
CHAPTER 1: INTRODUCTION 

 

Epstein-Barr virus (EBV) persistently infects more than 90% of the human 

population. Epstein-Barr virus had been intensively studied over the past years due to its 

association with a number of malignancies of lymphoid and epithelial origins. EBV is 

linked to lymphoid malignancies namely classical Hodgkin’s disease, non-Hodgkin 

lymphomas, B-cell lymphomas and nasal NK/T-cell lymphomas (Middeldorp et al., 2003; 

Saha and Robertson, 2011). EBV is also associated with epithelial malignancies ie. 

nasopharyngeal carcinoma (NPC) (Chang and Adami, 2006) and EBV-linked gastric 

carcinoma (GC) (Takada, 2000).  

Epstein-Barr virus (EBV) encodes the oncogene LMP1 (Latent Membrane Protein-

1) and a candidate oncogene BARF1 (BamH1-A Rightward Frame-1). LMP1 and BARF1 

play important roles in cellular gene expression and is thought to be involved in EBV-

mediated tumorigenesis (Wei and Ooka, 1989; Wei et al., 1997). Interestingly, BARF1 was 

expressed in the absence of LMP1 or lytic proteins in primary primate kidney epithelial 

cells immortalized by EBV infection (Danve et al., 2001).   

BARF1 expression had been detected in malignant epithelial cells and B cells. 

BARF1 expression was demonstrated in B-lymphoma frequent in Malawi (Xue et al., 

2002) and in nasal NK/T-cell lymphoma (Zhang et al., 2006). BARF1 was also expressed 

at high levels consistently in nasopharyngeal carcinoma (NPC) (Decaussin et al., 2000; 

Seto et al., 2005), in EBV-associated gastric carcinoma (GC) (Zur Hausen et al., 2000) and 

in EBV-immortalized epithelial cells (Danve et al., 2001). 
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Several studies have delineated the involvement of BARF1 in oncogenic 

mechanism. BARF1 had been shown to induce malignant transformation in established 

rodent fibroblasts (Wei and Ooka, 1989), primary primate epithelial cells (Wei et al., 1997) 

and in human EBV-negative B cells (Sheng et al., 2001). Furthermore, purified BARF1 

from serum showed a powerful mitogenic activity (Houali et al., 2007). BARF1 was also 

recognized by NK cells in ADCC (Antibody-dependent cellular cytotoxity) test (Tanner et 

al., 1997). Hence, BARF1 is not only involved in oncogenic mechanism but also in 

immunomodulation.  

The introduction of recombinant EBV carrying the BARF1 gene into EBV-negative 

cell lines did not alter the expression level of Bcl-2 but induces NPC cell tumorigenicity in 

nude mice (Seto et al., 2008). Introduction of BARF1 into primary primate kidney 

epithelial PATAS cells led to morphological changes as well as continuous cell growth 

(Wei et al., 1997). BARF1 together with H-Ras was reported to be able to transform human 

epithelial cells (Jiang et al., 2009).  

BARF1 has been shown to activate the anti-apoptotic protein Bcl-2 in rodent 

fibroblasts (Sheng et al., 2001) and in EBV negative human Akata B cells transfected by 

BARF1 (Sheng et al., 2003), suggesting an anti-apoptotic role of BARF1. Furthermore, 

BARF1 expression in gastric cancer cells protected the cells from apoptosis (Wang et al., 

2006).  

Collectively, these findings indicate that besides promoting cell proliferation, 

BARF1 may function as a survival factor by suppressing apoptosis pathway. However, the 

exact mechanism of how the anti-apoptotic effect of BARF1 is mediated is not well 

documented and remains to be clarified. Modulation of the apoptotic machinery in 
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malignancies is a well established mechanism that promotes the survival of cancer cells. 

Understanding the involvement of anti-apoptotic genes in cancer cell survival by 

unravelling the molecular mechanisms by which these genes elicit their effect is pertinent 

to understand the pathological mechanisms that lead to cancer (Busca et al., 2009).  

Hence, this study aimed to investigate the molecular mechanisms by which BARF1 

employs in its anti-apoptotic function. I aimed to silence the expression of BARF1 in EBV-

positive malignant cells using siRNAs targeting BARF1 mRNA. I hypothesized that 

BARF1 depletion will induce apoptosis in malignant cell lines associated with EBV. 

 

The specific aims of the current study are as follows: 

1. To construct effective siRNA to knockdown BARF1 expression at mRNA and protein 

levels. 

2. To study impacts of BARF1 knockdown on cell proliferation and apoptosis in Epstein-

Barr virus-positive malignant cells. 

3. To investigate the molecular mechanisms involved in the regulation of apoptosis in 

BARF1-silenced cells.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. History of Epstein-Barr virus (EBV) 

Denis Burkitt described a common cancer primarily affecting the jaws of children in 

specific regions of Africa (Burkitt, 1958). Burkitt believed a virus might be responsible for 

the cancer, supported by the climatic and geographic distribution of the cases (Burkitt, 

1972). EBV was first identified in 1964 when Anthony Epstein’s group identified virus-like 

particles by electron microscopy in a cell line that had been established from a Burkitt’s 

lymphoma biopsy (Epstein et al., 1964). Later, it was found that sera from patients with the 

lymphoma that Burkitt had described had much higher antibody titres to EBV than the 

controls without the lymphoma (Epstein et al., 1965). The subsequent detection of EBV 

DNA in Burkitt’s lymphoma and the experimental production of lymphomas in cotton-top 

marmosets and owl monkeys established EBV as the first virus clearly implicated in the 

development of a human tumour (Robertson, 2005). 

 

2.2. Types of EBV 

Two subtypes of EBV are known to infect humans: EBV-1 and EBV-2. EBV-1 and 

EBV-2 differ in the organization of the genes that code for the EBV nuclear antigen 

(EBNA-2, EBNA-3a, EBNA-3b, and EBNA-3c) (Sample et al., 1990). EBV-2 transforms 

B cells less efficiently than EBV-1 in vitro, and the viability of EBV-2 lymphoblastoid cell 

lines is less than that of EBV-1 lines (Rickinson et al., 1987). 
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2.3. Molecular biology of EBV 

EBV is a herpesvirus with a 184-kbp long, double-stranded DNA genome that 

encodes >85 genes (Kieff and Rickinson, 2001). The viral genome consists of a series of 

0.5-kb terminal direct repeats at either end and internal repeat sequences that serve to 

divide the genome into short and long unique sequence domains that have most of the 

coding capacity. EBV, as with other herpesviruses, has a toroid-shaped protein core 

wrapped with double-stranded DNA, a nucleocapsid with 162 capsomeres, a protein 

tegument between the nucleocapsid and envelope, and an outer envelope with external 

glycoprotein spikes (Kieff and Rickinson, 2001).  

2.4. Epstein-Barr virus infection 

EBV infection is ubiquitous as over 90% of the population worldwide is infected. 

Primary EBV infection usually occurs in childhood and is asymptomatic. A clinical 

syndrome of infectious mononucleosis (IM) may be manifested if the primary infection 

occurs in adolescence or adulthood, which is a benign lymphoproliferative disorder 

characterized by an extrafollicular expansion of EBV-infected B lymphoblasts (Young and 

Rickinson, 2004). 

When EBV infects a cell, the DNA becomes a circular episome with a characteristic 

number of terminal repeats, depending on the number of terminal repeats in the parental 

genome, with variation introduced during viral replication (Baumforth et al., 1999). If the 

infection is permissive for latent infection but not replication, future generations will have 

EBV episomes with the same number of terminal repeats.  
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Twelve viral genes can be expressed in different combinations during latent viral 

infection (Figure 2.1), while the remaining 70 major open reading frames are expressed 

during the replicative, lytic cycle. During latency, EBV genes are expressed in four 

programs, denoted latency 0, I, II and III. In latency III all 12 latency genes are expressed, 

including six nuclear proteins, Epstein-Barr nuclear antigen (EBNA)-1-6, three membrane 

proteins latent membrane proteins (LMP1, LMP2A and LMP2B), BamHI-A rightward 

transcripts (BARTs) and two small non-translated RNAs (EBER 1 & 2). In latency II, the 

viral genes for EBNA1, the three membrane proteins and the EBERs are expressed while in 

latency state 0/I, only LMP2A and variably EBNA-1 are expressed (Amon and Farrell, 

2005). 

Primary infection is thought to occur in the oropharynx, possibly the epithelial cells, 

and induces a lytic replication. The virus infects B lymphocytes by binding the CD21 

receptor (also known as the C3d or CR2 receptor) on the B cell surface with the viral 

envelope glycoprotein gp 350. The penetration also requires a complex of three 

glycoproteins; gH, gL and gp42, in which the binding of gp42 to human leukocyte antigen 

(HLA) class II molecules functions as a co-receptor (Young and Rickinson, 2004). gH is 

thought to be critical for cell fusion.  

Although many of these virus-infected B cells are removed by the specific primary 

T cell response, a stable reservoir of memory B cells is thought to harbour EBV genome, in 

which viral latent gene expression is mostly suppressed. During the latent infection of these 

memory B cells, EBV replicates once every cell division during S phase as a circular 

episome (Yates and Guan, 1991).  
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Figure 2.1. The EBV genome. The location and transcription of the EBV latent genes on 

the double-stranded circular viral DNA episome are shown. The arrows in different colours 

represent the latent genes and their transcriptional directions.  

Latent genes: Nine latent genes include the six EBV-encoded nuclear antigens (EBNAs 1, 2, 

3A, 3B, 3C and EBNA-LP) and the three latent membrane proteins (LMPs 1, 2A and 2B). 

EBERs: The transcriptions of non-polyadenylated EBV-encoded RNAs (EBERs) are 

shown. 

BARF1: The exons encoding BARF0 and BARF1 are within BamHI-A region. 

TR: The terminal repeat (TR) region formed during the circularization of the linear DNA to 

become the episome is shown in purple. 

oriP: The origin of plasmid replication (oriP) of EBV genome is shown in orange. 

Cp or Wp promoter: The outer green arrow represents transcription of all the EBNAs under 

the control of either the Cp or Wp promoter during latency III. 

Qp promoter: The inner red arrow represents the EBNA1 transcript which is under the 

control of Qp promoter during latency I and latency II. 
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EBV binding to CD21 immediately activates tyrosine kinase lck and mobilizes 

calcium. This is followed by an increase in mRNA synthesis, blast transformation, 

homotypic cell adhesion, surface CD23 expression (a characteristic surface marker for 

activated B cells), and interleukin (IL)-6 production (Alfieri et al., 1991). The viral genome 

is then uncoated and delivered to the nucleus where it immediately circularizes. 

Circularization and W promoter expression launch an ordered cascade of events that leads 

to the expression of all the EBNA proteins and the two latent membrane proteins (LMPs) 

(Allday et al., 1989).  

The EBV nuclear antigen leader protein (EBNA-LP) and EBNA-2 proteins are the 

first proteins to be detected upon EBV infection (Hennessy and Kieff, 1985). At 24-48 h 

after infection, a promoter shift occurs where the C promoter (Cp) is used in favour of the 

initial promoter W promoter. Initially, it was hypothesized that the switch from the Wp to 

the Cp promoter coincided with the switch to an expanded pattern of splicing that allows 

expression of EBNA-3A, EBNA-3B, EBNA-3C, and EBNA-1 (Schlager et al., 1996). It is 

now known that the expanded pattern of splicing likely precedes the promoter switch.  

This is consistent with the data that suggests that the downstream EBNAs regulate 

promoter Cp activation (Radkov et al., 1997). All of the EBNA transcriptional products are 

involved in transcriptional control and participate in the activation of the expression of the 

viral LMP-encoding genes (LMP1 and LMP2) and several cellular genes. The combined 

action of these viral and cellular proteins serves to initiate cellular S-phase 24-48 h after 

infection (Rowe, 1999). 
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After the initial infection, EBV persists in a circulating subset of resting memory B 

cells in healthy individuals at a frequency of ~1 in 1 x 10
5
 to 1 x 10

6
 cells. The viral 

genome is generally episomal and present in low numbers in the host cell’s nucleus. 

Immunosuppressive states permit spontaneous replication of the episomal virus in 

circulating B cells, as observed in acute infectious mononucleosis (Rowe, 1999).  

Immunocompetent carriers control latent EBV infection via cytotoxic T 

lymphocytes (CTLs). Loss of the EBV-specific CTL may permit the development of 

lymphoma. Besides its well known tropism for B cells, the targets of EBV infection may 

also include epithelial cells, T cells, and cells of the macrocytic, granulocytic, and natural 

killer lineages. These cells may be infected by mechanisms different from the CD21-

mediated internalization typical in B cells (Rowe, 1999). 

Persistent infection of epithelial cells in nasopharynx is substantially different from 

B cells, and the mechanisms are still unclear. The virus-positive B cells might be able to 

activate different latency programmes and undergo the viral lytic cycle in the mucosal sites 

in the oropharynx (Young and Rickinson, 2004). It is believed that genetic alterations in the 

epithelial cells confer susceptibility to the EBV infection because EBV genome could not 

be detected in normal nasopharyngeal epithelial cells (Lo et al., 2004). How persistent and 

latent infection of nasopharyngeal epithelial cells occurs is a critical aspect for the 

understanding of carcinogenesis of NPC. 
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As found in undifferentiated NPC tumours, every NPC cell carries circular and 

extrachromosomal episomes of EBV genome (Figure 2.1) which is estimated to be 1-30 

copies per cell (Spano et al., 2003). The circularization of 172 kb-long EBV episome is 

formed by joining its terminal repeats regions located at either end of the linear double 

stranded DNA.  

Since cells infected by different EBV particles have different number of terminal 

repeats in the EBV episomes, the analysis of structure of termini of EBV show that the 

EBV episomes within an NPC tumour are homogenous and monoclonal (Pathmanathan et 

al., 1995). This evidence suggests that viral infection may have taken place before the 

malignant clonal expansion of a single EBV-infected cell. 

 

2.5. EBV genes 

 

2.5.1. Epstein-Barr virus nuclear antigen 1 (EBNA1) 

 

EBNA1 is essential for transformation of B cells by EBV and is expressed during 

latent and lytic infection. EBNA1 is important in maintaining the replication of the EBV 

episome in latent infection and is expressed in all types of EBV latency (Kieff and 

Rickinson, 2001). EBNA1 may also play a role in tumorigenesis. The protein is present in 

all EBV-associated tumors. EBNA1 is inadequately processed for MHC class I recognition 

and may play a role in escaping from immune surveillance in infected hosts (Niedobitek 

and Young, 1994). 

 



11 

 

2.5.2. Epstein-Barr virus nuclear antigen 2 (EBNA2) 

 

EBNA2 is a transcriptional coactivator that coordinates viral gene expression in 

latency III and also transactivates many cellular genes. EBNA2 plays a critical role in cell 

immortalization (Wensing and Farrell, 2000). EBNA2 (and Epstein-Barr virus nuclear 

antigen leader protein, EBNA-LP) are the first latent proteins detected after EBV infection. 

There are two distinct types of EBNA2 that are identified serologically, and these two types 

correspond to EBV-1 and EBV-2 (Rowe and Clarke, 1989). 

EBNA2 primarily serves to up-regulate the expression of viral and cellular genes. 

Among these are CD23 (a surface marker of activated B-cells), c-myc (a cellular proto-

oncogene), and viral EBNA-C promoter (Weiss and Movahed, 1989). This up-regulation is 

achieved not by binding DNA directly but by binding other transcription factors (most 

notably, the viral Cp binding factor 1), consequently bringing the strong transcription 

domain of EBNA-2 close to the C promoter  (Henkel et al., 1994). EBNA-2 is also known 

to interact with other transcription factors involved in the Notch signaling pathway. This 

pathway is important in cell fate determination in the fruit fly and may play a role in 

development of T-cell lymphoma in humans. It is likely that many other factors are yet to 

be discovered that interact with EBNA-2 and aid in transactivating both cellular and viral 

gene expression (Henkel et al., 1994). 
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2.5.3. Epstein-Barr virus nuclear antigen 3A, 3B, 3C (EBNA3A, EBNA3B, EBNA3C) 

 

EBNA-3A, EBNA-3B, and EBNA-3C are transcriptional regulators. EBNA-3A and 

EBNA-3C are crucial for in vitro B-cell transformation, whereas EBNA-3B is dispensible 

(Murray and Young, 2002). EBNA-3 family members are encoded by three genes that are 

adjacent on the viral genome. Conserved sequences are confined to the NH2-terminal third 

of the molecules (Rowe, 1999). Divergence in EBNA-3A, EBNA-3B, and EBNA-3C 

between the two subtypes of EBV (EBV-1 and EBV-2) is apparent, given that the primary 

sequences of these genes are only 84, 80, and 72% homologous, respectively (Karlin et al., 

1990).  

EBNA-3A and EBNA-3C have been shown to both be essential in immortalization. 

EBNA-3C may overcome the retinoblastoma tumor suppressor gene checkpoint in the G1 

phase of the cell cycle (Parker et al., 1996). EBNA-3C has also been shown to increase the 

production of LMP-1 in some conditions (Allday and Farrell, 1994). All three EBNA-3s 

interact with Cp binding factor 1. Cp binding factor 1 is involved in the notch signaling 

pathway and overexpression of the notch protein has been observed in human T-cell 

malignancies (Joutel and Tournier-Lasserve, 1998). How each individual EBNA3 proteins 

regulate Cp binding factor 1-mediated gene expression is not clear. 
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2.5.4. Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) 

 

EBNA-LP, also known as EBNA-5, is one of the first viral proteins produced 

during EBV infection of B cells (Wensing and Farrell, 2000). EBNA-LP interacts with 

EBNA-2 to drive resting B lymphocytes into the G1 phase of the cell cycle (Sinclair et al., 

1994) by binding and inactivating cellular p53 and retinoblastoma protein tumor suppressor 

gene products (Szekely et al., 1993). It has also been shown that EBNA-LP interacts with 

other transcription factors involved in the Notch signaling pathway (Henkel et al., 1994). 

However, more remains to be understood on the function of EBNA-LP in transformation 

and during the viral life cycle. 

 

2.5.5. Epstein-Barr virus-encoded RNAs (EBERs) 

 

EBERs 1 and 2 are nonpolyadenylated, uncapped, noncoding RNAs of 167 and 172 

nucleotides, respectively (Rowe, 1999). They are expressed abundantly in nearly all EBV-

infected cells and are expressed in all forms of latency (Murray and Young, 2002). EBERs 

have been implicated in the induction of autocrine growth factors and in maintaining the 

malignant phenotype of Burkitt’s lymphoma cells, all of which supports a potential role for 

these RNAs in oncogenesis (Takada and Nanbo, 2001).  

Transfection of the EBER genes into the EBV-negative Akata cell line restored the 

oncogenic potential that was originally present in the EBV-positive Akata cells but was lost 

in the EBV-negative subclones (Komano et al., 1999). Even so, recombinant EBV with 

EBER genes deleted can transform lymphocytes, suggesting that EBERs are nonessential 
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for transformation (Swaminathan et al., 1991). Therefore, the role of EBER in 

transformation is still unclear.  

 

2.5.6. BamHI-H fragment rightward reading frame 1 (BHRF1) 

 

BHRF1 is an immediate early gene expressed abundantly during EBV lytic 

replication (Dawson et al., 1995). BHRF1 shows partial (25%) sequence homology to the 

human BCL-2 proto-oncogene, and both have been shown to protect human B lymphocytes 

from apoptosis (Henderson et al., 1993). BHRF1 products can also interfere with epithelial 

cellular differentiation (Dawson et al., 1995). BHRF1 may enhance cell survival, allowing 

oncogenic mutations to accumulate; it may also permit the production of a maximum 

number of virions through the inhibition of apoptosis (Oudejans et al., 1995). 

 

2.5.7. BamHI-C fragment rightward reading frame 1 (BCRF1) 

 

EBV BCRF1 protein shows 84% sequence homology to human IL-10. IL-10 is a 

known growth and activation factor for B cells (Moore et al., 1991). EBV-derived IL-10 is 

thought to play a role in the establishment of latent infection by suppression of the host 

immune system (Helminen et al., 1999). BCRF1 is not able to initiate growth 

transformation or maintaining latent and lytic infection of B cells in vitro (Swaminathan et 

al., 1993). 
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2.5.8. BamHI-Z leftward reading frame 1 (BZLF1) 

 

BZLF1, or termed Z Epstein-Barr replication activator (ZEBRA) is the major 

immediate early proteins of EBV. BZLF1 activates transcription of viral early genes. This 

protein is able to inhibit transcription from the EBNA Cp promoter and may facilitate the 

switch from latent to lytic infection. BZLF1 inhibits the ability of the viral protein to 

transactivate viral gene expression by binding to NF-κB or p53 (Sinclair et al., 1992). 

 

2.5.9. Latent Membrane Protein 1 (LMP1) 

 

LMP1 is involved in transformation by acting as a constitutively active receptor 

(CD40). Hence, this protein mimics the cellular growth signal that normally results from 

the binding of CD40 ligand. LMP1 has been linked to oncogenesis due to its ability to 

recruit an array of cellular genes. It also inhibits apoptosis by elevating levels of Bcl-2 

(Zimber-Strobl et al., 1996).  

LMP1 is an integral membrane protein with six hydrophobic membrane-spanning 

segments and a COOH-terminal cytoplasmic tail, which contains the effector. LMP1 

aggregates in patches on the plasma membrane. Mutational analyses have demonstrated 

that the NH2 terminus and the transmembrane segments of LMP1 are responsible for 

membrane aggregation and that this aggregation is essential for immortalization (Moorthy 

and Thorley-Lawson, 1993). LMP1 mimics CD40 by associating with the same tumor 

necrosis factor receptor-associated factors (TRAFs). The COOH-terminal domain of LMP1 
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interacts TRAF-1 and TRAF-2 and with tumor necrosis factor receptor-associated death 

domain protein (Izumi and Kieff, 1997). 

In the function of LMP1, at least four signaling pathways, namely nuclear factor-κB 

(NF- κB), c-Jun NH2-terminal kinase, p38 mitogen-activated protein kinase (MAPK), and 

Janus kinase/signal transducers and activators of transcription are involved. These 

molecules affect diverse signaling cascades.  

Nuclear factor-κB is a key transcription factor involved in regulation of cell growth 

and apoptosis. p38/mitogen-activated protein kinase is also a central signaling pathway and 

activates the ATF2 transcription factor.  

Meanwhile, the Janus kinase/signal transducers and activators of transcription 

cascade integrate with the activator protein-1 transcription factor pathway (Eliopoulos et 

al., 1999; Gires et al., 1999). The LMP-1 interactions also cause an overexpression of 

proteins Bcl-2 and A20, which protects the infected cell from p53-mediated apoptosis 

(Fries et al., 1996).  

 

2.5.10. Latent Membrane Protein 2A and 2B (LMP2A and LMP2B) 

 

The LMP2 gene encodes two proteins: LMP2A and LMP2B. These proteins are 

both integral membrane proteins that differ in their NH2-terminal domains. LMP2A carries 

an extra 118-residue domain encoded in exon 1, whereas the LMP2B exon 1 is noncoding. 

The NH2-terminal domain of LMP2A is cytoplasmic and contains an immunoreceptor 

tyrosine-based activation motif (Rowe, 1999).  
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A synthesis of the data supports a role for LMP2 in modifying normal B-cell 

development to favour maintenance of EBV latency in the bone marrow. The expression of 

LMP2A in Hodgkin’s disease and nasopharyngeal carcinoma suggests an important, as yet 

unknown, function for this protein in oncogenesis (Murray and Young, 2002).  

 

2.5.11. BamHI-A rightward frame 1 (BARF1) 

 

BamHI-A rightward frame 1, BARF1 gene is expressed as a latent gene and 

transcribed early after EBV infection from the BamHI-A fragment of the EBV genome 

(Zhang et al., 1988). Another gene encoded by the BamHI-A fragment is BamHI-A 

rightward transcripts, BARTs. BARTs is located at bp 150,000–161,000 of B95-8 EBV 

DNA. BARTs has several distinct spliced forms, all of which are 3′-end coterminal 

(Gilligan et al., 1990).  

The BARF1 open reading frame is located within a 40kb fragment of the EBV 

genome. The BARF1 gene is located downstream of BARTs, encodes 221 amino acids 

(Sadler et al., 2001) and is translated into a protein of 31–33 kDa (Zhang et al., 1988).  

Crystallographic analysis of BARF1 showed that BARF1 froms hexameric rings in 

which three dimer molecules are interconnected head to tail and arranged in two layers as 

shown in Figure 2.2. 
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Figure 2.2. The structure of the soluble hexameric molecule BARF1. A) Top view of 

the BARF1 hexamer. Arrows show the N-linked glycosylation. B) side view of the BARF1 

hexamer. Adapted from Hoebe et al., 2013. 
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Reviewed below are the roles of BARF1 in host cell immortalization and 

transformation, BARF1 as mitogenic growth factor, BARF1’s role in immunomodulation 

as well as its antiapoptotic function. 

Studies have shown that BARF1 modulates the host immune response to EBV 

infection (Strockbine et al., 1998). BARF1 is a functional homolog of the receptor tyrosine 

kinase colony-stimulating factor receptor (c-FMS or FMS), competing for its ligand, 

macrophage colony-stimulating factor (M-CSF, or CSF-1) (Strockbine et al., 1998). M-

CSF is a hematopoietic growth factor involved in the proliferation, differentiation, and 

survival of monocytes, macrophages, and bone marrow progenitor cells (Stanley et al., 

1997). It signals through the cell-surface receptor FMS, which is a class III receptor 

tyrosine kinase featuring five extracellular Ig-like domains, with the membrane-distal 

domains responsible for ligand recognition and the membrane-proximal domains involved 

in homotypic interactions (Yuzawa et al., 2007; Chen et al., 2008).  

The interaction between BARF1 and M-CSF suggests that BARF1 may work 

functionally as an immunomodulator. Furthermore, BARF1 inhibits IFN-a production by 

mononuclear cells, by binding to M-CSF and reducing the effect of M-CSF on the 

proliferation of macrophages (Cohen and Lekstrom, 1999). 

The EBV-encoded BARF1 has been proposed to function as an oncogene. In 

experiments whereby BARF1 was expressed endogenously, they were found to be secreted 

(Sall et al., 2004; de Turenne-Tessier et al., 2005; Seto et al., 2005; Wang et al., 2006; Seto 

et al., 2008; Fiorini and Ooka, 2008; Hoebe et al., 2011; Hoebe et al., 2012; Shim et al., 

2012).  
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BARF1 is expressed in a high proportion of NPC cases and EBV-positive gastric 

carcinomas (Decaussin et al., 2000; Seto et al., 2005; Takada, 2012) and higher levels of 

BARF1 antibodies are found in NPC patients (Hoebe et al., 2011). 

The N-terminal of BARF1 gene may be essential for the transforming activity; 

capable of activating expression of the antiapoptotic protein Bcl-2 (Sheng et al., 2001). 

BARF1 is able to induce malignant transformation in rodent cells (BALB/c3T3 and 

NIH3T3) as well as in human B cell lines Louckes and Akata (Wei and Ooka, 1989; Wei, 

et al., 1994; Sheng et al., 2003). Transfection experiments demonstrated the ability of 

BARF1 to induce cell immortalization or malignant transformation and to activate several 

cellular genes, including Bcl-2 (de Turenne-Tessier et al., 2005; Ooka, 2005). However, 

Wei et al in 1997 reported that immortalization can only be achieved in primary monkey 

epithelial cells. These findings indicate that the function of BARF1 may be cell type 

specific.  

A recent study reported that the introduction of recombinant EBV carrying the 

BARF1 gene into EBV-negative cell lines did not alter the expression level of Bcl-2 but 

induces NPC cell tumorigenicity in nude mice (Seto et al., 2008). Hence, the mechanism of 

the antiapoptotic effect of BARF1 remains to be clarified. 

Introduction of BARF1 gene into primary primate kidney epithelial PATAS cells 

led to morphological changes, continuous cell growth and the capacity to grow in highly 

diluted culture condition. However, contact inhibition was conserved in these cells, and no 

tumor formation was observed after injection into nude mice (Wei et al., 1997). Thus, 

BARF1 by itself could only immortalize but could not transform the primate primary 

epithelial cells.  
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Meanwhile, the cellular function of BARF1 in human nasopharyngeal epithelial 

cells, which are the natural host cells of EBV infection, remains largely unknown because 

of the lack of suitable cell model. Therefore, whether BARF1 can transform primate or 

human epithelial cells remain unclear. However, Jiang and colleagues in 2009 reported that 

BARF1 together with H-Ras could transform human epithelial cells (Jiang et al., 2009). 

Deregulation of c-myc and/or Bcl-2 expression cannot be the main mechanism of cell 

transformation by BARF1. Some other signaling pathway might have been disrupted and 

play an important role in the transformation process by BARF1 (Jiang et al., 2009). Further 

investigations may help to elucidate the underlying mechanism. 

 

2.6. EBV-associated cancers 

Since its discovery as the first human tumor virus, EBV has been implicated in the 

development of a wide range of cancers. 

2.6.1. Burkitt’s Lymphoma 

Burkitt’s lymphoma is a particularly aggressive lymphoma, the hallmark being a 

chromosomal translocation between chromosome 8 and either chromosomes 14, 2, or 22. 

Because of this translocation, the oncogene c-myc (chromosome 8) is juxtaposed to the 

immunoglobulin heavy-chain (chromosome 14) or light-chain genes (chromosomes 2 or 

22). This aberrant configuration results in the deregulation of c-myc expression. The 

relationship between EBV, Burkitt’s lymphoma, and the c-myc translocation is complicated 

by the existence of two types of Burkitt’s lymphoma: endemic (EBV present) and 

nonendemic (EBV generally absent). Although both types of Burkitt’s lymphoma exhibit a 
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c-myc translocation, the breakpoints within the genes involved differ (Baumforth et al., 

1999). 

Endemic Burkitt’s lymphoma occurs primarily in equatorial Africa and Papua New 

Guinea, with >90% of cases being associated with EBV. The role of EBV in Burkitt’s 

lymphomas is strongly supported by observations of the Akata Burkitt’s lymphoma cell 

line. Akata subcultures that have lost EBV have decreased growth and will not induce 

tumors in mice (Shimizu et al., 1994). However, reinfection of the Akata cells with EBV 

reestablishes the malignant phenotype (Komano et al., 1998). Latency I gene expression is 

observed. It has been theorized that B-cell stimulation caused by continuous reinfection by 

malaria may contribute to an expanded number of EBV-infected, proliferating B cells, 

which have a higher probability of harboring cytogenetic abnormalities such as the t(8;14). 

The breaks in chromosome 8 generally occur outside the c-myc locus. Whether there is a 

direct causal relationship between EBV and the development of the translocation is not 

known (Lyons and Liebowitz, 1998). There are several other mechanisms by which EBV 

may mediate lymphomagenesis. For instance, EBV modulates caspase-8 and FLICE-

inhibitory protein, which leads to impairment of the Fas-mediated apoptotic pathway. 

Furthermore, EBV is responsible for increasing levels of the antiapoptotic protein Bcl-2 in 

lymphoblastiod cell lines that maintain latency I (Tepper and Seldin, 1999). 

Nonendemic Burkitt’s lymphoma or sporadic lymphoma is found in the West and 

has been a rare disorder, but its incidence has increased dramatically because of its high 

prevalence in AIDS patients. Only 15–30% of nonendemic Burkitt’s lymphoma cases are 

associated with EBV in the United States (Subar et al., 1988) but 85% in Brazil (Araujo et 

al., 1996). As with malaria in endemic Africa, coinfection is thought to increase the 
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oncogenic potential of the B cell (Araujo et al., 1996). A t(8;14) translocation occurs in 

nonendemic Burkitt’s lymphoma but, unlike the endemic form, the breaks in chromosome 

8 appear 5′ to the first noncoding c-myc exon within the first exon or within the first intron 

of c-myc (Baumforth et al., 1999). 

There are subtle phenotypic differences between endemic and nonendemic Burkitt’s 

lymphoma. In endemic disease, bone marrow is less frequently involved, and patients are 

more sensitive to chemotherapy (Pagano, 1999). The tumors isolated from nonendemic 

Burkitt’s lymphoma patients are usually from different stages of B-cell development than 

those isolated from patients with endemic Burkitt’s lymphoma (Wensing and Farrell, 

2000). The relationship between the phenotypic distinctions and the presence/absence of 

EBV and/or molecular differences is currently not clear. 

 

2.6.2. Hodgkin’s disease 

 

Hodgkin’s disease is characterized by an expansion of Reed-Sternberg cells, which 

are now postulated to be of B-cell lineage. Several lines of evidence link EBV to Hodgkin’s 

disease: (a) a 4-fold increase in risk in individuals with a past history of infectious 

mononucleosis (Muñoz, et al., 1978); (b) increased antibody titers to EBV viral capsid 

antigen (Levine et al., 1971); and (c) the detection of monoclonal EBV episomes in 

Hodgkin’s-Reed-Sternberg cells (Herbst et al., 1993). 
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The role that EBV plays in Hodgkin’s disease is still not fully understood. EBV 

gene expression follows the latency II pattern with EBNA1, LMP-, LMP2A and LMP2B, 

and the EBERs being expressed. The questionable role of EBNA1 in carcinogenesis and the 

oncogenic capabilities of LMP1, LMP2A and LMP2B, and the EBERs have been 

addressed (Khanna et al., 1992). 

Not all subtypes of Hodgkin’s disease harbor EBV to the same degree. EBV is 

positive in lymphoma tissue of ∼70% of mixed cellularity Hodgkin’s disease, >95% of 

lymphocyte-depleted Hodgkin’s disease, and 10–40% of nodular sclerosis; the lymphocyte-

predominant Hodgkin’s disease subtype is almost always EBV negative (Chapman and 

Rickinson, 1998). EBV positivity in geographic variations has also been studied. EBV 

positivity in Hodgkin’s disease is found in 65% of cases in Japan, 67% of cases in Mexico, 

94% of cases in Peru, 40% of cases in Costa Rica, 92% of cases in Kenya, 41% of cases in 

Italy, and ∼50% of cases in the United States (Tomita et al., 1996; Zarate-Osorno et al., 

1995; Monterroso et al., 1998; Leoncini et al., 1996). Strain variation does not seem to be a 

factor in EBV positivity; however, there is an increased incidence of EBV-2-positive 

Hodgkin’s disease in immunocompromised individuals (Boyle et al., 1993). There is also 

data that suggests that the incidence of EBV-positive Hodgkin’s disease is age-related, with 

the virus being preferentially associated with tumors from pediatric and older patients 

(Armstrong et al., 1998).  
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2.6.3. Non-Hodgkin’s Lymphoma in Immunocompetent Individuals 

Besides its ability to infect B cells, EBV can also infect other cells. Several types of 

non-B-cell, non-Hodgkin’s lymphoma are associated with EBV (Weiss et al., 1992). Nasal 

T/natural killer non-Hodgkin’s lymphoma cells exhibit several unique genotypic and 

phenotypic features. These features include an absence of T-cell antigens, expression of 

natural killer cell marker CD 56, and absence of T-cell receptor gene rearrangement (Tao et 

al., 1995; Kwong et al., 1997). These tumours occur in the nasal and upper aerodigestion 

area. EBV is consistently associated with these lymphomas, regardless of geographical 

location (Tsuchiyama et al., 1998). 

Angioimmunoblastic lymphadenopathy is a peculiar T-cell lymphoma in which 

expanding B-cell clones are often present beside the T-cell clones. EBV infection is mainly 

in the B lymphocytes and B immunoblasts (Weiss et al., 1992). The presence of EBV in 

only a subpopulation of cells suggests that EBV infection is secondary to malignancy or 

that the viral genome has been lost from the malignant cell. EBV-positive B cells have also 

been observed growing in peripheral T-cell lymphomas (Ho et al., 1998). This raises 

questions about the possible activation of EBV in latently infected B cells by the neoplastic 

T cells, and/or the role of the EBV-positive B cells in maintaining the malignant T-cell 

process (Ho et al., 1999).  
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2.6.4. Nasopharyngeal Carcinoma (NPC) 

 

Undifferentiated nasopharyngeal carcinoma is associated with EBV and affects 

mostly individuals in their mid-40s and is more common in men (Vasef et al., 1997). 

Nearly every undifferentiated nasopharyngeal carcinoma is EBV positive, regardless of 

geographical origin.  

Undifferentiated nasopharyngeal carcinoma is rare in most parts of the world, but 

there is an exceptionally high prevalence of this cancer in the Chinese province of Canton, 

Hong Kong, Taiwan, and among the Inuits in Alaska and Greenland. Indeed, in Taiwan, 

nasopharyngeal carcinoma is the most common cancer in men and the third most common 

in women (Hsu et al., 1982). The epidemiological pattern may be because of genetic 

susceptibility correlated with certain Chinese-related HLA antigen profiles and/or to 

environmental factors (the consumption of salted fish or exposure to fumes, smoke, and 

chemicals from the occupational environment (Bouvier et al., 1995). NPC is the third most 

common cancer in males in Peninsular Malaysia (Pua et al., 2008). High prevalence of 

NPC among the Bidayuhs of Borneo, whose NPC incidence is higher than that of the 

Cantonese in Southern China has been reported (Devi et al., 2004). 

In undifferentiated nasopharyngeal carcinoma, EBV infects the epithelial cells of 

the posterior nasopharynx in Rosenmuller’s fossa in Waldeyer’s ring (Prasad et al., 1985). 

Although an EBV-compatible receptor on epithelial cells has not been found, a surface 

protein that is antigenically related to the B cell CD21 receptor has been described and 

could conceivably be used as a point of entry by EBV (Young et al., 1989). Alternatively, it 
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has been suggested that EBV may gain entry into nasopharyngeal cells through IgA-

mediated endocytosis (Lin et al., 1997).  

The EBV genomes present in the epithelial cells of the nasopharynx are of clonal 

origin, and EBV is absent from surrounding tissues and invading T lymphocytes 

(Pathmanathan et al., 1995). These findings suggest that EBV infection occurs before 

neoplasia and is necessary for the progression of the malignant phenotype.  

EBV-1 and EBV-2 have both been implicated in nasopharyngeal carcinoma. The 

majority of nasopharyngeal carcinoma cases from peoples in southern China, Southeast 

Asia, the Mediterranean, Africa, and the United States are associated with EBV-1 infection. 

Cases involving Alaskan Inuits are almost always EBV-2 related but contain 

polymorphisms characteristic of Asian EBV-1 (Abdel-Hamid et al., 1992). EBV undergoes 

latency II expression in undifferentiated nasopharyngeal carcinoma (Niedobitek et al., 

1997).  

One of the major questions surrounding undifferentiated nasopharyngeal carcinoma 

is how the EBV-infected cells can escape the immune response. Nasopharyngeal carcinoma 

cells possess normal antigen processing and are effectively recognized by EBV-specific 

CTLs, yet they are not destroyed (Bejarano and Masucci, 1998). Overexpression of Bcl-2 

may also play a role in oncogenesis by allowing the cell to bypass apoptosis (Lu et al., 

1993).  
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2.6.5. Gastric Carcinoma (GC) 

 

About 10% of gastric carcinoma is associated with EBV. EBV-positive gastric 

carcinoma is a non-endemic disease distributed throughout the world. EBV DNA is 

detected in more than 80% of gastric carcinoma of the lymphoepithelioma type by PCR and 

in situ hybridization. In each of the cases, 100% of carcinoma cells are infected with EBV 

expressing EBNA1, EBER1, EBER2 and BARF0 as well as LMP2A in some cases 

(Takada, 2000). 

EBV exhibits a novel latency pattern in gastric adenocarcinomas that includes the 

production of BARF1, a homologue to human colony-stimulating factor 1 receptor and 

intracellular adhesion molecule 1, and the absence of LMP-1 (Kume et al., 1999). Although 

any mechanism relating EBV to tumorigenesis in gastric malignancies remains highly 

speculative, it has been demonstrated that there is a delay in apoptosis in EBV-positive 

gastric carcinomas (associated with up-regulation of BCL-2 and p53) and a decrease in 

cellular differentiation (associated with decreased E-cadherin expression) (Kume et al., 

1999). EBV has been suggested to play an important role in the development of EBV-

positive gastric carcinomas. 
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2.7. Apoptosis 

 

There are two ways for cells to die; apoptosis and necrosis. Necrosis is an accidental 

death of groups of cells within a tissue. Cell death by apoptosis however, is preprogrammed 

into the cell or may be induced and results in the death of the individual cells. 

(Zimmermann and Green 2001). 

Apoptosis or programmed cell death is a conserved mechanism to maintain normal 

cellular homeostasis (Thornberry and Lazebnik, 1998). At the molecular level, apoptosis is 

tightly regulated (Zimmermann and Green, 2001). Cells undergoing apoptotic cell death 

exhibit several typical morphological features including cell shrinkage, membrane 

blebbing, chromatin condensation, nuclear fragmentation and disassembly into membrane-

enclosed vesicles (apoptotic bodies) (Okada and Mak, 2004). 

 

2.7.1. Apoptosis pathways 

 

Apoptosis pathways can be initiated through different entry sites, for example, at the 

plasma membrane by death receptor ligation (receptor/extrinsic pathway) or at the 

mitochondria (mitochondrial/intrinsic pathway) (Fulda and Debatin, 2006).  

 

Apoptosis via the extrinsic pathway involves activation of death receptors of the 

TNF receptor family located in the plasma membrane, such as TNF-R, Fas (also called 

CD95), DR4, and DR5 (Fulda and Debatin, 2006). Despite the fact that each of these 

receptors is activated by its own ligand, they share a common mechanism.  
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The stimulation by the ligand results in receptor trimerization to which the protein 

Fas-associated death domain (FADD) and procaspase-8 can bind. This promotes the 

formation of the death-inducing signaling complex (DISC) (Peter and Krammer, 2003). 

Following that, a self-activation of caspase-8 occurs, which leads to activation of effector 

caspases and completion of apoptosis (Beurel and Jope, 2006). 

Apoptosis via the intrinsic pathway involves the loss of integrity of mitochondria 

with release of cytochrome c (Cyto c) leading to cell destruction. In the cytoplasm, released 

cytochrome c binds to apoptotic protease-activating factor-1 (Apaf-1), ATP, and procaspase 

9, thus forming the apoptosome and leading to activation of caspases which finally induces 

cell death. The stimuli able to trigger this type of cell death are diverse and they include 

DNA damage, oxidative stress or endoplasmic reticulum stress (Fulda and Debatin, 2006). 

Apoptotic cell death is often mediated by a caspase cascade and although many 

stimuli exist, the final phases of apoptosis are executed by a few common effector caspases. 

Mitochondria provide a link between the initiator caspases and the downstream effector 

caspases. Mitochondria accelerate activation of caspases by releasing proapoptotic 

molecules, such as cytochrome c and the apoptosis-inducing factor (AIF). The release of 

these molecules can be stimulated by some caspases and by Bid and BAX, whereas Bcl2 

prevents their release (Peter and Krammer, 2003; Fulda and Debatin, 2006). 

 

The release mechanism of signaling molecules from the mitochondria is being 

intensively studied. These mechanisms may include transport by pore-forming proteins 

such as Bax (Marzo et al., 1998), opening of the permeability transition pore (PTP) in the 

inner mitochondrial membrane leading to rupture of the outer mitochondrial membrane 
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(Zamzami et al., 1996), or cooperation of the PTP and the voltage-dependent anion channel 

in the outer mitochondrial membrane (Shimizu et al., 1999).  

 

 

2.7.2. Caspases 

 

Apoptosis is mediated by a family of cysteine proteases known as the caspases 

(Thornberry and Lazebnik, 1998). Caspases have an absolute requirement for cleavage after 

aspartic acid and they recognize at least four amino acids N-terminal to the cleavage site. 

For example, the preferred tetrapeptide recognition motifs of caspase 3 and caspase 9 are 

DEVD (aspartic acid-glutamic acid-valine-aspartic acid) and LEHD (leucine-glutamic acid-

histidine-aspartic acid), respectively. The difference in recognition motifs among caspases 

likely reflects their diverse substrate specificities. Caspases are all expressed as inactive 

proenzymes processing an N-terminal prodomain followed by a large and a small subunit 

(Thornberry and Lazebnik, 1998). Sequential proteolytic processing of the cleavage sites 

between domains release the large and the small subunits to form a heterodimer in which 

both the large and the small subunits contribute amino acid residues necessary for substrate 

binding and catalysis. Two heterodimers associate to form an active tetramer, thereby 

having two catalytic sites (Thornberry and Lazebnik, 1998).  

In response to apoptotic stimuli, initiator caspases, such as caspase 8 and caspase 9, 

are activated by autocatalytic proteolysis early in the apoptotic process and they are 

required for the proteolytic activation of downstream effector caspases, such as caspase 3 

and caspase 7. Activated caspases are responsible for proteolysis of many substrates which 

is irreversible, resulting in the apoptotic cell death (Cryns and Yuan, 1998).  
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Many substrates of activated effector caspases have been found and the relationship 

of their cleavage to cell death is obvious. For example, caspase-activated 

deoxyribonuclease (CAD) is kept inactive by inhibitor of CAD (ICAD) (Enari et al., 1998).  

During apoptosis, activation of caspase 3 mediates proteolytic cleavage of ICAD, 

releasing free CAD to function as a nuclease to mediate DNA fragmentation. Besides, anti-

apoptotic Bcl-2 proteins are also cleaved by caspases, which may represent a positive 

feedback mechanism in the activation of apoptosis (Cheng et al., 1997). Caspases also 

mediate cleavage of lamins which are intermediate filament monomers required for the 

formation of nuclear lamina (Orth et al., 1996). Destruction of nuclear lamina disrupts the 

structural organization of chromatin, leading to chromatin condensation. In addition, 

caspases inactivate proteins involved in DNA repair, such as poly-(ADP-ribose) 

polymerase (PARP) and DNA-PKcs, and DNA replication, such as replication factor C 

(Nicholson et al., 1995). 

 

2.7.3. The Bcl-2 family 

 

Activation of caspases is regulated by the Bcl-2 family of proteins which consist of 

anti-apoptotic and pro-apoptotic proteins (Danial and Korsmeyer, 2004). The Bcl-2 family 

members share the homology within four conserved regions named Bcl-2 homology (BH) 

1-4 domains.  

The antiapoptotic proteins Bcl-2 and Bcl-XL display conservation in all four BH1-4 

domains. Structural analysis of antiapoptotic Bcl-2 and Bcl-XL revealed that their BH1, 

BH2 and BH3 domains create a hydrophobic pocket which is capable of binding the BH3 
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domain of pro-apoptotic members, and antagonize their activity (Oltersdorf et al., 2005). 

Since the hydrophobic pocket is responsible for Bcl-2 antiapoptotic activity, many attempts 

have been made to develop small molecule inhibitors, such as HA14-1, and ABT-737, 

which occupy the hydrophobic pocket of Bcl-2 and interfere with its binding activity with 

Bax (Manero et al., 2006).  

Bcl-2 proteins are frequently overexpressed in many cancers which are suggested to 

contribute to tumorigenesis and chemoresistance. As a result, cancer cells treated with 

small molecule inhibitors against Bcl-2 undergo apoptosis directly or display synergistic 

cytotoxicity with chemotherapeutic drugs and γ–irradiation (Oltersdorf et al., 2005). Bcl-2 

interacts directly and inhibits BAX activity. Bcl-2 also binds to pro-apoptotic BH3-only 

proteins, such as Bid, NOXA and PUMA, and sequesters them from activating Bax. 

Therefore, the ratio of anti- to pro-apoptotic proteins, such as Bcl-2 to Bax, may regulate 

the threshold to induce apoptosis (Cheng et al., 2001). Besides, the activity of anti-

apoptotic Bcl-2 is regulated by transcriptional control or post-translational modifications 

via phosphorylation. Phosphorylation of Bcl-2 at serine 70 residue inactivates the anti-

apoptotic function of Bcl-2. Overexpression of a phosphorylation site mutated form of Bcl-

2 (S70A) inhibits apoptosis induced by microtubule inhibitors or DNA damaging agents 

(Haldar et al., 1995). 

Proapoptotic BAX and Bak proteins may constitute a requisite gateway to initiate 

apoptosis because mouse cells deficient of Bax and Bak are resistant to all intrinsic death 

pathway stimuli (Wei et al., 2001). It has been shown that the expression of BAX is 

trancriptionally upregulated by p53 in response to DNA damaging agents such as cisplatin 

and γ-rays (Miyashita and Reed, 1995). Besides, DNA damage-induced p53 activation also 
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increases the transcription of two BH3-only pro-apoptotic genes, NOXA and PUMA 

(Nakano and Vousden, 2001; Oda et al., 2000). It has been shown that NOXA or PUMA 

can bind to Bcl-2 and antagonize its function, which leads to the activation of BAX.  

Activated Bax oligomerizes and translocates from cytosol to the mitochondrial outer 

membrane to induce permeabilization of the mitochondrial outer membrane, resulting in the 

release of intermembrane space proteins including cytochrome c (Suzuki et al., 2000). 

Oligomerized Bax may also form pore-like structure on the mitochondrial outer membrane 

to release cytochrome c as a substantial cytochrome c release occurs before swelling of 

mitochondrion (Danial and Korsmeyer, 2004). Apoptotic protease-activating factor-1 

(Apaf-1) interacts with cytochrome c and becomes competent to recruit procaspase 9 which 

undergoes self-processing for activation. Subsequent binding of ATP/dATP to Apaf-1 

induces its conformational change and facilitates the heptamer assembly, known as the 

apoptosome. Apoptosome proteolytically activates effector caspases to initiate apoptosis 

(Bratton and Salvesen, 2010).  

Cisplatin treatment upregulates the expression of Fas ligand (FasL) as well as Fas 

receptor on cell surface, suggesting that cisplatin-induced apoptosis is also mediated via 

FasL/Fas system (Lacour et al., 2003). Engagement of Fas receptor by FasL binding 

induces a conformation change of Fas receptor, which is assembled as a trimer on plasma 

membrane, leading to the assembly of the death-inducing signaling complex (DISC) on its 

cytoplasmic region (Danial and Korsmeyer, 2004).  

The adaptor protein Fas-associated death domain (FADD) which bears both death 

domain (DD) and death effector domain (DED) binds the DD of Fas and DED of 

procaspase 8. It is believed that caspase 8 is activated by ‘induced proximity’ where high 
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local concentration of procaspase 8 promotes its own proteolytic processing and activation 

(Danial and Korsmeyer, 2004). Subsequently, activated caspase 8 mediates proteolytic 

activation of effector caspases 3 and 7 to initiate apoptosis. Besides, activated caspase 8 

mediates proteolytic processing of pro-apoptotic BH3-only protein Bid. Cleaved Bid 

translocates to mitochondria and induces conformation change and oligomerization of Bax 

to release cytochrome c (Lacour et al., 2003). Therefore, caspase 8-mediated cleavage of 

Bid is required for mitochondria-dependent pathway to amplify the apoptotic signal. 

 

2.7.4. Apoptosis and cell cycle related proteins 

 

The cyclin-dependent kinase (Cdk) inhibitor p27 regulates cell proliferation, cell 

motility and apoptosis. p21 is the founding member of the Cip/Kip family of CKIs, which 

also includes p27 and p57. p21 plays an essential role in growth arrest after DNA damage 

and overexpression leads to G1 and G2 or S-phase arrest (Coqueret, 2003). Survivin, the 

inhibitor of apoptosis protein regulates apoptosis and cell cycle. Its expression is high in a 

number of malignancies including lymphoma, esophageal, lung, ovarian, central nervous 

system, breast, colorectal, bladder, gastric, prostate and others. In cancer cells, elevated 

survivin is commonly associated with enhanced proliferative index, reduced levels of 

apoptosis, resistance to chemotherapy and increased rate of tumour recurrence (Fukuda and 

Pelus, 2006). The cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1 and cIAP2) are 

members of a highly conserved and critically important family of inhibitor of apoptosis 

proteins (IAPs) that function to regulate both intrinsic and extrinsic death signalling 

(Graber and Holcik, 2011). 
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Six well-characterized insulin-like growth factor binding proteins (IGFBP-1 to 

IGFBP-6) have been found and characterized from a variety of vertebrate species, including 

humans. IGFBPs exert their role by association with insulin-like growth factor-I (IGF-I) 

and insulin-like growth factor-II (IGF-II) and the regulation of a key signaling pathway 

triggered by these IGFs (Akkiprik et al., 2008). IGFBP-2 is overexpressed in a wide variety 

of human malignancies, including glioma,
 
prostate cancer, lung cancer, colorectal cancer, 

ovarian cancer, breast cancer and leukemia. IGFBP-2 is frequently overexpressed in 

advanced cancers and is suggested to be involved in the metastatic process (Migita et al., 

2010). IGFBP-2 expression correlates with grade of malignancy. The level of IGFBP2 

appears to be low in well-differentiated tumours but high in poorly differentiated tumours 

(Schutt et al., 2004). IGFBP-2 has a multitude of effects that are mediated either by its IGF-

dependent or by its IGF-independent actions. IGF-dependent actions are considered to be 

due to any type of modulation of IGF activity, whereas IGF-independent actions are those 

mediated by other mechanisms in which IGFs are not involved (Frommer et al., 2006). The 

IGF-independent function of IGFBP-2 in cellular signalling has been suggested due to its 

cytosolic or perinuclear localization, which may inhibit cellular growth and modulate 

proapoptotic signals. Therefore, the function of IGFBP-2 could be complex depending on 

the cell type and cellular microenvironment (Fukushima and Kataoka, 2007).  

Insulin-like growth factor binding protein-3 (IGFBP-3) is a member of a family of 

high-affinity binding proteins known to regulate the function of insulin-like growth factors 

(IGF-I and IGF-II) through modulating interactions with the signalling receptor IGF-I 

receptor (IGF-IR) (Williams et al., 2006).  



37 

 

IGFBP-3 can modulate cell proliferation by adjusting levels of p53, preventing 

DNA damage, and modulating NF-κB activities. These cumulative reports have suggested 

that IGFBP-3 has important biological significance in controlling cell growth, 

transformation and survival, independent of its actions on IGF-1 regulation. Recent studies 

suggest that IGFBP-3 is involved in the induction of apoptosis (Grimberg, 2000; Zhang et 

al., 2013). IGFBP-4 primarily functions as an inhibitory protein for cancer cell lines by 

binding to both IGF-I and IGF-II with equal affinity. IGFBP4 exerts pro-apoptotic effects 

by inhibiting the activity of IGF-I (Ryan et al., 2009; Durai et al., 2007). 

 

2.7.5. Modulation of apoptosis by Epstein-Barr virus 

 

EBV replicates in epithelial cells, in vivo and establish long term latency in 

lymphocytes. Wild-type EBV has not been reported to induce apoptosis on infection of 

resting human B lymphocytes or of Burkitt’s tumor B lymphoblasts, in vitro, or in 

marmoset B lymphocytes, in vivo. This is partly because EBV upregulates the expression of 

Bcl-2 in B lymphocytes (Mancao et al., 2005).  

 

The anti-apoptotic cell protein Bcl-2 plays important role in normal B lymphocyte 

development. Burkitt’s tumor cells are germinal center B lymphocytes and Bcl-2 is not 

normally expressed in germinal center B lymphocytes. Bcl-2 is turned on later in B cell 

maturation and enables antigen-stimulated B lymphoblasts to survive apoptosis as the 

normal B lymphocyte moves beyond the germinal center. As mature lymphocytes go into a 

resting state, Bcl-2 expression is downregulated. EBV infection of resting B lymphocytes 
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then transforms them into immortalized lymphoblasts that are partially protected from 

apoptosis by upregulated Bcl-2 expression (Mancao et al., 2005). 

 

2.8. RNA interference 

 

2.8.1. Introduction 

 

RNA interference (RNAi), an ancient defense pathway, is a common denominator 

for the posttranscriptional gene silencing (PTGS) phenomenon observed in a variety of 

species such as plants, fungi and animals (Fire et al., 1998). The introduction of long 

dsRNA into cells can effectively and specifically lead to the degradation of cognate 

mRNAs in a gene-dependent manner. This powerful technology has been widely employed 

to manipulate gene expression, elucidate signal pathways and to identify gene functions in a 

whole-genome scale. Researchers worldwide have used RNAi for basic research, and are 

now developing RNAi-based drugs for the prevention and treatment of human diseases 

such as viral infection, tumours and metabolic disorders (Plasterk, 2002; Yin and Wan, 

2002; Dave and Pomerantz, 2003). 

Despite significant advances that have been made in the therapy of viral diseases, 

current drugs and vaccines are restricted with many factors such as toxicity, complexity, 

cost and resistance. RNAi is a self-defense mechanism of eukaryotic cells, which specially 

prevent infection evoked by viruses (Plasterk, 2002). It can inhibit the expression of crucial 

viral proteins by targeting viral mRNA for degradation through cellular enzymes. In fact, 

RNAi does work effectively as an antiviral agent in plants. This breakthrough technology 

emerges as a powerful tool to protect human cells from viral infection (Gitlin et al., 2002). 
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2.8.2. RNAi machinery 

 

Biochemical and genetic studies have revealed the molecular mechanisms by which 

dsRNA causes the degradation of target messenger RNA (Dykxhoorn et al., 2003). RNAi 

includes two steps: initiation step and effector step. In the initiation step, Dicer, a member 

of the RNase III family of ATP-dependent ribonucleases, binds with high affinity to 

dsRNA containing 2 nucleotide (nt) 3' overhangs and chops long dsRNA (introduced 

directly or via a transgene or virus) into small interfering RNAs (siRNAs) duplexes.  

Generally, Dicer enzymes contain an N-terminal DEXH-box RNA helicase domain, 

a domain of unknown function (DUF283), a PAZ (PIWI–Argonaute–Zwille) domain, two 

RIII domains and a dsRNA-binding domain (dsRBD) (Carmell and Hannon, 2004). Dicer 

can cleave dsRNA into siRNAs or microRNAs (miRNAs) from endogenous stem loop 

precursors (Lee et al., 2004).  

Biochemical studies show that siRNAs are 21-23 nt dsRNA duplexes with 2-nt 3' 

overhangs, a 5'-monophosphate and a 3'-hydroxyl group (Elbashir et al., 2001). In the 

effector step, the siRNA duplexes are incorporated into RNA induced silencing complex 

(RISC). The phosphorylation of siRNA 5'-terminal is required to entry into RISC 

(Khvorova et al., 2003).  

A helicase domain of RISC binds to one end of the duplex and unwinds the double-

strand in an ATP-dependent manner. The thermodynamic stability of the first few base 

pairs of siRNA can affect the ratio of RISC containing the antisense or sense strands of 

siRNAs (Dorsett and Tuschl, 2004).  
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Dicer with R2D2 (Dcr-2-associated protein) binds siRNA and facilitates its loading 

onto RISC. The active RISC then targets the homologous transcript by base pairing 

interactions and cleaves the mRNA between the 10
th

 and 11
th

 nucleotide from the 5' 

terminus of the siRNAs (Khvorova et al., 2003). 

MicroRNAs (miRNAs) are endogenous 22 nt RNAs that play important roles in 

regulatory by targeting mRNAs for degradation or translational repression in animals and 

plants. Since miRNAs and endogenous siRNAs share central biogenesis and can perform 

interchangeable biochemical functions, these silencing RNAs cannot be distinguished by 

either their chemical composition or mechanism of action (Bartel, 2004). These short RNA 

species are produced by Dicer cleavage of long ( 70 nt) endogenous precursors with 

imperfect hairpin RNA structure in animals. Mature miRNAs repress translation by partial 

base-pairing with 5' or 3' ends of mRNAs while complete complementary of miRNA to its 

target mRNA (endogenous siRNA) can result in cognate mRNA degradation (Bartel, 

2004). 

In addition, many other proteins such as eukaryotic translation initiation factor 2C2 

(eIF2C2) and Argonaute proteins are likely to function in both pathways. Argonaute 

proteins are the key components of RISC. They are evolutionarily conserved with two 

distinguishing domains, PAZ and PIWI. The PIWI domain is restricted to Argonautes while 

the PAZ domain is shared with Dicer family proteins (Song et al., 2003). 
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2.8.3. Silencing mechanism of RNAi 

 

Long dsRNA enables the effectively silencing of gene expression by presenting 

various siRNA sequences to target mRNA. Cells infected by viruses invariably produce 

dsRNA, but viruses can escape a profound cellular response. The dsRNA binds to dsRNA-

binding proteins (dsRBPs), which have been shown to counteract the effects of Interferon 

(IFN) and the resultant dsRNA-activated protein kinase (PKR) activation, and to suppress 

RNAi. Recently, it has become clear that 21-nucleotide siRNAs are so short that they 

cannot induce an interferon response in mammalian cells (Lichner et al., 2003). So, the 

antiviral effects of siRNAs have attracted a great number of scientists to channel their 

interests into this field. 

The inhibition of viral infection can be mediated by siRNA molecules that target 

viral mRNA for degradation. In comparison with other conventional drugs, siRNA have 

many advantages. First, it is much easier and more flexible to select target sites because 

target mRNA and siRNA are sequences-specific and complementary. For a given mRNA 

molecule, the inhibitory effects of siRNAs can be achieved by targeting different regions of 

target mRNA. Second, for gene silencing, only substoichiometric amount of siRNA is 

enough to drastically decrease homologous mRNA within 24 h. Third, siRNAs can result in 

the degradation of cognate mRNA in cells of different species (Lichner et al., 2003). Today, 

researchers are developing efficient siRNA delivery systems, which can help siRNAs enter 

efficiently into cells in nearly all organs. Fourth, siRNAs do not seem to adversely affect 

cell control mechanisms.  
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The high homology of siRNA to the target region of cognate transcription provides 

selective destruction of only interested transcript. siRNAs that do not have targets will 

remain inert within cells. This exclusive specificity without adverse side effects is the most 

attractive feature of RNAi as an antiviral approach. Fifth, siRNAs can silence gene stably. 

With the application of plasmid vectors and viral vectors, siRNAs can display their long-

term biological effects (Li et al., 2002). Taken together, siRNAs synthesis in vivo or in vitro 

transfected into cultured cells or animals could result in the sequence-specific silencing of 

mRNA molecules. With the proof-of-concept studies, siRNAs have been widely used as an 

alternate therapeutic strategy. 

 

2.8.4. RNAi application to viral infection 

 

Researchers strongly believe that RNAi will finally be used as a viable therapeutic 

alternative for various diseases in the near future. The inhibitory action of siRNAs has been 

documented for numerous viruses. 

Synthetic siRNAs are able to inhibit viral production. This was determined by 

introducing siRNAs into the cells before viral infection and then assaying virus titres in the 

culture supernatants at different times after infection (Ge et al., 2003). Scientists, in the first 

application of RNAi technology to prevent disease, revealed that siRNA-directed inhibition 

of Fas gene expression could protect mice from antibody or concanavalin A-induced 

hepatitis (Song et al., 2003). In addition, siRNA inhibitory effects also occurred in cells that 

have been infected with virus prior to siRNA introduction. Introducing siRNAs into 

cultured cells and chicken embryos before virus infection was able to inhibit influenza virus 
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production. Influenza virus usually infects epithelial cells in the upper airway and the lungs. 

Hence, siRNAs can be administered by inhalation.  

This mode of administration is very convenient and high local siRNA concentration 

is easily achieved to enable epithelial cells to uptake sufficient siRNA, resulting in the 

prevention of influenza infection (Ge et al., 2003). In other studies, Gitlin et al. (2002) 

showed that RNAi effectively prevented viral infection in mammalian cells by using 

siRNAs against the poliovirus genome. Hepatitis C virus (HCV) infection is a major cause 

of chronic liver disease, which can lead to the development of liver cirrhosis and 

hepatocellular carcinoma. In 2003, Kapadia et al. revealed that siRNAs could specifically 

inhibit HCV RNA replication and protein expression in Huh-7 cells. In their experiments, 

HCV RNA replication was inhibited within 2 days of siRNA transfection, and the effect 

lasted at least 6 days. The stability of the siRNAs, combined with the efficient transfection 

observed in these experiments may demonstrate the application potential of RNAi to the 

prevention of viral infection (Kapadia et al., 2003). 

In the research of viral diseases, RNAi has been widely used in the inhibition of the 

expression of viral antigens. Viral proteins play roles in pre- or post-transcriptional aspects 

of the viral life cycle instead of being involved in viral RNA or protein synthesis. Many 

cellular membrane molecules act as receptors for viruses. In a study by Novina and 

colleagues, CD4 molecule, the main receptor for HIV-1 in a HeLa-derived cell line was 

knocked down by specific siRNAs. The investigations suggested that siRNA-directed CD4 

silencing specifically inhibited HIV-1 infection (Novina et al., 2002). CCR5, a human 

chemokine receptor protein, is a necessary coreceptor for infection by most strains of HIV-
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1. The inhibition of CCR5 expression by siRNAs was found to protect lymphocytes from 

HIV-1 virus infection (Qin et al., 2003).  

SARS-CoV (the SARS-associated coronavirus) has been classified as a novel 

member of the coronavirus family with a spike protein, which plays an important role in 

viral entry and pathogenesis. In 2004, Zhang et al. showed that the DNA vector-driven 

siRNA against this spike protein could specifically silence gene expression of the spike 

protein in SARS-infected 293T cells (Zhang et al., 2004). The above examples strongly 

suggest that the suppression of expression of viral antigens by RNAi will be effective 

strategies for the therapy of viral infection. 

RNAi can be employed to suppress the transcription of viral genome. Viruses need 

to transcribe its genome after entering the host cells. Besides using cellular factors, viruses 

can generate their transcriptional activators such as E6 and E7 proteins of human 

papillomaviruses (HPVs). HPV are small DNA viruses with a genome of approximately 8 

kb and many subtypes. HPV16 is a main causative agent of cervical cancers and encodes 

the E6 and E7 oncogenes, which are essential for malignant transformation as well as 

maintenance of the tumour’s malignant phenotype. Experiments demonstrated that E6 

siRNAs were potent in the suppression of viral oncogene expression when E6 siRNAs were 

transfected into HPV16-related cervical cancer cells. E6 siRNAs exhibited a potent growth 

inhibitory activity too. Thus, anti-E6 siRNA may be used as a gene-specific therapy for 

HPV-related cancers (Yoshinouchi et al., 2003).  

For RNA viruses, especially in retroviruses, gag, env and pol are essential for 

genome transcription. Avian Sarcoma Leucosis Virus (ASLV) is a positive-RNA virus. 

When siRNAs matching two sequences in the gag gene of ASLV were introduced into 
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cultured chicken DF-1 cells, provirus formation analysis showed that the anti-gag siRNAs 

could inhibit the transcription of the retrovirus (Hu et al., 2004). 

Silencing the many accessory genes in viruses is thought to be good therapeutic 

strategies for the treatment of viral diseases. Viral RNA is introduced into the host cell 

cytoplasm in the form of a nucleoprotein complex upon HIV-1 infection. siRNA duplexes 

against several regions of the HIV-1 genome, including the viral long terminal repeat 

(LTR) and the accessory genes were introduced into CD4-positive HeLa (Magi) cells. 

Virus production was reduced 30-fold to 50-fold when compared with cells not transfected 

with siRNA duplexes. These results provided a therapeutic alternative for AIDS by siRNA-

mediated degradation (Jacque et al., 2002).  

Epstein-Barr virus (EBV) is a prototype gamma herpes virus with a dsDNA 

genome. It is the first human virus identified and is related to the pathogenesis of several 

malignancies, including Burkitt's and T cell lymphomas, Hodgkin's disease, breast and 

gastric carcinomas, and some AIDS-related lymphomas. Latent membrane protein-1 (LMP-

1), encoded by EBV, is an oncoprotein playing an essential role in cell transformation as 

well as nasopharyngeal carcinoma (NPC) metastasis. Li et al showed that the stable 

suppression of LMP-1 by shRNA plasmid significantly altered EBV-positive NPC cell 

(C666) motility, substratum adhesion, and transmembrane invasion ability (Li et al., 2004). 

Application of RNAi to the study of accessory genes tells us more about molecular 

mechanisms underlying viral infection so that more effective drugs to treat viral diseases 

could be developed. 
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RNAi has been used in large-scale, genome-wide screens. Scientists have developed 

many RNAi libraries to study the function of genes in nematodes and human, which can 

greatly facilitate the identification of drug targets against viral infection. With the advent of 

RNAi library in mammals and the refinement of techniques to silence gene, siRNA-based 

drugs will surely make great advances in the prevention and treatment of viral diseases. 
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CHAPTER 3: METHODOLOGY 

 

3.1. Cell lines and cell culture conditions  

 

AG876, Hone-Akata and B95-8 cell lines were grown in RPMI-1640 (Roswell Park 

Memorial Institute medium) (GIBCO/BRL, USA) supplemented with 2mM L-glutamine 

and 10% (v/v) fetal bovine serum (GIBCO/BRL, USA) at 37°C under a humidified 

atmosphere of 95% air and 5% CO2. AG876 and B95.8 were obtained from ATCC
®
, USA. 

AG876 are EBV-positive malignant cells (EBV type 2) derived from a patient with 

endemic Burkitt’s lymphoma (Pizzo et al., 1978).  B95.8 is the EBV-producing marmoset 

cell line (Miller and Lipman, 1973). Hone Akata (a gift from Prof Sam Choon Kook) is an 

NPC epithelial cell line that is superinfected with the Akata strain of EBV (EBV type 1) 

(Glaser et al., 1989).  

 

3.2. Detection of BARF1 gene expression in EBV-positive malignant cells 

 

3.2.1. Total RNA extraction 

 

RNA was extracted from cells using the RNeasy Mini Kit
®
 (Qiagen, Germany) 

according to the manufacturer’s protocol. For pelleted cells, 350 µl (for <5 × 10
6
 cells) or 

600 µl (for 5 × 10
6
 – 1 × 10

7
 cells) of Buffer RLT (RNeasy lysis buffer) was added to the 

cell pellet in a microcentifuge tube and vortexed to mix. For direct lysis of cells grown in a 

monolayer, 350 µl (for dish diameter <5 cm) or 600 µl (for dish diameter 6-10 cm) of 
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Buffer RLT was added to the cell culture dish and lysate was collected with a rubber 

policeman. Lysate was transferred into a microcentrifuge tube and vortexed to mix.  

After the lysis step, lysate was homogenized by passing through the QIAshredder 

spin column. To the homogenized lysate, 1 volume (350 µl or 600 µl) of 70% ethanol was 

added and mixed well by pipetting. Sample was then transferred to an RNeasy mini column 

placed in a collection tube and centrifuged at 8000 × g for 15 s. The flow-through was 

discarded and followed by washing in 700 µl of Buffer RW1 (stringent buffer for washing 

membrane-bound RNA to remove carbohydrates, proteins and fatty acids) and 500 µl of 

Buffer RPE (washing buffer to remove salt traces).  

The washing steps involved centrifugation at 8000 × g and flow-through was 

discarded after each washing step. The RNeasy column was placed in a new collection tube 

and eluted by adding 50 µl RNase-free water to the RNeasy silica-gel membrane. The 

eluate was collected by centrifugation at 8000 × g for 1 min. The extracted RNA was 

checked by electrophoresis on a 1% w/v agarose gel stained with ethidium bromide and 

quantified with NanoDrop 2100 UV-vis Spectrophotometer (Thermo-Scientific). 

 

3.2.2. DNase treatment of total RNA 

 

For 1µg of total RNA, DNase treatment was performed in a 10 µl reaction 

containing 1 µl (1U) DNase I (Invitrogen, USA), 1 µl 10× DNase I Reaction Buffer 

(Invitrogen, USA) and DEPC-treated water. After incubation at room temperature for 15 

min, DNase I was inactivated by adding 1 µl of 25 mM EDTA solution (pH 8.0) to the 
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reaction mixture. The tube was then heated at 65°C for 10 min. The RNA sample was ready 

to be used in reverse transcription, prior to amplification.  

 

3.2.3. Reverse Transcription PCR (RT-PCR) 

 

Reverse transcription (RT) was used to generate amplified cDNAs of BARF1 gene. 

RT was performed using the SuperScript™ III One-Step RT-PCR System with Platinum
®
 

Taq (Invitrogen, USA) according to the manufacturer’s recommendations.  BARF1 specific 

primers (forward: 5’-ATGGCCAGGTTCATCGCTCAG-3’ and reverse: 5’-

TTATTGCGACAAGTATCCAGAAAC-3’) with the concentration of 10µM were used in 

a total reaction volume of 50 µl. The components of the RT-PCR reaction as well as the 

amplification conditions are listed in Table 3.1. Amplified products were analyzed by 

agarose gel electrophoresis. Fragment of the correct size was cloned into the pCR4 vector 

as described in Section 3.2.4. 
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Table 3.1: Components of RT-PCR and amplification conditions 

 

RT-PCR Components Volume Amplification Conditions 

2× Reaction Mix 25 µl I. cDNA synthesis and pre-

denaturation     

   (one cycle) 

50°C for 30 min 

94°C for 2 min 

 

II. PCR Amplification (40 cycles) 

94°C for 15 s 

55°C for 30 s 

72°C for 2 min 

III. Final Extension (one cycle) 

72°C for 10 min 

Template RNA 1 µg 

Sense primer (10 µM) 1 µl 

Anti-sense primer (10 µM) 1 µl 

SuperScript III 

RT/Platinum Taq Mix 

2 µl 

Milli-Q
®
 water Added up to 50 µl 

 

 

3.2.4. Cloning of the full length BARF1 into pCR4 sequencing vector 

 

BARF1 that was amplified as described in Section 3.2.3 was cloned into the 

pCR
®
4-TOPO plasmid (Invitrogen, USA). The plasmid is a linearized vector with single 

3’-thymidine overhangs that facilitates efficient TA-cloning of PCR products which 

normally have one overhanging adenosine residue at the 3’ ends. Amplified BARF1 (1 µg) 

was mixed with 10 ng of pCR
®
4-TOPO vector in a total volume of 6 µl reaction mix 

containing 0.2 M NaCl and 0.01 M MgCl2. The cloning reaction was incubated for 5 min at 

room temperature and placed on ice prior to transformation into E. coli.    
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3.2.5. Transformation of TOP10 competent E. coli cells 

 

The cloning reaction solution (containing ligated pCR4-BARF1 plasmids) was 

introduced into the TOP10 competent E. coli cells by heat shock. Fifty µl competent cells 

were first thawed on ice. Two µl of the ligation reaction solution was added into the 

competent cells and incubated on ice for 30 min. The tube was then incubated at 42°C 

water bath for 90 s and then immediately transferred on ice for 2 min. The cells were 

transferred to 250 µl S.O.C. medium in a 15 ml tube and incubated at 37°C for 1 h with 

shaking at 150 rpm. One hundred µl of the cells was spread onto a Luria Bertani (LB) agar 

plate [1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 1.5% (w/v) agar, pH 

7.0, autoclaved] containing 100 µg/ml ampicillin. The plate was inverted and incubated at 

37°C overnight. Bacterial clones were analyzed for the presence and the correct orientation 

of the insert using colony PCR using cycling conditions described in Table 3.1 (Pre-

denaturation, PCR amplification and final extension conditions). Colonies harbouring the 

positive clones were selected and grown in 5 ml LB medium [1% (w/v) tryptone, 0.5% 

(w/v) yeast extract, 1% (w/v) NaCl, pH 7.0, autoclaved] containing 100 µg/ml ampicillin in 

15 ml tubes at 37°C for 16h with shaking at 225 rpm.  

 

3.2.6. Extraction of plasmid DNA from bacterial culture 

 

Extraction of plasmid DNA was carried out at room temperature with QIAprep
®
 

Miniprep according to the manufacturer’s instructions (QIAGEN, Hilden, Germany). The 5 

ml overnight culture of E. coli in LB medium was centrifuged at 18000 × g for 30 s to 

obtain the pellet and the supernatant was discarded.  
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Pelleted bacterial cells were resuspended in 250 µl buffer P1 and transferred to a 1.5 

ml centrifuge tube. Two hundred and fifty µl of buffer P2 was added and mixed by 

inverting the tube gently five times.  

Three hundred and fifty µl buffer N3 was then added and mixed by inverting the 

tube gently five times. The lysed cells were centrifuged at 18000 × g for 10 min. The 

supernatant was transferred to the QIAprep Spin Column and centrifuged at 18000 × g for 

30 s. The flow-through was discarded by decanting. The Spin Column was washed with 

0.75 ml of buffer PE and centrifuged at 18000 × g for 1 min. The Spin Column was then 

placed in a clean 1.5 ml centrifuge tube and 50 µl of water was added to the center of the 

column. After 1 min incubation, the tube was centrifuged at 18000 × g for 1 min and the 

eluate containing the plasmid DNA was collected in the 1.5 ml centrifuge tube.  

 

3.2.7. Purity of the extracted plasmid 

 

The purity and concentration of the plasmids were assessed by UV 

spectrophotometry. One hundred µl of water was used as blank control. Two µl of sample 

DNA was diluted in 98 µl of water. The absorbance at 260 nm (A260) and 280 nm (A280) 

was measured using a cuvette. The A260 indicated the concentration of the plasmid DNA. 

The concentration of plasmid DNA was calculated based on the equation below; 

DNA concentration (µg/ml) = (A260) × (dilution factor) × (50 µg DNA/ml) 

The purity of the plasmids is indicated by the ratio of A260/A280 which is ~1.8-2.0 if the 

quality is high. 
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3.2.8. DNA sequencing of pCR4-BARF1 plasmid 

 

DNA sequencing of the cloned BARF1 in pCR
®
-TOPO vector was performed using 

the M13 forward and reverse primers; 

M13 forward (5’-GTAAAACGACGGCCAG-3’) 

M13 reverse (5’-CAGGAAACAGCTATGAC-3’). 

Sequencing was performed by Advanced Interactive Technologies (AIT) Pte Ltd, 

Singapore. The resulting DNA sequence for each BARF1 clone was aligned with the 

BARF1 sequence of AG876 and Akata strains using the CLC Sequence Viewer 5.1.2.0. 

 

3.3. Designing siRNA targeting the BARF1 mRNA 

 

Three siRNA sequences against the different positions of BARF1 open reading 

frame (ORF) (GenBank accession no. V01555) were designed using Ambion’s online 

siRNA finder (http://www.ambion.com/techlib/misc/siRNA_finder.html). siRNAs were 

chemically synthesized and purified by Ambion Inc. (USA). The siRNA sequences against 

BARF1 are listed in Table 3.2.  The locations of the siRNAs in BARF1 mRNA are 

depicted in Figure 3.1. A control siRNA which had no significant homology to any coding 

sequences in human and EBV genome was also synthesized and used.  

Several recommendations for designing siRNA sequences were taken into 

consideration: (1) 19-29 nucleotides in length; (2) no significant homology to other genes; 
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(3) no runs of more than three same nucleotides; (4) low GC content (~30-50%); (5) no 

known site for RNA-protein interaction. 

Table 3.2: siRNA sequences against BARF1 open reading frame 

 

BARF1 

siRNA 

 

 

Positions in 

BARF1 ORF 

 

 

siRNA sequence 

 

siBARF1-1 

 

189-207 

 

 

 

Sense: 5’-GCACCACGAUGUCAUCUUUtt-3’ 

Antisense: 5’-AAAGAUGACAUCGUGGUGCat-3’ 

 

 

siBARF1-2 

 

409-427 

 

 

 

Sense: 5’-CCAGACUUCUCUGUCCUUAtt-3’ 

Antisense: 5’-UAAGGACAGAGAAGUCUGGga-3’ 

 

 

siBARF1-3 

 

545-563 

 

Sense: 5’- GCCUCUCUGUUGCUGUUGAtt-3’ 

Antisense: 5’-UCAACAGCAACAGAGAGGCtc-3’ 

 

 

 

 

 

 

Figure 3.1. Locations of the siRNAs in BARF1 mRNA. The BARF1 mRNA is depicted 

as a line that is divided into 5' UTR, coding region, and 3' UTR. 
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3.4. siRNA transfection 

 

The reverse transfection method was employed to deliver siRNA molecules into cell 

lines. In the reverse transfection method, cells are in suspension compared to the traditional 

pre-plating method. Because cells are in suspension, a larger amount of cell surface is 

exposed to transfection agent/siRNA complexes, and this contributes to the improved 

transfection efficiency.  

 Cells were harvested and the number of cells was determined as described in 

Section 3.6.1. Cells were resuspended in normal growth medium to 1 × 10
5
 cells/ml and 

kept at 37°C until needed in subsequent steps. For a 6 well culture plate, 2.4 ml cells/well 

were used whereas 400 µl cells/well were used for a 24 well plate. 

Transfection agent siPORT NeoFX (Ambion Inc., USA) was diluted in Opti-MEM I 

medium (GIBCO/BRL, USA) in a sterile conical tube and incubated for 10 min at room 

temperature. The volumes of siPORT NeoFX used were according to the manufacturer’s 

recommendations. A range of siRNA concentration (5-50 nM) was prepared in Opti-MEM 

I medium. Diluted siRNA was mixed gently with diluted siPORT NeoFX by pipetting and 

incubated at room temperature for 10 min to allow for the formation of transfection 

agent/siRNA complexes. After incubation, transfection complexes (100 µl and 600 µl/well 

for 24 well and 6 well plates respectively) were dispensed into the empty wells of a culture 

plate. Nontransfected control wells were also set up. Next, cells suspension prepared earlier 

were added to the culture plate containing the transfection agent/siRNA complexes and 

mixed by rocking the plate gently back and forth. The plate was incubated at 37°C in 
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normal cell culture conditions for 24 h. The culture medium was then replaced with fresh 

normal medium and incubated.  

 

3.5. Analysis of gene expression in siRNA-treated cells 

 

3.5.1. Total RNA extraction 

 

RNA was extracted from cells using the RNeasy Mini Kit
®
 (Qiagen, Germany) 

according to the manufacturer’s protocol. (Refer Section 3.2.1). 

 

3.5.2. DNase treatment of total RNA 

 

Total RNA was treated with DNase I (Invitrogen, USA) as explained in Section 

3.2.2. The quality and integrity of the treated RNA was then assayed using the Agilent 

RNA 6000 Nano kit. The assay was run on the Agilent 2100 Bioanalyzer instrument and 

data was analyzed using the Agilent 2100 Expert Software. An RNA Integrity Number 

(RIN score) was generated for each sample on a scale of 1-10 (1=lowest; 10=highest) as an 

indication of RNA quality. 

 

3.5.3. cDNA synthesis 

 

For first strand cDNA synthesis, SuperScript™ III First-Strand Synthesis System 

(Invitrogen, USA) was used. Five µg of total RNA was mixed with 1 µl of 50 µM oligo 

(dT)20 and 1 µl of 10 mM dNTP mix in a total reaction volume of 10 µl.  
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The RNA/primer mixture was incubated at 65°C for 5 min and placed on ice for at 

least 1 min. Next, 10 µl of cDNA Synthesis Mix (Refer Table 3.3) was added to the 

mixture, mixed gently and incubated at 50°C for 50 min. The reaction was terminated by 

heating at 85°C for 5 min and then chilled on ice. Reaction was collected by centrifugation 

and 1 µl of RNase H was added to each tube. Tube was incubated at 37°C for 20 min. 

Synthesized first strand cDNA was stored at -20°C or used immediately in real time 

quantitative PCR assay. 

                   

       Table 3.3: Components of the cDNA Synthesis Mix 

Component  Volume/reaction  

10× RT buffer 

25 mM MgCl2 

M DTT 

RNaseOUT™ (40 U/µl) 

SuperScript™ III RT (200 U/µl) 

 

 

 

 

 

2 µl 

4 µl 

2 µl 

1 µl 

1 µl 

 

 

 

 

 

 

 

 

3.5.4. Real Time Quantitative PCR Assay 

 

Real time quantitative PCR using absolute quantification approach was used to 

quantify the copy number of BARF1 molecules within cDNA samples. An internal 

reference standard in the form of a plasmid containing only the target gene (pCR-TOPO-

BARF1) was employed. Purified plasmid clones were quantified using spectrophotometer 
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(Shimadzu, Japan). A known amount of plasmid was used to construct a calibration curve 

and then the copy numbers of unknown samples were identified from this. Results were 

expressed in absolute terms as the number of copies of BARF1 gene. 

With the molecular weight of the plasmid and insert known, the copy number was 

calculated as follows; 

Weight in daltons (g/mol) = (bp size of ds product)(330 Da × 2nt/bp)  

Hence:  (g/mol)/Avogadro's number = g/molecule = copy number 

(where: bp = base pairs, ds = double-stranded, nt = nucleotides). 

Knowing the copy number and concentration of plasmid DNA, the precise number of 

molecules added to subsequent real-time PCR runs was calculated. 

Real-time PCR runs were performed using Rotor-Gene™ 6000 (Qiagen, Germany). 

Each reaction contained 1× TaqMan
®

 Universal PCR Master Mix, No AmpErase
®
 UNG 

(Applied Biosystems), 1× target primers and TaqMan
® 

probes mix and template DNA 

(either cDNA diluted in RNase-free water or plasmid DNA dilutions ranging from 1 × 10
3
 

to 1 × 10
9
) in a final volume of 20 μl. Cycling conditions were as follows; 10 min at 95 °C 

followed by 40 cycles of 15 s at 95°C and 1 min at 60°C. 

A standard curve was drawn by plotting the natural log of the threshold cycle (CT) 

against the natural log of the number of molecules. The CT was defined as the cycle at 

which a statistically significant increase in the magnitude of the signal generated by the 

PCR reaction was first detected. CT was calculated under default settings for the Rotor-

Gene 6000 Series Software 1.7 (Applied Biosystems, USA).  
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The equation drawn from the graph was used to calculate the precise number of 

specific BARF1 cDNA molecules present per microgram of total oligo-dT primed cDNA, 

tested in the same reaction plate as the standard. 

 

3.5.5. Semi-quantitative Reverse Transcription PCR (RT-PCR) 

 

Semi-quantitative RT-PCR was performed to identify expression levels of genes in 

cells treated with BARF1 siRNA. Total RNA was extracted and treated with DNase (as 

described in Sections 3.2.1 and 3.2.2 respectively). First strand cDNA was then synthesized 

as described in Section 3.5.3. PCR amplification was performed using gene-specific 

primers (Table 3.4) with the concentration of 10µM and used in a total reaction volume of 

50 µl. 

For comparison of the expression levels of genes among different cell populations, 

the number of PCR cycles was optimized for each primer set so as to visualize PCR 

products at their linear range. Aliquots were removed and examined from each PCR 

reaction every three or five additional cycles after 15 cycles of PCR reaction. Relative 

levels of GAPDH expression were detected and normalized as loading control.  

PCR amplifications of GAPDH gene were performed as independent reactions. The 

amplification conditions were 30 cycles at 94°C for 30 s, 53°C for 30 s, and 72°C for 30 s. 

The PCR products were visualized by agarose gel electrophoresis and the intensity of the 

bands was quantified by densitometry using Image J software. 
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Table 3.4: Oligonucleotide primers used in RT-PCR analysis 

 

Transcript 

 

 

Primer sequence (5’-3’) 

 

 

Product size 

 

GenBank No. 

 

Bcl-2 

 

 

CCTGTGGATGACTGAGTACC 

GAGACAGCCAGGAGAAATCA 

 

 

128 bp 

 

NM_000633 

 

BAX 

 

GTTTCATCCAGGATCGAGCAG 

CATCTTCTTCCAGATGGTGA 

 

 

537 bp 

 

NM_004324 

 

GAPDH 

 

TGCCTCCTGCACCACCAACT 

CGCCTGCTTCACCACCTTC 

 

 

349 bp 

 

NM_001289746.1 

 

 

 

3.6. Cell proliferation assay 

 

3.6.1. Trypan blue exclusion assay 

 

The dye exclusion test is used to determine the number of viable cells present in a 

cell suspension. It is based on the principle that live cells possess intact cell membranes that 

exclude certain dyes, such as trypan blue, whereas dead cells do not. In this test, a cell 

suspension is simply mixed with dye and then visually examined to determine whether cells 

take up or exclude dye. A viable cell will have a clear cytoplasm whereas a nonviable cell 

will have a blue cytoplasm. 
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Cell pellet was resuspended thoroughly in 1 ml of 1× PBS to disperse any clumps. 

Fifty µl cell suspension was added to 450 µl of 0.4% trypan blue in a microcentrifuge tube 

and mixed gently. Ten µl of cell suspension was then transferred immediately to the edge 

of a hemocytometer (Improved Neubauer) chamber. The suspension was expelled and let to 

be drawn under the coverslip by capillarity. The slide was then transferred to the 

microscope stage and cells lying within the 1 mm
2
 area in the central area of the grid were 

counted manually using a tally counter. The concentration of cells was calculated using the 

formula below; 

   c = n × dilution factor × 10
4 

where c is the cell concentration (cells/ml) and n is the number of cells counted. 

 

3.6.2. WST-1 assay 

 

Cells were seeded in microplates (tissue culture grade, 96 wells, flat bottom) at a 

concentration of 4 × 10
3
 cells/well. Cells were incubated for 48h, 72h, and 96h at 37°C and 

5% CO2. For each incubation time, different plates were used. On the day of the assay, 10 

µl/well of Cell Proliferation Reagent WST-1 (Roche, Germany) was added and incubated 

for 4h at 37°C and 5% CO2. Plates were shaken thoroughly for 1 min on a shaker. 

Absorbance of the samples was measured against a background control as blank using a 

microplate (ELISA) reader. The wavelength for measuring the formazan product is between 

420 – 480 nm (maximum absorption at about 440 nm). 
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3.7. Detection of apoptotic cells 

 

3.7.1. Annexin V staining 

 

 The analysis of phosphatidylserine on the outer leaflet of apoptotic cell membranes 

was performed using Annexin-V-Fluorescein and propidium iodide (PI) for the 

differentiation from necrotic cells. Staining was performed using the Annexin-V-FLUOS 

Staining Kit (Roche, Germany) according to the manufacturer’s instructions. For positive 

control, apoptosis was induced using 1µM staurosporine (Cell Signaling Technology, 

USA). 

For staining of cell suspensions, 10
6
 cells were washed with PBS and centrifuged at 

200 × g for 5 min. Cell pellet was resuspended in 100 μl of Annexin-V-FLUOS labeling 

solution and incubated at 15-25°C for 10-15 min. For adherent cells grown in 96-well plate, 

medium was removed and 100 μl of Annexin-V-FLUOS labeling solution was added to 

each well. Plate was incubated at 15-25°C for 10-15 min. Stained cells were analyzed on a 

flow cytometer.  

For each 10
6
 stained cells, 0.5 ml Incubation buffer was added and analyzed on a 

flow cytometer using 488 nm excitation and a 515 nm bandpass filter for fluorescein 

detection and a filter >600 nm for PI detection. Electronic compensation of the instrument 

was carried out to exclude overlapping of the two emission spectra. Gating was performed 

on the FSC (forward scatter) vs SSC (side scatter) plot that encompasses >90% of the 

whole cell population. 
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3.7.2 Mitochondrial membrane potential 

 

The loss of mitochondrial membrane potential (ΔΨ) is a hallmark for apoptosis. To 

measure the mitochondrial potential in cells, the APO LOGIX JC-1 Mitochondrial 

Membrane Potential Assay Kit (Cell Technology Inc, USA) was used according to the 

manufacturer’s instructions. About 0.5 ml cell suspension was transferred into a sterile 

centrifuge tube and centrifuged for 5 min at room temperature at 400 × g. Supernatant was 

removed and cells were resuspended in 0.5 ml 1× JC-1 reagent. Cells were then incubated 

at 37°C in a 5% CO2 incubator for 15 min. This was followed by centrifugation for 5 min at 

400 × g and the supernatant was removed. The cell pellet was resuspended in 2 ml 1× 

Assay Buffer, centrifuged and supernatant was removed. Stained cells were analyzed on a 

flow cytometer.  

Cell pellet was resuspended in 0.5 ml 1× Assay Buffer and analyzed immediately 

by flow cytometry. Mitochondria containing red JC-1 aggregates in healthy cells are 

detectable in the FL2 channel and green JC-1 monomers in apoptotic cells are detectable in 

the FITC channel (FL1). Electronic compensation of the instrument was carried out to 

exclude overlapping of the two emission spectra. Gating was performed on the FSC 

(forward scatter) vs SSC (side scatter) plot that encompasses >90% of the whole cell 

population. 
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3.8. Western blot analysis 

  

3.8.1. Preparation of cell lysates 

 

 For adherent cells, culture medium was carefully removed by decanting. 

Appropriate amount of M-PER reagent (Thermo Scientific, USA) was then added to the 

plate/flask (Refer Table 3.5) and shaken gently for 5 min. The lysate was collected and 

transferred to a microcentrifuge tube. Samples were centrifuged at ~14000 × g for 5-10 min 

to pellet the cell debris. Supernatant was then transferred to a new tube for analysis. 

Suspension cells were pelleted by centrifugation at 2500 × g for 10 min. 

Supernatant was discarded and M-PER reagent was added to the cell pellet. At least 1 ml of 

M-PER reagent was used for each 100 mg (~ 100 μl) of wet cell pellet. The mixture was 

pipetted up and down to resuspend the pellet. Cell debris was removed by centrifugation at 

~ 14000 × g for 15 min. Supernatant was then transferred to a new tube for analysis. 
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Table 3.5: Volume of M-PER used for different sizes of standard culture plates 

 

 

Plate size/Surface area M-PER reagent volume 

100mm
*
 500-1000 μl 

60 mm 250-500 μl 

6-well plate 200-400 μl per well 

24-well plate 100-200 μl per well 

96-well plate 50-100 μl per well 

 

 

*
Cells grown in 100 mm plates typically contain 10

7
 cells (50 mg) and yield ~3 mg total 

protein depending on cell type. 

 

 

3.8.2. Preparation of mitochondria and cytosolic fractions 

 

For extraction of mitochondria and cytosolic fractions, the Mitochondria Isolation 

Kit for cultured cells (Thermo-Scientific, USA) was used according to the manufacturer’s 

protocols. Briefly, 800 μl of Mitochondria Isolation Reagent A was added to pelleted cells. 

Tube was vortexed at medium speed for 5 s and incubated on ice for exactly 2 min. Next, 

10 μl of Mitochondria Isolation Reagent B was added and tube was vortexed at maximum 

speed for 5 s. Tube was incubated on ice for 5 min, and vortexed at maximum speed every 

minute. Next, 800 μl of Mitochondria Isolation Reagent C was added and tube was inverted 

several times to mix. Tube was centrifuged at 700 × g for 10 min at 4°C. The supernatant 

was transferred to a new 2 ml tube and centrifuged at 3000 × g for 15 min at 4°C.  

 



66 

 

The supernatant (cytosol fraction) was transferred to a new tube. The pellet 

contained the isolated mitochondria. Five hundred μl Mitochondria Isolation Reagent C 

was added to the pellet, and centrifuged at 12000 × g for 5 min. Supernatant was discarded.  

The mitochondrial pellet was maintained on ice before immunoblot analysis due to the fact 

that freezing and thawing may compromise mitochondria integrity. For analysis by Western 

blotting, mitochondrial pellet was boiled with SDS-PAGE sample buffer and applied to the 

gel. 

 
  

3.8.3. Concentration of secreted protein 

 

 Culture media was collected and centrifuged at 3000 × g for 10 min to eliminate 

cellular debris. Following clearing, 10 ml culture media were concentrated to 10 μl with 

centrifugal filter Vivaspin 15R. Examination of secreted BARF1 expression was performed 

using this concentrated fraction. 

 

3.8.4. Measurement of protein concentration 

 

Protein concentration was measured on a 96-well plate using Bio-Rad dye reagent. 

A two-fold serial dilution of bovine serum albumin (BSA) (Bio-Rad, USA) protein in M-

PER reagent was used as the protein standards (0.5, 1, 2, 4, 8 μg/μl in M-PER reagent). Ten 

μl of protein standards or samples was added into each well of a 96-well plate. Two  

hundred μl of Bio-Rad dye reagent were added and mixed gently. After incubation at room 

temperature for 5 min, the absorbance at 590 nm was measured using MRX microplate 
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reader (Dynex Technologies Inc, USA). The standard curve was generated by plotting 

standard protein concentrations against absorbance at 590 nm. The corresponding protein 

concentration of the sample was determined from the standard curve using the equation of 

the slope of the straight line: 

  y = ………. x, where x = absorbance, y = protein concentration (μg/μl). 

 

3.8.5. SDS-polyacrylamide gel electrophoresis (PAGE) 

   

3.8.5.1. Gel set-up 

 

Vertical SDS-PAGE slab gels were prepared using mini-PROTEAN
®
 3 

electrophoresis system (Bio-Rad, USA). Tables 3.6 and 3.7 list the volume of each reagents 

required for setting up resolving and stacking gels of two 0.75-mm thick acrylamide gels. A 

resolving gel [7.5, 10 or 12.5% (w/v) acrylamide (depending on the size of protein 

examined), 125mM Tris-HCl (pH 8.8), 0.1% (w/v) SDS, 0.12% (w/v) ammonium 

persulfate and 0.2% (v/v) TEMED] was prepared by adding freshly prepared ammonium 

persulfate and TEMED to the earlier mixed resolving gel solution in a 25-ml beaker. The 

resolving gel was allowed to set in the gel system for 30 min at room temperature. A 

stacking gel [4% (w/v) acrylamide, 37.5 mM Tris-HCl (pH 6.8), 0.1% (w/v) SDS, 0.12% 

(w/v) ammonium persulfate and 0.2% (v/v) TEMED] was set on the top of a resolving gel 

and let to polymerize for 30 min at room temperature.  
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Table 3.6: List of components for setting two 0.75-mm thick resolving gels 

Reagent Volume 

12.5% 10% 7.5% 

Water 

40% (w/v) acrylamide/bis-acrylamide (19:1) 

4× resolving buffer 

*10% (w/v) ammonium persulfate (in water) 

*TEMED 

4.36 ml 

3 ml 

2.5 ml 

120 µl 

20 µl 

4.86 ml 

2.5 ml 

2.5 ml 

120 µl 

20 µl 

5.485 ml 

1.875 ml 

2.5 ml 

120 µl 

20 µl 

Total volume 10 ml 10 ml 10 ml 

 

4× resolving buffer contains 500 mM Tris-HCl (pH 8.8), 0.4% (w/v) SDS. 

* 10% (w/v) ammonium persulfate and TEMED were added just before setting the gel. 

 

 

         Table 3.7: List of components for setting stacking gels 

Reagent Volume 

Water     

40% (w/v) acrylamide/bis-acrylamide (19:1)  

4× stacking buffer   

*10% (w/v) ammonium persulfate (in water)  

*TEMED 

3.18 ml 

0.5 ml 

1.25 ml 

60 µl 

10 µl 

Total volume 5 ml 

 

 

  

4× stacking buffer contains 150 mM Tris-HCl (pH 6.8), 0.4% (w/v) SDS. 

* 10% (w/v) ammonium persulfate and TEMED were added just before setting the gel. 
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3.8.5.2. Protein preparation and gel electrophoresis 

 

Each protein sample was prepared to have equal volume and equal amount of 

protein. Each protein sample was prepared by adding equal amount of protein (i.e., 20 μg), 

2 μl of 6× sample buffer [350mM Tris-HCl (pH 6.8), 30% (v/v) glycerol, 21.4% (v/v) β-

mercaptoethanol, 10% (w/v) SDS, 0.01% (w/v) bromophenol blue] and appropriate M-PER 

reagent to have equal volume of 12 μl. After boiling at 100°C for 5 min, the denatured 

protein samples were immediately cooled down on ice and centrifuged briefly at 4°C. 

Equal volume of the samples (10 μl) was loaded onto the SDS-polyacrylamide gel and 

electrophoresis was carried out with running buffer [25mM Tris-HCl, 192mM glycine, 

0.1% (w/v) SDS] at a constant current (20 mA per gel) for ~ 1 hr at room temperature until 

the bromophenol blue (in the sample buffer) reached the bottom of the gel. Five μl 

Fermentas Page Ruler (Fermentas, USA) was also run to indicate the molecular weight of 

the proteins.  

 

3.8.5.3. Transfer of proteins onto a polyvinylidene difluoride membrane 

 

After electrophoresis, the proteins were transferred onto a polyvinylidene difluoride 

(PVDF) membrane (PALL Corporations, Pensacola). The transfer was carried out in a 

semi-dry transblot (Bio-Rad, USA) with ice-cold transfer buffer [25mM Tris, 192mM 

glycine, 20% (v/v) methanol] at a constant voltage of 20 V for 50min.   
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3.8.6. Protein signal detection 

   

3.8.6.1. Antibody incubation 

 

The membrane was blocked with 10% blocking solution (KPL Inc, USA) in Tris-

buffered saline-Tween 20 [TBST; 20mM Tris-HCl (pH 7.5), 137 mM NaCl, 0.1% (v/v) 

Tween 20] for 1 hr at room temperature with gentle agitation. The membrane was washed 

in TBST for 15 min once and then 5 min twice. The membrane was then incubated with 

primary antibody in 5% (w/v) blocking solution in TBST for 1 hr at room temperature with 

gentle shaking on a belly dancer. The details of the antibodies used and their 

immunoblotting conditions are listed in Table 3.8.  

After washing several times in TBST, the membrane was incubated with 

appropriate secondary antibody conjugated with alkaline phosphatase in 3% (w/v) blocking 

solution in TBST for 1 hr at room temperature with gentle shaking on a belly dancer. 

Membrane was washed in TBST for 15 min once and 5 min thrice on a belly dancer. After 

the final wash, excess TBST was drained and the blot was placed on a clean container with 

the protein side up for protein signal detection. 

 

3.8.6.2. Signal detection  

 

Signals were visualized by either enhanced chemiluminescent detection system 

using LumiGLO® Reagent (Cell Signaling Technology, Danvers, MA) or colorimetry 

using the BCIP/NBT phosphatase substrate system.  
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For enhanced chemiluminescent detection system, substrate was prepared by 

diluting 20× LumiGLO and 20× Peroxide to 1× in water. The mixture was applied onto the 

surface of the membrane (bound with horse radish peroxidase-conjugated antibodies) with 

the protein side up and incubated in the dark for 1 min at room temperature. Excess 

solution was removed, and then the membrane was wrapped with the saran wrap and placed 

in an X-ray film cassette with protein side up. In the dark room, an X-ray film (Kodak) was 

placed onto the protein side of the membrane and exposed for 1-5 min to obtain the signals.  

To develop the film, the X-ray film was immersed in developer (Kodak) for 5 min 

with gentle shaking at room temperature. The film was then rinsed in water and fixed in a 

fixer (Kodak) for 5 min with gentle shaking. Next, the film was rinsed in water and air-

dried. Signals were analyzed using a gel documentation system. Expressions of GAPDH, β-

actin or α-tubulin were also assessed on the same membrane as an internal loading control 

using specific antibodies.  

For the colorimetry method, alkaline phosphatase-conjugated IgG was added to the 

membrane and detected with the BCIP/NBT phosphatase substrate system (KPL, USA) 

according to the manufacturer’s protocol.  
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Table 3.8: List of antibodies used in Western blotting and immunoprecipitation 

(IP) 

 

Antibody Protein 

size (kDa) 

Species Antibody 

dilution 

Source 

Primary antibody 

GAPDH                                            

β-actin                                                                               

Cleaved PARP        

Cleaved Caspase-3                      

Cleaved Caspase-9  

 

Cytochrome c 

COX IV 

Apaf-1 

 

BARF1 

Bcl2 

BAX 

 

40                          

42 

89 

19                

37 

 

14 

17 

135 

 

26 

28 

20 

 

Mouse                     

Mouse                                                         

Rabbit 

Rabbit   

Rabbit 

 

Rabbit 

Rabbit 

Rabbit 

   

Rabbit 

Rabbit 

Rabbit 

 

1:1000                             

1:1000                                              

1:1000         

1:1000         

1:1000 

1:100 (IP) 

1:1000 

1:1000 

1:1000 

1:100 (IP)  

1:100     

1:1000 

1:1000       

  

Abcam                       

Abcam                                                    

Cell Signaling Technology 

Cell Signaling Technology 

Cell Signaling Technology 

 

Cell Signaling Technology  

Cell Signaling Technology   

Cell Signaling Technology   

 

A gift from Dr. Middeldorp 

Cell Signaling Technology   

Cell Signaling Technology  

Secondary antibody 

Anti-mouse IgG, AP-linked 

Anti-rabbit IgG, AP-linked 

 

Goat 

Goat 

 

 

1:5000 

1:5000 

 

Sigma-Aldrich 

Santa Cruz Biotechnology 

Normal IgG Rabbit 1:100 (IP) Santa Cruz Biotechnology 
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3.9. Apoptosis antibody array 

Detection of apoptotic proteins was done using the RayBio® Human Apoptosis 

Antibody Array kit with the glass-slide array format AAH-APO-G1 (RayBioTech, 

USA). This kit detects 43 different apoptotic proteins as well as GAPDH 

(Glyceraldehyde 3 phosphate dehydrogenase) as a loading control indicator for protein 

samples (Table 3.9) with picogram-per-milliliter (pg/ml) sensitivity.  

Briefly, glass chip was taken out from the box and air-dried for 60 minutes. 

Glass chip was then assembled into incubation chamber and incubation frame. One 

hundred μl of 1X Blocking Buffer was added into each well printed with antibodies and 

incubated at room temperature for 30 min to block slides. Blocking Buffer was then 

decanted from each well. One hundred μl of protein sample (500 μg/ml) was added to 

array wells and array was incubated at 4°C overnight. Samples were decanted from each 

well and array was washed five times (2 min per wash) with 150 μl of 1X Wash Buffer I 

followed by washing twice with 150 μl of 1X Wash Buffer II (2 min per wash). Wash 

step was done at room temperature with gentle shaking and Wash Buffer I and II were 

completely removed in each wash step.   

Next, 70 μl of diluted biotin-conjugated antibodies was added to each well and 

array was incubated at room temperature for 2h. This was followed by wash steps using 

1X Wash Buffer I and II as described above. Then, 70 μl of 1,500 fold diluted HiLyte 

Plus™-conjugated streptavidin was added to each array well and the incubation 

chamber was sealed with adhesive film. The incubation plate was covered with 

aluminum foil to avoid exposure to light and incubated at room temperature for 2h. 

Array slide was then washed twice with Wash Buffer I as described above and excess 

wash buffer was decanted from wells.  
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The slide was disassembled out of the incubation frame and chamber and the 

whole slide was placed in a 50 ml centrifuge tube. About 30 ml Wash Buffer I was 

added to cover the whole slide and the tube was gently shaken at room temperature for 

10 minutes. Wash Buffer I was then decanted and the wash step was repeated once. The 

slide was then washed with Wash Buffer II (about 30 ml) with gentle shake at room 

temperature for 10 minutes. The slide was then rinsed with distilled H2O. Water 

droplets were removed by centrifuging at 1000 rpm for 3 min and slide was air dried 

completely for at least 20 min, protected from light.  

 

The array slide was scanned with G2505C microarray scanner (Agilent 

Technologies) using the cy3 (green) channel. The image extraction and data analyses 

were done using GenePix
®
 Pro Microarray Acquisition and Analysis software version 

6.1.0.4 (Agilent Technologies). The background corrected raw intensity values were 

used for analysis. 

The biotin-conjugated proteins produce fluorescence signals, which were used to 

identify the orientation and to compare the relative expression levels among the 

different wells. The positive controls are biotinylated antibody. Standardized amounts 

of biotinylated IgG are printed directly onto each array and if all other variables are the 

same, the positive control intensities will be equal. The positive controls monitor the 

detection process and were used for normalization. 
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Table 3.9: RayBio
®
 Human Apoptosis Antibody Array G series 

 

 

 A B C D E F G H I J K L M 

1 Pos Pos Pos Neg Neg bad bax bcl-2 bcl-w BID BIM Caspase 3 Caspase 8 

2 Pos Pos Pos Neg Neg bad bax bcl-2 bcl-w BID BIM Caspase 3 Caspase 8 

3 CD40 CD40L cIAP-2 cytoC DR6 Fas FasL neg HSP27 HSP60 HSP70 HTRA IGF-I 

4 CD40 CD40L cIAP-2 cytoC DR6 Fas FasL neg HSP27 HSP60 HSP70 HTRA IGF-I 

5 IGF-II IGFBP-1 IGFBP-2 IGFBP-3 IGFBP-4 IGFBP-5 IGFBP-6 IGF-1sR livin p21 p27 p53 SMAC 

6 IGF-II IGFBP-1 IGFBP-2 IGFBP-3 IGFBP-4 IGFBP-5 IGFBP-6 IGF-1sR livin p21 p27 p53 SMAC 

7 Survivin sTNF-R1 sTNF-R2 TNFalpha TNF-beta TRAILR-1 TRAILR-2 TRAILR-3 TRAILR-4 XIAP Neg Neg Neg 

8 Survivin sTNF-R1 sTNF-R2 TNFalpha TNF-beta TRAILR-1 TRAILR-2 TRAILR-3 TRAILR-4 XIAP Neg Neg Neg 
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3.10. Immunoprecipitation 

Immunoprecipitation of caspase 9 from total protein was done by incubating 1 μg  

anti-caspase 9 antibody (Cell Signaling Technology, USA) with 400 μg of total protein 

for 1 h at  4°C. Next, 20 μl of protein A agarose beads (Santa Cruz Biotechnology, 

USA) was added and incubated  at 4°C overnight on a rocker platform. 

Immunoprecipitates were collected by centrifugation at 1000 × g for 5 min at 4°C.  

Precipitates were washed five times with M-PER Mammalian Protein Extraction 

Reagent (Thermo-Scientific, USA) and once with PBS. The pellet was resuspended in 

1× sample buffer [50 mM Tris (pH 6.8), 100 mM bromophenol blue and 10% glycerol]. 

This solution was incubated at 90°C for 10 min, electrophoresed and immunoblotted 

with anti-Apaf-1 (Cell Signaling Technology, USA). 

 

3.11. Statistical analysis 

 

Statistical analyses were done using Microsoft Office Excel 2007. Student’s t-

tests were performed to determine significance level of statistical data. P value was used 

to gauge the significant difference between samples. Two levels of p value were used to 

discern samples that are statistically significant from samples that are statistically highly 

significant. p<0.05 was considered to be statistically significant and a more stringent 

threshold p<0.001 was considered to be statistically highly significant.  
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CHAPTER 4: RESULTS 

 

4.1. BARF1 mRNA expression in EBV-positive malignant cells 

4.1.1 BARF1 is expressed in AG876 and Hone-Akata cells 

 

To assess BARF1 silencing in EBV-positive malignant cells, I first sought to 

detect the expression of BARF1 in AG876 and Hone-Akata cells. AG876 are EBV-

positive malignant cells (EBV type 2) derived from a patient with Burkitt’s lymphoma 

(Pizzo et al., 1978) whereas Hone-Akata is an NPC epithelial cell line that is 

superinfected with the Akata strain of EBV (EBV type 1) (Glaser et al., 1989). 

Total RNA was extracted from these cells and subjected to RT-PCR 

amplification. Figure 4.1(a) shows the electrophoregram of the total RNA from AG876 

and Hone-Akata cells. The total RNA is shown to have sharp and clear 28S and 18S 

rRNA bands. Partially degraded RNA will have a smeared appearance when 

electrophoresed. The 28S rRNA band is approximately twice as intense as the 18S 

rRNA band. This 2:1 ratio (28S:18S) indicates that the extracted RNA is intact. 

Using primers BARF1-F and BARF1-R, the 666 bp amplicon of BARF1 was 

amplified from AG876 and Hone-Akata cells as shown in Figure 4.1(b). The full length 

BARF1 was then cloned into pCR4 sequencing vector and sequenced. DNA sequencing 

analysis (Appendix 1) revealed that the BARF1 sequence from both AG876 and Hone-

Akata cell lines matched the BARF1 sequence of AG876 and Akata EBV strains 

respectively. This confirmed that there were no mutations on BARF1 genes in both 

AG876 and Hone-Akata cell lines.   
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As shown in Figure 4.1(b), it was confirmed that AG876 and Hone-Akata cell 

lines express BARF1 gene. These cell lines were therefore chosen to evaluate the 

knockdown effect of BARF1-specific siRNA. 

 

 

       (a)             (b) 

                                                              

Figure 4.1. RT-PCR amplification of BARF1 from AG876 and Hone-Akata cell 

lines. (a) Total RNA extracted from AG876 (Lane 1) and Hone-Akata (Lane 2) cells. 

(b) Amplification of BARF1 (~666 bp). Lane M: 100 bp molecular marker. Lane 1: 

BARF1 from AG876 cells. Lane 2: BARF1 from Hone-Akata cells. Lane 3: Negative 

control for AG876 cells. Lane 4: Negative control for Hone-Akata cells. 

 

 

 

 

 

 

 

 1      2        M       1         2        3       4 

   28S 

   18S 

500 bp 

600 bp 

700 bp 
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4.2. BARF1 siRNA suppresses the expression of BARF1 at the mRNA level 

4.2.1. RNA quality and integrity analysis 

 

Extracted RNA is rapidly digested in the presence of the nearly ubiquitous 

RNase enzymes. As a result, shorter fragments of RNA commonly occur in a sample, 

which can potentially compromise results of downstream applications (Auer et al., 

2003; Imbeaud et al., 2005). 

Because of the critical influence of RNA integrity on downstream experiments, 

prior to qRT-PCR analysis, total RNA that was extracted from untreated and siRNA-

treated AG876 and Hone-Akata cells were treated with DNase I and subjected to RNA 

quality and integrity analysis.  Figure 4.2 shows the quality of RNA analyzed on 

Agilent 2100 Bioanalyzer. The microcapillary electrophoresis image shows two bands 

comprising the 28S and 18S ribosomal RNA (rRNA). 

RIN values range from 1 (totally degraded) to 10 (intact). The representative 

RIN scores of RNA in this study are shown in Figures 4.3 and 4.4. The RNA used in 

this study have RIN values ranging from 9.60 to 10, indicating that the RNA are intact 

and are of high quality.  
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Figure 4.2. Quality of RNA extracted from control and siBARF1-treated AG876 

and Hone-Akata cells. RNA was analyzed using Agilent 2100 Bioanalyzer. Lane L: 

RNA ladder; lanes 1-5: AG876 untreated, siNEG, siBARF1-1, siBARF1-2, siBARF1-3; 

lanes 6-10: Hone-Akata untreated, siNEG, siBARF1-1, siBARF1-2, siBARF1-3. 

 

 

            Sample marker 

           L      1       2       3       4        5      6       7        8       9     10 
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Figure 4.3. RIN values of RNA extracted from control and siBARF1-treated AG876 cells. RNA was analyzed using Agilent 2100 Bioanalyzer. 
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Figure 4.4. RIN values of RNA extracted from control and siBARF1-treated Hone-Akata cells. RNA was analyzed using Agilent 2100 

Bioanalyzer.
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4.2.2. Single transfection of BARF1 siRNA 

 

To silence the expression of BARF1 mRNA specifically, siRNAs targeting 

BARF1 were designed according to the cDNA sequenced in AG876 and Hone-Akata 

cells. Three siRNA sequences against the open reading frame of BARF1 mRNA (named 

siBARF1-1, siBARF1-2 and siBARF1-3) as well as a control siRNA (named siNEG) 

which had no significant homology to any coding sequences in human and EBV 

genome were synthesized.  

All three siRNAs (siBARF1-1, siBARF1-2 and siBARF1-3) were tested for the 

most effective BARF1 gene knockdown ability. siRNA molecules in a range of siRNA 

concentration (5-50 nM)  were delivered transiently into AG876 and Hone-Akata cells 

using the reverse transfection method. In the reverse transfection method, cells are in 

suspension compared to the traditional pre-plating method. In suspension form, a larger 

amount of cell surface is exposed to transfection agent/siRNA complexes, and this 

contributes to the improved transfection efficiency.  

To assess the efficiency of BARF1 silencing, total RNA from siRNA-treated 

and control cells was isolated. After cDNA synthesis, quantitative real-time (qRT)-PCR 

(using Taqman probes) targeting BARF1-specific sequence was used to determine 

BARF1 mRNA expression levels. Results were expressed in absolute terms as the 

number of copies of BARF1 gene.  

In AG876 and Hone-Akata cells, 48 h post-transfection with siRNAs (5-50 nM) 

targeting BARF1 gene caused a dose-dependent downregulation of BARF1 gene 

expression (Figure 4.5). 
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After 48 h of transfection with 35 nM siBARF1-1, siBARF1-2 and siBARF1-3, 

BARF1 mRNA expression was downregulated to 54%, 27% and 50% residual level 

compared to untreated cells in AG876 cells and 67%, 43% and ~57% residual level in 

Hone-Akata cells respectively (Figure 4.5). The negative control siRNA had no 

significant effect on BARF1 expression (Figure 4.5).  

Using 50 nM siRNA concentration, we noticed a further but minimal 

downregulation of BARF1 when compared with 35 nM siRNA (Figure 4.5). In AG876 

cells, siBARF1-1, siBARF1-2 and siBARF1-3 downregulated BARF1 expression to 

52%, 24% and 47% residual level respectively. In Hone-Akata cells, siBARF1-1, 

siBARF1-2 and siBARF1-3 downregulated BARF1 expression to 64%, 40% and 53% 

residual level respectively (Figure 4.5).   

However, in cells treated with 50 nM siNEG, a considerably high amount of cell 

detachment was noticed when compared with cells transfected with 35 nM siNEG, 

suggesting cell cytotoxicity. This effect may be due to the use of high amount of 

transfection agent in order to deliver high amount of siRNA (50 nM). 

 

 

 

 

 

. 
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Figure 4.5. qRT-PCR analysis of BARF1 mRNA expression in (a) AG876 and (b) 

Hone-Akata cells after single transfection with siNEG and siBARF1. Representative 

results from three independent experiments are shown as mean ± SD (
*
p<0.05, 

**
p<0.001, significant difference from untreated and siNEG-treated controls). 
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4.2.3. Double transfection of BARF1 siRNA 

Initial attempt to increase BARF1 knockdown using 50 nM siRNA resulted in 

detachment of cells in siNEG-treated cells which may indicate cell cytotoxicity. 

Alternatively, a double transfection method was tested with initial transfection (5-35 

nM siBARF1) of cell suspensions followed by re-transfection of adherent cells (5-35 

nM siBARF1) on the following day.  

In AG876 and Hone-Akata cells, double transfection with siRNAs (5-35 nM) 

targeting BARF1 gene also caused a dose-dependent downregulation of BARF1 gene 

expression (Figure 4.6). 

In AG876 and Hone-Akata cells, double transfection with 35 nM siBARF1-1 

downregulated BARF1 mRNA to 45% and 46% residual level respectively 48 h post the 

initial transfection (Figure 4.6). Double transfection with siBARF1-2 suppressed 

BARF1 expression to 10% and 15% residual levels in AG876 and Hone-Akata cells 

respectively. siBARF1-3 downregulated BARF1 mRNA to 26% and 29% residual level 

in AG876 and Hone-Akata cells respectively. In double transfection experiments, no 

significant difference in knockdown efficiency was observed using siNEG when 

compared with untreated control (Figure 4.6). 

Our results demonstrate that using double transfection method, siBARF1-2 (35 

nM) targeting the position 409-427 reduced the BARF1 mRNA level most significantly 

followed by siBARF1-3 and siBARF1-1.  
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Figure 4.6. qRT-PCR analysis of BARF1 mRNA expression in (a) AG876 and (b) 

Hone-Akata cells after double transfection with siNEG and siBARF1. 

Representative results from three independent experiments are shown as mean ± SD 

(
*
p<0.05, 

**
p<0.001, significant difference from untreated and siNEG-treated controls). 
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4.3. siBARF1 suppresses the expression of BARF1 protein 

 

Next, the effect of BARF1 mRNA knockdown was examined at the protein 

level. To substantiate the qRT-PCR data, immunoblotting using anti-BARF1 

monoclonal antibody was performed to detect the BARF1 protein expression in both the 

culture media as well as the cell lysate.  

Western blot analysis (Figure 4.7a) of cell lysate at 72 h post-transfection shows 

a decrease in BARF1 protein band intensity in siBARF1-2 treated cells when compared 

with control (untreated and siNEG-treated) cells. BARF1 protein was detected as ~ 26 

kDa band on Western blots using the MoAb 4A6 anti-BARF1 antibody. GAPDH was 

used as loading control. However, attempts to detect the secreted form of BARF1 

protein from the concentrated culture media using Western blot failed (data not shown).  

Densitometry analysis (Figure 4.7b) reveals that treatment with siBARF1-2 

caused ~80% and ~62% depletion of BARF1 protein in AG876 and Hone-Akata cell 

lysates respectively when compared with untreated controls. 
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Figure 4.7. BARF1 knockdown in AG876 and Hone-Akata cells using siBARF1-2. 

(a) Representative western blot showing decrease in BARF1 protein signal in cells 

transfected with siBARF1-2 compared with control cells. (b) BARF1 expression 

analyzed by densitometry. Representative results from three independent experiments 

are shown as mean ± SD (
**

p<0.001 significant difference from untreated and siNEG-

treated controls). 
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4.4. Silencing of BARF1 expression inhibits cell proliferation 

 

4.4.1.  Trypan blue exclusion assay 

  

 The effect of BARF1 depletion using siBARF1-1, siBARF1-2 and siBARF1-3 on 

the viability of AG876 and Hone-Akata cells was determined using the trypan blue 

exclusion test. BARF1 siRNAs were transfected using both the single and double 

transfection methods. 

 When the harvested cells were counted, the number of control cells (untreated and 

siNEG-treated) continued to increase in a time-dependent manner (Figures 4.8 and 4.9). 

No significant changes were observed in the pattern of cell growth 48 h post-

transfection. However, cell proliferation was significantly inhibited 72 h post-

transfection in BARF1-depleted cells when compared with the untreated and siNEG-

treated controls. 

 Inhibition of cell proliferation was most significant in AG876 and Hone-Akata 

cells that were double transfected with siBARF1-2, followed by siBARF1-3- and 

siBARF1-1-transfected cells, when compared with untreated and siNEG-treated 

controls. 
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Figure 4.8. Number of viable AG876 cells after (a) single and (b) double 

transfection of siRNAs determined using the trypan blue exclusion assay. 

Representative results from three independent experiments are shown as mean ± SD 

(
*
p<0.05, 

**
p<0.001, significant difference from untreated and siNEG-treated controls). 
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Figure 4.9. Number of viable Hone-Akata cells after (a) single and (b) double 

transfection of siRNAs determined using the trypan blue exclusion assay. 

Representative results from three independent experiments are shown as mean ± SD 

(
*
p<0.05, 

**
p<0.001, significant difference from untreated and siNEG-treated controls). 
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4.4.2.  WST-1 assay 

  

 To confirm the effect of BARF1 knockdown on cell proliferation, the WST-1 cell 

proliferation assay was used.   The anti-proliferative effects in AG876 and Hone-Akata 

cells were validated by double transfection using siBARF1-2 or siBARF1-3. Double 

transfection was employed for this assay as we found that this method downregulated 

BARF1 gene expression more effectively than the single transfection method (Figures 

4.5 and 4.6). Moreover, double transfection method using siBARF1-2 or siBARF1-3 

inhibited cell proliferation more significantly compared with siBARF1-1 (Figures 4.8 

and 4.9). 

 The results indicate that at 72 h post-transfection, the growth of siBARF1-

transfected cells was inhibited substantially in both AG876 and Hone-Akata cells when 

compared with the untreated and siNEG controls (Figures 4.10 and 4.11). The anti-

proliferative effect of BARF1 silencing was found to be higher in cells transfected with 

siBARF1-2 (Figure 4.10) compared with cells treated with siBARF1-3 (Figure 4.11). At 

any indicated time point, no obvious anti-proliferative effect was exhibited in untreated 

and siNEG control cells.  

 These results indicate that cell proliferation is inhibited in BARF1-silenced 

AG876 and Hone-Akata cells. All downstream experiments were carried out using 

double transfection of siBARF1-2. 
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Figure 4.10. WST-1 analysis of the growth of (a) AG876 and (b) Hone-Akata cells 

after transfection with siNEG and siBARF1-2. Representative results from three 

independent experiments are shown as mean ± SD (
*
p<0.05, 

**
p<0.001, significant 

difference from untreated and siNEG-treated controls). 
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Figure 4.11. WST-1 analysis of the growth of (a) AG876 and (b) Hone-Akata cells 

after transfection with siNEG and siBARF1-3. Representative results from three 

independent experiments are shown as mean ± SD (
*
p<0.05, 

**
p<0.001, significant 

difference from untreated and siNEG-treated controls). 
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4.5. BARF1 downregulation induces apoptosis-mediated cell death 

4.5.1. Annexin V 

 Due to the growth inhibitory effects of BARF1 silencing in the EBV-positive 

malignant cells; AG876 and Hone-Akata, the induction of cell death in these cells was 

next examined. The apoptosis-mediated cell death was examined by flow cytometry 

analysis using the Annexin V-FITC/PI double fluorescence staining, 72 h post-

transfection. Simultaneous staining of FITC-conjugated annexin-V with PI discerns 

early apoptotic cells (annexin-V positive, PI negative) from late apoptotic/dead cells 

(annexin-V positive, PI positive).  

 Data from flow cytometry analysis revealed that BARF1 silencing using 

siBARF1-2 significantly increased the apoptotic cell population in both AG876 and 

Hone-Akata cells when compared with untreated and siNEG-treated controls. In AG876 

cells, the percentage of early and late apoptotic cell population increased to 37% and 

14% respectively following BARF1 depletion. In Hone-Akata cells, BARF1 

knockdown increased the early and late apoptotic cell population to 30% and 14% 

(Figure 4.12a).  

 Results from flow cytometry analysis indicate that 51% of BARF1-depleted 

AG876 cells and 44% of BARF1-depleted Hone-Akata cells die through apoptosis 

(Figure 4.12b). 
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Figure 4.12. Silencing of BARF1 induced apoptosis-mediated cell death in AG876 

and Hone-Akata cells. (a) Detection of apoptosis 72 h after transfection with siNEG 

and siBARF1-2 using flow cytometry analysis following annexin V-FITC/propidium 

iodide (PI) dual fluorescence staining. Cells in lower left quadrant correspond to viable 

cells, lower right correspond to early apoptotic cells, upper right correspond to late 

apoptotic cells and upper left correspond to secondary necrotic cells. (B) Histograms 

represent the percentage of apoptotic cells (annexin V-FITC-positive) in control 

(untreated and siNEG-treated) and siBARF1-2-transfected cells. Representative data 

from three independent experiments are shown. Values are mean ± SD (
**

p<0.001, 

significant difference from untreated and siNEG-treated controls). 

(a) 

(b) 
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4.5.2. PARP cleavage 

  

 The apoptosis-inducing effect of BARF1 downregulation using siBARF1-2 was 

further examined by Western blot analysis for the proteolytic cleavage of PARP, a 

typical marker for the onset of apoptosis. Cells were harvested 72 h post-transfection 

and total protein was extracted. As shown in Figure 4.13, the native 116kDa PARP 

protein was found to be cleaved to an 89kDa fragment in BARF1-silenced AG876 and 

Hone-Akata cells. GAPDH was used as loading control. 

 

 

 

Figure 4.13. Detection of PARP cleavage in AG876 and Hone-Akata cells. 

Immunoblot shows degradation of PARP from its 116kDa native form to the 89kDa 

cleaved form, confirming the apoptosis-mediated cell death. The experiments were 

repeated three times and representative blots are shown. 
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4.6. Downregulation of BARF1 induces depolarization of mitochondrial membrane 

potential (MMP) 

 

4.6.1. Flow cytometry analysis of MMP 

 The involvement of mitochondria in initiation of apoptosis in cells was evaluated 

by recording changes in its membrane potential. Analysis of mitochondrial membrane 

potential (ΔΨm) by flow cytometry was done 72 h post-transfection using the APO 

LOGIX JC-1 Mitochondrial Membrane Potential Assay Kit. The cationic dye (JC-1) 

forms red aggregates in mitochondria and exists as green monomers in the cytosol of 

live, non-apoptotic cells. Upon collapse of the mitochondrial membrane potential in 

apoptotic cells, JC-1 remains in the cytoplasm as green monomers.  

 Figure 4.14a shows that treatment of AG876 and Hone Akata with siBARF1-2 

resulted in a significant decrease of the red aggregates of JC-1, indicating loss of 

mitochondrial membrane potential. Transfection with siBARF1-2 increased the 

percentage of cells with only JC-1 monomers to 84% and 77% in AG876 and Hone-

Akata cells respectively when compared with untreated and siNEG controls (Figure 

4.14b).  

 Knockdown of BARF1 collapsed the mitochondrial membrane potential of EBV-

positive malignant cells significantly, confirming the induction of apoptosis in these 

cells.  
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Figure 4.14. Depletion of BARF1 induced depolarization of MMP in AG876 and 

Hone Akata cells. MMP was determined by flow cytometry after staining the control 

and siBARF1-treated cells with JC-1 fluorescent dye. (a) Dot plots show the MMP of 

cells. (b) Histograms represent percentage of cells with only JC-1 monomers indicating 

apoptotic cells with depolarized MMP. The experiments were repeated three times and 

representative data are shown. Values are mean ± SD (
**

p<0.001, significant difference 

from untreated and siNEG-treated controls). 

 

(a) 

(b) 
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4.7. BARF1 silencing upregulates the expression of pro-apoptotic proteins and 

downregulates the expression of anti-apoptotic proteins 

 

4.7.1. Antibody array analysis of apoptosis-related proteins expression 

  

 To evaluate the expression of apoptosis-related proteins, control and siBARF1-

transfected AG876 and Hone-Akata cell lysates were analyzed using RayBio Human 

Apoptosis Antibody Array G Series. Cells were harvested 72 h post-transfection and 

total protein was extracted from the cell lysates.  

 Quantification of protein signals from the antibody array data revealed that 

following BARF1 silencing in AG876 cells, expression of BAX and caspase 3 increased 

2-fold and 4.2-fold respectively whereas p21 and p27 increased 1-fold when compared 

with siNEG-treated control. Expression of IGFBP-2, IGFBP-3 and IGFBP-4 increased 

2.6-fold, 2.3-fold and 2.9-fold respectively following BARF1 depletion in AG876 cells. 

In Hone-Akata cells, expression of BAX, caspase 3, p21 and p27 increased 1.8-fold, 

4.7-fold, 1-fold and 3.2-fold respectively following BARF1 depletion when compared 

with siNEG-treated control. Expression of IGFBP-2, IGFBP-3 and IGFBP-4 increased 

1.1-fold, 2.5-fold and 2.3-fold respectively following BARF1 depletion in Hone-Akata 

cells (Figure 4.16). 

 In AG876, BARF1 depletion resulted in a 1.5-fold decrease in Bcl-2 and 2.2-fold 

decrease in cIAP-2 and survivin expressions when compared with siNEG-treated 

control. In Hone-Akata cells, expression of Bcl-2, cIAP-2 and survivin decreased 2.5-

fold, 2-fold, and 2.5-fold respectively following BARF1 depletion when compared with 

siNEG-treated control (Figure 4.16). 
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 Antibody array analysis indicated that expression of BAX, caspase 3, p21, p27, 

IGFBP-2, IGFBP-3 and IGFBP-4 increased while expression of Bcl-2, cIAP-2 and 

survivin decreased in both AG876 and Hone-Akata cells that were treated with 

siBARF1-2 (Figures 4.15 and 4.16).  
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Figure 4.15. Expression of pro- and anti- apoptotic proteins in AG876 and Hone-Akata cells after transfection with siNEG and siBARF1-2, 

analyzed using human apoptosis antibody arrays.



104 

 

 

 

 

Figure 4.16. Histograms represent the fold change of apoptotic proteins derived 

from the fluorescence signal intensities of the arrays. 

  

4.7.2. Analysis of Bcl-2/BAX ratio in BARF1-silenced cells 

 The implications of BARF1 silencing were further explored by analyzing the Bcl-

2/BAX ratio in BARF1-depleted cells. Quantification of protein signals from the 

antibody array data revealed that BAX increased 2-fold in AG876 and 1.8-fold and 

Hone-Akata cells while Bcl-2 decreased 1.5-fold and 2.5-fold in AG876 and Hone-

Akata cells respectively (Figure 4.16).  

 In siBARF1-2-transfected cells, Bcl-2/BAX ratio decreased by 71% in AG876 

and by 79% in Hone-Akata cells as compared to siNEG controls (Figure 4.17). 
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Figure 4.17. Bcl-2/BAX ratio of control and siBARF1-transfected cells. Bcl-2/BAX 

ratio was deduced from the fluorescence signal intensities of the apoptosis antibody 

array. 

 

 

  To ascertain if the decreased Bcl-2 expression and increased BAX expression 

were caused by gene transcription, the transcript levels of Bcl-2 and BAX was 

examined using semi-quantitative RT-PCR. The results revealed that expression of Bcl-

2 mRNA was decreased by siBARF1-2 in both AG876 and Hone-Akata cells whereas 

the expression of BAX mRNA was increased by siBARF1-2 in both AG876 and Hone-

Akata cells (Figure 4.18a). Quantification by densitometry showed that with siBARF1-2 

treatment, the Bcl-2/BAX ratio at the mRNA level decreased significantly by 87% in 

AG876 and 78% in Hone-Akata when compared with the untreated controls and by 

81% and 74% in AG876 and Hone-Akata respectively when compared with siNEG 

control (Figure 4.18b).   
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Figure 4.18. Analysis of Bcl-2 and BAX mRNA expression in control and 

siBARF1-transfected AG876 and Hone-Akata cells. (a) Semi-quantitative RT-PCR 

analysis of Bcl-2 and BAX mRNA expression. (b) Bcl-2/BAX mRNA ratio analyzed by 

densitometry. Representative data from three independent experiments are shown as 

mean ± SD (
**

p<0.001, significant difference from untreated and siNEG-treated 

controls). 
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 The protein levels of Bcl-2 and BAX were checked using Western blotting. The 

results revealed that expression of Bcl-2 was upregulated whereas BAX expression was 

downregulated following BARF1 depletion in both AG876 and Hone-Akata cells 

(Figure 4.19a).  

 Quantification by densitometry showed that with siBARF1-2 treatment, the Bcl-

2/BAX ratio at the protein level decreased significantly by 63% in AG876 and 82% in 

Hone-Akata as compared to the untreated controls and by 59% and 78% in AG876 and 

Hone-Akata respectively when compared with siNEG control (Figure 4.19b).  
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Figure 4.19. Analysis of Bcl-2 and BAX protein expression in control and 

siBARF1-transfected AG876 and Hone-Akata cells. (a) Detection of Bcl-2 and BAX 

protein expression using Western blot. (b) Bcl-2/BAX protein ratio analyzed by 

densitometry. Representative data from three independent experiments are shown as 

mean ± SD (
**

p<0.001, significant difference from untreated and siNEG-treated 

controls). 
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4.8. Downregulation of BARF1 induces caspase dependent apoptosis 

4.8.1. Flow cytometry analysis of MMP 

 To investigate the involvement of caspases, we used a broader caspase inhibitor, 

z-VAD-fmk to examine its ability to prevent apoptosis caused by BARF1 silencing. 

Analysis of mitochondrial membrane potential collapse by flow cytometry revealed that 

pretreatment with the broad caspase inhibitor, z-VAD-fmk at 50 uM rescued the 

apoptosis in siBARF1-2-treated cells (Figures 4.20 and 4.21).  

 Pretreatment with z-VAD-fmk caspase inhibitor followed by siBARF1-2 

transfection decreased the percentage of cells with only JC-1 monomers to 18.7% and 

10% in AG876 and Hone-Akata cells respectively when compared with siBARF1-2-

transfected cells (Figure 4.21). The above results reveal that siBARF1-2-induced 

apoptosis in both AG876 and Hone-Akata cells is caspase-dependent. 
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Figure 4.20. MMP analysis of siBARF1-transfected AG876 and Hone-Akata cells pre-treated with z-VAD-fmk caspase inhibitor by flow 

cytometry. Representative data from three independent experiments are shown as mean ± SD (
**

p<0.001, significant difference from siBARF1-treated 

cells. 
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Figure 4.21. Percentage of cells with only JC-1 monomers (cells with collapsed 

MMP). Histograms are representative data from three independent experiments that are 

shown as mean ± SD (
**

p<0.001, significant difference from siBARF1-treated cells). 
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4.9. BARF1 depletion increases cleavage of caspases 3 and 9  

4.9.1. Western blot analysis 

 

To examine the roles of activated caspase 3 and caspase 9 in siBARF1-2-

induced apoptosis, western blot analysis was performed. Figure 4.22 shows that BARF1 

knockdown increased cleavage of caspase 3 and caspase 9 significantly as compared to 

controls in both AG876 and Hone Akata cells.  

 

 

 

Figure 4.22. Western blot analysis of cleaved caspase 9 and cleaved caspase 3 in 

control and siBARF1-treated cells. GAPDH was used as the loading control. 

Immunoblots are representative of three experiments. 
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4.10. BARF1 knockdown enhances cytochrome c release from mitochondria into 

cytosol 

 

4.10.1. Immunoblotting for detection of cytochrome c 

 Cytochrome c, which is released from the mitochondrial membrane into the 

cytosol facilitates cleavage of caspases (Brunelle & Letai, 2009). Therefore, using 

western blot analysis the levels of cytochrome c in both mitochondrial and cytosolic 

fractions were examined. The cytochrome c level in the cytosolic fractions of siBARF1-

treated cells was found to be significantly increased as compared to control cells 

whereas decreased cytochrome c level in the mitochondrial fractions was detected 

(Figure 4.23).  

 

 

Figure 4.23. Immunoblot for detection of cytochrome c level in mitochondrial 

fractions (MF) and cytoplasmic fractions (CF). For loading control, cytochrome c 

oxidase IV was used for MF, β-actin was used for CF. Immunoblots are representative 

of three experiments. 
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4.11. BARF1 silencing induces formation of apoptosome complex 

4.11.1. Immunoprecipitation for Apaf-1 

 

 Cytochrome c is released into the cytosol and binds to the cytosolic apoptotic 

protease-activating factor (Apaf-1) together with caspase 9 to form the apoptosome 

(Hajra & Liu, 2004). Immunoprecipitation of caspase 9 with anti-caspase 9 antibody 

was performed followed by western blot detection with anti Apaf-1 antibody to check 

the formation of apoptosome complex in BARF1-silenced AG876 and Hone-Akata 

cells. Western blot results revealed that Apaf-1 was significantly immunoprecipitated 

with caspase 9 in BARF1-transfected cells as compared to controls (Figure 4.24). 

 

 

                           

Figure 4.24. Immunoprecipitation for Apaf-1 from cell lysates. Cell lysates were 

immunoprecipitated with anti-caspase 9 antibody and immunoblotted for Apaf-1. 

Normal rabbit IgG was added to cell lysates as negative control. Immunoblots are 

representative of three experiments. 
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CHAPTER 5: DISCUSSION 

 

The Epstein-Barr virus encoded BARF1 is expressed in NPC, EBV-associated 

GC, B cell lymphoma as well as in nasal NK/T-cell lymphoma and exhibits oncogenic 

activity (Xue et al., 2002; Zhang et al., 2006; Decaussin et al., 2000; Seto et al., 2005; 

Zur Hausen et al., 2000). Although BARF1 is able to induce malignant transformation 

in rodent cells and human B cell lines (Wei and Ooka, 1989; Wei et al., 1994), 

immortalization can only be achieved in primary monkey epithelial cells (Wei et al., 

1997). Interestingly, in this EBV-induced immortalization, BARF1 expression was 

detected but LMP1 was absent (Danve et al., 2001). Previous studies on BARF1 suggest 

its role in promoting cell growth (Wei et al., 1997; Sakka et al., 2013) as well as in 

providing protection against apoptosis (Wang et al., 2006). However, the anti-apoptotic 

mechanism of BARF1 remains unclear. Hence, we sought to assess the effects of 

BARF1 depletion in EBV-associated malignant cells and unravel the molecular 

mechanism by which BARF1 elicits its function. 

In this chapter, the approaches and considerations that were taken into account in 

designing RNAi experiments are discussed (Section 5.1). The findings of this study are 

discussed next in Sections 5.2-5.6 and the limitations of the current study are described 

in Section 5.7. Discussed further in Section 5.8 is how findings of this study are 

consistent with other published roles of BARF1 and most importantly how the results 

have contributed to new knowledge on the roles of BARF1. Lastly, implications of the 

findings and suggestions on future research are discussed in Section 5.9. 
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5.1. RNAi experimental design 

RNAi has been used extensively to explore molecular mechanisms of gene 

functions and also employed as treatment in viral diseases (Gitlin et al., 2002). In RNAi 

experiments, sequence-specific off-target effects occur when siRNA is processed by 

RISC and leads to the downregulation of unintended targets. Studies have reported that 

changes in gene expression resulting from off-target effects may induce measurable 

phenotypes that may give rise to ‘false positives’. Using high concentration of siRNA 

duplexes (~100 nM) may contribute to off-target effects.  

In this study, approaches that are believed to minimize downregulation of 

unintended targets while preserving high on-target silencing have been employed. These 

approaches include the use of a reduced siRNA concentration as well as the use of 

chemically modified siRNAs that were designed using a more rigorous bioinformatics 

platform provided by Ambion, USA.  Besides that, a few published guidelines on RNAi 

experimental design and execution, including important control methods (Steitz, 2004; 

Duxbury and Whang, 2004; Sandy et al., 2005) were followed to ensure a valid and 

successful RNAi experiment.  

Researches on siRNA off-target effects have also shown that a combination of 

bioinformatics, chemical modification and the use of multiple siRNA sequences 

targeting the gene of interest may significantly reduce unintended gene silencing (Sandy 

et al., 2005). Different siRNAs to the same gene with comparable gene silencing 

efficacy should induce similar changes in gene expression profiles or phenotypes. Any 

changes induced by one siRNA and not the other(s) may be attributed to off-target 

effects. In this study, both siBARF1-2 and siBARF1-3 induced downregulation of 

BARF1 gene expression and exhibited similar effects in inhibition of cell proliferation 

in siBARF1-transfected AG876 and Hone-Akata cells. 
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5.2. siRNA-mediated BARF1 downregulation inhibits cell proliferation in AG876 

and Hone-Akata cells 

 

In this study, the effect of RNAi-mediated knockdown of BARF1 related to cell 

proliferation and apoptosis in EBV-associated malignant cells was assessed. Data from 

preliminary experiment confirmed that AG876 and Hone-Akata cell lines express 

BARF1 (Figure 4.1). We also confirmed that there were no mutations on BARF1 genes 

in both AG876 and Hone-Akata cell lines. This was especially critical in designing 

siRNA sequences that are specific to the mRNA target. Based on these confirmations, 

the two cell lines were therefore chosen to evaluate the knockdown effect of BARF1-

specific siRNAs.  

Transfection of BARF1 siRNA into AG876 and Hone-Akata cell lines efficiently 

downregulated both BARF1 mRNA (Figures 4.5 and 4.6) and protein expressions from 

the cell lysate (Figure 4.7). In this study, the secreted form of BARF1 protein from the 

concentrated culture media could not be detected. This may be due to the fact that in 

this small scale experiment, we were only able to perform medium concentration by a 

maximum of 1000 fold, unlike by 3000 or 6000 fold as published recently by Chang et 

al. 2013. However, it is believed that the downregulation of BARF1 protein observed in 

the cell lysate of siBARF1-transfected cells reflects a general and overall BARF1 

protein depletion in these cells. Implications of the failure to detect secreted BARF1 

protein to this study require further investigations. Validation in more cell lines will 

shed light in understanding this observation. Experiments in which BARF1 is 

overexpressed and detected through immunofluorescence would be able to provide 

understanding regarding BARF1 secretion in the cell lines used in this study.  
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Next, results from trypan blue exclusion and WST-1 assays revealed that BARF1 

knockdown in these cells led to inhibition of cell proliferation (Figures 4.8-4.11). Our 

findings confirmed the growth-inhibitory effects of BARF1 siRNA reported very 

recently in EBV-positive gastric carcinoma cell line by Chang et al (Chang et al., 2013). 

Under microscope, cells appeared rounded (data not shown) and growth of cells treated 

with siBARF1 was inhibited, suggesting apoptosis.  

 

5.3. Silencing of BARF1 induces apoptosis-mediated cell death in AG876 and 

Hone-Akata cells 

 

Apoptosis is a physiologic process by which cells undergo controlled cell death 

accompanied by nuclear condensation and fragmentation before loss of membrane 

integrity (Steller, 1995). The externalization of phosphatidylserine (PS) following the 

loss of plasma membrane asymmetry is one of the earliest events in apoptosis (Martin et 

al., 1995; Balasubramanian et al., 2007). Phosphatidylserine is redistributed from the 

inner-to-outer plasma membrane (PM) leaflet, where it functions as a ligand for 

phagocyte recognition and the suppression of inflammatory responses (Fadok et al., 

1992; Franz et al., 2007).  

Poly-(ADP-ribose) polymerase-1 (PARP-1) is involved in various cellular 

processes including DNA repair, recombination, genomic stability, transcription 

regulation, and cell death. Cleavage of PARP-1 by caspases is one hallmark of 

apoptosis and caspase activation (Kaufmann et al., 1993; Chaitanya et al., 2010).  
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To ascertain the mode of cell death, we conducted flow cytometry analysis of PS 

externalization using annexin V-FITC as well as PARP cleavage detection. Results 

from these tests (Figures 4.12 and 4.13) indicate that apoptosis was induced in BARF1-

silenced AG876 and Hone-Akata cells. 

 

5.4. Depletion of BARF1 induces apoptosis by collapsing mitochondrial membrane 

potential in AG876 and Hone Akata cells 

 

Next aim was to investigate the molecular mechanisms by which apoptosis is 

mediated in these BARF1-downregulated cells. The two major routes of apoptosis are 

the death receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway; both 

converge on a common execution phase. In the latter, mitochondria plays a central role 

in the commitment of cells to apoptosis (Fulda and Debatin, 2006). Many apoptotic 

stimuli cause either functional or morphological mitochondrial alterations such as 

collapse of the transmembranal potential or swelling. Opening of the mitochondrial 

permeability transition pore has been demonstrated to induce depolarization of the 

transmembrane potential, release of apoptogenic factors and loss of oxidative 

phosphorylation. 

In response to apoptotic stimuli, loss of mitochondrial membrane potential is 

required for mitochondrial-mediated apoptosis (Gottlieb et al., 2003; Ly et al., 2003). In 

the present study, using flow cytometry analysis, it is demonstrated that the apoptosis in 

siBARF1-treated cells was accompanied by a collapse in mitochondrial membrane 

potential (Figure 4.14). 
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5.5. BARF1 downregulation alters the expression of apoptotic molecules in AG876 

and Hone-Akata cells 

 

Bcl-2 family members are critical regulators of the apoptotic pathway. In the 

mitochondrial-dependent pathway, interaction between mitochondria and the Bcl-2 

family members initiates the release of cytochrome c from the mitochondria. 

The mechanisms that regulate mitochondrial apoptosis involve pro-apoptotic 

proteins (e.g., BAX, Bak, Bim) and anti-apoptotic proteins (e.g., Bcl-2, Bcl-xL) of the 

Bcl-2 family (Oltvai et al., 1993; Korsmeyer, 1999). The ratio of the anti-apoptotic Bcl-

2 to the pro-apoptotic BAX provides a major checkpoint in mammalian cell death 

pathway (Gross et al., 1999). Overexpression of apoptosis-preventing Bcl-2 protein 

contributes to tumorigenesis in many types of cancers and BAX counteracts this 

apoptosis-inhibiting effect of Bcl-2 (Reed, 1996). In this study, it has been shown that 

BARF1 silencing decreased the Bcl-2/BAX ratio (Figures 4.17-4.19).  

The upregulation of several pro-apoptotic proteins (BAX, p21, p27, IGFBP-2, 

IGFBP-3 and IGFBP-4) and the downregulation of anti-apoptotic proteins (Bcl-2, cIAP-

2, survivin) in cells with BARF1 depletion were also observed (Figure 4.16).  

In this study, the upregulation of both p21 and p27 in BARF1 depleted cells may 

have been a mechanism by which these cells undergo apoptosis or inhibiton of cell 

proliferation. Further investigation on the cell cycle arrest/machinery is needed to reveal 

if BARF1 play any roles in regulating cell cycle and also to ascertain the involvement of 

both p21 and p27 in the this possible role. Besides that, upregulation of IGFBP-2, 3 and 

4 observed in this study raises the possibility of the involvement of other pathways that 

may have modulated pro-apoptotic and growth inhibitory effects in BARF1-depleted 

cancer cells. It was also observed that BARF1 silencing downregulated the expression 
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survivin and cIAP-2. Downregulation of these proteins may have contributed to the 

apoptosis induction in BARF1-silenced cells.  

 

5.6. Silencing of BARF1 induces caspase-dependent apoptosis in AG876 and Hone-

Akata cells 

 

In this study, it has been demonstrated that pre-treatment with z-VAD-fmk 

caspase inhibitor rescued the siBARF1-mediated apoptosis in AG876 and Hone-Akata 

cells (Figures 4.20 and 4.21). This indicates that apoptosis mediated by BARF1 

downregulation is caspase-dependent.  

Apoptotic cell death is often mediated by a caspase cascade. Cytochrome c is 

released from mitochondria following the collapse of mitochondrial membrane 

potential. In the cytosol, in the presence of modest levels of dATP or ATP, cytochrome 

c binds to Apaf-1 and caspase 9 to form the large heptameric complex, apoptosome 

(Ledgerwood and Morison, 2009; Bratton and Salvesen, 2010). Apoptosome assembly 

triggers effector caspase activation (caspase 3) which leads to cell death (Ferraro and 

Cecconi, 2009).  

Using western blot analysis, a significant increase in active caspase 3 and active 

caspase 9 expressions in BARF1-silenced cells has been shown (Figure 4.22). 

Furthermore, cytochrome c has been shown to be released from mitochondria into 

cytosol in these cells (Figure 4.23). 

 We have also demonstrated that a significant level of Apaf-1 was 

immunoprecipitated with caspase 9 in BARF1-silenced cells (Figure 4.24), indicating 

the activation of apoptosome complex formation.  
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5.7. Limitations of study 

 Although the siRNA-knockdown approach used in this study has allowed for the 

elucidation and better understanding of BARF1 function, several limitations using this 

technology exist. The transduction of siRNA into cells led to only a transient 

knockdown of BARF1 gene. As modified siRNAs seem to be relatively resistant to 

degradation, the transient nature of the knockdown is determined by the rate of cell 

growth and the dilution of the siRNAs below a crucial threshold level that is necessary 

to maintain the inhibition of gene expression. In actively dividing cells, the duration of 

silencing is directly related to the number of cell doublings. For example, in AG876 and 

Hone-Akata cells, which double approximately every 24 hours, the maximum amount 

of silencing is seen 72 hours post-transfection and lasts for only several more days 

(data not presented). Another factor that could limit siRNA-mediated silencing is the 

half-life of the protein. It might be difficult to effectively silence genes that encode 

proteins with long half-lives by transient transfection of siRNA. 

The introduction of siRNAs into AG876 and Hone-Akata cells has been 

accomplished by the transfection of the siRNAs using lipid-based reagent. Each cell 

type was optimized with respect to the number of cells plated and the cells:siRNA:lipid-

carrier ratio for efficient transfection. This involved the use of a high amount of siRNAs 

that had to be chemically synthesized, which remains a costly process.  

Although a transient gene silencing was sufficient for our study, a stable 

silencing approach would be better to be applied in downstream experiments to further 

explore BARF1 function or signalling pathways. To achieve a long-term and stable 

gene silencing, the vector-based short hairpin RNAs (shRNAs) could be employed. 

shRNAs are introduced into the nuclei of target cells using either bacterial or viral 
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vectors that, in some cases, can stably integrate into the genome. shRNAs are 

transcribed by either RNA polymerase II or III, depending on the promoter driving their 

expression. These initial precursors are processed by Drosha and its dsRNA-binding 

partner DGCR8, resulting in species known as pre-shRNAs, before being exported to 

the cytoplasm by Exportin-5. The pre-shRNA is then cleaved by Dicer and 

TRBP/PACT, removing the hairpin and creating a 20–25 nt double-stranded siRNA 

with 2 nt 3’ overhangs at each end. This active siRNA is then loaded onto the RISC 

complex followed by target mRNA recognition and degradation. shRNA expression 

could also be controlled using inducible promoters (Li et al., 2002). 

Findings from this study should be validated using more cell lines especially in 

gastric carcinoma cell lines as BARF1 is also implicated to play a role in anti-apoptotic 

regulation in EBV-driven GC. The anti-proliferative and apoptotic effects of BARF1-

depletion could also be tested in vivo using mouse models. 

 

5.8. Roles of BARF1 

 In NPC, BARF1 has been shown to function as oncogene, in line with the 

widely researched LMP1 (Zheng et al., 2007). Interestingly, in EBV-driven GC, 

BARF1 is expressed in the absence of LMP1 raising the possibility that BARF1 may be 

the main EBV oncogene in GC (Zur Hausen et al., 2000). Several functions have been 

attributed to BARF1; from oncogenic to antiapoptotic and immune modulation.  

 BARF1 was first suggested to play a role in immortalization of monkey 

epithelial cells three decades ago (Griffin and Karran, 1984). Later it was shown that 

BARF1 could also immortalize human epithelial cells (Song et al., 2004). BARF1 is 

able to immortalize rodent cells (BALB/c3T3 and NIH3T3) and BARF1-transfected 
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cells induced tumour formation in newborn rodents (Wei and Ooka, 1989). Monkey 

kidney epithelial cells that were immortalized by BARF1 were tumorigenic in severe 

combined immunodeficiency mice but not in nude mice (Guo et al., 2001). The N-

terminal of BARF1 was found to be responsible for malignant transformation in rodent 

fibroblasts as well as for the upregulation of the antiapoptotic Bcl-2 (Sheng et al., 2001).  

Further studies demonstrated the ability of BARF1 to induce cell 

immortalization or malignant transformation and to activate several cellular genes, 

including Bcl-2 (de Turenne-Tessier et al., 2005; Ooka, 2005). However, Wei et al in 

1997 reported that immortalization can only be achieved in primary monkey epithelial 

cells. These findings indicate that the function of BARF1 may be cell type specific.  

Introduction of BARF1 into h-Ras-expressing epithelial cells resulted in cells 

becoming tumorigenic, suggesting that h-Ras synergizes with BARF1. Activations of 

telomerase and other signal pathways, including c-myc were observed in BARF1-

immortalized and transformed PATAS cells (Jiang et al., 2009). These findings suggest 

that transforming function of BARF1 may be partly mediated by activation of pro-

oncogenic cellular pathways. To fully define the oncogenic role of BARF1, pathways 

mediating epithelial cell transformation and carcinogenesis by BARF1 should be 

explored. 

In GC cell lines, introduction of BARF1 led to deregulation of genes involved in 

cell proliferation, mitosis and cell cycle regulation. BARF1 was found to induce 

overexpression of cyclin D1, a positive regulator of cell cycle (Wiech et al., 2008). 

These findings suggest a possible role of BARF1 in regulation of the cell cycle in 

malignant cells. In this study, antibody array data revealed that in BARF1-depleted 

cells, p21 and p27 were upregulated. p21 and p27 are cell cycle inhibitors that suppress 

tumours by promoting cell cycle arrest in response to various stimuli (Abbas and Dutta, 
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2009). Hence, further investigation on cell cycle machinery in BARF1-depleted cells 

would be able to uncover the roles of BARF1 in cell cycle regulation.  Data from 

antibody array also showed an upregulation of IGFBP-2, 3 and 4. Studies on IGF and 

IGFBP signalling pathways may help to further elucidate underlying mechanisms of 

how BARF1 elicits its functions in EBV-associated cancers. 

 

Although BARF1 is thought to function as a survival factor by suppressing 

apoptosis pathway, the molecular mechanism by which BARF1 exerts in providing 

protection against apoptosis is poorly understood. Findings of this study have provided 

knowledge on the molecular mechanism by which BARF1 elicits its biological effects, 

which has not been documented before. These findings are summarized in Figure 5.1.  

  

This study has demonstrated for the first time that siRNA targeting EBV-

encoded BARF1 efficiently suppressed BARF1 mRNA expression in AG876 and Hone-

Akata cell lines. In these cells, BARF1 depletion resulted in induction of apoptosis-

mediated cell death by collapsing the mitochondrial membrane potential. BARF1 

silencing also resulted in the upregulation of several pro-apoptotic proteins (BAX, p21, 

p27) and the downregulation of anti-apoptotic proteins (Bcl-2, cIAP-2, survivin). We 

have also demonstrated that apoptosis mediated by BARF1 downregulation is caspase-

dependent through modulation of Bcl-2/BAX ratio. Induction of apoptosis by silencing 

BARF1 expression also led to the formation of apoptosome complex. Implications of 

the findings from this study are discussed in the next section. 
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Figure 5.1. Schematic diagram of proposed molecular mechanisms in the 

regulation of caspase-dependent mitochondrial-mediated apoptosis in BARF1-

silenced AG876 and Hone-Akata cells. 
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5.9. Implications and future directions 

By understanding the regulation of the complex signaling pathways in tumours, 

especially the regulation of apoptosis, rationally designed anticancer strategies could be 

developed. Thus far, knowledge of the intrinsic and extrinsic apoptotic pathways as well 

as the other signalling modulators such as the p53, NF- κB, and the PI3K/Akt pathways 

have led to the discovery of many novel agents that are effective when used as single 

agents or in combination with conventional cytotoxic therapy or radiation. Further 

understanding of the different signaling pathways that control apoptosis in the different 

tumour types will help with the discovery of novel agents specific to the targeted 

tumour. 

 

Over the years, studies to understand the mechanisms controlling tumour cell 

proliferation and cell death have identified key molecular pathways involved in cancer 

formation, progression and treatment resistance. One of the most important discoveries 

made in cancer research has been the fact that anticancer chemotherapy kills cancer 

cells by activating the intrinsic and/or extrinsic apoptosis pathway. Although most 

findings support a role of the CD95 system in anticancer drug-induced apoptosis, most 

cytotoxic drugs are shown to initiate cell death by triggering the mitochondrial 

cytochrome c/Apaf-1/caspase-9-dependent pathway. Collectively, these data point to a 

key role of the mitochondrial pathway in chemotherapy-induced apoptosis, whereas the 

CD95 system may amplify killing by cytotoxic drugs under certain conditions (Los and  

Gibson, 2005). 

 

Nevertheless, apoptosis does not represent the sole killing mechanism by which 

cancers are eradicated, and other methods of cell death, for example, necrosis, 
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autophagy, or mitotic catastrophe have also to be considered. Further insight into the 

complex signaling network activated in response to anticancer therapy using cancer cell  

lines, primary tumour cells and animal models are necessary to see to what extent the 

current knowledge can be exploited for the design of apoptosis-based cancer therapies. 

These studies may eventually allow the identification of novel therapeutic targets 

thereby providing the basis for tailored, individual tumour therapy. 

 

The effectiveness of siBARF1 when used as single agent or in combination with 

conventional cytotoxic therapy or radiation in treatment of EBV-associated 

malignancies could be explored. Of late, antiviral RNA interference (RNAi) using 

short-interfering RNA (siRNA) has been developed as a novel strategy in treatment of 

diseases and tested in clinical trials. siRNAs have been demonstrated to selectively 

silence not only endogenous genes in mammalian cells but also viral genes in virus-

associated diseases (Ge et al., 2003; Qin et al., 2003). Combination therapy with siRNA 

may significantly enhance the sensitivity of cancer cells to the anticancer therapy and 

thereby help prevent the development of chemo/radio resistance resulting from low-

dose chemo/radio therapy. In combination therapy, the effect of the multiple modalities 

is considered to be additive if the combined effect is equal to the sum of the effect of the 

individual modalities. If the combined effect is greater than the predicted effect of the 

multiple individual modalities, this interaction is considered to be synergistic. It is also 

possible that the multiple modalities interact in an antagonistic fashion (Lu et al., 2012). 

Hence, a valid statistical analysis method should be applied in order to determine the 

synergistic therapeutic effects. Most importantly, the assessments of no off-target effect 

and minimal induction of interferon are the prerequisite for the application of RNAi-

based combination therapeutics in clinical field trials. 
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 CHAPTER 6: CONCLUSION 

 

The EBV-encoded BARF1 is a candidate oncogene and studies have shown its 

function in immortalization and transformation in EBV-driven carcinogenesis. 

Moreover, BARF1 is thought to function as a survival factor by suppressing apoptosis 

pathway. To date, the molecular mechanism by which BARF1 elicits protection against 

apoptosis remains to be clarified. Hence, this study was undertaken to unravel this 

mechanism. 

Data presented in this thesis shows that siRNA against the viral oncogene BARF1 

is proven to be able to efficiently suppress the BARF1 mRNA expression in EBV-

positive malignant cells. This study shows for the first time that siRNA against BARF1 

is able to induce apoptosis-mediated cell death in EBV-positive malignant cells. 

Furthermore, this study concludes that the siRNA-mediated BARF1 downregulation 

induced caspase-dependent apoptosis via the mitochondrial apoptotic pathway through 

modulation of Bcl-2/BAX ratio.  

Findings of this study have provided understanding of molecular mechanisms in 

the regulation of apoptosis in BARF1-silenced AG876 and Hone-Akata cells. However, 

to fully define the intracellular signalling pathways in BARF1-depleted cells, further 

studies of changes in protein expression and activities are needed.  

Thus far, advances and understanding of the apoptotic pathway have led to better 

and more innovative treatments against cancer and other diseases. The siRNAs designed 

against BARF1 in this study may have the potential to be exploited for the design of 

apoptosis-based therapies in EBV-associated malignancies. Future studies will be 

directed towards investigation of the effects of BARF1 siRNA in vivo as well as the 

value of BARF1 siRNA in treatment of EBV-associated malignancies.   
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The effectiveness of siBARF1 when used as single agent or in combination with 

conventional cytotoxic therapy or radiation could also be explored. Despite the great 

therapeutic potential of RNAi by regulating many disease-related genes, many barriers 

prevent its practical applications. Most importantly, an efficient delivery system of 

siRNA to the targeted site needs to be developed and the specific targeting needs to be 

validated. 
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