ABSTRACT

Medium-chain-length polyhydroxyalkanoate (mcl-PHA) is biodegradable polyester that gained serious attention recently, mainly because of its versatility to accommodate a wide range of applications especially in biomedical area. Like other biopolymesters in PHA family, it is synthesized intracellularly by microorganisms under nutrient stress condition i.e. abundant carbon sources than other essential nutrients like nitrogen, oxygen, sulphur, etc. It functions as carbon and energy storage to the cells during depletion of carbon sources. A well known group of bacteria able to specifically produce mcl-PHA is fluorescent pseudomonads belonging to rRNA homology group 1.

To make industrial production of mcl-PHA viable, significant efforts have been put into increasing the yield and productivity of the biopolymer inside the bacteria. Equally important is the efficient extraction method to get them. Currently, an extraction method that is both rapid and non-detrimental to the product i.e. mcl-PHA is not available. In this study, a method to achieve the said goal was investigated through the application of ultrasound-assisted process. In addition, a combination of acetone as solvent and heptane as marginal non-solvent was used as the extraction medium. The effects of volumetric energy dissipation, extraction medium ratio and irradiation time on the extraction process were investigated. Frequency of 37 kHz and heptane as marginal nonsolvent facilitated the process. Following optimization, high PHA extraction rate of $74 \times 10^{-3} g PHA g^{-1} dried biomass min^{-1}$ was observed at ultrasonic energy output, solvent–marginal nonsolvent ratio and irradiation time of $1151 \pm 3 J ml^{-1}$, 50:50 and 5 min respectively.

The effects of exposure duration and ultrasonic power output on mcl-PHA solution in acetone were also studied. Molecular weight and thermal properties of ultrasound-irradiated mcl-PHA was characterized and compared to control (non-
irradiated mcl-PHA). It was found that at constant volumetric acoustic energy
dissipation, prolonged exposure of up to 20 minutes caused slightly significant
degradation of mcl-PHA. Under ultrasonic irradiation, degradation mechanism of mcl-
PHA was proposed to involve random $\alpha$-chain scission. It proceeds via cleavage of
ester linkage at the main chain backbone to form alkenyl terminal.

In a related study, mcl-PHA produced by *Pseudomonas putida* Bet001 was used
as a blending component with scl-PHA produced by *Delftia tsuruhatensis* Bet002. The
thermal stability and film morphology of the blend between the brittle homopolymer
polyhydroxybutyrate (scl-PHA) and flexible heteropolymer polyhydroxyoctanoate
(mcl-PHA) were studied. The blends were prepared via film casting method and
analyzed by differential scanning calorimetry (DSC), Field emmision scanning electron
microscopy (FESEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA).
The blend compositions were varied from 0, 25, 50, and 75 % (w/w) of mcl-PHA. The
blends showed immiscibility with a morphology that constitutes of crystallite and
amorphous phases. Formation of crystallite was observed from the XRD results. Despite
the immiscibility, the thermal stability was improved for all blends.
ABSTRAK

Polihidroksialkanoate berantai sederhana panjang (mcl-PHA) adalah poliester terbiodegradasi yang telah mendapat banyak perhatian kerana keserbølehannya untuk digunakan di dalam pelbagai aplikasi terutama sekali dalam bidang bioperubatan. Seperti biopoliester lain dalam kumpulan PHA, ianya dapat disintesis oleh mikroorganisma di bawah keadaan ketidakstabilan nutrien iaitu semasa sumber karbon adalah lebih tinggi daripada nutrien penting lain seperti nitogen, oksigen, sulfur, dan lain-lain. Fungsinya adalah sebagai penyimpan tenaga untuk sel bakteria semasa susutan sumber karbon. Contoh bakteria yang dapat menghasilkan secara khususnya polimer ini adalah “fluorescent pseudomonads” dari kumpulan rRNA homologi 1.

Untuk meningkatkan produktiviti penghasilan PHA pada tahap industri, banyak kajian telah dilakukan seperti teknologi kultur baketeria. Walau bagaimanapun, kajian pengekstrakan PHA pada masa yang singkat tanpa merosakan polimer tersebut belum lagi dilakukan. Kajian ini sangat penting kerana ianya dapat mengurangkan kos penghasilan PHA. Sehubungan dengan itu, kajian tentang proses pengekstrakan untuk mencapai matlamat tersebut telah dijalankan dengan menggunakan teknologi gelombang ultrabunyi. Di samping itu, campuran aseton (pelarut) dan heptana (bukan pelarut) telah digunakan sebagai medium pengekstrakan. Kesan pelesapan tenaga, nisbah medium pengekstrakan dan masa penyinaran pada proses pengekstrakan telah disiasat. Kekerapan gelombang pada 37 kHz dan campuran heptana sebagai “marginal non-solvent” memudahkan proses tersebut. Optimumnya, kadar pengekstrakan PHA yang tinggi ($74 \times 10^3$g PHA g$^{-1}$ dried biomass min$^{-1}$) diperhatikan apabila tenaga output ultrasonik, nisbah pelarut-bukan pelarut dan masa penyinaran adalah 1151 ± 3 J ml$^{-1}$, 50:50 dan 5 minit, masing-masing.
Kesan jangka masa pendedahan dan tenaga output ultrasonik pada larutan mcl-PHA di dalam aseton juga telah dikaji. Berat molekul dan sifat haba bagi PHA yang didedahkan dengan gelombang bunyi telah dicirikan dan dibanding dengan PHA kawalan (mcl-PHA yang tidak didedahkan). Telah didapati bahawa pendedahan yang berpanjangan sehingga 20 minit boleh menyebabkan degradasi mcl-PHA. Mekanisme pengdegradasian mcl-PHA telah dijangka melibatkan potongan rantai \( \alpha \) secara rawak. Ia berlaku melalui proses pemotongan di ikatan ester pada rantai utama untuk menghasilkan hujung rantai yang berakenil.

Di samping itu, mcl-PHA yang dihasilkan oleh *Pseudomonas putida* Bet001 telah digunakan sebagai komponen pengadunan bersama dengan scl-PHA yang dihasilkan oleh *Delftia tsuruhatensis* Bet002. Kestabilan haba dan morfologi filem daripada campuran ini telah dikaji. Campuran ini disediakan dengan cara meruangkan pelarut dari larutan campuran polimer yang pekat dan dianalisis dengan menggunakan DSC, FESEM, XRD dan TGA. Komposisi campuran telah diubah dari 0, 25, 50, dan 75 % mcl-PHA (w/w). Daripada keputusan FESEM, adunan filem menunjukkan sifat ketidakcampuran dan menunjukkan morfologi yang terdiri daripada gabungan “kristalit” dan fasa “amorphous”. Pembentukan separa kristal telah ditentukan dengan analisis XRD. Walaubagainanapun, kestabilan haba bagi campuran polimer tersebut bertambah baik.
ACKNOWLEDGEMENT

Bismillahirrahmanirrahim,

In the name of the Almighty the Most Gracious and Most Merciful.

Alhamdulillah, I am very grateful to be one of the members in the Bioprocess and Enzyme Technology Lab, Institute of Biological Science, Faculty of Science. There, I have gained countless knowledge and priceless experience that benefit me in every aspects. I am also grateful to be blessed with fully supportive parents; En. Ishak Omar and Pn. Noor Hamidah Mahmud. The love given throughout the hardships in completing the research are trully priceless.

I would like to thank my main supervisor Associate Professor Dr. Mohamad Suffian Mohamad Annuar for the encouragments and consultations in conducting researches throughout my master study. Thanks to my co-supervisor Associate Professor Dr. Thorsten Heidelberg for helping me in analyzing the chemical aspects of the research. Because of them, I was able to finish my Master study within time as planned from the beginning.

I must also thank my labmates, the members of Bioprocess and Enzyme Technology Laboratory for giving the supports, mentally and physically, in completing this research. Thanks to Nadia, Kak Syairrah, Abg Naziz, Abg Alimin, Chong Boon, Kak Haneen, Kak Faeza, Rafais, Ana, Maryam, Mimi, Pey ling, Ahmad, Haziq, Ikhalmal and all other lab members for the endless support given.

Last but no least, thanks to University of Malaya for assisting me financially through grant PV036-2012A to conduct the research and Malaysia government for giving me the MyMaster scholarship to pay the tuition fee.

May God bless you all
# TABLE OF CONTENTS

## CHAPTER ONE

1.0 INTRODUCTION  

## CHAPTER TWO

2.0 LITERATURE REVIEW  

2.1 History of polyhydroxyalkanoates (PHA)  

2.1.1 (1888-2001)  

2.1.2 (2001-2013)  

2.1.3 (2014 onwards – future)  

2.2 PHA produced by *Pseudomonas* species  

2.3 Microbial PHA extraction  

2.3.1 Solvent extraction  

2.3.2 Additional marginal non-solvent (co-solvent) in PHA extraction  

2.3.3 Various methods of PHA extraction  

2.4 Ultrasound as a tool for biomass extraction  

2.5 RSM as a statistical method to study relationship between parameters  

2.6 Stability and degradation of PHA  

2.7 Film morphology of neat PHA and its blend
CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 Materials

3.1.1 Microorganisms

3.1.2 Fatty acids

3.1.3 Media

3.1.4 Shaker-incubator setup

3.1.5 Sterilizer

3.1.6 Spectrophotometer

3.1.7 Microscope

3.1.8 Centrifugation

3.1.9 Water bath ultrasonicator

3.1.10 Rotary evaporator

3.1.11 Analytical instruments

i. Gas chromatography (GC)

ii. \textsuperscript{1}H-nuclear magnetic resonance (H-NMR)

iii. Fourier transform infrared spectroscopy (FTIR)

iv. Thermogravimetric analysis (TGA)

v. Differential scanning calorimetry (DSC)

vi. Gel permeation chromatography (GPC)

vii. Field emission scanning electron micrography (FESEM)

viii. X-ray diffraction (XRD)

3.1.12 Analytical chemicals

i. Staining dyes

ii. Acidified methanol

iii. 3-hydroxyalkanoic methyl ester standards
3.2 Methods

3.2.1 Strain stock culture
3.2.2 Strain maintenance
3.2.3 Media preparation
3.2.4 Standard calibration curve of *P. putida* biomass
3.2.5 Growth profile of *P. putida*
3.2.6 Standard calibration of methyl 3-hydroxyalkanoate standards and their respective retention time
3.2.7 Mcl-polyhydroxyalkanoates (mcl-PHA) production
3.2.8 Effects of different fatty acids on mcl-PHA accumulation by *P. putida*
3.2.9 *P. putida* cells staining
3.2.10 Biomass harvesting and removal of fatty acid residue
3.2.11 Solvent extraction and purification of PHA
3.2.12 PHA methanolysis
3.2.13 PHA quantification and monomers identification
3.2.14 Ultrasound-assisted PHA extraction
3.2.15 Calculation of dissipation energy
3.2.16 Ultrasonic-mediated degradation
3.2.17 Determination of thermodynamic parameters for octanoic acid derived mcl-PHA
3.2.18 Study of film formation of mcl-PHA blends
CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS

4.1 *P. putida* and PHA granules

4.2 Direct cell and pure film methanolysis for PHA content determination

4.3 Effect of different fatty acids as substrate for mcl-PHA production

4.3.1 Total biomass production (final biomass weight)

4.3.2 PHA production

4.4 PHA extraction

4.4.1 Acetone vs chloroform for PHA extraction

4.4.2 Effect of time extraction on extraction yield of PHA

4.4.3 Effect of sonication frequency on extraction yield of PHA

4.4.4 Effect of marginal non-solvent on extraction yield of PHA

4.4.5 Optimization of the extraction parameters of mcl-PHA

4.4.6 Verification of the predictive model

4.4.7 Characterization of ultrasound extracted mcl-PHA

4.5 Stability and degradation of mcl-PHA

4.5.1 Thermo-kinetic analysis of octanoic acid derived mcl-PHA thermodegradation

4.5.2 Thermogravimetric analysis of control and ultrasound irradiated mcl-PHA

4.5.3 Differential scanning calorimetry analysis of control and ultrasound-irradiated mcl-PHA

4.5.4 Molecular weight analysis of control and ultrasound irradiated mcl-PHA
4.5.5 H-NMR spectroscopy 70

4.5.6 FTIR spectroscopy 72

4.5.7 Mechanism of ultrasonic-mediated degradation of mcl-PHA 74

4.6 Thermal properties and film morphology of neat PHA 76

and its blend

4.6.1 DSC analysis of scl-mcl PHA blends 76

4.6.2 Thermogravimetric analysis of scl-mcl PHA blends 80

4.6.3 Neat PHA and blend film morphology 80

CHAPTER FIVE

5.0 CONCLUSIONS 85

BIBLIOGRAPHY 87

APPENDIX A 101

APPENDIX B 102

APPENDIX C 103

APPENDIX D 104

APPENDIX E 105

APPENDIX F 109
LIST OF FIGURES

CHAPTER 1
Figure 1.1 Film of mcl-PHA 5

CHAPTER 2
Figure 2.1 Solid-liquid interphase 14
Figure 2.2 Illustration of physical growth of cavitation bubble 18

CHAPTER 4
Figure 4.1 *P. putida* cells stained with safranine solution 42
Figure 4.2 PHA granules (stained black) in *P. putida* cells 42
Figure 4.3 Direct cell methanolysis and extracted PHA methanolysis 43
Figure 4.4 Final dried biomass weight 44
Figure 4.5 Total PHA production in 100 ml of E2 medium culture 45
Figure 4.6 PHA content (%) in total dried biomass 48
Figure 4.7 PHA content (%) as a function of biomass increment 48
Figure 4.8 Conventional PHA extraction (solvent reflux) 49
Figure 4.9 Ultrasound-assisted PHA extraction: (a) 80 kHz and (b) 37 kHz 51
Figure 4.10 Comparison of PHA extraction at two different frequencies 52
Figure 4.11 Comparison of heptane and tert-butanol as marginal non-solvent 53
Figure 4.12 Contour and surface plots showing the effect of ultrasonic Power output ($X_1$), acetone percentage ($X_2$), and extraction time ($X_3$) on the percentage of PHA extraction yield 59
**Figure 4.13** \(^1\)H-NMR spectra of (a) control and (b) ultrasound extracted PHA at optimal conditions. (control: non-ultrasound treated PHA in acetone/heptane 50:50)

**Figure 4.14** (a) Thermogram of octanoic acid derived mcl-PHA at different heating rates; (b) Kissinger plot for octanoic acid derived mcl-PHA \((R^2 = 0.978)\).

**Figure 4.15** Linear relationships of \(T_{\text{onset}}\) and \(T_{\text{final}}\) with heating rate, \(q\)

**Figure 4.16** Relative thermal stability of control PHA and ultrasound irradiated mcl-PHA at different (a) exposure time and (b) ultrasonic power output

**Figure 4.17** DSC thermogram of control PHA and ultrasound irradiated mcl-PHA at different (a) exposure time and (b) ultrasonic power output

**Figure 4.18** \(^1\)H-NNMR spectrum of octanoic acid derived mcl-PHA

**Figure 4.19** FTIR spectra of control PHA and ultrasound irradiated mcl-PHA for different (a) exposure time and (b) ultrasonic power output

**Figure 4.20** A plausible terminal hydroxyl group dehydration and main chain cleavage mechanism in mcl-PHA degradation during ultrasound irradiation.

**Figure 4.21** (a) DSC analysis - enthalpy peak profile of neat PHAs and their blends upon heating at 10 °C min\(^{-1}\); (b) Thermogravimetric curves of scl/mcl PHA blends and neat polymers
Figure 4.22  (a) Neat PHAs and blend films; FESEM image of (b) neat PHB film (10000 X), (c) neat mcl-PHA film (10000 X), (d) 25 % wt mcl-PHA blend film (5000 X), (e) 50 % wt mcl-PHA blend film (5000 X) and (f) 75 % wt mcl-PHA blend film (10000 X)

Figure 4.23  X-ray diffraction (XRD) of scl/mcl PHA blends and neat polymers
LIST OF TABLES

CHAPTER 2

Table 2.1  World wide PHA production and researching companies  7
Table 2.2  PHA in various fields  9
Table 2.3  Various PHA recovery methods  16

CHAPTER 3

Table 3.1  List of saturated fatty acids as carbon substrate (MERCK)  22
Table 3.2  Rich medium  23
Table 3.3  E2 medium  23
Table 3.4  MT solution composition  24
Table 3.5  PHA monomer standards  28
Table 3.6  Composition of glycerol solution  29
Table 3.7  The experimental points in the Box-Behnken design  37
Table 3.8  Relative ultrasonic power  38
Table 3.9  Sonication energy dissipation per unit volume as a function of irradiation time  39

CHAPTER 4

Table 4.1  3-hydroxy monomers composition in mcl-PHA (%) as function of fatty acids substrates  47
Table 4.2  Anova table (solvent reflux of PHA extraction)  50
Table 4.3  Randomized runs of the design combinations and their responses  55
Table 4.4  Comparison between predicted and actual responses  58
<table>
<thead>
<tr>
<th>Table 4.5</th>
<th>Molecular weight and thermal properties of extracted PHAs (control: non-ultrasound treated PHA in acetone/heptane 50:50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.6</td>
<td>Thermodynamic parameters for thermodegradation of octanoic acid derived mcl-PHA</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Number-average molecular weight ($M_n$), weight-average molecular weight ($M_w$) and molecular weight distribution ($PDI$) of control and ultrasound-irradiated mcl-PHA.</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Proton ratio of control and ultrasound-irradiated mcl-PHA</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Thermal properties of scl/mcl PHA blends and neat polymers</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>mcl-PHA</td>
<td>Medium chain length polyhydroxyalkanoate</td>
</tr>
<tr>
<td>scl-PHA</td>
<td>Short chain length polyhydroxyalkanoate</td>
</tr>
<tr>
<td>PHB</td>
<td>Polyhydroxybutyrate</td>
</tr>
<tr>
<td>PHBV</td>
<td>Polyhydroxybutyrate-co-valerate</td>
</tr>
<tr>
<td>PHBHHx</td>
<td>Polyhydroxybutyrate-co-hexanoate</td>
</tr>
<tr>
<td>PHO</td>
<td>Polyhydroxyoctanoate</td>
</tr>
<tr>
<td>PHHp</td>
<td>Polyhydroxyheptanoate</td>
</tr>
<tr>
<td>PHHx</td>
<td>Polyhydroxyhexanoate</td>
</tr>
<tr>
<td>PLA</td>
<td>Polylactic acid</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron micrography</td>
</tr>
<tr>
<td>1H-NMR</td>
<td>Proton nuclear magnetic resonance</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>GPC</td>
<td>Gel permeation chromatography</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilane</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>DF</td>
<td>Degree of freedom</td>
</tr>
<tr>
<td>SS</td>
<td>Sum of squares</td>
</tr>
<tr>
<td>MS</td>
<td>Mean square</td>
</tr>
</tbody>
</table>
\( F \)  
\( F \)-value

\( P \)  
\( P \)-value

\( P \)  
Power

\( cp \)  
Specific heat capacity of water

\( \Delta T \)  
Temperature difference

\( \Delta t \)  
Time difference

\( E \)  
Sonication-dissipated energy

\( V \)  
Volume

\( M_n \)  
Number-averaged molecular weight

\( M_w \)  
Weight-averaged molecular weight

\( PDI \)  
Polydispersity index

\( q \)  
heating rate (K min\(^{-1}\))

\( k \)  
Boltzmann constant (1.3807\times10^{-23} \text{ J K}^{-1})

\( h \)  
Planck constant (6.626\times10^{-34} \text{ J s})

\( E_d \)  
Degradation activation energy (J mol\(^{-1}\))

\( R \)  
General gas constant (8.3143 J K\(^{-1}\) mol\(^{-1}\))

\( A \)  
Pre-exponential factor/collision factor (s\(^{-1}\))

\( \Delta S \)  
Entropy of activation (J K\(^{-1}\) mol\(^{-1}\))

\( T_g \)  
Glass transition temperature

\( T_c \)  
Crystallization temperature

\( T_m \)  
Melting temperature

\( T_p \)  
Peak temperature / most rapid degradation temperature

\( T_{onset} \)  
Starting temperature of degradation

\( T_{final} \)  
End temperature of degradation

\( \text{kPa} \)  
kilo Pascal

\( \text{kDa} \)  
kilo Dalton

\( \text{K} \)  
Kelvin
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Joule</td>
</tr>
<tr>
<td>W</td>
<td>watt</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>ml</td>
<td>mililitre</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>mg</td>
<td>miligram</td>
</tr>
<tr>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>rpm</td>
<td>round per minute</td>
</tr>
<tr>
<td>(w/v)</td>
<td>weight per volume</td>
</tr>
<tr>
<td>(w/w)</td>
<td>weight per weight</td>
</tr>
<tr>
<td>(v/v)</td>
<td>volume per volume</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix A  
$^1$H-NMR spectra of ultrasound irradiated mcl-PHA at different exposure time, as indicated.  107

Appendix B  
$^1$H-NMR spectra of ultrasound irradiated mcl-PHA at different ultrasonic power output, as indicated.  108

Appendix C  
Standard calibration of optical density at 600 nm to dried biomass.  103

Appendix D  
Growth profile of *Pseudomonas putida*.  104

Appendix E  
Standard curve of methyl 3-hydroxyalkanoates.  105

Appendix F  
Standard calibration of retention time to its corresponding monomer standard.  109