritization parameter.

Table 5-2: Classification of prioritization methods (Aasem et al., 2010)

Technique Scale Granularity Sophistication Aspect Perspective Type

AHP Ratio Fine Very Complex
Strategic

importance,
Penalty

Product
Manager Algorithmic

B-Tree -- Fine Complex - - Algorithmic

100-Dollars
Test Ratio Fine Complex Customer

importance Customers Manual

Ranking Ordinal Medium Easy Volatility Requirements
Specialist Manual

Numerical
Assignment Ordinal Coarse Very Easy Time,

Risk

Project
Manager,

Requirements
Specialist

Manual

Top 10 --- Extremely
Coarse Extremely Easy Customer

importance Customers Manual

In two independent studies, Kashif Ahmed Khan et al. (Berander, Khan, & Lehtola,

2006; Khan, 2006) examined requirements prioritization methods and presented

parameters for comparison. These parameters are presented in Table 5-3. As can be seen

in the table, methods are studied from various aspects.

Univ
ers

ity
 of

 M
ala

ya

134

Table 5-3: Comparison parameters of requirements prioritization methods

Variable Type Variable Sub-Variables

Independent

Qualitative Process Description
Goal

Hierarchy Level

Input Lower-level approaches used
Aspects taken into account

Output

Dependent

Time
Accuracy

Ease of Learning
Ease of Use

Fault Tolerance
Scalability

Understandability of Results
Attractiveness

Context

Environment

Type of market
Process model

Phase of prioritization
Size of the project and organization

Application domain

Study Setup

Prioritization tools
Work mode

Location/Amount of control
Duration of study

Selection strategy for prioritization
approach

Role of the researcher

Subjects

Roles/Perspectives
Commitment
Experience

View on software development
Gender and Age

Requirement

Number of requirements
Type of requirements

Abstraction level
Structure

Out of these studies and other corresponding literature (Herrmann & Paech, 2008; Ma,

2009; Marjaie & Kulkarni, 2010), a list of specifications can be obtained in which the

best prioritization methods are described. To achieve this goal, these specifications and

their correlated objectives were studied and a set of such specifications with their

allowed values was obtained. Table 5-4 shows these parameters along with their

instances. An instance of every parameter represents allowed values for that parameter

and can be added later to expand the method.

Univ
ers

ity
 of

 M
ala

ya

135

Table 5-4: Parameters of requirements prioritization

Parameter Allowed Value Description

Market type
(MT)

Customized (MT1) The software is designed and developed for a certain costumer.

Limited customer
(MT2)

The number of customers is limited.

Unlimited
customer (MT3)

The number of customers is unlimited.

Development
methodology

(DM)

Waterfall (DM1) Requirements are perceived at the beginning of the project.

Agile (DM2)
Requirements are perceived and revised at the beginning of
each iteration.

RUP (DM3)
Requirements are perceived and revised at the beginning of
each iteration.

RAD (DM4)
Requirements are perceived at the beginning and after
producing a protoype.

Team size
(TS)

Low (TS1) Just one individual votes on requirements prioritization.

Medium (TS2) 1-3 individuals vote on requirements prioritization.

High(TS3) More than 3 individuals vote on requirements prioritization.

Requirements
number (RN)

Low (RN1) Less than 20 requirements exist.

Medium (RN2) Between 21 and 50 requirements exist.

High (RN3) More than 51 requirements exist.

Requirements
granularity

Fine (RG1)
Proposed requirements are in the technical level and do not
need to be broken up.

Medium (RG2)
Proposed requirements must be divided into 2 or 3 fine
requirements.

Coarse (RG3)
Proposed requirements must be divided into 2 or more medium
requirements.

Number of
prioritization

inputs (PI)

Low (PI1)
Only one prioritization input (usually requirement value factor)
is valued by stakeholders or members of the development team.

Medium (PI2)
2 or 3 prioritization inputs are valued by stakeholders or
members of the development team.

High (PI3)
More than 3 prioritization inputs are valued by stakeholders or
members of the development team.

Team
experiences

(TE)

Experienced (TE1)
The team has implemented more than 3 software projects in the
considered field.

Half experienced
(TE2)

The team has implemented less than 3 software projects in the
considered field but had implemented projects in similar and
relevant fields.

Univ
ers

ity
 of

 M
ala

ya

136

Parameter Allowed Value Description

Inexperienced
(TE3)

The team has no experience of project implementation in the
considered field or relevant scope.

Development
environment

(DE)

Web-based (DE1)
The software is developed as a web-based one and users access
it through the web.

Client-server
(DE2)

The software has a server and set of clients.

Desktop (DE3) The software is installed on a personal computer.

These mentioned parameters of prioritization methods have resulted from studies on

release planning. But naturally they are not perfect and it is possible to add new

parameters; this enables expansion of the method. Moreover, since this kind of

methodology did not exist in previous studies and those trying to classify different

release planning methods did it solely by comparison and without using these

parameters to select the proper release planning methodology, the parameters can be

considered the first group of release planning parameters which are developed through a

pattern-based methodology. One point to be considered is the ability to combine this

with the next step. Although there are some release planning methodologies in which

requirement prioritization and resource estimation are done simultaneously (Berander &

Andrews, 2005), the two are entirely separate in the process model and requirements are

prioritized regardless of resource estimations. In other words, prioritization in this step

is performed based on parameters (such as stakeholders' priorities, risk, developer

team's priorities, etc.) which do not need resource estimation. Parameters such as costs,

time and labor (requiring resource estimation) are considered in the next step and

selection is accomplished in release planning based on these inputs. Separating these

parameters can be result in more precise estimation and improved efficiency of the

method.

Univ
ers

ity
 of

 M
ala

ya

137

5.3.1.2. Effect of parameters on requirements prioritization method

The effect of every parameter on requirements prioritization method can be determined

based on parameters themselves and their instances. Table 5-5 examines the effect of

every parameter instance independently. It is observed that some parameter instances

can directly and strongly determine the requirements prioritization method but all

instances must be considered to be able to specify the method precisely.

Table 5-5: Effect of instances on the requirements prioritization method

Parameter Instance Description

Market type

Customized
Every method can be used. Therefore, method selection is
dependent on other parameters and no method can be deduced
directly.

Limited customer
Every method can be used. Therefore, method selection is
dependent on other parameters and no method can be deduced
directly.

Unlimited
customer

Methods which can manage high volume of requirements number
are used here. Method selection is also dependent on other
parameters and no method can be deduced directly.

Development
methodology

Waterfall

Iterative methods are less considered and requirements
prioritization method must preferably be based on methodology’s
specifications. Method selection is also dependent on other
parameters and no method can be deduced directly.

Agile

Iterative methods are more considered. Methods such as "Planning
Game" are specifically designed for these methodologies. Method
selection is also dependent on other parameters and no method can
be deduced directly.

RUP
Iterative methods are more considered. Method selection is also
dependent on other parameters and no method can be deduced
directly.

RAD
Iterative methods and frequent changes of supporting requirements
are more considered. Method selection is also dependent on other
parameters and no method can be deduced directly.

Team size

Small
Lighter and simpler methods (such as Top 10 and Numerical
Assignment) are often used. Method selection is also dependent on
other parameters and no method can be deduced directly.

Medium
Every method can be used. Therefore, method selection is
dependent on other parameters and no method can be deduced
directly.

Big
More complicated and stronger methods (such as AHP and B-Tree)
are often used. Method selection is also dependent on other
parameters and no method can be deduced directly.

Univ
ers

ity
 of

 M
ala

ya

138

Parameter Instance Description

Requirements
number

Small
Methods such as Top 10 and Numerical Assignment can be used.
Method selection is also dependent on other parameters and no
method can be deduced directly.

Medium Most methods can be used. Method selection is also dependent on
other parameters and no method can be deduced directly.

Big

Methods such as Top 10 which are performed manually (cannot be
made automatic) are too demanding and are not suitable. Method
selection is also dependent on other parameters and no method can
be deduced directly.

Team
experiences

Experienced Every method can be used. Method selection is dependent on other
parameters and no method can be deduced directly.

Half experienced Every method can be used. Method selection is dependent on other
parameters and no method can be deduced directly.

Inexperienced

Methods emphasizing requirement value and stakeholders’ inputs
are more considered since the team is often not able to comment on
the requirements value. Method selection is also dependent on
other parameters and no method can be deduced directly.

Development
environment

Web-based

Methods emphasizing stakeholders' vote are more considered since
individuals' opinions are important in this type of software. Method
selection is also dependent on other parameters and no method can
be deduced directly.

Client-server Every method can be used. Method selection is dependent on other
parameters and no method can be deduced directly.

Desktop Every method can be used. Method selection is dependent on other
parameters and no method can be deduced directly.

Requirements
level

Fine

In a research (Aasem et al., 2010) investigating requirements level
in prioritization methods, methodologies are classified according to
the requirements level. It is demonstrated in this research that
methods such as AHP, B-Tree and 100-Dolars test are suitable for
this level of requirements. Method selection is also dependent on
other parameters and no method can be deduced directly.

Medium

In a research (Aasem et al., 2010) investigating requirements level
in prioritization methods, methodologies are classified according to
the requirements level. It is demonstrated in this research that
Ranking method is suitable for this level of requirements. Method
selection is also dependent on other parameters and no method can
be deduced directly.

Coarse

In a research (Aasem et al., 2010) investigating requirements level
in prioritization methods, methodologies are classified according to
the requirements level. It is demonstrated in this research that
Numerical Assignment and Top 10 methods are suitable for this
level of requirements. Method selection is also dependent on other
parameters and no method can be deduced directly.

Univ
ers

ity
 of

 M
ala

ya

139

Parameter Instance Description

Number of
prioritization

inputs

Small numbers

In a research (Aasem et al., 2010) investigating requirements level
in prioritization methods, methodologies are classified according to
the requirements level. Following methods are proposed for 1
prioritization input:

• Fine: 100-Dolars test
• Medium: 100-Dolars test, Ranking
• Coarse: Top 10

Precise method selection is dependent on other parameters.

Medium numbers

In a research (Aasem et al., 2010) investigating requirements level
in prioritization methods, methodologies are classified according to
the requirements level. Following methods are proposed for 1
prioritization input:

• Fine: AHP, B-Tree
• Medium: AHP, Ranking
• Coarse: Ranking, Numerical Assignment

Precise method selection is dependent on other parameters.

Big numbers

In a research (Aasem et al., 2010) investigating requirements level
in prioritization methods, methodologies are classified according to
requirements level. Following methods are proposed for 1
prioritization input:

• Fine: AHP, B-Tree
• Medium: AHP, Ranking
• Coarse: Ranking, Numerical Assignment

Precise method selection is dependent on other parameters.

Although customization can be accomplished using requirements parameters and their

instances, the relationship between parameters and instances must be specified clearly in

order to determine proper method(s) for every set of parameters.

5.3.1.3. The relationship between effective parameters on requirements

prioritization

It is essential to determine the relationship between parameters and their instances in

order to make use of them in selecting prioritization method. Two parameters can have

direct, reverse or no relationship. In a direct relationship, every parameter can affect the

other and both parameters are necessary for the method selection. In a reverse

relationship, presence of one parameter makes the other insignificant. Also, the

parameters can have no relationship and have no effect on each other. The relationship

between every parameter instance and all other parameters is examined in order to

explain every certain relationship.

Univ
ers

ity
 of

 M
ala

ya

140

Table 5-6: Relations between "market type" instances and other parameters

Parameter Instance Description

Development
methodology

Waterfall

This method cannot be applied in limited or unlimited customer
cases since requirements in these cases change and they cannot be
perceived at the beginning of the project. However, this is
possible for customized software.

Agile This can be used in all three market types.

RUP
This is not efficient in unlimited customer cases. Those cases
require agility which is absent in RUP. However, it can be used
for customized and limited customer cases.

RAD This can be used in all three market types.

Team size

Small Small teams can be used in customized market. But it is not
responsive in limited or unlimited customer cases.

Medium This can be used in all three market types.

Big This can be used in all three market types.

Requirements
number

Small
The number of requirements is 20 in most limited and unlimited
customer software; hence, the small number of requirements is
only possible in customized software.

Medium The requirements number can be medium in all three market
types.

Big The requirements number can be big in all three market types.

Requirements
level

Fine The requirements level can be fine in all three market types.

Medium The requirements level can be medium in all three market types.

Coarse The requirements level can be coarse in all three market types.

Number of
prioritization

inputs

Small numbers The number of prioritization inputs can be 1 in all market types.

Medium numbers The number of prioritization inputs can be 2 or 3 in customized
and limited customer software.

Big numbers

More than 3 prioritization inputs can exist in customized
software, but for limited or unlimited customer cases the number
progressively increase and a large number of activities need to be
done on every requirement.

Team
experience

Experienced Experienced teams can enter all market types.

Half-experienced Half-experienced teams can enter all market types.

Univ
ers

ity
 of

 M
ala

ya

141

Parameter Instance Description

Inexperienced

Inexperienced teams cannot be used in customized and limited
customer software, since it is necessary for the team to recognize
customers' concerns. However, they can be used in unlimited
customer market.

Development
environment

Web-based It is mostly used in limited and unlimited customer software.

Client-server It is mostly used in limited customer and customized software.

Desktop It is only used in customized software.

As observed in the above table, some instances contradict market type instances and are

less likely (or unlikely) to occur for two parameters. A set of ordered pairs can be

defined as follows for those instances of two parameters which coincide:

 = { ∈ , ∈ { , , , , , , }|(,)} , ∈ { , , , , , , }
According to this definition, members of every K set are as follows:

KMTDM = {(MT1, DM1), (MT1, DM2), (MT1, DM3), (MT1, DM4), (MT2, DM2), (MT2, DM3), (MT2, DM4), (MT3, DM2), (MT3, DM4)} KMTTS = {(MT1, TS1), (MT1, TS2), (MT1, TS3), (MT2, TS2), (MT2, TS3), (MT3, TS2), (MT3, TS3)} KMTRN = {(MT1, RN1), (MT1, RN2), (MT1, RN3), (MT2, RN2), (MT2, RN3), (MT3, RN2), (MT3, RN3)} KMTRG = {(MT1, RG1), (MT1, RG2), (MT1, RG3), (MT2, RG1), (MT2, RG2), (MT2, RG3), (MT3, RG1), (MT3, RG2), (MT3, RG3)} KMTPI = {(MT1, PI1), (MT1, PI2), (MT1, PI3), (MT2, PI1), (MT2, PI2), (MT3, PI1)} KMTTE = {(MT1, TE1), (MT1, TE2), (MT2, TE1), (MT2, TE2), (MT3, TE1), (MT3, TE2), (MT3, TE3)} KMTDE = {(MT1, DE2), (MT1, DE3), (MT2, DE1), (MT2, DE2), (MT3, DE1)}

The sets include 50 ordered pairs that each of which represents the relationship between

two instances of two parameters. Every pair can be considered as a combination likely

to lead to a prioritization method. The likelihood becomes absolute when the pair

creates a combination of all possible states along with other parameters. Other states

absent in this pair, as mentioned earlier, are either invalid or unlikely and they can be

ignored. The probability of every state originates from the instance analysis of each

parameter and the best experiences recorded for that parameter instance. For example,

Univ
ers

ity
 of

 M
ala

ya

142

avoiding RUP for unlimited customer market type is due to the fact that the

methodology is heavy weighted, requires certain documentations, and it is a predictor

method while this market type requires an agile and rapid method to respond to

customers' demands not already determined. This does not make software developing

companies to neglect RUP in unlimited customer projects, but the best practice is

always to consider the characteristics of the two instances.

Table 5-7 shows the relationship between "development methodology" and other

requirements prioritization parameters.

Table 5-7: Relations between "development methodology" and other parameters

Parameter Instance Description

Team size

Small Agile, RAD and Waterfall methodologies can be used in small
teams.

Medium All methodologies can be used.

Big RUP and Waterfall methodologies can be used.

Requirements
number

Small All methodologies can be used.

Medium
Agile, RUP and Waterfall methodologies can be used but RAD
cannot support medium number of requirements because of the
implementation nature.

Big
RUP and Waterfall methodologies can be used but RAD and
Agile methods cannot support big number of requirements
because of the implementation nature.

Requirements
level

Fine All methodologies can be used.

Medium All methodologies can be used.

Coarse
RUP and Waterfall methodologies can manage coarse
requirements level considering their structure and
documentations.

Number of
prioritization

inputs

Small numbers All methodologies can be used.

Medium numbers All methodologies can be used.

Big numbers All methodologies can be used.

Univ
ers

ity
 of

 M
ala

ya

143

Parameter Instance Description

Team
experience

Experienced All methodologies can be used.

Half-experienced All methodologies can be used.

Inexperienced All methodologies can be used.

Development
environment

Web-based Agile and RUP methodologies can be used.

Client-server All methodologies can be used.

Desktop All methodologies can be used.

According to Table 5-7, some instances of development methodologies contradict other

parameter instances. A set of ordered pair is defined as follows for those coinciding

parameter instances:

 = { ∈ , ∈ { , , , , , }|(,)} , ∈ { , , , , , }
According to this definition, members of every K set are as follows:

KDMTS = {(DM1, TS1), (DM1, TS2), (DM1, TS3), (DM2, TS1), (DM2, TS2), (DM3, TS2), (DM3, TS3), (DM4, TS1), (DM4, TS2)} KDMRN = {(DM1, RN1), (DM1, RN2), (DM1, RN3), (DM2, RN1), (DM2, RN2), (DM3, RN1), (DM3, RN2), (DM3, RN3), (DM4, RN1)} KDMRG = {(DM1, RG1), (DM1, RG2), (DM1, RG3), (DM2, RG1), (DM2, RG2), (DM3, RG1), (DM3, RG2), (DM3, RG3), (DM4, RG1), (DM4, RG2)} KDMPI = {(DM1, PI1), (DM1, PI2), (DM1, PI3), (DM2, PI1), (DM2, PI2), (DM2, PI3), (DM3, PI1), (DM3, PI2), (DM3, PI3), (DM4, PI1), (DM4, PI2), (DM4, PI3)} KDMTE = {(DM1, TE1), (DM1, TE2), (DM1, TE3), (DM2, TE1), (DM2, TE2), (DM2, TE3), (DM3, TE1), (DM3, TE2), (DM3, TE3), (DM4, TE1), (DM4, TE2), (DM4, TE3)} KDMDE = {(DM1, DE2), (DM1, DE3), (DM2, DE1), (DM2, DE2), (DM2, DE3), (DM3, DE2), (DM3, DE3), (DM4, DE1), (DM4, DE2), (DM4, DE3)}

These sets contain 62 ordered pairs each of which represents the relationship between

two instances of two parameters and forms a certain state.

Table 5-8 shows the relationship between "team size" and other parameters.

Univ
ers

ity
 of

 M
ala

ya

144

Table 5-8: Relations between "team size" and other parameters

Parameter Instance Description

Requirements
number

Small Whatever the team size is, it can manage small number of
requirements.

Medium A small team cannot manage medium number of requirements in
a proper time. Thus, team size must increase.

Big A big team can manage large number of requirements.

Requirements
level

Fine Whatever the team size is, it can manage this level of
requirements.

Medium Whatever the team size is, it can manage this level of
requirements.

Coarse Whatever the team size is, it can manage this level of
requirements.

Number of
prioritization

inputs

Small numbers Whatever the team size is, it can manage 1 input for requirements
prioritization.

Medium
numbers

Whatever the team size is, it can manage 2 or 3 inputs for
requirements prioritization.

Big numbers Whatever the team size is, it can manage more than 3 inputs for
requirements prioritization.

Team
experiences

Experienced Whatever the team size is, it can be experienced.

Half
experienced Whatever the team size is, it can be half-experienced.

Inexperienced Whatever the team size is, it can be inexperienced.

Development
environment

Web-based Whatever the team size is, it can develop web-based software.

Client-server Whatever the team size is, it can develop client-server software.

Desktop Whatever the team size is, it can develop desktop software.

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { , , , , }|(,)} , ∈ { , , , , }
According to this definition, members of every K set are as follows:

KTSRN = {(TS1, RN1), (TS2, RN1), (TS2, RN2), (TS3, RN1), (TS3, RN2), (TS3, RN3)} KTSRG = {(TS1, RG1), (TS1, RG2), (TS1, RG3), (TS2, RG1), (TS2, RG2), (TS2, RG3), (TS3, RG1), (TS3, RG2), (TS3, RG3)} KTSPI = {(TS1, PI1), (TS1, PI2), (TS1, PI3), (TS2, PI1), (TS2, PI2), (TS2, PI3), (TS3, PI1), (TS3, PI2), (TS3, PI3)}

Univ
ers

ity
 of

 M
ala

ya

145

KTSTE = {(TS1, TE1), (TS1, TE2), (TS1, TE3), (TS2, TE1), (TS2, TE2), (TS2, TE3), (TS3, TE1), (TS3, TE2), (TS3, TE3)} KTSDE = {(TS1, DE1), (TS1, DE2), (TS1, DE3), (TS2, DE1), (TS2, DE2), (TS2, DE3), (TS3, DE1), (TS3, DE2), (TS3, DE3)}

These sets contain 42 ordered pairs, each of which represents the relationship between

two instances of two parameters and forms a certain case.

Table 5-9 shows the relationship between "requirements number" and other parameters.

Table 5-9: Relations between "requirements number" and other parameters

Parameter Instance Description

Requirements
level

Fine This level can contain every number of requirements.

Medium This level can contain every number of requirements.

Coarse

This level can have small or medium number of requirements.
If the requirements number is big, requirements level declines
and approaches fine level. Hence, the coarse level is not seen if
requirements number is big.

Number of
prioritization

inputs

Small numbers Whatever the requirements number is, number of prioritization
inputs can be 1.

Medium numbers Whatever the requirements number is, number of prioritization
inputs can be 2 or 3.

Big numbers
An increase in prioritization inputs enhances the activities to be
done on every requirement. Hence, if there are more than 3
inputs, requirements number must be small or medium.

Team
experience

Experienced An experienced team can manage every number of
requirements.

Half-experienced A half-experienced team can manage every number of
requirements.

Inexperienced An inexperienced team can manage every number of
requirements.

Development
environment

Web-based Whatever the requirements number is, it can be presented in
web-based software.

Client-server Whatever the requirements number is, it can be presented in
client-server software.

Desktop Whatever the requirements number is, it can be presented in
desktop software.

The following ordered pair is defined for two coinciding parameter instances:

Univ
ers

ity
 of

 M
ala

ya

146

 = { ∈ , ∈ { , , , }|(,)} , ∈ { , , , }
According to this definition, members of every K set are as follows:

KRNRG = {(RN1, RG1), (RN1, RG2), (RN1, RG3), (RN2, RG1), (RN2, RG2), (RN2, RG3), (RN3, RG1), (RN3, RG2)} KRNPI = {(RN1, PI1), (RN1, PI2), (RN1, PI3), (RN2, PI1), (RN2, PI2), (RN2, PI3), (RN3, PI1), (RN3, PI2)} KRNTE = {(RN1, TE1), (RN1, TE2), (RN1, TE3), (RN2, TE1), (RN2, TE2), (RN2, TE3), (RN3, TE1), (RN3, TE2), (RN3, TE3)} KRNDE = {(RN1, DE1), (RN1, DE2), (RN1, DE3), (RN2, DE1), (RN2, DE2), (RN2, DE3), (RN3, DE1), (RN3, DE2), (RN3, DE3)}

These sets contain 34 ordered pairs, each of which represents the relationship between

two instances of two parameters and forms a certain state.

Table 5-10shows the relationship between "requirements level" and other parameters.

Table 5-10: Relations between "requirements level" and other parameters

Parameter Instance Description

Number of
prioritization

inputs

Small numbers Whatever the requirements level is, number of prioritization
inputs can be 1.

Medium numbers Whatever the requirements level is, number of prioritization
inputs can be 2 or 3.

Big numbers

More precise requirements level (closer to Fine) can cause an
increase in prioritization inputs number. Because of lack of
precision in Coarse level, only a limited number of inputs can
be predicted (to be considered for input prioritization).
Therefore, Fine and Medium levels only can have more than 3
inputs.

Team
experiences

Experienced An experienced team can manage all requirements levels.

Half-experienced A half-experienced team can manage all requirements levels.

Inexperienced An inexperienced team can manage all requirements levels.

Development
environment

Web-based All requirements levels can be presented in web-based
software.

Client-server All requirements levels can be presented in client-server
software.

Desktop All requirements levels can be presented in desktop software.

Univ
ers

ity
 of

 M
ala

ya

147

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { , , }|(,)} , ∈ { , , }
According to this definition, members of every K set are as follows:

KRGPI = {(RG1, PI1), (RG1, PI2), (RG1, PI3), (RG2, PI1), (RG2, PI2), (RG2, PI3), (RG3, PI1), (RG3, PI2)} KRGTE = {(RG1, TE1), (RG1, TE2), (RG1, TE3), (RG2, TE1), (RG2, TE2), (RG2, TE3), (RG3, TE1), (RG3, TE2), (RG3, TE3)} KRGDE = {(RG1, DE1), (RG1, DE2), (RG1, DE3), (RG2, DE1), (RG2, DE2), (RG2, DE3), (RG3, DE1), (RG3, DE2), (RG3, DE3)}

These sets contain 26 ordered pairs, each of which represents the relationship between

two instances of two parameters and forms a certain state.

Table 5-11shows the relationship between "number of prioritization inputs" and other

parameters.

Table 5-11: Relations between "number of prioritization inputs" and other parameters

Parameter Instance Description

Team
experiences

Experienced An experienced team can manage every number of
prioritization inputs.

Half-experienced A half-experienced team can manage every number of
prioritization inputs.

Inexperienced An inexperienced team can manage every number of
prioritization inputs.

Development
environment

Web-based Every number of prioritization inputs can be considered in web-
based software.

Client-server Every number of prioritization inputs can be considered in
client-server software.

Desktop Every number of prioritization inputs can be considered in
desktop software.

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { , }|(,)} , ∈ { , }
According to this definition, members of every K set are as follows:

Univ
ers

ity
 of

 M
ala

ya

148

KPITE = {(PI1, TE1), (PI1, TE2), (PI1, TE3), (PI2, TE1), (PI2, TE2), (PI2, TE3), (PI3, TE1), (PI3, TE2), (PI3, TE3)} KPIDE = {(PI1, DE1), (PI1, DE2), (PI1, DE3), (PI2, DE1), (PI2, DE2), (PI2, DE3), (PI3, DE1), (PI3, DE2), (PI3, DE3)}

These sets contain 18 ordered pairs, each of which represents the relationship between

two instances of two parameters and forms a certain state.

Table 5-12 shows the relationship between "team experience" and other parameters.

Table 5-12: Relations between "team experience" and other parameters

Parameter Instance Description

Development
environment

Web-based Whatever a team's experience level is, it can develop web-
based software.

Client-server Whatever a team's experience level is, it can develop client-
server software.

Desktop Whatever a team's experience level is, it can develop desktop
software.

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { }|(,)}
According to this definition, members of every K set are as follows:

KTEDE = {(TE1, DE1), (TE1, DE2), (TE1, DE3), (TE2, DE1), (TE2, DE2), (TE2, DE3), (TE3, DE1), (TE3, DE2), (TE3, DE3)}
This set contains 9 ordered pairs, each of which represents the relationship between two

instances of two parameters and forms a certain state.

Every set of ordered pairs is considered a definite state. Each set is combined with other

sets of ordered pairs with which it has a common point and forms a set of common

ternaries. Every common ternary represents a combination of an instance of three

parameters, the accuracy of which must be determined like the relationship between two

instances. Moreover, it is necessary to omit improbable or less likely states which can

Univ
ers

ity
 of

 M
ala

ya

149

be neglected. It must be noted that integrating all states will generate other new

common states with all three parameters of an instance, which must be omitted. Around

1350 primary states are created for the three parameters upon which decisions are made

and evaluation is performed. Having the states for three parameters generated, it is

necessary to combine them to achieve a four-parameter state and this is repeated until an

N-parameter state is obtained. A tool is developed to generate and record these different

states, to perceive their inter-relationships and to determine common and uncommon

states. This tool is capable of perceiving every parameter's instances and can generate

the relationship status between instances of two, three or more parameters. Having

identified the inter-relationships between parameters’ instances in every stage, the tool

automatically generates new multi-parameter relationship states and allows users to

recognize the likelihood of new relationships.

Figure 5-3 displays the relationship between instances of requirements prioritization

parameters in Pattern Release Planning tool.

Figure 5-3: Relations between requirements prioritization parameters instances in tool

An increase in the number of parameters and their instances causes a significant

enhancement in the number of states. It is absolutely difficult to examine all these

Univ
ers

ity
 of

 M
ala

ya

150

states, considering the fact that these only belong to requirements prioritization step and

other step also have their own states. Although the tool accelerates the operation and

state discovery, increase in the number of the states makes it difficult.

5.3.2. Customizing resource estimation

Estimating the required resources plays an important role in software development in

terms of time and costs. In order to customize resource estimation, we first characterize

the effective parameters in the resource estimation method, and then demonstrate their

effects on the method, before finally discussing their relationships.

5.3.2.1. Effective parameters on resource estimation

Resource estimation is one of the most important tasks in all release planning methods.

Most of release planning methods identify resource constraints in addition to making

necessary estimations of the resources for each requirement or specification, thus

resources are estimated for every requirement. As a result, the generated release plan is

based on a set of estimated resources for the requirements which are usually less than

their constraints. This simple procedure is usually present in most release planning

methods. It should be noted that the most important point here is the estimation method

used for every definite requirement or capability since it significantly influences the

release planning.

Most release planning methods do not focus on the circumstances of resource

estimation, because they suppose the users will enter estimation values for every

requirement. One of the release planning methods claiming to plan a release or prioritize

requirements based on resource estimation is that of Karlsson and Ryan (J. Karlsson &

Ryan, 1997). This method first determines the importance of every requirement and

estimates its implementation costs. It, then, compares the requirement pairs based on

AHP. In reality, no estimation method is used here. Further research done by Karlsson

Univ
ers

ity
 of

 M
ala

ya

151

and Regnell (L. Karlsson & Regnell, 2005) led to the introduction of a costs-based

method in which the implementation costs are divided into three classes. Resource

estimation is also done through XP and Planning Game method (Beck, 1999). Another

research on this topic is done by Kulkarni and Marjaie (Marjaie & Kulkarni, 2010) who

studied the parameters hidden in various release planning methods and suggested that

the available methods pay little attention to the parameters capable of making judgments

between requirements. A small number of studies have also focused on the

classification of resource estimation methods, among which are (Galorath & Evans,

2006; Jorgensen & Shepperd, 2007; Khatibi Bardsiri & Norhayati Abang Jawawi, 2011;

Pfleeger, Wu, & Lewis, 2005; Suwanjang & Nakornthip, 2012). Galorath and Evans

(Galorath & Evans, 2006), for instance, classified different resource estimation methods

based on their characteristics.

Classification of resource estimation methods can be used in selecting the right method

for specific projects. This can be done by identifying the properties of the methods.

Table 5-13 presents the classification of resource estimation methods and their

advantages and constraints. As the table shows, every method has some advantages and

disadvantages that make it suitable for some projects only. For example, the analogy

method can be used only when a similar project has already been accomplished. This

can be determined with the "team experience" parameter. Suwanjang and Nakornthip

(Suwanjang & Nakornthip, 2012) suggested an analogy framework in which the set of

effective parameters on resource estimation resulted from the team and software

specifications. Some of these parameters included: team experience in the specific area,

team experience in programming and planning, and software specifications such as

number of pages, behavior of pages, number of accessed tables, type of software round

up and number of inputs and outputs. Although some of these require design

Univ
ers

ity
 of

 M
ala

ya

152

knowledge, the rest (such as number of inputs and outputs) can be precisely determined

in the primary steps.

Table 5-13: Classification of different resource estimation methods (Galorath & Evans, 2006)

Method Objective Advantage Constraint

Analogy Comparing with previous
projects Reality-based estimation There must be a completely

similar project

Expert
judgment

Consulting one or more
experts

Previous data is partly
required; suitable for new

or unique projects

Experts may prejudge;
knowledge of experts is a
matter of question; it may

not be consistent

Top-to-down
estimation

Hierarchical separation of
the system to smaller

components in order to
estimate software size

Estimates resources based
on requirements and
common libraries are

generated in low levels

Needs valid requirements;
difficult architecture follow

up; hierarchy type can
cause false estimations

Down-to-top
estimation

Separate evaluation of
every component;

estimations are summed to
result in main estimation

Precise estimation is
possible

It is time-consuming; data
detail may not be available;

round up costs may be
ignored; hierarchy type can

cause false estimations

Algorithmic
models

Using designing
parameters and algorithms

Can be rapidly and simply
used; useful in primary

steps; objective and
replicable

Result in false estimations
if not implemented

correctly; false estimation
of project size may result in

false estimation of
resources; being optimistic

may result in false
estimations

In addition to above-mentioned studies, Pfleeger et al. (Pfleeger et al., 2005) examined

resource estimation methods and tried to find some specifications for their selection. As

Table 5-14 shows, only the algorithmic method can be accomplished without similar

information and knowledge of previous projects while other methods require

background knowledge. Moreover, when the algorithmic method is selected, it is

necessary to have the project characteristics well-identified in order to implement

configurations specific to the algorithmic methods.

Univ
ers

ity
 of

 M
ala

ya

153

Table 5-14: Characteristics of resource estimation method

Method Characteristics

Analogy • It cannot be used if the project is novel.
• It can be used for high level estimations.

Expert judgment

• It is used to complement judgments of other methods.
• Previous knowledge and experience is available.
• It cannot be used in new projects.
• It can be used only in initial steps.

Top-to-down
estimation

• It can be used if experts with proper knowledge, experience and data
are present.

• It is hard to implement in initial project steps.

Down-to-top
estimation

• It can be used if experts with proper knowledge, experience and data
are present.

• Requires a long time period.
• It is hard to implement in initial project steps.

Algorithmic models • It can be used if project's environment and characteristics are well-
identified.

Combining the characteristics mentioned in Tables 5-13 and 5-14, they can now be

classified into two groups: characteristics related to the project and those related to the

developer organization. Team experience is one of the parameters related to the

developer organization, while project environment and access to data of previous

projects are among parameters concerning the project. These will determine the most

appropriate method of resource estimation.

Unlike parameters effective on requirements prioritization which were clearly presented

before and can be used for an almost precise selection of priorities, effective parameters

on resource estimation are not transparent and precise; hence, the estimation method

cannot be exactly determined. This is especially true in determining a certain

algorithmic method, since algorithmic models have various sub-methods applicable in

different projects.

Effort required to perform every task is the main resource to be estimated. This

estimation makes it possible to calculate the time and budget needed for every

requirement. However, it is not feasible in certain states. For example, in order to design

Univ
ers

ity
 of

 M
ala

ya

154

Real-time or Embedded systems which require expertise, it is necessary to specify the

type of expertise along with the required effort. Therefore, it must be taken into

consideration that the estimated effort required may be greater than its exact figure.

Moreover, other specifications have to be considered which depend on the input and

output details of the resource estimation method. Methods such as analogy and expert

judgment are capable of being well-customized but this is not true about algorithmic

models. Considering what was mentioned above and using studies by (Galorath &

Evans, 2006; Khatibi Bardsiri & Norhayati Abang Jawawi, 2011; Pfleeger et al., 2005;

Suwanjang & Nakornthip, 2012), the effective parameters on resource estimation as

well as their instances can be presented as in Table 5-15.

Table 5-15: Effective parameters on resource estimation

Parameter Instance Description

Development
methodology

Waterfall Requirements are perceived at the beginning of the project.

Agile Requirements are perceived and revised at the beginning of
every repetition.

RUP Requirements are perceived and revised at the beginning of
every repetition.

RAD Requirements are perceived at the beginning and after
producing a sample.

Requirements
number

Small Less than 20 requirements exist.

Medium Between 21 and 50 requirements exist.

Big More than 51 requirements exist.

Team
experience

Experienced The team has accomplished more than 3 software projects in the
field.

Half-experienced The team has accomplished less than 3 software projects in the
considered field but has accomplished projects in similar fields.

Inexperienced The Team has not accomplished any projects in the considered
field and lacks experience in related ones.

Input-output
amount

Small Sum of software perceived inputs and outputs is less than 30.

Medium Sum of software perceived inputs and outputs is between 30 to
100.

Univ
ers

ity
 of

 M
ala

ya

155

Parameter Instance Description

Big Sum of software perceived inputs and outputs is more than 100.

5.3.2.2. The effect of parameters on resource estimation method

The effect of every parameter on selecting resource estimation methods can be

determined by the parameters and their instances. Table 5-16 shows the effect of every

parameter instance independently. As can be observed, some parameter instances can

directly (and to a significant extent) determine resource estimation methods but all

instances should be considered in relation to the others.

Table 5-16: Effect of parameters and instances on resource estimation method

Parameter Instance Description

Development
methodology

Waterfall
Steps in this method are well-known and can be used with
every resource estimation method. Selecting the precise method
depends on other parameters.

Agile
Steps in this method are well-known and can be used with
every resource estimation method. Selecting the precise method
depends on other parameters.

RUP
Steps in this method are well-known and can be used with
every resource estimation method. Selecting the precise method
depends on other parameters.

RAD

Steps in this method are not known and can have a wide range.
Hence, the algorithmic method is mostly not applicable in this
methodology. Analogy and expert judgment are mostly used
here and it is less feasible to employ other methods.

Requirements
number

Small Every method can be used for this number of requirements.
Decision-making is dependent on other parameters.

Medium Every method can be used for this number of requirements.
Decision-making is dependent on other parameters.

Big
Analogy and expert judgment cannot be used because of risk
increase. Selecting alternative methods depends on other
parameters.

Team
experience

Experienced An experienced team can select every method, and precise
selection is dependent on other parameters.

Half-experienced A half-experienced team can select every method, and precise
selection is dependent on other parameters.

Inexperienced Obviously, analogy cannot be used. Employing other methods
depends on other project parameters.

Input-output
amount Small Every method can be used in this case and decision-making

depends on other parameters.

Univ
ers

ity
 of

 M
ala

ya

156

Parameter Instance Description

Medium Every method can be used in this case and decision-making
depends on other parameters.

Big Every method can be used in this case and decision-making
depends on other parameters.

Parameters presented for resource estimation are obtained from limited research on the

subject and are obviously not perfect. It is possible, though, to add new parameters to

those available and improve the method. Furthermore, as this approach cannot be found

in studies conducted so far, the parameters can be considered as the first resource

estimation parameters in release planning which are developed according to a pattern-

based methodology.

5.3.2.3. Relationship between effective parameters on resource estimation

It is important and necessary to clarify the relationship between parameters and their

instances in order to use them in selecting a resource estimation method. Similar to

parameters effective on requirements prioritization, two parameters can have direct,

reverse or no relationship here. The relationship between every parameter instance and

all other parameters is examined independently in order to explain every certain

relationship.

Table 5-17 shows the relationship between "development methodology" instances and

other effective parameters on resource estimation.

Table 5-17: Relations between "development methodology" and other parameters

Parameter Instance Description

Requirements
number

Small All methodologies can be used.

Medium Agile, Waterfall and RUP methodologies can be used but RAD
cannot be employed because of its implementation nature.

Big Waterfall and RUP methodologies can be used but Agile and
RAD cannot be employed because of their implementation nature.

Univ
ers

ity
 of

 M
ala

ya

157

Parameter Instance Description

Team
experience

Experienced All methodologies can be used.

Half-experienced All methodologies can be used.

Inexperienced All methodologies can be used.

Input-output
amount

Small All methodologies can be used.

Medium All methodologies can be used.

Big
RAD cannot be used in this case since great number of inputs and
outputs requires documentation and structure which RAD is not
capable to support.

As observed in the above table, some instances contradict development methodologies

instances and are less likely (or unlikely) to occur compared to the two parameters. A

set of ordered pair can be defined as follows for those instances of the two parameters

which coincide:

 = { ∈ , ∈ { , , }|(,)} , ∈ { , , }

According to this definition, members of every L set are as follows:
 LDMRN = {(DM1, RN1), (DM1, RN2), (DM1, RN3), (DM2, RN1), (DM2, RN2), (DM3, RN1), (DM3, RN2), (DM3, RN3), (DM4, RN1)} LDMTE = {(DM1, TE1), (DM1, TE2), (DM1, TE3), (DM2, TE1), (DM2, TE2), (DM2, TE3), (DM3, TE1), (DM3, TE2), (DM3, TE3), (DM4, TE1), (DM4, TE2), (DM4, TE3)} LDMIO = {(DM1, IO1), (DM1, IO2), (DM1, IO3), (DM2, IO1), (DM2, IO2), (DM2, IO3), (DM3, IO1), (DM3, IO2), (DM3, IO3), (DM4, IO1), (DM4, IO2)}

The sets include 32 ordered pairs, each of which represents the relationship between two

instances of two parameters. Every pair can be considered a combination likely to lead

to a resource estimation method. The likelihood becomes absolute when the pair creates

a combination of all valid states along with other parameters. Other states absent in this

pair, as mentioned earlier, are either invalid or unlikely and can be ignored.

Table 5-18 shows the relationship between "requirements number" instances and other

effective parameters on resource estimation.

Univ
ers

ity
 of

 M
ala

ya

158

Table 5-18: Relations between "requirements number" and other parameters

Parameter Instance Description

Team
experience

Experienced This team can manage every number of requirements.

Half-experienced This team can manage every number of requirements.

Inexperienced This team can manage every number of requirements.

Input-output
amount

Small In this case, the number of requirements can be small or
medium.

Medium In this case, the number of requirements can be small or
medium.

Big In this case, the number of requirements can be medium or big.

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { , }|(,)} , ∈ { , }
According to this definition, members of every L set are as follows:

LRNTE = {(RN1, TE1), (RN1, TE2), (RN1, TE3), (RN2, TE1), (RN2, TE2), (RN2, TE3), (RN3, TE1), (RN3, TE2), (RN3, TE3)} LRNIO = {(RN1, IO1), (RN1, IO2), (RN2, IO1), (RN2, IO2), (RN2, IO3), (RN3, IO2), (RN3, IO3)}

The sets include 16 ordered pairs, each of which represent the relationship between two

instances of two parameters and forms a certain state.

Table 5-19 shows the relationship between "team experience" instances and other

effective parameters on resource estimation.

Table 5-19: Relations between "team experience" and other parameters

Parameter Instance Description

Input-output
amount

Small A team with any level of experience can manage this number of
inputs and outputs.

Medium A team with any level of experience can manage this number of
inputs and outputs.

Big A team with any level of experience can manage this number of
inputs and outputs.

Univ
ers

ity
 of

 M
ala

ya

159

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { }|(,)} , ∈ { }
According to this definition, members of every L set are as follows:

LTEIO = {(TE1, IO1), (TE1, IO2), (TE1, IO3), (TE2, IO1), (TE2, IO2), (TE2, IO3), (TE3, IO1), (TE3, IO2), (TE3, IO3)}
The sets include 9 ordered pairs, each of which represents the relationship between two

instances of two parameters and forms a certain state.

Every set of ordered pairs can be considered as a definite state that is combined with

other sets of ordered pairs with which it has a common point and forms a set of common

ternaries. Every common ternary represents a combination of an instance of three

parameters, the accuracy of which must be determined like the relationship between two

instances. Moreover, it is necessary to omit improbable or less likely states which can

be neglected. Of course, it must be noted that integrating all states will generate new

common states with all three parameters of an instance and these must be omitted. Data

related to various states between pairs is entered into the software designed for this

purpose. Figure 5-4 displays the relationship between resource estimation parameters

instances in Pattern Release Planning tool.

Figure 5-4: Relations between resource estimation parameters instances in tool

Univ
ers

ity
 of

 M
ala

ya

160

Similar to requirements prioritization, an increase in the number of parameters and their

instances significantly enhances the number of states to be examined.

5.3.3. Customization of pre-release plan

Although the other release planning steps are just as important, the pre-planning step is

regarded the main task because it produces the release plan. Customization of this step

is more difficult than that of previous ones for three reasons:

• Most of the available release planning methods and algorithms are dependent on

the input data of previous steps.

• Some algorithms contain steps which must be performed in a certain order and

cannot be separated from previous steps.

• There is a large number of release planning methods with a wide range of

diversity (Seyed Danesh, 2011).

In customizing the pre-planning process, it is necessary to select a proper method to

determine the release plans of the company or organization. This sounds easy because

method selection only affects the first step, and the required parameters have already

been identified in previous steps. However, considering the existing obstacles, it is not

possible to select the appropriate release planning method in the same manner as in

previous steps and a change is needed in how we look at method selection. This means

that we need to select a method group based on the planning technique in this step

instead of selecting a single method. This was also partly true in resource estimation

where it was impossible to determine the precise algorithmic methods based on the

parameters, hence, method selection only ended in algorithm selection and other sub-

methods could not be chosen. The same can be done in this step through defining

various classes of release planning.

Univ
ers

ity
 of

 M
ala

ya

161

According to (Seyed Danesh, 2011) which has tried to review all of the release planning

methods, release planning classes can be defined as follows based on the characteristics

and capabilities of the planning methods:

• Class of Ad-hoc methods: Ad-hoc or plan deficient class is the most basic and

simplest class of the release planning methods. No definite method or algorithm

is used to plan a release in this class and its previous step (resource estimation)

is accomplished through a set of simple parameters. These simple parameters

can result in different release plans independently or in a combined manner.

Business rules, demand-based customers' needs, and anticipated time and costs

are among these parameters. In fact, this class of release planning exerts no

systematic method on estimated and prioritized requirements but tries to

generate different release plans based on proposed parameters. One of the

generated plans will then be used in the next step. Although this method has low

level of efficiency and reliability, it is suitable for small projects where there are

no constraints (Seyed Danesh, 2011). One of the most important characteristics

of this method is that it relies on individuals. It must also be noted that

requirements inter-relationships may be neglected here.

• Class of single-variable methods: This is the most basic class of systematic

methods. Unlike the previous class which was individual-based, this class is

implemented in an algorithmic and regular manner on outputs of the previous

steps and generates a set of different release planning methods. Game Planning

is one of the most important methods of this class in which required inputs are

first perceived and then a release plan is generated based on the delivery date or

priorities. Although many characteristics are ignored in this method and it lacks

efficiency in large projects with inter-related parameters, it is still suitable for

small and especially agile projects (Seyed Danesh, 2011). It is noteworthy that

Univ
ers

ity
 of

 M
ala

ya

162

this method is dependent on a certain parameter. Although information on time,

costs and other characteristics may be perceived at the beginning and various

estimations are made, plans are generated based solely on a single parameter.

• Class of multi-variable methods: This class generates different release plans

based on several parameters regardless of their inter-relationships. In fact, this

method plans a release according to a single parameter at first and then the

results are optimized based on other parameters. For example, two parameters

are considered in selecting the most valuable requirements with the lowest costs.

Optimization-based methods are amongst the members of this class (Seyed

Danesh, 2011). Some of these methods use primary techniques for classification

or categorization of requirements in order to select suitable requirements in the

best way. Ignoring the inter-relationships of release planning parameters is one

of the main disadvantages of this class, but it is still more efficient than the

previous classes in big projects (Seyed Danesh, 2011). Moreover, it must be

noted that similar to previous classes, an increase in the number of requirements

and their inter-relationships will decrease the efficiency of the class.

• Class of intellectual methods: This class includes a wide range of complicated

and complex methods. The most typical characteristics of the class is paying

attention to different release planning parameters and considering parameters’

inter-relationship and their inter-dependence. Most intellectual methods try to

generate a graph of requirements inter-relationships by perceiving primary data

and requirement estimations and constraints, and are usually based on optimized

searching methods (Seyed Danesh, 2011). Some of the most well-known

methods of this class include EVOLVE, Light Weight Re-Planning and methods

based on genetic algorithms. Most intellectual methods generate a default set of

release plans from which the best one is selected. Many of the problems and

Univ
ers

ity
 of

 M
ala

ya

163

disadvantages of the previous classes do not exist here, but this class is highly

complicated and requires more primary data than previous ones. That is why

they are not usually efficient in small projects. Furthermore, this class cannot be

implemented manually or by using primary tools as it requires proper tools such

as Release Planner. Therefore, if an organization is willing to use this class, it

should be able to provide the required tools.

5.3.3.1. Effective parameters on pre-release planning

Similar to previous steps, a certain class of release planning methods should be selected

in order to act as the best method to generate the organization's pre-release plans.

Parameter creation for release planning has been discussed to some extent. One of

studies in this area is (Slooten, 2012), which has tried to come up with a mature model

for evaluating release planning methods. By definition, the proposed model is a set of

activities and tasks to be accomplished in release planning and has not tried to

determine parameters for selecting or customizing release planning methods. In

addition, (Mohebzada, 2012) aimed to provide a guide in order to optimize release plans

generated through Release Planner. The guide makes suggestions for release planning

optimization through acquiring characteristics of different projects. Other studies have

also been conducted on selecting a certain method for a specific scope or environment

such as Web-based Development (J. Li & Ruhe, 2003) or Agile Development (M. Li,

Huang, Shu, & Li, 2006) in which method customization or parametric state have been

neglected. Although these studies have tried to customize release planning in some

ways and optimize release plans, no research has been done on customizing different

release planning methods based on characteristics or parameters. Thus, required

parameters for customizing this step of release planning are being presented for the first

time.

Univ
ers

ity
 of

 M
ala

ya

164

Some characteristics of different classes of release planning methods, described by

(Seyed Danesh, 2011), are presented in Table 5-20. As can be observed, more

systematic and precise methods require more input data and result in more accurate

outputs. Besides, an increase in the number of requirements and stakeholders and an

extension of the project size necessitate more accurate methods. Notice that accuracy

and precision of the selected release planning method depends on precise requirements

prioritization and resource estimation.

Table 5-20: Characteristics of release planning methods (Seyed Danesh, 2011)

Method Characteristics

Ad-hoc

• Has easy implementation.
• Requires short time periods.
• Is suitable for small projects.
• Is less reliable.
• Requirements interdependencies are ignored.

Single-variable

• Has easy implementation.
• Requires short time periods.
• Is suitable for small projects.
• Requirements interdependencies are ignored.

Multi-variable

• Requires precise data for every requirement.
• Requires data on various constraints.
• Is highly reliable.
• Requirements interdependencies are mostly ignored.
• Its manual implementation is usually difficult.

Intellectual

• Requires precise data for every requirement.
• Requires data on various constraints.
• Is highly reliable.
• Requirements interdependencies are mostly ignored.
• Requires suitable implementation tools.

A set of effective parameters on selecting pre-release planning methods can be defined

based on characteristics of the methods. Table 5-21 demonstrates effective parameters

on pre-release planning and their instances. Every parameter represents its allowed

virtual values.

Univ
ers

ity
 of

 M
ala

ya

165

Table 5-21: Effective parameters on pre-release planning

Parameter Instance Description

Market type

Customized The software is designed and developed for a certain
costumer.

Limited customer The number of customers is limited and every customer can
have different views about each requirement.

Unlimited
customer

The number of customers is unlimited and unlimited number
of views are available for each requirement.

Development
methodology

Waterfall Requirements are perceived at the beginning of the project.

Agile Requirements are perceived and revised at the beginning of
every repetition.

RUP Requirements are perceived and revised at the beginning of
every repetition.

RAD Requirements are perceived at the beginning and after
producing a sample.

Project size

Very small Only 1 or 2 individuals are involved in the project.

Small 3 to 7 individuals are involved in the project.

Medium 8 to 15 individuals are involved in the project.

Big More than 15 individuals are involved in the project.

Requirements
number

Small Less than 20 requirements exist.

Medium 21 and 50 requirements exist.

Big More than 51 requirements exist.

Number of
plan

generation
parameters

No parameters No certain parameter is considered for generating release
plans.

Small Only one certain parameter is considered for generating
release plans.

Medium 2 or 3 certain parameters are considered for generating release
plans.

Big More than 3 certain parameters are considered for generating
release plans.

Team

experience

Experienced The team has implemented more than 3 software projects in
the particular field.

Half-experienced
The team has implemented less than 3 software projects in the
particular field but has had projects in similar and relevant
fields.

inexperienced The team has no experience of project implementation in the
particular field or relevant ones.

Univ
ers

ity
 of

 M
ala

ya

166

Similar to parameters of previous steps, those of pre-release planning are not perfect and

it is possible to add new ones; this will provide for method expansion in terms of depth

(selecting the method besides choosing the method class) and surface (selecting a more

precise planning method).

5.3.3.2. Effect of parameters on pre-release planning

According to parameters and instances mentioned in previous step, it is possible to

determine their effect on pre-release planning. Table 5-22 shows the effect of every

parameter instance independently. It is observed that some instances can directly (and to

a considerable extent) determine the pre-release plan but most instances must be

considered respecting other parameters in order to characterize the precise method.

Table 5-22: Effect of parameters and instances on pre-release planning method

Parameter Instance Description

Market type

Customized All classes can be used. Method selection depends on other
parameters.

Limited customer All classes can be used. Method selection depends on other
parameters.

Unlimited
customer

Ad-hoc class with its manual nature cannot support an
unlimited number of customers. Hence, unsystematic methods
cannot be used but a systematic one.

Development
methodology

Waterfall All classes can be used. Method selection depends on other
parameters.

Agile All classes can be used. Method selection depends on other
parameters.

RUP All classes can be used. Method selection depends on other
parameters.

RAD

Rapid nature and lack of documentation in RAD make it
possible to use simple methods. Intellectual methods cannot be
used because they are complicated and require precise and
well-documented data.

Project size

Very small

The small project size leads to the tendency to make use of
simple and rapid methods. Multi-variable and intellectual
classes are not employed since they are complicated and
require heavy workloads.

Small

The small project size leads to the tendency to make use of
simple and rapid methods. Simple methods are mostly used
because they are economic in terms of human resources.
Intellectual class is not employed since it is complicated and
requires certain human resources and specific tools.

Univ
ers

ity
 of

 M
ala

ya

167

Parameter Instance Description

Medium

It is necessary to employ structured and systematic methods
considering individual inter-relationships and the need to
documentation for every step and task. Ad-hoc class cannot be
employed since it is not reliable enough.

Big

Big projects require highly reliable methods. Hence, systematic
and reliable methods are mostly used. Ad-hoc and single-
variable classes are not applied as they are weak in proving and
satisfying the stakeholders' needs.

Requirements
number

Small

For small number of requirements, it is not economic (in terms
of time and human resources) to use complicated methods.
Therefore, Ad-hoc or single-variable classes are mostly
employed.

Medium

For medium number of requirements, it is not possible to use
Ad-hoc class because it is not reliable. Intellectual class cannot
be used either because it requires time, certain tools and human
resources which are not economic with this number of
requirements. Hence, single- and multi-variable classes are
usually used.

Big
Large number of requirements makes simple and manual
methods unreliable and unusable. Therefore, multi-variable and
intellectual classes are often used.

Number of
plan

generation
parameters

No parameters If there is no certain parameter, only Ad-hoc class is used
regardless of instances of other parameters.

Small

With a small number of parameters, it is possible to perform
the planning manually or through systematic methods. Hence,
Ad-hoc and single-variable classes are often used, and it is not
economic (in terms of time and human resources) to employ
complicated methods.

Medium

At this level, it is not possible to use manual methods because
of their unreliability. On the other hand, complicated methods
are not economic enough to use. Thus, single- and multi-
variable classes are usually used.

Big This level requires reliable and documented methods.
Therefore, multi-variable and intellectual classes are used.

Team
experience

Experienced All classes can be used by experienced teams. Method
selection depends on other parameters.

Half-experienced All classes can be used by half-experienced teams. Method
selection depends on other parameters.

Inexperienced

Intellectual and multi-variable classes cannot be used by this
team, since they require precise knowledge and data.
Therefore, this team can use Ad-hoc and single-variable
classes.

If a project does not need pre-release plan parameters, only Ad-hoc class can be used

since the project is absolutely small, a small numbers of individuals are involved and all

other parameters are in their lowest levels.

Univ
ers

ity
 of

 M
ala

ya

168

Although customization can be performed using requirements prioritization parameters

and their instances, the relationship between parameters and instances must be well

clarified in order to select the method(s) for every set of parameters and instances.

5.3.3.3. Relationships between effective parameters on pre-release planning

Identifying the relationship between different parameter instances helps in selecting the

precise class of pre-release planning method. Similar to previous steps, two certain

parameters can have direct, reverse or no relationship. The relationship between every

parameter instance and all other parameters is examined independently in order to

explain every certain relationship.

Table 5-23shows the relationship between "market type" instances and other effective

parameters on pre-release planning.

Table 5-23: Relations between "market type" and other parameters

Parameter Instance Description

Development
methodology

Waterfall

This method cannot be applied in limited or unlimited customer
cases since requirements change in these cases and cannot be
perceived at the project beginning. This is possible for
customized software, though.

Agile This method can be used in all three market types.

RUP
This is not efficient in unlimited customer cases; these require
agility which RUP does not have. This method can be used for
customized and limited customer cases, though.

RAD This can be used in all three market types.

Project size

Very small All market types can have very small projects.

Small All market types can have small projects.

Medium All market types can have medium projects.

Big All market types can have big projects.

Requirements
number Small

The number of requirements is 20 in most limited and unlimited
customer software. Small number of requirements is only
possible in customized software.

Univ
ers

ity
 of

 M
ala

ya

169

Parameter Instance Description

Medium The requirements number can be medium in all three market
types.

Big The requirements number can be big in all three market types.

Number of
plan

generation
parameters

No parameters Only Ad-hoc class can be used in every case.

Small All market types can have a small number of plan generation
parameters.

Medium All market types can have a medium number of plan generation
parameters.

Big All market types can have a big number of plan generation
parameters.

Team
experience

Experienced Experienced teams can enter all market types.

Half-experienced Half-experienced teams can enter all market types.

Inexperienced

This team cannot be used in customized and limited customer
software since it is necessary for the team to recognize
customers' concerns. However, it can be used in unlimited
customer market.

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { , , , , }|(,)} , ∈ { , , , , }
According to this definition, members of every M set are as follows:

MMTDM = {(MT1, DM1), (MT1, DM2), (MT1, DM3), (MT1, DM4), (MT2, DM2), (MT2, DM3), (MT2, DM4), (MT3, DM2), (MT3, DM4)} MMTPS = {(MT1, PS1), (MT1, PS2), (MT1, PS3), (MT1, PS4), (MT2, PS1), (MT2, PS2), (MT2, PS3), (MT2, PS4), (MT3, PS1), (MT3, PS2), (MT3, PS3), (MT3, PS4)} MMTRN = {(MT1, RN1), (MT1, RN2), (MT1, RN3), (MT2, RN2), (MT2, RN3), (MT3, RN2), (MT3, RN3)} MMTPP = {(MT1, PP2), (MT1, PP3), (MT1, PP4), (MT2, PP2), (MT2, PP3), (MT2, PP4), (MT3, PP2), (MT3, PP3), (MT3, PP4)} MMTTE = {(MT1, TE1), (MT1, TE2), (MT2, TE1), (MT2, TE2), (MT3, TE1), (MT3, TE2), (MT3, TE3)}

The sets include 44 ordered pairs, each of which represents the relationship between two

instances of two parameters. Every pair can be considered as a combination likely to

lead to a method. The likelihood becomes absolute when the pair creates a combination

Univ
ers

ity
 of

 M
ala

ya

170

of all valid states along with other parameters. Other states absent in this pair, as

mentioned earlier, are either invalid or unlikely so they can be ignored.

Table 5-24 shows the relationship between "development methodology" instances and

other effective parameters on pre-release planning.

Table 5-24: Relations between "development methodology" and other parameters

Parameter Instance Description

Project size

Very small Agile and RAD methods can be used in very small projects due to
their simple and rapid nature.

Small All methodologies can be used.

Medium Considering the required documentation, RUP, Agile and Waterfall
methods are used.

Big

Considering the required documentation and communication among
teams, it is not possible to use Agile and RAD methods. Hence,
RUP and Waterfall methods are employed.

Requirements
number

Small All methodologies can be used.

Medium
Agile, Waterfall and RUP methods can be used, but RAD cannot
support medium number of requirements (because of its
implementation nature).

Big
Waterfall and RUP methods can be used but RAD and Agile cannot
support large number of requirements (due to their implementation
nature).

Number of
plan

generation
parameters

No parameters Only Ad-hoc class is used in such cases.

Small All methodologies can be used.

Medium All methodologies can be used.

Big Methods which require documentation (such as RAD) cannot be
used. Hence, RUP, Agile and Waterfall methods are employed.

Team
experience

Experienced All methodologies can be used.

Half-experienced All methodologies can be used.

Inexperienced All methodologies can be used.

The following ordered pair is defined for two coinciding parameter instances:

Univ
ers

ity
 of

 M
ala

ya

171

 = { ∈ , ∈ { , , , }|(,)} , ∈ { , , , }
According to this definition, members of every M set are as follows:

MDMPS = {(DM1, PS2), (DM1, PS3), (DM1, PS4), (DM2, PS1), (DM2, PS2), (DM2, PS3), (DM3, PS2), (DM3, PS3), (DM3, PS4), (DM4, PS1), (DM4, PS2)} MDMRN = {(DM1, RN1), (DM1, RN2), (DM1, RN3), (DM2, RN1), (DM2, RN2), (DM3, RN1), (DM3, RN2), (DM3, RN3), (DM4, RN1)} MDMPP = {(DM1, PP2), (DM1, PP3), (DM1, PP4), (DM2, PP2), (DM2, PP3), (DM2, PP4), (DM3, PP2), (DM3, PP3), (DM3, PP4), (DM4, PP2), (DM4, PP3)} MDMTE = {(DM1, TE1), (DM1, TE2), (DM1, TE3), (DM2, TE1), (DM2, TE2), (DM2, TE3), (DM3, TE1), (DM3, TE2), (DM3, TE3), (DM4, TE1), (DM4, TE2), (DM4, TE3)}

The sets include 43 ordered pairs, each of which represents the relationship between two

instances of two parameters and forms a state.

Table 5-25 shows the relationship between "project size" instances and other effective

parameters on pre-release planning.

Table 5-25: Relations between "project size" and other parameters

Parameter Instance Description

Requirements
number

Small Most very small and small projects have a small number of
requirements.

Medium Most small and medium-sized projects have a medium number of
requirements.

Big Most medium and big projects have a big number of requirements.

Number of
plan

generation
parameters

No parameters Only Ad-hoc class is used in such cases.

Small Whatever a team's size is, it can manage a small number of plan
parameters.

Medium Small, medium and big teams can manage a medium number of
plan parameters.

Big Medium and big teams can manage large number of plan
parameters.

Team
experience

Experienced Whatever the project size is, it can be accomplished by an
experienced team.

Half-experienced Whatever the project size is, it can be accomplished by a half-
experienced team.

Univ
ers

ity
 of

 M
ala

ya

172

Parameter Instance Description

Inexperienced Inexperienced teams can't accomplish big projects.

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { , , }|(,)} , ∈ { , , }
According to this definition, members of every M set are as follows:

MPSRN = {(PS1, RN1), (PS2, RN1), (PS2, RN2), (PS3, RN2), (PS3, RN3), (PS4, RN3)} MPSPP = {(PS1, PP2), (PS2, PP2), (PS2, PP3), (PS3, PP2), (PS3, PP3), (PS3, PP4), (PS4, PP2), (PS4, PP3), (PS4, PP4)} MPSTE = {(PS1, TE1), (PS1, TE2), (PS1, TE3), (PS2, TE1), (PS2, TE2), (PS2, TE3), (PS3, TE1), (PS3, TE2), (PS3, TE3), (PS4, TE1), (PS4, TE2)}

The sets include 26 ordered pairs, each of which represents the relationship between two

instances of two parameters and forms a state.

Table 5-26 shows the relationship between "requirements number" instances and other

effective parameters on pre-release planning.

Table 5-26: Relations between "requirements number" and other parameters

Parameter Instance Description

Number of
plan

generation
parameters

No parameters Only Ad-hoc class is used in such cases.

Small

An increase in requirements’ number demands a corresponding
increase in the number of plan parameters to select better ones.
Hence, if a small number of plan parameters are present, then the
requirements’ number is small or medium.

Medium Unlimited number of requirements can be applied with medium
number of parameters.

Big
It is not economic to use large number of parameters for a small
number of requirements. Hence, requirements’ number must be
medium or large.

Team
experience

Experienced Experienced teams can manage unlimited number of requirements.

Half-experienced Half-experienced teams can manage unlimited number of
requirements.

Inexperienced Inexperienced teams can manage unlimited number of
requirements.

Univ
ers

ity
 of

 M
ala

ya

173

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { , }|(,)} , ∈ { , }
According to this definition, members of every M set are as follows:

MRNPP = {(RN1, PP2), (RN1, PP3), (RN2, PP2), (RN2, PP3), (RN2, PP4), (RN3, PP3), (RN3, PP4)} MRNTE = {(RN1, TE1), (RN1, TE2), (RN1, TE3), (RN2, TE1), (RN2, TE2), (RN2, TE3), (RN3, TE1), (RN3, TE2), (RN3, TE3)}

The sets include 16 ordered pairs, each of which represents the relationship between two

instances of two parameters and forms a state.

Table 5-27 shows the relationship between "number of plan generation parameters"

instances and other effective parameters on pre-release planning.

Table 5-27: Relations between "number of plan generation parameters" and other parameters

Parameter Instance Description

Team

experience

Experienced Experienced teams can manage unlimited number of plan generation
parameters.

Half-experienced Half-experienced teams can manage unlimited number of plan
generation parameters.

Inexperienced

An increase in the number of plan parameters requires recruiting
experienced or half-experienced individuals. Hence, an
inexperienced team can only manage a small or medium number of
plan parameters.

The following ordered pair is defined for two coinciding parameter instances:

 = { ∈ , ∈ { }|(,)} , ∈ { }
According to this definition, members of every M set are as follows:

MPPTE = {(PP2, TE1), (PP2, TE2), (PP2, TE3), (PP3, TE1), (PP3, TE2), (PP3, TE3), (PP4, TE1), (PP4, TE2)}

The sets include 8 ordered pairs, each of which represents the relationship between two

instances of two parameters and forms a state.

Univ
ers

ity
 of

 M
ala

ya

174

Similar to the previous steps, every set of ordered pairs can be considered a certain state

which is combined with the other sets with which it has a common point and forms a set

of common ternaries. This combination continues until there are as many states as

parameters in pre-release planning step. Data related to various states between pairs is

entered into the software designed for this purpose. Figure 5-5 displays the relationship

between pre-release planning parameter instances in Pattern Release Planning tool.

Figure 5-5: Relations between pre-release planning parameters instances in tool

5.3.3.4. Customization of trade-off analysis and selecting the final release plan

Unlike the previous steps which could be customized through parameters and their

instances, this step involves management whereby only a project manager or authorized

individuals can select the primary release plan. In order to select a release plan and

present it to the development team, the primary release plans generated at this stage are

compared to one another but from the management point of view. Usually, requirements

and characteristics absent in the selected plan are decided in the next step. This should

be done before the implementation of the final release plan.

Univ
ers

ity
 of

 M
ala

ya

175

5.4. Pattern-based release planning methodology

Research on release planning has shown that similar to most engineering tasks, this

activity is highly influenced by past experiences. In the general release planning

process, past experiences are incorporated in the form of effective parameters on each

step and the influence of every parameter on the method or algorithm used in the step

independently. Besides, PRP Software is designed and run to enter and record all states

and to trace the inter-relationship of parameters and instances. The software provides

the release planner with the possibility to add new parameters and instances and allows

a simple relationship between them.

Every step of the general release planning process model contains a set of inputs,

outputs and parameters, and a suitable algorithm or method is selected using these

parameters. In addition, selecting a proper algorithm for every step determines the

precise inputs to be used and outputs to be generated. Although most algorithms or

methods have some common inputs in every step, determining precise inputs is highly

dependent on the selected method. Figure 5-6 illustrates the relationship between

parameters, instances and inputs of the selected method in every step.

In its simplest form, a suitable method to perform every certain step can be achieved by

developing a mapping table between different parameter instances and the related

methods and algorithms. This table examines all the different parameter instances that

are extracted from the project specification and relates them to one or more suitable

algorithm or method in each step. Using the table, the software team can specify the

parameter instances in order to identify a suitable method or algorithm to perform in the

specific step of the process model based on past experiences. As observed in

customization of every step of release planning process model, such a mapping requires

determining the effect of parameters and instances on each other and needs making use

of past experiences in order to select the best method for every stage. One of the tasks

Univ
ers

ity
 of

 M
ala

ya

176

performed using PRP software is to generate a mapping of all available states. As

Figure 5-6 displays, steps can have common parameter instances which affect the whole

release planning procedure.

Figure 5-6: Relationships between release planning process model and the method

One of the most important advantages of this mapping is the quick and simple

customization of the release planning process. Moreover, the planner is benefited from

past experiences used in the mapping without previous knowledge. Past experiences

determine the relationship between different parameters in the customization which

result in the mapping table. Therefore, one must map all parameter instances to others

and specify the related method or algorithm to use in each step. Every set of parameter

instances can be considered as one state and a method or algorithm is assigned to each

state.

Parameters

Parameter #1

Instance #1

Instance #2

Instance #n

Parameter #2

Instance #1

Instance #2

Instance #n

Parameter #N

Instance #1

Instance #2

Instance #n

Release Planning Step

Requirements
Prioritization

Resource
Estimation

Release
Pre-planning

Selected
Requirements
Prioritization

 Method

Selected
Resource

Estimation
 Method

Selected Release
Pre-planning

 Method

Input #1
Input #2
.
Input #n

Input #1
Input #2
.
Input #n

Input #1
Input #2
.
Input #n

Univ
ers

ity
 of

 M
ala

ya

177

This mapping table may lead to generation of numerous states by adding a certain

parameter or instance. Furthermore, many of the generated states may be practically

impossible; hence, these states should be identified and excluded by the planner.

Therefore, the customization process has to be altered or optimized so that the planner

can achieve the most suitable methods in the shortest time possible.

The concept of "pattern", which is a well-known notion in software development, is

used in release planning to optimize planning customization and remove the main

weakness of this method. In fact, not all states are generated for parameter instances in

release planning but only successful experiences in using a certain method are

documented based on the parameter instances. This eliminates the necessity to examine

all of the states whereby the planner can now directly enter his (her) own experiences.

Using past experiences in software development is tightly tied with the concept of

"pattern". There are different patterns in software development such as design patterns

and architectural patterns where the main idea is to make rapid use of past experiences

in order to accomplish software development. Figure 5-7 shows how to use the pattern

in release planning.

Figure 5-7: Using pattern in release planning

Univ
ers

ity
 of

 M
ala

ya

178

5.4.1. Definition of release planning patterns

Similar to other software developing patterns, release planning pattern should be well-

defined to be used in release planning. Patterns employed in release planning are

divided into two groups based on their effect: patterns effective on all release planning

steps and those effective on a certain step. The former group is “release planning

patterns” and the latter is “release planning steps’ patterns”. Moreover, as mentioned in

release planning customization, some parameters are common among multiple steps and

some others only influence a certain one. Putting all parameters together makes it

possible to obtain a set of effective parameters on all release planning steps which are

called “effective parameters on release planning”.

According to what mentioned above, best experience in release planning is achieved

when the release planning pattern:

• Is obtained by valuing every effective parameter on release planning,

• Contains value of one or more parameter,

• Determines running mode of every step in the process model, and

• Is determined by instances of effective parameters on release planning.

By definition, a release planning pattern can result from the influence of one or more

successfully implemented effective parameter which has been used in similar projects

with similar parameter instances for several times. Moreover, best experience in release

planning is achieved when the release planning pattern:

• Is obtained by valuing every parameter effective on the same step of release

planning process model,

• Contains value of one or more effective parameters on the same step of release

planning process model,

• Determines running mode of the same step of release planning process model,

Univ
ers

ity
 of

 M
ala

ya

179

• Is determined by instances of effective parameters on the same step of release

planning process model.

Using this definition, the pattern of release planning steps can be divided into three

areas: requirement prioritization, resource estimation and pre-release planning, in each

of which patterns specific to that certain step are identified and described. The patterns

are developed using experiences in resource estimation, requirement prioritization and

release planning tasks.

5.4.2. The structure of release planning patterns

Release planning patterns are proposed in order to improve planning quality by making

use of successful experiences in this field. Regarding the need to employ a well-defined

structure for such patterns and to provide a framework to describe them, a set of

characteristics is proposed to show features of software development in the structure of

release planning patterns. The framework contains specifications required for

distinguishing release planning patterns. It includes:

• Pattern name

This is the selected name for release planning pattern. Every pattern has a main name

distinguishing it from other patterns.

• Side name

Every pattern may have one or more side names besides its main name. The side name

may be used for the application of pattern in certain fields.

• Pattern problem

It describes specifications of a problem or complexity in which the pattern can be

applied. Pattern objective is usually presented in the pattern problem in an explicit

Univ
ers

ity
 of

 M
ala

ya

180

manner. The objective specifies the pattern application. The problem is different in

every certain step.

• Context

This determines a certain filed in which the pattern is employed. It can be release

planning or a step of release planning process model.

• Constraints

It describes different parameters and instances or various steps of release planning. One

or more parameters are considered in this pattern and an instance is mentioned for each

one. Constraints are also presented by parameters. Pattern problem is solved respecting

these parameter instances.

• Solution

This defines the selected method to solve the problem. The method is proposed

considering the problem (pattern objective), parameters (constraints) and all instances.

• Resulting context

It describes possible states and situations after pattern implementation, including: (good

or bad) results of running the pattern, and other problems and patterns likely to occur in

the new context.

• Rationale

It describes reasons for selecting the proposed problem solution. In fact, this part

explains how a release planning pattern really works, why it works and why it is good.

The rationale must specify how every constraint's parameter instance is met by the

proposed solution.

• Known use

Previous and known uses of the pattern are presented in this section.

Univ
ers

ity
 of

 M
ala

ya

181

• Related sub-patterns

A release planning pattern can include patterns of every stage. Therefore, this

characteristic presents the names of patterns related to every certain stage.

The structure can be used for every pattern of various steps of release planning.

5.4.3. Development method of release planning patterns

Development of various release planning patterns is one of the most important factors in

this area. Similar to software development patterns obtained from previous experiences,

the most basic method to develop a release planning pattern is to make use of best

experiences in release planning area. Since this is being proposed for the first time, no

documentation is available on release planning experiences especially on release

planning parameters.

In the first methods, as observed in customization of steps of release planning process

model, only some limited investigations have been done to categorize effective

parameters on requirements prioritization and other steps lack such explorations. Hence,

in the development of requirements prioritization patterns, it has been tried to make best

use of these investigations.

In the second method, different parameters and states they generate are implemented

and experienced in several projects and in different software development companies.

Thus, case studies are selected in a way they cover different states and instances of

parameters appropriately. Patterns developed in this way are generated based on

executive realities and as an example of method implementation. Moreover, it is

possible to develop more patterns.

5.4.4. Algorithms of using release planning patterns

Making use of release planning patterns in every step of the release planning process

requires information on the needed instances and then identifying and employing the

Univ
ers

ity
 of

 M
ala

ya

182

best suited pattern for that instance. The process for the requirement prioritization,

resource estimation and release pre-planning steps is explained below. Algorithm 1

shows how the best suited pattern for the requirement prioritization step is chosen where

the characteristics of parameters, instances and the list of the requirements prioritization

patterns are perceived as input and the proper patterns are printed as output.

Algorithm 1: Finding best suited pattern for 'Requirement Prioritization'
Input: A set Pof parameter= {MT, DM, TS, RN, RG, PI, TE,DE}
 A set I of instance of each parameter
 List L of requirement prioritization patterns
Output: Appropriate pattern for requirements prioritization

Begin
Z =0
For each parameters in P

Begin
/* Get and assign priority value to each parameter */
/* Q[i] =0 means that the parameter should not incorporate in pattern selection
Q[i] = Priority of ith parameter in P
If Q[i] > 0 thenZ= Z+1

End
Sort P based on Q
K =0
For each parameters in P from top priority where Q[i] >0

For each pattern in L
Begin

/* Select instance of parameter P[i] */
If instance I[i] exist in L[j]then

Begin
/*Add L[j] to Select Pattern List */
K = K +1
SPL [K] = L[j]
If L[j] did not added beforethen

SPLCounter [K] =1
Else

SPLCounter [K] =SPLCounter [K] + 1
End

End
End

For all patterns in SPL
If SPLCounter = Zthen

Univ
ers

ity
 of

 M
ala

ya

183

Print SPL [k] as selected pattern
End

The algorithm first receives a priority for every input parameter. The priority is used to

sort the parameters and exclude those which do not affect the pattern selection. In other

words, the algorithm may ignore parameters with the value of zero. Having the

parameters prioritization accomplished, a list of possible patterns is explored based on

the nonzero parameters. From the patterns list, those with parameter instances are added

to the list of selected patterns and the pattern counter is also added. The counter

identifies the patterns that include all possible instances. When the search is finished,

patterns with the same frequency as nonzero parameters are printed as the selected

pattern.

The algorithms for selecting resource estimation and pre-release planning patterns are

similar to that of requirement prioritization but they differ in the list of parameters,

instances and selected patterns. While identifying the best suited pattern for each step, it

is possible to deactivate every definite parameter by assigning it with a 0 value. This is

important as some parameters can be ignored in release planning for different projects

or the search may be performed based on a specific priority. This means that the

patterns that are sought are for more important parameters rather than a predetermined

range.

Release planning pattern is a defined combination of patterns for different steps of

release planning. Similar to the pattern of every definite step which cannot be obtained

by combining all arbitrary parameter instances, release planning pattern also cannot be

obtained by generating every combination of patterns for different steps. In other words,

combining different patterns to generate various states is ignored in identifying the

planning pattern but all parameters and their instances are considered to determine the

Univ
ers

ity
 of

 M
ala

ya

184

best experiences for every step so that an integrated combination of methods can be

generated in all steps of the general release planning process.

Finding best suited patterns for release planning requires a combination of patterns

concerning different steps of release planning. Algorithm 2 is presented for this

purpose. This algorithm receives all parameters of release planning and those of every

stage, their instances, as well as the list of every stage's patterns and release planning

patterns as inputs and prints release planning patterns fitting the parameter instances as

output.

Similar to Algorithm 1, the following one receives a priority for every input parameter

to exclude those ineffective on determining the pattern. Then, parameter sets of every

stage (TR, TE and TP) are sorted based on the priority. Afterwards, fitting input

parameter patterns are found for each of the three steps.

Algorithm 2: Finding best suited pattern for 'Release Planning'

Input: A set P of requirements prioritization parameter, P= {MT, DM, TS, RN, RG, PI, TE, DE,
IO, PS, PP}
A set TR of requirements prioritization parameter, TR= {MT, DM, TS, RN, RG, PI, TE,
DE}
A set TE of resource estimation parameter, TE= {DM, RN, TE, IO}
A set TPof pre-release pattern parameter, TP= {MT, DM, PS, RN, PP, TE}
A set I of instance of each parameter
List LR, LE, LP, and L are requirements prioritization, resource estimation, pre-release,
and release planning patterns sequentially

Output: Appropriate pattern for release planning
Begin

Z =0
For each parameters in P

Begin
/* Get and assign priority value to each parameter */
/* Q[i] =0 means that the parameter should not incorporate in pattern selection
Q[i] = Priority of ith parameter in P

End
Sort TR, TE, and TP based on Q

Univ
ers

ity
 of

 M
ala

ya

185

K =0
Z [1] = 0
While parameters in TRwhere Q[i] >0and from top priority

Begin
Z [1] = Z [1] + 1
For eachpattern in LR
Begin

/* Select instance of parameter TR[i] */
If instance I[i] exist in LR[j]then

Begin
/*Add LR[j] to Select Pattern List */
K = K +1
SPLR [K] = LR [j]
If LR[j] did not added before then

SPLCounterR [K] =1
Else

SPLCounterR [K] =SPLCounterR [K] + 1
End

End
End

End
K =0
Z [2] = 0
While parameters in TEwhere Q[i] >0and from top priority

Begin
Z [2] = Z [2] + 1
For eachpattern in LE
Begin

/* Select instance of parameter TE[i] */
If instance I[i] exist in LE [j]then

Begin
/*Add LE [j] to Select Pattern List */
K = K +1
SPLE [K] = LE [j]
If LE [j] did not added beforethen

SPLCounterE [K] =1
Else

SPLCounterE [K] =SPLCounterE [K] + 1
End

End
End

End
K =0
Z [3] = 0

Univ
ers

ity
 of

 M
ala

ya

186

While parameters in TPwhere Q[i] >0and from top priority
Begin

Z [3] = Z [3] + 1
For eachpattern in LP
Begin

/* Select instance of parameter TP[i] */
If instance I[i] exist in LP [j]then

Begin
/*Add LP [j] to Select Pattern List */
K = K +1
SPLP [K] = LP [j]
If LP [j] did not added beforethen

SPLCounterP [K] =1
Else

SPLCounterP [K] =SPLCounterP [K] + 1
End

End
End

End
For all patterns in L

 PreviousStagePatternSelected = false
If L[i][1] is in SPLR then
 Begin
 Index= Index ofL[i][1] in SPLR
IfSPLCounterR [Index] = Z [1] Then
 PreviousStagePatternSelected = true
 End
IfPreviousStagePatternSelectedand L[i][2] is in SPLE then
 Begin
 Index= Index ofL[i][2] in SPLE
IfSPLCounterE [Index] = Z [2] Then
 PreviousStagePatternSelected = true

Else
 PreviousStagePatternSelected = false
 End
IfPreviousStagePatternSelectedand L[i][3] is in SPLP then
 Begin
 Index= Index ofL[i][3] in SPLP
IfSPLCounterP [Index] = Z [3] Then
 PreviousStagePatternSelected = true
 Else
 PreviousStagePatternSelected = false
 End
IfPreviousStagePatternSelectedthen

Univ
ers

ity
 of

 M
ala

ya

187

Print L[i] as selected release planning pattern
End

In this algorithm, the Do-Loop "while" runs for every parameter available in the

considered stage (with priority value of greater than 0) in order to find related patterns

to specified parameter instances. It is necessary to involve parameters with priority

values greater than a certain range and 0 is replaced by the value in consideration. While

the loop is running parameters, Z counts the frequency of running. In contrast to

Algorithm 1, since the number of variables greater than the priority in each stage is not

specified, the counting must be performed to select those patterns supporting such

parameters. For every certain stage, patterns suiting the entered instances are

determined as input and are recorded in the list of selected patterns of that stage.

Moreover, the counter of pattern application frequency increases for every selected

pattern.

With all the three steps accomplished, the final "for" loop runs to identify release

planning patters. To meet this goal, it is determined for every release planning pattern

whether or not a sub-pattern exists in the list of proposed patterns. If the proposed sub-

pattern is present in the list, its selection frequency is examined to ensure that it

supports all prior parameters. If the answer is positive, the value for the variable

"Previous Stage Pattern Selected" changes to "True" to show that sub-patterns related to

the pattern in consideration are present on the list of selected patterns for every stage.

The examination is performed for all three steps. At the end of the three examinations if

the variable "Previous Stage Pattern Selected" has the value "True", the pattern is

among selected ones for release planning and can be printed.

Algorithm 2 relies on finding and showing a pattern best suiting parameters and

instances from available patterns. The algorithm is implemented in PRP Software and

enables finding patterns best suiting the characteristics determined by project manager

Univ
ers

ity
 of

 M
ala

ya

188

or release planner. In addition, it is possible in this software to use filters to find patterns

fitting specific states. It also allows for recording experienced patterns to determine

parameters and their instances. The software can recognize frequent or repetitive

patterns and warn if necessary.

5.5. Release planning patterns

Considering the presented structure for various release planning patterns, a set of

patterns developed by described methods are presented separately for every stage of

release planning.

5.5.1. Requirements prioritization patterns

Requirements prioritization is the first stage of release planning process model. It

receives inputs from stakeholders or the team and gives a list of prioritized requirements

as the output. Some requirements prioritization patterns are explained below.

5.5.1.1. Pattern of requirements prioritization for large projects

• Pattern name

Requirements prioritization pattern for large projects

• Side name

Pattern of requirements prioritization using AHP method

• Problem

Requirements prioritization for release planning in large projects in which time

and costs are of great importance for stakeholders needs a method which can, on

one hand, involve all stakeholders in requirements selection and, on the other

hand, be a systematic and regulated one. Furthermore, proper tools must be

introduced to enable developers to manage large number of requirements.

Univ
ers

ity
 of

 M
ala

ya

189

• Context

In requirement prioritization of release planning, it is always necessary to

prioritize and sort primary requirements in order to facilitate selection of most

prior requirements for implementation (and sending them to the next stage).

• Constraints

§ The market must be of limited- or unlimited-customer type.

§ Requirements must be in "Fine" level.

§ Number of inputs must be more than three.

§ Number of requirements must be large.

§ The team must be medium or large-sized.

§ RUP method must be used.

§ The team must be half-experienced or experienced.

§ Development environment must be Client-Server or Web-based.

• Solution

Using AHP method for requirements prioritization

Figure 5-8: Requirements prioritization pattern for large projects

• Resulting context

Univ
ers

ity
 of

 M
ala

ya

190

In this method, all requirements enter the tool as inputs and stakeholders' vote is

received for every requirement. By implementing AHP method, the tool provides

priorities of various requirements.

• Rationale

By receiving different inputs for every requirement, the AHP method regulates

prioritization process by paired comparison analysis. The paired comparison and

AHP decision-making rationale can overcome medium or big size of the team and

heavy weight of RUP methodology. Besides, the method can be used with "fine"

requirements level although the number of comparisons increases (a case in which

improved AHP can be used). Moreover, the method possesses proper tools for

requirements prioritization which can be used by the team.

• Known use

Most big software developing companies dealing with complicated requirements

employ AHP-supporting tools. For instance, "Rational Focal Point" (by IBM) is

one of the most important tools which employs AHP and is used for requirements

prioritization.

• Related sub-pattern

Does not exist.

5.5.1.2. Pattern of requirement prioritization with medium level of requirements

• Pattern name

The pattern of requirement prioritization with medium level of requirements

• Side name

Pattern of requirements prioritization by Ranking method

Univ
ers

ity
 of

 M
ala

ya

191

• Problem

In software developing projects with coarse or medium level of requirements

(which require being broken down to fine levels) requirements must be prioritized

in a way that the time spent by the team is reduced. The method must be a

systematic one with discussable results. Moreover, it must be capable of receiving

stakeholders' votes and engage them in prioritization.

• Context

In requirement prioritization of release planning, it is always necessary to

prioritize and sort primary requirements in order to facilitate selection of most

prior requirements for implementation (and sending them to the next stage).

• Constraints

§ For all market types.

§ Requirements level must be coarse or medium.

§ Number of requirements prioritization (classification) must be less than

three.

§ Number of requirements must be small or medium.

§ RUP or Waterfall methodologies must be used.

§ The team must be half-experienced or experienced.

§ For every development environment.

• Solution

Using Ranking method for requirements prioritization

Univ
ers

ity
 of

 M
ala

ya

192

Figure 5-9: Requirement prioritization pattern with medium level of requirements

• Resulting context

In this method, all requirements are considered as inputs and stakeholders’ vote is

received for every requirement. Each requirement is prioritized by running the

method.

• Rationale

Ranking method can be used for coarse or medium levels of requirements and

supports less than three inputs. Although the method is performed manually and is

time-consuming for large number of requirements, it can be accomplished by

different individuals.

Since RUP is a role-based method, it helps individuals adopt the role of

requirements specialist to solve large number of requirements. Moreover, the

method can be implemented using simple tools and this accelerates team activity.

• Known use

Ranking method is mostly implemented with simple parameters in most software

developing companies, and most tools can support sorting based on one or more

parameters. Some tools can be installed on the team's website and enable

stakeholders to score tasks.

Univ
ers

ity
 of

 M
ala

ya

193

• Related sub-pattern

Does not exist.

5.5.1.3. Pattern of requirements prioritization with huge number of customers

• Pattern name

The pattern of requirements prioritization with huge (unlimited) number of

customers

• Side name

The pattern of requirements prioritization using Top 10 method

• Problem

In software developing projects with limited and unlimited customers where

specific software usually has many customers, their vote and opinion is of great

importance. In these cases, customers have many demands and addressing all of

them is very time-consuming for the team. Moreover, reviewing and classifying

these demands require considerable time and cost. In such projects with a high

rate of demand, requirements prioritization requires an integrated method

(implemented through a web-based background) to enable customers to enter and

present their demands and comments.

• Context

In requirement prioritization of release planning, it is always necessary to

prioritize and sort primary requirements in order to facilitate selection of the most

prior requirements for implementation (and sending them to the next stage).

• Constraints

§ The market must be of limited- or unlimited-customer type.

§ Requirements level must be Coarse.

Univ
ers

ity
 of

 M
ala

ya

194

§ Number of requirements prioritization (classification) must be 1.

§ Number of requirements must be large.

§ Team must be small or medium-sized.

§ Agile or RUP methodologies must be used.

§ Team can have every level of experience.

§ Development environment must be Web-based or Client-Server.

• Solution

Using Top 10 method for requirements prioritization

Figure 5-10: Requirements prioritization pattern with huge number of customers

• Resulting context

In this method, a developer team first breaks down the project requirements to

different groups to enable customers to classify their requirements. The

breakdown must be performed in a proper manner. Too many groups will make

customers confused and very few groups leads to significant differences among

requirements while developing. Every requirement and customer demand is

written in its related group and reviewed by project manager or one of the

developers. The most prior group is the one with most customer demands.

Univ
ers

ity
 of

 M
ala

ya

195

• Rationale

"Top 10" methodology can be used for coarse level of requirements. It is also

employed when a certain software has unlimited number of customers with

different needs and demands. Since comments on requirements are only entered

by customers and reviewed by project manager, it does not impose a load of work

on the team to select and sort. Moreover, "Agile" method is consistent with this

method and frequencies can be determined based on customer needs. Besides, the

requirement groups enable the method to support great number of requirements.

• Known use

Most software developing companies employing "Agile" method use Issue

Tracking, Bug Tracking and Request Tracking tools which allow customers to

enter their demands. Then, the project manager reviews the demands and sends

them to assigned individuals. The tools usually allow for demand classification.

• Related sub-pattern

Does not exist.

5.5.1.4. Pattern of requirements prioritization for small projects

• Pattern name

Requirements prioritization pattern for small projects

• Side name

Requirements prioritization by Numerical Assignment method

• Problem

Developer team is small in customized software developing projects and

requirements must be prioritized respecting stakeholders' votes with low costs and

Univ
ers

ity
 of

 M
ala

ya

196

time. Besides, the method should be deducible and capable of altering during

implementation to cover requirement changes.

• Context

In requirement prioritization of release planning, it is always necessary to

prioritize and sort primary requirements in order to facilitate selection of the most

prior requirements for implementation (and sending them to the next stage).

• Constraints

§ The market must be of limited-customer or customized type.

§ For arbitrary level of requirements.

§ Number of requirements prioritization (classification) must be less than

three.

§ Number of requirements must be small.

§ Team must be small-sized.

§ Agile or RUP methods must be used.

§ Team must be inexperienced or half-experienced.

§ For every development environment.

• Solution

Using Numerical Assignment method for requirements prioritization

Figure 5-11: Requirements prioritization pattern for small projects

Univ
ers

ity
 of

 M
ala

ya

197

• Resulting context

In this method, requirements are divided into several main groups based on their

importance. These groups usually include critical, important, medium, less

important and least important. Based on their view of each of their demands,

stakeholders place the requirements in one of the groups and the project manager

reviews and confirms them.

• Rationale

Numerical Assignment method can be used for small customized projects with

small teams. Such projects usually employ Agile or RAD methodologies, have

small or medium number of requirements and, hence, must develop based on the

customers’ interests. Furthermore, since the team is inexperienced or half-

experienced and customers have no expertise in software development,

requirements cannot be classified like in Ranking method. This method helps in

discovering important requirements according to customers and the team can

focus on them specifically.

• Known use

The method can be employed in most small projects. Issue Tracking, Bug

Tracking or Request Tracking tools enable users to enter the importance of every

certain requirement. The importance is used to recognize requirements of different

groups.

5.5.2. Resource estimation patterns

Estimating required resources is the second stage of release planning process model

which receives requirements (sorted based on priority) from the previous stage and the

required work for every requirement from users, and gives an ordered list of

Univ
ers

ity
 of

 M
ala

ya

198

requirements with resource estimations as output. Some resource estimation patterns are

described below.

5.5.2.1. Pattern of resource estimation in large projects

• Pattern name

Pattern of resource estimation in large projects

• Side name

Pattern of resources estimation by algorithmic models

• Problem

In enormous software developing projects with a large number of requirements

and high rates of predicted inputs and outputs a suitable, systematic method to

estimate resources should be used which is feasible in terms of time and costs and

is appropriately flexible to receive different parameters and perform required

estimations. In addition, a proper tool should be employed to minimize the

estimated time.

• Context

In resource estimation stage of release planning, it is always necessary to estimate

required work for every certain input requirement in order to select the best suited

requirements for implementation and to send to the next stage.

• Constraints

§ RUP or Waterfall methods must be used.

§ Requirements number must be medium or large.

§ The team must be half-experienced or experienced.

§ Rate of inputs and outputs predicted for the software must be high.

Univ
ers

ity
 of

 M
ala

ya

199

• Solution

Using algorithmic method for resource estimation

Figure 5-12: Resource estimation pattern in large projects

• Resulting context

In this method, all requirements are considered as inputs and the effort required

for implementing each one is estimated. Other parameters needed for the

algorithmic method are introduced into the selected tool based on market type.

The tool provides different estimations after receiving inputs.

• Rationale

Algorithmic models are best suited for those projects in which the characteristics

and environment are well-known and an experienced or half-experienced team

can acquire the knowledge based on experiences of previous projects. Besides,

considering the volume of requirements and amount of software inputs and

outputs (which influence tasks required for resource estimation), making use of

algorithmic models and their different tools can significantly reduce time and

costs. It must be remembered that, in algorithmic models, the tool or the team can

propose an accurate estimation method and hence a suitable tool must be selected.

• Known use

Most software developing companies use a variety of tools with algorithmic

methods for resource estimation.

Univ
ers

ity
 of

 M
ala

ya

200

• Related sub-pattern

Does not exist.

5.5.2.2. Pattern of resource estimation for projects with unlimited customers

• Pattern name

Pattern of resource estimation for projects with unlimited customers

• Side name

Pattern of resources estimation by experts' judgment

• Problem

In software developing projects with large number of requirements in which the

team uses Agile or RAD methods, making use of more rapid methods must be

considered. It must be noticed that in such cases less information is available on

estimation parameters and accurate methods cannot be used. Hence, an

approximate and primary estimation of every requirement is needed.

• Context

In resource estimation stage of release planning, it is always necessary to estimate

required work for every certain input requirement in order to select the best suited

requirements for implementation and send them to the next stage.

• Constraints

§ RAD or Agile methods must be used.

§ Requirements number must be medium or large.

§ The team must be half-experienced or experienced.

§ Rate of inputs and outputs predicted for the software must be high.

• Solution

Using experts' judgment for resource estimation

Univ
ers

ity
 of

 M
ala

ya

201

Figure 5-13: Resource estimation pattern for projects with unlimited customers

• Resulting context

In this method, all requirements are considered as inputs and the effort required

for implementing each one is estimated and introduced into the tool by experts.

Then, the estimation is reviewed by the project manager or a group of specialists.

• Rationale

Experts' judgment is best suited for those projects in which the characteristics and

environment are known by experts and the team has limited number of members

since RAD or Agile methods are used. In such projects, considerable amount of

requirements and software's inputs and outputs (which influence tasks required for

resource estimation) increase the time and costs of the algorithmic method due to

their required initial data. Therefore, it is rational that the project manager or an

experienced developer enters time, costs and labor estimations for every

requirement to accelerate the task. Because of Agile methodology, it is possible to

correct and manage predictions.

• Known use

The method can be used in most projects with unlimited customers, and project

management tools (Issue Tracking, Bug Tracking and Request Tracking) enable

users to enter resource estimations.

Univ
ers

ity
 of

 M
ala

ya

202

• Related sub-pattern

Does not exist.

5.5.2.3. Pattern of resource estimation in small projects

• Pattern name

Pattern of resource estimation in small projects

• Side name

Pattern of resources estimation by Down-to-Top estimation method

• Problem

In software developing projects with small number of requirements and small or

medium number of inputs and outputs predicted for the software, algorithmic

models are not often used because of the absence of estimation parameters. Small

number of requirements necessitates almost accurate estimations for development,

based on which decisions are made for the release.

• Context

In resource estimation stage of release planning, it is always necessary to estimate

required work for every certain input requirement in order to select the best suited

requirements for implementation and send them to next stage.

• Constraints

§ RAD or Agile methods must be used.

§ Requirements number must be medium or large.

§ The team must be half-experienced or experienced.

§ Rate of inputs and outputs predicted for the software must be small or

medium.

Univ
ers

ity
 of

 M
ala

ya

203

• Solution

Using Down-to-Top estimation method for resource estimation

Figure 5-14: Resource estimation pattern in small projects

• Resulting context

In this method, all requirements are considered as inputs and every requirement is

divided into smaller tasks or requirements and this goes on until the task can be

estimated. Then, estimations are made and entered into the tool for every smaller

division.

• Rationale

Down-to-Top estimation methods is usually used in projects employing Agile or

RAD methods which have limited number of team members and low

requirements volume and rate of inputs and outputs (which influence tasks

required for resource estimation). In such cases, requirements are rapidly analyzed

and divided into smaller requirements or tasks. Then, the workload, time and costs

for every certain requirement or task are estimated and entered into the tool.

• Known use

The method can be used in most small projects, and project management tools

(Issue Tracking, Bug Tracking and Request Tracking) enable users to enter

resource estimations.

Univ
ers

ity
 of

 M
ala

ya

204

• Related sub-pattern

Does not exist.

5.5.3. Patterns of pre-release planning

Pre-release planning is the third stage of release planning process model. It receives

sorted (based on priority) and estimated requirements from previous stage and uses pre-

release planning algorithm to generate a set of release plans to be selected by a project

manager or authority in the next stage. Some pre-release planning patterns are presented

below.

5.5.3.1. Pattern of release planning in large projects

• Pattern name

Pattern of release planning in large projects

• Side name

Pattern of pre-release planning with intelligent methods

• Problem

In software developing projects with large number of customers and limited or

unlimited customer markets in which the number of requirements is very big, it is

usually necessary to select a method which is capable of generating plans based

on different parameters and the inter-relationship of various requirements.

Regarding the number of individuals involved in the project, the method must be

prone to implementation by valid tools.

• Context

In pre-release planning, it is always necessary to generate a set of pre-release

plans based on requirements priorities and received estimations, and send them to

the next stage.

Univ
ers

ity
 of

 M
ala

ya

205

• Constraints

§ The market must be of limited- or unlimited-customer type.

§ RUP or Waterfall methods should be used.

§ The project must be big or medium-sized.

§ Number of requirements must be large.

§ More than three parameters must be used to generate every plan.

§ The team must be experienced or half-experienced.

• Solution

Using intelligent methods for pre-release planning

Figure 5-15: Release planning pattern in large projects

• Resulting context

In this method, all requirements, their priorities and resource estimations are

received as inputs from previous stage. Then, the project manager or release

official enters resource constraints and requirements inter-relationships. Finally,

different release plans are generated based upon more than three parameters.

• Rationale

Intelligent methods can be efficient for big or medium-sized projects with limited

or unlimited customers in which heavy methods such as RUP and Waterfall are

used for development. Because there are many requirements which are mostly

dependent, release plans must be generated accurately and considering all possible

Univ
ers

ity
 of

 M
ala

ya

206

aspects. Tools employed in these projects must be able to receive information on

interdependencies and constraints of different resources and generate various

release plans respecting different parameters.

• Known use

The method can be used in most large projects. Release Planner is one of the most

important tools employed.

• Related sub-pattern

Does not exist.

5.5.3.2. Pattern of pre-release planning with large number of customers

• Pattern name

Pattern of pre-release planning with large number of customers

• Side name

Pattern of pre-release planning with multi-variable methods

• Problem

In software developing projects with large number of customers and limited or

unlimited-customer markets, very big number of requirements but small or

medium project size, it is usually necessary to select a method for generating

release plans which is capable of producing plans based on different parameters.

Regarding the number of individuals involved in the project, the method must be

prone to implementation by simple tools. Besides, it must be systematic to be able

to produce various release plans.

Univ
ers

ity
 of

 M
ala

ya

207

• Context

In pre-release planning, it is always necessary to generate a set of pre-release

plans based on requirements priorities and received estimations and send them to

the next stage.

• Constraints

§ The market must be of limited- or unlimited-customer type.

§ RAD or Agile methods should be used.

§ The project must be small or medium-sized.

§ Number of requirements must be large.

§ Two or three parameters must be used to generate every plan.

§ The team must be experienced or half-experienced.

• Solution

Using multi-variable methods for pre-release planning

Figure 5-16: Pre-release planning pattern with large number of customers

• Resulting context

In this method, all requirements, their priorities and resource estimations are

received as inputs from previous stage. Then, the project manager or release

official enters resource constraints, and different release plans are generated based

Univ
ers

ity
 of

 M
ala

ya

208

upon two or three parameters (including requirements priorities, time, costs or

plan's activity). Besides, requirements interdependency can be one of the

parameters.

• Rationale

Multi-variable methods can be efficient for small or medium-sized projects with

limited or unlimited customers in which Agile or RAD are used for development.

In these projects, the team cannot spend considerable time on generating release

plans but it needs systematic methods which can be documented and are

implemented by simple tools. Use of requirements interdependencies as a

parameter in generating release plans addresses this issue properly for such

projects.

• Known use

The method can be used in most small projects. Besides, it can be implemented

using simple tools.

• Related sub-pattern

Does not exist.

5.5.3.3. Pattern of pre-release planning in small projects

• Pattern name

Pattern of pre-release planning in small projects

• Side name

Pattern of pre-release planning with single-variable methods

• Problem

In software developing projects with very small or small project size and small

number of requirements, it is often necessary to use a method for generating

Univ
ers

ity
 of

 M
ala

ya

209

release plans which is capable of producing plans based on different parameters.

Regarding the number of individuals involved in the project, the method must be

prone to implementation by simple tools. Besides, it must be systematic to be able

to produce various release plans.

• Context

In pre-release planning, it is always necessary to generate a set of pre-release

plans based on requirements priorities and received estimations and send them to

the next stage.

• Constraints

§ The market must be of limited-customer or customized type.

§ RUP or Agile methods should be used.

§ The project must be very small or small-sized.

§ Number of requirements must be small.

§ One parameter must be used to generate plans.

§ The team can be of any experience level.

• Solution

Using single-variable methods for pre-release planning

Figure 5-17: Pre-release planning pattern with single-variable methods

Univ
ers

ity
 of

 M
ala

ya

210

• Resulting context

In this method, all requirements, their priorities and resource estimations are

received as inputs from previous stage. Then, the project manager or release

official enters resource constraints and requirements inter-relationships. Different

release plans are generated based upon one parameter (including requirements

priorities, time, costs or plan's activity).

• Rationale

Single-variable methods can be efficient for very small or small-sized projects

with limited-customer or customized markets in which RAD or Agile methods are

used for development. In these projects, the team cannot spend considerable time

on generating release plans but it needs systematic methods which can be

documented and are implemented by simple tools.

• Known use

The method can be used in most small projects. Besides, it can be implemented

using simple tools.

• Related sub-pattern

Does not exist.

5.5.4. Release planning patterns

Release planning patterns influence steps of release planning process model and

determine a specific method for performing tasks in every stage. Some release planning

patterns are presented below.

5.5.4.1. Pattern of release planning in large projects

• Pattern name

Pattern of release planning in large projects

Univ
ers

ity
 of

 M
ala

ya

211

• Side name

No side name

• Problem

In software developing projects with large number of customers and limited or

unlimited-customer markets in which the number of requirements is very big, it is

usually necessary to select a method for generating release plans which is capable

of prioritizing many requirements. The method must also be able to estimate

required resources by receiving precise and proper data and to produce plans

based on different parameters and the inter-relationship of various requirements.

Regarding the number of individuals involved in the project, the method must be

prone to implementation by valid tools.

• Context

In pre-release planning, it is always necessary to generate a set of pre-release

plans based on requirements priorities and received estimations. Then, project

manager or release planner selects the best suited plan.

• Constraints

§ The market must be of limited or unlimited–customer type.

§ Requirements must be in "Fine" level.

§ Number or requirements prioritization (classification) inputs must be more

than three.

§ Number of requirements must be medium or large.

§ The team must be big or medium-sized.

§ The team must be half-experienced or experienced.

§ Development environment must be Client-Server or Web-based.

Univ
ers

ity
 of

 M
ala

ya

212

§ Number of inputs and outputs predicted for the software must be

considerable.

§ The project must be big or medium-sized.

§ More than three parameters must be used to generate every plan.

• Solution

§ Using AHP method for requirements prioritization stage

§ Using Algorithmic models for resource estimation stage

§ Using Intelligent methods for pre-release planning

Figure 5-18: Release planning pattern in large projects

• Resulting context

In this method, all requirements are introduced to the tool to be prioritized.

Having prioritization accomplished, the required resources are estimated by the

proper tool. Then, the project manager or release official enters resource

constraints and requirements inter-relationships. Next, different release plans are

generated based upon more than three parameters (including requirements

priorities, time, costs or plan's activity). Finally, the project manager or release

planner selects the best suited plan.

Univ
ers

ity
 of

 M
ala

ya

213

• Rationale

In large project with large number of requirements and involved individuals,

reliable methods should be employed for every stage. Rationale of every stage is

described in each pattern according to the solution used.

• Known use

The method can be used in most large projects. Release planner is one of the most

important tools used in this method.

• Related sub-pattern

§ Pattern of requirements prioritization in large projects

§ Pattern of resource estimation in large projects

§ Pattern of pre-release planning in large projects

5.5.4.2. Pattern of release planning with large number of customers

• Pattern name

Pattern of release planning with large number of customers

• Side name

No side name

• Problem

In software developing projects with a small-sized team but large number of

customers and limited or unlimited-customer markets in which the number of

requirements is medium or big, it is usually necessary to select a method for

generating release plans which is capable of prioritizing many coarse

requirements. The method must also be able to estimate required resources by

receiving precise and proper data and to produce plans based on different

parameters and the inter-relationship of various requirements. Regarding the

Univ
ers

ity
 of

 M
ala

ya

214

number of individuals involved in the project, the method must be prone to

implementation by valid tools.

• Context

In pre-release planning, it is always necessary to generate a set of pre-release

plans based on requirements priorities and received estimations. Then, the project

manager or release planner selects the best suited plan.

• Constraints

§ The market must be of limited or unlimited–customer type.

§ Requirements must be in coarse or very coarse levels.

§ Number of requirements prioritization (classification) inputs must be 1.

§ Number of requirements must be medium or large.

§ Agile or RAD methods must be used.

§ The team can have every level of experience.

§ Development environment must be Client-Server or Web-based.

§ Number of inputs and outputs predicted for the software must be

considerable.

§ The project must be big or medium-sized.

§ Two or three parameters must be used to generate every plan.

• Solution

§ Using Top 10 method for requirements prioritization stage

§ Using experts' judgment for resource estimation stage

§ Using multi-variable methods for pre-release planning

Univ
ers

ity
 of

 M
ala

ya

215

Figure 5-19: Release planning pattern with large number of customers

• Resulting context

In this method, all requirements are introduced to the tool to be prioritized.

Having prioritization accomplished, the required resources are estimated by the

proper tool. Then, the project manager or release official enters resource

constraints. Requirements inter-relationships can be considered as an independent

parameter. Next, different release plans are generated based on two or three

parameters (including requirements priorities, time, costs or plan's activity).

Finally, the project manager or release planner selects the best suited plan.

• Rationale

In large project with large number of requirements and involved individuals,

reliable methods should be employed for every stage. Rationale of every stage is

described in each pattern based on the solution used.

• Known use

No known use

• Related sub-pattern

§ Pattern of requirements prioritization with large number of customers

§ Pattern of resource estimation with large number of customers

Univ
ers

ity
 of

 M
ala

ya

216

§ Pattern of pre-release planning with large number of customers

5.5.4.3. Pattern of release planning in small projects

• Pattern name

Pattern of release planning in small projects

• Side name

No side name

• Problem

In software developing projects with a small-sized team and small number of

customers and customized or limited-customer markets in which the number of

requirements is insignificant, it is usually necessary to select a method for

generating release plans which is capable of prioritizing many coarse

requirements. The method must also be able to estimate required resources by

receiving proper and sometimes deficient data and to produce plans based on

different parameters. Regarding the number of individuals involved in the project,

the method must possibly be easy to handle and prone to implementation by

simple tools.

• Context

In pre-release planning, it is always necessary to generate a set of pre-release

plans based on requirements priorities and received estimations. Then, project

manager or release planner selects the best suited plan.

• Constraints

§ The market must be of limited-customer or customized type.

§ Requirements level is arbitrary.

Univ
ers

ity
 of

 M
ala

ya

217

§ Number or requirements prioritization (classification) inputs must be less

than three.

§ Number of requirements must be small.

§ The team must be small-sized.

§ Agile or RAD methods must be used.

§ The team can have every level of experience.

§ Every development environment can be used.

§ Number of inputs and outputs predicted for the software must be small or

medium.

§ The project must be very small or small-sized.

§ Only one parameter must be used to generate every plan.

• Solution

§ Using Numerical Assignment method for requirements prioritization stage

§ Using Down-to-Top estimation method for resource estimation stage

§ Using single-variable methods for pre-release planning

Figure 5-20: Release planning pattern in small projects

Univ
ers

ity
 of

 M
ala

ya

218

• Resulting context

In this method, all requirements are introduced to the tool to be prioritized.

Having prioritization accomplished, the required effort is also estimated by the

same tool. Then, the project manager or release official enters resource

constraints. Next, different release plans are generated based on one parameter

(including requirements priorities, time, costs or plan's activity). Finally, the

project manager or release planner selects the best suited plan.

• Rationale

In small projects with insignificant number of requirements and involved

individuals, reliable rapid methods should be employed for every stage. Rationale

of every stage is described in each pattern based on the solution used.

• Known use

No known use

• Related sub-pattern

§ Pattern of requirements prioritization in small projects

§ Pattern of resource estimation in small projects

§ Pattern of pre-release planning in small projects

5.6. Release planning anti-patterns

The idea of anti-patterns results from the fact that most common tasks in software

engineering focus on constructive and effective solutions. Anti-patterns focus on

negative and unsuccessful solutions and describe a set of common solutions (for a

certain problem) which definitely generate negative and unsuccessful results. Similar to

the necessity of knowing different patterns available for a certain field, recognizing anti-

patterns helps in better development of software. Indeed, many software engineers are

willing to know whether the solution they adopt leads to failure. The answer to this

Univ
ers

ity
 of

 M
ala

ya

219

question plays an important role in project implementation. Advances in anti-pattern

concept lead to a stronger relationship between them and patterns. In fact, when a

problem background changes, patterns change to anti-patterns and this causes the

pattern's proposed solutions fail to cope with. In such a case, anti-pattern emerges and

shows that using previous pattern leads to failure.

Anti-patterns were first proposed by Brown (Brown, 1998) and different works were

done to identify and record various anti-patterns afterwards. Similar to patterns, anti-

patterns have several classifications, the most prominent of which is the one proposed

by Brown (Brown, 1998) which divides them into three groups: management,

architecture and development anti-patterns. Management anti-patterns focus on

management concepts of a project. Development anti-patterns are used in software

development and architecture ones are applied in the architecture of the software.

Anti-patterns are present in release planning as well as other software engineering fields

and include the items that must not be done during different steps of release planning.

Similar to release planning patterns, development of anti-patterns requires experiences

resulting from recorded failures in release planning. Using Ad-hoc method here has

proved to have lower reliability and to lead to failure in slightly complicated projects.

Besides, Planning Game method cannot balance the demanded requirements on which

stakeholders disagree (Seyed Danesh, 2011). This is the main weakness of the method,

and means that the method loses its efficiency when the number of requirements

prioritization parameters increases.

A set of anti-patterns are identified and classified in developing release planning

patterns. These are presented using a structure similar to that of release planning

patterns. The proposed structure is as follows:

Univ
ers

ity
 of

 M
ala

ya

220

• Anti-pattern name

This shows the selected name for release planning anti-pattern. Every anti-pattern

has a main name distinguishing it from other anti-patterns.

• Side name

Every anti-pattern may have one or more side names besides its main name. The

side name may be used for anti-pattern application in specific fields.

• Problem

Anti-pattern problem describes the problems and troubles always present in a

certain field that lead to failure in release planning tasks or its different steps.

• Cause

Explains causes of a problem. Usually, parameters and instances are used to

describe or explain every cause and it is stated based on various parameters.

• Solution

Describes proposed ways to solve a problem. The selected method is presented

according to proposed problems (the goal of anti-pattern) and mentioned causes.

• Related anti-pattern

The names of other related anti-patterns are mentioned in this feature.

5.6.1. Anti-patterns of requirements prioritization

Anti-patterns of requirements prioritization mostly focus on problems and troubles in

requirements prioritization stage of release planning. Some common anti-patterns of

requirements prioritization are described below.

5.6.1.1. Anti-pattern of requirements prioritization in large projects

• Anti-pattern name

Anti-pattern of requirements prioritization in large projects

Univ
ers

ity
 of

 M
ala

ya

221

• Side name

No side name

• Problem

In large projects with significant number of customers and Web-based

development environment, most companies employ web-based methods and tools

to receive requirements of many customers. Such methods usually receive only

one parameter for prioritization. Top 10, Ranking and Numerical Assignment

methods are mostly used in these companies, since many tools readily support

them. This results in troubles in requirements prioritization and failure in

identification of the most prior requirements.

• Cause

The main cause of employing these methods is their simplicity, massive

requirements, lack of knowledge on their obstacles and failure of purchased tools

in supporting more complicated and stronger methods.

• Solution

Making use of requirements prioritization pattern resolves this obstacle.

• Related anti-pattern

Does not exist.

5.6.1.2. Anti-pattern of requirements prioritization in small projects

• Anti-pattern name

Anti-pattern of requirements prioritization in small projects

• Side name

No side name

Univ
ers

ity
 of

 M
ala

ya

222

• Problem

In small projects with insignificant number of customers and Web-based or

customized development environment, most companies employ Ad-hoc methods

and tools to prioritize customers' requirements which are mostly individual-based

and not reliable. These companies assign a team member to perform the task

disregarding the fact that requirements prioritization must be principle-based. The

member accomplishes the assigned task according to his/her experience. As a

result, customers' requirements are developed based on experiences only and this

usually results in separation of development process and recruiting specialists,

especially when requirements are in higher levels and require a breakdown.

• Cause

The main cause of employing these methods is their strong reliance on

experiences, simplicity of using Ad-hoc, lack of knowledge on method's obstacles

and neglecting principles of requirements prioritization.

• Solution

Making use of requirements prioritization pattern for small projects resolves this

obstacle.

• Related anti-pattern

Does not exist.

5.6.2. Anti-patterns of resource estimation

Anti-patterns of resource estimation mostly focus on problems and troubles in resource

estimation stage of release planning. Some common anti-patterns of resource estimation

are described below.

Univ
ers

ity
 of

 M
ala

ya

223

5.6.2.1. Anti-pattern of resource estimation in large projects

• Anti-pattern name

Anti-pattern of resource estimation in large projects

• Side name

No side name

• Problem

In large projects with significant number of requirements and customers, most

companies tend to use web-based methods and tools to record resource

estimations and this is usually done according to individual judgment. The

companies employ a project manager or specialist to estimate required effort and

resources since most available tools readily support them. This causes many

problems in resource estimation challenges such as component accumulation and

consistency of estimated resources with different implementation parameters (e.g.

programming language) and, hence, resources are estimated with a high error rate.

• Cause

The main cause of employing these methods is their strong reliance on

experiences, simplicity of use, lack of knowledge on method's obstacles and

deficiency in using proper tools.

• Solution

Making use of resource estimation pattern for large projects resolves this obstacle.

• Related anti-pattern

Does not exist.

Univ
ers

ity
 of

 M
ala

ya

224

5.6.2.2. Anti-pattern or resource estimation in small projects

• Anti-pattern name

Anti-pattern of resource estimation in small projects

• Side name

No side name

• Problem

In small projects with insignificant number of customers and customized type of

development, most companies tend to estimate required resources according to a

developer's initial guess, regardless of many primary parameters. This guessing in

many cases delays the project. But the method (without any parameters) is

increasingly being used. In such small projects, resources are estimated in macro

levels regardless of components, number and level of requirements and many

implementation parameters.

• Cause

The main cause of employing these methods is their strong reliance on

experiences, dismissing resource estimation task and disrespecting resource

estimation standards.

• Solution

Making use of resource estimation pattern for small projects resolves this

obstacle.

• Related anti-pattern

Does not exist.

Univ
ers

ity
 of

 M
ala

ya

225

5.6.3. Anti-patterns of pre-release planning

Anti-patterns of pre-release planning mostly focus on problems and troubles of this

stage of release planning. Some common anti-patterns of pre-release planning are

described below.

5.6.3.1. Anti-pattern of pre-release planning in large projects

• Anti-pattern name

Anti-pattern of pre-release planning in large projects

• Side name

No side name

• Problem

In large projects with significant number of requirements and customers, most

companies tend to use multi-variable methods. Although these methods can

consider several parameters, they fail to include requirements' interdependencies

and relationship complexities. Most companies perform pre-release planning

regardless of the interdependencies, which can be of great importance in many

release plans. This causes many problems in implementation of generated plans,

such as: increase in time and costs of development, deficiency in some

requirements, etc.

• Cause

The main cause of employing these methods is lack of knowledge on advanced

methods and tools of release planning and problems of multi-variable methods.

• Solution

Making use of pre-release planning pattern for large projects resolves this

obstacle.

Univ
ers

ity
 of

 M
ala

ya

226

• Related anti-pattern

Does not exist.

5.6.3.2. Anti-pattern of pre-release planning in small projects

• Anti-pattern name

Anti-pattern of pre-release planning in small projects

• Side name

No side name

• Problem

In small projects with insignificant number of requirements and customers and

customized development environment, most companies do not plan a release and,

in fact, no release plan is generated but a set of requirements are selected by Ad-

hoc method for the next stage. This set cannot be considered a plan, since it lacks

structure, integration and logic of a plan and it is only a list of requirements to be

developed. This postpones the project to a considerable extent; a new requirement

is added to (or removed from) the list while developing the requirements, and a

drastic change occurs in resource consumption. In many cases, this can lead to

project failure.

• Cause

The main cause of employing these methods is their reliance on personal

knowledge and experience, neglecting pre-release planning task and lack of

knowledge on different release planning methods.

• Solution

Making use of pre-release planning pattern in small projects resolves this obstacle.

Univ
ers

ity
 of

 M
ala

ya

227

• Related anti-pattern

Does not exist.

5.7. Summary

Pattern-based release planning methodology is a new methodology to release planning

based upon shared tasks in release planning. The methodology tries to use those shared

tasks to generate the process model of planning. In every step, the process receives a set

of input parameters and generates a set of outputs through a selected method. Several

parameters that influence determining the method are identified and conducted through

different studies in order to achieve a precise and suitable method for every certain step.

These parameters enable customization of release planning process model for different

companies and projects.

Customization of the process model can be performed using various parameters but the

important point is the number of customization states generated by combining the

parameters. In order to reduce the number of these states, a set of relationships are

found and specified between the parameters. Some of these relationships can well

determine the selected method for the next step. Although the number of states reduces

by determining their inter-relationships, it is not possible to determine the method for all

available states. Therefore, PRP tool has been developed to facilitate the task.

In order to optimize parameters, the concept of pattern in software development was

redefined and used for release planning. Patterns of release planning and its different

steps are suggested as a new methodology to release planning. Patterns originate from

previous experiences in release planning and are generated based on different

parameters effective on every step of the planning process. Release planning patterns

can be specified by determining effective parameters on release planning.

Univ
ers

ity
 of

 M
ala

ya

228

CHAPTER 6: EVALUATION OF THE METHODOLOGY

6.1. Introduction

The main objective of evaluating the pattern-based release planning methodology is to

assess the applicability of the methodology in real world. In this section, first, the

objective of evaluation and its expected results are identified. Then, the circumstances

of the evaluation and the step by step process of evaluation are described. To understand

the characteristics of case studies, evaluation of effective parameters on the pattern is

also presented. These parameters affect the pattern selection in each step of release

planning process model.

6.2. Evaluation Objectives

Proving the applicability of the methodology is the main objective of the evaluation.

The applicability conditions are very important and can influence the results; hence,

they should be clearly identified. These conditions refer to situations and requirements

that should be considered and provided for measuring applicability. The applicability

conditions considered for evaluating the pattern-based release planning methodology

are as follows:

• Real world experiences

The methodology should be applicable in the real world and industrial

projects.

• Variety of experiences

The methodology should be applicable in various project types and

companies.

• Complete usage

The methodology should be applicable in the true project lifecycle and if a

project has more than one iteration, it should be used in all iterations.

Univ
ers

ity
 of

 M
ala

ya

229

The conditions should be considered as the default conditions for proving the

applicability of the pattern-based methodology. Besides, secondary objectives are

considered as follows:

• The applicability of each proposed pattern in the release planning

• The applicability of overall patterns of each release planning step

• The applicability of pattern-based release planning methodology

6.3. Evaluation method

Evaluation and demonstration of validity and applicability of the proposed methodology

is one of the most important issues in presenting an empirical idea. The most important

method to prove a methodology is operational and its results are confirmed is

implementing various case studies. Industrial case studies that run in real world

environment can adequately evaluate a release planning methodology and its weakness

and strengths. Therefore, to evaluate the proposed methodology a variety of empirical

studies in real environments and projects should be performed.

To evaluate the proposed methodology, two methods are used: 1) Empirical case studies

2) Experts review by questionnaires. To perform case studies, a software tool called

"Pattern Release Planner (PRP)" was developed. The tool helps the release planner to

search, identify and select patterns and gather experts’ opinions on them. The PRP

records steps, parameters, instances and patterns of release planning. Thus, it is used in

performing case studies and its data is complemented with accomplished studies. In the

later sections, details of each evaluation method are presented.

Univ
ers

ity
 of

 M
ala

ya

230

6.3.1. Case studies evaluation method

In order to evaluate the case studies, following tasks are performed for each case study:

• Specifying characteristics of the project and choosing the right pattern

In the first step, characteristics of the case studies are specified and entered in the

PRP tool. Then, using these characteristics, the PRP tool determines a list of

proposed pattern(s). Characteristics of every parameter of each release planning

step should be entered. In fact, the characteristics are the parameter instances that

are already introduced into the tool and the release planner has to select. In most

cases, parameter instances are fully entered but if the organization, company or

project has a characteristic that is absent, the software enables the users to add it.

The PRP tool searches for related patterns in its database and then, based on the

recorded experiences "proposes" one of the available patterns. If the tool does not

have recorded experiences, it does not propose any patterns. This is also true

when no characteristics are available and the release planner allows recording the

pattern result or selecting an existing pattern. In other words, the tool improves its

suggestions based on preceding experiences and is limited only to searches and

listing patterns if no experience is recorded. The result of this step is the best fitted

pattern for projects based on the entered characteristics.

We introduced 13 basic patterns in the PRP tool that can be used by the release

planner of each project. More patterns can be added up later. The properties of

each pattern are based on the structure of the release planning patterns presented

before. The patterns are "initial pattern" and were not tested before and resulted

based on our experiences and studies. The case studies can validate and measure

the effectiveness of the patterns as well as the pattern-base release planning

methodology. The pattern structure is described to all release planners of each

Univ
ers

ity
 of

 M
ala

ya

231

project in the case studies and they can either use the pattern or define their own

patterns.

• Accomplishing release planning through proposed patterns

The pattern proposed by the tool for each step of the process model should be

employed by the development team of each project. The objective of this step is to

make actual use of the proposed pattern in actual software development.

Depending on the type of pattern, its implementation can include employing a

certain method or a combination of different methods; therefore, it may require

several attempts until implementation is completed. All events and the results are

documented during pattern usage. Besides, challenges, ideas and problems faced

during the implementation are recorded to be used to improve decision-making.

The actual use of the proposed patterns is the heart of evaluation and only patterns

that are used in various projects can be evaluated. Other patterns cannot be

evaluated simply because there are no ideas about their actual usage. Therefore,

choosing the pattern by release planners and applying the method proposed for

each step of release planning process model can lead to certain results that should

be logged by the planners.

• Recording and analyzing the pattern usage results

In the third step, the results of pattern usage are recorded into the tool and

analyzed. The tool allows the release planner to enter the general points and

details of the usage results. The PRP tool decides based on the overall results, to

either place or not to place the pattern on the selected list for the next pattern

search. Moreover, the tool allows for entering details of the results based on

which selection is to be done among several patterns. Finally, it is possible to

enter and record additional information about the pattern if it is reselected.

Univ
ers

ity
 of

 M
ala

ya

232

Figure 6-1 shows the method of performing case studies. All information on

accomplishing case studies and employing patterns are recorded in the PRP to be used

in the next steps.

Figure 6-1: Method of peforming case studies

6.3.2. Experts review evaluation method

After executing empirical studies and using patterns and the pattern-based methodology

in case studies, to fully evaluate the methodology, three questionnaires (about each

pattern, the patterns of specific steps in the process model and the overall pattern-based

release planning methodology) are filled by the experts that was project manager or

release planner. These help to enhance the empirical study for all patterns and the

methodology.

The project manager or release planner who used the patterns and release planning

pattern in their projects as an expert filled the questionnaires for all patterns.

Questionnaires are presented in Tables A, B and C of Appendix B.

Univ
ers

ity
 of

 M
ala

ya

233

6.4. Evaluation Success Factors

Evaluation of the proposed methodology can be performed by the recorded results of

different patterns’ usage in various projects in the PRP tool as well as the questionnaires

filled by project manager or release planner. Evaluation is done on the whole pattern-

based release planning methodology and each release planning pattern. To evaluate each

pattern, it is necessary to analyze PRP tool information on the pattern and examine the

recorded descriptions. Naturally, results of evaluating every pattern fall into one of the

following categories:

• The proposed pattern fits the project

If the number of pattern usage is adequate and the rate of satisfaction is high, it can

be claimed that the pattern suits for release planning. On the other hand, the results

show the applicability of a pattern in release planning when the rate of satisfaction is

high and the proposed pattern by the tool fits the projects.

• The proposed pattern fits in some cases and does not in others

If the number of pattern usage is adequate and the rates of satisfaction and failure are

moderate, it cannot be claimed that a pattern suits or fails in different cases. In fact,

this is considered a moderate result which fails to prove that the proposed pattern can

be implemented.

• The proposed pattern fails to fit the project

If the number of pattern usage is adequate and the rate of failure is high, it can be

claimed that the pattern fails. The fail result demonstrates that the proposed pattern

fails to prove it can be implemented and the pattern is rejected.

In addition to what mentioned above, it must be noted that some other problems can

influence the implementation of pattern-based release planning, including its

complexity and the time required to understand the methodology. These are identified

Univ
ers

ity
 of

 M
ala

ya

234

as evaluation parameters of pattern-based release planning and must be recorded during

implementation of planning methodology in order to be used when comparing the

approach with others. Although the proposed methodology possesses the proper tool to

suggest patterns, the parameters are also of great importance in selecting the pattern-

based release planning methodology.

In order to reduce the influence of unknown parameters on parameters in case studies, it

is essential to focus on understanding and assimilating parameters and methods and

describe the methodology properly to users. This is done by the tool and users are able

to observe different states of the proposed patterns to act well in valuing parameters and

selecting parameter instances. It must be noted that some exceptions are inherent to case

studies, but can be neglected if their frequency is insignificant.

6.5. Case studies Selection

Several case studies are used to validate the methodology in this study, regarding

numerous parameter instances in release planning process model and likely states, and

considering the fact that release planning patterns must be based upon executive

experiences. In order to select case studies, three parameters were considered:

• Number of projects: number of active projects that company performs

• Number of teams: number of active teams that are independent from others

• Team size: number of people involved in a team

Companies with several projects and various teams were selected, since every team could

be considered as an independent unit and document its experiences of a certain pattern.

Team diversity in such companies causes various states in case studies. Moreover,

manifoldness of projects generates same parameter instances in projects with the same

characteristics. The instances are likely to result in the same patterns and this leads to

implementation of a certain pattern in two different teams (two different experiences).

Univ
ers

ity
 of

 M
ala

ya

235

Selecting companies with such features and convincing them to participate in studies is

difficult, since most of them use simple methods for release planning. Hence, PRP is

developed in a way to facilitate the task. All selected companies have numerous projects

in different fields and meet the goal of generating various states. Here, all companies

have at least 7 projects and small, medium and big-sized software developing teams,

except for one which has two projects only and two separate teams. This enables us to

consider several states; nevertheless, claiming full implementation of all possible states

is not the focus of this research. PRP was taught to teams which have release plans and

interact with users and customers. Besides, the process of determining team and project

characteristics was explained to them in order to help in achieving the release planning

patterns. Moreover, every release planning method as well as its steps and procedures

were described to the project manager or release planner in order to develop a unified

perspective of all methods.

6.5.1. Company A description

Company A has been developing banking and insurance software for 7 years and is

known as one of the pioneers in national level. The company is in charge of developing

and maintaining "Core Banking" software in two state banks and one private bank in

Iran, and is considered as one of the main contributors to the comprehensive financial

guidelines of the country. Moreover, it is a public contractor in information and

communication technology with the capacity and power to implement large-scale

projects. It breaks large projects down to smaller ones to be accomplished by small

companies and manages the projects itself. Main products and services of the company

include:

- Banking comprehensive guidelines

- Insurance comprehensive guidelines

- Capital market strategies

Univ
ers

ity
 of

 M
ala

ya

236

- Transportation guidelines

Now, the company has more than 250 IT specialists and more than 10 separate software

developing teams which are working continuously. In addition to these teams, new ones

are formed for newer projects. Teams are managed through project management

hierarchy, and they employ a simple tool (Issue Tracking) to collect customers'

requirements and their comments and suggestions. Regular procedures are mediated and

conducted to accomplish tasks in higher level teams, but the procedures are not

considered as teams' internal methodologies and every team uses its own methodology

based on its size. Although "Agile" methodology is the most common, RUP method is

efficient in some certain projects. Teams are not allowed to use methods without

documentation. They usually have an expert, but sometimes there are teams whose

members are not experienced at all. Most of the company projects are Web-based

software.

In this company, six projects are accomplished using pattern-based release planning

methodology for at least three releases. Characteristics of every project are summarized

in Table 6-1. According to the table, most of its projects have common characteristics.

Additionally, some projects have completely identical characteristics.

Table 6-1: Characteristics of projects in company A

Project

Parameters
A1 A2 A3 A4 A5 A6

Development
Environment Web-based Web-based Web-based Web-based Web-based Web-based

Development
Methodology Agile Agile Agile Agile Agile Agile

Input/Output
Number Low Medium High High High Low

Market Type Bespoke Bespoke Unlimited
Customer

Unlimited
Customer

Unlimited
Customer Bespoke

Prioritization
Input Number Low Low Low Low Low Low

Univ
ers

ity
 of

 M
ala

ya

237

Project

Parameters
A1 A2 A3 A4 A5 A6

Project Size Small Small Small Medium Medium Small

Release Plan
Parameter
Number

Low Low Medium Medium Medium Low

Requirement
Granularity Fine Medium Medium Medium Coarse Fine

6.5.2. Company B description

This company has been working on software development for more than 25 years. It

started working on financial software exactly when PCs were just entering the country

and were not much common yet. This is the first software company in Iran which

supplied Windows-based systems as an integrated one (based on technology

transformation and customers' demands) in 1997. Nowadays, with more than 9500

customers in big, medium and small businesses and more than 1100 employees, the

company is one of the biggest software developing companies in Iran and is almost

dominant in the field of financial software. In recent years, it has turned its focus to

accelerating service delivery and increasing product quality. Most important activities

of this company in software developing include:

- Presenting software solutions for businesses based on operational processes of

big or medium-sized organizations in mother, manufacturing, service and

trading industries.

- Presenting software strategies for small businesses

- Presenting specific IT guidelines to state organizations and institutions

- Serving in educating, establishing and maintaining software strategies

Univ
ers

ity
 of

 M
ala

ya

238

At the present time, the company has more than 15 different software developing teams

in financial and accounting fields, most of which have at least five members. It mostly

uses an Agile-based customized method for software development and all development

and support procedures are produced and implemented by quality assurance. A

"Request Tracking" tool that developed in a customized manner is used to receive

demands and new requirements as well as software problems. Besides customers,

requirements are entered by different support teams in various cities. Every team is

composed of experts, half-experienced and sometimes inexperienced individuals and the

company's labor development procedures forms gradually.

In this company, nine projects are accomplished using pattern-based release planning

methodology for at least two releases. Features of every project are summarized in

Table 6-2. According to the table, most of its projects have common characteristics.

Additionally, some projects possess completely identical characteristics.

Table 6-2: Characteristics of projects in Company B

Project

Parameters
B1 B2 B3 B4 B5

Development
Environment Client-Server Web-based Client-Server Client-Server Client-Server

Development
Methodology Agile Agile Agile Agile Agile

Input/output Number High High Low High High

Market Type Unlimited
Customer

Unlimited
Customer

Limited
Customer

Unlimited
Customer

Unlimited
Customer

Prioritization Input
Number Low Low Low Low Low

Project Size Medium Medium Small Medium Medium

Release Plan Parameter
Number Medium Medium Low Medium Medium

Requirement Granularity Medium Medium Medium Medium Medium

Univ
ers

ity
 of

 M
ala

ya

239

Project

Parameters
B6 B7 B8 B9

Development Environment Client-Server Client-Server Client-Server Client-Server

Development Methodology Agile Agile Agile Agile

Input/output Number Medium Low High High

Market Type Limited Customer Limited Customer Limited Customer Limited Customer

Prioritization Input Number Low Low Low Low

Project Size Small Small Medium Medium

Release Plan Parameter
Number Low Low Medium Medium

Requirement Granularity Coarse Medium Coarse Medium

6.5.3. Company C description

This company was founded in 2005 by a combination of reputable IT companies and

support and investment of active companies in the capital market with the goal of

presenting the first "total online guideline" in the field of capital market. With less than

8 years of activity background, the company hosts 51 agents in the Stock Exchange, 41

agents in Goods Exchange and 62 investment funds with more than 1500 branches in

Iran. It also organizes operations of 2600 users for 500,000 customers and serves more

than half of Iranian exchange companies.

By establishing a "Dedicated Data Center" inside Iran and presenting its solution in the

form of "Software as a Service", the company tries to attract trust and increase

productivity of IT industry. Hosting its "Data Intensive Total Solution" in this database,

the company saves its customers from spending on hardware and struggling with IT

specialists and lets them focus on their own businesses. It has solved the problem of

"Data Fragmentation" through the Data Intensive Total and has made it possible to

control operations, provide reports and process data without any technical complications

Univ
ers

ity
 of

 M
ala

ya

240

and human errors. The company has overcome the obstacle of geographical distance,

which is the main problem facing suppliers of IT solutions, through the "Dedicated Data

Center" which is used to maintain hardware equipments and provide software services.

Without worrying about this problem, company experts can support customers in the

shortest time (without any need to be present at the customer's location). Most important

activities of this company, which are mostly in the field of stock exchange, include:

- Management system for agents of the Stock Exchange

- Management system for agents of Goods Exchange

- Trade Work Station (TWS)

- Online trade

- Common investment fund

- Exchange fund

- Stock future

At the present, 8 different software developing teams are working in this company

besides the support teams. Considering massive demands and customers' new

requirements, a Request Tracking tool (developed by the company) is used and

customers' needs are assigned to different teams for follow up. Furthermore, demands

for new software and requirements of Securities and Exchange Organization (according

to Exchange rules and principles) lead to formation of new teams to develop related

software. Regarding the nature of Exchange tasks which are mainly based upon

regulations of Securities and Exchange Organization of Iran, customers are less likely to

propose new requirements and are more tended to ask for slight changes.

In this company, three projects are accomplished using pattern-based release planning

methodology for at least two releases. Features of every project are summarized in

Table 6-3.

Univ
ers

ity
 of

 M
ala

ya

241

Table 6-3: Characteristics of projects in Company C

Project

Parameters
C1 C2 C3

Development Environment Web-based Web-based Web-based

Development Methodology Agile Agile Agile

Input/Output Number Medium Medium Medium

Market Type Limited Customer Unlimited Customer Limited Customer

Prioritization Input Number Low Low Low

Project Size Small Small Small

Release Plan Parameter Number Low Low Low

Requirement Granularity Fine Medium Fine

6.5.4. Company D description

This company was founded in 1997 to design and plan IT integrated guidelines. After

15 years of activity, thousands of users in the form hundreds of firms use this

company’s software services. It has also implemented most successful software projects

in Iran. Activities of this company mostly include providing financial, administrative,

trade and factory management software and software strategies for business process

management in medium and large-sized organizations. Benefiting from around 150 IT,

industries and management specialists, the company has founded many branches in

different cities for sales, training and after-sales services of its products. The company

has been awarded various prizes of software development in Iran for innovation,

product diversity, quality assurance and management, office automation systems and

employing younger IT workers. This is evidence on its significant growth in the past 10

years.

Main activities of this company include:

- Designing and implementing integrated operational and management

information systems

Univ
ers

ity
 of

 M
ala

ya

242

- Designing and implementing Enterprise Resource Planning systems

- Designing and producing customer order software

- Designing and implementing Business Processes Management Systems

Now, the company supplies more than 35 different products in financial, trading, office

automation, engineering production and human resources fields and provides more than

1000 large, medium and small organizations and institutions with software services.

This company has become a symbol of reliability in customers' viewpoint because of

multiplicity of its users in different companies, rapid customization of software based

on customer needs, and online responsibility. In addition, its newest and latest product,

Business Process Management Software, is well-adopted especially by medium and

small-sized companies.

Various software developing teams are working for this company which can use

customized RUP, Scrum or customized RAD depending on the project. All outputs,

products, documentations and activities of different teams are well defined through

quality assurance management and, hence, the company owns a well-engineered

software development cycle. It uses its own customized tool for requirements

engineering and management which is able to record all online conversations and send

them to different teams. Recording conversations eliminates the need to writing them

down and reduces errors in thought transfer. This way, it is also possible to talk to every

project analyzer (if necessary) to optimize demands and requirements.

In this company, eleven projects are accomplished using pattern-based release planning

methodology for at least two releases. Characteristics of every project are summarized

in Table 6-4.

Univ
ers

ity
 of

 M
ala

ya

243

Table 6-4: Characteristics of projects in Company D

Project

Parameters
D1 D2 D3 D4 D5 D6

Development
Environment

Client-
Server

Client-
Server

Client-
Server

Client-
Server Web-based Web-based

Development
Methodology RUP Agile Agile Agile Agile Agile

Input/Output
Number High High Low Medium High Medium

Market Type Limited
Customer

Unlimited
Customer

Limited
Customer

Limited
Customer

Unlimited
Customer Bespoke

Prioritization
Input Number High Low Low Low Low Low

Project Size Medium Medium Small Small Medium Small

Release Plan
Parameter
Number

High Medium Low Low Medium Low

Requirement
Granularity Fine Medium Medium Coarse Medium Medium

Project

Parameters
D7 D8 D9 D10 D11

Development
Environment Client-Server Web-based Client-Server Web-based Client-Server

Development
Methodology Agile Agile RUP Agile RUP

Input/Output
Number High Low High Medium High

Market Type Limited
Customer Bespoke Limited

Customer
Limited

Customer
Limited

Customer

Prioritization Input
Number Low Low High Low High

Project Size Medium Small Medium Small Large

Release Plan
Parameter Number Medium Low High Low High

Requirement
Granularity Medium Fine Fine Medium Fine

Univ
ers

ity
 of

 M
ala

ya

244

6.5.5. Company E description

This company works in the field of electronics and manufactures electronic and

telecommunication parts. It is the biggest electronics development company in Iran

which develops safety-critical and embedded system software based on required

capacities of electronics and telecommunication industries. More than 25 years of

experience in electronics and 7 years in safety-critical and embedded systems have led

the company to work only for a certain group of customers. It is the only company in

Iran which has invested a considerable amount of capital in this field. All software and

electronic developments of the company are customized and based upon customers’

needs. As a result, software developing teams in safety-critical and embedded systems

are experts and have special consultants for every certain customized system.

Now, the company is working on developing Railway Interlocking software which

includes a series of different plans and software. Two main software teams are

committed to perform this project and every team consists of four side teams. Each side

team accomplishes all software engineering tasks from requirements to testing and

delivery based on documented procedures. All software developing teams in this

company use IBM Rational Door and IBM Rational Focal Point tools for requirements

management and release planning, respectively. These tools are linked together and

enable release re-planning (if necessary). Every new requirement is recorded, confirmed

by team manager, and planned for various releases (if any).

In this company, two projects are accomplished using pattern-based release planning

methodology for at least one release. Characteristics of every project are summarized in

Table 6-5.

Univ
ers

ity
 of

 M
ala

ya

245

Table 6-5: Characteristics of projects in Company E

Project

Parameters
E1 E2

Development Environment Desktop Desktop

Development Methodology Waterfall Waterfall

Input/output Number High High

Market Type Bespoke Bespoke

Prioritization Input Number High High

Project Size Large Medium

Release Plan Parameter Number High High

Requirement Granularity Fine Fine

6.6. Effective parameters in case studies

Data pertaining to every effective parameter on pattern determination in 31 projects

implemented using pattern-based release planning indicate parameters’ distribution and

authenticate the results. Figure 6-2 shows development environments for the studied

projects. Widely-used environments are Web-based and Client-Server ones and only

two projects are based upon Desktop environment. Although Web-based approach is the

prominent one in most modern generation systems, it must be noted that many

organizations prefer Client-Server-based software for organizational reasons, and

consequently software developing companies follow this demand.

Univ
ers

ity
 of

 M
ala

ya

246

Figure 6-2: Development environment in studied projects

Figure 6-3 shows development methodologies used in the studied projects. As expected,

most projects and software developing companies employ "Agile" methodology and this

influences their release planning. Two "Safety Critical" projects use "Waterfall"

methodology because of their nature. Since RAD method lacks documentations by

nature, it is not employed in software developing companies.

Figure 6-3: Development methodology in studied projects

Figure 6-4 shows the input and output amount of the studied projects. The input and

output amount is a parameter affecting resource estimation. More than 80% of the

studied projects have medium or high input and output volume. This indicates that a

team is mostly faced with a heavy workload in project implementation and the release

plan needs to establish a proper balance between different releases.

Web-based
45.2%

Client-Server
48.4%

Desktop
6.5%

Waterfall
6.5%

Agile
83.9%

RUP
9.7%

RAD
0.0%

Univ
ers

ity
 of

 M
ala

ya

247

Figure 6-4: Input and output volume in studied projects

Figure 6-5 presents market types of the studied projects. Approximately, 45% of the

projects have limited customers and this means that the plan must predict releases in a

way that satisfies more customers and considers more key functions. This can be

achieved by those release planning methods which make decisions through receiving

more input parameters.

Figure 6-5: Market type in studied projects

Figure 6-6 shows the number of requirements prioritization inputs in the studied

projects. Most software companies increasingly tend to exclude customers from making

decisions on a release. This is more evident in projects using "Agile" methodology.

Hence, companies are more and more interested in considering fewer inputs for

requirements prioritization. One of the main reasons is the speed of such projects.

Low
19.4%

Medium
25.8%

High
54.8%

Bespoke
22.6%

Limited
Customer

45.2%

Unlimited
Customer

32.3%

Univ
ers

ity
 of

 M
ala

ya

248

Moreover, it must be noted that teams tend to implement preplanned requirements first,

so they try to exclude customers, especially from pre-releases, to be able to follow the

plans. This is usually achieved by reducing input number and users’ preferences;

customers solely comment.

Figure 6-6: Requirements prioritization input number in studied projects

Figure 6-7 displays the size of different teams in the studied projects. More than 93% of

the teams are medium or small-sized and this is directly related to the employed

methodology. It must be noted that release planning tasks are usually considered as a

side, not main, job by small teams and the project manager is in charge. Enthusiasm of

small teams to speed up and achieve the final product reduces their tendency to plan a

release. This is the main reason, as mentioned earlier, for their tendency to perform

preplanned tasks.

Figure 6-7: Team size in studied projects

Low
83.9%

Medium
0.0% High

16.1%

Very Small
0.0%

Small
48.4%

Medium
45.2% Large

6.5%

Univ
ers

ity
 of

 M
ala

ya

249

Figure 6-8 shows the number of release planning parameters in the studied projects.

Most programming teams with varying team seizes usually consider at least one

parameter for the release plan and develop at least two plans to be able to compare

them. Although teams consider release planning as a side task, they do not risk

producing only one plan. They try, mostly, to develop various plans, compare them and

select the best suited one. This indicates that Ad-hoc method is not used in any

company or project. Besides, an enhancement in project and release planning

importance follows an increase in the number of parameters.

Figure 6-8: Number of release planning parameters in studied projects

Figure 6-9 shows requirements level in the studied projects. This is the typical and

dominant requirements level. This means that requirements in a project may be in

different levels, but the considered level is determined by averaging all requirement

levels based on the experience of project managers and requirement authorities. In most

projects, requirements break to a lower level (medium level of requirements).

Requirements level has a direct influence on the requirement prioritization method. The

higher is the requirements level, the more difficult to use accurate methods to prioritize

requirements.

Zero
0.0%

Low
45.2%

Medium
38.7%

High
16.1%

Univ
ers

ity
 of

 M
ala

ya

250

Figure 6-9: Requirements level in studied projects

Figure 6-10 presents the number of requirements in the studied projects. Considering

the diversity of these projects, a huge variety of requirements are employed. Majority of

requirements have small numbers and this is due to the project size and making use of

"Agile" methodology. A type of logical relationship seems to be present between the

three parameters but it is not always true and may be neglected in some projects. Of

course, it must be noted that the requirements level is also effective on this relationship.

Figure 6-10: Requirements number in studied projects

Figure 6-11displays team experience in the studied projects. Inexperienced teams are

not employed in any project. Although some inexperienced or half-experienced

Fine
32.3%

Medium
54.8%

Coarse
12.9%

Low
45.2%

Medium
12.9%

High
41.9%

Univ
ers

ity
 of

 M
ala

ya

251

individuals are recruited but the dominant average of teams is considered here. Pattern-

based release planning is useful for inexperienced teams but it has been tried in case

studies to use experienced or at least half-experienced teams. No inexperienced teams

were observed in the studied companies.

Figure 6-11: Team experience in studied projects

Figure 6-12 illustrates team size or the number of individuals voting on requirements

prioritization. In most companies and projects, only one individual is involved in

requirements prioritization and this is also true for release planning. Although this is

directly related to project size, it is not always the case since employing efficient tools

in large projects limits the number of individuals voting on release planning. In large

projects with high sensitivity of time and costs, team size increases and more

individuals vote for release planning.

Experienced
58.1%

Half Experienced
41.9%

Unexperienced
0.0%

Univ
ers

ity
 of

 M
ala

ya

252

Figure 6-12: Team size in studied projects

6.7. Case studies patterns usage

In the studied projects, a variety of patterns are employed to perform release planning

and accomplish its different steps. Since, in case studies, only one pattern is presented

for every project with any number of releases, all various releases of a project are

considered only once. It must be noted that different patterns may be used for planning

a release in each case, but in the case studies only one pattern is employed in each

project. To simplify, a certain code is given to each pattern which are specified in

Table 6-6.

Table 6-6: Pattern codes

Step Pattern name Pattern code

Requirements
prioritization

Pattern of requirements prioritization for large projects PR1

Pattern of requirements prioritization with large (unlimited)
number of customers PR2

Pattern of requirements prioritization for small projects PR3

Pattern of requirement prioritization with medium level of
requirements PR4

Resource estimation

Pattern of resource estimation in large projects PE1

Pattern of resource estimation for projects with unlimited
customers PE2

Small
67.7%

Medium
29.0%

Large
3.2%

Univ
ers

ity
 of

 M
ala

ya

253

Step Pattern name Pattern code

Pattern of resource estimation in small projects PE3

Pre-release planning

Pattern of release planning in large projects PP1

Pattern of pre-release planning with large number of customers PP2

Pattern of pre-release planning in small projects PP3

Release planning

Pattern of release planning in large projects P1

Pattern of release planning with large number of customers P2

Pattern of release planning in small projects P3

To what percent every pattern is used is displayed in Figure 6-13. Since every step's

pattern is selected by choosing the release planning pattern, only the chart pertaining to

release planning patterns is presented here. The most used pattern is P3, indicating that

most studied projects had the characteristics required for making use of this pattern. The

least used pattern, on the other hand, is P1. P2 is also one of the common patterns, since

most big or medium-sized companies have limited- or unlimited-customer software and

their customers are more than a certain limit but they use small and agile teams.

Figure 6-13: Usage of different patterns in the studied projects

P1
16.1%

P2
38.7%

P3
45.2%

Univ
ers

ity
 of

 M
ala

ya

254

6.8. Experts Demography

Validating the method by questionnaires performed after the implementing the case

studies and 13 project managers or release planners are selected to fill the 3

questionnaires about pattern, patterns of each phase and pattern-based release planning

(Appendix B). All of the selected experts have performed more than 4 successful

projects in last 5 years of their software development experiences and have minimum 11

years experiences in software development. Table 6-7 presents the expert's demographic

data.

Table 6-7: Expert demographic data

Role Age Experience Number of
Projects

Project Size*

Small Medium Large

1 Project Manager 44 17 15 5 8 2

2 Project Manager 43 14 8 2 5 1

3 Project Manager 47 14 7 0 5 2

4 Release Planner 38 12 13 10 3 0

5 Release Planner 35 11 15 9 6 0

6 Project Manager 39 13 9 3 5 1

7 Project Manager 39 11 8 5 3 0

8 Project Manager 43 18 7 0 2 5

9 Project Manager 36 11 10 8 2 0

10 Project Manager 40 15 17 13 4 0

11 Project Manager 39 14 9 4 5 0

12 Release Planner 34 11 7 3 3 1

13 Project Manager 39 12 14 11 3 0
* Small: 3 to 7; Medium: 8 to 15; Large: More than 15 individuals

Univ
ers

ity
 of

 M
ala

ya

255

6.9. Summary

Five companies with 31 projects are selected for case studies. The case studies are

selected based on the number of projects, number of teams, and team size. All

companies have at least 7 projects and small, medium and large-sized software

developing teams, except for one which has two projects and two separate teams only.

Also 13 experts are selected to fill the 3 questionnaires.

Univ
ers

ity
 of

 M
ala

ya

256

CHAPTER 7: EVALUATION RESULTS

7.1. Introduction

In the studied projects, a variety of patterns are employed to perform release planning.

The results for using patterns and pattern-based methodology for release planning in the

empirical studies for each step of the process model are calculated separately. In this

section, the results of the empirical case studies and the questionnaires evaluation are

presented. The results contain the evaluation for each pattern separately, the patterns in

the specified release planning process step and the overall proposed methodology.

7.2. Requirements prioritization pattern evaluation

Figure 7-1 shows the result of requirements prioritization patterns usage in the case

studies. The patterns failed only in two projects and were employed successfully in the

others. This indicates that patterns proposed by PRP suited the teams and they could use

them in practice. Therefore, parameters employed to determine the requirements

prioritization patterns were also efficient.

Figure 7-1: Results of using requirements prioritization patterns in the projects

Figure 7-2 shows the experts review results for the requirements prioritization patterns.

As the figure shows, 29.6% of release planners noted that reducing time of activity is

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 1 0
3

26

Univ
ers

ity
 of

 M
ala

ya

257

the most important strength of the patterns. Also, 28.9% of release planners believed

that the patterns can improve precision of the result. Other strengths specified by the

release planners are "reduce/remove ambiguity", "reduce dependability to a specific

person" and "create adoptability for various projects". The "un-usability", "other

problems" and "inefficiency" are the most noted problems of the prioritization pattern,

respectively with 2.5%, 2.5% and 1.4%. The "other problems" contains "ambiguity in

choosing the exact technique" and "inadequacy of requirement prioritization technique".

On the whole, 92.4% of release planners believed that the patterns have some strengths

or added values and 7.6% believed that some shortcomings and problems exist and the

patterns cannot be used practically.

Figure 7-2: Experts' reviews for the requirements prioritization patterns

Figure 7-3 illustrates results of employing PR1 in different studied projects. The pattern

was used in five projects and scored best by project managers or release planners. This

demonstrates that the pattern can perfectly suit requirements prioritization in large

projects.

Figure 7-4 shows the experts review results for the PR1 pattern. As the figure shows,

31.1% of release planners that noted that reducing time of activity is the biggest strength

of PR1 pattern. Also, 30.0% of release planners believed that the PR1 can improve

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

1.4% 1.1%
2.5% 2.5%

29.6%

25.9%

28.9%

8.0%

Univ
ers

ity
 of

 M
ala

ya

258

precision of the result. The "other problems" is the most noted problem with the pattern

that contains "Pattern is not truly adequate for large projects" and "The proposed

technique of the pattern is not clearly defined". On the whole, 94.4% of release planners

believed that the pattern has some strengths or added values and 5.6% believed that

some shortcomings and problems exist and the pattern cannot be used practically.

Figure 7-3: Results of using PR1 in the projects

Figure 7-4: Experts' reviews for PR1 pattern

Figure 7-5 shows the results of using PR2 in different studied projects. It was employed

in 12 projects, in one of which it was voted to be unsuitable because of lack of

preference in scored requirements by stakeholders (in project manager's viewpoint).

Hence, it was not used in that project.

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

0 0 0 1
4

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

1.1% 1.1% 1.1% 2.2%

31.1%

25.6%

30.0%

7.8%

Univ
ers

ity
 of

 M
ala

ya

259

Figure 7-5: Results of using PR2 in the projects

Figure 7-6 shows the experts review results for the PR2 pattern. As the figure shows,

27.7% of release planners noted that "reduce time of activity" is the biggest strength of

the pattern. Also, 26.6% of release planners believed that the pattern can propose better

methods. The "un-usability" is the most noted problem of the PR2 pattern by 4.3%. In

fact, 89.4% of release planners believed that the pattern has some strengths or added

values and 10.6% believed that some shortcomings and problems exist and the pattern

cannot be used practically.

Figure 7-6: Experts' reviews for PR2 pattern

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 0 0 1

10

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

2.1% 1.1%

4.3% 3.2%

27.7% 26.6% 25.5%

9.6%
Univ

ers
ity

 of
 M

ala
ya

260

Figure 7-7 displays the results of using PR3 in different studied projects. The pattern

was employed in 14 projects, in one of which it was identified as unsuitable because the

project manager considered the outputs of "Numerical Assignment" method as

improper. Hence, another pattern was used to prioritize requirements. A manager can

consider an output as improper for many reasons, some of which are: inconsistency with

teams’ working procedures, longer time than expected, high costs, etc.

Figure 7-7: Results of using PR3 in the projects

Figure 7-8 shows the experts review results for the PR3 pattern. As the figure shows,

31.1% of release planners noted that "improve precision of result" is the biggest strength

of the pattern. Also, 30.0% of release planners believed that the pattern can reduce time

of activity. The "un-usability" is the most noted problem of the PR3 pattern by 2.2%.

On the whole, 93.3% of release planners believed that the pattern has some strengths or

added values and 6.7% believed that some shortcomings and problems exist and the

pattern cannot be used practically.

0

5

10

15

20

25

30

Strongly Disagree Disagree Undecided Agree Strongly Agree

0
1

0 1

12

Univ
ers

ity
 of

 M
ala

ya

261

Figure 7-8: Experts' reviews for PR3 pattern

7.3. Resource estimation pattern evaluation

Figure 7-9 illustrates the results of employing resource estimation patterns. The

patterns, as mentioned earlier, do not specify the method precisely and do not receive

full agreement scores, similar to requirements prioritization patterns. Although teams

are tried to be assisted in specifying the exact resource estimation method, most teams

wish the pattern bears the method's name. Resource estimation patterns failed only in

two projects, gained moderate votes in 5 projects and were successful in the rest. In

other words, the patterns suited 24 projects and this indicates fitness of the proposed

estimation pattern to the team and demonstrates that teams could use the patterns in

practice. Therefore, parameters used to estimate resources have been efficient.

Figure 7-10 shows the experts review results for the resource estimation patterns. As the

figure shows, 24.6% of release planners noted that "reduce time of activity" is the

biggest strength of the patterns. 21.5% of release planners believed that the patterns can

develop better result, while 12.3% of them believed that the patterns have precision

problem. The precision problem means that the method proposed by the pattern does

not have sufficient details and cannot be directly used in the process model step. Often,

these methods are a class of methods from which the release planner should select the

best one. The "other problems" is the next problem that contains "ambiguity in choosing

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

1.1% 1.1%
2.2% 2.2%

30.0%

25.6%

31.1%

6.7%

Univ
ers

ity
 of

 M
ala

ya

262

the exact method" and "estimation technique is not specified exactly". In fact, 71.8% of

release planners believed that the patterns have some strengths or added values and

28.2% believed that some shortcomings and problems exist and the patterns cannot be

used practically.

Figure 7-9: Results of using resource estimation patterns in the projects

Figure 7-10: Experts' reviews for the resource estimation patterns

Figure 7-11shows the results of employing PE1 in different studied projects. The pattern

was used in five projects, in three of which it was given a good score by team members

and in the two remaining one it gained medium scores. This shows that the pattern is

perfectly suitable for resource estimation in large projects.

0

2

4

6

8

10

12

14

16

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

2

0

5

9

15

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

4.6%

12.3%

5.1% 6.1%

24.6%

21.5%
20.0%

5.6%

Univ
ers

ity
 of

 M
ala

ya

263

Figure 7-11: Results of employing PE1 in the projects

Figure 7-12 shows the experts review results for the PE1 pattern. As the figure shows,

25.8% of release planners noted that "reduce time of activity" is the biggest strength of

the pattern, while 10.6% of them believed that the pattern has precision problem. The

"other problems" is the next problem that contains "ambiguity in choosing the exact

method" and "estimation technique is not specified exactly". In fact, 75.8% of release

planners believed that the pattern has some strengths or added values and 24.2%

believed that some shortcomings and problems exist and the pattern cannot be used

practically.

Figure 7-12: Experts' reviews for PE1 pattern

0

5

10

15

20

25

30

Strongly Disagree Disagree Undecided Agree Strongly Agree

0 0
2

0

3

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

4.5%

10.6%

3.0%

6.1%

25.8%

21.2%
22.7%

6.1%

Univ
ers

ity
 of

 M
ala

ya

264

Figure 7-13 illustrates results of employing PE2 in different studied projects. The

pattern was employed in 12 projects, in 11 of which it was given good scores by team

members and was considered unsuitable in one project. This indicates that the pattern is

totally suitable for resource estimation in unlimited-customer projects. The project

manager considered the pattern unsuitable because of the inconsistency in results of

resource estimation by "experts' judgment" method. Thus, another method was used to

estimate resources.

Figure 7-13: Results of employing PE2 in the projects

Figure 7-14 shows the experts review results for the PE2 pattern. As the figure shows,

23.1% of release planners noted that "reduce time of activity" is the biggest strength of

the pattern, while 13.8% of them believed that the pattern has precision problem. The

"other problems" is the next problem that contains "ambiguity in choosing the exact

method" and "estimation technique is not specified exactly". On the whole, 66.2% of

release planners believed that the pattern has some strengths or added values and 33.8%

believed that some shortcomings and problems exist and the pattern cannot be used

practically.

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 0
2

4 5

Univ
ers

ity
 of

 M
ala

ya

265

Figure 7-14: Experts' reviews for PE2 pattern

Figure 7-15 shows the results of employing PE3 in different studied projects. The

pattern was employed in 14 projects, in 13 of which it was given good scores by team

members. This indicates that the pattern is totally suitable for resource estimation in

small projects. In the single project in which the pattern was considered unsuitable, the

project manager used an identical previous estimation and hence the pattern's proposed

method was not employed.

Figure 7-15: Results of employing PE3 in the projects

Figure 7-16 shows the experts review results for the PE3 pattern. As the figure shows,

25.0% of release planners noted that "reduce time of activity" is the biggest strength of

the pattern, while 12.5% of them believed that the pattern has precision problem. Also,

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

3.1%

13.8%

7.7%
9.2%

23.1%

20.0%
18.5%

4.6%

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 0 1

5
7Univ

ers
ity

 of
 M

ala
ya

266

23.4% of release planners believed that the pattern proposes better methods. On the

whole, 73.4% of release planners believed that the pattern has some strengths or added

values and 26.6% believed that some shortcomings and problems exist and the pattern

cannot be used practically.

Figure 7-16: Experts' reviews for PE3 pattern

7.4. Pre-release planning pattern evaluation

Figure 7-17 illustrates the results of employing pre-release planning patterns. The

patterns, as mentioned earlier, do not specify the method precisely and because of that

they do not receive full agreement scores, similar to requirements prioritization patterns.

Teams are tried to be assisted in specifying the exact pre-release planning method and

finding the most appropriate tools. Pre-release planning patterns failed only in 2

projects, gained moderate votes in 2 other projects and were successful in the rest. In

other words, the patterns suited 27 projects and this indicates fitness of PRP proposed

pre-release planning pattern to the team. Therefore, parameters used to plan pre-releases

have been efficient.

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

6.3%

12.5%

4.7%
3.1%

25.0%
23.4%

18.8%

6.3%

Univ
ers

ity
 of

 M
ala

ya

267

Figure 7-17: Results of using pre-release planning patterns in the projects

Figure 7-18 shows the experts review results for the pre-release planning patterns. As

the figure shows, 21.4% of release planners noted that "improve precision result" is the

biggest strength of the patterns, while 11.1% of them did not believe so. The precision

problem means the method proposed by the pattern does not have sufficient details and

cannot be directly used in the process model step. Often, these methods are a class of

methods from which the release planner should select the best one. Also, 19.4% of

release planners believed that the patterns reduce time of activity. On the whole, 65.6%

of release planners believed that the patterns have some strengths or added values and

34.5% believed that some shortcomings and problems exist and the patterns cannot be

used practically.

Figure 7-18: Experts' reviews for the pre-release planning patterns

0

2

4

6

8

10

12

14

16

18

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

2
0

2

10

17

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

6.6%

11.1%
9.8%

6.9%

19.4% 18.5%

21.4%

6.2%

Univ
ers

ity
 of

 M
ala

ya

268

Figure 7-19 shows the results of employing PP1 in different studied projects. The

pattern was employed in five projects and was given proper scores by team members in

all of them. This indicates appropriateness of the pattern for pre-release planning in

large projects.

Figure 7-19: Results of employing PP1 in the projects

Figure 7-20 shows the experts review results for the PP1 pattern. As the figure shows,

23.9% of release planners noted that "improve precision result" is the biggest strength of

the pattern, while 9.0% of them believed that the pattern is unusable. Also, 22.4% of

release planners believed that the pattern can reduce time of planning activity. On the

whole, 73.1% of release planners believed that the pattern has some strengths or added

values and 26.9% believed that some shortcomings and problems exist and the pattern

cannot be used practically.

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly
Agree

0 0 0 1
4

Univ
ers

ity
 of

 M
ala

ya

269

Figure 7-20: Experts' reviews for PP1 pattern

Figure 7-21 illustrates the results of employing PP2 in various studied projects. The

pattern was employed in 12 projects, in 11 of which it gained good scores from team

members and was considered unsuitable in one project only. This indicates that the

pattern is totally suitable for pre-release planning in unlimited-customer projects.

Method complexity was mentioned as the reason for inappropriateness of the pattern in

the one project.

Figure 7-21: Results of employing PP2 in the projects

Figure 7-22 shows the experts review results for the PP2 pattern. As the figure shows,

24.6% of release planners noted that "improve precision result" is the biggest strength of

the pattern, while 10.1% of them did not believe so. The precision problem means the

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

6.0%
7.5%

9.0%

4.5%

22.4%

19.4%

23.9%

7.5%

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 0 0

4
7Univ

ers
ity

 of
 M

ala
ya

270

method proposed by the pattern does not have sufficient details and cannot be directly

used in the process model step. Often, these methods are a class of methods from which

the release planner should select the best one. Also, 20.3% of release planners believed

that the pattern proposes better methods than before. On the whole, 68.1% of release

planners believed that the pattern has some strengths or added values and 31.9%

believed that some shortcomings and problems exist and the pattern cannot be used

practically.

Figure 7-22: Experts' reviews for PP2 pattern

Figure 7-23 displays the results of employing PP3 in various studied projects. The

pattern was employed in 14 projects, in 11 of which it was given good scores by team

members and was considered unsuitable in one project only. This indicates that the

pattern is totally suitable for pre-release planning in small projects. The project

managers or release planners of the project in which the pattern was considered

unsuitable mentioned the need to generate more plans for decision-making as the main

reason for inappropriateness of the pattern (regarding nature of the project).

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

7.2%

10.1%
8.7%

5.8%

17.4%

20.3%

24.6%

5.8%

Univ
ers

ity
 of

 M
ala

ya

271

Figure 7-23: Results of employing PP3 in the projects

Figure 7-24 shows the experts review results for the PP3 pattern. As the figure shows,

18.4% of release planners noted that "reduce time of activity" is the biggest strength of

the pattern, while 15.8% of them believed that the pattern has precision problem. On the

whole, 55.3% of release planners believed that the pattern has some strengths or added

values and 44.7% believed that some shortcomings and problems exist and the pattern

cannot be used practically.

Figure 7-24: Experts' reviews for PP3 pattern

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 0
2

5 6

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

6.6%

15.8%

11.8%
10.5%

18.4%
15.8% 15.8%

5.3%
Univ

ers
ity

 of
 M

ala
ya

272

7.5. Release planning pattern evaluation

Figure 7-25 shows the results of employing release planning patterns in the studied

projects. The patterns, as mentioned earlier, specify every stage of release planning.

Releases planning patterns failed in two projects and were successful in the rest. In

other words, the patterns suited 29 projects and this indicates fitness of PRP proposed

release planning patterns to the teams. Therefore, parameters used to plan releases have

been efficient. The reason for the failure of the pattern in those two projects was the

proposed sub-patterns (patterns of release planning process model steps) discussed in

previous sections.

Figure 7-25: Results of using release planning patterns in the projects

Figure 7-26 shows the experts review results for the release planning patterns. As the

figure shows, 25.0% of release planners noted that "propose better methods" is the

biggest strength of the patterns, while 5.5% of release planners believed that the patterns

are inefficient and unusable. Also, 24.9% of release planners believed that the patterns

reduce time of activity. On the whole, 78.7% of release planners believed that the

patterns have some strengths or added values and 21.3% believed that some

shortcomings and problems exist and the patterns cannot be used practically.

0

5

10

15

20

25

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 1 0

6

23

Univ
ers

ity
 of

 M
ala

ya

273

Figure 7-26: Experts' reviews for the release planning patterns

Figure 7-27 displays the results of employing P1 in different studied projects. The

pattern was employed in five projects and gained proper scores from team members in

all of them. This indicates the appropriateness of the pattern for release planning in

large projects.

Figure 7-27: Results of using P1 in the projects

Figure 7-28 shows the experts review results for P1pattern. As the figure shows, 25.0%

of release planners noted that "propose better method" and the "reduce time of activity"

are the biggest strengths of the pattern, while 6.6% of them believed that the pattern

unusable. On the whole, 78.9% of release planners believed that the pattern has some

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

5.5% 4.8% 5.5% 5.5%

24.9% 25.0%
22.4%

6.4%

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

0 0 0 1

4

Univ
ers

ity
 of

 M
ala

ya

274

strengths or added values and 21.1% believed that some shortcomings and problems

exist and the pattern cannot be used practically.

Figure 7-28: Experts' reviews for P1 pattern

Figure 7-29 shows the results of employing P2 in different studied projects. The pattern

was employed in 12 projects, in 11 of which it was given good scores by team members

and was considered unsuitable in one project. This indicates that the pattern is totally

suitable for release planning in unlimited-customer projects. Problems with the

proposed sub-patterns were mentioned as the reasons why the pattern was called

inappropriate in that one project.

Figure 7-29: Results of using P2 in the projects

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

5.3% 5.3%
6.6%

3.9%

25.0% 25.0%
22.4%

6.6%

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

1 0 0
2

9

Univ
ers

ity
 of

 M
ala

ya

275

Figure 7-30 shows the experts review results for P2 pattern. As the figure shows, 25.0%

of release planners noted that "reduce time of activity" is the biggest strength of the

pattern, while 7.1% of them believed that the pattern has inefficiency problem. The

"other problems" is the next problem with P2 pattern that contains "ambiguity in

choosing the exact method" and "techniques are not specified exactly". On the whole,

76.2% of release planners believed that the pattern has some strengths or added values

and 23.8% believed that some shortcomings and problems exist and the pattern cannot

be used practically.

Figure 7-30: Experts' reviews for P2 pattern

Figure 7-31 illustrates the results of employing P3 in different studied projects. The

pattern was employed in 14 projects, in 13 of which it was given good scores by team

members and was considered unsuitable in one project. This indicates that the pattern is

totally suitable for release planning in small projects. Problems with proposed sub-

patterns were mentioned as the reasons why the pattern was thought inappropriate in

that one project.

Figure 7-32 shows the experts review results for P3 pattern. As the figure shows, 27.4%

of release planners noted that "propose better method" is the biggest strength of the

pattern, while 5.5% of them believed that the pattern is not precise. They also

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

7.1%

3.6%
6.0%

7.1%

25.0%
22.6%

21.4%

7.1%

Univ
ers

ity
 of

 M
ala

ya

276

mentioned "other problems" that contains "ambiguity in choosing the exact method" and

"techniques are not specified exactly". On the whole, 80.8% of release planners

believed that the pattern has some strengths or added values and 19.2% believed that

some shortcomings and problems exist and the pattern cannot be used practically.

Figure 7-31: Results of employing P3 in the projects

Figure 7-32: Experts' reviews for P3 pattern

0

5

10

15

20

25

30

Strongly
Disagree

Disagree Undecided Agree Strongly Agree

0
1

0
3

10

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

4.1%
5.5%

4.1%
5.5%

24.7%
27.4%

23.3%

5.5%Univ
ers

ity
 of

 M
ala

ya

277

7.6. Overall evaluation results

Overall result of using the pattern in the studied projects is presented in Figure 7-33. As

the figure shows, 65.3% of release planners/project managers who used the pattern in

their projects empirically strongly agreed to use the pattern in their projects, and in more

than 87% of cases the pattern gained acceptance from release planners/project

managers.

Figure 7-34 shows the experts review results for overall patterns of release planning. As

the figure shows, 24.6% of release planners believed that the patterns can "reduce time

of activity", while 7.3% of them believed that the patterns are not precise. In fact, 77.1%

of release planners believed that the patterns have some strengths or added values and

22.9% believed that some shortcomings and problems exist and the patterns cannot be

used practically.

Figure 7-33: Results of employing patterns in the projects

Figure 7-35 shows the experts review results for pattern-based release planning

methodology. As the figure shows, 29.8% of release planners believed that "Improve

precision of result" is the most important gain of the methodology, while 3.2% of them

believed that the methodology has precision problem. Improving decision making and

reducing time of release planning activity are the next major benefits of the

methodology specified by the release planners of case study projects. Generally, 90.4%

Strongly Disagree
4.8%

Disagree
1.6%

Undecided
5.6%

Agree
22.6%

Strongly Agree
65.3%

Univ
ers

ity
 of

 M
ala

ya

278

of release planners believed that the methodology has some gains or added values and

9.6% believed that some shortcomings and problems exist and the methodology cannot

be used practically.

Figure 7-34: Experts' reviews for the patterns

Figure 7-35: Experts' reviews for the methodology

Inefficient Imprecision Unusable Other problems Reduce time of
activity

Propose better
method

Improve precision
of result

Other gains

4.5%
7.3%

5.8% 5.3%

24.6%
22.7% 23.2%

6.6%

Inefficient Imprecision Unusable Other problem Reduce time of RP
activity

Improve decision
making

Improve precision
of result

Other gains

2.1%
3.2%

2.1% 2.1%

26.6%
27.7%

29.8%

6.4%

Univ
ers

ity
 of

 M
ala

ya

279

7.7. Summary of evolution results

In the studied projects, a variety of patterns are employed to perform release planning.

The results of the empirical case studies and the questionnaires evaluation are presented

in this section. Based on empirical case studies performed, the pattern-based release

planning methodology has been recognized as an efficient methodology to achieve

different tasks of release planning process model. Making use of this methodology in

most cases leads to improvement in the release planning and the resulted release plans.

Moreover, the methodology can be applied in different projects and can provide teams

with project-suited results since it makes use of parameters based upon projects and

development organization specifications.

Univ
ers

ity
 of

 M
ala

ya

280

CHAPTER 8: RESULTS AND FUTURE WORK

8.1. Achievement objectives

As it was observed before, pattern-base methodology in most cases has attempted to

improve the new release with maximum optimization. This is exactly due to the nature

of this methodology that suggests solutions based on the project characteristics. The

solutions are often exclusive to a particular project and may not be the optimum in a

different project. In this method, all the parameters and characteristics of the project,

which may be ignored in other methodologies, are taken into consideration and the

solution is proposed based on them.

If this does not apply to some cases, it is most probably because all the parameters of a

project have not been available or released at all.

On the whole, using this methodology, all the parameters even those vague and unclear

or sometimes accidental ones that are understood and examined by project members

only will be identified and implemented in the new release. In current methodologies,

most of these parameters are not defined and are usually disregarded because of the

inflexibility of the methods.

8.2. Research findings and contribution

This thesis verifies and validates the feasibility of patterns in release planning, and

proposes a methodology based on the pattern. The contributions of this thesis are:

• Developing a process model for release planning contains four steps that cover

common tasks in current applied release planning methods. These steps focus on

requirement prioritization, resource estimation, release pre-planning and trade-

off analysis that are performed in the same order. The process model of release

Univ
ers

ity
 of

 M
ala

ya

281

planning helps to categorize and break down release planning problem to

smaller activities that have known solutions.

• Customizing every step of the process model using parameters and their

instances that are extracted from various researches. This customization helps

adjust the release planning method to various projects. Each step of general

release planning process can be adjusted by the project specifications. It makes

the method highly adoptable to fulfil project’s needs. Also, mapping project

specifications to the methods that can be used, which is one of the achievements

in this research, helps project managers to choose the best method of release

planning based on the project specifications.

• Developing the concept of release planning pattern to customize the process

model in order to facilitate achieving the desired method in every step. Release

planning pattern defined and described in this research can enhance

customization and speed the release planning process by using previous

experiences in designing patterns. This concept is extended to each step of

release planning and the patterns for release planning steps are also developed.

Pattern-based release planning methodology is generated by planning patterns based on

characteristics and parameters effective on every stage of the process model. Running

this methodology leads to a series of results and achievements which are described

below.

• Improvement in quality of release plans

Pattern-based release planning methodology enables making use of previous

successful experiences in release planning and enhances the quality of the developed

plans. Unlike other release planning methodologies which try to suggest a

comprehensive and inflexible strategy for planning, the methodology presented in

Univ
ers

ity
 of

 M
ala

ya

282

this research uses best of past experiences to propose a guideline to determine the

best suited method for different steps. Moreover, since selecting the best method to

accomplish release planning fits the considered project, the resulted plans will

consequently improve significantly.

• Reduction in time spent on release planning

Selecting methods in release planning and its various steps is a time consuming

process in most companies and, as a result, they tend to use simple methods or tools

which may even be improper for the company or the project. In fact, identifying

different parameters of the steps such as resource estimation or requirements

prioritization require time and expertise, but these resources are not always available

in projects (especially small ones). Pattern-based release planning methodology

provides (simply and rapidly) the release planner or project manager with successful

experiences of other projects considering a set of predetermined parameters and,

then, he or she can employ different parameters to determine methods that suit his or

her project better.

• Release planning relative to project characteristics

No doubt, one of the most important issues in release planning is to select a method

which best suits the project. Most release planning methodologies solely try to

present a planning method regardless of its fitness to the project. Besides, in such

methods the project manager or release planner has to spend much time or rely on

his/her experience to select a method relative to project characteristics. However, this

is usually challenged in different levels and the fitness is not ensured. But, pattern-

based release planning methodology uses a project's specific features and the best of

past experiences to present a method suiting the project. Thus, success rate of

projects accomplished through a certain pattern ensures feasibility of the proposed

method.

Univ
ers

ity
 of

 M
ala

ya

283

• Making use of best experience in release planning

Transferring successful experiences is a main challenge in software development and

release planning and this is inevitable considering the projects’ diversity. Though,

using pattern-based release planning and developing new release plans, it is possible

to transfer experiences and knowledge of successful projects. Furthermore, this is

also feasible about unsuccessful projects in developing anti-patterns. Therefore, an

increase in the number of release planning patterns is expected to lead to more

accomplishments in this field.

• Omission of decisions made without technical support

Release planning is considered as an important but challenging task by most

companies, especially small ones, since releases are of great significance to them and

selecting a wrong release results in waste of time and delays in projects, something

that small projects are highly vulnerable in. Consuming too much time for selection,

impractical requirements or capabilities which are highly dependent on a wide range

of other requirements make it important to choose a method that best suits the

project. Pattern-based release planning helps select a planning method that fully fits

the software developer company and is supported by past successful experiences. It

also aids the project manager or release planner in achieving a better understanding

of release planning and its different methods in the form of release planning patterns.

• Recording successful experiences in release planning

By introducing some patterns in this research, the pattern-based release planning

methodology makes it possible to present new patterns for planning. Indeed,

benefiting from its successful experiences every company can generate and use a set

of new patterns for release planning. In addition, the methodology enables

determining new parameters for each stage of release planning, and companies may

Univ
ers

ity
 of

 M
ala

ya

284

employ their experiences to develop the required set of effective parameters on every

stage and generate new patterns to record their experiences.

8.3. Research executive constraints

The main executive limitation of this research was the need to record successful

experiences of release planning. Most companies plan their releases using simple

methods and lack certain records of how the planning is performed. Therefore, no

executive history was available for a project and a wide range of case studies were

selected and performed to cover this deficiency in the present research. Moreover,

many companies are only interested in executive outcomes of release planning and

do not think much of selecting a correct method. This usually originates from

stresses of developing a new release (due to customers' demands and expectations).

In the case studies, it was observed that in some projects the manager abandoned the

proposed method because of the pressures and used another method. This is

inevitable.

8.4. Future works

Pattern-based release planning is presented for the first time in the field of release

planning, and developing new release planner patterns and anti-patterns can be

considered as one of the most important works of future. It is important that new

patterns and anti-patterns result from implementing a set of projects and be experienced

to a considerable extent. Besides, effective parameters on release planning steps can be

developed, especially in resource estimation and pre-release planning steps, to make

their patterns more precise and efficient.

Univ
ers

ity
 of

 M
ala

ya

285

REFERENCES

Aasem, M., Ramzan, M., & Jaffar, A. (2010, 14-16 June 2010). Analysis and
optimization of software requirements prioritization techniques. Paper presented
at the International Conference on Information and Emerging Technologies
(ICIET).

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data Structures and Algorithms (1
ed.): Addison-Wesley.

Akker, M. v. d., Brinkkemper, S., Diepen, G., & Versendaal, J. (2008). Software
product release planning through optimization and what-if analysis. Information
and Software Technology, 50(1-2), 101–111.

Al-Emran, A., Jadallah, A., Paikari, E., Pfahl, D., & Ruhe, G. (2010, 8-9 July 2010).
Application of Re-estimation in Re-planning of Software Product Releases.
Paper presented at the International Conference on New Modeling Concepts for
Today's Software Processes, Paderborn, Germany.

Al-Emran, A., Kapur, P., Pfahl, D., & Ruhe, G. (2010). Studying the impact of
uncertainty in operational release planning – An integrated method and its initial
evaluation. Information and Software Technology, 52(4), 446-461.

Al-Emran, A., Pfahl, D., & Ruhe, G. (2010, September 27 - October 1, 2010). Decision
Support for Product Release Planning based on Robustness Analysis. Paper
presented at the 18th IEEE International Requirements Engineering Conference
(RE), Sydney, Australia.

AlBourae, T. A. (2007). Re-planning of Software Product Releases. (Master Science
Master Thesis), University of Calgary, Canada.

AlBourae, T. A., Ruhe, G., & Moussavi, M. (2006, 12 September 2006). Lightweight
Replanning of Software Product Releases. Paper presented at the International
Workshop on Software Product Management (IWSPM'06), Minneapolis, MN,
USA.

Alexander, C., Ishikawa, S., & Sara Ishikawa, C. A. M. S. (1977). A Pattern Language:
Towns, Buildings, Construction: Oxford University Press.

Amandeep, A., Ruhe, G., & Stanford, M. (2004, 5-8 April 2004). Intelligent Support for
Software Release Planning. Paper presented at the 5th International Conference
on Product Focused Software Process Improvement (Profes), Kansai Science
City, Japan.

Univ
ers

ity
 of

 M
ala

ya

286

Anton, A. I. (2003). Successful software projects need requirements planning. Software,
IEEE, 20(3), 44, 46. doi: 10.1109/MS.2003.1196319

Bagnall, A. J., Rayward-Smith, V. J., & Whittley, I. M. (2001). The Next Release
Problem. Information and Software Technology, 43(14), 883-890.

Beck, K. (1999). Extreme Programming Explained: Embrace Change: Addison-Wesley
Professional.

Beck, K. (2001). Extreme Programming Explained (2 ed.): Addison-Wesley.

Beck, K., & W., C. (1987). Using Pattern Languages for Object-Oriented Programs:
Tektronix, Inc.

Berander, P., & Andrews, A. (2005). Requirements Prioritization. In A. Aurum & C.
Wohlin (Eds.), Engineering and Managing Software Requirements (pp. 69-94):
Springer Berlin Heidelberg.

Berander, P., Khan, K. A., & Lehtola, L. (2006). Towards a Research Framework on
Requirements Prioritization. Paper presented at the Sixth Conference on
Software Engineering Research and Practice in Sweden (SERPS'06), Umeå
University, Sweden.

Boehm, B. (1981). Software Engineering Economics: Prentice Hall.

Briand, L. C., & Wieczorek, I. (2002). Resource Estimation in Software Engineering. In
J. J. Marcinak (Ed.), Encyclopedia of Software Engineering. New York: John
Wiley & Sons.

Brown, W. J. (1998). AntiPatterns: refactoring software, architectures, and projects in
crisis: Wiley.

Carlshamre, P. (2002). Release Planning in Market-Driven Software Product
Development: Provoking an Understanding. Requirements Engineering, 7(3),
139-151.

Chatzipetrou, P., Angelis, L., Rovegard, P., & Wohlin, C. (2010, 1-3 Sept. 2010).
Prioritization of Issues and Requirements by Cumulative Voting: A
Compositional Data Analysis Framework. Paper presented at the 36th
EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA).

Univ
ers

ity
 of

 M
ala

ya

287

Chatzoglou, P. D. (1997). Factors affecting completion of the requirements capture
stage of projects with different characteristics. Information and Software
Technology, 39(9), 627-640. doi: 10.1016/S0950-5849(97)00020-7

Colares, F., Souza, J., Carmo, R., Padua, C., & Mateus, G. R. (2009, 5-9 October 2009).
A New Approach to the Software Release Planning. Paper presented at the XXIII
Brazilian Symposium on Software Engineering, Fortaleza-CE, Brazil.

Coplien, J. O. (1992). Advanced C++ programming styles and idioms: Addison-Wesley
Pub. Co.

Davis, A. M. (1993). Software requirements: Objects, functions, and states (2 Ed.):
Prentice Hall.

Denne, M., & Cleland-Huang, J. (2003). Software by Numbers: Low-Risk, High-Return
Development: Prentice Hall.

Denne, M., & Cleland-Huang, J. (2004). The incremental funding method: data-driven
software development. Software, IEEE, 21(3), 39-47. doi:
10.1109/MS.2004.1293071

Drapeau, M., & Oudi, S. (2007). Release Management: Where to Start? , 2013

Du, G. M., J. ; Ruhe, G. (2006, 12-14 June 2006). Ad hoc versus Systematic Planning of
Software Releases - A Three-Staged Experiment. Paper presented at the 7th
International Conference on Product Focused Software Process Improvement
(PROFES), Amsterdam, Netherlands.

Durillo, J. J., Zhang, Y., Alba, E., Harman, M., & Nebro, A. J. (2011). A study of the
bi-objective next release problem. Empirical Software Engineering, 16(1), 29-
60.

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology, 50(9–10), 833-859.
doi: 10.1016/j.infsof.2008.01.006

Dyba, T., Prikladnicki, R., Ronkko, K., Seaman, C., & Sillito, J. (2011). Qualitative
research in software engineering. Empirical Softw. Engg., 16(4), 425-429. doi:
10.1007/s10664-011-9163-y

Fayad, M. E., Laitinen, M., & Ward, R. P. (2000). Thinking objectively: software
engineering in the small. Commun. ACM, 43(3), 115-118. doi:
10.1145/330534.330555

Univ
ers

ity
 of

 M
ala

ya

288

Felderer, M., Beer, A., Ho, J., & Ruhe, G. (2014). Industrial evaluation of the impact of
quality-driven release planning. Paper presented at the Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, Torino, Italy.

Firesmith, D. (2004). Prioritizing requirements. Journal of Object Technology, 3(8), 35-
47.

Freitas, F. G., Coutinho, D. P., & Souza, J. T. (2011). Software Next Release Planning
Approach through Exact Optimization. International Journal of Computer
Applications, 22(8), 1-8.

Galorath, D. D., & Evans, M. W. (2006). Software sizing, estimation, and risk
management: when performance is measured performance improves (1 ed.):
Auerbach Publications.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software: Addison-Wesley.

Greer, D., & Ruhe, G. (2004). Software Release Planning: An Evolutionary and
Iterative Approach. Information and Software Technology, 46(4), 243-253.

Hall, T., Beecham, S., & Rainer, A. (2002). Requirements problems in twelve software
companies: an empirical analysis. Software, IEE Proceedings -, 149(5), 153-
160. doi: 10.1049/ip-sen:20020694

Hatton, S. (2007). Early prioritisation of goals. Paper presented at the Proceedings of
the 2007 conference on Advances in conceptual modeling: foundations and
applications, Auckland, New Zealand.

Hatton, S. (2008). Choosing the Right Prioritisation Method. Paper presented at the
Proceedings of the 19th Australian Conference on Software Engineering.

Herrmann, A., & Paech, B. (2008). Practical Challenges of Requirements Prioritization
Based on Risk Estimation: Result of Two Student Experiments. Germany:
Software Engineering Group, University of Heidelberg.

Ho-Won, J. (1998). Optimizing value and cost in requirements analysis. Software,
IEEE, 15(4), 74-78. doi: 10.1109/52.687950

Ho, J., & Ruhe, G. (2013, 20-20 May 2013). Releasing sooner or later: An optimization
approach and its case study evaluation. Paper presented at the Release
Engineering (RELENG), 2013 1st International Workshop on.

Univ
ers

ity
 of

 M
ala

ya

289

Ho, J., Shahnewaz, S., & Ruhe, G. (2014). A Prototype Tool Supporting When-to-
release Decisions in Iterative Development. Paper presented at the Proceedings
of the Second International Workshop on Release Engineering.

Hoek, A. V. D., Hall, R. S., Heimbigner, D., & Wolf, A. L. (1997). Software Release
Management. Paper presented at the 6th European Software Engineering
Conference, Berlin.

Hoek, A. V. D., & Wolf, A. L. (2003). Software release management for component-
based software. Software—Practice & Experience, 33(1), 77 - 98.

Hoepfl, M. C. (1997). Choosing Qualitative Research: A Primer for Technology
Education Researchers. Journal of Technology Education, 9(1), 47-63.

Iqbal, M. A., Zaidi, A. M., & Murtaza, S. (2010, 9-10 Feb. 2010). A New Requirement
Prioritization Model for Market Driven Products Using Analytical Hierarchical
Process. Paper presented at the International Conference on Data Storage and
Data Engineering (DSDE).

Jadallah, A., Al-Emran, A., Moussavi, M., & Ruhe, G. (2009). The How? When? and
What? for the Process of Re-planning for Product Releases. In Q. Wang, V.
Garousi, R. Madachy & D. Pfahl (Eds.), Trustworthy Software Development
Processes (pp. 24-37). Vancouver, Canada: Springer Berlin Heidelberg.

Jadallah, A., Galster, M., Moussavi, M., & Ruhe, G. (2009, 20-26 September 2009).
Balancing Value and Modifiability when Planning for the Next Release. Paper
presented at the International Conference on Software Maintenance (ICSM'09),
Edmonton, Canada.

Jadallah, A. G. (2010). Proactive and Reactive Decision Support for Handling Change
Requests in Software Release Planning. (Master Scinece), University of
Calgary, Calgary.

Jorgensen, M., & Shepperd, M. (2007). A Systematic Review of Software Development
Cost Estimation Studies. Software Engineering, IEEE Transactions on, 33(1),
33-53. doi: 10.1109/TSE.2007.256943

Junji, Z., & Ruhe, G. (2013, 27-28 Sept. 2013). DEVis: A tool for visualizing software
document evolution. Paper presented at the Software Visualization (VISSOFT),
2013 First IEEE Working Conference on.

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritizing requirements.
Software, IEEE, 14(5), 67-74. doi: 10.1109/52.605933

Univ
ers

ity
 of

 M
ala

ya

290

Karlsson, J., Wohlin, C., & Regnell, B. (1998). An evaluation of methods for
prioritizing software requirements. Information and Software Technology,
39(14-15), 939-947.

Karlsson, L., Host, M., & Regnell, B. (2006). Evaluating the practical use of different
measurement scales in requirements prioritisation. Paper presented at the
Proceedings of the 2006 ACM/IEEE international symposium on Empirical
software engineering, Rio de Janeiro, Brazil.

Karlsson, L., & Regnell, B. (2005). Comparing Ordinal and Ratio Scale Data in
Requirements Prioritisation. Paper presented at the 3rd International Workshop
on Comparative Evaluation in Requirements Engineering (CERE'05), Paris,
France.

Khaari, M., & Ramsin, R. (2010, 22-26 March 2010). Process Patterns for Aspect-
Oriented Software Development. Paper presented at the 17th IEEE International
Conference and Workshops on Engineering of Computer Based Systems
(ECBS).

Khan, K. A. (2006). A Systematic Review of Software Requirements Prioritization.
(Master), Blekinge Institute of Technology, Ronneby, Sweden. (MSE-2006-18)

Khatibi Bardsiri, V., & Norhayati Abang Jawawi, D. (2011). Software Cost Estimation
Methods: A Review. Journal of Emerging Trends in Computing and Information
Sciences, 2, 21-29.

Krishnan, M. S. (1994). Software release management: a business perspective. Paper
presented at the Proceedings of the 1994 conference of the Centre for Advanced
Studies on Collaborative Research, Toronto, Ontario, Canada.

Lausen, S. (2002). Software Requirements: Styles and Techniques: Addison-Wesley
Professional.

Levin, K. D., & Yadid, O. (1990). Optimal release time of improved versions of
software packages. Inf. Softw. Technol., 32(1), 65-70. doi: 10.1016/0950-
5849(90)90048-v

Li, J., & Ruhe, G. (2003, 13 October 2003). Web-Based Decision Support for Software
Release Planning. Paper presented at the Workshop on Applications, Products
and Services of Web-based Support Systems (WSS03), Halifax, Canada.

Li, M., Huang, M., Shu, F., & Li, J. (2006). A risk-driven method for eXtreme
programming release planning. Paper presented at the 28th International
Conference on Software Engineering, Shanghai, China.

Univ
ers

ity
 of

 M
ala

ya

291

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Beverly Hills: Sage
Publications.

Lindgren, M., Land, R., Norstrom, C., & Wall, A. (2008, 25-28 March 2008). Key
Aspects of Software Release Planning in Industry. Paper presented at the 19th
Australian Conference on Software Engineering, Perth, WA, Australia.

Lindgren, M., Land, R., Norström, C., & Wall, A. (2008). Towards a Capability Model
for the Software Release Planning Process: Based on a Multiple Industrial Case
Study. In A. Jedlitschka & O. Salo (Eds.), Product-Focused Software Process
Improvement (pp. 117-132). Monte Porzio Catone, Italy: Springer Berlin
Heidelberg.

Lindgren, M., Norstrom, C., Wall, A., & Land, R. (2008, 18-21 Feb. 2008). Importance
of Software Architecture during Release Planning. Paper presented at the
Seventh Working IEEE/IFIP Conference on Software Architecture, (WICSA
2008).

Ma, Q. (2009). The Effectiveness of Requirements Prioritization Techniques for a
Medium to Large Number of Requirements: A Systematic Literature Review.
(Master Scinece), Auckland University of Technology.

Marjaie, S. A., & Kulkarni, V. (2010, 10-12 Dec. 2010). Recognition of Hidden Factors
in Requirements Prioritization Using Factor Analysis. Paper presented at the
International Conference on Computational Intelligence and Software
Engineering (CiSE).

Maurice, S., Ruhe, G., Ngo-The, A., & Saliu, O. (2005). Decision Support for Value-
based Software Release Planning. In S. Biffl, A. Aurum, B. Boehm, H.
Erdogmus & P. Grünbacher (Eds.), Value-based Software Engineering (pp. 247-
262): Springer Berlin Heidelberg.

Mc Elroy, J., & Ruhe, G. (2010). When-to-release decisions for features with time-
dependent value functions. Requirements Engineering, 15(3), 337-358.

Michlmayr, M., Hunt, F., & Probert, D. (2007). Release Management in Free Software
Projects: Practices and Problems. In J. Feller, B. Fitzgerald, W. Scacchi & A.
Silitti (Eds.), Open Source Development, Adoption and Innovation (pp. 295-
300). Limerick, Ireland: Springer US.

Mohebzada, J. G. (2012). A Recommendation System for Planning Software Releases.
(Master Scinece), University of Calgary, Calgary. Retrieved from
http://theses.ucalgary.ca/handle/11023/249.

Univ
ers

ity
 of

 M
ala

ya

http://theses.ucalgary.ca/handle/11023/249

292

Myers, M. D. (2009). Qualitative Research in Business & Management. London: Sage
Publications.

Nejmeh, B. A., & Thomas, I. (2002). Business-driven product planning using feature
vectors and increments. Software, IEEE, 19(6), 34-42. doi:
10.1109/MS.2002.1049385.

Ngo-The, A., & Ruhe, G. (2009). Optimized Resource Allocation for Software Release
Planning. IEEE Transactions on Software Engineering, 35(1), 109-123.

Ngo, A., & Saliu, O. (2005, 22-25 May 2005). Fuzzy Structural Dependency
Constraints in Software Release Planning. Paper presented at the The 2005
IEEE International Conference on Fuzzy Systems, Reno, NV, USA.

Ninaus, G. (2012). Using group recommendation heuristics for the prioritization of
requirements. Paper presented at the Sixth ACM Conference on Recommender
Systems, Dublin, Ireland.

Otero, C. E., Dell, E., Qureshi, A., & Otero, L. D. (2010, 26-28 May 2010). A Quality-
Based Requirement Prioritization Framework Using Binary Inputs. Paper
presented at the Fourth Asia International Conference on
Mathematical/Analytical Modelling and Computer Simulation (AMS).

Penny, D. A. (2002, 2002). An estimation-based management framework for enhancive
maintenance in commercial software products. Paper presented at the
Proceedings of International Conference on Software Maintenance.

Perini, A., Susi, A., & Avesani, P. (2012). A Machine Learning Approach to Software
Requirements Prioritization. IEEE Transactions on Software Engineering,
PP(99), 1-1. doi: 10.1109/TSE.2012.52

Perini, A., Susi, A., Ricca, F., & Bazzanella, C. (2007, 16-16 Oct. 2007). An Empirical
Study to Compare the Accuracy of AHP and CBRanking Techniques for
Requirements Prioritization. Paper presented at the Fifth International
Workshop on Comparative Evaluation in Requirements Engineering (CERE
'07).

Perry, D. E., Porter, A. A., & Votta, L. G. (2000). Empirical studies of software
engineering: a roadmap. Paper presented at the Proceedings of the Conference
on The Future of Software Engineering, Limerick, Ireland.

Pfleeger, S. L., Wu, F., & Lewis, R. (2005). Software Cost Estimation and Sizing
Methods, Issues, and Guidelines: Rand Publishing.

Univ
ers

ity
 of

 M
ala

ya

293

Pressman, R. S. (2001). Software Engineering: a practitioner’s approach (5 ed.):
McGraw-Hill.

Przepiora, M., Karimpour, R., & Ruhe, G. (2012, 19-20 September 2012). A hybrid
release planning method and its empirical justification. Paper presented at the
International Symposium on Empirical Software Engineering and Measurement
(ESEM'12), Lund, Sweden.

Racheva, Z., Daneva, M., Herrmann, A., & Wieringa, R. J. (2010, 19-21 May 2010). A
Conceptual Model and Process for Client-driven Agile Requirements
Prioritization. Paper presented at the Fourth International Conference
onResearch Challenges in Information Science (RCIS).

Rittel, H., & Webber, M. (1984). Planning problems are wicked problems. In N. Cross
(Ed.), Developments in Design Methodology. New York: John Wiley and Sons.

Robson, C. (2011). Real World Research (3 ed.): John Wiley and Sons.

Ruhe, G. (2005). Software Release Planning. In S. K. Chang (Ed.), Handbook of
Software Engineering and Knowledge Engineering - Vol. 3 - Recent Advances
(pp. 365-394). Singapore: World Scientific Publishing Co. Pte. Ltd.

Ruhe, G., Eberlein, A., & Pfahl, D. (2003). Trade-off Analysis for Requirements
Selection. International Journal of Software Engineering and Knowledge
Engineering, 13(4), 345-366.

Ruhe, G., & Ngo, A. (2004). Hybrid Intelligence in Software Release Planning. Int. J.
Hybrid Intell. Syst., 1(1-2), 99-110.

Ruhe, G., & Ngo, A. (2004). Hybrid Intelligence in Software Release Planning.
International Journal of Hybrid Intelligent Systems, 1(1-2), 99-110.

Ruhe, G., & Saliu, O. (2005a). The Art and Science of Software Release Planning.
IEEE Software, 22(6), 47-53.

Ruhe, G., & Saliu, O. (2005b). The Science and Practice of Software Release Planning:
University of Calgary.

Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting,
Resource Allocation: McGraw-Hill.

Univ
ers

ity
 of

 M
ala

ya

294

Saleem, S. B., & Shafique, M. U. (2008). A Study on Strategic Release Planning
Models of Academia and Industry. (Master Science), Blekinge Institute of
Technology, Ronneby. (MSE-2008-24)

Saliu, O., & Ruhe, G. (2005a). Software Release Planning for Evolving Systems.
Innovations in Systems and Software Engineering, 1(2), 189–204.

Saliu, O., & Ruhe, G. (2005b, 7-7 April 2005). Supporting Software Release Planning
Decisions for Evolving Systems. Paper presented at the 29th Annual
IEEE/NASA Software Engineering Workshop.

Saliu, O., & Ruhe, G. (2007, 3-7 September 2007). Bi-objective release planning for
evolving software systems. Paper presented at the The 6th joint meeting of the
European Software Engineering Conference and The ACM SIGSOFT
Symposium on The Foundations of Software Engineering (ESEC-FSE '07),
Dubrovnik, Croatia.

Seyed Danesh, A. (2011). A Survey of Release Planning Approaches in Incremental
Software Development. In V. V. Das & N. Thankachan (Eds.), Computational
Intelligence and Information Technology (pp. 687-692). Pune, India: Springer
Berlin Heidelberg.

Seyed Danesh, A., & Ahmad, R. (2012). Software release planning challenges in
software development: An empirical study. African Journal of Business
Management, 6(3), 956-970.

Slooten, R. (2012). Software release planning: Investigating the use of an advanced
assessment instrument and evaluating a novel maturity framework. (Master
Scinece), Technische Universiteit Eindhoven, Eindhoven.

Sommerville, I. (2010). Software Engineering (9 ed.): Addison-Wesley.

Suwanjang , H., & Nakornthip, P. (2012). Framework for Developing a Software Cost
Estimation Model for Software Modification Based on a Relational Matrix of
Project Profile and Software Cost Using an Analogy Estimation Method.
International Journal of Computer and Communication Engineering, 1(2), 6.

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, B. S., & Shafique, M. U.
(2010). A systematic review on strategic release planning models. Information
and Software Technology, 52(3), 237–248.

Svensson, R. B., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt, R., &
Aurum, A. (2011, Aug. 29 2011-Sept. 2 2011). Prioritization of quality
requirements: State of practice in eleven companies. Paper presented at the 19th
IEEE International Requirements Engineering Conference (RE).

Univ
ers

ity
 of

 M
ala

ya

295

Tonella, P., Susi, A., & Palma, F. (2010, 7-9 Sept. 2010). Using Interactive GA for
Requirements Prioritization. Paper presented at the Second International
Symposium on Search Based Software Engineering (SSBSE).

Tran, H. N., Coulette, B., & Bich Thuy, D. (2007, 25-31 Aug. 2007). Modeling Process
Patterns and Their Application. Paper presented at the Software Engineering
Advances, 2007. ICSEA 2007. International Conference on.

Vogt, D. W. P. (1993). Dictionary of Statistics and Methodology: A Non-Technical
Guide for the Social Sciences California: Sage Publications.

Wohlin, C., & Aurum, A. (2005, 17-18 November 2005). What is Important when
Deciding to Include a Software Requirement in a Project or Release? Paper
presented at the International Symposium on Empirical Software Engineering,
Noosa Heads, Australia.

Yin, R. K. (2003). Case study research: Design and methods (3 ed.): Sage Publications.

Zahran, S. (1998). Software Process Improvement: Practical Guidelines for Business
Success: Addison-Wesley Professional.

Zhao, L. (2010, 7-8 Aug. 2010). Research on Software Project Management Pattern
What Based on Model-Driven. Paper presented at the International Conference
of Information Science and Management Engineering (ISME).

Univ
ers

ity
 of

 M
ala

ya

296

APPENDIX A: QUESTIONARIES

Table A: Summary of interview questions

Part 1:Introductory questions

1. What is your name?

2. What is your email address?

3. Give us a definition of your project?

4. What is your role in the project?

5. How many people attend this project?

6. What generally is the size of your project?

7. Are you satisfied with the project? If yes or no, why?

Part 2:Technical questions

1. Do your project managers conduct release planning?

2. What is the current release cycle?

3. What is your cooperation and interest in the project like?

4. What challenges and problems do you face when you want to release a new version?

5. How are the requirements generated? How are they tracked?

6. What are the ambiguous problems in your project?

7. When is the next release date? When was the last release date?

8. Are there any strategic changes in your project? If yes, what is their impact?

9. What kinds of stakeholders exist in the project? How are they involved in your project?

10. Who are your major customers or end users?

11. What is of most importance to the managers?

12. How are the new decisions made for a new release?

13. Do the mangers have any plan or prediction for the future of a product to ensure that the last

release is the best one?

14. How do project managers evaluate the progress and completeness of the work?

15. What is the output of the release planning?

16. What kind of complexity you face? Does the complexity affect the process of your project?

17. What are the resource and technical constraints in your project?

18. What is your plan for release time? How is the time for next release determined?

19. Is this system related to other systems? If yes, which ones?

20. Are there any pressures on you for a new release?

21. How are the requirements prioritized in your projects?

22. Do you have any tools to support your process of release planning?

Univ
ers

ity
 of

 M
ala

ya

297

Table B: projects characterizes

 Damoon Saba PKI /CA EXIMBILLS Islamic Loan

Project
Description Internet shops Internet banking

systems Trade Finance
Systems

Islamic Loan
systems

Number of
employees 8 15 12 18 26

Customers/End
-users

Melli, Saderat,
Mine and

Industry banks

Melli, Saderat,
Mine and
Industry,

Export and
Development

banks

Central bank of
Iran

Melli, Saderat
banks

Melli, Saderat,
Mine and
Industry,

Export and
Development

banks
Number of

releases until
now

2 6 2 2 9

Resources type
and unit

Planning 3 man-
months,

Analysis 6 man-
months,

Design 9 man-
months,

Construction 12
man-months

Planning 6 man-
months,

Analysis 9 man-
months,

Design 12 man-
months,

Construction 20
man-months

Planning 2 man-
months,

Analysis 3 man-
months,

Design 3 man-
months,

Construction 5
man-months

Planning 5 man-
months,

Analysis 7 man-
months,

Design 9 man-
months,

Construction 12
man-months

Planning 10
man-months,
Analysis 22
man-months,

Design 25 man-
months,

Construction 35
man-months

Planning
Criteria Low High High Low Medium

Requirement
groups Yes Yes No Yes Yes

Requirement
dependencies Yes yes No Yes Yes

Role and
responsibility

Project manager
and a system
analyst: The
project manager
was responsible
for making sure
the questions are
on the right track
and the analyst
was responsible
for getting the
right answers (no
existing system
was available)

Project manager
and a system
analyst: The
project manager
was responsible
for making sure
the questions are
on the right track
and the analyst
was responsible
for getting the
right answers

Project manager
and a developer:
The project
manager was
responsible for
making sure the
questions are on
the right track
and the
developer was
responsible for
analyzing the
required system

Project manager
and a system
analyst: The
project manager
was responsible
for making sure
the questions are
on the right track
and the analyst
was responsible
for getting the
right answers
and
understanding
the existing
system

Project manager,
and two system
analysts: The
project manager
was responsible
for making sure
the questions are
on the right track
and the analysts
were responsible
for
understanding
the existing or
old system

Project
evaluation

Regularly and on
weekly basis

Regularly and
weekly the

resources are
modified

according to
project needs

Regularly and on
monthly basis

Bi-weekly
meetings

Regularly and on
monthly basis

Univ
ers

ity
 of

 M
ala

ya

298

APPENDIX B: PATTERN-BASED RELEASE PLANNING

METHODOLOGY QUESTIONARIES

Table A: Pattern Evaluation form

Table B: Evaluation of patterns of specific phase from

Table C: Pattern-based release planning methodology evaluation form

Univ
ers

ity
 of

 M
ala

ya

299

APPENDIX C: PATTERN RELEASE PLANNING (PRP) TOOL

The PRP software is developed and used to develop release planning patterns in

different phases. The software is based mainly on the idea mentioned in the research

and aims to define phases, parameters, instances and patterns of release planning, and to

search for (and show) release patterns in different phases based on input parameters. It

also makes decisions on best-suited developed patterns. The software supports and

defines release planning patterns in two ways:

• In the first method, the software allows users to define different phases of

release planning and to determine parameters suiting every phase. Having

parameters defined, the user can enter parameter instances and establish a

relationship between various instances. The software enables users to enter

relationships in a level-by-level manner. In the first level, it is possible to enter

the relationship between two instances of two separate parameters and the

relationship between two instance pairs is allowed to form a ternary of instances.

The ternaries are then related in the next level to form relationships with four

parameters and the software develops levels as much as the number of

parameters. In the last level where every parameter instances correlate, the

software allows for defining a pattern for them. In this situation, the software

deactivates in higher levels those instances without relationships. This means

that where two instances of two different parameters are not correlated in the

first level, they cannot be so in the next level and the software does this

automatically. The method requires developing a set of states based upon

relationships between parameter instances. In this method, all possible states of

instance combinations are determined and, indeed, it is a comprehensive method

for generating patterns for release planning.

Univ
ers

ity
 of

 M
ala

ya

300

• In the second method, the software allows defining a pattern for every step of

release planning directly and based on parameter instances. In this method, the

software enables users to develop, name, describe and fully document their

patterns by selecting the best-suited parameter instances. The user is, also,

allowed to select a certain set of parameters, a case in which the software

considers all the states for other unselected parameters automatically. Thus, the

user can develop a pattern through several specific parameters. This method

enables defining release planning pattern in a rapid and need-based manner.

Using both methods, the software enables users to receive suggested patterns by

entering the least information. Pattern selection is performed for different steps of

release planning and every pattern is assigned to a certain phase or stage. Moreover, it is

possible to keep a record of project-specific data in order to determine patterns during

software development. Below is a brief description of different parts of the software.

1. The main page of the software

In the main page, icons pertaining to different tasks are located on top and the user can

select them to perform the desired task.

Univ
ers

ity
 of

 M
ala

ya

301

2. Phase information

Since general phases are determined for release planning in the suggested method, it is

also possible to record different steps of the project in the software. It enables the user

to alter phases where parameters and instances are not present. The figure below shows

recorded phases in the software.

3. Parameters information

Every certain step (phase) of release planning can have various parameters and hence

the software enables entering phase parameter and its short name by selecting the phase

to be used in different sections.

The figure below shows different parameters entered for "requirements prioritization".

As the figure displays, a short name is entered for every parameter (showed in

parentheses next to the parameter's name). The user can enter different parameters for

evaluation and delete the parameter if no instances entered for it.

Univ
ers

ity
 of

 M
ala

ya

302

4. Instance information

Each parameter can have various instances. Moreover, parameters with the same names

(in different phases) can have different instances. This is because an instance can have

no influence on a certain phase or there may be new instances which affect a certain

parameter in a phase. Considering the possibility of such cases, this is embedded in the

software and the release planner can enter different instances freely.

Two parameter instances of requirements prioritization phase are presented in the

following figure. The shortened name of every instance is also mentioned besides its

main name to be used if necessary. Similar to previous stages, it is possible to add or

remove instances and they can be removed if no relationship is recorded for them.
Univ

ers
ity

 of
 M

ala
ya

303

5. The relationship between instances

After recording primary data of release planning and steps and parameters of the

methodology, the most important task is to establish a relationship between instances in

order to generate required states. As mentioned earlier, the process can be accomplished

in two ways. In this step, different states are generated in various levels establishing

relationships between instances and this continues in a level-by-level manner until

relationships are developed between all parameters of a phase.

Selecting the phase and level, the release planner can observe developed relations or

instances (which form a state) and is able to use them to generate new relations. In the

first step of this task (shown in the figure below), the user can observe different

parameter instances by selecting the first level and can generate a new relation by

choosing two instances of different parameters. The software automatically recognizes

that the relation is established between different parameters and prevents repetitive

relations. Having both instances selected, the software displays them with an "x",

Univ
ers

ity
 of

 M
ala

ya

304

generates the relation and assigns a certain number to it while the user clicks on "Save

relations". This is done for every level and the highest level is determined based on the

number of parameters in every step of the release planning process.

The software allows for removing a relation when the user has not been generating a

higher level relation based upon it. It recognizes the number of parameters

automatically and allows entering level by the same number.

Univ
ers

ity
 of

 M
ala

ya

305

6. Methods information

Having primary data recorded, the second step is accomplished using one of the

methods mentioned earlier. Both methods are based upon the data pertaining to different

methods used in every step of pattern-based release planning. The figure below shows

methods used in requirements prioritization step.

7. Assigning the method to complementary states

In order to perform release planning with the first method, one has to determine the

relations between parameter instances of previous steps and then the software

introduces all instance-containing states to the present step automatically and assigns

them to a certain method. In fact, it automatically searches all complete states

containing parameters from different steps and displays them to enable users to select

implementation methods.

Univ
ers

ity
 of

 M
ala

ya

306

The user can assign more than one method to a state and this means that the release

planner or project manager can choose each of the mentioned methods to accomplish a

project with similar states. This is shown in the figure below.

8. Pattern definition

Pattern definition section aims to describe a pattern's features based on the presented

structure. This part includes four main sub-sections. The "base" subsection explains

basic data on the pattern such as its name, side names, pattern problem and pattern field.

In the "constraints" subsection, pattern constraints (parameter instances) can be defined

for every step with defined patterns. The "solution" subsection specifies methods

suggested by the pattern and the user can select one or more methods. This is consistent

with the previous subsection. This means that one can observe, in "solution", methods

related to a step already selected in "constraints". In "description" subsection, one can

record explanations on the context, rationale and known uses of the pattern.

Univ
ers

ity
 of

 M
ala

ya

307

9. Pattern search

Pattern search helps finding the suitable pattern using certain features (constraints or

instances). In this section, users can start the search by specifying the constraints. The

software searches among available patterns and finds those with the considered

constraints. Then, every found pattern is displayed along with data entered by users

(after using the pattern) and the average scores given by them.
Univ

ers
ity

 of
 M

ala
ya

308

10. Recording the pattern usage

After the pattern is used, results can be recorded in this section. By selecting the

considered pattern and signing up, the user can write about his experience of the pattern

and score it based on Likert Scale. The data is shown to other users searching for

patterns.

Univ
ers

ity
 of

 M
ala

ya

