CHAPTER FOUR

METHODOLOGY

4.0 Introduction

Chapter four discusses the methodology, which can be used to measure the
cointegration restriction in the simplified generalized version of Grossman's Health
Capital Model employed in this study. The Singapore and Malaysia cointegration
restrictions used in this model helps to determine that the log of the demand for medical
care depends on the log of net consumption expenditure and the log of the relative price

of medical care.

The annual medical care expenditures data, net consumption expenditures data
and the relative price of medical care data (cited in Lee and Kong, 1999) are used 1 this
study. The Singapore case consists of 38 observations while that for the Malaysia case
consists of 24 observations. All the testing is carried out by using the E-views program

version 3.0.
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4.1 Data

Data for medical care demand for Singapore and Malaysia were obtained from the
breakdown components of national accounts as provided by the Department of Statistics
of both countries. Data used are in line with the data classes employed at constant market

price series based on the year 1990 for Singapore and 1987 for Malaysia.

The study period for Singapore was {rom the year 1964 until 2001, while the
study period for Malaysia was from 1978 until 2001. The aspeets considered for both
countries were the medical care expenditure, the net consumption expenditure and also
the relative price of medical care. The net consumption expenditure was calculated as
total consumption expenditures less medical care expenditures. Implicit deflators were
constructed by dividing nominal series through the constant market price series. The ratio
of implicit deflators was respectively used as the relative price of medical care for both

countries (cited in Lee and Kong, 1999; pp. 328).

All these series take the natural logarithmic (log.) transformation to have the
advantage ol stabilizing the variances of the serics. For both countries, the log of medical
care expenditure in period t is represented by InAf(1); while InC'(¢) stands for the log of
net consumption expenditure in period t. Whereas, the log of the relative price of medical
care in period 1 is depicted as In P, (r). However, InA{(¢) is used as the dependent
variable, where In('(+) and In/%, (f) are considered as explanatory or independent

variables.
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4.2 Framework of Analysis

The regression model employed in Singapore and Malaysia can be divided into
ten categories and displayed in terms of Unit Root Test, Cointegration Test (only
Johansen Cointegration Test is available here), Normalized Cointegrating Regression and
Granger Causality Test. Fmally, the volatility ol the studied series as additional
information will be discussed. Since the research is in two different countries analyses, so
the explanation of the findings in next chapter will be separated into two parts. Part [ is

the analysis for Singapore case, while part 1 analyzes the Malaysian case.

4.2.1 Unit Root Test

Unit Root Test 1s an alternative test of stationarity. According to Cuthbertson,
Hall and Taylor (1992). a time series (x,) 1s stationary 1f its mean, E(x,) 1s independent
of t and its variance, E[x-E(x}]* is bounded by some finite number and does not vary
systematically with time. Thus, 1t will tend to return to 1ts mean and fluctuates around its
mean and have broadly constant amplitude. A non-stationary time series would have a
different mean at different points in time. One of the characteristics of a stationary series
is that it tends to return to, or cross its mean values repeatedly and this property is the

one, which is exploited by most stationarity test’,

" Quoted from Kelth Cuthbertson, Stephen G. Hall, Mark P. Taylor (1992): “Non-stationarity and
Cointegration”, Applicd Econometric Techniques, Phillips Allan, Hertfordshire, UK. in pp. 130.
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To avoid obtaining results that may be spurious, the order of integration of the
logarithmic terms of each series is determined by using Augmented Dickey-Fuller (1979)
Test* and also Phillips-Perron (1988) Test. Unit Root Test is conducted on the level of
the logarithms of the medical care demand, consumption differentials and the relative
price of medical care. These three series are transformed into logarithms because often a

series with a non-stationary variance will be stationary in the natural logarthms.

The existence of unit root in a time series indicates that the time series is non-
stationary. If there is a unit root in the null hypothesis, time series maintains difference-
stationary and the null hypothesis cannot be rejected unless there is overwhelming

evidence to reject it

The null hypothesis and alternative in Unit Root Tests for stationary and non-
stationary can be adopted as:
Ho: & = 1 (The model is non-stationary)

FHa: 0 < 1 (The model is stationary)

As noted, if stationary, it is an 1(0) stochastic process whercas if it is non-
stationary, it is an I(1) time series. The requirement to reject the null hypothesis is when
the series is stationary which means the T (Tau) calculated values for the variables in

absolute terms exceed the t-critical values. Vice versa when the t-calculated values in

1 Dickey and Fuller (1979), Said and Dickey (1984), Phillips (1987), Phillips and Perron (1988), and
others developed modifications of the Dickey-Fuller tests when € is not white noise. These tests, called the
‘Augmented Dickey-Fuller (ADF) Tests’.
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absolute terms are less than t-critical values, the null hypothesis cannot be rejected and

the series is non-stationary.

4.2.1a  Augmented Dickey-Fuller Test

sy . . - 43 .

This test was introduced and developed by Dickey and Fuller (1979 The test
for unit root indicates whether an individual series (Y,), 18 stationary by running an OLS
regression equation, For a time series Yy, two forms of the “Augmented Dickey-Fuller”

regression equations are:

P

AY, = u+8Y, +Za,AY,», +e, (1)
ol

AY, = u+ ft+0Y,, + i(zl/\)',_ e, (1)

FEs|
Where
AY,= Y, =Y, (the first-differenced of the series)
o, A= constamt parameters
¢, = white noise disturbance term
t = time or trend variable

p = the number of lagged terms

Equation (i) is with-constant, no trend and (ii) is with-constant, with trend. The number

of lagged terms p is chosen to ensure the errors is uncorrelated.

" Dickey, D. A. and Fuller, W. A (1979), Distribution of the Estimators for Autoregressive Time-series
with a Unit Root, Journal of the American Statistical Association, 74, pp. 427-43 1.
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If the autoregressive representation of Y, contains a unit root (i.e., integrated of

order one), the t-ratio for ¢, should be consistent with the hypothesis & =0. The
conventional of t-tables are inappropriate for this hypothesis test, so we use the results of

Dickey and Fuller (1979) and the tabulated distribution in Fuller (1976) to interpret the

t-ratio.

4.2.1b  Phillips-Perron Test

Phillips and Perron (1988)"" introduced the Phillips-Perron Test. They proposed
non-parametric correction 1o allow for series correction as an alternative to the inclusion
of lag terms. It accounts tor non-independent and identically distributed processes using a
non-parametric adjustment to the standard Dickey-Fuller procedure to ensure that the
error terms are uncorrelated and have constant variance. In other words, Phillips and
Perron (1988) developed a generalization of the Dickey-Fuller procedure that allows for

fairly mild assumptions concerning the distribution of the errors.

The method is first calculated the Unit Root Test from regression equations with p

asymptotic distribution of the test statistic. The critical values are the same as those used

for the Dickey-Fuller Test.

4 Refer to Phillips and Perron (1988),"Testing for a Unit Root in Time Series Regression,” Biometrika, 75,
pp. 335-346.
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Applying the test to in level then to first-differenced to measure the order of
integration. Normally, it is to make sure that all the series are integrated of order one I( 1),
and is stationary after first-differenced. If each series is I(1), it is possible that common
trends exist within them as a group, so that they could be cointegrated. Therefore, further

analysis requires using the first-differenced of each series, instead of the levels.

4.2.1¢ Unit Root Test Application

As previously discussed the Augmented Dickey-Fuller (ADF) and Phillips-Perron
(PP) Unit Root Test are used to examine the stationarity of the data series. It consists of
running a regression of the level and the first-differences of the series against the series
lagged once, lageed difference terms, and optionally, a constant and a time trend. This 15

expressed in equation (1) as follows:

P
AlnM, = p+ B +SInM, +> aAn M, +u, (H

il

The test for a unit root is on the coefficient of InAM, | in the regression. In other
words, it is tested on the null hypothesis that & = (. If §is negative, it means a rejection
of the null hypothesis implies stationary [M, ~ ()], which do not exhibit a unit root m
M,. However, if &= 0, that is there cxist a unit root, meaning that the log of medical care

demand under consideration is non-stationary {M, ~ 1(1)]. Then, we need to proceed into

first-diflerences to test for presence of unit root, such as:
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A'ln M, :y+ﬁ+é‘Aln1\/f‘,_,+[Z)a,.A2 InM,_, +u, (2)
i=]

From equation (1), rejection of unit root would imply that the log of the medical
care demand 1s integrated of order 1, I(1). Therefore, it can be concluded that In((r),
InM(¢) and InP, (1) are difference-stationary variables. Besides, the explanation for
Phillips-Perron (PP) Test 1s also the same as the explanation for ADF Test. The unit root
hypothesis can be rejected 1f the Augmented Dickey-Fuller (ADF) and Phillips-Perron
(PP) t-test statistics are smaller than the critical value for all tests at the 1%, 5% and 10%

significance level.

After testing using Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP)

Unit Root Test, we proceed into comntegration test, such as Johansen Cointegration Test.

4.2.2 Cointegration Test

Cointegration means that one or more lincar combinations of non-stationary
individually tend to be stationary. The theory of cointegration is developed by Granger
(1981) and claborated by Engle and Granger (1987)". (ranger addresses this issue of
integrating short run dynamics with long run equilibrium. He stated that cointegration

analysis could be used to discover a tendency for some linear relationships to hold

o Granger, C. W. J. (1981): “Some Properties of Time Series Data and Their Use in Econometric Model
Specification,” Journal of Lconometrics, Vol 16, No. 1., pp. 121-130; Engle, R. F. and Granger, C. W J.
(1987): * Cointegration and Urror Correction: Representation, Estimation and Testing,” liconometrica, Vol
55, No. 2, pp. 251-276



between a set of variables in the long term if it does exists. The basic idea of this
explanation is if in the long run, two or more series move closely together, even though
the series themselves are trended, the difference between them is constant, These series
may be regarded as defining a long run equilibrium relationship and as the difference
between them is stationary, the error term in a regression will have well-defined first and

second moments.

A time serics M, (in this research) is said to be integrated of order 1t or I(1) M~
ICD] i AN/, 1s a stationary time series. A stationary time series is said to be 1(0) [M ~
I(O)] 1 A/, is a random walk, or a white noise process. Similarly, a time series is said to
be integrated of order 2 or [(2) it AAM, 15 1(1) and so on. If M, -~ I(1) and v ~ [(0), then

their sum can be considered as 70 M b uc~ I(1).

4.2.2a Engle and Granger Cointegration Test

The Engle and Granger Cointegration Test is also called as Engle and Granger
Two-Step Cointegration Test. Based on the statistical perspectives, the Engle and
CGranger Two-Step Cointegration Test is used to examine the long run equilibrium or long
run relationships between the variables, which means that the variables moved together
over a long period and short term disturbance. If these variables cointegrated among

themselves, they should not move “wo far” away from one another. In other words, they

57



should not diverpe, but trend up and down together. The Engle and Granger

Comtegration Fest s better to test for two cotntegrating veetors,

Howewver, smee this test 1s only used to test two comtegrating vectors and
furthermore . somore sutable o predict the normal endogenous as well as exogenous
varables  Theretore, 1tis not appropriate to apply in the model, which consists of lagged
vatuibles tpredeternimad vanrables)  As a result, the Bngle and Granger Cointegration
Test s not used e thes study because the model comprises lagged vanables. Thus,

Johansen's Comtepration Test s more appropriate for this study.

4220 Johansen Cointegration Test

Johansen-Juselius  (1990)"" proposed  comtegration test (with  unrestricted
mtercept nd no trendsy to examune the long run relationship between two or more
vartubles Lo mvestirate the Johansen Cointepration Test, first, we test for the null
hy pothests 11 the desult implies that the comtegrating vector 1s zero (v 0), we cannot
repect the null hypothears Tt shows that no comtegrating relationship exists between the
two veclors  However, i the result shows we can reject [/, 1t means we aceept
altermative by pothesrs Thisoimiphes that at least one comtegrating vector exists, To test

whether there 1 only one or more than one cointegrating vectors, we continue (o conduct

another test tor the null hypothesis (-2 1) 1 the result, again shown the existence of

S hanaen, S Jugsehios, B (1990), Masaimom Likelibood Estimation and Inference on Cointegration -
With Applications to the Drenned b Money, Oford Bullotn of Feonomies and Statistics, 52, No.2, pp.
05 I
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only one cointegrating vector, we cannot reject the null hypothesis. However, if there is
more than one cointegrating vector, we reject null hypothesis and conclude that there
exist two cointegrating vectors. In other words, the null hypothesis shows there is no
cointegrating relationship among the variables is rejected at most for two cointegrating
vectors. While, the maximum eigen value test confirms non-zero vectors among the

variables.

The null hypothesis and the alternative hypothesis in cointegration test are

represented as below:

H,: r = 0 (No cointegrating relation exists)

Fa:t o+ 0 (At least one cointegrating relation exists)
Ho: 1= 1 (At most one cointegrating relation exists)
Ha:t = 1 (More than one cointegrating relations exist)
H,: r = 2 (At most two cointegrating relations exist)

Ha: 1> 2 {More than two cointegrating relations exist)

The Johansen Cointegration Test is conducted to establish the relationships
between these series within the study periods. The null hypothesis (r = 0) in this test
means that no cointegration is found among the element of InM(f), where r represents
the number of cointegrating vectors. Rejection of null hypothesis indicates the presence
of cointegrating relations and accepts the alternative of one or more cointegrating vectors

(r>0).
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The procedure begins with the equation (3) and equation (4), which indicate in

term of the least square estimating regressions for Singapore and Malaysia cases, as:

u; :M:“,Bo'"ﬂl(“:“ﬂzl),u‘, 3)
P i p

InM, =a, +a, u,,\+2a2, InAf, +Zah inC +Zaﬁ“ Inl, , +e, 4)
i=l =1 i=1

Equation (4) defines the product moment matrices of the estimated residuals in level.

Johansen (1988)"" also shows that the likelihood ratio test statistic ((, ) is used

for the hypothesis of at most equilibrium relationships, as shown by equation (5):
O, =-ny In(l-21,) (5)

Where A, > 4, >.....4, arc the eigen values to solve the following equation:
1 ' A | 5
A8, = 8,8 S, =0 (6)
Which is considered as equation (6). The eigen values are also called the squared
canonical correlation of u,, with respect to . The limiting distribution of the
()., statistic is given in terms of a p-r dimensional Brownian motion process, and the

quantiles of the distribution are tabulated in Johansen and Juselius (1990) for p-

r+1,....,5 and in the Osterwald-Lenum (1992) for p-r+1,....,10.

Liquation (5), usually referred to as the trace test, may be rewritten as:

Y7 Refer to Johansen, S. (1988), Statistical Analysis of Cointegration Vectors, Jowrnal of Leonomic
Dynamics and Control, 12, pp. 231-54.
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’)
I'lumm = *’I' Z ln(] - /1,) (7)

i=r+l
This model is considered as equation (7). Where 4,,,,......, 4, are the p-r smaliest squared

canonical correlation or eigen values.

The other test for cointegration is the maximal eigen value test. Based on the
following statistic:
[‘m:\.\' =-T ln(] - /lrfl ) (8)

Which considered as equation (8). While, the 4., 1s the (r H)™ Jargest squared canonical

correlation or cigen value.

[Zquation (7), finds that the null hypothesis is at the most r-cointegrating vectors.
Whereas equation (8) shows the null hypothesis is that there are r-cointegrating vectors

against the alternative of r+ 1 cointegrating vectors.

Johansen and Juselius (1990) deduced that the trace test might lack power
relative to the maximal cigen value test. Based on the power of the test, the maximal
eigen value test statistic is often preferred. Long run elasticity 1 obtained from the
normalized equation that is only conducted if non-zero vectors are confirmed by the

cointegration test. This is obtained by setting each cointegrating vector equal to one.
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4.2.3 Cointegrating Regression

Cointegrating regression is a regression (in level) of one series against a constant
and another series. There can be as many cointegrating regression as the number of
variables. The residuals of the cointegrating regression that provide information about the

fong run relationships among variables are then tested for stationarity.

4.2.3a Normalized Cointegrating Regression

As previously mentioned, normalization is only conducted it non-zero vectors are
confirmed by the cointegration test which setting each cointegrating vector equal to 1. In
this study, the normalized cointegrating regression is demonstrated in least square
estimating regression to reveal the long run elasticitics obtained by Singapore and
Malaysia. A lincar time trend is included in below cointegrating regression since the
model assumed that the preference shock in the health sector is trend-stationary. The
cointegrating regression is written as:

A n n
InM, =a, + Il +a, ua+ Z“?—' InC’,_, + Z(x‘,, nr,  +& (9)
i1 il

Where a, indicates as constant term; @,,@, and «,; are used as coefficient of the series

for both countrics, while & indicates as coeflicient of the trend variable. On the other

A
hand, u,. represents the estimated one-period lagged value of the residual and ¢, is the

random crror term for both countries. All the series, demand for medical care expenditure

62



(In M(1)), net consumption expenditure (In((f)) and relative price of medical care

(In 7%, (1)) are wntten in natural logarithmic forms.

4.2.4 Granger Causality (GC) Test

A useful test for causality in time series models is related 1o correlation among the
variables and temporal asymmetry (ie., time precedence) among phenomena. The
causality test, based on the Granger (1969y" approach, is conducted to see it there is any
influence between the variables. A dependent variable is said to be granger-cause by an
independent variable if lagged values of the independent variable can help to improve the
explanation of the current dependent variable apart from its past values Vice-versa
explanation is also correct, an independent variable is said to be granger-cause by a
dependent variable if it helps in the prediction of independent variable, or equivalently if

the coefficients on the lagged values of independent variables are statistically significant

The Granger Causality relations between a dependent and independent variables
for both countries of restricted and unrestricted regression model are indicated as follows,
for instance:

Hy: C (medical care demand does not granger-causes net consumption
expenditure)

Ha: M—2C (medical care demand does granger-causes net consumption
expenditure)

™ Granger, C. W, ). (1969): “Investigating Causal Relations by Econometric Models and Cross-Spectral
Methods”, liconometrica, (July), pp. 424-438.
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To test for causality when variables are cointegrated, the following Granger
Causality equation is conducted. Lets assume two variables only for both countries, for

example:

p v
AlnC’, =a, + Z“H_;Aln('wi +Z”|2,1Al“ MW iy,
j=1

j=l
14 P
AINM, =y + Y dy AlnM, | +3 ay, AlnC, +e, (10)
{1 =1

M Granger Causes C if aj2,;#0  forany |

C Granger Causes M if ay, 20  foranyj

Where independent and dependent variables have been identified as first-differenced
stationary time series and ¢, and ¢,, are disturbance terms for both countries, which are
serially uncorrelated. Bilateral causality is suggested if both a,, and «,, 1s statistically
different from zero, and inter-temporal lead-lag relationship does not exist if both of them

are not significant,

4.2.5 Series Volatility

Gujarati (2003) mentioned that a time series model often exhibits phenomenon
of volatility clustering, that is, the error variance may be correlated over time. Knowledge

of volatility is crucially important in many areas, including the area of health and medical
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b < [e3 : i 404 - £
care. Volatility is employed to model “varying variance™ " in demand and consumption as

well as in the relative price.

In short, modeling of volatility is useful to analyze the sensitivity of the series
when other series have changed In addition, it also helps to obtain more accurate
confidence intervals for forecasting. Finally, it is used to obtain more efficient estimators

by handling heteroscedasticity in error properly.

The volatility of the studied series for Singapore and Malaysia is conducted as
additional information to test the sensitivity (volatile) and also the movement of the
series. This test draws upon raw data for the entire series, whereas, the volatility of the
given scries refers to the coefficient of variation, which is written in percentages. It 1s
obtained from the results to illustrate the trend of the series. Furthermore, this test helps
to explain the situation of the series when the utility preferences of the market have

changed.

4.3 Statistical Test

Hypotheses are used to test the validity of the model and to improve the model
specification. To test whether an individual slope coefficient ( /3,) is sigmficantly

different from zero, 1-tests are carried out.

3 5 5 3 i 5 s - . . « s '
’ Varying variance in (Gujarati, 2003; pg. 856) refers to the variance of time series varies over time,
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Individual Regression Coefficient Test (T-test)”

H()Z ,[))3 =1 H()I ﬂ; =-1

Ha S, # | Ha: B, # -1

In the language of statistics, the stated hypothesis, which is denoted by the symbol
H.,, is known as the null hypothesis. The null hypothesis is usually tested against an
alternative hypothesis (also known as maintained hypothcsis“). Whereas, the hypothesis
denoted by the symbol H . is recognized as the alternative hypothesis. or instance,
alternative hypothesis may stated as, true f, is different from unity. The altemative
hypothesis can be simple or cumposilc“, this is shown, for example, H - f, =1 1sa

simple hypothesis, while H @ g, #1 is a composite hypothesis.

Test Statistic for t-value

From the computer output, t,

- Bi-p
el Bi)

w 2n-k

From the t-table, ¢, ,

Result: reject the null hypotheses if ¢ > €, o, orl, <=1, 5, 4

50 Refer to Gujarati (1995), “Hypothesis Testing: General Comments” from page 121-122 and “Hypothesis
Testing: The Test-Of-Significance Approach” from page 124-128.

' According to Damodar N. Gujarati (1995) in his “Hypothesis Testing: General Comments” in “Basic
Econometrics” has mentioned that ‘alternative hypothesis’ also known as ‘maintained hypothesis’, pp. 121.
52 A statistical hypothesis is called a simple hypothesis if it specifies the precise value(s) of the parameter(s)
of a probability density function; otherwise, it is called a composite hypothesis (Gujarati, 1995; pp. 122).
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n = number of observations
k = number of parameters
a/2 = level of significance
n-k = degrees of freedom

Bi = slope coefficient for individual variable

A

Bi= estimated slope coefticient for individual variable
t = t-calculated value

t. = t-critical value

s.e. = standard error

s.0.( /3 1) = estimated standard error of cstimator for individual variable

—1, ,and 1, , = values of the t-variable obtained from the t-distribution for w2- level of
significance

The above test statistic defined follows the t-distribution with n-k degrees of

freedom. This test statistic can also be written as:
estimator(i) ~ parameter(i)
estimated standard error of estimator(i)

A

Where the s.c.( ), refers to the estimated standard error for individual 1. 1f the value of
true f, is specified under the null hypothesis, the above t-value can serve as a test
statistic, which can readily be computed from the available sample. While, -¢,,, and

{,., are often called the critical t-value at a/2 -level of significance.
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Test Statistic for F-test™

In order to determine whether the model is poor or a good one, the test for this
purpose requires reformulation. As a result, a joint F-test, which is a measure of the
overall significance of the estimated regression, is carried out to test for overall goodness

of fit.

Ho: B, = B, = 0 (All slope coefficients are simultaneously zero)

Ha: At least one £, 7 0, k = 2.3 (Not all slope coefficients are simultaneously zero)

The above null hypothesis represented by #,, is a joint hypothesis, which shows
B, and /3, are jointly or simultancously cqual to zero. Whereas, the alternative
hypothesis denoted by the symbol / , reveals not all the slope cocfficients are jointly or
simultancously equal to zero. Normally, the null hypothesis is tested against the
alternative hypothesis. Here, if the null hypothesis is being rejected, that means the
alternative hypothesis is accepted and the model is statistically significant since it lies in
the critical region. Therefore, it can be concluded that the model obtains goodness of fit.
In contrast, if the null hypothesis is being accepted, that means the alternative hypothesis
is rejected. By the same token, the model is statistically insignificant because it lies in the

acceptance region. In this case, the model does not obtain goodness of fit.

® Refer to Gujarati (2003), “Testing the Overall Significance of the Sample Regression” from page 253-
264.
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© RSS/Kn-k) ak-1 -k

From the F-table, 7, |, ,

Result: reject the null hypotheses if' /7. > /<, ., for a a-level test
n = number of observations

k = number of parameters

a = level of significance

ESS = Explained Sum of Squares

RSS = Residual Sum of Squares

k-1 degrees of freedom for the numerator (not including constant)
n-k = degrees of freedom for the denominator (losing some of the degrees of freedom)
F = F-calculated value

F, = F-critical value

F, = values of the F-variable obtained from the F-distribution for a-level of significance

From the regression viewpoint, the above F-statistic is known as the analysis of
variance (ANOVA) and it follows the F-distribution. ESS is the explained sum of squares
and RSS is the residual sum of squares. ESS is divided by k-1 degrees of freedom,
whereas, RSS is divided by n-k degrees of freedom. /7, is usually called the critical F-

value at a -level of significance.
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F-test for Linear Restrictions™

Hy: Restrictions are true

Ha: At least one restriction is not true

Above linear restrictions postulate that #, which indicates as null hypothesis
represents the restrictions are true. Whereby H |, considers as alternative hypothesis
exhibits that at least one restriction is not true. As usual the null hypothesis is tested
against the alternative hypothesis. As previously mentioned, it the null hypothesis is
rejected and the alternative hypothesis is accepted, that means at least one restriction is
not true. Otherwise, it the alternative hypothesis is rejected and the null hypothesis is

accepted, this demonstrates that the restrictions are true.

F-test {or Linear Restrictions

(RSS, = RSS,)/ s
¢ Ie,\‘..\'u /( n-— /‘ ) @5k

LI s

From the F-table, 7+,
Result: reject the null hypotheses if 15, > I, . for a a-level test
RSS, = Total Residual Sum of Squares (Zzu’ *y for the unrestricted model

RSS, = Total Residual Sum of Squares (Zuiz) tor the restricted model

n = number of observations

3 Refer to Gujarati (2003), “Restricted Least Squares: Testing Lincar Equality Restrictions -- The F-test
Approach: Restricted Least Squares” from page 267-273.
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k = number of parameters in the unrestricted model

s = number of restrictions for the numerator

a = level of significance

n-k = degrees of freedom for the denominator (losing some of the degrees of freedom)
F = F-calculated value

F. = F-critical value

F, = values of the F-variable obtained from the F-distribution for a-level of signiticance

Above F-statistic also defined follows the F-distribution but it is divided by the
number of restrictions. RSS, is considered as Total Residual Sum of Squares for the
unrestricted model, while RSS, represents the Total Residual Sum of Squares for the
restricted model. The outcome of RSS, minus RSS, is divided by the number of
restrictions, whereas, the RSS, only divided by n-k degrees of freedom. [+, is the critical

F-value at a-level of significance.

4.4 Lag Determination

The idea of imposing a penalty for adding regressors to the model has been
carried further in the Akaike Information Criterion (AIC) and Bayesian Schwarz
Criterion (BIC) or Schwarz Information Criterion (SIC)SS. Both tests are used to

determine the optimum lag-length (p), which optimum lag-length is determined by

55 Refer to Gujarati (2003), * Akaike Information Criterion (AIC}) and Schwarz Information Criterion (SIC)Y”
from page 537-538.
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choosing the minimum values of these two tests. In other words, the lower values of
Akaike and Schwarz are chosen to obtain the goodness of fit of the model. On this basis,
the more parsimonious model is preferable. Parsimonious is a tradeoff of a model and the
model is considered parsimonious when the number of explanatory variables 1s less. A

better model comprises less explanatory variables.

From the aspect of number of parameters (k) and also number of observations in
natural logarithm (Inn), BIC is preferred because Inn > 2, which is greater than the
number of k. Therefore, BIC tends to choose models that are more parsimonious with less
parameter. However, AIC tends to choose models that are less parsimonious with more

parameters. Below is the explanation for both AIC and BIC. According to Gujarati

(2003):

Akaike Information Criterion (AIC)

A
v 2
AlC = nZul + 2k
Where n =+ number of observations
~ 2 ..
Y u,* ~ Total Residual Sum of Squares in period t

k = number of parameters including the intercept

For mathematical convenience, above equation can also be written as:

In /1/(':‘21/;/

Where In A/ = natural log of AIC

2k
i
H
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2k .
— = penalty factor
H

AIC imposes a harsher penalty than R* for adding more regressors. In comparing two or
more models, the model with the lowest value of AIC is preferred. One advantage of AIC
is that it is useful for not only in-sample but also out-of-sample forecasting performance

of a regression model. Also, it is useful for both nested and non-nested models.

Bayesian Schwarz Criterion (BIC) or Schwarz Information Criterion (SIC)

Similar in spirit to the AIC, the BIC or SIC criterion is defined as:
BIC or SIC = nzu:z +klnn

Where n = number of observations

Zz:,“ = Total Residual Sum of Squares in period t

k = number of parameters including the intercept

Inn = number of observations in logarithmic (log.) term

While in log-form:

- k.l_.r}.ii

n

InBIC or InSIC = 1In

"o
lel

k ) > g -\ Y L I 2
Where —Inn is the penalty factor. BIC or SIC imposes a harsher penalty than AIC. Like
n

AIC, the lower the value of BIC or SIC, the better the model. Again, like AIC, BIC or
SIC can be used to compare in-sample or out-of-sample forecasting performance of a

model.
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4.5 Conclusion

Current time-series techniques, namely Unit Root Test, Johansen Cointegration
Test and Granger Causality Test applied in this study are used to investigate whether a
stable long run relationship exists for medical care. These techniques are employed to
examine the series for Singapore and Malaysia. The data is also studied to see whether
there is any persistent pattern between them, which will cause a long run stable

relationship.
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