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ABSTRACT 

Twenty mungbean accessions were characterized and their genetic diversity was 

studied. Eight morphological characters including, plant height, number of fruiting 

branches per plant, number of pod per plant, number of pod clusters per plant, pod 

length, number of grains per pod, 1000 grain weight and total grain yield per plant were 

measured. Analysis of variance for all traits showed significant differences among 

genotypes. For cluster analysis UPGMA method was used to determine genetic 

variation and four main groups were defined. Principal component analysis was done to 

evaluate diversity, three components explained near 79% of total variation among 

genotypes. The first principal component (PC1) is related to number of Fruiting 

Branches/Plant, number of pod /plant, number pod cluster and pod length that, 

explained 39.4% of total variability. Phenotypic coefficients of variation (PCV) and 

genotypic coefficients of variation (GCV) were calculated for all characteristics, the 

highest GCV and PCV were observed for number of pod per plant (39.47%, 38.65%), 

number of pod cluster (34.28%, 32.15%) and grain yield (31.73%,30.90%)  

respectively. Higher broad sense heritability was found for the same traits. The results 

of phenotypic and genotypic correlation analysis indicated that grain yield was 

positively and significantly associated with pod length and 1000 grain weight. Path 

analysis based on genotypic correlation coefficients showed high positive direct effect 

of number of pod per plant (1.874), number of fruits (0.985) and plant height (0.688) on 

yield per plant. Furthermore, Twenty two microsatellite primer pairs were used for 

molecular studies. Out of these, thirteen primers were able to amplify the mungbean 

genome, upon polymerase chain reaction (PCR) result. Those that failed either were 

unable to amplify product at all, or showed unspecific amplification. Out of these 13 
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successfully amplified loci, 6 potential polymorphic loci were observed from 

microsatellite banding profiles on the gel images. These six primer pairs were used to 

evaluate the genetic variability in six selected mungbean population. The highest 

expected heterozygosity value count during multi population analysis demonstrated by 

locus LR7322B, ranged from 0.6014 to 0.8743, whilst the highest observed 

heterozygosity ranged from 0.5000 to 1 and 0.6666 to1 demonstrated by locus LR7323A 

and LR7319B respectively. Polymorphism assessments on all populations achieved 

using these three primers showed that HO scored were generally higher than HE. There 

was no linkage disequilibrium (LD) observed between all primer pairs. All loci, except 

LR7319B conformed to Hardy-Weinberg equilibrium (HWE). The FIS index 

demonstrated no indication of inbreeding among individuals of each population. 

Corresponding to UPGMA tree, population NM-1919 and population 40521 were 

observed to be least similar compared to the other four populations. Population structure 

analysis of molecular marker data from 6 primer pairs also divided the populations into 

four distinct groups and corresponding to this analysis, 40521 was observed to be least 

similar compared to the other populations. Furthermore, result obtained from analysis of 

molecular variation (AMOVA) showed significant difference within individuals of high 

and low yield mungbean genotypes, and accordingly, high heterosis effect may be 

accrued in the previous population. 
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ABSTRAK 

Dua puluh mungbean aksesi telah disifatkan dan kepelbagaian genetik mereka 

telah dikaji. Lapan ciri-ciri morfologi termasuk ketinggian pokok, bilangan dahan 

berbuah setiap tumbuhan, bilangan buah per pokok, bilangan kelompok pod per pokok, 

panjang pod, bilangan biji per pod, berat 1000 benih dan jumlah hasil benih sepokok 

telah diukur. Analisis varians untuk semua ciri-ciri menunjukkan perbezaan yang 

signifikan di kalangan genotip. Untuk menentukan variasi kelompok analisis genetik 

kaedah UPGMA telah digunakan dan 4 kumpulan utama telah dikenalpasti. Analisis 

komponen utama telah dilakukan untuk menilai kepelbagaian, tiga komponen 

menjelaskan hampir 79% jumlah variasi antara genotip. Komponen utama pertama 

(PC1) berkaitan dengan  dahan berbuah / pokok, bilangan pod / pokok, bilangan 

kelompok pod dan panjang pod itu, menjelaskan 39.4% daripada jumlah 

kepelbagaian. Variasi Pekali Fenotip (PCV) dan Variasi Pekali Genotip (GCV) telah 

dikira untuk semua ciri-ciri, GCV tertinggi dan PCV telah diperhatikan untuk bilangan 

pod per pokok (39.47%, 38,65%), bilangan pod kelompok (34.28%, 32.15%) dan hasil 

biji benih (31.73%, 30.90%) masing-masing. Perwarisan Broad Sense yang tinggi telah 

dijumpai untuk ciri-ciri yang sama. Keputusan analisis korelasi fenotip dan genotip 

menunjukkan bahawa hasil benih yang positif dan signifikan dikaitkan dengan panjang 

pod dan 1000 benih berat.  Analisa laluan berdasarkan pekali korelasi genotip 

menunjukkan kesan positif yang tinggi secara langsung dengan bilangan pod sepokok 

(1,874), beberapa buah-buahan (0.985) dan ketinggian tumbuhan (0.688) atas hasil per 

pokok. Tambahan pula, dua puluh dua pasangan primer mikrosatelit telah digunakan 

untuk kajian molekul. Daripada jumlah ini, 13 primers dapat menggandakan genom 

mungbeab, dengan hasil tindak belas rantai polymerase (PCR). Primer yang gagal, sama 

ada tidak dapat untuk menggandakankan produk pada semua, atau menunjukkan 

penggandaan tidak spesifik. Daripada 13 lokus yang berjaya digandakan, terdapat 6 
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lokus polimorfik yang berpotensi telah diperhatikan berdasarkan profil banding 

mikrosatelit pada imej gel. Enam pasangan primer ini  telah digunakan untuk menilai 

kepelbagaian genetik dalam 6 populasi taugeh terpilih. Nilai heterozigositi dijangka 

tertinggi semasa analisis pelbagai populasi yang ditunjukkan oleh locus LR7322B, iaitu 

0.6014-0.8743, manakala nilai heterozigositi diperhati tertinggi ditunjukkan oleh locus 

LR7323A dan LR7319B masing-masing menunjukkan bacaan antara 0.5000–1.0000 dan 

0.6666–1.0000. Penilaian polymorphism pada semua primer yang dicapai menggunakan 

ketiga-tiga primer menunjukkan bahawa bacaan HO secara amnya lebih tinggi daripada 

HE. Terdapat tiada ketakseimbangan hubungan (LD) diperhatikan antara semua 

pasangan primer. Semua lokus, kecuali LR7319B menepati keseimbangan Hardy-

Weinberg (HWE). Indeks FIS menunjukkan tiada tanda-tanda pembiakbakaan di 

kalangan individu setiap penduduk. Sejajar dengan pokok UPGMA, populasi NM-1919 

dan populasi 40521 telah diperhatikan untuk menjadi kurangnya sama berbanding 

dengan empat penduduk lain. Analisis strukture populasi data penanda molekul 

daripada 6 pasang primer juga membahagikan populasi kepada empat kumpulan yang 

berbeza dan sepadan dengan analisis ini, 40521 diperhatikan kurang persamaan 

berbanding dengan penduduk lain. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

The genus Vigna  has been divided to include about  170 species, 120 from  

Africa, 22 from Asia, and  a few from  other  parts  of  the  world (Ghafoor et al., 2001). 

Seven species of Vigna  are cultivated  as pulse crops specially in Asia, Africa and some 

parts of America (Anishetty & Moss, 1988). Two of these cultivated species are of 

African origin (subgenus Vigna) and five are of Asian origin (subgenus Ceratopropis). 

The species from the Asiatic group consists of, adzukibean (Vigna angularis Willd, 

Ohwi and Ohashi), blackgrarn/mash/urd (Vigna mungo L. Hepper), 

mungbean/greengram    (Vigna radiata L. Wilczek), mothbean (Vigna aconitofolia Jack 

Marechal) and ricebean (Vigna umbellata Thunb, Ohwi and Ohashi). Five important 

Asian pulses include; adzukibea, mothbean, ricebean, blackgram and mungbean. They 

are from subgenus Ceratotropis of the genus Vigna. Blackgram and  mungbean  have 

been the main crops in  Asia since  ancient times (Paroda & Thomas, 1987). Presently, 

mungbean cultivation is widely practiced world wide, because as compared to 

blackgram  it  is easily digested (Smartt, 1990). The subgenus Ceratotropis is called 

Asian Vigna because it originates from Asia and the subgenus Ceratotropis forms about 

seventeen species largely limited to the Pacific and Asia. It can be subdivided into two 

groups by the seedling characteristics, i.e., (1) "mungbean group" showing an epigeal 

germination and (2) "adzuki bean group" showing a hypogeal germination. Today, 

biochemical markers have been used to show the phylogenetic relationships of Vigna 

species (Yasui et al., 1985) for low molecular weight carbohydrates; (Jaaska & Jaaska, 
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1990) for isozymes; ((Rao et al., 1992) for grain proteins; (Fatokun et al., 1993) for 

RFLP; (Vaillancourt et al., 1993) for chloroplast DNA; (Zink et al., 1994) for RFLP of 

the phytohemagglutinin genes and (Kaga et al., 1996) for RAPD. 

The subgenus Ceratotropis in the genus Vigna contains Vigna radiata var. 

sublobata. This species before was studied by many authors as Phaseolus sublobatus 

Roxb., which was revealed as the common ancestor of both V. radiata and V. mungo 

(Verdcourt, 1970). After further investigations, it was defined that the taxon contained 

two different forms, one related to V. radiata and the other to V. Mungo (Singh et al., 

1974; Lukoki et al., 1980; Jain & Mehra, 1980) agreed the particular difference between 

the V. radiata and the V. Mungo and their relations as wild ancestors to the cultivated 

species. They related two forms as V. radiata var. sublobata (Roxb.) Verdcourt and V. 

mungo var. silvestris Lukoki. This was confirmed  by Miyazaki and Chandel, based on 

morphological characters and biochemical studies (Chandel et al., 1984; Miyazaki et 

al., 1984). 

Mungbean (Vigna radiata L. Wilczek) is one of the major crops well suited to 

dry areas, mainly under watered conditions. It is an annual food legume, that cultivated 

in traditional form by small landholders in every part of tropical, subtropical and mild 

zones of Asia including India, Bangladesh, Pakistan, Sri Lanka, China, Korea, Japan, 

Thailand and Nepal. Mungbean is grown under various cropping systems and it has a 

short maturity period, therefore profitable to landholders as well as sustaining soil 

productivity (Fernandez & Shanmugasundaram, 1988). In south Asia, it is used to cook 

dhal, it is the most common food which is made from different kinds of split legumes 

with spices. In the East and Southeast Asian countries, mungbean is used to make 

different kinds of bean jam, sweetened bean soup, sweet, bean sprout and vermicelli. In 

many countries average mungbeens yield procured is much lower than its real potential, 
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one factor that accounts for low yield is lack of high yielding cultivars with better 

adaptability.  

In the past century world agriculture has been successful in conducting more 

investigation cereals as compared to legumes. To increase agricultural productivity, it 

will be essential to use a wide range of the plant genetic diversity, especially of legumes 

and minor crops genetic resources. Genetic diversity concept is diversity of the sets of 

genes, that carried by different genotypes of a species. All the plant scientists agree that 

plant genetic improvement can be achieved by the manipulation of available genetic 

variability. The value of genetic diversity in plant breeding is well recognised because 

of, the results achieved in different crops (Rabbani et al., 1998; Ghafoor et al., 2001; 

Upadhyaya et al., 2002; Upadhyaya, 2003). One of the approaches for making a 

germplasm stock is to gather germplasm from different geographical origins with a 

concentration of accessions from known centers of diversity in individual samples. 

Genetic diversity is a valuable factor in planning experiments and gene-bank  

management because it assists utilization of germplasm and well-organized  sampling 

either by eliminating and/or identifying duplicates in the gene stock ultimately resulting 

in the development of core collection philosophy. Representative germplasm from all 

geographical  range of the crop species can assist to make ensure conservation of co-

adapted gene complexes (Brown, 1978; Beuselinck & Steiner, 1992; Frankel et al., 

1995), since genetically heterogeneous lines generate  stable and more yield  than 

genetically homogeneous populations. 

In order to utilize, evaluate and maintain germplasm effectively, it is important 

to consider the extent of genetic diversity available. Smith investigated detailed 

morphological characters as an important step in classification and description of crop 

germplasm  since a  breeding program mostly depends on  the amount of genetic 
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variability (Smith et al., 1991). The multivariate analysis and especially, the cluster 

analyses and principal component analyses have been utilized for the evaluation of 

germplasm based on various characters across a large number of accessions (Mardia et 

al., 1979). Highly heritable, quantitative genetic markers permit assessment of genetic 

diversity. Sokal supported calculating general variances the determinant of the variance-

covariance matrix came from detailed morphological as indices of intra population 

diversity such as Goodman assessed the comparative intra accession variability of some 

cotton and maize genotypes (Goodman, 1968; Sokal, 1965). 

To estimate the genetic resources maintenance and their utilization, variance 

can be derived into its components. It ensures the possibility of development for 

utilization of suitable gene pool in crop improvement for particular plant attributes 

(Pecetti & Damania, 1996). Various numerical taxonomic techniques (Brown & Weir, 

1983; Nei, 1987; Weir, 1996) have been effectively used to measure and classify 

phenotypic diversity in the relationships of germplasm stocks in a variety of crops by 

several scientists as in yellow yam (Akoroda, 1983), pea (Amurrio et al., 1992; Amurrio 

et al., 1995), cole crops (Dias et al., 1993), Indian mustard (Gupta et al., 1991), corn 

(Revilla & Tracy, 1995), soybean (Perry & McIntosh, 1991), alfalafa (Smith et al., 

1991; Warburton & Smith, 1993; Smith et al., 1995), ryegrass (Humphreys, 1991), 

foxtail millet (Li et al., 1995), cotton (Goodman, 1968; Brown, 1991), blackgram 

(Shanmugam & Rangasamy, 1982; Dasgupta & Das, 1984; Das Gupta & Das, 1985; 

Ghafoor et al., 2001), lentil (Ahmad et al., 1997), and mungbean (Ramana & Singh, 

1987; S. P. Singh, 1988). 
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Polygenic morphological characters are often used as genetic markers for 

taxonomic applications and different plant germplasm management (Stuessy, 2009), but 

their significant genotype-environment interaction and inferior heritabilities can 

dramatically raise the expense and complexity of analyzing them, even though 

computerized imaging systems can help in this attempt. In addition, estimation of 

obtainable genetic collections to measure the genetic variation for economic important 

traits is a pre-requisite for joining wanted genes in a particular genotype. The type and 

amount of genetic variation in a line assists in selection of parents, that after 

hybridization is possible to produce the superior recombinants for desirable characters 

for example wider adaptability, resistant to diseases and high yield.  

At present, molecular tools have been used for blackgram and mungbean 

breeding plans, such as, the use of DNA markers and isozymes for evaluation of genetic 

diversity, relatedness among Vigna species subgenus Ceratotropis, mapping of disease 

resistance genes and variety identification (Boonpradub & Chatasiri, 1999; Prammanee 

et al., 2000; Chaitieng et al., 2002; Seehalak et al., 2006). Some types of DNA markers 

have been used recently to help in genetic study. These are: Random Amplified 

Microsatellites (RAM), Amplified Fragment Length Polymorphisms (AFLP), 

Restriction Fragment Length Polymorphisms (RFLP), Direct Amplification of Length 

Polymorphisms (DALP), Random Amplified Polymorphic DNA (RAPD) and Variable 

Number of Tandem Repeats (VNTR) such as microsatellites and mini satellites. Despite 

the several types of markers accessible, the most well-organized and helpful marker 

method is microsatellites that is also identified as simple sequence repeats (SSR). 

Microsatellite markers have the properties of reproducibility, multiallelic nature, 

codominant inheritance, relative abundance and good genome coverage. These 

properties make microsatellites markers useful for a variety of applications in plant 

genetics and breeding (Powell et al., 1996). Development of microsatellite markers 
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from genomic libraries is rarely informative regarding their function; they can belong to 

either transcribed or non-transcribed region of the genome. By contrast, genic-

microsatellite markers often have known or ‘putative’ functions. As a result, genic-

microsatellite markers are gene targeted markers and have the potential of representing 

functional markers in those cases where polymorphisms in the repeat motifs affect the 

function of the gene in which they reside (Andersen & Lubberstedt, 2003). However,  

due to greater DNA sequence conservation in transcribed regions, genic microsatellite 

primers have been reported to be less polymorphic compared with genomic 

microsatellites in crop plants (Rungis et al., 2004; Scott et al., 2000). For assessment of 

functional diversity, the genic microsatellites are useful; however, genomic 

microsatellites are more useful for fingerprinting or varietal identification study due to 

higher polymorphism (Varshney et al., 2005). 

Unfortunately, microsatellite markers have not been used in mungbean due to 

the complexity of their isolation. Therefore, other types of markers for example RAPD, 

RAM, RFLP, proteinase inhibitors and isozymes have been developed for taxonomic 

and phylogenetic aims in mungbean with varying degrees of achievement. Germplasm 

stocks are of minimal value unless they are used by the breeders for crop improvement. 

Accessibility of valuable variation in germplasm is necessary for organized breeding. 

Keeping in view the value of mungbean as a pulse crop.  
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1.2 Hypothesis 

a. The mungbean genotypes show heterosis and also genetic diversity among twenty 

mungbean germplasm. 

b. Molecular markers are able to show significant differentiation between high grain 

yield genotypes and low grain yield genotypes.  

1.3 Objectives of study 

The objectives of this study are summarized as:  

1. To determine the genetic diversity of mungbean germplasm on the basis of 

morphological and agronomic characteristics. 

2. To evaluate the genetic structuring six populations of mungbean with high and low 

yield performance using microsatellite markers.  
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CHAPTER 2 

2 Literature review 

2.1 Mungbean background  

The genus Vigna composed of more than 150 species that are of considerable 

economic importance in many developing countries (Polhill & Van der Maesen, 1985).  

Mungbean [V. radiate (L.) Wilczek], urd bean [V.mungo (L.) Hepper] and cowpea [V. 

unguiculata (L.) Walp.], are key dietary staples for millions of people. Additionally, 

adzuki beans [V. angularis (Willd.) Ohwi & Ohashi], bambara groundnuts [V. 

subterranea (L.) Verdn.], mat bean [V. aconitifolia (Jacq.) Marechal], and rice bean [V. 

umbellata (Thunb.) Ohwi & Ohashi] are also consumed in many countries. 

Mungbean is an important grain legume, particularly in Asia. It has been 

estimated that annual production is 2.5–3 million tons per year (Poehlman, 1991). It is a 

warm season crop that can grow during hot, wet seasons and be cultivated in the arid 

and semi-arid tropics (Kulkarni & Pandey, 1988; Pannu & Singh, 1988). Traditional 

indeterminate mungbean varieties have long growth duration (90 to 110 days) and 

required multiple harvests (suitable for home gardening, but unsuitable for commercial 

production due to high labor costs). The traditional varieties were susceptible to key 

diseases such as cercospora leaf spot, powdery mildew, and mungbean yellow mosaic 

virus (MYMV); insect pests such as beanfly (Melanagromyza sojae, M. dolichostigma, 

and Ophiomyia centrosematis), lima bean pod borer (Etiella zinckenella), and 

mungbean weevil (Callosobruchus chinensis), and did not respond to inputs (Asian 
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Vegetable & Development, 1976). In the semi-wild state, mungbean is of little value; 

AVRDC saw an opportunity to domesticate the crop and make substantial 

improvements. To achieve this objective, it was essential to have a broad, deep pool of 

genetic diversity for breeders to use.  

India is the biggest producer of mungbean where about 2.99 million ha are 

cultivated. The major constraints for achieving higher yield are inherently low yielding 

potential of the varieties from lack of genetic variability, absence of suitable ideotypes 

for different cropping systems, poor harvest index and susceptibility to abiotic stresses 

(that is, drought, calcareous or saline soil) or biotic stresses (diseases and insects) 

(Souframanien & Gopalakrishna, 2004). Mungbean is often included in rice or wheat-

based cropping systems in the tropics and subtropics. Growing mungbean after rice is 

best. Planting mungbean immediately after mungbean or cabbages should be avoided 

because toxic residues and disease organisms from the previous mungbean or cabbage 

crops may affect the following mungbean crop adversely. 

2.2  Uses of mungbean 

The crops are utilized in several ways, where grains, sprouts and young pods 

are consumed as sources of protein, amino acids, vitamins and minerals (Table 2.1).It is 

regarded as quality pulse due to its excellent digestibility and rich protein (25-28%), 

especially when combined with cereals (Thirumaran & Seralathan, 1988). It is an 

important source of readily available proteins in cereal-based diet of the people of South 

Asia and Southeast Asian countries. It is also consumed as boiled dry beans. Moreover, 

mungbean is regarded as fodder for livestock and also incorporated in soil for enriching 

organic matter. Mungbeans adapt well to various cropping systems owing to their 

ability to fix atmospheric nitrogen (N2) in symbiosis with soil bacteria of Rhizobium 
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spp. rapid growth, and early maturity. 

Table 2.1: Boiled mungbean nutritional value per 100g 

  Energy 110 Kcal  440KJ 

Carbohydrates 19.15 g 

- Sugars 2.00 g 

- Dietary fiber 7.6 g 

Fat 0.38 g 

Protein 7.02 g 

Vitamin C  1.0 mg 2% 

Calcium  27 mg 3% 

Magnesium  0.298 mg 0% 

Phosphorus  99 mg 14% 

Potassium  266 mg 6% 

Sodium  2 mg 0% 

 

Source: USDA Nutrient database 

 

Mungbeans are commonly used in Chinese cuisine, as well as in Japan, Korea, 

India, Thailand and Southeast Asia. They are generally eaten either whole (with or 

without skins) or as bean sprouts, or used to make the dessert "green bean soup". The 

starch of mungbeans is also separated from the ground beans to make jellies and 

"transparent/cellophane" noodles. 

2.3 Effect of mungbean in enriching soil 

Mungbean has the capacity for organic nitrogen fixation. Planting mungbean is 

reported to help the succeeding cereal crop. Incorporation of mungbean rests give a rice 

http://www.nal.usda.gov/fnic/foodcomp/search/
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yield raise the same as to 25 kg N manure for each hectare (Meelu & Morris, 1988). 

Some studies in Punjab have revealed that the extra-short period SML668 mungbean, 

which fits well between rice and wheat as a catch crop, leaves a residual of 33–37 kg N 

per ha for the succeeding crop after meeting its own requirement. Sekhon reported that 

this extra nitrogen gives 25% of the N requirement of the cropping system (Sekhon et 

al., 2006).  

Stable prices for cereals and subsidized inputs give slight motivation for 

farmers to spread the rice-wheat cropping system. Hobbs reported that exhaustive crop 

diversification has provided in answer to a decline in partial part productivity of 

nitrogen fertilizer (Hobbs & Morris, 1996). Cereal cropping is the solution to reversing 

decreasing crop yield (Pingali & Shah, 1999). Two hundred farmers in four areas in 

Punjab was survived, with several adopting variety SML668, in 2002. 

2.4 Botany of mungbean 

Mungbean belongs to the order Leguminosae and Papilionoideae family and is 

botanically recognized as Vigna radiata (L.)Wilczek syn. PhaseolusradiatusL., P. 

aureus Roxb (Verdcourt, 1970; Wilczek, 1954). The taxonomic status of the species is 

given in Table 2.2. The genus Vigna has been broadened to include about 150 species; 

twenty-two species are native to India and sixteen to Southeast Asia, but the largest 

number of species are found in Africa (Polhill & Van der Maesen, 1985). 
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Table 2.2: Taxonomic status of mungbean 

Kingdom Plant kingdom 

Division Spermatophyta 

Subdivision   Angiospermae 

Class Dicotyledoneae 

Order Leguminosae 

Family Papilionoideae 

Tribe Phaseoleae 

Genus Vigna 

Subgenus Ceratotropis 

Species Radiate 

Variety Radiate 

Source:(H. K. Jain & Mehra, 1980; Rochie & Roberts, 1974) 

2.5 Mungbean genomics 

Mungbean is diploid in nature with 2n=2x=22 (Karpechenko, 1925). 

Mungbean has small genome size estimated to be 0.60 pg/1C (579 Mbp), which is 

similar to those of other Vigna species (Somta et al., 2007; Somta & Srinives, 2007).  

2.6 Morphological traits 

Mungbean is an annual plant, sometimes a bit twining at the tips, Sen reported 

that twining growth is dominant to erect habit (Sen & Ghosh, 1959). Mungbean is 0.3 to 

1.5 m tall, erect or suberect plant with deep-rooted, long petioles and much branched. 

The leaves are dark or light green, trifoliolate, alternate, ovate and vary from 2 to 10 cm 

long and 5 to 12 cm wide. Heterozygous genotypes was reported have intermediately 
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lobed leaflets (Sen & Ghosh, 1959). Mungbean inflorescence is with a peduncle 2 to 13 

cm long and an axillary raceme. Rochie & Roberts (1974) reported that the flowers are 

light yellow and mungbean keel petal is spirally coiled with a horn-like. Pods are 

slender, short, hairy and 6 to 10 cm long. The pod color can be buff, grey or dark brown 

with fine hair covering. Bose (1939) reported that the genes for flower color are known 

to affect the unripe pod color. grains are mostly green but sometimes black, mottled, 

yellow or tawny brown. Variations in seed coat colors were discovered to be due to 

number of chloroplasts, to the color of chloroplasts and sap-soluble pigments  (Sen & 

Ghosh, 1959). Van Rheenen (1965) recognized dominant genes conditioning green seed 

coat and spotted seed coat colors. Grain weight is 15 to 85 mg and shape is mostly 

globose. Verma (1969) reported that seed shattering at maturity is due to a single 

dominant gene and in mungbean photoperiod insensitivity is dominant over photoperiod 

sensitivity. 

2.7 Genetic diversity based on morphological characters 

Estimates of genetic diversity and relationships between germplasm collections 

are very important for facilitating efficient germplasm collection evaluation and 

utilization. Many tools are now available for identifying desirable variation in the 

germplasm including total grain protein, isozymes and various types of molecular 

markers.  However, morphological characterization is the first step in the description 

and classification of germplasm (Singh & Tripathi, 1985; Smith & Smith, 1989), 

thoroughly discussed the importance of a hierarchical approach to quantitatively define 

the variance in the centre of genetic diversity over a range of micro environments. 

Subdividing the variance into its components may assist in genetic resources 

conservation and utilization by determining the relative contribution of the different 
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levels of variability to the total diversity available in any one area. This  would  enable  

planning  of  future  germplasm sampling, establishment of in-situ gene conservation, or 

use of appropriate gene pools in crop  improvement   for  specific   plant  attributes 

(Bekele, 1984; Pecetti et al., 1992). Germplasm evaluation  must be considered as the 

first step in plant breeding program and  it  is  commonly   based  on  a  simultaneous  

examination  of  a  large   number  of populations for several characters  of both 

agronomic and physiological  interest (Pezzotti et al., 1994).  

Virmani categorised mungbean germplasm in various groups for different traits 

(Virmani et al., 1983). The genetic diversity between V. radiata and V. mungo was 

reported by Egawa (Egawa, 1988). Singh categorized pea germplasm into various 

groups (Singh & Tripathi, 1985). Ghafoor classified blackgram germplasm and selected 

eleven pure-lines for further exploitation (Ghafoor et al., 1989). In a study on 

mungbean, Ghafoor selected twenty eight genotypes on the basis of high yield potential 

and resistance to diseases (Ghafoor et al., 1992). 

Falcinelli showed multivariate analyses to be a valid system to deal with 

germplasm collection (Falcinelli et al., 1988; Veronesi & Falcinelli, 1988). 

Nevertheless, qualitative traits must often be used for separating varieties when a 

limited range of quantitative traits is found in certain groups (Sneddon, 1970). Principal 

component analysis (PCA) was considered a useful data reduction technique which 

worked by removing inter-relationship among variables.  By using PCA, not only the 

number of comparisons between treatment means is reduced, but the meaningfulness of 

these comparisons is also enhanced.  Interactions among two or more variables may be 

highlighted by such analysis.  In taxonomy, it can be used to express multidimensional 

inter-OTU (Operational Taxonomic Unit) distances in 3 or fewer dimensions which can 

readily be conceptualized.  Additional  applications  of  this  technique  will  certainly  
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be found as its use becomes more widespread in fields of biological sciences, where it 

has been used extensively for more than two decades (Broschat, 1979). 

Seventy two landraces of pea (Pisum sativum) evaluated for 19 morphological 

characters exhibited broad genetic diversity. Seven landraces were selected for special 

attention for having promising breeding value (Amurrio et al., 1992). Amurrio reported 

a wide genetic diversity in 105 pea landraces at the intra specific level based on 19 

quantitative characters (Amurrio et al., 1995). Taxonomically useful results were 

provided and six groups were established but the grouping pattern of these landraces did 

not reflect any association with geographic origin. Smith studied principal components 

and average cluster analyses in alfalfa and established six geographically distinct 

groups. Significant regional variation was observed within the germplasm evaluated but 

ecotypes from neighboring countries were generally closely associated. All elite 

germplasm accessions fel1 in one group and this revealed that only a small portion of 

genetic diversity  has been used in formal breeding (Smith et al., 1991). Yimram 

evaluated 9 qualitative and 21 quantitative traits in 340 diverse cultivated mungbean 

accessions collected at AVRDC to assess the extent and pattern of their diversity 

(Yimram et al., 2009). The germplasms represented a wide range of diversity for most 

of the traits evaluated. High genetic variability were found in yield components 

.Penology traits such as plant height, days to flowering, and days to maturity also 

showed high genetic variability. Cluster analysis grouped the germplasms into 5 major 

and 1 minor cluster. In general, germplasms from India and West Asia were present in 

all major clusters, while those from Southeast Asia and other origins were mainly 

grouped into one cluster. They recommended that the germplasms from West Asia be 

exploited more in cultivar development to enrich the breeding gene pool. Multivariate 

analyses have been used successfully to classify and order variation observed in both 

qualitative and quantitative traits in collection of crop germplasm (Caradus et al., 1989; 
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Peeters & Martinelli, 1989; S. P. Singh, 1988). Rumbaugh used discriminant  analysis 

of morphological and agronomic characters to place 146 accessions of alfalfa from 

Morocco into  five  geographical   groupings  that  were  defined   initially   based  on  

the  area  of collection (Rumbaugh et al., 1988). 

One approach for building gene pool is to collect material from diverse 

geographical origins with a concentration of accessions from proposed centre of 

diversity. This   should   capture   inherent   and   unexploited diversity in the individual 

samples. Representative samples from the complete geographical range of the crop 

species can help to ensure that co-adapted   gene complexes (or correlated adaptations) 

are conserved (Frankel, 1984; Frankel & Soule, 1981). Brown  advocated that the 

maximum genetic conservation would be achieved by sampling populations from as 

many distinct environments as possible (Brown, 1978). 

Malhotra while working on genetic divergence in blackgram reported narrow 

range of variability for 100-grain weight and pod length (Malhotra & Singh, 1971) 

whereas, Shanrnugam while analyzing 45 genotypes of blackgram reported that yield 

per plant contributed most to the genetic diversity (Shanmugam & Rangasamy, 1982). 

Malik studied genetic divergence in 12 indigenous varieties of mungbean for six 

quantitative characters. The study indicated the presence of ample genetic variation 

among the cultivars irrespective of their origin. They suggested that plant height, days 

to flowering and   grain   yield   should   be considered for selecting genetically 

divergent lines in mungbean (Malik et al., 1985). 

Clements investigated the pattern of morphological diversity in relation to 

geographical origins of 157 accessions of wild Lupinus angustifolius using multivariate 

technique.  Genetic  diversity  was extremely  large  for most  of the morphological  

traits, with significant  variation detected  among  localities  in Greece  and within and 
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between collection sites for same trait. Thirteen groups were identified by hierarchical 

clusters analysis. Accessions from northern Greece grouped together as late flowering, 

shorter, and smaller grain size, but some accessions from southern Greek Islands were 

grouped with the northern mainland types (Clements & Cowling, 1994). Multivariate 

analyses provide a good evaluation of landraces by identifying those that should be 

further evaluated at the genetic level (Rouamba et al., 1996). 

A research team  reported phylogenetic relationships of 15 genotypes of genus 

Lens and seven of their interspecific hybrids were determined by morphological 

(quantitative and qualitative) characters (Ahmad et al., 1997). They observed that 

cluster analyses on the basis of quantitative characters were phenotypically more 

distinct and exhibited more breeding value. Though cluster analyses grouped together 

accessions with greater morphological similarity, the cluster did not necessarily include 

all the accessions/genotypes from the same or nearby sites.  

The extent of diversity and relationships among Brassica juncea germplasm 

from Pakistan was determined for 35 morphological characters in  52 accessions using 

cluster and principal component analyses (Rabbani et al., 1998). The germplasm was 

categorized into six groups. Landrace group was primarily associated with 

morphological differences among the accessions and secondarily with the breeding 

objectives and horticultural uses. The germplasm showed a comparatively low level of 

phenotypic variation which revealed  that the evaluated  germplasm  appears to have a 

narrow genetic base and  undergoes  a high  level  of  genetic  erosion. Though cluster 

analyses grouped together accessions with greater morphological similarity, the clusters 

did not necessarily include all the accessions from the same or nearby sites. 

 Upadhyaya et al. (2002) studied phenotypic diversity for morphological and 

agronomic characteristics in 1956 accessions of chickpea core collection, comprising 
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desi, kabuli   and   intermediate   types.  The   kabuli and intermediate types were not 

significantly different for growth habit and grain color, while they differed significantly 

from desi types for both traits. Principal component analysis showed  that days to 50% 

flowering,  flowering  duration,  apical  secondary  branches,  tertiary  branches,100- 

grain weight, grain color and grain testa texture were important traits in explaining 

multivariate polymorphism (Upadhyaya et al., 2002).  

33 mungbean  genotypes  derived  from ten crosses was analyzed  to determine  

genetic  diversity  using multivariate  analysis (Manivannan, 2002). The genotypes were 

grouped into seven clusters. Among the characters studied, 100-grain weight and 

powdery mildew reaction contributed the most towards the total divergence. Based on 

the performance, they suggested seven genotypes   to be included   in   the hybridization 

program. 

Thirty seven diverse genotypes of blackgram and three of mungbean 

resembling blackgram, were studied to determine the extent of genetic variation based 

on morphological characters (Ghafoor et al., 2002).  High  variance   was  observed   for  

plant height, days to maturity, branches  per plant, pods per plant, pod length, grains  

per pod, biological  yield  per  plant,  grain  yield  per  plant  and harvest   index  (%). 

The first  four components  of  PCA  with  eigenvalue  >1 contributed  78.7%  and  

79.1%  of  the  total variance amongst 40 genotypes during two consecutive years. 

Twenty two blackgram genotypes representing a broad based germplasm were 

analyzed using multivariate analyses for two consecutive years (Ghafoor et al., 2003). 

High genetic variance was observed for plant height, maturity, pods, grain weight, 

biomass, grain yield and harvest index. The first four PCs contributed 80.0% of the 

variation during 1998, and 80.9% during 1999. Five yield contributing traits, i.e. 

branches, pods, pod length, biomass and grain yield were observed to be important for 
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first component during both the years. PC2 was more related to maturity rather than 

reproductive traits. First two PCs which exhibited about 60% of the variance were 

plotted to observe the relationship between the cultivars. Five genotypes were separated 

from others during both the years. 

2.8   Mungbean yield and yield influencing characters 

One of main parts of breeding studies is related to the relationships between 

yield and its components for increasing of yield. Study of direct and indirect effects of 

yield components can provide the basis for its successful breeding program and hence 

the problem of yield increase can be more effectively tackled on the basis of 

performance of yield components and selection for closely related characters (Aycicek 

& Yildirim, 2006), so selection for high yield genotypes  can be done through yield 

components. Correlation analyses provide a good measure of the association between 

characters and facilitate identification of important characters for effective selection for 

increasing yield. The important yield components in mungbean are: harvested plant 

number per unit area, number of pods per plant, grains per pod, and weight of grain 

(Kuo, 1998), that many research projects have been done to study the relationships 

among important characteristic affecting grain yield in  mungbean (Ghafoor et al., 1990; 

Khattak et al., 2001; V. V. Malhotra et al., 1974; Yucel, 2004).  

In two separate studies positive association of pods per plant and grains per 

pod with grain yield in mungbean genotypes of  diverse origin were observed (Ajmal & 

Hassan, 2002; Aslam et al., 2002). In mungbean, positive correlation of yield with yield 

components was observed (Tomar et al., 1973; Khalid et al., 1984), whereas, Malik 

reported negative correlation of yield with maturity, pod length and grain weight. He 

also investigated maximum relative selection efficiency for branches per plant in 
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mungbean (Malik et al., 1983; Malik et al., 1987). In previous studies positive  

association  of  yield  with  days  to maturity, plant  height,  pods and  pod  length,  

whereas negative association with  grain  weight were observed (Malhotra et al., 1974). 

Many researchers in different studies gave emphasis for the selection of legume 

genotypes on the basis of high harvest index (Singh & Patel, 1977; Patel & Shah, 1982; 

Malik et al., 1986; Khan & Malik, 1989; Ghafoor et al., 1993). Positive correlation 

among yield and its components has been reported in blackgram (Rani & Rao, 1981). 

Cluster   analysis   was considered  for   nine quantitative traits in   mungbean 

(Ghafoor et al., 2000). They observed significant negative correlation of days to 

maturity with all the characters except branches per plant and suggested that short to 

medium maturity mungbean cultivars were to be selected for high yield. They identified  

44  pure-lines on the basis of important  agronomic  traits  that were recommended  for 

testing  under a wide range of agro-ecological  condition  in pursuit of best mungbean  

cultivars.  

2.9 Genetic diversity based on molecular markers 

Recently, molecular tools have also been applied for mungbean and blackgram 

breeding programs, for instance, the use of isozymes and DNA markers for variety 

identification, assessment of genetic diversity and relatedness among Vigna species 

subgenus Ceratotropis and mapping of disease resistance genes (Chaitieng et al., 2002; 

Prammanee et al., 2000; Seehalak et al., 2006). Knowledge of genetic diversity of the 

genetic resources is crucial for breeders to better understand the evolutionary and 

genetic relationships among accessions, to select germplasm in a more systemic and 

effective fashion, and to develop strategies to incorporate useful diversity in their 

breeding programs (Z. Li & Nelson, 2001; Paterson et al., 1991). These genetic 
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diversity measures can be used to maximize the level of variation present in segregating 

populations by crossing genotypes with greater genetic distance. Evaluation of 

morphological traits, pedigrees, geographic origins, isozymes and DNA markers have 

been used for the assessments of Vigna spp. genetic diversity (Bisht et al., 2005; Ehlers 

& Hall, 1997; Fatokun et al., 1993; Kaga et al., 1996; Tosti & Negri, 2002).  

One of the molecular markers that has become popular more recently for major 

crop plants, is known as simple sequence repeats (SSR) or microsatellite markers and 

this marker system is predicted to lead to even more rapid advances in  marker 

development and implementation in breeding programs due to high abundance and its 

high polymorphism of microsatellites in plant genome (Korzun, 2002). 

Microsatellites or short sequence repeats (SSRs) are relatively small, that is 

about 1-6 base-pair (bp) tandem repeats that are found in the genomic DNA of 

prokaryotes and eukaryotes (Kupper et al., 2008). Microsatellites could be located either 

in non-coding sequences or located in functional regions. The majority of 

microsatellites is located in non-coding sequences (Metzgar et al., 2000), whereas the 

minority are located in functional regions. Microsatellites located within noncoding 

region are considered to be selectively neutral, whereas microsatellites located in 

functional regions are involved in chromatin organization, regulation of gene activity 

and metabolic processes such as DNA replication and recombination (Li et al., 2002). 

The importance of microsatellites in genetic studies has been greatly acknowledged 

over the years (Chambers & MacAvoy, 2000). This is due to microsatellite markers 

being a co dominant marker system which is more informative than dominant markers 

such as Random Amplified Polymorphic (RAPD), Amplified Fragment Length 

Polymorphisms (AFLP) and Direct Amplification of Length Polymorphisms (DALP). 

Another added advantage of microsatellite markers is that they amplify regions of 
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repetitive elements with simple repeat motifs of one to six nucleotides which show high 

levels of allelic variations in the number of repeat units. All these make microsatellites a 

popular and effective marker system that is useful for various genetic studies such as 

population, linkage and phylogenetic studies and also for quantitative traits loci (QTL) 

studies. However the conventional method used for microsatellite detection is far from 

being cost effective as it is a laborious and time-consuming process. In recent years, 

researchers around the world especially in developing countries have developed 

different methods for detecting microsatellites. The main objectives were targeted on 

saving cost and time, increasing effectiveness and productivity.  

Microsatellite markers are useful and popular for population genetics studies 

and conservation management of biological resources. Although microsatellite markers 

for mungbean have been developed, all of them are genomic microsatellites (Kumar et 

al., 2002a,2002b; Gwag et al., 2006; Somta et al., 2008; Seehalak et al., 2009). For the 

first time Somta et al. (2009) reported the development of 33 polymorphic genic 

microsatellite markers for mungbean by database mining, and their cross-species 

amplification in 19 Asian Vigna species. The genic microsatellites will be useful for 

studying genetic diversity and population structure, which will contribute to the 

understanding and conservation of the Asian Vigna. 

Although SSRs are highly polymorphic, the labor intensive and high cost 

associated with SSR cloning and their single-locus nature still limit their uses for 

genetic diversity study in several plant species. In Vigna spp. SSRs have been cloned 

from Vigna unguiculata and Vigna angularis (Li & Nelson, 2001; Wang et al., 2004). 

No report has been found for SSR cloning in blackgram and only a few SSRs have been 

cloned in mungbean, therefore, the development and usage of SSR markers in these 

species are rather limited (Li & Nelson, 2001; Chaitieng et al., 2006; Miyagi et al., 
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2004).    

Due to the limitation of SSRs, a new method called inter-simple sequence 

repeat (ISSR) analysis was developed based on DNA amplification with a single 15 to 

20-bp primer homologous to a microsatellite repeat and has a short (1 - 4 bp) random 

degenerated sequence (an anchor) at the 3’ or 5’ end.  ISSR primers allow DNA 

amplification of regions located between two closely spaced, oppositely oriented SSRs, 

yielding a reproducible pattern of genomic fragments, which is similar to a RAPD 

pattern but usually includes more bands and is more reproducible. Therefore, ISSRs 

have a high capacity to reveal polymorphism and offer great potential to determine 

genetic diversity at inter and intra-specific levels as compared to other arbitrary primers 

including RAPDs, particularly in many cultivated species exhibiting relatively low 

genetic diversity (Ajibade et al., 2000; Pradeep Reddy et al., 2002; Souframanien & 

Gopalakrishna, 2004; Zietkiewicz et al., 1994). Previous reports have showen that 

ISSRs are useful for the intra-specific or inter-specific classification of genetic diversity 

and identification of varieties in various crops including tomato, potato, rice, grapevine 

and soybean (Blair et al., 1999; Kochieva et al., 2002; Moreno et al., 1998; Prevost & 

Wilkinson, 1999; G. Wang et al., 1998). In blackgram were identified a set of ISSR 

primers with high polymorphism information content (PIC) scores which would be 

useful in surveying genetic diversity among accessions of blackgram and perhaps other 

Vigna spp (Souframanien & Gopalakrishna, 2004). 

2.10   Pest and disease and pre-harvest sprouting  

Mungbean growth and production is affected by several pathogens. These 

pathogens consist of nematodes, bacteria, fungi and viruses. There are some diseases 

which could directly affect mungbean, for example, powdery mildew, mungbean yellow 
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mosaic virus, cercospora leaf spot, bacterial leaf spots and bruchid. Resistance to 

bacterial leaf spot and cercospora leaf spot, are conditioned by single dominant genes 

(Singh, 1977; Thakur et al., 1978), also resistance to the mungbean yellow mosaic virus 

(MYMV) is governed by a dominant gene and complementary recessive genes 

(Poehlman, 1991). Studies by Young have indicated that resistance to powdery mildew, 

is controlled by quantitative genes and confirmed that resistance to bruchid is governed 

by a single dominant gene (Young et al., 1992; Young et al., 1993). It is seen that high 

degree of resistance is not available in germplasm lines (Kaur, 2006). Several studies 

summarize performance of accessions for resistance. However a few researches have 

reported on the inheritance of resistance. 

Mungbean is an important rainy season pulse crop of India. The average 

productivity of this crop is low and uncertain due to neglected management and poor 

adoption of the production technology due to the risk of preharvest sprouting. 

Preharvest sprouting (PHS) is the premature germination of mungbean grains or in other 

words starting of embryo growth while still attached to the mother plant in the field. In 

preharvest sprouting prone mungbean, once mungbean grain reaches harvest maturity, it 

begins to germinate if it is exposed to adequate moisture and suitable temperature. 

Therefore, preharvest sprouting depends on duration and severity of moist condition 

prior to harvest, temperature. During such wet weather, growth stage of ripening grain 

and the inherent dormancy level attributable to a variety’s genetics. Mungbean genes 

interact with environment to predispose a variety to prehavest sprouting. Therefore 

depending on the environment and weather conditions to which the plants are exposed. 

Sometimes losses due to preharvest sprouting will be as high as 60-70%. 

Preharvest sprouting negatively affects the grain quality by loosing the grain weight, 

viability, seedling vigor. High yielding varieties developed/identified in recent years, 
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despite their high yield potential, could not increase/stabilize the yields of this crop due 

to lack of resistance to preharvest sprouting. Therefore it is essential to develop resistant 

or tolerant varieties to preharvest sprouting by understanding the mechanism/genetics of 

resistance. Information on the genetics of preharvest sprouting and the traits responsible 

for preharvest sprouting are not available. Genetic analysis indicated the predominance 

of additive gene action for pod beak length, pod wall thickness and pod wall 

epicuticular wax, while hard grain percent and preharvest sprouting were under the 

control of non-additive gene action. Both additive and non-additive gene actions were 

found to operate for moisture absorption rate through the pod wall (Cheralu et al., 

1999).  
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CHAPTER 3 

3 Methodology 

3.1 Materials and methods 

The research project comprising of two experiments was conducted under field 

and laboratory conditions. The materials and methods of each experiment are given 

separately for each experiment. A summary of the experiments is given (Table 3.1). 

Table 3.1: Summary of the experiments 

Experiment Number of accessions Number of sample  for  

each accession 

 

Experimental 

condition 

To determine genetic diversity 

based on morphological characters 

 

20 

 

10 

 

Field 

To evaluate the differences of 

genetic makeup between  mungbean 

genotypes (3 best and 3 lowest yield 

performing genotypes) 

 

6 

 

20 

 

Laboratory 
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3.2 Genetic diversity based on morphological characters  

3.2.1 Germplasm collection 

Mungbean originally comes from Southeast Asia and India. It later moved out 

to the rest of Asia, Africa and America. Pakistan is one of the main origin of mungbean 

germplasm, the area under cultivation of the bean in Pakistan is 225.4 hectares and the 

total annual production is about 130 tons. The local germplasm/land-races are valuable 

source for agricultural prosperity due to high adaptability, good in quality and resistance 

to biotic and abiotic stresses. Initially 69 mungbean germplasms (Table 3.2) were 

collected from different agro-ecological zone in Pakistan. After primary screening at a 

research field in University of Malaya (UM), based on the yield performance 20 

mungbean germplasms were selected for further investigation. In the present study these 

20 germplasms were used to determine genetic diversity of mungbean genotypes and 

evaluate the difference of genetic makeup between mungbean genotypes.  
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Table 3.2: Sixty nine mungbean genotypes and their origin 

Genotype Origin 

NM-92 Pak NIAB  Mung 

Chakwal Mung-97 Pak 

NM-06 Pak NIAB  Mung 

NM-98 Pak NIAB  Mung 

VC1560D x NM 92 Pak (Parental Taiwan) 

6601 Pak 

AEM-96 Pak (NIFA) 

Ramzan Pak (NIFA) 

NM-1919 Pak 

N-F-M-14-6 Pak (NIFA) 

Pak-22 Pak 

Karak Mung-1 Pak 

NM-93 Pak NIAB Mung 

Chakwal Pak 

N-F-M-12-7 Pak (NIFA) 

NM-51 Pak NIAB Mung 

N-F-M-8-1 Pak (NIFA) 

VC1971 x NM-92 Pak (NIFA), (Parental Taiwan) 

NM-28 Pak NIAB Mung 

AZRI-06 Arid Zone Research Institute, Quetta 

M-1 IABGR, NARC, Collection 

VC-20-10 IABGR, NARC, Collection 

40426 IABGR, NARC, Collection 

M-6 IABGR, NARC, Collection 

SML-267 IABGR, NARC, Collection 

40995 IABGR, NARC, Collection 

NCM252-7 IABGR, NARC, Collection 

40618 IABGR, NARC, Collection 

41006 IABGR, NARC, Collection 

40521 IABGR, NARC, Collection 

41046 IABGR, NARC, Collection 

40217 IABGR, NARC, Collection 

C1-94-4-19 IABGR, NARC, Collection 

PDM-11 IABGR, NARC, Collection 

40998 IABGR, NARC, Collection 
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Table 3.2, continued’ 

Genotype Origin 

41003 IABGR, NARC, Collection 

41038 IABGR, NARC, Collection 

40999 IABGR, NARC, Collection 

NM 20-11 IABGR, NARC, Collection 

40536 IABGR, NARC, Collection 

40432 IABGR, NARC, Collection 

40457 IABGR, NARC, Collection 

41031 IABGR, NARC, Collection 

40222 IABGR, NARC, Collection 

40593 IABGR, NARC, Collection 

40714 IABGR, NARC, Collection 

41018 IABGR, NARC, Collection 

40434 IABGR, NARC, Collection 

40934 IABGR, NARC, Collection 

41009 IABGR, NARC, Collection 

41000 IABGR, NARC, Collection 

40504 IABGR, NARC, Collection 

40591 IABGR, NARC, Collection 

41013 IABGR, NARC, Collection 

5197A IABGR, NARC, Collection 

NM-15-11 IABGR, NARC, Collection 

NCM 252-5 IABGR, NARC, Collection 

SWAT MUNG-1 IABGR, NARC, Collection 

NM 6173 (36-13-13) IABGR, NARC, Collection 

BASANTHI IABGR, NARC, Collection 

VC 3960A88 IABGR, NARC, Collection 

NM 45-10 IABGR, NARC, Collection 

NCM 254-1 IABGR, NARC, Collection 

NM 38-20-3 IABGR, NARC, Collection 

NCM 225-2  IABGR, NARC, Collection 

NCM 255-4 IABGR, NARC, Collection 

NCM 253-1 IABGR, NARC, Collection 

BARI-M-2 IABGR, NARC, Collection 

NM 9800 IABGR, NARC, Collection 
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3.2.2 Experimental material 

Twenty mungbean germplasm accessions/genotypes (Table 3.3) were 

evaluated for various agronomical traits. The experiment was laid out on Randomized 

Complete Block Design (RCBD) with two replications at a research field at the Institute 

of Biological Science University of Malaya (UM), Malaysia. The experiment was 

started on 28 April, 2010 for morphological characterization and agronomic evaluation. 

grains were planted in rows with 1 m in length. Distances between rows (genotypes) 

and between plants were 50 cm and 10 cm respectively. Basal fertilizer dose of N P (@ 

25 kg N + 60 kg P2O5 per hectare) was applied, and during the crop growth period, 

agronomic practices were used as recommended for mungbean crop. Pesticide (Karate 

2.5EC @ 750 ml/ha) was sprayed to save the crop from infestation of pests especially 

white fly, a vector for MYMV. For plant and agronomic characters, data were recorded 

following  descriptors for Vigna spp. (IBPGR, 1985). The data regarding days to 

maturity were recorded when about 90% pods turned brown/black after planting. 

Quantitative data including plant height, number of fruiting branches per plant, number 

of pod per plant, number of pod clusters per plant, pod length, number of grains per pod, 

1000 grain weight and total grain yield per plant were recorded on ten guarded plants 

selected randomly and then averaged to per plant basis. Pod length (cm) and number of 

grains were recorded on ten pods selected at random within each accession and then 

averaged to per plant basis. The grain weight for each accession/genotype was recorded 

after counting 1000 grains and weighed in grams.  
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Table 3.3: Twenty selected mungbean genotypes and their origin                               

Genotype Origin 

NM-92 Pak NIAB Mung 

Chakwal Mung-97 Pak  

NM-98 Pak NIAB Mung 

VC1560DxNM-92 Pak(parental Taiwan) 

Pak-22 Pak 

6601 Pak 

NM-1919 Pak 

AZRI-06 
Arid Zone Research Institute, Quetta 

M-6 IABGR,NARC Collection 

SML-267 IABGR,NARC Collection 

40995 IABGR,NARC Collection 

40521 IABGR,NARC Collection 

40998 IABGR,NARC Collection 

41031 IABGR,NARC Collection 

40593 IABGR,NARC Collection 

40714 IABGR,NARC Collection 

41018 IABGR,NARC Collection 

40934 IABGR,NARC Collection 

5197A IABGR,NARC Collection 

NM 45-10 IABGR,NARC Collection 
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3.2.3 Statistical analysis 

The data recorded were averaged and analyzed for simple statistics (mean, 

standard deviation, variance), frequency distribution and phenotypic correlation 

coefficients following the methods of Steel & Torrie (1980). Eight quantitative traits 

(plant height, number of fruiting branches per plant, number of pod per plant, number of 

pod clusters per plant, pod length, number of grains per pod, 1000 grain weight and total 

grain yield per plant), were also analyzed by numerical taxonomic techniques following 

the procedure of Principal Component (PC) Analyses (Sneath & Sokal, 1973). 

Analysis of variance based on the RCBD was done to show the differences 

among genotypes for all characteristics. Before doing ANOVA, normality test 

(Kolomogorove –Smirnove) was applied. All data showed a normal distribution so 

ANOVA was done using SAS9.1. Means were compared by DMRT (Duncan multiple 

range test). The multivariate analysis, especially  the principal component and cluster 

analysis was done for the study  of germplasm based on various traits (Cruz & Regazzi, 

1994; Mardia et al., 1979). Cluster analysis using UPGMA (between group linkages) 

was used to investigate distance, similarity and relatedness of genotypes or populations, 

so that similar genotypes can be classified into one group and dissimilar ones into 

distinct groups. Principal component analysis (PCA) was done to understand variable 

independence and balanced weighting of traits, which leads to an effective contribution 

of different characters on the basis of respective variation. PCA utilized to derive a 2 

dimensional scatter plot of individuals, such that the geometrical distances among 

individuals in the plot reflect the genetic distances among them with minimal distortion. 

In order to maintain, evaluate and utilize germplasm effectively, it is important 
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to investigate the extent of genetic diversity available. Smith considered morphological 

characterization as an important step in description and classification of crop germplasm 

because a breeding program mainly depends upon the magnitude of genetic variability 

(Smith & Smith, 1989; Smith et al., 1991). 

The data analyzed based on RCBD (Randomized Complete Block Design), 

was used to partition the gross (phenotypic) variability into the components due to 

genetic and non-genetic factors and to estimate the magnitude of these. Variance 

components (genotypic, phenotypic and error variance) were estimated using the 

formula as follows: (Prasad et al., 1981; Wricke & Weber, 1986). 

r

MSEMSG
Vg


  

 MSEMSGVp   

MSEVe   

MSG, MSE and r are the mean squares of genotypes, mean squares of error and 

number of replications, respectively. Phenotypic (PCV) and genotypic (GCV) 

coefficient of variation were computed according to following: 
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Where Vp, Vg and X are the phenotypic variances, genotypic variances and 

grand mean, Broad sense heritability (Hbs) is the ratio of the genotypic variance (Vg) to 
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the phenotypic variance (Vp) as percent and it was estimated on genotypic mean basis 

(Allard, 1999). Genetic advance (GA) expected and GA as percent of the mean 

assuming selection of the superior 5% of the genotypes were estimated in accordance 

with the methods in the following:  

  HbsSKGA P   

GA (as % of the mean) = (GA / x) x 100  

(Fehr et al., 1987) 

Where k is a constant (which varies depending upon the selection intensity and, 

if the latter is 5%, it stands at 2.06). Sp is the phenotypic standard deviation (√vp), Hbs 

is the heritability ratio and x refers to the season mean of the character (Y. Ali et al., 

2008; Sunday et al.). 

Broad sense heritability (Hbs) can be estimated based on the procedure 

described  by Poehlman (1994), as follows: 

1

100
2

2


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


 

Genotypic correlation was calculated using the following equation for all traits 

as follows:  

 

   
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,
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  

 (Becker, 1992). 
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Where rG is genetic correlation between the traits X and Y, ),( YXG  is genotypic 

covariance between the traits X and Y,
2

)( XG  is genotypic variance of the trait X, and 

2

)(YG  is genotypic variance of the trait Y. 

3.3 Genetic diversity base on molecular markers 

3.4 Experimental material 

After morphological screening for 20 mungbean accessions, six mungbean 

germplasm were chosen (Table 3.4). Three genotypes with the highest grain yield and 

three genotypes with the lowest grain yield were selected based on grain yield diagram 

from Duncan`s Multiple Range Test (DMRT). Then these six selected mungbean 

genotypes were planted in different pots. After 2-3 weeks plant leaves were collected, 

avoiding the hard parts of leaves such as petiole. Young leaves (about 1cm long) of each 

plant were plucked and placed on aluminum foil. Then, the aluminum foil was labeled 

and stored in ice for temporary preservation. After harvesting, leaves were wiped with 

distilled water to remove the dirt on the surface of the leaves. Finally, samples in 

labeled aluminum foil were transferred into liquid nitrogen as soon as possible. The 

samples were then stored in -80˚C freezer. To accumulate sufficient samples for DNA 

extraction ( ie, 1.5 gram), sampling for 2 to 3 times was needed. 
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Table 3.4: Six selected mungbean genotypes and their origin  

Genotype Origin 

NM-1919 Pak 

40995 IABGR,NARC Collection 

40521 IABGR,NARC Collection 

41031 IABGR,NARC Collection 

40593 IABGR,NARC Collection 

40714 IABGR,NARC Collection 

 

3.4.1 DNA extraction  

Five samples were extracted for each round of DNA extraction. Firstly, five 

2ml microcentrifuge tubes were labeled. Then, 5μl of β-mercaptoethanol and 500μl of 

CTAB solution were added into each tube and pre-heated at 65˚C the in water bath. 

The samples were taken out from the -80˚C freezer and stored in liquid 

nitrogen. Five set of clean pestles and mortar were prepared. Next, liquid nitrogen was 

poured into mortar until approximately could cover the leaves sample. Then the sample 

was taken out from the liquid nitrogen and transferred into the mortar. Leaves must be 

ground thoroughly before thawed in room temperature using pestle until it became 

powdery. After grinding, a small size spatula (which was immersed in the liquid 

nitrogen for a few seconds before use) was used to scrap all the leaves powder in mortar 

and transferred into the pre-heated CTAB buffer solution and mixed well. The same 

procedure was carried out for the rest of leaves samples.  

Then, the samples were incubated at 65˚C in water bath for 30 minutes. Tubes 

were shaken for every 5 minutes interval. After 30 minutes, the tubes were taken out 
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from the water bath and allowed to cool to room temperature. Then, 500ml of 

chloroform: isoamyl (in 24:1 ratio) was added into each tube and mixed gently for 15 

minutes.  Next, the mixtures were centrifuged at 503 × g at 4˚C for 10 minutes.  After 

centrifugation, 3 layers appeared in each tube, only the top phase was transferred to a 

new labeled 2ml microcentrifuge tube. 

Two thirds of the total volume of the top phase of cold (-20˚C) isopropanol was 

added into the tubes and mixed gently to precipitate DNA. Then, the tubes were left in a 

-20˚C freezer overnight. The next day, the tubes were centrifuged at 503 × g at 4˚C for 

10 minutes. After centrifugation, the DNA pellet precipitated at the bottom of the tubes, 

the supernatant was discarded carefully. Then, 1.5ml of wash buffer was added into the 

tubes and centrifuged again at 8050 × g at 4˚C for 10 minutes. 

After centrifugation, supernatant was discarded. Micropipette was used to 

withdraw the remaining supernatant without disturbing the pellet. The tubes were 

inverted on a piece of tissue paper to allow the pellets to dry. Finally, after the pellet 

was dried, 500μl of TE buffer was added to each tube to resuspend the pellet. To ensure 

the pellets was completely dissolved, the samples was incubated at 55˚C to aid 

resuspension. 

3.4.2 Evaluation of DNA quality and quantity 

DNA is quantified by using nanodrop (NANODROP Spectrophotometer, ND-

2000). Concentration range then can be measured by ND-2000 is from 2ng/μl to 15,000 

ng/μl dsDNA without dilution. Sample volumes used for measurement is only 1μℓ. 

Nucleotides, RNA, ssDNA, and dsDNA will all absorb at 260nm and contribute to the 

total absorbance. The ratio of absorbance at 260nm and 280nm is used to assess the 
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purity of DNA and RNA. A ratio of around 1.8 is generally accepted as ‘pure’for DNA. 

The ratio of absorbance at 260/230 is used as a secondary measure of nucleic acid 

purity. The 260/230 values for ‘pure’ nucleic acid are often higher than the respective 

260/280 values. Expected 260/230 values are commonly in the range of 2.0-2.2. If the 

value is appreciable lower than expected, it may indicate the presence of contaminants 

which absorb at 230nm. 

DNA quality is also evaluated by running the DNA on gel electrophoresis with 

0.8% agarose gel. Three microlitre of DNA samples is mixed with 3μl of 6X loading 

buffer on a parafilm paper and then loaded in the well of Agarose gel. The 

electrophoresis is operated at 70 V, 150 mA, 40 minutes in 1X TBE buffer and Hind III 

ladder is used. 

3.4.3 Primer design  

Bioinformatics analysis and primer design were done for the microsatellites in 

the DNA sequence. Mungbean data previously obtained from transcriptome sequencing 

were screened for microsatellites (or short tandem repeats (SSR)) using the IQDD 

program (http://primer3.sourceforge.net/, (Meglecz et al., 2009). The analysis 

implemented in IQDD involves three successive stages: sequence cleaning and 

detection of microsatellites, sequence similarity detection, and microsatellite selection 

and primer design (Meglecz et al., 2009).  

In this study, only perfect microsatellites were targeted, and identification of 

microsatellites was limited to the detection of strings of repeats sequences that 

contained a minimum of four motif repeats for all di-, tri-, tetra-, penta-, and 

hexanucleotide motifs, primer selection conditions are as shown in (Table 3.5). 

http://primer3.sourceforge.net/
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Table 3.5: Primer selection condition 

 Value 

Condition 

Min Optimum Max 

Primer Size (bp) 16 20 24 

Primer Tm (˚C) 45 55 65 

Primer GC% 40 50 60 

3.4.4 Validation of microsatellite loci 

Primers were synthesized for 22 microsatellite loci and then initial validation 

was performed to confirm that the microsatellite regions could be amplified from 

genomic DNA. Validation included optimization of annealing temperature via 

temperature gradient PCRs; and amplificability of targeted products. This step was 

carried out using several individuals selected from each studied population. Successful 

PCR amplification was determined by agarose gel electrophoresis, and primers with no 

significant amplification (i.e., visual product of expected size) were then discarded from 

further data collection. 

3.4.5 Polymerase Chain Reaction (PCR) 

Polymerase Chain Reaction (PCR) amplification for each primer set was 

performed in a C1000 Thermal Cycler (Bio-Rad) in a total volume of 10µl reaction 

solution consisting of 1.4µl of DNA extracted from tissues, 0.9 µl MgCl2 (25 mM), 

3.0µl of 1X PCR Buffer (Promega), 0.2µl of each dNTPs (10mM), 0.3µl of Taq 

Polymerase, and 0.5µl of each primer (10mM). The PCR reactions were carried out as 

follows: initial denaturation at 95 C for 5min, 35 cycles of denaturation at 94°C for 30s, 

annealing temperature for 30s, and 1 min of extension step at 72°C. The program was 
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then completed with a final extension at 72°C for 10 min. Initial PCR reactions were 

performed across an annealing temperature gradient (50-60°C) to determine the best 

annealing temperature for each primer pair, with subsequent PCR reactions conducted at 

this optimal temperatures (Table 3.6). Magnesium chloride optimization was also 

carried out to determine the optimum Magnesium chloride concentration of the 

microsatellite primer to anneal to the DNA template. Following amplification, the 

presence of PCR products were verified via electrophoresis. 1.0% agarose gel was used 

in electrophoresis of PCR products for optimization, whilst 4.0% Metaphor® agarose 

gel was used in electrophoresis of microsatellite PCR products in polymorphism 

screening. The gel electrophoresis for agarose and Metaphor® were carried out at 70-

75V, 150mA using 1 x TBE Running Buffer for 45 min and 1.5-2 hours respectively. 

The gels were stained with ethidium bromide (10mg/ml) before being visualized under 

ultraviolet light (Alpha Imager Gel Documentation System, Siber Hegner, Germany). 

The primers (Table 3.6) were selected from Kumar published primers (Kumar et al., 

2002a, 2002b). 

Table 3.6: List of primers with optimized annealing temperature (C) 

Locus Primer sequences 5’-3’ 

(Forward and reverse) 

Annealing 

temperature(C) 

Expected 

product 

size(bp) 

Repeat motif 

VJ31122A 

 
TGGTTGGTTGGTTCACAAGA 

CACGGGTTCTGTCTCCAATA 

57.7 
205-220 

(TGGT)3 

VJ31122B 

 
TCACAAAGGGAGGGAAGAGA 

CCCCAGGTTGGTTGGTTGGA 

52.6 
209-220 

(CCAA)3 

LR7319B 

 
CTGCTTTTTGGGGATTTCAG 

CACGCAAACAGAAAGCAGAG 

54.1 
257 

(TG)5…(CT)7 

LR7322B 

 
TCAGTCAGTGTCGATAGCATAGC 

GACACAGAGAGAGAGAGAGAG 

60.0 
171 

(TC)10 

LR7323A 

 
TGACGGAGAGAGAGAGAGAGAG 

TGCTTCCTTTTGTCTGAGTTAGAA 

59.6 
201 

(GA)13 

LR7323B 

 
GCTATGCTATCGACACTGACTGA 

GCGCAAAGAGAGAGAGAGAGA 

60.0 
285 

(CT)10 
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3.4.6 Fragment analysis 

Mungbean primers that exhibited potential polymorphism as identified from 

initial screening (Section 3.4.4) were used to screen 20 samples randomly selected from 

among 6 sampled populations for size polymorphism. One primer in each set was 

labeled with FAM fluorophore, PCR reactions were performed following the protocol 

detailed above (Section 3.4.5), and product was run on an ABI PRISM ® 3130xl 

Genetic Analyzer (Applied Biosystem, USA). 

In preparation for fragment analysis labeled PCR products were diluted 1:9 or 

1:19 in ddH2O depending on the amount of amplicon present as revealed by gel 

electrophoresis, and then 1 µl of the diluted mixture was transferred into a new PCR 

tube and 10 µl of Hidi Formamide loading dye (Analisa Resources (M) Sdn. Bhd.) and 

0.2 µl of Genescan 500 LIZ ladder were added into the tube. The mixture was 

thoroughly mixed by brief vortexing, followed by a brief centrifugation step. Next, the 

tubes were heated for 5min at 95°C to denature double stranded PCR product, and then 

kept in ice for exactly 5min, before all samples were transferred into 96-well plate and 

subjected to fragment analysis using ABI 3130 Genetic Analyzer. 

Results of the fragment analysis were interpreted, evaluated and allele sizes 

were scored using the software packages GeneMapper 4.0 (Applied Biosystems, Foster 

City, CA, USA) and Peak Scanner v1.0 (Applied Biosystem, USA). Genotyping of each 

individual at each locus was accomplished by scoring peaks in electropherogram which 

represent exact alleles sizes in base pairs (bp) of amplified loci.  
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3.4.7 Data analysis 

Data analysis was undertaken to examine levels of diversity at each locus, and 

also to determine the extent of population genetic structure present among sampled 

populations. Prior to data analysis, all raw genotypic data obtained from GeneMapper 

4.0 (Applied Biosystems, Foster City, CA, USA) software was collated in Microsoft 

Excel, and then the data files for specific population genetics software were generated 

using the program CONVERT software version 1.31 (Glaubitz, 2004). 

3.4.8 Identification And Checking For Scoring Errors 

The data set was checked for any genotyping errors that could potentially bias 

population genetic analysis. These genotyping errors include incorrectly scoring 

individuals as homozygotes because mutations in the priming site result in non-

amplification of specific alleles (null alleles), or because PCR may preferentially 

amplify shorter alleles in heterozygote individuals (short allele dominance / large allele 

dropout). Other errors include mis-scoring stutter peaks as true alleles, resulting in an 

artificial excess of heterozygote genotypes with only one motif repeat difference 

between alleles. Data was checked for errors using Micro-Checker software (van 

Oosterhout et al., 2004). Where evidence was found for the presence of null alleles the 

frequency of null alleles was estimated (Brookfield, 1996; Chakraborty et al., 1992), 

using Micro-checker, and the allele and genotype frequencies of the amplified alleles 

were recalculated and corrected based on new equation to account for the downward 

bias resulting from the null alleles, thus permitting their use for further population 

genetic analysis (van Oosterhout et al., 2004). 
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3.4.9 Tests For Conformation To Equilibrium Expectations 

Conformation to Hardy-Weinberg Equilibrium (HWE) was investigated to find 

out if the samples constitute collections of randomly mating individuals and/or to see if 

the EST microsatellites showed evidence for non-neutral evolution (i.e., selection). The 

principle of HWE states that both allelic and genotypic frequencies in a population will 

not change over generations in the absence of disturbing factors (selection, genetic drift, 

gene flow, and mutation) with the condition those individuals in the population exhibit 

random mating. Statistical test for HWE aims to determine whether the observed data 

for each particular locus "sufficiently fits" the expected assumption i.e., the population 

is in the expected HWE proportions (Hedrick, 2000). Hardy-Weinberg (HWE) 

Principles can be represented by binomial (with two alleles) or multinomial (with 

multiple alleles) functions of allelic frequencies. 

HWE tests were performed based on Wright model (1951) with the 

incorporation of more sophisticated model as implemented in Arlequin (Excoffier et al., 

2005), with significance recalculated following the False Discover Rate procedure 

(Benjamini & Hochberg, 1995). When any evidence of deviations from HWE was 

found, subsequent analyses were performed including and excluding data from the 

deviating locus. Number of steps in Markov chain were set as 100000 and number of 

dememorisation Steps were set as 1000. 

Linkage disequilibrium analysis was performed to check for the presence of 

any non-random associations of alleles among different loci. Associations between 

polymorphisms at different loci are measured by the degree of linkage disequilibrium 

(D). D was first proposed by Lewontin (Lewontin & Kojima, 1960). Numerically, it is 

the difference between observed and expected allelic frequencies (assuming random 

distributions). If the alleles at a pair of loci are not randomly associated with one 
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another, then there will be a deviation (D) in the expected frequencies, in which case the 

loci are said to be in linkage disequilibrium (i.e., linked). 

Pairs of loci may deviate from linkage equilibrium (i.e be in linkage 

disequilibrium, LD), due to physical or demographic reasons. For example, LD may 

indicate that the observed loci might be physically linked to each other by occurring in 

close proximity on the same chromosome. In this case, recombination is unlikely to lead 

to independent assortment during meiosis, and alleles at different loci that are closely 

linked physically will tend to be inherited together. In contrast, LD may also be 

observed when two divergent populations are sampled together, as divergent alleles at 

multiple loci in each population are likely to occur together in single individuals, while 

divergent alleles drawn from different populations are unlikely to occur together. Thus, 

the occurrence of LD can provide information about the loci or about the populations 

sampled. Linkage analysis was performed in GENEPOP software (Markov chain 

parameters set as follows: dememorisation-10000; batches-20; iterations per batch-

5000). 

3.4.10 Estimating Genetic Diversity 

To investigate the level of genetic diversity present at each locus with each 

population sample, several measures of genetic variation were calculated. Allelic 

frequencies, observed number of alleles (At), effective number of alleles (Ae), observed 

and expected heterozygosity (HO, HE) were obtained using software POPGENE version 

1.32 (Yeh et al., 1997), and allelic richness was calculated using FSTAT software Ver 

2.9.3.2 ((Goudet, 1995)  
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http://www2.unil.ch/popgen/softwares/fstat.htm). 

Allele frequency is one metric used to quantify genetic variation. It is 

sometimes synonymously used with gene frequency to measure the commonness of a 

given allele in a population, that is, the proportion of all alleles of particular gene in the 

population. On the other hand, genotypic frequency can be defined as the proportion of 

particular genotype relative to all genotypes at a specific locus in a population. 

In a sample of N individuals, Nii and Nij are the numbers of AiAi and AiAj 

genotypes observed respectively; whereby Ai, Aj are alleles at the particular locus in the 

sample. To estimate genotype frequencies, the formula is: 

 
N

N
AAP

ij

ji   

Therefore, the estimated allelic frequencies of allele Ai for codominant, 

multiple-alleles system, can be calculated from the sample as: 

N

NN

P

n

j

ijii

i







12

1

 

Where .ij   

Several other measures have been used to describe the genetic variation in a 

population, but heterozygosity remains as the most widespread measure of variation. It 

is defined as the probability that a random individual chosen from the population is 

heterozygous at a locus (Shete et al., 2000), and its value ranges from zero to one. 

Based on known allele frequency, the expected heterozygosity of a randomly mating 

population for a particular locus with n alleles can be calculated as: 

http://www2.unil.ch/popgen/softwares/fstat.htm
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



n

i

iE PH
1

21  

which is one minus the Hardy-Weinberg homozygosity (Hedrick, 2000). 

Effective number of allele, ne basically the inverse of expected heterozygosity 

and the formula is given as: NE = 1 / (1-HE) 

Meanwhile, the observed heterozygosity (H0) for a locus can be estimated 

using formula: 

H0 = n(AiAj)/N 

where, n(AiAj) = number of individuals with genotype AiAj, ji   

N  = total number of individuals in sample  

AiAj  = alleles at the locus 

In most outbreeding populations, the observed heterozygosity is quite close to 

the theoretical heterozygosity. Deviation of the observed from the expected can be used 

as an indicator of important population AZ 

Assessing allelic richness (Rs) in a set of populations was achieved by 

estimating the number of alleles expected in samples of specified size using rarefaction 

approach. This approach uses the frequency distribution of alleles at a locus to estimate 

the number of alleles that would occur in smaller samples of individuals, and Rs is 

standardized to the smallest samples size (N) in a comparison (Leberg, 2008). Allelic 

richness may be useful as an indication of a decrease in population size or of past 

bottleneck (Nei et al., 1975). 
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3.4.11 Measuring Sub-Population Differentiation 

FIS is measure of the deviation from Hardy-Weinberg proportions within 

subpopulations and in the total population, respectively, where (I) represent individuals. 

The FIS fixation index relates to an approximation of the deviation of the 

observed heterozygosity, Ho from the expected, HE, and is calculated based on Wright 

model (1951) with the incorporation of more sophisticated model as implemented in 

Arlequin (Excoffier et al., 2005), with 1023 permutations. If the HE is higher than HO, 

then the value of FIS will be large (positive value), suggesting inbreeding has resulted in 

a reduction in heterozygotes at a particular location. 

Population tree was constructed through Unweighed Pair-Group Method of 

Arithmetic (UPGMA) clustering based on Nei’s 1978 unbiased genetic distance using 

genetic data analysis (GDA)version 1.1 (Lewis & Zaykin, 2001) illustrate the 

magnitude of differentiation among population and subsequently describe the 

relationship between population.  

3.4.12 Inferring Population Structure 

Model based Bayesian clustering of genotypic data was carried out to assign 

individuals into theoretical populations, conformation to HWE and LD was maintained. 

This analysis was performed in the software STRUCTURE version 2.3 (Pritchard et al., 

2000). Individuals in the studied populations were clustered into K new populations 

regardless of their geographical locations, and probabilities of assignment to each 

cluster were assigned to each new population. Apart from demonstrating the presence of 

population structure, this software is also widely applied to identify distinct genetic 

populations, assigning individuals to populations, and identifying migrants and admixed 
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individuals (Pritchard et al., 2000). The preliminary K values was set from 1 (no 

structured population) to 4 (each population is structured accordingly), with burning 

period of 500,000 and No. of MCMC Reps after burning: 500,000. 
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CHAPTER 4 

4 Results 

4.1 Quantitative characters 

Basic statistics for measured quantitative traits, viz, plant height, number of 

fruiting branches per plant, number of pod per plant, number of pod clusters per plant, 

pod length, number of grains per pod, 1000 grain weight and total grain yield per plant 

are presented in Table 4.1 which showed variability in genotypes. The important traits, 

grain yield, plant height and 1000 grain weight exhibited high variation which, in 

general revealed that the selection for these economic traits is effective in developing 

high yielding varieties of mungbean.  

Table 4.1: Basic statistics for quantitative traits in mungbean genotypes 

Traits Mean±SE      Minimm Maximum 

PH 37.38 ± 1.08 26.9 57.00 

NFB 1.71 ± 0.10 1.00 3.50 

NP 14.40±0.92 6.33 32.25 

NPC 6.49 ± 0.94 3.20 13.50 

PL 6.42  ± 0.16 3.50 8.34 

NSP 9.36 ± 0.22 6.89 12.12 

SW 37.50  ± 1.09 24.00 50.00 

SY 33.64  ± 1.76 18.00 60.00 

 
PH: Plant height, NFB: Number of fruiting branches per plant, NP: Number of pod per plant, NPC: 

Number of pod clusters per plant, PL: Pod length, NSP: Number of grains per pod, SW: 1000 grain 

weight SY: Total grain yield per plant 
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4.2 Analysis of variance 

The analysis of variance showed significant difference among all genotypes at 

0.01 level except for 1000 grain weight which was significant at 0.05 level. (Table 4.2)  

Table 4.2: The Mean square values (MS) from ANOVA of yield and yield components of 

mungbean genotypes. 

 
PH NFB     NP NPC PL NSP SW   SY 

Mean 

Square 
82.67 0.63 63.27 9.32 1.05 2.22 86.96 221.27 

F Value 14.75
**

 3.41
**

 47.67
**

 15.59
**

 5.22 
**

 2.88
*
 9.94

**
 37.54

**
 

CV (%) 6.34 25.11 8 11.90 6.97 9.4 7.88 7.22 

PH: Plant height, NFB: Number of fruiting branches per plant, NP: Number of pod per plant, NPC: Number 

of pod clusters per plant, PL: Pod length, NSP: Number of grains per pod, SW: 1000 grain weight SY: 

Total grain yield per plant,* significant at 0.05 level,** significant at 0.01 level 

 

To show the differences between the genotypes after ANOVA, Duncan`s 

Multiple Range Test (DMRT) was applied. Figure 4.1 to 4.8 showed Mean comparison 

of all traits among all genotypes. Mean comparison among all genotypes showed that 

the most grain yield belong to genotypes number 40521, 40714 and NM-1919 which 

were significantly different from other genotypes. The lowest grain yield was for 

genotypes 40593 (Figure 4.1). 
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         Figure ‎4.1: Mean comparison of grain yield in mungbean genotypes 

         (Genotypes with the same letter are not significantly different) 

 

 

          Figure ‎4.2: Mean comparison of grain/pod in mungbean genotypes 

          (Genotypes with the same letter are not significantly different) 
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Figure ‎4.3: Mean comparison of 1000 grain weight (gr) in mungbean genotypes 

(Genotypes with the same letter are not significantly different) 

 

 

 

     Figure ‎4.4: Mean comparison of pod length in mungbean genotypes 

     (Genotypes with the same letter are not significantly different) 
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Figure ‎4.5: Mean comparison of pod cluster/plant in mungbean genotypes 

(Genotypes with the same letter are not significantly different) 

 

 

 

Figure ‎4.6: Mean comparison of pod /plant in mungbean genotypes 

(Genotypes with the same letter are not significantly different) 
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Figure ‎4.7: Mean comparison of number of fruiting branches/plant in 
mungbean genotypes   

(Genotypes with the same letter are not significantly different) 

 

 

Figure ‎4.8: Mean comparison of plant height (cm) in mungbean genotypes 

 (Genotypes with the same letter are not significantly different)  
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4.3 Cluster analysis 

Using cluster analysis by unweighted pair group method with arithmetic mean 

(UPGMA) method all genotypes were grouped into 3 main groups and 1 minor group. 

A dendogram based on average linkage distance for 20 mungbean genotypes was also 

calculated and presented in Figure 4.9. Members of each cluster are shown in Table 4.3 

Cluster I consisted of 9 genotypes, cluster II of 7, cluster III of 1 and cluster IV of 3 

genotypes. 

 

Figure ‎4.9: Dendogram based on 8 morphological traits in mungbean genotypes 

 

The mean of all traits were calculated for each groups (Table 4.3). The results 

shows that for plant height cluster II has the highest mean and cluster III has the lowest 

mean of plant height, that were 41.27 and 29.63 respectively. For 1000 grain weight and 

grain yield cluster I showed high value while for number of fruiting branches per plant 

and number of pod clusters per plant had the lowest. 

So depending on breeding objective the results of cluster analysis can be 

applied for crossing program for mungbean improvement. 
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 Table 4.3: Mean for four clusters based on quantitative characteristic 

Group 

Number of  

genotypes 

PH NFB NP NPC PL NSP SW SY 

1 9 35.46 1.37 13.06 5.25 6.86 9.15 40.63 40.16 

2 7 41.27 1.69 11.24 6.05 6.37 9.71 35.71 29.43 

3 1 29.63 2.38 14.53 7.5 4.14 10.63 30 22 

4 3 36.03 2.54 25.71 10.92 5.97 8.73 34.8 27.64 

PH: Plant height, NFB: Number of fruiting branches per plant, NP: Number of pod per plant, NPC: Number 

of pod clusters per plant, PL: Pod length, NSP: Number of grains per pod, SW: 1000 grain weight SY: 

Total grain yield per plant 

4.4 Principal component analysis 

In this project the results showed that three principal components and factors 

with Eigen values more than one explained 78 % of total variability. The first principal 

component (PC1) is related to number of fruiting branches per plant, number of pod per 

plant and number of pod cluster per plant that explained 39.4% of total variability 

(Table 4.4). The characters with greatest positive weight on PC2 were 1000 grain 

weight, grain yield and number of pod per plant. Findings revealed that these first two 

components are related to yield components of mungbean. 
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Table 4.4: Principal components (PCs) for 8 morphological traits in mungbean genotypes 

    

 

 

 

 

 

 

 

 

PH: Plant height, NFB: Number of fruiting branches per plant, NP: Number of pod per plant, NPC: Number 

of pod clusters per plant, PL: Pod length, NSP: Number of grain s per pod, SW: 1000 grain weight SY: 

Total grain yield per plant 

 

The first two components contributing 63% of the variance were plotted to 

observe the relationships between the clusters (Figure 4.10).  

 

Figure ‎4.10: Scatter diagram of mungbean genotypes for first two PCs score. 

 

The result of this analysis confirmed the grouping pattern which found by cluster analysis. 

All clusters are clearly separated from each other (Table 4.5). 

Traits 
1st 

component 

2nd 

component 

3rd 

component 

PH 0.0277 -0.4488 0.5467 

NFB 0.4583 0.2100 0.0501 

NP 0.4134 0.3817 0.2496 

NPC 0.5077 0.2072 0.2049 

PL -0.4036 0.1792 0.3986 

NSP 0.1153 -0.5353 0.2215 

SW -0.3691 0.4112 -0.0681 

SY -0.2188 0.2788 0.6176 

Eigenvalue 3.15 1.88 1.22 

Proportion σ
2
 0.3946 0.2354 0.1534 

Commulative 

σ
2
 

0.3946 0.6299 0.7834 
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Table 4.5: Comparison of grouping genotypes in cluster analysis with principal 

component analysis 

Group 

Analysis 
G1 G2 G3 G4 

Cluster 

Analysis 

40521 

40714 

41018 

AZRI-06 

M-6 

NM-98 

Chakwal 

NM-92 

VC1560DxNM-92 

NM-1919 

40993 

NM-4510 

40934 

40995 

40998 

SML-267 

5197A 

PAK-22 

6601 

41031 

Principal 

Component 

Analysis 

40521 

40714 

41018 

AZRI-06 

M-6 

NM-98 

Chakwal 

NM-92 

VC1560DxNM-92 

SML-267 

NM-1919 

40993 

NM-4510 

40934 

40995 

40998 

 

5197A 

PAK-22 

6601 

41031 

 

4.5 Genetic parameters of yield and yield components of mungbean 

Genotypic and phenotypic variances are presented in Table 4.5. There is a 

difference among genotypic and phenotypic variances for all the traits which indicate 

the influence of environment on these characters. Genotypic coefficient of variability 

was highest for number of pod per plant (38.65%), number of pod cluster (32.15%) and 

yield (30.90%), the phenotypic coefficient of variability also was high for these 

characters. These results were in agreement with previous studies (Siddique et al., 2006; 

Tabasum et al., 2010), who reported high genotypic and phenotypic variances for the 

same characters. Almost all traits showed high heritability except number of grain per 

pod and number of fruits. Maximum heritability belonged to number of pod/plant (95. 

9%) followed by grain yield per plant (94.8%), and number of pod cluster (87.9%). 

Maximum genetic advance was also observed for number of pod per plant, number of 

pod cluster and grain yield per plant. A higher heritability estimate correlated with good 
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estimates of genetic advance expected in the next generation for number of pod per 

plant, number of pod cluster and grain yield indicated that these characters are 

supported by additive gene affects. Rahim reported a high heritability (broad) along 

with high genetic advance in percent of mean was observed for plant height, number of 

pods per plant, number of grains per pod, 1000-grain weight and grain yield per plant 

and suggested these characters would be best for phenotypic selection (Rahim et al., 

2010). 
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Table 4.6: Genetic parameters of yield and yield components of mungbean 

 

  

Characters 
Genotypic 

 Variance 

Phenotypic 

variance 

Phenotypic 

Coefficient of 

variation % 

Genotypic 

Coefficient of 

variation % 

Heritability in 

broad sense % 
Genetic advance 

Genetic advance  

Expressed as percent of 

mean 

Height 38.531 44.136 17.793 16.625 87.3 11.948 31.999 

Number of fruits 0.222 0.406 37.27 27.543 54.6 0.716 41.93 

Number of pod/plant 30.97 32.297 39.474 38.654 95.9 11.226 77.974 

Number of pod cluster 4.359 4.957 34.289 32.156 87.9 4.033 62.12 

Pod length 0.423 0.624 12.304 10.133 67.8 1.104 17.192 

Number of grain per pod 0.725 1.496 13.073 9.101 48.5 1.221 13.052 

1000  grain  weight 39.104 47.856 18.447 16.675 81.7 11.644 31.05 

Grain  yield 108.054 113.969 31.734 30.90 94.8 20.851 61.98 
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4.6 Estimates of genotypic and phenotypic correlation coefficients among 

different characters  

The correlation coefficients (Table 4.6) represented that, in general, the 

genotypic and the phenotypic correlation coefficients showed similar direction but 

genotypic correlation coefficients were higher than the corresponding phenotypic 

correlation coefficients, which might be due to the effect of environment. Grain yield 

showed a significant and positive correlation with pod length and 1000 grain weight. 

Number of fruits per plant had negative significant genotypic correlation with grain 

yield per plant. Negative but non significant genotypic correlations were observed by 

yield per plant with plant height. It seems logical to select for short genotypes for 

lodging resistance associated with high yield. Negative significant association was 

observed between 1000 grain weight and number of grain per pod.  

Table 4.7: Estimates of genotypic (rg) and phenotypic (rp) correlation coefficients among different characters 

Characters 
 

Height 
Number of 

fruits 

Number of 

pod/plant 

Number of 

pod luster 
Pod length 

Number of grain 

per pod 

1000 grain 

weight 

Number of fruits 
Rg -0.249 

      

Rp -0.074 
      

Number of pod/plant 
Rg -0.138 0.753** 

     

Rp -0.017 0.554** 
     

Number of pod cluster 
Rg 0.071 0.991** 0.91** 

    

Rp 0.207 0.693** 0.847** 
    

Pod length 
Rg 0.098 -0.677** -0.316 -0.468* 

   

Rp 0.225 -0.063 -0.054 -0.006 
   

Number of grain per pod 
Rg 0.55** 0.013 -0.193 0.085 -0.535* 

  

Rp 0.368* 0.219 -0.043 0.187 0.257 
  

1000 grain weight 
Rg -0.451 -0.474 -0.263 -0.419 0.595** -0.601* 

 

Rp -0.251 -0.197 -0.172 -0.252 0.447** -0.254 
 

Grain yield 
Rg -0.017 -0.203 0.07 -0.183 0.55** -0.115 0.353* 

Rp 0.094 -0.023 0.153 0.007 0.562** 0.108 0.397* 

 ** significant at 1 % level  ,* significant at 5% level 
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4.7 DNA extraction 

Total genomic DNA of each plant was extracted from 100 mg of fresh leaf 

tissue using a DNeasy Plant Mini Kit. Average DNA concentration was recorded as 0.6 

μg/μℓ with purity of A
260/280

 1.80. Diluted DNA samples with average concentration of 

60 ng/μℓ were further utilized for PCR amplification (Figure 4.11).  

 

Figure ‎4.11: DNA Extraction using DNeasy Plant Mini Kit 

 

4.8 Microstaellite primers and preliminary polymorphism testing 

Out of all 22 loci initially tested, PCR validation showed that 13 SSR loci were 

able to be amplified successfully, while the rest of the primers were discarded due to 

various reasons such as failed amplification, amplification with larger PCR product size, 

inconsistent amplification or significant stuttering. Out of these 13 successfully 

amplified loci, 6 potential polymorphic loci were observed from microsatellite banding 

profiles on the gel images Figure 4.12 and 4.13. 
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Figure ‎4.12: Example of gel image showing validation of LR7323B on 16 individuals 

These 16 individuals randomly selected from four populations. polymorphism criteria 

was revealed with the presence of possibile heterozygous and homozygous individuals. 

 

 

Figure ‎4.13: Example of gel image from LR7319B on 16 individuals  
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4.9 Determination of microsatellite allele sizes 

Full panel of individuals screened by all six loci was found to have a different 

multilocus genotypes. However, some individuals show no amplification products when 

PCR was carried out. All alleles fell within the expected size range. Homozygotes and 

heterozygotes were observed at all loci. The following pictures (Figures 4.14, 4.15, 

4.16, 4.17, 4.18) display images of peaks observed in electropherogram as displayed by 

GeneMapper and Peak Scanner. 

 

 

Figure ‎4.14: Electropherogram of LR7315A, alleles from three individuals. 

 

All graphs illustrate the significant stuttering exhibited at the LR7315A locus. 

This primer set was omitted from further evaluation. Significant stuttering hinder the 

correct determination of allele size, thus would have biased the final result of 

subsequent analysis had the locus been retained (Figure4.14). 
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Figure ‎4.15: Electropherogram of LR7323B alleles for an individual from NM19-19.  

Primer LR7323B is a di-repeat locus. The graph shows only one prominent peak, indicating that this individual is 

homozygous at the LR7323B locus, with both copies of alleles 281bp in length.  
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Figure ‎4.16: Electropherogram of LR7319B alleles for an individual from 40521.  

LR7319B is a di-repeat locus. The graph shows two prominent blue peak (alleles) which were sized as 249bp and 261bp 

respectively, indicating that the individual is hetrozygous at this locus. Picture is taken using peak scanner v1.0 software.
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Figure ‎4.17: Electropherogram of LR7319B alleles for an individual from 40995.  

LR7319B is a di-repeat locus. The graph shows only one prominent peak that indicating, this individual is homozygous at the 

LR7319B locus, with both copies of alleles 261bp in length. Picture is taken using peak scanner v1.0 software. 
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Figure  4.18: Electropherogram of VJ31122B alleles for an individual from 40521.  

VJ31122B is a tetra-repeat locus. The graph shows only one prominent peak that indicates, this individual is homozygous at the 

VJ31122B locus, with both copies of alleles 209bp in length. Picture is taken using peak scanner v1.0 software.
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4.10 Statistical data analysis 

4.10.1 Error checking 

All individuals genotypes scored in GeneScan were screened for any 

anomalies. Results obtained from Micro-checker version 2.2.3 analysis (van Oosterhout 

et al., 2004) demonstrated no evidence of null allele occurrence, no large allele drop 

outs, or presence of stutter bands. This indicated that the data was suitable for 

subsequent genetic analysis. 

4.10.2 Hardy-Weinberg Equilibrium and Linkage Disequilibrium Tests 

The exact probability test for deviations from Hardy-Weinberg Equilibrium, 

HWE, was performed on all loci for each population. Among the six loci that were 

analyzed, LR7319B showed significant deviations (p < 0.05) from HWE for four out of 

six sampling sites. This implies that one or a combination of factors contribute to the 

violation of HWE, such as selection, might be significantly impacting on the proportion 

of genotypes that occurred in that particular locus. Since  LR7319B was found to have 

not conformed to HWE, data collected for this locus may potentially bias subsequent 

analyses of population differentiation that assume conformation to HWE. After FDR 

correction, most p-values were found to be statistically significant, shown in the Table 

4.7. 
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Table 4.8: Probability values of HWE for each locus per each studied populations 

Pop VJ31122A VJ31122B LR7319B LR7322B LR7323A LR7323B 

NM19-19 0.1089 0.0108
** 

0.00005
** 

0.0207
** 

0
** 

0.0152
** 

40995 1.000 0.1373 0.0024
** 

0.6293 1.000 0.2549 

40521 0.2786 0.1000 0.0001
** 

0
** 

0
** 

0.2762 

40031 1.000 1.000 0.6418 0.1741 1.000 0.4215 

40593 1.000 0.2862 0.1900 0.0301
* 

0.3347 0.9217 

40714 0.2733 0.0638 0.0135
* 

0.3107 0.1986 0.0219
* 

(*P value< 0.05; ** P value significant after FDR correction where α=0.05) 

 

4.10.3 Heterozygosity 

Based on Table 4.8 calculation of expected heterozygosity and observed 

heterozygosity were illustrated for all loci, within and among all populations. 

Generally, by looking at HE and HO values among loci, LR7322B demonstrated 

the highest values for HE in comparison to other loci, with value ranging from 0.6014 to 

0.8743, also LR7323A and LR7319B demonstrated the highest values for HO with value 

ranging from 0.5000 to 1 for LR7323A and 0.6666 to 1 for LR7319B respectively. 

Polymorphism assessments on all populations achieved using these three primers 

showed that HO scored were generally higher than HE. 
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Table 4.9: Summary of observed and expected heterozygosity (HE and HO) for each locus across six populations. 

Expected heterozygosity (HE), Observed heterozygosity (HO) , p-value (P) 

Populations NM1919 40995 40521 

Type of    

repeat/locus 
  HE          HO            P HE         HO         P  HE        HO         P 

Di-repeat 

LR7319B 0.5142 1 0.00005
** 

0.5448 0.9333 0.0024
** 

0.5487 0.8000 0.0001
** 

LR7322B 0.8222 0.9444 0.0207
** 

0.7217 0.8750 0.6293 0.8743 0.9500 0
** 

LR7323A 0.6079 1 0
** 

0.4896 0.6000 1.0000 0.6859 0.9500 0
** 

LR7323B 0.4807 0.7500 0.0152
** 

0.4173 0.5625 0.2549 0.4794 0.6500 0.2762 

  Tetra-repeat 

VJ31122A 
0.4438 0.6315 0.1089 0.2258 0.2500 1.0000 0.3846 0.5000 0.2786 

VJ31122B 0.5222 0.8333 0.01085
** 

0.4827 0.5333 0.1373 0.3102 0.3000 0.1000 
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Table 4.9, continued’

Populations NM1919 40995 40521 

Type of    

repeat/locus 
  HE           HO            P    HE          HO           P   HE          HO          P 

Di-repeat 

LR7319B 
0.4891 0.6666 0.6418 0.4848 0.7272 0.1900 0.4979 0.8125 0.0135

* 

LR7322B 0.7391 0.6666 0.1741 0.6014 0.5000 0.0301
* 

0.8698 0.8333 0.3107 

LR7323A 0.4202 0.5000 1.000 0.6732 0.6666 0.3347 0.7593 0.8235 0.1986 

LR7323B 0.5671 0.4545 0.4215 0.6406 0.7272 0.9217 0.7278 0.6875 0.0219 

  Tetra-repeat 

VJ31122A 0.4372 0.5454 1.0000 0.3679 0.4545 1.0000 0.4010 0.5294 0.2733 

VJ31122B 0.3246 0.3636 1.000 0.3246 0.1818 0.2862 0.5705 0.5625 0.0638 
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Conversely, the lowest HO values recorded were shown to be associated with 

VJ31122B, with value ranging from 0.1818 to 0.8333 (Table 4.8). 

4.10.4 SSR loci for characterizing populations genetics of six mungbean 

germplasm 

4.10.4.1 Genetic diversity 

The level of genetic diversity estimated based on six microsatellite loci are 

summarized in Table 4.9. All assayed primers detected polymorphism in each of the 

studied populations, with a minimum of two alleles and a maximum of ten alleles 

present at each locus in each population. The number of alleles per locus (At) observed 

for NM19-19 ranged from 2 to 7, from 2 to 6 for 40995, 2 to 10 for 40521, 3 to 6 for 

40031, 2 to 6 for 40593 and 2 to10 for 40714. 

The value of At, very likely contributed to the higher value of allelic richness 

(Rs) for population number 40714 in comparisons with others. NM19-19 scored the 

lowest for this parameter at 2.959 whilst populations number 40995, 40521, 40031 and 

40593 were in between of those two with 3.207, 3.854, 3.291 and 3.608 respectively. 

Generally, however, average allelic richness was very similar among all sample sites 

except population number 40714. 

On the other hand, the mean effective number of alleles (Ae) was observed to 

be highest in population number 40714 with 3.269 (Std. dev = 1.7760), whilst the 

lowest was achieved by population number 40995 (mean = 2.0283, Std. dev = 0.6943). 

 



  

74 

 

Table 4.10: Summary of genetic diversity measures based on six microsatellite loci in six populations of NM19-19, 40995, 

40521, 40031, 40593, and 40714: total number of alleles (At), effective number of alleles per locus (Ae), allelic richness (Rs) and 

effective sample size (N) 

 

 

 

 

 

Population NM1919 40995 40521 

Type of 

Repeat/locus 
At Ae Rs N At Ae Rs N At Ae Rs       N 

     Di-repeat 

LR7319B 2 2.0000 2.000 36 3 2.1127 2.600 30 3 2.1505 2.704 40 

LR7322B 7 4.9846 5.871 36 6 3.3247 5.185 32 10 6.7797 7.962 40 

LR7323A 4 2.4453 3.386 36 4 1.8987 3.691 30 6 3.0189 4.702 40 

LR7323B 2 1.8824 2.000 40 2 1.6787 2.000 32 4 1.8779 2.900 40 

   Tetra-repeat 

VJ31122A 2 1.7610 2.000 38 2 1.2800 1.972 32 2 1.6000 1.999 40 

VJ31122B 3 2.0313 2.500 36 5 1.8750 3.798 30 4 1.4337 2.860 40 

Total 20 - - 222 22 - - 186 29 - - 200 

Average 

 

(St dev.) 

3.3333 

1.966 

2.5174 

1.230 

2.959 

 

37 

 

3.6667 

1.633 

2.0283 

0.694 

3.207 

 

31 

 

4.8333 

2.857 

2.8101 

2.022 

3.854 

 
40 
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Table 4.10, continued’ 

 

 

 

 

Population 
40031 40593 40714 

Type of 

Repeat/locus 
At Ae Rs N At Ae Rs N At Ae Rs       N 

     Di-repeat 

LR7319B 3 1.8824 2.750 24 2 1.8615 2.000 22 3 2.0729 2.562 32 

LR7322B 6 3.4286 5.444 24 6 2.3607 5.381 24 10 6.4800 7.960 36 

LR7323A 3 1.6744 2.944 24 5 2.7458 5.000 18 7 3.8026 5.914 34 

LR7323B 3 2.1802 2.974 22 5 2.5745 4.455 22 6 3.3907 4.938 32 

   Tetra-repeat 

VJ31122A 3 1.7163 2.816 22 2 1.5414 2.000 22 2 1.6374 2.000 34 

VJ31122B 3 1.4491 2.816 22 3 1.4491 2.816 22 5 2.2358 4.195 32 

Total 21 - - 138 23 - - 108 33 - - 200 

Average 

 

(St dev.) 

3.500 

1.224 

2.0552 

0.715 

3.291 

 

23 

 

3.8333 

1.722 

2.0888 

0.548 

3.608 

 

22 

 

5.5000 

2.881 

3.2699 

1.776 

4.594 

 

33 
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732The maximum number of alleles were observed in any one site was 33 

alleles (found in 40714 population, see (Table 4.9), followed by 4052S (29), and the 

lowest recorded in NM19-19 (20). Generally allelic frequencies were observed in low 

frequencies at each locus in all population based on genotypic and allelic frequencies, 

refer to Appendix B. 

4.10.4.2 Heterozygosity and inbreeding 

Based on Table 4.10, calculation of expected heterozygosity and observed 

heterozygosity were illustrated for all loci, within and among all populations. HE 

estimates ranged from 0.4803 (40995) to 0.6377 (40714), whereas the highest recorded 

for HO was 0.8598 (NM19-19) and the lowest was 0.5327 (40031). This implies that 

there are large differences in genetic variability among the six populations. 

The studied populations of mungbean can be ranked based on the HO (mean 

value) as follows: NM19-19 > 40714 > 40521 > 40995 > 40593 > 40031. The HO value 

displayed in the table was recorded to be higher compared to HE for all populations.  

As displayed in the same Table of 4.10, all populations exhibited negative FIS 

values (NM19-19: -0.31234; 40995: -0.12908; 40521: -0.29768; 40031: -0.20962; 

40593: -0.04613; and 40714: -0.65377). The negative values of FIS are associated with 

the excess of observed heterozygosity over the expected heterozygosity, and were 

treated as zero, indicating no inbreeding. Based on the table, FIS value indicating that for 

all populations, the study probably suggests no inbreeding occurs in the studied 

population as denoted by the negative value of the coefficient. 
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Table 4.11: Summary of observed and expected heterozygosity (HE and HO) for each 

locus across six populations 

POPULATION                       

(MARKERS)                            HE                                                       HO                                                       

FIS 

NM1919                    

-0.31234 

VJ31122A 0.4438 0.6315 

VJ31122B 0.5222 0.8333 

LR7319B 0.5142 1 

LR7322B 0.8222 0.9444 

LR7323A 0.6079 1 

LR7323B 0.4807 0.7500 

MEAN 0.5651 0.8598 

40995    

-0.12908 

VJ31122A 0.2258 0.2500 

VJ31122B 0.4827 0.5333 

LR7319B 0.5448 0.9333 

LR7322B 0.7217 0.8750 

LR7323A 0.4896 0.6000 

LR7323B 0.4173 0.5625 

MEAN 0.4803 0.6256 

40521   

-0.29768 

VJ31122A 0.3846 0.5000 

VJ31122B 0.3102 0.3000 

LR7319B 0.5487 0.8000 

LR7322B 0.8743 0.9500 

LR7323A 0.6859 0.9500 

LR7323B 0.4794 0.6500 

MEAN 0.5471 0.6916 
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Table 4.11, continued’ 

POPULATION                       

(MARKERS)                         HE                                                           HO                                                    FIS           

40031 
  

-0.20962 

VJ31122A 0.4372 0.5454 

VJ31122B 0.3246 0.3636 

LR7319B 0.4891 0.6666 

LR7322B 0.7391 0.6666 

LR7323A 0.4202 0.5000 

LR7323B 0.5671 0.4545 

MEAN 0.4962 0.5327 

40593   

-0.04613 

VJ31122A 0.3679 0.4545 

VJ31122B 0.3246 0.1818 

LR7319B 0.4848 0.7272 

LR7322B 0.6014 0.5000 

LR7323A 0.6732 0.6666 

LR7323B 0.6406 0.7272 

MEAN 0.5154 0.5428 

40714   

-0.65377 

VJ31122A 0.4010 0.5294 

VJ31122B 0.5705 0.5625 

LR7319B 0.4979 0.8125 

LR7322B 0.8698 0.8333 

LR7323A 0.7593 0.8235 

LR7323B 0.7278 0.6875 

MEAN 0.6377 0.7081 
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4.10.4.3 Genetic differentiation using UPGMA tree 

 Population tree phenogram in Figure 4.19 above was constructed to illustrate 

the relationships among all six populations. Results obtained in the GDA provides 

further evidence. Corresponding to UPGMA tree, population 40714 with 40031, 40995 

with 40593 and NM-1919 with population 40521 were found to be less genetically 

differentiated, however population NM-1919 and population 40521 were observed to be 

least similar compared to the other four populations.  

 

Figure ‎4.19: Population tree phenogram using GDA software 

4.10.4.4 Population structure 

Marker data was analyzed using the program Structure (Pritchard et al., 2000), 

which identifies clusters of related individuals from multilocus genotypes. The full data 

set was analyzed for all models from K=1 through 6. The highest log probability value 

(Ln P(D)) (closest to zero) was recovered when k=3 (all individuals assigned to the 

same population). This analysis of molecular marker data from 6 primer pairs also 
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divided the populations into distinct groups (Figure 4.20). Populations 40995(2) and 

40031(4) composed one group, while 40593(5) and 40714(6) comprised a second 

cluster. Corresponding to Population structure 40521(3) was observed to be least similar 

compared to the other populations. 

 

 

 

Figure ‎4.20: Structure clustering, using structure Ver 2.2. 

  Pop 1: NM-1919, Pop 2: 40995, Pop 3: 40521, Pop 4: 40031, Pop 5: 40593, Pop 6: 

40714  

 

4.10.4.5 Genetic differentiation between mungbean germplasms using Analysis of 

molecular variance (AMOVA) 

  To evaluate the genetic difference of high and low yield mungbean genotypes, 

the marker data from 6 microsatellite primers were subjected to analysis of molecular 

variation (AMOVA) using Arlequin 3.1software (Excoffier et al., 2005). The percentage 

of variation among populations was (9.15) and it was (-19.99) and (110.85) to among 



  

81 

 

individuals within populations and within individuals respectively. 

 Results obtained from AMOVA illustrated that, the percentage of variation was 

much higher within individuals than both among population and among individuals 

within populations (Table 4.11). It demonstrated that significant difference exist within 

individuals of mungbean genotypes, and accordingly, high heterosis effect may be 

accrued in the previous population.  

 

Table 4.12: Analysis of molecular variance (AMOVA) from two populations of 

mungbean using six microsatellite primers  

Source of variation 
 

Sum of squares 
variance                       

components 
Percentage 

variation 

Among 

populations 

 

16.503 0.16805 9.14707 

Among 

individuals 

within 

populations 

119.076 -0.36731 -19.99282 

Within 

individuals 
189.500 2.03645 110.84576 

Total 325.078 1.83719  
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CHAPTER 5 

5 Discussion 

5.1 Selection of suitable parents based on morphological traits 

In order to maintain, evaluate and utilize germplasm effectively, it is important 

to investigate the extent of genetic diversity available. Smith considered morphological 

characterization as an important step in description and classification of crop germplasm 

because a breeding program mainly depends upon the magnitude of genetic variability 

(Smith & Smith, 1989; Smith et al., 1991). In a breeding program choosing, of parents 

play a very important role, parents with more genetic distance can create higher 

variation which can increase genetic gain of selection. The selection on the basis of best 

performance has been suggested by many researchers (Donald, 1962; Lal, 1967; Singh, 

1977; Singh et al., 1980; Khan & Malik, 1989; Ghafoor et al., 2000). Subdividing the 

variance into its components assists the genetic resources conservation and utilization 

and it enables planning for use of appropriate gene pools in crop improvement for 

specific plant attributes (Bekele, 1984,1985; Pecetti et al., 1992; Pecetti & Damania, 

1996). For other traits such as number of pod per plant, number of pod cluster per plant, 

moderate variances was observed and for the number of fruiting branches per plant, pod 

length and number of grains per pod, low variance was observed and hence low genetic 

variability seemed to restrict the scope of selection for these traits in the present 

germplasm collection. The genes for these important economic traits should be 

investigated and exploited from other sources i.e. inter-specific hybridization or 

mutation. Large scale testing of broad base germplasm needs to be built up by making 

extensive local collection and obtaining germplasm from abroad to develop a sound 
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breeding program (Ghafoor et al., 1992; S. K. Jain et al., 1975). Some studies advocated 

that maximum genetic conservation would be achieved by sampling populations from as 

many environments as possible (Brown, 1978; Laghetti et al., 1998).Yimram et al. 

(2009) evaluated 9 qualitative and 21 quantitative traits in 340 diverse cultivated 

mungbean accessions collected at Asian Vegetable Research and Development Centre 

(AVRDC) to assess the extent and pattern of their diversity. The germplasm represented 

a wide range of diversity for most of the traits evaluated. High genetic variability was 

found in yield components. Penology traits such as plant height, days to flowering, and 

days to maturity also showed high genetic variability (Yimram et al., 2009). They 

observed 5 major and 1 minor group when they clustered several mungbean germplasm. 

They described that germplasm from India and West Asia were in all major clusters, 

while those from Southeast Asia and other origins were mainly grouped into one cluster. 

They recommend that the germplasm from West Asia be exploited more in cultivar 

development to enrich the breeding gene pool. We also observed that the germplasms 

grouped in 3 major groups and 1 minor group, where those collected from different 

agro-ecological zones of Pakistan have wider genetic base. The grouping of accessions 

by multivariate methods in this study is of practical value to mungbean breeders. 

Representative accessions may be chosen from particular groups for hybrid program 

with other approved varieties. Several potentially important agronomic types have been 

identified and these may be exploited for genetic potential to transfer the desirable 

genes and this facilitates the assembly of a core collection of accessions from the large 

genetic resources collection (Clements & Cowling, 1994; Frankel, 1984; S. P. Singh, 

1988; Tolbert et al., 1979). Tawar et al. (1988) conducted genetic divergence in 34 

diverse genotypes of mungbean which were grouped in five clusters, and they observed 

that variability in the parents was related to genetic diversity. Inclusion of such 

genotypes from distinct clusters and their implication in mungbean breeding program 
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was suggested (Tawar et al., 1988). 

Ghafoor et al. (2001) studied genetic diversity in 484 blackgram germplasm 

accessions. Quantitative traits were analyzed for cluster and principal component 

analyses. The first four PCs with eigenvalues >1 contributed 79.5% of the total 

variability amongst accessions.  The germplasm was categorized in five clusters based 

on average linkage. The first two principal components were plotted to observe 

relationship between the clusters.  Clusters II, III and IV showed more clear separation 

than clusters I and V (Ghafoor et al., 2001). Elizabeth et al. (200l) investigated nineteen 

Sesbania accessions to characterize them on morphological and agronomic data using 

multivariate methods. Principal component analysis indicated that variance accumulated 

by the first two components for morphological and agronomic data was 74.4% and 

77.0%, respectively. In this study the cluster analysis performed with the eight selected 

characters classified the accessions into five groups. The result of this analysis 

confirmed the grouping pattern which was found by Elizabeth et al. (2001). In this study 

all clusters were clearly separated from each other. Selection of proper parents is 

playing a vital role for a successful plant breeding program. So depend on breeding 

objective the result of cluster analysis and principal component analysis (PCA) can be 

applied for crossing program for mungbean improvement. Based on these analyses, 

choosing parents with more genetic distance to generate higher variation can enhance 

genetic achievement in selection. 

5.2 Correlation analysis 

Knowledge of the relationship among plant characters is useful for selecting 

traits to combine for yield improvement. The correlation coefficients were computed 

among all the measured quantitative traits and are shown in Table 4.6.  
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The correlation is a measure of the degree to which variables vary together or a 

measure of intensity of association (Steel & Torrie, 1980). Generally, a high magnitude 

of correlation with positive signs was observed between different traits. In mungbean, 

some researchers observed positive correlation of yield with yield components (Tomar 

et al., 1973; Khalid et al., 1984), whereas, Malik et al. (1987) reported negative 

correlation of yield with maturity, pod length and grain weight (Malik et al., 1987). 

Significant positive correlation of grain yield with other yield contributing characters 

has been reported in blackgram (Rani & Rao, 1981). Maximum relative selection  

efficiency  for branches per plant  has been investigated in mungbean (Malik et al., 

1983), and Malhorta observed positive association of yield with days to maturity, plant 

height, pods and pod length, whereas, negative with grain weight (Malhotra et al., 

1974).    

The genotypic and the phenotypic correlation coefficients in this study showed 

similar direction but genotypic correlation coefficients were higher than the 

corresponding phenotypic correlation coefficients. This might be due to effect of the 

environment (Kole et al.). Grain yield showed a significant and positive correlation with 

pod length and 1000 grain weight. Number of fruits per plant had negative significant 

genotypic correlation with grain yield per plant. Negative but non significant genotypic 

correlations were observed by yield per plant with plant height. It seems logical to select 

for short genotypes for lodging resistance associated with high yield. A previous study 

confirmed these results (Tabasum et al., 2010). In the current research negative 

significant association was observed between 1000 grain weight and number of grain 

per pod. Similar results were observed  in many studies by different researchers (Ali & 

Shaikh, 1987; Ahmad et al., 1997; Rohman et al., 2003). 
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5.3 Microsatellite loci and preliminary polymorphism testing 

The primers used in this study were designed to amplify microsatellite regions, 

the success ratio of mungbean SSR amplification was more than 50%, with 13 primers 

able to be amplified out of the initial 22 that were tested. Those that failed either were 

unable to amplify product at all, or showed unspecific amplification. Failure of 

amplification can be attributed to a variety of reasons, such as location of primer 

spanning across introns and/or mutations and indels (insertions or deletions) at the 

primer annealing sites. These issues are especially important when considering 

microsatellite loci, as there are potentially fundamental problems when applying 

microsatellite loci to genomic DNA regions. 

In this study, the number of di-nucleotide SSRs found in successful amplified 

products is slightly higher compared to tetra-nucleotide repeats. From the 13 SSRs loci 

tested, about 55% of the di-repeat motifs were successfully amplified from genomic 

DNA, while 45% of tetra-repeats were able to be amplified. The prevalence of SSR 

motif type obtained in this current study is incongruent with other studies on plants, 

which showed that tri-nucleotide repeats are more common (Li et al., 2002; Morgante et 

al., 2002; Varshney et al., 2005). 

As shown in the results (Figure 4.14), image taken from GeneMapper 

displayed a characteristic feature namely "stutter bands"- that is, minor products that 

differ in size from the main product by multiples of the length of the repeat unit 

(Ellegren, 2004; Hauge & Litt, 1993; Murray et al., 1993). This results from replication 

slippage of Taq polymerase that occurs during PCR amplification of microsatellite 

sequences in vitro (Ellegren, 2004). The stutter peaks are observed as multiple artifact 

peaks preceding the true allele peak, and this could lead to incorrect scoring and hinder 
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the genotyping of individuals, thus complicating data interpretation. The presence of 

stutter artifacts are more commonly found in di-nucleotide loci compared to other SSR 

type motifs (Bakker et al., 2005; Ellegren, 2004). Despite the fact that some stuttering 

was observed in the present study, as the stutter bands were able to be distinguished 

from the real alleles their presence did not compromise the data collection process. 

5.4 Linkage Disequilibrium (LD) and Hardy-Weinberg Equilibrium in mungbean 

Linkage Disequilibrium tests revealed that none of the loci showed significant 

linkage disequilibrium for all pairs of loci. This indicates that there is probably no 

physical linkage between any of the loci used in this study. Furthermore, it means that 

the individuals that were collected at each population are not likely to constitute a mix 

of two or more breeding populations with very different gene frequencies. 

However, significant departure from HWE was observed in locus LR7319B 

suggesting that this locus is not assorting randomly. One possible explanation for 

violation of HWE is the presence of null alleles. Null alleles can occur as a result of 

priming site mutations or large or small allele dropout, thus leading to the failure of 

PCR amplification of one or both microsatellite alleles, resulting in a lack of visible 

amplicons for one or both alleles in a diallelic genotype (Rodrigues et al., 2009). If null 

alleles are caused by a mutation in the priming site then individuals that are 

heterozygous and possess one null allele and one non-null will appear to be 

homozygous for the visible allele, whereas there are no visible alleles in the case of 

null-null homozygotes. Likewise, long or short allele dropout will result in scoring only 

one allele per genotype. Hence, falsely recording homozygote genotypes where 

individuals are true heterozygotes. The presence of null alleles in a population will bias 

allele frequencies and inflate the number of homozygous genotypes, thus reducing the 



  

88 

 

observed heterozygosity (DeWoody & Avise, 2005) . Nevertheless, the presence of null 

alleles is unlikely in this study, as output from Microchecker found no evidence for null 

alleles. Significant deviations from HWE could also result from selection pressure that 

may be occurring at the molecular or the phenotypic level. For example, at the 

molecular level LR7319B is a di-nucleotide repeat SSR and possibly mutations in repeat 

number at this locus may interrupt the reading of downstream coding regions (frame-

shift mutation), therefore having a deleterious effect on the organism, leading to 

selection pressure to maintain repeat numbers that do not interrupt the reading frame (Li 

et al., 2004). In this study, it may be argued that the sample size used is rather small, 

thus the same approach as Choi et al. (1999) was also used to study genetic variation 

using microsatellite markers in soybean. The significant violation from HWE at this 

locus, however, could simply be caused by the limited sample size of individuals per 

population used in this study (Wang et al., 2005), or as a result of undetected nulls. 

5.5 Population genetic structure among six mungbean germplasms  

Population structure analysis of molecular marker data from six primer pairs 

divided the populations into distinct groups (Figure 4.20). Populations 40995(2) and 

40031(4) were composed one group, while 40593(5) and 40714(6) comprised a second 

cluster. Corresponding to Population structure 40521(3) was observed to be least similar 

compared to the other populations. Genetic structuring of populations can be influenced 

by the combination of factors; gene flow, natural selection and genetic drift (Freeland et 

al., 2010). Results of previous studies on genetic relatedness showed that the genetic 

distance values within the cultivated beans were higher than in the wild beans (Kumar et 

al., 2003). In general, population differentiation is inversely correlated with gene flow 

and directly correlated with genetic drift (Frankham et al., 2002; Freeland et al., 2010). 
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Allelic frequencies were observed in low and similar frequencies at each locus among 

all populations. When gene flow is low or being restricted between populations, allele 

frequencies are expected to diverge as the forces of genetic drift and selection act 

independently in each population (Slatkin, 1987). 

The average number of alleles obtained from six microsatellite markers for all 

populations were rather similar, except 40714 and 40521 that were 5.5 and 4.8 

respectively. These two populations show high levels of variation compared to other 

four populations. High level of variation in mungbean suggests that it is a good source 

of genes for mungbean development. This is a good sign, especially when comparisons 

are made with other plant species. In the garden pea (Pisum sativum) the average 

number of alleles obtained from 31 microsatellite markers was 3.6 (Burstin et al., 2001), 

compared to 5.5 or 4.8 that were observed in two mungbean populations in the current 

study. In alfalfa reported 3.2 alleles per locus with four microsatellite markers (Diwan et 

al., 1997), and in barley, 2.1 alleles per locus were observed with 15 microsatellite 

markers (J. Becker & Heun, 1995). The primary source of the gene pool used in 

mungbean improvement program comes from the wild mungbean (V. radiata var. 

sublobata) (Lawn et al., 1988). 

5.6 Heterozygosity level in mungbean (Vigna radiate L.Wilczek) 

The observed heterozygosity was higher than expected heterozygosity for six 

populations of mungbean (Table 4.10). All of these populations showed excess in 

heterozygosity as shown by the FIS values (Table 4.10). Negative values indicate excess 

in heterozygosity while positive values indicate heterozygosity deficiency (Hedrick, 

2000). Excess heterozygosity could be caused by either outbreeding or overdominance 

(Goossens et al., 2003).  
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CHAPTER 6 

6 Summary and conclusion 

Research  reported  in this manuscript was conducted  on 20 mungbean 

germplasms collected from different agro-ecological zone in Pakistan under field 

condition and molecular experiment to estimate the genetic diversity of mungbean 

germplasm on the basis of morphological and agronomic characteristics, considering the 

reasons of low yield, through analysis of yield and yield contributing characters and 

finally, to evaluate the difference of genetic makeup and to characterize the high 

yielding potential genotypes within 20 mungbean advance line.  

Twenty mungbean accessions were evaluated for various agro-morphological 

traits under field condition at RCBD.  Data  were  recorded on eight quantitative traits 

(plant height, number of fruiting branches per plant, number of pod per plant, number of 

pod clusters per plant, pod length, number of grains per pod, 1000 grain weight and total 

grain yield per plan). Six genotypes were selected on the basis of grain yield graph form 

Duncan`s Multiple Range Test (DMRT) to evaluate genetic differentiation using six 

microsatellite primers.  

In conclusion all the twenty mungbean accessions under study were grouped 

into 3 main clusters and 1 minor cluster on average linkage basis. The results of cluster 

analysis can be applied for crossing program for mungbean improvement. Variance was 

further studied by principal component analysis (PCA). The first three principal 

components and factors with Eigen values more than one explained 78 % of total 

variability.  

High variance was observed for grain yield, plant height and 1000 grain 



 

91 

 

weight. Results of genotypic and phenotypic correlation coefficients among different 

characters revealed that grain yield per plant was significantly and positively correlated 

with pod length and 1000 grain weight. In general, this revealed that the selection for 

these economic traits is effective in developing high yielding varieties of mungbean. 

Genetic advance expected in the next generation for number of pod per plant, number of 

pod cluster and grain yield indicated that these characters are supported by additive 

gene affects, so these characters would be best for phenotypic selection. 

In genetic study, microsatellite markers were used to consider the level of 

genetic variability in six selected mungbean germplasms on the basis of phenotypic 

variability. Twenty two microsatellite primers initially were tested, of these 9 SSR loci 

failed to amplify the mungbean genome or gave irreproducible banding patterns and 

were subsequently rejected. From 13 remaining SSR loci successfully amplified, six 

potential polymorphic loci were observed from microsatellite banding profiles on the 

gel images. 

Results from this study showed significant departure from HWE in locus 

LR7319B suggesting that this locus is not assorting randomly.  An investigation on the 

level of variability using six microsatellite primers, revealed the observed 

heterozygosity was higher than expected heterozigosity for all population, all of these 

population showed excess in heterozygosity as shown by the negative  Fis values. 

Genetic diversity measures showed that average number of alleles obtained 

from six microsatellite markers for populations 40714 and 40521 were significantly 

high compared to other four populations. 40714 also showed the highest allelic richness 

between all populations. High level of variation in these two germplasms can be 

explained the different genetic makeup between these two and the other six populations 

of mungbean. The high level of microsatellite markers variation which suggests that it is 
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a good resource for mungbean development.  

Through this study, morphological and agronomic traits and characterization of 

microsatellite markers provide the basis for plant breeding and crossbreeding programs. 

Via the study genetic diversity of mungbean germplasms, and the contribution in yield 

components on yield and genetic variability available in the different accessions of 

mungbean. 
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APPENDIX A 

Table 1: Genotypic scoring for all individuals based on six microsatellites loci 

npops = 6 

nloci = 6 

VJ31122A VJ31122B LR7323A LR7323B LR7322B LR7319B 

Pop = NM19-19 

217 217 209 197 201 211 281 281 189 177 249 261 

217 217 209 197 201 211 281 269 189 175 249 261 

217 217 209 197 199 211 281 269 187 175 249 261 

217 217 209 197 203 211 281 269 185 175 261 249 

217 217 209 197 199 211 281 269 189 189 249 261 

217 205 209 197 211 201 281 269 187 171 249 261 

217 205 209 197 199 211 281 269 187 171 249 261 

217 205 209 197 199 211 281 281 187 171 249 261 

217 205 209 209 199 211 281 269 187 173 261 249 

217 205 209 197 199 211 281 269 187 175 261 249 

217 205 209 197 199 211 281 269 189 173 249 261 

217 217 209 197 199 211 281 281 189 173 261 249 
217 205 209 197 199 211 269 281 189 173 261 249 

217 205 209 193 199 211 281 269 187 173 249 261 

217 205 209 209 199 211 281 269 189 173 249 261 

217 205 209 209 211 199 281 269 187 173 249 261 
217 205 209 197 211 199 281 269 187 175 249 261 

217 205 209 197 199 211 281 269 187 175 249 261 
Pop = 40995 

217 217 209 197 199 199 291 281 179 173 249 261 

217 217 209 209 199 199 291 291 177 169 261 249 

217 217 209 197 199 193 291 291 177 169 249 261 

217 217 209 197 199 193 291 291 179 169 249 261 
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217 217 209 209 199 199 291 291 179 175 261 261 
217 217 209 209 199 199 291 281 179 175 249 261 

217 205 209 193 199 199 281 291 179 173 249 261 

217 205 209 197 199 195 291 281 179 169 261 249 
217 217 209 209 199 199 291 281 179 171 261 245 

217 217 209 209 199 195 291 291 179 169 261 249 

217 205 209 197 199 195 291 281 175 169 249 261 

217 205 209 197 199 197 291 281 179 169 261 249 
217 217 209 209 199 195 291 291 179 179 261 249 

217 217 213 201 199 195 291 281 179 175 249 261 

217 217 209 209 199 197 291 281 179 179 261 249 

Pop = 40031 

217 217 209 209 199 199 281 281 185 185 261 261 

217 205 209 189 199 193 291 281 179 173 249 261 

217 217 209 209 199 199 291 291 179 179 261 261 

217 217 209 209 199 199 281 291 179 179 241 261 
217 217 209 209 199 199 281 281 179 189 261 249 

217 205 209 197 211 199 281 281 185 171 249 261 

217 205 209 197 199 193 291 291 179 169 261 249 

217 217 209 209 199 211 281 281 179 171 261 261 

217 197 209 197 199 211 281 269 185 171 261 249 

217 205 209 209 199 211 281 269 185 171 249 261 

217 205 209 209 199 199 281 291 179 189 249 261 

Pop =40521 

217 217 209 197 199 211 281 281 187 175 249 261 

217 217 209 209 203 211 281 269 189 179 263 263 

217 217 209 209 199 211 181 281 189 183 261 249 

217 217 209 209 207 197 281 281 189 177 249 261 
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217 205 201 213 207 197 281 269 187 177 249 261 

217 205 209 209 199 199 291 281 179 169 249 261 

217 205 209 209 199 211 281 281 187 173 249 261 
217 217 209 209 201 211 281 281 187 175 261 261 

217 217 209 197 199 211 281 269 185 175 261 249 

217 217 209 209 201 211 281 281 179 187 261 249 

217 205 209 197 199 211 281 269 185 171 261 249 
217 205 209 209 207 199 269 281 185 171 261 249 

217 205 209 197 211 199 281 269 185 171 249 261 

217 205 209 209 199 211 281 269 185 171 249 261 

217 217 209 209 199 211 281 269 185 171 249 261 
217 205 209 209 199 211 281 269 185 171 249 261 

217 205 209 209 199 211 281 269 187 173 249 261 

217 205 209 197 199 211 281 269 185 171 261 261 

217 217 209 209 199 211 281 281 179 189 261 249 

217 217 209 209 199 211 281 281 185 185 261 261 

Pop = 40593 

217 217 197 197 199 195 291 291 179 169 261 249 

217 217 209 209 ? ? 291 281 179 179 261 261 

217 217 209 197 199 199 291 267 179 179 249 261 

217 217 209 209 ? ? 291 291 179 179 261 261 

217 205 209 209 199 213 281 291 179 193 261 249 

217 217 209 189 199 197 291 281 179 169 261 249 
217 205 209 209 199 199 291 281 177 169 261 249 

217 205 209 209 203 213 281 269 189 175 249 261 

217 205 209 209 203 213 281 281 189 175 249 261 
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217 217 209 209 199 197 291 289 179 179 261 261 

217 205 209 209 ? ? 281 291 179 179 261 249 

Pop = 40714 

217 217 209 197 211 197 281 269 191 175 249 261 

217 217 209 209 199 213 281 291 179 193 249 261 

217 205 209 209 199 213 273 273 179 193 261 249 

217 205 209 197 199 191 291 291 179 171 249 261 
217 217 209 209 213 199 281 269 181 193 249 261 

217 217 209 209 203 213 281 281 179 189 261 261 

217 217 213 197 199 199 291 281 179 179 249 261 

217 205 185 185 213 199 281 281 191 171 249 261 
217 217 209 197 199 213 281 291 191 173 261 261 

217 205 209 197 203 213 281 256 191 175 249 261 

217 205 209 197 211 201 281 269 191 175 249 261 

217 205 209 209 201 213 281 269 189 175 249 262 
217 205 209 189 211 199 281 269 189 189 261 249 

217 205 209 197 213 203 281 269 189 171 249 261 

217 217 209 209 199 197 291 289 179 173 261 261 
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APPENDIX B 

Table 2: Comparisons of linkage disequilibrium values for each locus pair combinations. 

Disequilibrium values were compared between all pairs of loci in this study and p-values were calculated.   

Pop Locus 1 Locus 2 P Value Order  P Value Orig Rank FDR Significant 

NM19-19 VJ31122A VJ31122B 0.356482 A1  0.003024 A35 1 0.00058824 FALSE 
NM19-19 VJ31122A LR7323A 0.189234 A2  0.00736 A49 2 0.00117647 FALSE 
NM19-19 VJ31122B LR7323A 0.730458 A3  0.011032 A32 3 0.00176471 FALSE 
NM19-19 VJ31122A LR7323B 0.244142 A4  0.01734 A78 4 0.00235294 FALSE 

NM19-19 VJ31122B LR7323B 0.66534 A5  0.01895 A9 5 0.00294118 FALSE 
NM19-19 LR7323A LR7323B 1 A6  0.02801 A43 6 0.00352941 FALSE 
NM19-19 VJ31122A LR7322B 0.105868 A7  0.03116 A29 7 0.00411765 FALSE 
NM19-19 VJ31122B LR7322B 0.227386 A8  0.04611 A51 8 0.00470588 FALSE 
NM19-19 LR7323A LR7322B 0.01895 A9  0.051838 A11 9 0.00529412 FALSE 

NM19-19 LR7323B LR7322B 0.573424 A10  0.06274 A81 10 0.00588235 FALSE 
NM19-19 VJ31122A VJ31122B 0.051838 A11  0.06957 A62 11 0.00647059 FALSE 
NM19-19 VJ31122A LR7323A 0.69455 A12  0.08477 A79 12 0.00705882 FALSE 
NM19-19 VJ31122B LR7323A 0.597852 A13  0.087702 A14 13 0.00764706 FALSE 
40995 VJ31122A LR7323B 0.087702 A14  0.105868 A7 14 0.00823529 FALSE 

40995 VJ31122A LR7323B 0.8609 A15  0.12122 A55 15 0.00882353 FALSE 
40995 LR7323A LR7323B 0.26602 A16  0.15616 A34 16 0.00941176 FALSE 
40995 VJ31122A LR7322B 0.37448 A17  0.17856 A42 17 0.01 FALSE 
40995 VJ31122B LR7322B 0.348148 A18  0.18001 A66 18 0.01058824 FALSE 
40995 LR7323A LR7322B 0.593566 A19  0.189234 A2 19 0.01117647 FALSE 

40995 LR7323B LR7322B 0.60473 A20  0.1973 A85 20 0.01176471 FALSE 
40995 VJ31122A LR7319B 1 A21  0.217158 A25 21 0.01235294 FALSE 
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40995 VJ31122B LR7319B 1 A22  0.227386 A8 22 0.01294118 FALSE 
40995 LR7323A LR7319B 1 A23  0.23094 A48 23 0.01352941 FALSE 
40995 LR7323B LR7319B 0.656444 A24  0.244142 A4 24 0.01411765 FALSE 
40995 LR7322B LR7319B 0.217158 A25  0.255988 A31 25 0.01470588 FALSE 
40995 VJ31122A VJ31122B 0.628464 A26  0.26602 A16 26 0.01529412 FALSE 
40995 VJ31122A LR7323A 0.720542 A27  0.27491 A71 27 0.01588235 FALSE 
40995 VJ31122B LR7323A 0.366454 A28  0.277938 A38 28 0.01647059 FALSE 
40521 VJ31122A LR7323B 0.03116 A29  0.27865 A64 29 0.01705882 FALSE 
40521 VJ31122B LR7323B 0.735394 A30  0.28489 A46 30 0.01764706 FALSE 

40521 LR7323A LR7323B 0.255988 A31  0.348148 A18 31 0.01823529 FALSE 
40521 VJ31122A LR7322B 0.011032 A32  0.356482 A1 32 0.01882353 FALSE 
40521 VJ31122B LR7322B 0.483578 A33  0.366454 A28 33 0.01941176 FALSE 
40521 LR7323A LR7322B 0.15616 A34  0.37448 A17 34 0.02 FALSE 
40521 LR7323B LR7322B 0.003024 A35  0.39356 A70 35 0.02058824 FALSE 

40521 VJ31122A LR7319B 0.581288 A36  0.41037 A74 36 0.02117647 FALSE 

40521 VJ31122B LR7319B 1 A37  0.42812 A57 37 0.02176471 FALSE 
40521 LR7323A LR7319B 0.277938 A38  0.45809 A59 38 0.02235294 FALSE 
40521 LR7323B LR7319B 0.823302 A39  0.46685 A63 39 0.02294118 FALSE 
40521 LR7322B LR7319B 0.759616 A40  0.47873 A52 40 0.02352941 FALSE 

40521 VJ31122A VJ31122B 0.90586 A41  0.483578 A33 41 0.02411765 FALSE 
40521 VJ31122A LR7323A 0.178556 A42  0.5295 A80 42 0.02470588 FALSE 
40521 VJ31122B LR7323A 0.028012 A43  0.53755 A73 43 0.02529412 FALSE 
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40521 VJ31122A LR7323B 0.637428 A44  0.54492 A56 44 0.02588235 FALSE 
40521 VJ31122B LR7323B 0.889334 A45  0.56478 A47 45 0.02647059 FALSE 
40521 LR7323A LR7323B 0.284886 A46  0.57105 A60 46 0.02705882 FALSE 
40521 VJ31122A LR7322B 0.564778 A47  0.57326 A72 47 0.02764706 FALSE 

40521 VJ31122B LR7322B 0.23094 A48  0.573424 A10 48 0.02823529 FALSE 
40031 LR7323A LR7322B 0.007356 A49  0.581288 A36 49 0.02882353 FALSE 
40031 LR7323B LR7322B 0.716436 A50  0.593566 A19 50 0.02941176 FALSE 
40031 VJ31122A LR7319B 0.046114 A51  0.597852 A13 51 0.03 FALSE 
40031 VJ31122B LR7319B 0.478732 A52  0.60473 A20 52 0.03058824 FALSE 

40031 LR7323A LR7319B 0.789158 A53  0.628464 A26 53 0.03117647 FALSE 
40031 LR7323B LR7319B 0.63475 A54  0.63475 A54 54 0.03176471 FALSE 
40031 LR7322B LR7319B 0.121222 A55  0.63743 A44 55 0.03235294 FALSE 
40031 VJ31122A VJ31122B 0.54492 A56  0.64788 A83 56 0.03294118 FALSE 
40031 VJ31122A LR7323A 0.428124 A57  0.656444 A24 57 0.03352941 FALSE 

40031 VJ31122B LR7323A 0.854482 A58  0.66138 A84 58 0.03411765 FALSE 

40031 VJ31122A LR7323B 0.458094 A59  0.66534 A5 59 0.03470588 FALSE 
40593 VJ31122B LR7323B 0.571046 A60  0.69455 A12 60 0.03529412 FALSE 
40593 LR7323A LR7323B 1 A61  0.71644 A50 61 0.03588235 FALSE 
40593 VJ31122A LR7322B 0.069566 A62  0.720542 A27 62 0.03647059 FALSE 

40593 VJ31122B LR7322B 0.466854 A63  0.730458 A3 63 0.03705882 FALSE 
40593 LR7323A LR7322B 0.27865 A64  0.735394 A30 64 0.03764706 FALSE 
40521 VJ31122A LR7323B 0.637428 A65  0.759616 A40 65 0.03823529 FALSE 
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40593 VJ31122A LR7319B 0.180012 A66  0.77937 A82 66 0.03882353 FALSE 
40593 VJ31122B LR7319B 1 A67  0.78916 A53 67 0.03941176 FALSE 
40593 LR7323A LR7319B 1 A68  0.823302 A39 68 0.04 FALSE 
40593 LR7323B LR7319B 0.878182 A69  0.85448 A58 69 0.04058824 FALSE 
40593 LR7322B LR7319B 0.393558 A70  0.8609 A15 70 0.04117647 FALSE 
40714 VJ31122A VJ31122B 0.274914 A71  0.86384 A75 71 0.04176471 FALSE 
40714 VJ31122A LR7323A 0.573264 A72  0.87818 A69 72 0.04235294 FALSE 
40714 VJ31122B LR7323A 0.537554 A73  0.88933 A45 73 0.04294118 FALSE 
40714 VJ31122A LR7323B 0.410368 A74  0.90586 A41 74 0.04352941 FALSE 

40714 VJ31122B LR7323B 0.86384 A75  0.95097 A76 75 0.04411765 FALSE 
40714 LR7323A LR7323B 0.950968 A76  0.97488 A65 76 0.04470588 FALSE 
40714 VJ31122A LR7322B 1 A77  1 A6 77 0.04529412 FALSE 
40714 VJ31122B LR7322B 0.01734 A78  1 A21 78 0.04588235 FALSE 
40714 LR7323A LR7322B 0.084768 A79  1 A22 79 0.04647059 FALSE 

40714 LR7323B LR7322B 0.529498 A80  1 A23 80 0.04705882 FALSE 

40714 VJ31122A LR7319B 0.062742 A81  1 A37 81 0.04764706 FALSE 
40714 VJ31122B LR7319B 0.779366 A82  1 A61 82 0.04823529 FALSE 
40714 LR7323A LR7319B 0.647882 A83  1 A67 83 0.04882353 FALSE 
40714 LR7323B LR7319B 0.661378 A84  1 A68 84 0.04941176 FALSE 

40714 LR7322B LR7319B 0.197298 A85  1 A77 85 0.05 FALSE 

  



 

118 
 

APPENDIX C 

Table 3: Genotypic frequencies of six microsatellites loci for all six population of mungbean 

Population 

Locus 

Genotype 

NM19-19 40995 40521 40031 40593 40714 

 

VJ31122A 

217/205 (12) 

217/217 (7) 

217/205 (4) 

217/217 (12) 

217/205 (10) 

217/217 (10) 

217/197 (1) 

217/205 (5) 

217/217 (5) 

217/205 (5) 

217/217 (6) 

217/205 (9) 

217/217 (8) 

 

VJ31122B 

 

209/197 (14) 

209/209 (3) 

 

209/193 (1) 

209/197 (6) 

209/209 (7) 

213/201 (1) 

 

209/197 (5) 

209/209 (14) 

213/201 (1) 

 

209/189 (1) 

209/197 (3) 

209/209 (7) 

 

197/197 (1) 

209/189 (1) 

209/197 (1) 

209/209 (8) 

 

185/185 (1) 

209/189 (2) 

209/197 (6) 

209/209 (6)       

213/197 (1) 

LR7323A 

211/199 (14)        

211/201 (3)        

211/203 (1)      

 

199/193 (2)         

199/195 (5)         

199/197 (2)         

199/199 (6)   

        

199/199 (1)         

207/197 (2)         

207/199 (1)        

211/199 (13)        

211/201 (2)       

211/203 (1) 

199/193 (2)         

199/199 (6)         

211/199 (4)          

199/195 (1)         

199/197 (2)        

199/199 (3)         

213/199 (1)         

213/203 (2)   

 

199/191 (1)        

199/197 (1)         

199/199 (3)         

211/197 (1)         

211/199 (1)         

211/201 (1)         

213/199 (5)        

213/201 (1)         

213/203 (3) 
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  Population 

 

Locus 

Genotype 

NM19-19 40995 40521 40031 40593 40714 

 

 

LR7322B 

 

 

 

 

185/175 (1)         

187/171 (3)         

187/173 (3)         

187/175 (4)         

189/173 (4)         

189/175 (1)         

189/177 (1)         

189/189 (1)   

  

175/169 (1)         

177/169 (2)        

179/169 (4)         

179/171 (1)         

179/173 (2)         

179/175 (4)         

179/179 (2)   

  

179/169 (1)         

185/171 (7)         

185/175 (1)         

185/185 (1)         

187/173 (2)            

187/175 (2)         

187/177 (1)         

187/179 (1)        

189/177 (1)         

189/179 (2)        

189/183 (1)  

 

179/ 169 (1)         

179/171 (1)         

179/173 (1)         

179/179 (3)         

185/171 (3)        

185/185 (1)         

189/179 (2)    

177/169 (1)         

179/169 (2)         

179/179 (6)        

189/175 (2)           

193/179  (1)   

179/169 (1)         

179/171 (1)         

179/173 (1)         

179/179 (2)         

185/175 (1)         

189/171 (1)         

189/175 (1)        

189/179 (1)         

189/189 (1)         

191/171 (1)         

191/173 (1)           

191/175 (3) 

193/179 (2)         

193/181 (1)   

LR7319B 261/249 (18) 

 

261/245 (1) 

261/249 (13) 

261/261 (1) 

 

261/249 (16) 

261/261 (3)           

263/263 (1) 

 

261/241 (1) 

261/249 (7) 

261/261 (4) 

 

261/249 (8)        

261/261 (3) 

261/249 (12) 

261/261 (3) 

262/249 (1) 

 

 

 

LR7323B 

 

 

 

 

281/269 (15)        

281/281 (5)    

 

291/281 (9)         

291/291 (7)    

    

281/181 (1)         

281/269 (11)        

281/281 (7)         

291/281 (1)     

      

281/269 (2)           

281/281 (4)         

291/281 (3)         

291/291 (2)  

        

281/269 (1)         

281/281 (1)        

291/267(1)        

291/281 (5)          

291/289 (1)           

291/291 (2)   

 

273/273  (1)         

281/256 (1)         

281/269 (6)         

281/281 (2)         

291/281 (3)         

291/289 (1)        

291/291 (2)  
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Appendix D 

Table 4: Ln P(D) value and K value 
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