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ABSTRACT 

Integer-valued correlated stochastic processes, which we often meet in the real world, 

are of major concern in many natural and social sciences. The classical continuous time 

series models which contain scalar multiplication are not able to represent count data 

since the integer nature of the data is not preserved. Therefore, the formulations of 

discrete-valued time series models for count data are apparently of significance. Much 

effort has been expended in the past few decades to construct discrete-valued time series 

models. Nevertheless, the hunt for better models is still ongoing due to the need to 

improve or sharpen the statistical analysis. This thesis proposes a new mixture model, 

the mixture of Pegram and thinning integer-valued autoregressive (MPT) processes, 

which is the combination of current discrete-valued time series operators. The statistical 

and regression properties, parameter estimation, forecasting, and graphical analysis for 

the new model have been examined. Model selection based upon the Akaike 

Information Criterion has been performed. Extensions to the moving average (MA) and 

autoregressive moving average (ARMA) models have also been considered. Important 

properties such as reversibility and regression are then discussed. The extension to the 

qth-order MPT process has also been investigated in the study. Previous studies have 

emphasized the Poisson sequence as it is an infinitely divisible distribution. In this 

thesis, it is shown that proposed model is able to deal with infinitely and non-infinitely 

divisible distributions with simpler expressions. Furthermore, the proposed MPT model 

is able to handle multimodality and has better performance than the current discrete-

valued time series models. The available forecasting method based on the conditional 

expectation may not be appropriate for integer-valued time series models. Thus coherent 

forecasting, which is based upon the k-step ahead conditional mean, median, mode and 

distribution, is considered. For low count series the k-step ahead conditional distribution 

of the MPT model practically exhibits better performance than the other models. The 
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score functions and information matrix have been derived to measure the asymptotic 

standard errors and to analyze the variance-covariance relationship among the 

parameters. Parameter estimation with the maximum likelihood estimation via the 

Expectation-Maximization algorithm is discussed and compared with the conditional 

least squares method. Finally, some real life data sets from different disciplines have 

been applied to illustrate the analyses. The thesis is concluded with some 

recommendations for future work. 
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ABSTRAK 

Nilai integer berkorelasi stokastik proses, yang kita sering bertemu di dunia sebenar, 

adalah perhatian utama di kawasan semulajadi dan sains sosial. Siri masa selanjar yang 

klasik dimana ia mengandungi skalar pendaraban adalah tidak dapat mewakili data 

bilang kerana sifat data bilang tidak dipeliharakan. Oleh itu, pemodelan bagi model-

model nilai diskrit siri masa menjadi semakin penting. Beberapa dekad yang lalu, 

banyak usaha telah diperkembangkan untuk membina model-model nilai diskrit siri 

masa. Namun begitu, pencarian diskrit model-model yang lebih baik masih sedang 

dijalankan kerana bertujuan untuk memajukan atau mengasahkan analisis statistik. Tesis 

ini mencadangkan satu model bercampur, campuran daripada proses Pegram dan 

Thinning nilai integer autoregresi (MPT), di mana ia adalah hasil kombinasi daripada 

operator-operator nilai diskrit siri masa. Pemeriksaan model baru termasuk sifat-sifat 

berstatistik dan regresi, penganggaran parameter, penelahan dan grafik analisis. 

Pemilihan model berdasarkan Akaike Information Criterion (AIC) dilaksanakan. 

Perkembangan ke model-model purate bergerak dan autoregresi purate bergerak juga 

dipertimbangkan. Sifat-sifat yang penting seperti kebolehterbalikan dan regresi 

dibincangkan. Lanjutan yang mungkin bagi 𝑝  tertib turut disiasatkan. Pengajian 

sebelum ini diutamakan dengan jujukan Poisson kerana ia diketahui sebagai taburan 

terbahagikan tak terhingga. Di dalam tesis ini, kami bertujuan untuk mencadang model 

baru yang boleh digunakan bagi taburan terbahagikan tak terhingga and terhingga 

dengan ungkapan yang lebih mudah. Tambahan pula, kebolehan pengendalian taburan 

multimod dan mempunyai prestasi yang lebih baik berbanding dengan model-model 

nilai diskrit semasa yang sedia ada dipaparkan. Cara penelahan yang sedia ada dimana 

ia mengutamakan jangkaan bersyarat mungkin tidak sesuai untuk model-model siri 

masa nilai integer. Jadi, penelahan koheren dimana ia berdasarkan k-langkah dahulu 

min bersyarat, median mod dan taburan dipertimbangkan. Bagi siri bilang yang rendah, 
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k-langkah dahulu taburan bersyarat bagi model MPT mempamerkan prestasi yang lebih 

baik berbanding dengan model-model yang lain. Fungsi skor dan matrik maklumat 

dipertimbangkan untuk mengukur sisihan piawai asimptot dan menganalisis hubungan 

varians-kovarians antara parameter-parameter. Penganggaran parameter dengan 

penganggar kebolehjadian maksimum melalui algoritma jangkaan maximum 

dibincangkan dan dibuat perbandingan dengan Kaedah kuasa dua terkecil bersyarat. 

Akhirnya, beberapa set-set data sebenar daripada disiplin-disiplin yang berbeza 

digunakan untuk model ilustrasi. Tesis ini disimpulkan dengan beberapa cadangan-

cadangan yang selanjutnya.        

Univ
ers

ity
 of

 M
ala

ya



vii 
 

ACKNOWLEDGEMENT 

Finally, it's acknowledgement. First of foremost, I would like to express my greatest 

gratitude to my supervisor, Prof. Ong Seng Huat, you have been a tremendous mentor 

for me. I would like to thank you for your aspiring guidance and invaluably constructive 

advices for allowing me to grow as a researcher. I would also like to thank for your 

continuous financial support. Your efforts to make my study completed are much 

appreciated. I am thankful to my co-supervisor, Prof. Atanu Biswas. Your advices in my 

research have been priceless. Your comments and suggestions have been helpful in my 

research path.  

 

A million thanks to my family. Words cannot describe how grateful I am to my 

mother and my father for all of the sacrifices that you have made on behalf of me. I am 

indebted to you. I would like to extend my appreciation to my husband, Teh Chee Siang. 

Your patience and mentally support have been so significant to make today happens. I 

am grateful to you who have been spending innumerable sleepless nights with me when 

no one could answer my queries. You have always been there for me when I had 

difficult time in my research. My sisters have been playing a vital role during my 

research. You both always encourage me when I confronted frustration. 

 

I would like to give a special thanks to Dr. Ng Choung Min. We knew each other 

when I was still new in research. You generously share your research skills with me to 

make my study possible. During my study, I had a chance to visit Indian Statistical 

Institute in Kolkata. I have had a great research experience with Raju Maiti, you are 

such a good friend who have been helping me out in every way you could.  

 

Last but not least, I would like to thank to all those who have lent helping hand to 

make my thesis possible.   

Univ
ers

ity
 of

 M
ala

ya



viii 
 

TABLE OF CONTENTS 

Abstract.................................................................................................................. iii 

Abstrak................................................................................................................... v 

Acknowledgement................................................................................................. vii 

Table of Contents .................................................................................................. viii 

List of Figures ....................................................................................................... xii 

List of Tables ........................................................................................................ xv 

List of Symbols and Abbreviations ....................................................................... xvii 

List of Appendices ................................................................................................ xxii 

CHAPTER 1: INTRODUCTION ..................................................................... 1 

1.0 Preliminary of Time Series Models ................................................................ 1 

1.1 Objectives ....................................................................................................... 3 

1.2 Overview of Topics ........................................................................................ 5 

CHAPTER 2: LITERATURE REVIEWS ....................................................... 8 

2.0 Introduction .................................................................................................... 8 

2.1 Binomial Thinning Operation ......................................................................... 8 

2.2 Generalized Thinning Operation .................................................................... 13 

2.3 Pegram's Mixing Operation ............................................................................ 16 

2.4 Parameter Estimation ...................................................................................... 21 

 2.4.1 Maximum Likelihood Estimation ...................................................... 21 

 2.4.2 Yule-Walker Equation ....................................................................... 23 

 2.4.3 Conditional Least Squares Method .................................................... 25 

2.5 Concluding Remarks ...................................................................................... 27 

Univ
ers

ity
 of

 M
ala

ya



ix 
 

CHAPTER 3: MIXED PEGRAM AND THINNING INTEGER-VALUED 

AUTOREGRESSIVE MODEL ................................................ 28 

3.0 Introduction .................................................................................................... 28 

3.1 Model Construction ........................................................................................ 28 

3.2 Interpretation .................................................................................................. 29 

3.3 Properties of MPT(1) Model .......................................................................... 30 

3.4 MPT(1) Model with Discrete Marginal Distributions .................................... 34 

 3.4.1 Poisson Process .................................................................................. 34 

 3.4.2 Negative Binomial Process ................................................................ 39 

 3.4.3 New Geometric Process ..................................................................... 43 

 3.4.4 Binomial Process ............................................................................... 45 

3.5 Concluding Remarks ...................................................................................... 48 

CHAPTER 4: PARAMETER ESTIMATION ................................................ 49 

4.0 Outline ............................................................................................................ 49 

4.1 Likelihood Theory and Estimating Functions ................................................ 49 

 4.1.1 Expectation-Maximization Algorithm ............................................... 50 

 4.1.2 Conditional Least Squares Method .................................................... 52 

4.2 Design of Numerical Study on Parameter Estimation .................................... 53 

 4.2.1 Without Contamination ...................................................................... 53 

 4.2.2 With Contamination ........................................................................... 53 

4.3 Simulation Results of Parameter Estimation .................................................. 55 

 4.3.1 Poisson MPT(1) Model ...................................................................... 56 

 4.3.2 Binomial MPT(1) Model ................................................................... 64 

4.4 Score Function and Fisher Information for Poisson MPT(1) Model ............. 66 

4.5 Simulation Study of Forecasting Accuracy Measurement ............................. 72 

Univ
ers

ity
 of

 M
ala

ya



x 
 

4.6 Concluding Remarks ...................................................................................... 74 

CHAPTER 5: COHERENT FORECASTING ................................................ 76 

5.0 Background ..................................................................................................... 76 

5.1 k-step-ahead Forecasting Distribution of Poisson MPT(1) Model ................ 77 

5.2 Point Mass Forecasts ...................................................................................... 82 

5.3 Prediction Intervals ......................................................................................... 83 

5.4 Descriptive Measures of Forecasting Accuracy ............................................. 85 

5.5 Concluding Remarks ...................................................................................... 86 

CHAPTER 6: MIXED PEGRAM AND THINNING INTEGER-VALUED 

AUTOREGRESSIVE MOVING AVERAGE MODELS ...... 88 

6.0 Introduction .................................................................................................... 88 

6.1 Background of ARMA Processes ................................................................... 88 

6.2  Mixture of Pegram and Thinning First Order Integer-Valued Moving 

Average Process ............................................................................................. 90 

 6.2.1 Model Interpretation .......................................................................... 91 

 6.2.2 Properties of MPT-MA(1) process .................................................... 91 

 6.2.3 Fitting of Discrete Marginal Distributions ......................................... 92 

6.3 Mixture of Pegram and Thinning of qth-Order Moving Average Processes  101 

6.4 Mixture of Pegram and Thinning of pth-order Autoregressive Processes ..... 103 

6.5 Mixture of Pegram and Thinning of (p,q)th-order Autoregressive Moving 

Average Processes .......................................................................................... 

 

108 

6.6 Concluding Remarks ...................................................................................... 110 

 
 

 

   

Univ
ers

ity
 of

 M
ala

ya



xi 
 

CHAPTER 7: APPLICATION TO REAL DATA SETS ............................... 111 

7.0 Introduction .................................................................................................... 111 

7.1 Criminal: Sex Offences .................................................................................. 111 

 7.1.1 Data Description ................................................................................ 111 

 7.1.2 Comparison with Existing Models ..................................................... 112 

7.2 Internet Protocol (IP) Addresses Counts ........................................................ 119 

 7.2.1 Data Description ................................................................................ 119 

 7.2.2 Data Implication ................................................................................. 121 

 7.2.3 Comparison with Binomial Marginal Models ................................... 121 

7.3 Worker Compensation Burn Claims .............................................................. 123 

 7.3.1 Data Description ................................................................................ 123 

 7.3.2 Application in Coherent Forecasting Distribution ............................. 126 

 

7.3.3 Model Comparison with INAR(1) and Pegram’s Based AR(1) 

Processes ............................................................................................ 

 

127 

7.4 Criminal: Drug Offences ................................................................................ 131 

 7.4.1 Data Description ................................................................................ 131 

 7.4.2 Fitting to Poisson MPT(p) Models ..................................................... 132 

7.5 Concluding Remarks ...................................................................................... 132 

8 CONCLUSION AND FURTHER RECOMMENDATIONS ................... 134 

References .............................................................................................................. 141 

List of Publications and Papers Presented .............................................................. 148 

Appendix ................................................................................................................. 149 

 

Univ
ers

ity
 of

 M
ala

ya



xii 
 

LIST OF FIGURES 

Figure 2.3.1: The data generated by the (a) Poisson Pegram's AR(1) process; (b) Poisson 

INAR(1) process; (c) Poisson DAR(1) process, with parameters 𝜆 = 5.0, 𝛼 =

0.9 .................................................................................................................................. 20 

Figure 3.4.1: The realizations by Poisson MPT(1) process with parameters 𝜙 = 0.5,

𝜆 = 5.0, 𝛼 = 0.9 ............................................................................................................ 35 

Figure 3.4.2: Simulated sample paths and histogram of Poisson MPT(1) process for 

𝜆 = 1.0,2.0,3.0;  𝛼 = 0.3,0.5;  𝜙 = 0.1,0.2 ................................................................... 37 

Figure 3.4.3: Simulated probability mass function with various combination of 

parameters ...................................................................................................................... 38 

Figure 3.4.4: Simulated sample paths and frequency histogram of Negative Binomial 

MPT(1) process for 𝜙 = 0.1;  𝛼 = 0.5; 𝑝 = 0.3; 𝑟 = 1.0,2.0,3.0 ................................. 41 

Figure 3.4.5: Simulated sample paths and frequency histogram of Negative Binomial 

MPT(1) process for 𝜙 = 0.1;  𝛼 = 0.5; 𝑃 = 0.1,0.3,0.5, 0.7,0.9; 𝑘 = 3.0 .................... 42 

Figure 3.4.6: Simulated sample paths and frequency histogram of New Geometric 

MPT(1) process for 𝜙 = 0.3;  𝛼 = 0.5; 𝑝 = 0.3, 0.7, 0.9 .............................................. 44 

Figure 3.4.7: Simulated sample paths and frequency histogram of Binomial MPT(1) 

process for 𝛼 = 0.3; 𝜙 = 0.3; 𝑝 = 0.3; 𝑁 = 5, 10, 20 .................................................. 47 

Figure 4.3.1: Breakdown point of MLE via EM algorithm with AO and IO outliers for 

MPT(1) process.............................................................................................................. 62 

Figure 4.3.2: Deviation percentage of estimated parameters for AO and IO outliers for 

true parameters  𝜙, 𝛼, 𝜆 = (0.1, 0.7,1.0) ..................................................................... 63 

Figure 6.2.1: Simulated probability mass function with different combination of 

parameters ...................................................................................................................... 94 

Figure 6.2.2: Simulated sample paths and histogram of Poisson MPT-MA(1) process for 

𝜆 = 1.0,2.0,3.0; 𝜃0, 𝜃1 = 0.5; 𝛽1 = 0.5 ....................................................................... 95 

Figure 6.2.3: Probability mass function of Poisson MPT-MA(1) Process with different 

combination of parameters ............................................................................................ 96 

Figure 6.2.4: Simulated probability mass function of Binomial MPT-MA(1) process 

with different combination of parameters ..................................................................... 99 

Univ
ers

ity
 of

 M
ala

ya



xiii 
 

Figure 6.2.5: Simulated sample paths and frequency histogram of Binomial MPT-MA(1) 

process for 𝑁 = 20; 𝜃0 , 𝜃1 = 0.5; 𝛽1 = 0.5;  𝑎 𝑝 = 0.1;  𝑏 𝑝 = 0.3;  𝑐 𝑝 = 0.5.... 100 

Figure 7.1.1: Time series plot, sample autocorrelation and partial autocorrelation 

function of sex offence counts ..................................................................................... 112 

Figure 7.2.1: Time series plot, sample autocorrelation and partial autocorrelation 

function of IP addresses counts ................................................................................... 120 

Figure 7.3.1: Time series plots, sample autocorrelation function and sample partial 

autocorrelation function of burn claim counts ............................................................. 124 

Figure 7.3.2: Time series plot, sample autocorrelation function and sample partial 

autocorrelation function of burn claim counts (without outlier) ................................. 125 

Figure 7.4.1: Time series plot of 33rd carbeat drug counts ........................................ 131 

 

Univ
ers

ity
 of

 M
ala

ya



xv 
 

LIST OF TABLES 

Table 2.1.1: Fundamental properties of Poisson INAR(1) Model ................................ 11 

Table 2.1.2: Some properties of Binomial AR(1) model .............................................. 13 

Table 2.2.1: Some important properties of random coefficient thinning ...................... 14 

Table 4.3.1: Parameter estimates, standard errors (in brackets) by MLE (EM Algorithm) 

and CLS for simulated Poisson MPT(1) samples .......................................................... 58 

Table 4.3.2: Parameter estimates, standard errors (in brackets) by MLE (EM algorithm) 

and CLS for Poisson MPT(1) with outlier size of 3 .....................................................  59 

Table 4.3.3: Parameter estimates, standard errors (in brackets) by MLE (EM algorithm) 

and CLS for Poisson MPT(1) with outlier size of 6 .....................................................  60 

Table 4.3.4: ML estimates and standard errors (in bracket) for INAR(1) and Pegram's 

AR(1) with outliers ........................................................................................................ 61 

Table 4.3.5: Parameter estimates, standard errors (in brackets) by MLE (EM Algorithm) 

and CLS for simulated Binomial MPT(1) samples with 𝑁 = 5 ................................... 65 

Table 4.5.1: Parameter estimation and standard errors (in bracket), for MPT(1), INAR(1) 

and Pegram's AR(1) with Poisson marginal .................................................................. 73 

Table 4.5.2: Estimated PRMSE, PMAD and PTP values through mean, median and 

mode for Poisson MPT(1) process ................................................................................ 73 

Table 4.5.3: Estimated PRMSE, PMAD and PTP values through mean, median and 

mode for Poisson INAR(1) process................................................................................ 74 

Table 4.5.4: Estimated PRMSE, PMAD and PTP values through mean, median and 

mode for Poisson Pegram's AR(1) process .................................................................... 74 

Table 7.1.1: Descriptive statistics of criminal data ..................................................... 112 

Table 7.1.2: Transition probabilities of integer-valued time series models ................ 114 

Table 7.1.3: Estimated parameters of the models and AIC ......................................... 118 

Table 7.2.2: Descriptive statistics of IP counts ........................................................... 120 

Table 7.2.3: Comparison of MPT(1) process, estimated parameters and AIC values   121 

Table 7.2.4: Models comparison, estimated parameters and AIC values .................... 122 

Univ
ers

ity
 of

 M
ala

ya



xvi 
 

Table 7.3.1: Descriptive statistics of burn claims data ................................................ 124 

Table 7.3.2: Model comparison, ML estimates and AIC values ................................. 125 

Table 7.3.3: Forecast from burn claims data by Poisson MPT (1) process ................. 128 

Table 7.3.4: 95% confidence interval for k-step ahead conditional distributions, Poisson 

MPT(1) process ........................................................................................................... 128 

Table 7.3.5: Forecast distribution by Poisson Pegram’s AR(1), and SE (in bracket)   129 

Table 7.3.6: 95% confidence intervals for k-step ahead conditional distributions, 

Poisson Pegram's AR(1) process ................................................................................. 129 

Table 7.3.7: Forecast distribution by Poisson INAR(1) model, and SE (in bracket) .. 130 

Table 7.3.8: 95% confidence intervals for k-step ahead conditional distributions, 

Poisson INAR(1) process ............................................................................................ 130 

Table 7.4.1: Parameter estimates and AIC values of the models ................................ 132 

 

 

 

Univ
ers

ity
 of

 M
ala

ya



 

xvii 
 

LIST OF SYMBOLS AND ABBREVIATIONS 

∗ : Mixing operator 

∘ : Binomial thinning operator / Thinning operator 

𝑋𝑡  : Time series of random variable 𝑋 at time 𝑡 

𝜏 ⋆𝛼  : Iterated thinning operator with parameters 𝜏 and 𝛼 

i.i.d. : Independent and identically distributed 

MPT : Mixture of Pegram and thinning 

MPT(1) : Mixture of Pegram and thinning first order integer-valued 

Autoregressive 

MPT(p) : Mixture of Pegram and thinning pth-order integer-valued 

Autoregressive 

MPT-MA : Mixture of Pegram and thinning of Moving Average 

MPT-MA(1) : Mixture of Pegram and thinning first order integer-valued 

Moving Average 

MPT-MA(𝑞) : Mixture of Pegram and thinning qth-order integer-valued 

Moving Average 

CLAR(1) : First order conditional linear Autoregressive 

AR(1) : First order Autoregressive 

AR(𝑝) : pth-order Autoregressive 

DAR(1) : Discrete-valued first order Autoregressive 

MA : Moving-Average 

MA(1) : First order Moving Average 

INAR : Integer-valued Autoregressive   

INAR(1) : First order integer-valued Autoregressive  

INAR(𝑝) : 𝑝th-order integer-valued Autoregressive 

Univ
ers

ity
 of

 M
ala

ya



 

xviii 
 

INAR(1)-P, 

PoINAR(1),  

Poisson INAR(1) 

: Poisson first-order integer-valued Autoregressive 

INMA : Integer-valued Moving Average 

BAR : Binomial Autoregressive 

BAR(1) : First order Binomial Autoregressive 

RCINAR(1) : Random coefficient first order integer-valued Autoregressive 

IINAR(1) : Iterated thinning first order integer-valued Autoregressive 

QINAR(1) : Quasi-binomial first order integer-valued Autoregressive 

DARMA : Discrete-valued Autoregressive Moving Average 

ARMA : Autoregressive Moving Average 

ARMA(1,1) : First order Autoregressive Moving Average 

EARMA : Mixed Autoregressive Moving Average Exponential 

sequence 

EARMA(1,1) : First order mixed Autoregressive Moving Average 

Exponential sequence 

pgf : Probability generating function 

pmf : Probability mass function 

QB : Quasi-Binomial 

𝒙 =  𝑥0, 𝑥1, … , 𝑥𝑛  : (𝑛 + 1)-dimensional random variable vector  

𝜃 =  𝜃1 , 𝜃2 , … , 𝜃𝑝  : 𝑝-dimensional parameter vector 

𝐺𝑋 , 𝐺𝜀 , 𝐺𝑌 , 𝐺𝜌⋆𝛼𝑋  : Probability generating function for 𝑋, 𝜀, 𝑌 and 𝜌 ⋆𝛼 𝑋 

𝐺𝑋 ,𝑌 : Joint probability generating function of 𝑋 and 𝑌 

𝜇𝑋 , 𝜇𝜀 , 𝜇𝛼  : Mean for 𝑋, 𝜀 and 𝛼 

𝜎𝑋
2, 𝜎𝜀

2, 𝜎𝛼
2 : Variance for 𝑋, 𝜀 and 𝛼 

𝜌𝑘  : Lag-𝑘 autocorrelation function  

Univ
ers

ity
 of

 M
ala

ya



 

xix 
 

𝛾𝑘  : Lag-𝑘 autocovariance function 

𝜌  : Estimated autocorrelation value 

𝛾  : Estimated autocovariance value 

𝑃 ∙  ∙  : Conditional probability function of a random variable 

𝐸 ∙  ∙  : Conditional expectation of a random variable 

ℕ0 : Natural numbers 

ℂ : Complex numbers 

ℤ : Integer numbers 

𝐸(∙) : Expectation of a random variable 

𝑉𝑎𝑟(∙) : Variance of a random variable 

𝑐𝑜𝑣(𝑋, 𝑌) : Covariance of 𝑋 and 𝑌 

Beta (𝛾, 𝛽) : Beta distribution with shape parameters  𝛾 and 𝛽 

𝐼 ∙  : Indicator variables 

𝑝𝑥 , 𝑃 𝑋 = 𝑖 ,  

𝑃𝑋(𝑥) 

: Probability distribution of 𝑋 

𝑔 ∙ , 𝑓(∙)  : Probability density function 

𝑄(𝒙;  𝜗) : Conditional least squares of 𝑋 with parameters 𝜗 

𝑋~𝐷 𝑝0, 𝑝1, …   : 𝑋  is distributed as a distribution 𝐷  with probability 

distribution 𝑝0, 𝑝1, …  

𝑡 ∈ 0, ±1, ±2, … : Time 𝑡 is the elements of set of natural numbers 

⊆ : Subset 

MLE : Maximum likelihood estimation 

EM : Expectation-Maximization 

CMLE : Conditional maximum likelihood estimation 

CLS : Conditional least squares 

Univ
ers

ity
 of

 M
ala

ya



 

xx 
 

YW : Yule-Walker 

GMM : Generalized methods of moment 

OLS : Ordinary least squares 

: : Likelihood function for random variable 𝑋 with parameter 𝜃 

log 𝐿 : Log-likelihood function 

IM : Information matrix 

AMI : Auto-mutual information 

PAMI : Partial auto-mutual information 

ACVF : Autocovariance function 

ACF : Autocorrelation function 

PACF : Partial autocorrelation function 

MSE : Mean square errors 

AIC : Akaike information criterion 

𝑁𝐵(𝑘, 𝑝) : Negative Binomial distribution with parameters 𝑘 and 𝑝 

𝐵𝑖𝑛(𝑁, 𝑝) : Binomial distribution with index 𝑁 and success probability 𝑝 

ℓ  : Score function 

ℓ  : Observed Fisher information 

𝐸 ℓ   : Expected Fisher information 

𝑤
  : Converge weakly 

𝑃𝑘(𝑥) : Conditional distribution of 𝑋𝑡+𝑘  given 𝑋𝑡  

𝜎𝑘
2 : Conditional variance of 𝑋𝑡+𝑘  given 𝑋𝑡  

𝜇𝑘  : Conditional mean of 𝑋𝑡+𝑘  given 𝑋𝑡   

𝑝𝑘(∙ | ∙) : 𝑘-step-ahead conditional probability distribution 

𝑖 : Fisher information matrix 

𝐕 : Inverse Fisher information matrix, variance-covariance matrix 

Univ
ers

ity
 of

 M
ala

ya



 

xxi 
 

𝜽𝟎 : True value of parameter vector 

𝜽  : Estimated parameter vector 

𝑁(𝟎, 𝐕) : Normal distribution with mean 0 and standard deviation  𝐕 

 

Univ
ers

ity
 of

 M
ala

ya



xxii 

 

LIST OF APPENDICES 

Appendix A: Sex offensive data .............................................................................. 112 

Appendix B: Internet Protocol (IP) count data ........................................................ 120 

Appendix C: 33rd carbeat drug data ....................................................................... 131 

 

 

Univ
ers

ity
 of

 M
ala

ya



1 

 

CHAPTER 1: INTRODUCTION 

1.0 Preliminary for Time Series Models 

Time series modelling in the continuous context has been grabbing great attention in 

the past few decades. It usually appears in areas such as engineering, sociology, science 

and economics. A time series is a set of observations 𝑥𝑡 , each one being recorded at a 

specific time 𝑡. For continuous time series, the observations are measured continuously 

over some time intervals, for example, 𝑇 = [0,1] . For a discrete-time series, the 

observations are measured at sequential integer values over a fixed time intervals. There 

have been many real life examples showing discrete-time series measurement, for 

example, the number of Australian red wine sales and accidental deaths.  

The main purpose of time series analysis is to set up a hypothetical probability model; 

the time series model, to represent the data. After an appropriate family of models is 

chosen, it is possible to estimate the parameters in the models, check for goodness-of-fit 

to the data, and possibly to use the proposed models to enhance our understanding of the 

mechanism. Once the satisfactory model has been obtained, it may be used for further 

study such as prediction for future observations or application in a particular field. A 

time series model for the observed data 𝑥𝑡 , can be interpreted as a specification of a 

sequence of correlated random variables 𝑋𝑡  of which 𝑥𝑡  is postulated to be a realization. 

A general but important discussion in the study of time series models will include 

model stationary, autocovariance and autocorrelation functions, moment properties and 

the model efficiency. Like most of the study for time series models, we will consider all 

potential and significant properties of the proposed models in our study.  

Time series of counts appears in many different contexts, usually as counts of certain 

events or objects in specified time intervals. This thesis will discuss mainly on the 
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discrete correlated observations with some potential time series models. The area of 

discrete time series modelling involves counts which arise, for example, from traffic 

accidents, claim counts, number of guests staying overnight in the hotel, number of 

abstract reviews, and counts of price changes. In continuous time series, one 

conventional time series model, namely Autoregressive (AR), which was introduced by 

Box and Jenkins (1976) is defined by the recursion 

𝑋𝑡 = 𝛼1𝑋𝑡−1 +⋯+ 𝛼𝑝𝑋𝑡−𝑝  (1.1) 

These models have simple interpretation and attractive properties. Although Equation 

(1.1) is well defined for natural numbers ℕ0 =  0, 1,… , but the multiplication operator 

cannot accommodate integer values, since the multiplication of an integer with real 

numbers yields non-integer values. Therefore, this motivates the replacement of scalar 

multiplication by a different operator like the binomial thinning operator but preserves 

the properties of the continuous counterpart.  

Binomial thinning (or thinning) operation, commonly known as Galton-Watson 

branching process, are probabilistic operators that can be used to handle integer values. 

This popular binomial thinning operator was primarily introduced by Steutel and Van 

Harn (1979) to define discrete self-decomposability, or more precisely of infinitely 

divisible integer-valued time series; a characteristic function 𝜓(𝑡) is said to be infinitely 

divisible if 𝜓 𝑡 =  𝜓𝑛 𝑡  𝑛  for all positive integer 𝑛 , where 𝜓𝑛 𝑡  is itself a 

characteristic function. The fundamental interpretation and generalization of binomial 

thinning operation will be reviewed in detail in Chapter 2. 

Pegram (1980) introduced an entirely different concept to deal with count data that 

specifically gives good interpretation for categorical data set. The mixture operator, 

abbreviated by ′ ∗ ′, has not been broadly used by researchers. Thus there is room for 
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further development and study of the useful properties and important applications in 

various fields. To the best of our knowledge, Pegram's mixture operator has been 

investigated by Biswas and Song (2009) recently, who made a comparative study 

between Pegram's mixture and thinning operators. The results suggest that the mixture 

operator can be an alternative tool to handle count data. Therefore, it motivates us to 

look into the combination of both discrete operators.  

1.1 Objectives 

The existing thinning operator has been the sole operator to deal with count data 

since 1980. It is able to accommodate only infinitely divisible distributions. In non-

infinitely divisible distribution such as Binomial case, the model does not have the 

similar form of a typical INAR(1) process (see Definition 2.1.2). Hence, many of the 

important properties of the typical INAR(1) model are not shared. Later, Biswas and 

Song (2009) studied the alternative mixing operator which was introduced by Pegram 

(1980). This resulted in a model that can now deal with non-infinitely divisible cases 

like categorical data. However, the proposed mixture model involves constant runs 

which may not be applicable in many real life situations. Therefore, our aim is to find a 

new model which is able to apply to count data, on top of that it possesses a simpler 

interpretation, as well as having better performance compared to the existing models. 

The proposed model is defined by combining both the thinning and mixing operators. 

Through the combination, we aim to yield a better model by integrating the advantages 

of both operators. In fact, in the later chapters, one can see that our proposed model 

handles well the infinitely divisible distributions. For binomial case, the model provides 

simple structure for the transition probabilities and autocovariance and autocorrelation 

functions. We study the first order of AR of the new mixture process. Extensive 

simulation study has been carried out to observe the model behaviour. After that, we 
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extended the order-one process to pth-order. As a step to complete the development for 

a family of proposed mixture model, we discussed the Moving Average (MA) of order 

one and its extension to qth-order. The discussion on the combination of Autoregressive 

Moving Average (ARMA) processes is then carried out. Likewise, the relevant 

properties and marginal fitting will be considered respectively in order to provide more 

insights into discrete-valued time series modelling. 

In the literature review, there is a dearth of research work involving the area of 

coherent forecasting for the count data. The typical procedure for forecasting in time 

series models is to use conditional expectation, because this technique yields forecasts 

with the minimum mean squared forecast error. However, this method usually produces 

non-integer-valued forecasts. It has been proposed to use k-step ahead conditional 

probability to generate coherent forecasting for integer value forecasts. Freeland and 

McCabe (2004) investigated the coherent forecasting for discrete low count data. In our 

study, it is of interest to look into the coherent forecasting, as our model appears as a 

new tool to handle the count data well. Particularly, the k-step ahead conditional 

probability and its measurement of the central moments is considered to determine the 

coherency. Coherent forecasting is based on asymptotical theory. In this study, the 𝛿-

method will be applied to obtain the asymptotic distribution together with the Fisher 

Information matrix. 

It is necessary that the superiority of a dynamic discrete time series model should be 

illustrated with real field applications. This dissertation will cover a few sets of count 

data in different discipline: internet protocol (IP) address data, criminal data, and worker 

compensation claim data. The data sets are readily available in current literature. See 

appendices for the data observed frequencies. The real applications show that the 
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proposed model has the potential to be viable alternative model in discrete time series 

modelling. 

1.2 Overview of Topics 

The outline of this dissertation is as follows. Chapter 2 provides the literature 

reviews of current discrete time series operators. Details of first order of Integer-valued 

Autoregressive (INAR(1)) process are given. The extension of thinning operator to 

generalized thinning operator and the relevant discrete time series models using the 

generalized thinning operator are also discussed. Parameter estimation is one of the 

important issues to be reviewed. A literature review showed that for the INAR process 

and its generalized models, a majority of the discrete-valued time series models used 

maximum likelihood estimation (MLE), Yule-Walker (YW) estimation and conditional 

least square (CLS) for parameter estimation. All methods are summarized clearly in this 

chapter. 

Chapter 3 is the main part of this thesis. This chapter starts with the model 

construction. We named the proposed mixture model as a mixture of thinning and 

Pegram's operators (MPT) process. We consider the first-order model for fundamental 

study. The important stationary, statistical and regression properties are discussed. Then, 

some specific discrete marginal distributions are fitted to the model. In particular, we 

show one example for the non-infinitely divisible case where the binomial marginal is 

well-interpreted by the model. The simple expression of the Binomial MPT process 

encourages its use in analyzing real life data. 

We look into parameter estimation in Chapter 4 where maximum likelihood 

estimator via Expectation-Maximization (EM) algorithm is used to estimate the 

parameters for the first-order MPT (MPT(1)) process. It is well-known that the EM 

algorithm is suited for mixture models. Unlike in the INAR and Pegram's AR(1) model, 
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the typical YW Equations and CLS cannot be applied to the proposed mixture model. 

This is because of the inseparable parameters in the autocorrelation function (ACF), see 

Eq. (3.12) in Chapter 3. An extensive simulation study has been carried out. The 

simulation study includes robustness examination. Special outlier generation schemes; 

the INAR(1) additive outlier and INAR(1) innovative outlier are applied to observe the 

ability of MLE in handling the outliers for the proposed model. Also, comparison has 

been carried out between the proposed model and the current existing models. Chapter 4 

continues with estimating the parameters of variance-covariances matrix, which will be 

needed for coherent forecasting in the following chapter. Explicit expressions of score 

function and Fisher Information matrix are presented. Then, the expressions are carried 

forward to associate with the theoretical part of coherent forecasting to form a new 

discussion in Chapter 5. Chapter 4 concludes with numerical simulations for coherent 

forecasting accuracy measurements of Poisson MPT(1) model. In Chapter 5, k-step-

ahead forecasting distribution and the relevant properties are investigated. The results 

present an approach for coherent forecasting in discrete time series. This is one of the 

main contributions of our study.  

This dissertation proposed a new time series model to accommodate any discrete 

marginal distribution. Therefore, the formulation of other related family members for 

the new model is necessary, as they will be potentially useful in some real life 

applications. For example, the MA process is usually applied to illustrate economic data. 

We begin the study of the first-order MA process for the new MPT model with Poisson 

and Binomial marginal distributions. For the proposed model we discuss regression, 

fundamental properties and reversibility, followed by the investigation of qth-order MA 

process. The ARMA process for MPT model is then presented, together with some 

preliminary discussion on autocovariance and autocorrelation functions. Last but not 

least, a natural extension from order one to pth-order MPT processes has been 
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investigated. It is very useful in some real life examples when the partial autocorrelation 

function shows more than one lag. See Section 7.4. All real life data applications for this 

thesis are presented in Chapter 7. The data sets include criminal counts of drug and sex 

offensive, internet protocol (IP) addresses, and the popular worker compensation burn 

claims. These data sets have been extensively discussed in the literature review. We 

applied the data here for the new model illustration and also for comparison purpose. 

The comparison is based upon Akaike Information Criterion (AIC), and it can be seen 

that the results are in favour of the proposed model. Chapter 8 recommends future 

research works. We conclude the chapter by presenting some preliminary ideas and 

potential research directions.  
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CHAPTER 2: LITERATURE REVIEWS 

2.0 Introduction  

This chapter acquaints the readers with the background of two important operators; 

the thinning and Pegram's operators. The relevant properties and significant 

contributions of the currently existing operators will be reviewed.   

2.1  Binomial Thinning Operator 

The Binomial thinning operator has been introduced to replace the scalar 

multiplication in order to handle count data. It is defined as follows. 

Definition 2.1.1 (Binomial Thinning): Let 𝑋 be the discrete random variable with range 

ℕ0, and 𝛼 ∈ [0, 1]. Define the random variable 

 

𝛼 ∘ 𝑋 =  𝑌𝑖

𝑋

𝑖=1

 

 

(2.1) 

 

where 𝑌𝑖  is Bernoulli random variable with the success probability 𝑃 𝑌𝑖 = 1 = 𝛼 and 

the random variable 𝑌𝑖  is independent of 𝑋 . Consequently, 𝛼 ∘ 𝑋  arises as binomial 

random variable with 𝐵𝑖𝑛(𝑋, 𝛼) such that 𝐸 𝛼 ∘ 𝑋 = 𝛼𝐸[𝑋]  and 𝑉 𝛼 ∘ 𝑋 = 𝛼2𝜎𝑋
2 +

𝛼(1 − 𝛼)𝜇𝑋 , and the circle operator ′ ∘ ′ is known as binomial thinning operator. See 

Silva (2005, Lemma 2.1) for detailed properties of Definition 2.1. The probabilistic 

operator of binomial thinning is easy to interpret so that it can be applied in count 

modelling with several types of marginal probabilities. To adapt to different types of 

interpretation, the generalizations of binomial thinning are necessary. Latour (1995) 

proposed an immediate extension of Definition 2.1.1, so that it can work with any non-

negative random variables. Bra nna s and Hellstro m (2001) suggested that the dependency 

of the counting series is allowed. Another modification using signed binomial thinning 
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is carried out by Kim and Park (2008) to handle negative values and allow for negative 

correlation. It is worthwhile to mention here that the generalized operators treat the 

thinning operator as a special case. This is useful because we could have more different 

interpretations for real life applications. We can now define the fundamental first order 

integer-valued Autoregressive (INAR(1)) process with the thinning operator as such  

 

Definition 2.1.2 (INAR(1) Model): Let 𝑋𝑡  be the non-negative discrete random variable, 

for any 𝛼 ∈  0, 1 , the first order INAR (INAR(1)) process is defined by 

 

𝑋𝑡 = 𝛼 ∘ 𝑋𝑡−1 + 𝜀𝑡  
 

(2.2) 

 

where 𝜀𝑡  is a sequence of uncorrelated non-negative integer-valued random variables 

having mean 𝜇 and finite variance 𝜎2.  

McKenzie (1985) was perhaps the pioneer to study the thinning operation by 

introducing integer-valued Autoregressive (INAR) process. The interpretation is as such: 

consider there is a population at a certain time 𝑡 − 1. If we observe the population in 

later point of time, say 𝑡 , the population maybe adjusted. This is because some 

individual may die off in between the time (𝑡 − 1, 𝑡] with probability 𝛼, and the new 

arrivals (𝜀𝑡) such as new born babies may be entering the population at time 𝑡. With this 

elegant interpretation, it can be applied in many real life situations. For examples see 

Freeland (1998) for claim counts and Weiβ (2007) for statistical quality control. 

In many real life applications, the immigration (innovation) 𝜀𝑡  remains unknown.  

Parameter estimation and properties of 𝜀𝑡  can be obtained by relating it to the 

observations 𝑋𝑡 . A recent model proposed by Weiβ (2012) assumed that the random 

variable 𝑋𝑡  and the new immigrants (innovation) 𝜀𝑡  are both observable, hence the 

‘survivors’ are proposed by the terms of 𝑍𝑡−1 ≔ 𝛼 ∘ 𝑋𝑡−1 = 𝑋𝑡 − 𝜀𝑡 . With this fully 
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observed INAR(1) process, the parameter estimation can be done directly from the 

observations 𝜀𝑡 .  

The INAR(1) is a stationary process. The probability generating function (pgf) is 

given by 

𝐺𝑋 𝑧 = 𝐺𝑋 1 − 𝛼 + 𝛼𝑧 𝐺𝜀 𝑧 ⟺ 𝐺𝜀 𝑧 =
𝐺𝑋 𝑧 

𝐺𝑋 1 − 𝛼 + 𝛼𝑧 
 

 

(2.3) 

  

where 𝐺𝑋(𝑧) and 𝐺𝜀(𝑧) denote the pgf of 𝑋𝑡  and 𝜀𝑡 , respectively. Some important basic 

and regression properties such as conditional expectation and joint pgf have been 

discussed. Also, the parameter estimation of the models have been extensively studied 

by several researchers; see Al-Osh and Alzaid (1987), Freeland (1998) and Bra nna s 

(1994). In the following section, we will show several discrete marginal distributions 

which have been specified for innovation process in INAR(1) process. 

  

Example 2.1.1 (Poisson INAR(1) Model): Let 𝜀𝑡  be an i.i.d. Poisson random variable 

with mean 𝜆, then the INAR(1) process in Definition 2.1.2 follows a Poisson process 

𝑃𝑜  
𝜆

1−𝛼
 . Obviously 𝑋𝑡  is a stationary Markov Chain process with Poisson marginal 

distribution 
𝜆

1−𝛼
. Several notations have been given to refer to Poisson as the assumption 

for innovation process, i.e. INAR(1)-P and PoINAR(1). Table 2.1.1 simplifies some 

important properties of Poisson INAR(1) process. Further properties can be found in 

Silva (2005) and Freeland (1998). 
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Table 2.1.1: Fundamental properties of Poisson INAR(1) Model 

Mean 𝜇𝑋 =
𝜇𝜀

1 − 𝛼
 

Variance 𝜎𝑋
2 =

𝛼𝜇𝜀 + 𝜎𝜀
2

1 − 𝛼2
 

Autocorrelation 

Function 
𝜌𝑋 𝑘 = 𝛼𝑘  

Conditional Probability 

Function 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗  

=   
𝑗
𝑘
 𝛼𝑘 1 − 𝛼 𝑗−𝑘 . 𝑃(𝜀𝑡 = 𝑖 − 𝑘)

𝑚𝑖𝑛 (𝑖 ,𝑗 )

𝑘=0

 

Conditional Expectation 𝐸 𝑋𝑡 𝑋𝑡−1 = 𝛼𝑋𝑡−1 + 𝜇𝜀  

 

Poisson INAR(1) model is a benchmark model. INAR(1) process can be fitted not 

only by Poisson process, but also by any discrete marginal distribution from self-

decomposability family. Next, we discuss Negative Binomial marginal applied in 

INAR(1) model. Unlike Poisson process, Negative Binomial marginal has slightly 

complicated expression. Analogue with Gamma and Exponential distribution in 

continuous random variables, McKenzie (1987) introduced Geometric and Negative 

Binomial marginals. Geometric marginal is the special case of Negative Binomial 

marginal with 𝑘 = 1. 

Example 2.1.2 (Negative Binomial INAR(1) Model) In the case of Negative Binomial, 

McKenzie (1987) provided an explicit expression for distribution of 𝜀𝑡 , given as follows 

𝑃 𝜀𝑡 = 𝑘 =   
𝑛
𝑚

 𝜌𝑛−𝑚 1 − 𝜌 𝑚  .  
𝑚 + 𝑘 − 1

𝑘
  1 − 𝑝 𝑘𝑝𝑚

𝑛

𝑚=1

    

𝑘 > 0, 𝑛 ∈ ℕ. (2.4) 

 

For more details regarding Negative Binomial and Geometric marginal distribution in 

INAR(1) process, one can refer to McKenzie (1986). Also see Weiβ (2008, Example 3.4) 

for similar expression for distribution of 𝜀𝑡 .  
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In previous discussion, we emphasized on INAR(1) model fitted with marginals of 

infinite range. Steutel and Van Harn (1979) and Joe (1996) stated that Eq. (2.2) is 

restricted to the self-decomposability family. Weiβ (2009), however, proposed Binomial 

AR(1) process to show that it can be fitted with the finite range marginal in a totally 

different expression. The model is given by 

Definition 2.1.3 (Binomial AR(1) Model): Let 𝑛 ∈ ℕ, 𝑝 ∈ (0,1)  and 

𝜔 ∈ [max  −
𝑝

1−𝑝
, −

1−𝑝

𝑝
 ; 1] . Define 𝜅 ≔ 𝑝 ∙ (1 − 𝜔)  and 𝛼 ≔ 𝜅 + 𝜔 . The process 

 𝑋𝑡 ℕ0
, defined by the recursion 

 

𝑋𝑡 = 𝛼 ∘ 𝑋𝑡−1 + 𝜅 ∘  𝑛 − 𝑋𝑡−1 ,    𝑡 ≥ 1,   𝑋0~𝐵𝑖𝑛 𝑛, 𝑝 , 
 

(2.5) 

 

where all thinning are performed independently of each other, and the thinning at time 𝑡 

are independent of  𝑋𝑠 𝑠<𝑡 , is called a Binomial AR(1) process. The condition of 𝜔 

guarantees that 𝛼, 𝜅 ∈ [0, 1]. The interpretation is given here for convenience.  

Suppose that a system has 𝑛 mutually independent units, each of them is either in 

state 1 or state 0. Let 𝑋𝑡−1 be the number of units being in state 1 at time 𝑡 − 1. Then 

𝛼 ∘ 𝑋𝑡−1 is the number of units still being in state 1 at time 𝑡, with individual transition 

probability 𝛼. 𝜅 ∘ (𝑛 − 𝑋𝑡−1) is the number of units, which moved from state 0 to state 

1 at time 𝑡 , with each individual transition probability 𝜅 . Recently, the extensive 

research works of Binomial AR(1) model have been carried out by Prof. Weiβ Christian 

and his co-workers. Initially from Weiβ  (2009), Weiβ  and Kim (2013) studied the 

Binomial AR(1) model properties; moments, cumulants and estimation. Kim and Park 

(2010a) and Kim and Park (2010b) discussed the coherent forecasting for Binomial 

AR(1) process. Also see the parameter estimation for Binomial AR(1) models with 
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applications in finance and industry by Wei β  and Kim (2013). Some important 

properties are tabulated in Table 2.1.2. 

Table 2.1.2: Some properties of Binomial AR(1) model 

Mean 𝜇𝑋 = 𝑛𝑝 

Variance 𝜎𝑋
2 = 𝑛𝑝(1 − 𝑝) 

Autocorrelation 

Function 
𝜌𝑋 𝑘 = 𝜌𝑘  

Conditional 

Probability 

Function 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗  

=   
𝑗
𝑘
  

𝑛 − 𝑗
𝑖 − 𝑘

 𝛼𝑚 1 − 𝛼 𝑗−𝑘𝛽𝑖−𝑘 1 − 𝛽 𝑛−𝑗+𝑘−𝑖

𝑚𝑖𝑛 (𝑖 ,𝑗 )

𝑘=𝑚𝑎𝑥 (0,𝑖+𝑗−𝑛)

 

Conditional 

Expectation 
𝐸 𝑋𝑡 𝑋𝑡−1 = 𝜌𝑋𝑡−1 + 𝑛𝛽 

 

Another approach which is completely different from Definition 2.1.3 has been 

proposed by Al-Osh and Alzaid (1991), namely first order Binomial Autoregressive 

(BAR(1)) process. The main concept of the BAR is based upon the hypergeometric 

thinning. Suppose the random variable 𝑋 with range  0, … , 𝑁 , then the random variable 

𝑛

𝑁
∘ 𝑋 conditioned on 𝑋 = 𝑥 is defined as  

𝑃  
𝑛

𝑁
∘ 𝑋|𝑋 = 𝑥 =

 
𝑥
𝑘
  

𝑁 − 𝑥
𝑛 − 𝑘

 

 
𝑁
𝑛
 

 (2.6) 

 

Likewise, BAR model is a stationary Markov Chain process. More details and 

applications can be found in the paper. 

2. 2 Generalized Thinning Operation 

The fundamental thinning operation has been shown that it is well applicable to 

discrete marginal distributions. Basic concept of thinning operation is that the 

summation over the Bernoulli random variable with the success probability 𝛼 ∈ [0, 1] 

Univ
ers

ity
 of

 M
ala

ya



 
 

14 
 

resulting in the Binomial distribution with  𝑋, 𝛼 . Further extensions of thinning 

operation has been widely studied. Now, the success probability 𝛼 becomes a random 

variable in the range of  0, 1 . The definition of this type of thinning operator, is called 

random coefficient thinning operator which is defined as follows 

Definition 2.2.1 (Random Coefficient Thinning Operation): Let 𝑋  be the random 

variable with the range ℕ0. Let 𝛼 be the random variable in the range [0, 1], and let 𝑋 

be independent with 𝛼. Then the random variable 𝛼 ∘ 𝑋 is random coefficient thinning if 

the operator ′ ∘ ′ is binomial thinning operator. By the assumption of 𝜇𝛼 ≔ 𝐸(𝛼) and 

𝜎𝛼
2 ≔ 𝑉(𝛼), some important properties of random coefficient thinning are tabulated in 

Table 2.2.1. 

 

Table 2.2.1: Some important properties of random coefficient thinning 

𝐸 𝛼 ∘ 𝑋  𝜇𝛼 ∙ 𝐸 𝑋  

𝐶𝑜𝑣 𝛼 ∘ 𝑋, 𝑋  𝜇𝛼 ∙ 𝑉 𝑋  

𝑉 𝛼 ∘ 𝑋  𝜇𝛼
2 ∙ 𝑉 𝑋 + 𝜇𝛼 1 − 𝜇𝛼 ∙ 𝐸 𝑋 + 𝜎𝛼

2 ∙ 𝐸[𝑋(𝑋 − 1)] 

 

Definition 2.2.2 (RCINAR(1) model): Let 𝜔 be the i.i.d. random variable with range 

(0, 1) , 𝛼  is independent with 𝜀𝑡 , and each 𝜔  is independent with  𝑋𝑠 𝑠<𝑡 .  The 

RCINAR(1) is defined recursively,  

 

𝑋𝑡 = 𝜔 ∘ 𝑋𝑡−1 + 𝜀𝑡  (2.7) 

 

Some authors prefer to define 𝜔 be 𝛼𝑡  to show that the 𝜔 is allowed to be random 

itself. The difference of the model structure is apparent by comparing Eq. (2.2) and Eq. 

(2.7). Zheng et al. (2007) defined the first order random coefficient autoregressive 

model which is abbreviated by RCINAR(1). The important properties can be found in 

Wei β  (2008) and Zheng et al. (2007). These articles also considered parameter 

estimation based upon the proposed model. This case study was considered in the earlier 
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paper by McKenzie (1985). Weiβ  (2008, Lemma 3.8) defined 𝛼  to be distributed 

according to Beta (𝛾, 𝛽). Then, Weiβ (2008, Example 3.9) presented the application of 

RCINAR(1) process with Negative Binomial marginals. Joe (1996) provided a case 

study where 𝛼 follows beta-binomial distribution in Joe (1996, Example (d)).   

Al-Osh and Aly (1992) proposed a different type of generalization. They studied the 

INAR(1) process with Negative Binomial marginals, and considered Geometric random 

variables instead of Bernoulli random variables. Weiβ  (2008) named it as iterated 

thinning operation. The main idea of iterated thinning operation can be defined by 

𝜏 ⋆𝛼 𝑋 =  𝑌𝑖

 𝛼𝜏 ∘𝑋

𝑖=1

   0 < 𝛼, 𝜌 < 1 (2.8) 

 

 

where 𝑌𝑖  is i.i.d. random variables in range ℕ0, which are independent of both 𝑋 and the 

thinning  𝛼𝜏 ∘ 𝑋, the distribution of 𝑌𝑖  depends on parameter 𝛼. The operator becomes 

concrete by considering the pgf 

 

𝐺𝜏⋆𝛼𝑋 𝑧 = 𝐺𝑋(1 − 𝛼𝜏 + 𝛼𝜏 ∙ 𝐺𝑌 𝑧 ) (2.9) 

 

 

One should notice Eq. (2.9) reduces to the fundamental thinning operator when 

𝐺𝑌 𝑧 = 𝑧. This type of generalization leads to generalized INAR(1) process which is 

known as Iterated Thinning INAR(1) process, abbreviated by IINAR(1). Recently, 

Ristic et al. (2009) proposed a new stationary integer-valued autoregressive process of 

the first order with Geometric counting series. They provided a closed-form for the 

innovation probability mass function (pmf). Ristic et al. (2012) continued the research 

works on parameter estimation of an INAR(1) model with Negative Binomial. Also, the 

asymptotic properties have been discussed along in the paper. Last but not least, the 

other self-decomposability marginal like Quasi-Binomial (QB) is discussed. In the 
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standard Poisson INAR(1) model as in Example 2.1.1, the number of retained elements 

is assumed to have Binomial distribution with parameters (𝛼, 𝑥). In the development, 

Alzaid and Al-Osh (1993) assumed that the number of retained elements has a QB 

distribution with parameters (𝑝, 𝜃, 𝑛). Consul and Mittal (1975) studied the urn model 

with QB distribution, and Shenton (1986) provided some properties. Weiβ (2008) 

summarized the Quasi-Binomial INAR(1) (QINAR(1)) model. He stated that the 

corresponding innovations cannot be obtained explicitly via this model. Despite the 

thinning operator and the generalized version being vastly studied, in the following 

section, we discuss an approach which appear as an alternative tool to model the count 

data in discrete time series modeling.  

2.3 Pegram’s Mixing Operation 

Pegram (1980) was the pioneer who studied the approach which appears as an 

alternative tool to deal with count data. The concept of transition probability matrix of 

an ergodic Markov Chain multinomial model is introduced, which was later extended to 

AR model by Pegram (1980). Biswas and Song (2009) presented a unified framework 

of stationary ARMA models for discrete-valued time series based upon the Pegram’s 

mixing operator, and it is abbreviated by ′ ∗ ′. Pegram mixing operator ′ ∗ ′ is defined as 

follows. For two independent random variables 𝑈 and 𝑉, and for a given coefficient 

𝜙 ∈ (0,1), Pegram’s mixing operator ′ ∗ ′ mixes them to produce a random variable 

𝑍: 𝑍 =  𝑈, 𝜙 ∗  𝑉, 1 − 𝜙  (2.10) 

 

with the marginal probability function is given by 

 

𝑃 𝑍 = 𝑗 = 𝜙 𝑃 𝑈 = 𝑗 +  1 − 𝜙 𝑃 𝑉 = 𝑗 ,   𝑗 = 0, 1, … 
 

 

(2.11) 

 

It is clear that Eq. (2.11) works for any discrete distributions. Given 𝑋~𝐷 𝑝0,𝑝1, …  

means that the domain of 𝑋 is  0, 1, …  and 𝑃 𝑋 = 𝑖 = 𝑝𝑖 , 𝑖 = 0, 1, …. This operator ∗ 
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indicates a mixture of two discrete distributions, with  the respective mixing weights 𝜙 

and 1 − 𝜙.  

The AR(p) processes based upon Pegram’s mixing operation which is given by 

Biswas and Song (2009) as a special case is shown as follows. Suppose that time series 

𝑋𝑡  is discrete and its marginal probability mass function is time-independent. Let 

𝑋𝑡  ~ 𝐷(𝑝0,𝑝1, … ). Suppose 𝜀𝑡 's are also independently and identical distributed as the 

same 𝐷(𝑝0,𝑝1, … ). Denote 𝜇 = 𝐸(𝑋𝑡) and 𝜎2 = 𝑣𝑎𝑟(𝜀𝑡).     

Definition 2.3.1 (Pegram’s AR(p) Model) Let 𝑋𝑡  be a discrete-valued stochastic process 

such that  

𝑋𝑡 =  𝐼 𝑋𝑡−1 , 𝜙1 ∗  𝐼 𝑋𝑡−2 , 𝜙2 ∗  …  ∗  𝐼 𝑋𝑡−𝑝 , 𝜙𝑝 

∗  𝜀𝑡 , 1 − 𝜙1 − 𝜙2 − ⋯− 𝜙𝑝  

 

 

(2.12) 

 

is a mixture of (𝑝 + 1)  discrete distributions, where 𝐼 𝑋𝑡−1  , … , 𝐼 𝑋𝑡−𝑝  are 𝑝  point 

masses, 𝐼 ∙  being indicator variable; and 𝜀𝑡~𝐷 𝑝0, 𝑝1,…   with the respective mixing 

weights being 𝜙1, 𝜙2, … , 𝜙𝑝  and 1 − 𝜙1 − ⋯− 𝜙𝑝 , 𝜙𝑗 ∈  0, 1 , 𝑗 = 1, … , 𝑝  and 

 𝜙𝑗 ∈  0, 1 .𝑝
𝑗=1  This implies that for every 𝑡 ∈ 0, ±1, ±2, …,  the conditional 

probability function takes the form of 

 

𝑃 𝑋𝑡 = 𝑗|𝑋𝑡−1, 𝑋𝑡−2,… , 𝑋𝑡−𝑝  

=  1 − 𝜙1 − ⋯− 𝜙𝑝 𝑝𝑗 + 𝜙1𝐼 𝑋𝑡−1 = 𝑗 + ⋯ + 𝜙𝑝𝐼 𝑋𝑡−𝑝 = 𝑗  (2.13) 

 

 

where 𝜙𝑗 , 𝑗 = 1, … , 𝑝  is chosen such that the polynomial equation 1 − 𝜙1𝑧 − ⋯−

𝜙𝑝𝑧
𝑝 = 0 has roots lying outside of the unit disc.  

Comparatively, the Pegram’s mixture operator appears to be more flexible than the 

thinning operator to construct Box and Jenkins’ type stationary ARMA processes with 
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arbitrary discrete marginal distributions. The flexibility yields an ARMA model for time 

series, particularly in categorical observations, which was unavailable with the extended 

thinning operators. This is simply because the categorical distribution is not infinitely 

divisible. Biswas and Song (2009) provided some inferences of the model such as 

parameter estimation. Model comparison with INAR(1) process have also been carried 

out in the paper. Furthermore, infant sleep data has been applied to Pegram’s AR(1) 

process to show that the model performs well with the categorical data set. Biswas and 

Guha (2009) used auto-mutual information to analyze the correlation of categorical data. 

Recently, Song et al. (2013) studied on the statistical inferences of discrete-valued 

ARMA models by using categorical data. 

The readers should be aware that there is another approach which is known as Jacobs 

and Lewis approach and it is analogue with Pegram’s mixture process. Jacobs and 

Lewis (1978a, b) introduced the discrete-valued ARMA models (DARMA) to analyze 

the stationary sequences of dependent discrete random variables with specified marginal 

distribution. Correlation structure has been developed in the papers. However, Jacobs-

Lewis approach generates the constant runs which is somehow not applicable in the real 

life situations. Other than these, Cui and Lund (2009) introduced a different approach of 

time series models for count data. They applied the renewal process to generate a 

correlated sequence of Bernoulli trials. The discrete marginals such as Poisson, 

Binomial and Geometric with the renewal models have readily been constructed. This 

model can be connected to the thinning process as a special case. See Cui and Lund 

(2009, Theorem 4) for relation of the model to Markov Chain process. Then, Cui and 

Lund (2010) implies the renewal process with Binomial marginal distributions. Some 

inferences and asymptotic properties have been studied. 
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To understand more about the integer-valued Autoregressive of INAR(1), Pegram’s 

AR(1) and Jacobs-Lewis DARMA models, we generated the sample runs for each 

model with Poisson marginals of parameter 𝜆 = 5.0 and 𝛼 = 0.9, respectively. Figure 

2.3.1 (a)-(c) show the realizations of the models. It is clearly seen that constant runs 

resulting from discrete-valued first order Autoregressive (DAR(1)) by Jacobs-Lewis 

approach and Pegram's AR(1) may not suit most of the real life applications. Hence, our 

intention to seek for a better tool for discrete-valued time series models community is 

motivated. The models discussed here will later be compared with the new proposed 

model in Chapter 3.  
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(a) 

 

(b) 

 

(c) 

 

Figure 2.3.1: The generated data by the (a) Poisson Pegram’s AR(1) process;  

(b) Poisson INAR(1) process; (c) Poisson DAR(1) process, with parameters 

𝝀 = 𝟓. 𝟎, 𝜶 = 𝟎. 𝟗 
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2.4 Parameter Estimation 

Parameter estimation is one of the most important aspects in statistical analysis. In 

this section, we intend to introduce the popular methods for parameter estimation in 

discrete-valued time series modelling. The well known MLE, CLS and YW Equation 

will be particularly discussed. The estimation problem connected to the discrete-valued 

time series models is more complicated than that of the conventional AR(1) process due 

to the complication of conditional probability functions of INAR(1) process. The 

conditional distribution of INAR(1) involves convolution. Comparatively, Pegram’s 

AR(1) process has simpler conditional distribution of 𝑋𝑡  given 𝑋𝑡−1.  

2.4.1 Maximum Likelihood Estimation 

To understand in details how the MLE works for the respective models, we take 

Definition 2.1.2 in Poisson process as an example (Al-Osh and Alzaid, 1987). Given 

that the likelihood function of a sample (𝑛 + 1) observations from the INAR(1) process 

is 

𝐿 𝒙; 𝛼, 𝜆 =   𝑃(𝑥𝑡)

𝑛

𝑡=1

 
 𝜆/(1 − 𝛼) 𝑥0

𝑥0!
exp −𝜆/(1 − 𝛼)  (2.14) 

 

where 

 

𝑃 𝒙 = exp −𝜆  
𝜆𝑥𝑡−𝑖

 𝑥𝑡 − 𝑖 !
 
𝑥𝑡−1

𝑖
 𝛼𝑖 1 − 𝛼 𝑥𝑡−1−𝑖

min  𝑥𝑡−1 ,𝑥𝑡 

𝑖=0

  , 𝑡 = 1, 2, … , 𝑛 

 

(2.15) 

 

and 𝒙 =  𝑥0, 𝑥1 , … , 𝑥𝑛 .  To find MLE we take the log-likelihood function, then 

differentiate it and set it to be zero. Eq. (2.14) has two parameters  𝛼, 𝜆  to be estimated 

and it can be done by numerical computation. As the likelihood function contains the 

convolution of distribution, many researchers attempted to find a simpler way to handle 

the parameter estimations. Sprott (1983) suggested that one of the parameters can be 
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estimated by the first-moment equation, and it can immediately eliminate one of the 

parameters. Then, the other parameter can be computed iteratively. The ML estimation 

can be found in most of the papers of INAR(1) models. For instance, Brannas (1994) 

presented the log-likelihood function explicitly for MLE. Bakouch (2009) considers the 

zero-truncated Poisson INAR(1) process. The log-likelihood is derived and can be 

solved by using nlm built-in function in the statistical package of R program. Jazi et al. 

(2012) studied the zero-inflated Poisson innovations. They compare the estimation 

between conditional and full maximum likelihood. Recently, Weiβ (2012) shows that it 

is possible to serve the innovation term 𝜀𝑡  as known observations. A full observation of 

INAR(1) process has been estimated. See Bhat and Adke (1981) for the similar 

estimation for branching process with known immigration. A further study by Pedeli 

and Karlis (2011) and Pedeli and Karlis (2013) who used the conditional ML to estimate 

the parameters of bivariate and multivariate INAR(1) processes respectively. Doukhan 

et al. (2012) investigated the relationship between weak dependence and mixing for 

discrete-valued processes. See 4.4 in the paper for the relevant model. 

The likelihood functions of Pegram’s AR(1) model is simpler and more direct than 

the conventional INAR(1) process. We adopted the formulation provided by Biswas and 

Song (2009): Given a time series data 𝒙 =  𝑥0, 𝑥1, … , 𝑥𝑛  from an AR(1) process where 

𝑝𝑗 = 0, 𝑗 > 𝑘, the likelihood is  

𝐿 𝒙;𝛼, 𝜆 = 𝑝1     1 − 𝜙 𝑝𝑡(𝑥) + 𝜙𝐼 𝑋𝑡−1 = 𝑥  

𝑛

𝑡=2

  (2.16) 

 

where 𝑝𝑡(𝑥)  has stationary solution with pmf for any discrete random variables. If  

𝑝𝑡(𝑥) is Poisson marginal distributions, then 𝑝𝑡 𝑥 =
𝑒−𝜆𝜆𝑥

𝑥 !
. Biswas and Song (2009) 

examined the model with categorical data. Furthermore, Biswas and Guha (2009) have 
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done comparative study between auto-mutual information (AMI) and partial auto-

mutual information (PAMI) for parameter estimation of categorical AR(1) process. 

More recently, Song et al. (2013) studied the MLE for categorical Pegram’s AR(1) 

process using the sample relative frequencies. Numerical studies have been extensively 

presented.  

2.4.2 Yule-Walker Equations 

 The autocovariance function (ACVF) of the discrete-valued models plays an 

important role in estimating the parameters by YW Equations. Here we focus on 

discrete-valued AR(p) models. Let the INAR(p) model be 

𝑋𝑡 = 𝛼1 ∘ 𝑋𝑡−1 + 𝛼2 ∘ 𝑋𝑡−2 + ⋯ + 𝛼𝑝 ∘ 𝑋𝑡−𝑝  (2.17) 

 

Multiplying throughout Eq. (2.17) by 𝑋𝑡−𝑝  and taking the expectation  

 

𝐸(𝑋𝑡𝑋𝑡−𝑝) = 𝛼1𝐸(𝑋𝑡−1𝑋𝑡−𝑝) + 𝛼2𝐸(𝑋𝑡−2𝑋𝑡−𝑝) + ⋯ + 𝛼𝑝𝐸(𝑋𝑡−𝑝𝑋𝑡−𝑝)  

 

We obtain 

 

𝛾𝑘 = 𝛼1𝛾𝑘−1 + 𝛼2𝛾𝑘−2 + ⋯ + 𝛼𝑝𝛾𝑘−𝑝         𝑘 > 0, 𝑝 = 1, 2, … 
 

(2.18) 

 

The expectation of the innovation 𝜀𝑡  and 𝑋𝑡−𝑝  is zero since they are uncorrelated. Here 

𝑝 is the lag. If 𝑝 = 1, Eq. (2.18) reduces to the ACVF for INAR(1) process. The ACF is 

easy to obtain via ACVF by dividing by 𝛾0 we get 

 

𝜌𝑘 = 𝛼1𝜌𝑘−1 + 𝛼2𝜌𝑘−2 + ⋯ + 𝛼𝑝𝜌𝑘−𝑝         𝑘 > 0, 𝑝 = 1, 2, … 
 

(2.19) 

 

We form the following linear equations by substituting 𝑘 = 1, 2, … , 𝑝 in Eq. (2.19). Box 

and Jenkins (1976) give a set of linear equations for 𝜙1 , 𝜙2, … , 𝜙𝑝  in terms of 

𝜌1, 𝜌2 , … , 𝜌𝑝 , that is 
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𝜌1 = 𝛼1 + 𝛼2𝜌1 + ⋯ + 𝛼𝑝𝜌𝑝−1 

𝜌2 = 𝛼1𝜌1 + 𝛼2 + ⋯ + 𝛼𝑝𝜌𝑘−2 

⋮            ⋮            ⋮    … .   ⋮          ⋮ 

𝜌𝑝 = 𝛼1𝜌𝑝−1 + 𝛼2𝜌𝑝−2 + ⋯ + 𝛼𝑝  

(2.20) 

 

Then, 

 

𝜶 =  

𝛼1

𝛼2

⋮
𝛼𝑝

           𝝆𝑝 =  

𝜌1

𝜌2

⋮
𝜌𝑝

             𝓤𝑝 =  

1 ⋯ 𝜌𝑝−1

⋮ ⋱ ⋮
𝜌𝑝−1 ⋯ 1

  
(2.21) 

 

The solution for Eq. (2.21) for the parameters 𝛼 in terms of autocorrelations may be 

written  

 

𝜶 = 𝓤𝑝
−1𝝆𝑝  (2.22) 

 

Otherwise, the estimators for autocovariance and autocorrelation values can be found 

via 

 

𝛾  ℎ =
  𝑋𝑡 − 𝑋 𝑛  𝑋𝑡+ℎ − 𝑋 𝑛 

𝑛−ℎ
𝑡=1

𝑛
          0 ≤ ℎ ≤ 𝑛 − 1 

 

(2.23) 

 

and 𝜌  ℎ = 𝛾  ℎ 𝛾  0  , where 𝑋 𝑛  is the sample mean of the time series. 

It is noted that the derivation of ACVF and ACF is not only limited to basic thinning 

operator but also the generalized thinning operation. See Zhang et al. (2012), who 

obtained the similar ACVF and ACF for signed generalized power series thinning 

operator. The proof is provided in the paper. Bakouch and Ristic (2010) consider zero 

truncated Poisson INAR(1) process with non-parametric estimator, which is known as 

YW estimation. The YW Equations approach is also applicable to Pegram’s AR(1) 
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process since the model gives similar ACVF and ACF formulations. See Biswas and 

Song (2009, Section 3.1). For analogue continuous case, the asymptotic distribution of 

YW estimator has been considered by Brockwell and Davis (1987) in section 8.7 and 

8.8. 

The partial autocorrelation function is a device to determine the order of AR(𝑝) 

process. Denote by 𝜙𝑘𝑗 , the 𝑗th coefficient in an autoregressive representation of order 

𝑘, so that 𝜙𝑘𝑘  is the last coefficient. From Eq. (2.19), the 𝜙𝑘𝑗  satisfy the set of equations 

𝜌𝑗 = 𝜙𝑘1𝜌𝑗−1 + ⋯ + 𝜙𝑘(𝑘−1)𝜌𝑗−𝑘+1 + 𝜙𝑘(𝑘−1)𝜌𝑗−𝑘+1 + 𝜙𝑘𝑘𝜌𝑗−𝑘     𝑗 = 1,2, … , 𝑘 

 

leading to the Yule-Walker equations Eq. (2.21), which may be written  

 

 
1 ⋯ 𝜌𝑘−1

⋮ ⋱ ⋮
𝜌𝑘−1 ⋯ 1

  
𝜙𝑘1

⋮
𝜙𝑘𝑘

 =  

𝜌1

⋮
𝜌𝑘

  

 

 

The partial autocorrelation function can be usually found at the last coefficient of an 

autoregressive representation of order 𝑘, which is denoted by 𝜙𝑘𝑘 . Otherwise, it can be 

calculated through the determinant, see Box and Jenkins (1976, page 66). For an 

autoregressive process of order 𝑝 , the partial autocorrelation function 𝜙𝑘𝑘  will be 

nonzero for 𝑘 less than or equal to 𝑝 and zero for 𝑘 greater than 𝑝. This means that the 

partial autocorrelation function of a 𝑝th order autoregressive process has a cutoff after 

lag 𝑝 . Hence, the researchers use it as the indicator to determine the order of an 

autoregressive process. 

2.4.3 Conditional Least Squares Method 

This section we consider the Poisson INAR(1) model for parameter estimation by the 

well-known CLS. The core concept of the CLS estimation is to minimize the sum of the 

squared distances of each observation 𝒙 =  𝑥0, 𝑥1, … , 𝑥𝑛  from its conditional expected 
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value given the previous observations 𝜁𝑡−1, 𝐸 𝑋𝑡|𝜁𝑡−1 = 𝛼𝑋𝑡−1 + 𝜆 . Therefore, the 

CLS estimators of the parameters 𝛼 and 𝜆 are obtained by minimizing the function 

𝑄 𝒙;  𝛼, 𝜆 =   𝑋𝑡 − 𝛼𝑋𝑡−1 − 𝜆 2

𝑛

𝑡=1

 (2.24) 

 

which gives the estimated parameters explicitly 

 

𝛼 =
  𝑋𝑡−1 − 𝑋   𝑋𝑡 − 𝑋  𝑛

𝑡=1

  𝑋𝑡−1 − 𝑋  2𝑛
𝑡=1

 

𝜆 =
1

𝑛
 𝑋𝑡

𝑛

𝑡=1

− 𝛼 
1

𝑛
 𝑋𝑡−1

𝑛

𝑡=1

 

(2.25) 

 

 

Al-Osh and Alzaid (1987) compared the performance of CLS estimator with 

conditional maximum likelihood estimator (CMLE) and YW estimator. They compared 

the estimators in terms of bias and mean squared errors (MSE). See the discussion of 

Table I and Table II in the paper. Klimko and Nelson (1978) discussed the CLS 

estimation and inference for stochastic processes. Freeland (1998) provided a complete 

study and derivation of CLS estimation. Freeland and McCabe (2005) derived a 

corrected explicit expression for the asymptotic variance matrix of the CLS of Poisson 

INAR(1) process. They show that the asymptotic distribution of CLS estimators is 

equivalent to that of the estimators based on YW equations. Thus, both methods have 

similar performance in parameter estimation. Bakouch and Ristic (2010) studied the 

CLS estimation of zero truncated Poisson INAR(1) process. The estimated parameters 

are expressed explicitly and they indicated strong consistency. Asymptotical properties 

of the parameters have also been derived. 

Other than the methods elaborated above, some authors tried generalized methods of 

moments (GMM) as well. Bra nna s (1994) carried out a Monte Carlo simulation to 

Univ
ers

ity
 of

 M
ala

ya



 
 

27 
 

compare the performance of the CLS estimator, exact ML and GMM. In fact, one 

important aspect in discrete-valued time series modelling is the regression models. 

Some estimation methods have been explored along this line. Bra nna s (1995) studied 

ML estimation for prediction and control for time series count data model. Gourieroux 

et al. (1984) used ordinary least squares (OLS) approach to deal with the serially 

correlated data. The readers should be aware that one readily package namely tscount 

from R (Liboschik et al. 2015), which is likelihood-based methods for the framework of 

count time series following generalized linear models. 

2.5 Concluding Remarks 

Chapter 2 reviewed all potential models for discrete-valued time series models. 

Particularly, it emphasized the history of INAR(1) and Pegram’s AR(1) models. The 

INAR(1) is defined based upon thinning operator and Pegram’s AR(1) model is 

constructed from the idea of Pegram’s mixing operation respectively. The generalized 

thinning INAR(1) processes have also been explored in the literature reviews. The 

important inferences like parameter estimation are also elaborated. The overview of 

Chapter 2 is important. It becomes the root to motivate us to construct a new model with 

better flexibility. The idea and significant inferences will be discussed in the following 

chapters.  
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CHAPTER 3: MIXED PEGRAM AND THINNING INTEGER-VALUED 

AUTOREGRESSIVE MODEL 

3.0 Introduction  

This chapter introduces a new model which is constructed from the combination of 

Binomial Thinning and Pegram’s operators. The proposed model, known as Mixture of 

Pegram and Thinning Integer-Valued Autoregressive (MPT) process appears to be a 

new contribution to modelling time series of counts. For simplicity, the first order MPT 

process is considered and is abbreviated by MPT(1). It is well-known that finite mixture 

models provide more flexibility in empirical modelling. Furthermore, the models 

possess a simple interpretation and are able to cater for multimodality in the data. 

Therefore, it is of the interest to construct MPT(1) model which is given in Section 3.1. 

Section 3.2 interprets this model. Section 3.3 discusses the model stationarity and 

provides some important properties of the proposed model. Section 3.4 shows fittings 

with some marginal distributions. Several discrete marginal distributions, with finite 

and infinite ranges, have been considered for the MPT(1) process. Section 3.5 concludes.  

3.1 Model Construction 

It is important to note that the INAR(1) process which is defined in Chapter 2, 

Definition 2.1.2 (Eq. 2.2) comprised of two elements: the thinned part (𝛼 ∘ 𝑋𝑡−1) and 

the innovation term (𝜀𝑡) . Pegram’s mixing operation on the two independent non-

negative integer-valued random variables 𝛼 ∘ 𝑋𝑡−1  and 𝜀𝑡  with respective mixing 

weights of 𝜙 and 1 − 𝜙 yields a new mixture model given below. 

Definition 3.1.1 (Mixture of Pegram-INAR(1)): Consider two independent integer-

valued random variables defined in Eq. (2.2), and let 𝜙 ∈ (0, 1). The initial value of the 
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process 𝑋0 , has an initial distribution of 𝑃 𝑋0 = 𝑖 = 𝜋0 , then for every 𝑡 ∈

 0, ±1, ±2,…  

 

𝑋𝑡 =  𝜙,𝛼 ∘ 𝑋𝑡−1 ∗ (1 − 𝜙, 𝜀𝑡) (3.1) 

 

is a Pegram mixture of thinning and innovation processes. We denote it by MPT 

(mixture of Pegram and thinning). The parameter 𝜙 is known as mixing weight of the 

mixture model in Eq. (3.1), and it mixed the thinning part and the innovation term with 

the respective mixing weights 𝜙 and 1 − 𝜙. The pgf is given by 

 

𝐺𝑋𝑡
 𝑧 = 𝜙𝐺𝑋𝑡−1

 1 − 𝛼 + 𝛼𝑧 +  1 − 𝜙 𝐺𝜀𝑡(𝑧) (3.2) 

  

for  𝑧 ≤ 1, 𝑧 ∈ ℂ.  

Eq. (3.2) works for any discrete marginal distribution, including non-infinitely 

divisible distributions like Binomial distribution. In the following section, we will 

discuss in detail the MPT(1) applied in an infinite range of counts such as Poisson and 

Negative Binomial, as well as the finite range of counts like Binomial marginal 

distribution. Compared with the existing discrete-valued models in Chapter 2, the 

proposed model has simpler closed-form expression for the probability distribution of 

the innovation term 𝜀𝑡 . 

3.2 Interpretation 

We have been familiarized with the interpretation of INAR(1) process. It can be 

readily applied to our proposed model by integrating the idea of the mixing process. For 

instance, the model interpretation regarding the birth and death process, see Ross (2000, 

Section 6.3) for an introduction to birth and death processes. For our model 

interpretation, we mixed each individual at time 𝑡 − 1  who has probability 𝛼  of 

continuing to be alive at time 𝑡, and the number of births following certain discrete 
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marginal distribution at each time 𝑡, with respective mixing weights of 𝜙 and 1 − 𝜙. 

Other interpretations in different field such as short-term disability claims and infinite 

server queue can be suited into the proposed model in the similar manner. The mixture 

model with new interpretation has been proposed here to manage different real life 

situations. 

3.3 Properties of MPT(1) Model 

First, we shall show that the MPT(1) process  𝑋𝑡  is stationary. Grunwald et al. 

(2000) have examined the stochastic properties and stationarity of AR(1) models with 

conditional linear mean (CLAR(1)). Let  𝑌𝑡 𝑡∈ℤ  be a time-homogeneous first order 

Markov process on a sample space 𝑆 ⊆ 𝑅 .  𝑌𝑡 𝑡∈ℤ  is said to have a first-order 

conditional linear autoregressive (CLAR(1)) structure if 

𝐸 𝑌𝑡| 𝑌𝑡−1 = 𝛿𝑌𝑡−1 + 𝛾 (3.3) 

 

where 𝛿 and 𝛾 are real numbers. 

The MPT(1) process  𝑋𝑡 𝑡∈ℤ of Definition 3.1.1 has a conditional linear expectation 

given by Eq. (3.6) and is of the form (3.3). Thus the MPT(1) process has a first-order 

conditional linear autoregressive (CLAR(1)) structure. It is an irreducible Feller chain 

and stationary with specific marginal for all t. Grunwald et al (2000) gave sufficient 

conditions for convergence to an ergodic distribution 𝜋  on sample space 𝑆 . For 

convenience the result adapted from Grunwald et al (2000) is summarized in the 

following theorem. 

Theorem 3.3.1 (Proposition 3, Grunwald et al, 2000) Let 𝑋𝑡 𝑡∈ℤbe a CLAR(1) process 

and also an irreducible Feller chain. Furthermore if 𝑆 ⊆ [0,∞)  and0 ≤ 𝛿 < 1 , then 

 𝑋𝑡 𝑡∈ℤ  is ergodic and the convergence of ∥ 𝑃𝑡 𝑠, .  − 𝜋(. ) ∥→ 0, 𝑡 → ∞ is 

geometrically fast, where 𝑃𝑡 𝑠,𝐴 = 𝑃 𝑋𝑡 ∈ 𝐴 𝑋0 = 𝑠  and ∥ ⋅∥  is the total variation 
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norm. With specified marginals for all t,  𝑋𝑡 𝑡∈ℤ  is a stationary process. As a 

consequence of 𝐸 𝑋𝑡 = 𝜆 , 𝑣𝑎𝑟 𝑋𝑡 = 𝜆  (see Theorem 5.1.3 and 5.1.4), we get the 

following results regarding the stationary process mean and variance for MPT(1). 

Proposition 3.3.1 (Stationary process mean): Let  𝑋𝑡  be a stationary process with 

Poisson  𝜆 . For  𝐸(𝑋0) < ∞, 𝛼 ∈  0,1 ,𝜙 ∈ (0,1). If 𝐸 𝑋0 = 𝜆, then 𝐸 𝑋𝑡 = 𝜆 for 

𝑡 ≥ 0. 

 

Proposition 3.3.2 (Stationary process variance): Let  𝑋𝑡  be a stationary process with 

Poisson  𝜆  with 𝛼 ∈  0,1 ,𝜙 ∈ (0,1), then 𝑣𝑎𝑟 𝑋𝑡 = 𝜆 for 𝑡 ≥ 0. 

 

Particularly, the stationarity of Poisson MPT(1) will be discussed in the next section. 

Now, we present the regression properties of MPT(1) process. 

Theorem 3.3.2 (Conditional pgf of MPT(1) Process): Let 𝑋𝑡  be a stationary process 

following Definition 3.1.1. By taking 𝐺𝑋𝑡 |𝑋𝑡−1
 𝑧 = 𝐸 𝑧𝑋𝑡 |𝑋𝑡−1 , it is easy to obtain the 

conditional pgf of the MPT(1) process which is given by 

 

𝐺𝑋𝑡 |𝑋𝑡−1
 𝑧 = 𝜙 1 − 𝛼 + 𝛼𝑧 𝑋𝑡−1 +  1 − 𝜙 𝐺𝜀𝑡(𝑧) (3.4) 

Proof: 

Conditional pgf of 𝑋𝑡|𝑋𝑡−1 is given by 

 

 𝐺𝑋𝑡 |𝑋𝑡−1
(𝑧) = 𝐸 𝑧𝑋𝑡 |𝑋𝑡−1  

  = 𝜙𝐸 𝑧𝛼∘𝑋𝑡−1 |𝑋𝑡−1 + (1 − 𝜙)𝐸 𝑧𝜀𝑡 |𝑋𝑡−1  

  = 𝜙 1 − 𝛼 + 𝛼𝑧 𝑋𝑡−1 +  1 − 𝜙 𝐺𝜀𝑡(𝑧) 

 

The corresponding conditional probability function takes the form 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙  
𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 +  1 −𝜙 𝑃(𝜀𝑡 = 𝑖) (3.5) 

 

 

for all 𝑡 ∈ 0, 1, 2,….  
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Corollary 3.3.1 (Conditional Moments of MPT(1) Process): The conditional 

expectation of 𝑋𝑡  given 𝑋𝑡−1 is  

 

𝐸 𝑋𝑡 𝑋𝑡−1 = 𝜙𝛼 𝑋𝑡−1 +  1 − 𝜙 𝐸(𝜀𝑡) 

 

(3.6) 

 

and the conditional variance is defined by 

 

𝑉𝑎𝑟 𝑋𝑡 𝑋𝑡−1 = 𝐸 𝑋𝑡
2|𝑋𝑡−1 − 𝐸 𝑋𝑡|𝑋𝑡−1 

2 

 

(3.7) 

 

where 𝐸 𝑋𝑡
2|𝑋𝑡−1 =  𝑥𝑡

2∞
𝑥𝑡=0 𝑃 𝑋𝑡|𝑋𝑡−1 ; 𝑃 𝑋𝑡|𝑋𝑡−1  is the conditional probability 

in Eq. (3.5). The formulation of conditional mean and variance is determined based on 

the marginal assumption of random variable𝑋𝑡 . See the following examples. The 

autocorrelation is important in measuring the serial dependence. It can be easily 

obtained using Eq. (3.7). Note that 

 

𝐸 𝑋𝑡𝑋𝑡−1 𝑋𝑡−1 = 𝜙𝛼𝑋𝑡−1
2 + (1 − 𝜙)𝜇𝜀𝑋𝑡−1 

 

(3.8) 

 

where 𝜇𝜀 = 𝐸(𝜀𝑡) and 𝐸 𝑋𝑡 =
(1−𝜙)𝜇𝜀

1−𝜙𝛼
, and hence 

 

𝐸 𝑋𝑡𝑋𝑡−1 = 𝜙𝛼𝐸 𝑋𝑡−1
2  + (1 − 𝜙)𝜇𝜀

(1 − 𝜙)𝜇𝜀
1 − 𝜙𝛼

 (3.9) 

 

 

Lemma 3.3.1 (Lag-one Autocovariance Function): Let 𝑋𝑡  be a process follows 

Definition 3.1.1, the lag-one ACVF is given by 

 

𝐶𝑜𝑣 𝑋𝑡 ,𝑋𝑡−1 = 𝜙𝛼𝑉𝑎𝑟(𝑋𝑡−1) 

 

(3.11) 

 

Lemma 3.3.2 (Lag-one Autocorrelation Function): Let 𝑋𝑡  be a process follows 

Definition 3.1.1, the lag-one ACF is given by 

 

𝑐𝑜𝑟𝑟 𝑋𝑡 ,𝑋𝑡−1 = 𝜌𝑥 1 = 𝜙𝛼 

 

(3.12) 
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It can be observed that the ACVF and ACF have similar expression as in the mixture 

model in Eq. (2.13). By induction, we obtained the lag-ℎ ACF of the MPT(1) process to 

be 𝜌𝑥 ℎ = 𝑐𝑜𝑟𝑟 𝑋𝑡 ,𝑋𝑡−ℎ =  𝜙𝛼 |ℎ| . Since  (𝜙𝛼)|ℎ| < ∞∞
ℎ=−∞ , the spectral density 

function of the process is given by 

𝑓𝑋𝑋  𝜔 =
1

2𝜋
 𝛾 ℎ 𝑒−𝑖ℎ𝜔
∞

ℎ=−∞

=
𝛾0

2𝜋

1 − (𝜙𝛼)2

1 + (𝜙𝛼)2 − 2𝜙𝛼𝑐𝑜𝑠𝜔
 (3.13) 

 

where 𝜔 ∈ (−𝜋,𝜋]  and 𝛾 ℎ = 𝐶𝑜𝑣(𝑋𝑡 ,𝑋𝑡−ℎ) . The joint pgf of the process is 

significant to define the time-reversibility of the process.  

 

Theorem 3.3.3 (Joint pgf of MPT(1) Process): Let 𝑋𝑡  be a process following Definition 

3.1.1, the joint pgf is given by 

 

𝐺𝑋𝑡 ,𝑋𝑡−1
 𝑧1, 𝑧2 = 𝜙𝐺𝑋 𝑧2 1 − 𝛼 + 𝛼𝑧1  +  1 − 𝜙 𝐺𝜀(𝑧1)𝐺𝑋(𝑧2) (3.14) 

  

Proof:  

𝐺𝑋𝑡 ,𝑋𝑡−1
(𝑧1, 𝑧2) = 𝐸 𝑧1

𝑋𝑡  𝑧2
𝑋𝑡−1  

 = 𝜙𝐸 𝑧𝛼∘𝑋𝑡−1  𝑧2
𝑋𝑡−1 + (1 − 𝜙)𝐸 𝑧𝜀𝑡  𝑧2

𝑋𝑡−1  

 = 𝜙𝐸 𝑧2
𝑋𝑡−1𝐸 𝑧1

𝛼∘𝑋𝑡−1 |𝑋𝑡−1  +  1 − 𝜙 𝐸 𝑧1
𝜀𝑡)𝐸(𝑧2

𝑋𝑡−1  

 = 𝜙𝐸 𝑧2 1 − 𝛼 + 𝛼𝑧1 
𝑋𝑡−1 +  1 − 𝜙 𝐺𝜀𝑡(𝑧1)𝐺𝑋𝑡−1

(𝑧2) 

 = 𝜙𝐺𝑋𝑡−1
 𝑧2 1 − 𝛼 + 𝛼𝑧1  +  1 − 𝜙 𝐺𝜀𝑡(𝑧1)𝐺𝑋𝑡−1

(𝑧2) 

 

The innovation term still remains unknown thus far. In the next section, we show 

some examples by fitting the power series distributions like Poisson, Negative Binomial 

and Binomial in MPT(1) model. 𝜇𝜀  and 𝜍𝜀
2  together with their respective discrete 

marginal distribution will be defined accordingly. Also, the corresponding simulated 

sample paths will be generated. 

Univ
ers

ity
 of

 M
ala

ya



34 
 

3.4 MPT(1) Model with Discrete Marginal Distributions    

The preliminary study begins with simple marginal distributions. Infinite range of 

discrete marginal distributions have been applied to MPT(1) model. Important 

fundamental and regression properties will be discussed. Particularly, Poisson, Negative 

Binomial and new Geometric (Ristic et al., 2009) will be involved in the study. The 

discussion on finite range of Binomial marginal will also be presented to show that the 

proposed model is compatible. Next, the expression of several discrete marginals fitted 

in the MPT(1) model have been performed. 

3.4.1 Poisson Process 

Theorem 3.4.1 (Stationary Poisson MPT(1) Process) Let 𝑋𝑡  be a process following 

MPT(1) model of Definition 2.1.1. Then 𝑋𝑡  is a stationary process and possesses a 

unique stationary Poisson marginal with mean (𝜆). The conditional pgf of 𝑋𝑡|𝑋𝑡−1 is 

given by 

𝐺𝑋𝑡 |𝑋𝑡−1
 𝑧 =  𝜙 1 − 𝛼 + 𝛼𝑧 𝑋𝑡−1 + 𝑒𝜆(𝑧−1) − 𝜙𝑒𝜆𝛼 (𝑧−1)  

  

with innovation process 𝜀𝑡  has pgf given by 

 

𝐺𝜀𝑡
 𝑧 =

1

1 − 𝜙
 𝑒𝜆(𝑧−1) − 𝜙𝑒𝜆𝛼 (𝑧−1)  (3.15) 

 

Example 3.4.1 (Poisson MPT(1) Model): Let 𝑋𝑡  be a stationary process with Poisson 

marginals 𝑃𝑜𝑖(𝜆). The transition probability is given by 

 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙  
𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 +  1 − 𝜙 𝑃 𝜀𝑡 = 𝑖   

 

where the pmf of innovation process 𝜀𝑡  is  

𝑃 𝜀𝑡 = 𝑖 =
1

1 − 𝜙
 
𝑒−𝜆𝜆𝑖

𝑖!
− 𝜙

𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
  𝑖 = 0,1,… (3.16) 
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and the condition 𝑒𝜆(1−𝛼) <
1

𝜙
 is necessary for (3.16) to be defined as positive. The 

moments of innovation process 𝜀𝑡  are 

 

𝐸 𝜀𝑡 =  
1 − 𝛼𝜙

1 − 𝜙
 𝜆 = 𝜇𝜀  

 

𝑉𝑎𝑟 𝜀𝑡 =
1

1 − 𝜙
 𝜆2 + 𝜆 −

𝜙

1 −𝜙
 𝜆𝛼 + 𝜆2𝛼2 −  

1 − 𝛼𝜙

1 − 𝜙
 

2

𝜆2 
 

 

 

Corollary 3.4.1 (Conditional Moments of Poisson MPT(1) Process): Let 𝑋𝑡  be a 

process following Theorem 3.4.1, the conditional moments are 

(a) 𝐸 𝑋𝑡 𝑋𝑡−1 = 𝜙𝛼𝑋𝑡−1 +  1 − 𝛼𝜙 𝜆 

(b) 𝑣𝑎𝑟 𝑋𝑡 𝑋𝑡−1 = 𝜙𝛼2 1 −𝜙 𝑋𝑡−1
2 + 𝜙𝛼  1 − 𝛼 − 2 1 − 𝜙𝛼 𝜆 𝑋𝑡−1 +  1 − 𝜙𝛼 𝜆 

                                 +𝜙𝛼(2 − 𝛼(1 −𝜙))𝜆2 

(3.17) 

  

Poisson process applied to time series models are often taken as benchmark in real life 

applications due to its simplicity for possessing single parameter. We generate the 

realizations of Example 3.4.1 with stem built-in function in Matlab 2013a to compare 

the paths with Figure 2.3.1 in Chapter 2. The sample path of Figure 3.4.1 gives better 

and reasonable sequences for time series modelling.  

 

 

Figure 3.4.1: The realizations by Poisson MPT(1) process with  

parameters 𝝓 = 𝟎.𝟓, 𝝀 = 𝟓.𝟎,𝜶 = 𝟎.𝟗 

0 10 20 30 40 50 60 70 80 90 100
0

5
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Figure 3.4.2 shows some sample paths generated by Example 3.4.1 with the aids of 

inverse transform method. Samples of size 100 have been generated with some arbitrary 

parameter values: 𝜆 = 1.0,2.0,3.0;  𝛼 = 0.3, 0.5;  𝜙 = 0.1, 0.2 . The sample paths of 

Poisson MPT(1) process are generated through inverse transform method  using the 

cumulative distribution of Example 3.4.1. Histogram in Figure 3.4.2 shows that for a 

larger 𝜆 , larger count values are involved, while for small 𝜆  we tend to get high 

frequencies of small counts. Figure 3.4.3 presents the pmf of Poisson MPT(1) process 

with several combinations of parameter values. It can be seen that the varying of 

parameter values determines different shapes of the distribution. The distribution is 

long-tailed with zero probability when 𝑥 is more than 8. 
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Figure 3.4.2: Simulated sample paths and histogram of Poisson MPT(1) process 

for 𝝀 = 𝟏.𝟎,𝟐.𝟎,𝟑.𝟎;  𝜶 = 𝟎.𝟑,𝟎.𝟓;  𝝓 = 𝟎.𝟏,𝟎.𝟐 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 3.4.3: Simulated probability mass function with various combination of 

parameters. x-axis represents count data (𝒙) and y-axis represents pmf. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11

lambda=0.5

lambda=1.0

lambda=1.5

lambda=2.0

lambda=2.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8

alpha=0.1

alpha=0.3

alpha=0.5

alpha=0.7

alpha=0.9

Probability mass function ϕ =0.1, λ=1.0 and α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7

phi=0.1

phi=0.3

phi=0.5

phi=0.7

phi=0.9
Univ

ers
ity

 of
 M

ala
ya



39 
 

3.4.2 Negative Binomial Process 

Example 3.4.2 (Negative Binomial MPT(1) Model): Let  𝑋𝑡  be a process with 

Negative Binomial marginals, 𝑁𝐵 𝑘,𝑃 ,𝑘 > 0,𝑃 > 0  and 𝑄 = 1 + 𝑃 . Then the 

innovation process 𝜀𝑡  has pgf given by 

 

𝐺𝜀𝑡
 𝑧 =

1

1 −𝜙
 (1 + 𝑃 − 𝑃𝑧)−𝑘 − 𝜙(1 + 𝛼𝑃 − 𝛼𝑃𝑧)−𝑘   

 

(3.18) 

 

To ensure positive innovation term, the marginal distribution must fulfil the condition of 

𝜙 <  
1+𝑃

1+𝛼𝑃
 
−𝑘

. Consequently the mean for innovation term is 

 

𝐸 𝜀𝑡 =  
1 − 𝛼𝜙

1 − 𝜙
 𝑘𝑃 

 

(3.19) 

 

and the variance is 

 

𝑉𝑎𝑟 𝜀𝑡 =
1

1 − 𝜙
 (𝑘𝑃)2 + 𝑘𝑃(1 + 𝑃) −

𝜙

1 − 𝜙
 𝛼𝑘𝑃 + 𝛼2(𝑘𝑃)2 

−  
1 − 𝛼𝜙

1 −𝜙
 

2

(𝑘𝑃)2 

 

(3.20) 

 

The conditional expectation is simply 

 

𝐸 𝑋𝑡 𝑋𝑡−1 = 𝜙𝛼𝑋𝑡−1 +  1 − 𝛼𝜙 𝑘𝑃 

 

 

and 𝐸 𝑋𝑡
2|𝑋𝑡−1 = 𝜙𝛼 1 − 𝛼 𝑋𝑡−1 + 𝜙𝛼2𝑋𝑡−1

2 + 𝑘𝑃 1 + 𝑃(1 + 𝑘) − 𝜙𝑘𝛼𝑃 1 +

𝛼𝑃(1 + 𝑘)  can be used to form conditional variance. Figure 3.4.4 and Figure 3.4.5 

present the simulated sample paths and frequency histogram of Negative Binomial 

MPT(1) process, as well as the probability mass functions with arbitrary parameter 

values. When 𝑟  is increased, the mean of the simulated data shifted to the right, 

resulting large sample mean. Also, we tend to obtain larger count values. Second and 
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third histogram in Figure 3.4.4 show that the NB MPT(1) model seems to detect 

multimodality in the simulated data. For Geometric MPT(1) process, we simply assign 

𝑘 = 1. Figure 3.4.5 presents the simulated path for different value of 𝑃. For large value 

of 𝑃, the model gives either 0 or 1 for counts. 

 

Comparatively with Example 2.1.2, the form of innovation process in Example 3.4.2 

gives simpler expression for the fitting of Negative Binomial marginal distribution. For 

this point of view, the proposed NB MPT(1) process can be very useful in real 

application. We are always reserved to seek for simpler and better models as our first 

aim.  
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Figure 3.4.4: Simulated sample paths and frequency histogram  

of Negative Binomial MPT(1) process for 𝝓 = 𝟎.𝟏;  𝜶 = 𝟎.𝟓;𝑷 = 𝟎.𝟑; 
𝒌 = 𝟏.𝟎,𝟐.𝟎,𝟑.𝟎. 
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Figure 3.4.5: Simulated sample paths and frequency histogram of Negative 

Binomial MPT(1) process for 𝝓 = 𝟎.𝟏;  𝜶 = 𝟎.𝟓; 
𝑷 = 𝟎.𝟏,𝟎.𝟑,𝟎.𝟓,𝟎.𝟕,𝟎.𝟗;𝒌 = 𝟑.𝟎 
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3.4.3 New Geometric Process 

Example 3.4.3 (New Geometric MPT(1) Process): Let  𝑋𝑡  be a process with new 

Geometric marginal 𝐺𝑒𝑜(1,𝑝). Then the pgf of the innovation term is given by 

𝐺𝜀𝑡
 𝑧 =

1

1 − 𝜙
 

1

1 + 𝑝 − 𝑝𝑧
− 𝜙  

1 + 𝛼 − 𝛼𝑧

1 + 𝛼 1 + 𝑝 − 𝛼 1 + 𝑝 𝑧
   

 

(3.21) 

 

It is easy to derive the conditional pmf of (3.21) by multiple derivatives which is given 

by  

𝑃 𝜀𝑡 = 0 =
1

1 − 𝜙
 

1

1 + 𝑝
− 𝜙

1 + 𝛼

1 + 𝛼(1 + 𝑝)
   

𝑃 𝜀𝑡 = 𝑙 =
1

1 − 𝜙
 

𝑝𝑙

(1 + 𝑝)𝑙+1
− 𝛼𝑙𝜙𝑝  

(1 + 𝑝)𝑙−1

{1 + 𝛼(1 + 𝑝)}𝑙+1
       𝑙 = 1,2,3,… 

 

(3.22) 

 

with the mean and variance of the innovation process are 

𝐸 𝜀𝑡 =  
1 − 𝛼𝜙

1 − 𝜙
 𝑝 (3.23) 

 

and 

𝑉𝑎𝑟 𝜀𝑡 =
2𝑝2

1 − 𝜙
−

𝜙

1 − 𝜙
𝛼2𝑝 1 + 𝑝 −

 1 − 𝜙𝛼 𝑝

1 − 𝜙
 1 −

 1 − 𝜙𝛼 𝑝

1 − 𝜙
  (3.24) 

 

One suggestion to obtain the conditional mean and variance of new Geometric is via 𝑘-

step-ahead conditional statistical measures with 𝑘 = 1. The form is relatively complex 

and it is omitted here and could be considered for further research work. The discrete 

marginals expressed in Examples 3.4.1-3.4.3 are appropriate to analyze overdispersed 

data. From Figure 3.4.5 we observe that the lower 𝑝 value in new Geometric generates 

low count data, for an example 𝑝 = 0.3 generates 𝑥 = 0, 1, 2. For high value of 𝑝 = 0.9 

it generates the count data 𝑥 = 0, 1,… , 7. The simulated pmf provides similar pattern 

for fixed 𝜙  and 𝛼 . The patterns may differ for different values of the parameters. 

Likewise, the new Geometric MPT(1) process has a long-tailed distribution. 
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Figure 3.4.6: Simulated sample paths and frequency histogram of  

New Geometric MPT(1) process for 𝝓 = 𝟎.𝟑;  𝜶 = 𝟎.𝟓;𝒑 = 𝟎.𝟑,𝟎.𝟕,𝟎.𝟗 
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3.4.4 Binomial Process 

Example 3.4.4 (Binomial MPT(1) Process): Let  𝑋𝑡  be a process with Binomial 

marginals 𝐵𝑖𝑛(𝑁,𝑝) , 𝑁  is a positive integer and 0 < 𝑝 < 1 . Then the innovation 

process 𝜀𝑡  has pgf given by 

𝐺𝜀𝑡
 𝑧 =

1

1 − 𝜙
  
𝑁
𝑖
 𝑝𝑖 1 − 𝑝 𝑛−𝑖 − 𝜙  

𝑁
𝑖
  𝛼𝑝 𝑖 1 − 𝛼𝑝 𝑛−𝑖 

 

 (3.25) 

 

Similar to Negative Binomial MPT(1) process, the positive innovation term of Binomial 

MPT(1) must fulfil the condition of 𝜙 <  
1−𝑝

1−𝛼𝑝
 
𝑁

. The mean and variance of innovation 

process can be obtained from Eq. (3.25) to arrive at 

𝐸 𝜀𝑡 =  
1 − 𝛼𝜙

1 −𝜙
 𝑁𝑝 (3.26) 

 

𝑉𝑎𝑟 𝜀𝑡 =
1

1 − 𝜙
 (𝑁𝑝)2 + 𝑁𝑝𝑞 −

𝜙

1 − 𝜙
  𝑁𝛼𝑝 2 + 𝑁𝛼𝑝(1 − 𝛼𝑝) 

−  
1 − 𝛼𝜙

1 − 𝜙
 

2

(𝑁𝑝)2 

 

 

(3.27) 

 

The conditional mean is given by  

𝐸 𝑋𝑡 𝑋𝑡−1 = 𝜙𝛼𝑋𝑡−1 +  1 − 𝛼𝜙 𝑁𝑝  

 

and the conditional variance can be obtained via  

 

𝐸 𝑋𝑡
2 𝑋𝑡−1 = 𝜙𝛼𝑋𝑡−1  1 − 𝛼 + 𝛼𝑋𝑡−1 + 𝑁𝑝  1 − 𝑝 + (𝑁𝑝) 

− 𝜙𝑁𝛼𝑝  1 − 𝛼𝑝 + 𝑁𝛼𝑝  

 

and conditional expectation is as shown. In similar way we generate the realizations by 

Binomial MPT(1) model which is shown in Figure 3.4.6 and Figure 3.4.7. Similarly, 

Figure 3.4.6 shows that the larger sample sizes produce larger counts. One can also see 
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the mixture of two binomial distributions presents bell shaped distribution when 𝑁, the 

sample size, is increased. 

 

Unlike the Binomial AR(1) model as defined in Definition 2.1.3, the proposed 

Binomial MPT(1) model holds the similar expression of Definition 3.1.1. Majority 

properties are easily shared for any marginal fitting. The only concern is that for 

Binomial case, we consider the domain of 𝑥 takes 𝑥 ∈ [0,𝑁]. The real data applications 

of discrete marginal distributions in MPT(1) process will be shown in the later chapter. 

See Chapter 7 for the comparison with the currently existing discrete time series models. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.4.7: Simulated sample paths and frequency histogram of Binomial 

MPT(1) process for 𝜶 = 𝟎.𝟑;𝝓 = 𝟎.𝟑;𝒑 = 𝟎.𝟑; (a) 𝑵 = 𝟓, (b) 𝑵 = 𝟏𝟎, (c) 𝑵 = 𝟐𝟎
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3.5 Concluding Remarks 

Chapter 3 proposes a discrete time series model arising from the combination of the 

existing binomial thinning (or thinning) and Pegram’s operators. The mixture of 

thinning and Pegram’s operators is introduced with the first order AR process, 

abbreviated by MPT(1), as for the preliminary study. Model stationarity has been 

discussed. The proposed model has also simpler interpretation (compare Example 3.4.2 

and Example 2.1.2) and able to accommodate Binomial distribution by holding the 

similar properties as the infinitely divisible cases. Furthermore, mixture model is 

popular with catering to the multimodality in the data. It appears as a new and an 

important contribution in the community of discrete time series models.  
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CHAPTER 4: PARAMETER ESTIMATION 

4.0 Outline 

Parameter estimation is one important aspect in statistical analysis. This chapter 

discusses the likelihood theory and estimating functions. The well-known MLE via EM 

algorithm and CLS are particularly discussed in Section 4.1. Design of simulation study 

is explained in Section 4.2. Furthermore, we study the robustness of MLE to outliers 

according to the contamination schemes. The breakdown point of the estimator will also 

be discussed. The results have been tabulated in Section 4.3. In Section 4.4, we derive 

an explicit expression of the score function and the expected Fisher information matrix 

for Poisson MPT(1) process. These expressions are very useful for coherent forecasting 

which will be elaborated in the next chapter. Section 4.5 presents the simulation study 

descriptive measures of forecasting accuracy. Section 4.6 concludes.  

4.1 Likelihood Theory and Estimating Functions 

A unified approach is introduced in this section to perform estimation through 

applying the estimating functions. The standard estimating techniques have been 

provided by Newey and McFadden (1994), such as the popular maximum likelihood, 

generalized method of moments, and minimum distance. Klimko and Nelson (1978) 

studied the CLS method in stochastic processes. The conditions for a valid and regular 

estimating function are clear. It can be found elsewhere but given here as the initial 

introduction of the section for parameter estimation. Given a valid and regular 

estimating function for all the estimators 𝜃 =  𝜃1,𝜃2 ,… ,𝜃𝑛 , it must satisfy (i) the 

covariance matrix is positive definite, (ii) the function is almost surely differentiable 

with respect to the components of 𝜃 and, (iii) the function is non-singular. One should 

notice that the proposed model in Chapter 3 fulfil the conditions. Throughout this thesis, 
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MLE via EM algorithm have been studied for parameter estimation. The CLS method is 

used for comparison purpose. An extensive simulation results have been tabulated here. 

4.1.1 Expectation-Maximization (EM) Algorithm  

To obtain the parameter estimation by MLE via EM algorithm, we first define the 

log-likelihood function. Let the marginal mass function 𝑝𝑗 , 𝑗 = 0, 1,… , and let 𝜙 ∈

(0, 1), denote the log-likelihood function 𝐿 as follows. 

log 𝐿 = log𝑃 𝑋1 + log𝑃(𝑋𝑡|𝑋𝑡−1)

𝑇

𝑡=2

 (4.1) 

 

where the conditional probability function is defined in Chapter 3, Eq. (3.5). 

Differentiate Eq. (4.1) and letting it equal to zero to solve the equation. The MLE can be 

easily solved numerically using mle in Matlab 2013a built-in package, by defining the 

objective function according to one’s preference. Here, Eq. (4.1) is the objective 

function for our model. The initial value can be obtained via method of moments to 

reduce the number of iterations. 

MLE works for majority likelihood functions. However, solving Eq. (4.1) with the 

built-in function may not work for all marginals considered in MPT(1) model, 

especially estimating the parameter of mixing weight. To estimate the parameters for 

MPT(1) model which is a finite mixture distribution, we consider using MLE via EM 

algorithm because it is known to work well for finite mixture distributions. EM 

algorithm comprises two steps; the expectation step (E-step) and the maximization step 

(M-step). The EM algorithm implemented here follows Karlis and Xekalaki (1999, 

Section 2) which is described as such:  

Suppose a 𝑘-finite mixture of a distribution with probability density function 𝑔(𝑥) 

and components 𝑓(𝑥|𝜃) is defined by 
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𝑔 𝑥 =  𝜙𝑗𝑓(𝑥|𝜃𝑗 )

𝑘

𝑗=1

 

 

(4.2) 

 

where 𝜙𝑗 > 0 for 𝑗 = 1,… ,𝑘;   𝜙𝑗 = 1𝑘
𝑗=1  are the mixing proportions and 𝜃𝑗  are the 

parameters for each subpopulation. The mixing proportion 𝜙𝑗  can be regarded as the 

probability that a randomly selected observation belongs to the 𝑗-th subpopulation. The 

algorithm is 

 

E-step: With the current estimates 𝜙𝑗
𝑜𝑙𝑑  and 𝜇(𝜃𝑗

𝑜𝑙𝑑 ) calculate 

𝑤𝑖𝑗 =
𝑝𝑗
𝑜𝑙𝑑 𝑓 𝑥𝑖  𝜃𝑗

𝑜𝑙𝑑  

𝑔 𝑥𝑖 
,   𝑖 = 1,… ,𝑘, 𝑗 = 1,… ,𝑘 (4.3) 

 

M-step: Obtain the new estimates of the parameters 𝜇 𝜃𝑗   and 𝜙𝑗  from 

 

𝜇 𝜃𝑗
𝑛𝑒𝑤  =

 𝑤 𝑖𝑗 𝑥𝑖
𝑛
𝑖=1

 𝑤 𝑖𝑗
𝑛
𝑖=1

   and    𝜙𝑗
𝑛𝑒𝑤 =

 𝑤 𝑖𝑗
𝑛
𝑖=1

𝑛
     𝑗 = 1,… ,𝑘 (4.4) 

 

It is well-known that the mean of a mixture is the weighted mean of the means of all 

components weighted by the mixing proportion. We look into both equations 

particularly. Eq. (4.4) consists two parts of estimation; the parameters of the 

distributions and the mixing proportions. Karlis and Xekalaki (1999) suggested that the 

mean parameters of distributions can be avoided to reduce the calculation by almost 

100/(2𝑘 − 1)% . For an example, the mean parameter of Poisson distribution is just 

simply 𝜆. For MPT(1) model, it is a finite mixture model formulated by a thinning 

process  𝛼 ∘ 𝑋𝑡   and an innovation term  𝜀𝑡 . The thinning process is a compound 

distribution and so the mean parameter is formed by the convolution of two 

distributions. Sprott (1983) discussed the convolution of Poisson and Binomial 

distribution. In the paper, he explained clearly that one of the parameter can be 

estimated from the first-moment equation. This can be used to instantly eliminate one of 
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the parameters, and then another parameter can be estimated iteratively. Al-Osh and 

Alzaid (1987) adopted the idea in estimating the parameters for INAR(1) model. It is a 

typical representation for the convolution of Poisson-Binomial distribution which 

contains two parameters to be estimated. Similar approach has been considered to solve 

the convolution of mean parameter 𝜆𝛼 (See Example 3.4.1) in Poisson MPT(1) process. 

After that, the mixing weight can be found iteratively using the right-hand-side formula 

in Eq. (4.4), until convergence is reached with a margin of error of 0.001. An effective 

initial value is suggested to reduce the computation time. The use of method of 

moments (Fruman and Lindsay, 1994) appears as a good method to obtain initial value 

for MLE. See also McLachlan and Peel (2000) for an in-depth discussion of EM 

algorithm. 

4.1.2 Conditional Least Squares Method 

CLS method is another popular method for estimation. The CLS estimates are 

obtained by minimizing  

𝑄 𝒙;𝛼,𝜙, 𝜆 =   𝑋𝑡 − 𝐸(𝑋𝑡|𝑋𝑡−1) 2

𝑛

𝑡=2

 (4.5) 

 

The conditional expectation can be obtained as in Eq. (3.6) by setting 𝐸 𝜀𝑡 = 𝜇𝜀 . 

Parameter estimation can be done by minimizing Eq. (4.5) as an optimization problem. 

However, the simulation results indicated that the CLS method fails to estimate the 

parameter of mixing proportion (𝜙) because of the inseparable nature of parameters 𝜙 

and 𝛼 in ACVF of Eq. (3.11).  

 

Remark: 

The discrete time series models such as INAR and Pegram’s AR(1) models hold some 

similar characteristics with continuous AR(1) model. This is due to the fact that they 
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share common estimation methods. Besides MLE and CLS methods, YW Equation has 

been used to estimate the parameters for existing discrete-valued time series models. 

See Brockwell and Davis (1987) and Chapter 2, Section 2.4.2 for more information. 

However, YW Equation cannot be applied for Poisson MPT(1) model for similar reason 

as encountered by CLS methods. 

4.2 Design of Numerical Study on Parameter Estimation  

Previous section discusses the theory and the estimators for estimating Poisson 

MPT(1) process. To get some relative merits of MLE via EM algorithm and CLS, we 

have done a simulation study for both estimation methods, which are programmed in 

MATLAB on computers (8GB RAM) running Windows Vista. Two types of generated 

data sets are considered as follow. 

4.2.1 Without Contamination 

For the data set without contamination, the data used in the study is generated from 

MPT(1) models. As many as 1000 Monte Carlo samples were generated for each 

sample size 𝑛 ∈ {100, 500, 1000, 5000, 10000}  with different combination of the 

parameters. The standard errors of the estimated parameters are calculated.  Also, we 

considered parallel computing with 4 workers for CLS estimation as it required long 

running time. 

4.2.2 With Contamination 

For the data sets with outliers, we repeated the data generation as mentioned in 

subsection 4.2.1, and adding in the outliers according to the contamination scheme: A 

small amount of outliers (1% with respect to the sample size n) are placed further away 

from the rest of the data- (i) 3 counts and (ii) 6 counts away from the maximum of 𝑋, 

that is at the positions of max 𝑋 + 3 and max 𝑋 + 6.  
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Then, we examined the breakdown point of MLE for Poisson MPT(1) model. The 

breakdown point here is defined as the MLE estimation for 𝜆 deviates by a magnitude 

exceeding 1. We focused only on the breakdown point of MLE here, since the 

simulation results without the presence outliers indicate the incompetency of CLS. See 

the results in Table 4.3.1. The percentage of outliers is increased gradually starting from 

1% until MLE breaks down. For a more comprehensive study, two types of outlier have 

been considered: Additive outliers (AO) and Innovative outliers (IO). For both outliers 

we adopted the definitions from Barczy et al. (2010) which are provided for readers’ 

convenience. 

Definition 4.2.1 (Additive Outliers Poisson INAR(1)): A stochastic process (𝑌𝑘)𝑘∈ℤ+
 is 

called an INAR(1) model contaminated with finitely many additive outliers if 

 

𝑌𝑘 = 𝑋𝑘 + 𝛿𝑘 , 𝑠𝑖
𝜃𝑖

𝐼

𝑖=1

,     𝑘 ∈ ℤ+ 

 

(4.6) 

 

where  𝑋𝑘 𝑘∈ℤ+
is an INAR(1) process given by Eq. (2.2), 𝐸𝑋0

2 < ∞,𝐸𝜀1
2 <

∞,𝑃 𝜀1 ≠ 0 > 0,  and 𝐼 ∈ ℕ, 𝑠𝑖 ,𝜃𝑖 ∈ ℕ, 𝑖 = 1,… , 𝐼  such that 𝑠𝑖 ≠ 𝑠𝑗  if 𝑖 ≠ 𝑗, 𝑖, 𝑗 =

1,… , 𝐼. In (4.6), 𝜃𝑖 , 𝑖 = 1,… , 𝐼, represents the 𝑖th additive outlier's size and 𝛿𝑘 , 𝑠𝑖
 is an 

impulse taking the value 1 if 𝑘 = 𝑠𝑖  and 0 otherwise.  

 

Definition 4.2.2 (Innovational Outliers Poisson INAR(1)): Let  𝜀𝑙 𝑙∈ℕ  be an i.i.d. 

sequence of non-negative integer-valued random variables. A stochastic process 

(𝑌𝑘)𝑘∈ℤ+
 is called an INAR(1) model with finitely many innovational outliers if  

𝑌𝑘 =  𝜉𝑘 ,𝑗+𝜂𝑘

𝑌𝑘−1

𝑗=1

,     𝑘 ∈ ℕ 

 

(4.7) 

where for all 𝑘 ∈ ℕ,  𝜉𝑘 ,𝑗  𝑗 ∈ℕ  is a sequence of i.i.d. Bernoulli random variable with 

mean 𝛼 ∈ (0,1) such that these sequences are mutually independent and independent of 
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the sequence  𝜀𝑙 𝑙∈ℕ , and 𝑌0  is a non-negative integer-valued random variable 

independent of the sequence  𝜉𝑘 ,𝑗  𝑗 ∈ℕ ,𝑘 ∈ ℕ and  𝜀𝑙 𝑙∈ℕ, and 

 

𝜂𝑘 ∶= 𝜀𝑘 + 𝛿𝑘 ,𝑆𝑖
𝜃𝑖

𝐼

𝑖=1

,     𝑘 ∈ ℤ+ 
 

 

where 𝐼 ∈ ℕ and 𝑠𝑖 ,𝜃𝑖 ∈ ℕ, 𝑖 = 1,… , 𝐼, and 𝐸𝑌0
2 < ∞,𝐸𝜀1

2 < ∞,𝑃 𝜀1 ≠ 0 > 0. 

 

In this contamination study, we generate 1000 Monte Carlo samples of each sample 

size 𝑛 = 10000 for each contamination percentage. The contamination data is generated 

from Poisson INAR(1) additive and innovative outliers respectively, in varying 

percentage (𝛿), starting from 1%. We use Eq. (4.6) to generate additive outlier Poisson 

INAR(1)  𝑌𝑘 , where 𝑘 = 1,2,… , 𝛿𝑛 . By looking into Eq. (4.6), we generate the 

Poisson INAR(1) process with parameter 𝜆 = 2.0,𝛼 = 0.7, and we consider that there is 

only one outlier  𝐼 = 1  occurs in the Poisson INAR(1) process, at the known position 

of 𝑠 =
𝛿𝑛

2
 with size Poisson  𝜆 = 4 . For an example, if we consider 𝛿 = 1%, then 

𝑘 = 1,2,… ,100; which means the length of the Poisson INAR(1) additive outlier is 100, 

and the outlier occurs at the position of 𝑠 =
100

2
= 50. When 𝑘 = 𝑠 = 50, the impulse 

taking 1 and the outlier occurs. The rest of 9900 data which are generated from MPT(1) 

process is then combined with 100 data generated by Poisson INAR(1) additive outlier 

to form the contamination data. We do the similar simulation study by increasing the 

contamination percentage. Also, we generate Poisson INAR(1) innovative outlier with 

the similar technique using Eq. (4.7).  

4.3 Simulation Results of Parameter Estimation 

We will present the simulation results by Poisson and Binomial MPT(1) model, 

respectively. The design for simulation study which has been expressed in Section 4.2 is 

applicable to Poisson MPT(1) process. We considered only the design in subsection 
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4.2.1 for Binomial MPT(1) process. Upon each tabulated result there will be a 

conclusive discussion of the numerical study.  

4.3.1 Poisson MPT(1) Model 

The data is generated by Poisson MPT(1) model without contamination. Four 

different combinations of parameters are considered and standard errors are calculated 

along. Besides, the computation time are also compared. There are three conclusions 

that can be highlighted from Table 4.3.1;  

 It is obviously seen that the parameter estimation by EM algorithm is better than 

CLS, 

 As expected, all parameters estimated by EM algorithm converged with the 

smaller standard errors when the sample size increased, 

 Consistency is apparent for EM algorithm, 

 The computation time by EM algorithm is much lower compared with CLS, and 

 CLS method is not able to handle the estimation; the estimation is diverged for 

some parameters. 

 

Next, the numerical study is carried out with the data generated by Poisson MPT(1) 

model. The outliers size of 3 and 6 are placed at the position max 𝑥 + 3 and max 𝑥 +

6 respectively. The sample size of outliers is 1% of each sample size. For comparison 

purpose, the combinations of parameters remain the same. We obtained similar 

conclusions from Table 4.3.2 and Table 4.3.3 as bulleted in the following; 

 The parameters estimated by EM algorithm are not greatly affected by the data 

with outliers, the size of 3 and 6, with respect to 1% of the sample size, added in, 

 Similarly, all parameters estimated by EM algorithm converged with small 

standard errors, 
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 EM algorithm has short computation time compare with CLS method, and 

 CLS method fails to estimate the parameter 𝜙 . 

 

Remark: 

From the tables we know that CLS did not perform well in estimating the parameters. 

The estimation for mixing proportion (𝜙) is even far away from the true values. Also, 

the consistency is not preserved for CLS method. As we mentioned earlier this is due to 

the inseparable parameters 𝜙 and 𝛼 existing in MPT(1) model. We have done the CLS 

method here for comparison purpose. A distinct difference can be observed by 

comparing the current results with the well-known thinning based INAR(1) model and 

Pegram's AR(1); CLS performs well for INAR(1) and Pegram's AR(1) but not for 

MPT(1) model. See Al-Osh and Alzaid (1987) and Biswas and Song (2009) for the 

simulation results of CLS for INAR(1) and Pegram's AR(1) models. 

 

Table 4.3.4 tabulates the outlier handled by Poisson INAR(1) and Pegram's AR (1) 

models. It can be noticed that it shows poor performance for the estimation when the 

outliers are added in. 

Since the MLE via EM algorithm has satisfactory performance in estimating the 

parameters for mixture model, it is therefore of great interest to be acquainted with the 

breakdown point of the MLE by EM algorithm. Both types of outliers presented similar 

pattern and effect in this contamination study as displayed in Figure 4.3.1. The 

parameter deviation involves a slight difference at 10−3 between two types of outliers. 

Figure 4.3.2 shows the deviation percentage of the respective outliers. As expected, the 

deviation increased gradually for all parameters when the outliers are added; it can be 

seen that 𝜆 deviates the most and 𝜙 deviates the least. It is observed that MLE for 𝜆 

deviates by a magnitude exceeding 1 when more than 18% of AOs or 19% of IOs are 

added. As expected, the MLE becomes inefficient when the contamination is increased. 
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Table 4.3.1: Parameter estimates, standard errors (in brackets) by MLE (EM Algorithm) and CLS for simulated Poisson MPT(1) samples 

True values: 

 (𝛼, 𝜆,𝜙) 

EM Algorithm 

 

CLS 

 

Duration (sec) 𝛼 𝑀𝐿  𝜆 𝑀𝐿  𝜙 𝑀𝐿 Duration (sec) 𝛼 𝐶𝐿𝑆 𝜆 𝐶𝐿𝑆 𝜙 𝐶𝐿𝑆 

(0.3, 1.0, 0.4) 

n=100 
97.32 

0.30108 

(0.00280) 

1.00510 

(0.00943) 

0.40030 

(0.00442) 
17213.85 

0.49317 

(0.31235) 

0.96570 

(0.11902) 

0.21409 

(0.22435) 

n=500 300.52 
0.30211 

(0.00056) 

0.99464 

(0.00185) 

0.40119 

(0.00087) 
15125.25 

0.39031 

(0.24149) 

0.99639 

(0.07320) 

0.175513 

(0.24898) 

n=1000 390.25 
0.29977 

(0.00029) 

1.00171 

(0.00098) 

0.40034 

(0.00040) 
17191.15 

0.35965 

(0.24075) 

0.99845 

(0.06147) 

0.16240 

(0.25933) 

n=5000 1530.07 
0.30011 

(0.00015) 

1.00101 

(0.00068) 

0.40020 

(0.00032) 
16946.62 

0.36479 

(0.23597) 

1.00533 

(0.06247) 

0.16384 

(0.25859) 

n=10000 2897.63 
0.30001 

(0.00009) 

1.00011 

(0.00032) 

0.40011 

(0.00029) 
28499.01 

0.26602 

(0.21047) 

1.00492 

(0.03444) 

0.13428 

(0.28188) 

(0.7, 1.0, 0.1) 

n=100 
94.57 

0.71012 

(0.00624) 

0.99300 

(0.00844) 

0.09788 

(0.00314) 
16490.24 

0.48534 

(0.32530) 

0.96557 

(0.12039) 

0.21040 

(0.16319) 

n=500 219.76 
0.70215 

(0.00142) 

0.99896 

(0.00201) 

0.09993 

(0.00048) 
17033.84 

0.38395 

(0.39117) 

1.00082 

(0.07777) 

0.17967 

(0.13444) 

n=1000 377.807 
0.70260 

(0.00065) 

0.99715 

(0.00093) 

0.10627 

(0.00040) 
17356.61 

0.35657 

(0.41223) 

1.00055 

(0.06272) 

0.16751 

(0.12226) 

n=5000 1639.40 
0.69960 

(0.00980) 

1.0008 

(0.01417) 

0.0838 

(0.01653) 
21500.82 

0.29477 

(0.46131) 

1.00432 

(0.04118) 

0.14211 

(0.10602) 

n=10000 3010.70 
0.70020 

(0.00690) 

0.9999 

(0.00994) 

0.0840 

(0.01632) 
27182.26 

0.26580 

(0.48038) 

1.00697 

(0.03643) 

0.13583 

(0.09940) 

(0.3, 2.0, 0.2) 

n=100 
93.87 

0.31179 

(0.00263) 

1.93560 

(0.01630) 

0.19748 

(0.00448) 
15388.35 

0.62023 

(0.39166) 

1.89417 

(0.19194) 

0.15174 

(0.09888) 

n=500 211.91 
0.30817 

(0.00060) 

1.94938 

(0.00380) 

0.19196 

(0.00094) 
15945.23 

0.51679 

(0.31954) 

1.93957 

(0.11821) 

0.12088 

(0.10651) 

n=1000 350.88 
0.30901 

(0.00034) 

1.94241 

(0.00218) 

0.19137 

(0.00057) 
16789.25 

0.48299 

(0.28991) 

1.94673 

(0.10607) 

0.10620 

(0.11173) 

n=5000 1415.73 
0.30012 

(0.00301) 

1.99964 

(0.01980) 

0.18573 

(0.01547) 
20506.58 

0.39616 

(0.24137) 

1.94661 

(0.09018) 

0.09018 

(0.12262) 

n=10000 2631.09 
0.29995 

(0.00201) 

2.00011 

(0.01374) 

0.18625 

(0.01476) 
25731.42 

0.36790 

(0.22824) 

1.94707 

(0.06976) 

0.08241 

(0.12769) 

(0.5, 3.0, 0.1) 

n=100 
96.73 

0.52078 

(0.00402) 

2.89290 

(0.02190) 

0.09567 

(0.00258) 
15490.38 

0.72025 

(0.29239) 

2.86644 

(0.23234) 

0.12346 

(0.08022) 

n=500 219.04 
0.51880 

(0.00104) 

2.89328 

(0.00585) 

0.09508 

(0.00054) 
16008.55 

0.65311 

(0.24833) 

2.90443 

(0.15644) 

0.09521 

(0.05530) 

n=1000 371.67 
0.51665 

(0.00061) 

2.90431 

(0.00347) 

0.09460 

(0.00028) 
16472.98 

0.62293 

(0.24483) 

2.90409 

(0.14280) 

0.08336 

(0.05111) 

n=5000 1508.90 
0.50032 

(0.00411) 

2.99821 

(0.02454) 

0.08654 

(0.01401) 
21708.08 

0.54025 

(0.22151) 

2.90893 

(0.11357) 

0.06530 

(0.05195) 

 

n=10000 
2859.74 

0.50021 

(0.00282) 

2.99884 

(0.01661) 

0.08715 

(0.01343) 
26481.25 

0.50393 

(0.22277) 

2.91778 

(0.09855) 

0.05631 

(0.05508) Univ
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Table 4.3.2: Parameter estimates, standard errors (in brackets) by MLE (EM algorithm) and CLS for Poisson MPT(1) with outlier size of 3  

True values: 

 (𝛼, 𝜆,𝜙) 

EM Algorithm 

 

CLS 

 

Duration (sec) 𝛼 𝑀𝐿  𝜆 𝑀𝐿  𝜙 𝑀𝐿  Duration (sec) 𝛼 𝐶𝐿𝑆  𝜆 𝐶𝐿𝑆  𝜙 𝐶𝐿𝑆 

(0.3, 1.0, 0.4) 

n=100 
100.27 

0.28503 

(0.03165) 

1.06242 

(0.11957) 

0.36817 

(0.05012) 
15553.61 

0.43887 

(0.43811) 

0.96282 

(0.11809) 

0.19115 

(0.23918) 

n=500 241.83 
0.28037 

(0.02316) 

1.07207 

(0.08610) 

0.38204 

(0.02567) 
15193.39 

0.74060 

(0.46548) 

1.05936 

(0.13188) 

0.40607 

(0.10237) 

n=1000 410.06 
0.27903 

(0.02267) 

1.07619 

(0.08307) 

0.38522 

(0.02023) 
16795.51 

0.77690 

(0.49325) 

1.07020 

(0.12351) 

0.45063 

(0.10363) 

n=5000 1846.14 
0.27673 

(0.02364) 

1.08433 

(0.08588) 

0.39172 

(0.01086) 
22581.36 

0.78954 

(0.50928) 

1.08462 

(0.12349) 

0.49853 

(0.12471) 

n=10000 3567.28 
0.27602 

(0.02418) 

1.08701 

(0.08787) 

0.39358 

(0.00832) 
26421.84 

0.80702 

(0.51724) 

1.09617 

(0.12332) 

0.52310 

(0.14234) 

(0.7, 1.0, 0.1) 

n=100 
98.42 

0.66401 

(0.07621) 

1.06494 

(0.12440) 

0.08344 

(0.02231) 
15473.90 

0.45064 

(0.35088) 

0.96274 

(0.11774) 

0.19466 

(0.14907) 

n=500 305.54 
0.65531 

(0.05323) 

1.07044 

(0.08464) 

0.09882 

(0.00667) 
16002.37 

0.75994 

(0.18759) 

1.07657 

(0.14596) 

0.38838 

(0.30542) 

n=1000 380.36 
0.65211 

(0.05162) 

1.07431 

(0.08075) 

0.10064 

(0.00501) 
17765.35 

0.77309 

(0.14468) 

1.07040 

(0.12713) 

0.44848 

(0.35968) 

n=5000 1574.45 
0.64591 

(0.05496) 

1.08392 

(0.08542) 

0.10147 

(0.00303) 
21921.76 

0.80338 

(0.14580) 

1.09627 

(0.13274) 

0.51430 

(0.42110) 

n=10000 2964.63 
0.64402 

(0.05652) 

1.08724 

(0.08808) 

0.10118 

(0.00251) 
27558.60 

0.80869 

(0.14621) 

1.09709 

(0.12716) 

0.52476 

(0.43046) 

(0.3, 2.0, 0.2) 

n=100 
95.23 

0.28984 

(0.02296) 

2.0804 

(0.16681) 

0.18791 

(0.03657) 
15606.21 

0.60658 

(0.37853) 

1.89170 

(0.18454) 

0.13971 

(0.10177) 

n=500 304.24 
0.28773 

(0.01536) 

2.08772 

(0.10943) 

0.19055 

(0.01905) 
16808.02 

0.78412 

(0.50474) 

2.01109 

(0.13873) 

0.28057 

(0.11404) 

n=1000 370.48 
0.28740 

(0.01425) 

2.08876 

(0.10041) 

0.19133 

(0.01437) 
16904.27 

0.79826 

(0.51201) 

2.02302 

(0.13271) 

0.32231 

(0.14359) 

n=5000 1604.23 
0.28591 

(0.01444) 

2.09885 

(0.10121) 

0.19349 

(0.00862) 
20513.52 

0.82262 

(0.53233) 

2.05365 

(0.11908) 

0.37666 

(0.18682) 

n=10000 2796.21 
0.28534 

(0.01496) 

2.10324 

(0.10450) 

0.19477 

(0.00681) 
27001.59 

0.82854 

(0.53635) 

2.05907 

(0.11725) 

0.39616 

(0.20515) 

(0.5, 3.0, 0.1) 

n=100 
89.45 

0.48704 

(0.03132) 

3.09067 

(0.20045) 

0.08645 

(0.02143) 
16819.85 

0.71064 

(0.28448) 

2.845844 

(0.23378) 

0.12228 

(0.07966) 

n=500 300.75 
0.48576 

(0.01895) 

3.09051 

(0.11970) 

0.09200 

(0.01132) 
17052.51 

0.82990 

(0.31256) 

2.98836 

(0.15461) 

0.23274 

(0.13256) 

n=1000 390.45 
0.48431 

(0.01816) 

3.09857 

(0.11376) 

0.09452 

(0.00822) 
18325.65 

0.83910 

(0.32541) 

3.00775 

(0.14958) 

0.27033 

(0.14285) 

n=5000 1499.47 
0.48225 

(0.01835) 

3.11127 

(0.11438) 

0.09833 

(0.00382) 
21499.41 

0.85877 

(0.36901) 

3.02777 

(0.11811) 

0.31093 

(0.21777) 

n=10000 2856.43 
0.48127 

(0.01901) 

3.11717 

(0.09975) 

0.09977 

(0.00288) 
23643.41 

0.85445 

(0.36471) 

3.02381 

(0.11455) 

0.33666 

(0.24216) 
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Table 4.3.3: Parameter estimates, standard errors (in brackets) by MLE (EM algorithm) and CLS for Poisson MPT(1) with outlier size of 6  

True values: 

 (𝛼, 𝜆,𝜙) 

EM Algorithm 

 

CLS 

 

Duration (sec) 𝛼 𝑀𝐿  𝜆 𝑀𝐿  𝜙 𝑀𝐿 Duration (sec) 𝛼 𝐶𝐿𝑆  𝜆 𝐶𝐿𝑆  𝜙 𝐶𝐿𝑆  

(0.3, 1.0, 0.4) 

n=100 
93.00 

0.27660 

(0.03491) 

1.09389 

(0.13720) 

0.37469 

(0.04814) 
15021.44 

0.41283 

(0.26443) 

0.95978 

(0.11643) 

0.18476 

(0.24300) 

n=500 244.27 
0.27270 

(0.02970) 

1.10212 

(0.11247) 

0.39362 

(0.02019) 
14746.51 

0.82893 

(0.02465) 

1.07664 

(0.16834) 

0.53108 

(0.15632) 

n=1000 362.93 
0.27200 

(0.02918) 

1.10405 

(0.10912) 

0.39847 

(0.01309) 
15562.05 

0.84942 

(0.55625) 

1.09342 

(0.17564) 

0.58707 

(0.20020) 

n=5000 1591.60 
0.26947 

(0.03078) 

1.11355 

(0.11467) 

0.40394 

(0.00763) 
19826.49 

0.87964 

(0.58346) 

1.13116 

(0.17649) 

0.63977 

(0.24656) 

n=10000 3432.56 
0.26885 

(0.03129) 

1.11601 

(0.11666) 

0.40531 

(0.00710) 
24272.17 

0.88196 

(0.58549) 

1.13003 

(0.16863) 

0.64964 

(0.25514) 

(0.7, 1.0, 0.1) 

n=100 
94.32 

0.64644 

(0.08112) 

1.09247 

(0.13671) 

0.08432 

(0.02152) 
16127.20 

0.41026 

(0.37136) 

0.96459 

(0.11222) 

0.18747 

(0.14196) 

n=500 315.64 
0.63704 

(0.06862) 

1.10081 

(0.11121) 

0.10004 

(0.00651) 
14997.14 

0.83413 

(0.16903) 

1.06906 

(0.16287) 

0.52997 

(0.43843) 

n=1000 400.16 
0.63471 

(0.06801) 

1.10380 

(0.10907) 

0.10207 

(0.00541) 
15137.46 

0.85039 

(0.17461) 

1.09530 

(0.17291) 

0.58869 

(0.49383) 

n=5000 1595.45 
0.62890 

(0.07172) 

1.11331 

(0.11440) 

0.10222 

(0.00390) 
19329.90 

0.87762 

(0.19059) 

1.12508 

(0.18126) 

0.64578 

(0.54880) 

n=10000 2840.75 
0.62700 

(0.07335) 

1.11667 

(0.1173) 

0.10154 

(0.00312) 
24502.06 

0.88173 

(0.19270) 

1.13516 

(0.17207) 

0.65440 

(0.55712) 

(0.3, 2.0, 0.2) 

n=100 
90.23 

0.28665 

(0.0235) 

2.10333 

(1.1123) 

0.19274 

(0.0366) 
15743.62 

0.56868 

(0.35220) 

1.89503 

(0.18500) 

0.13316 

(0.10310) 

n=500 311.74 
0.2842 

(0.01822) 

2.1133 

(1.11551) 

0.19558 

(0.01711) 
14435.57 

0.83756 

(0.54682) 

2.03249 

(0.16514) 

0.39135 

(0.20743) 

n=1000 390.58 
0.28318 

(0.01801) 

2.12014 

(1.12115) 

0.19759 

(0.01282) 
14990.24 

0.86657 

(0.57287) 

2.04739 

(0.15586) 

0.43808 

(0.24711) 

n=5000 1661.33 
0.28181 

(0.01840) 

2.12952 

(1.12975) 

0.20167 

(0.00611) 
19275.59 

0.87770 

(0.58238) 

2.08366 

(0.15164) 

0.49356 

(0.29803) 

 n=10000 2800.71 
0.28127 

(0.01898) 

2.13382 

(1.13391) 

0.20361 

(0.00611) 
25481.81 

0.88078 

(0.58471) 

2.08288 

(0.14692) 

0.51259 

(0.31639) 

(0.5, 3.0, 0.1) 

n=100 
100.45 

0.48431 

(0.0318) 

3.10727 

(0.2075) 

0.08791 

(0.0204) 
16458.43 

0.70093 

(0.27795) 

2.86616 

(0.23645) 

0.11444 

(0.07312) 

n=500 320.75 
0.48008 

(0.02340) 

3.14966 

(0.14960) 

0.09972 

(0.00784) 
17582.36 

0.85169 

(0.01622) 

3.00236 

(0.00773) 

0.32511 

(0.01065) 

n=1000 395.15 
0.47951 

(0.02240) 

3.12944 

(0.14238) 

0.10212 

(0.00630) 
19214.25 

0.87376 

(0.01206) 

3.02940 

(0.00510) 

0.372904 

(0.00881) 

n=5000 1593.21 
0.47756 

(0.02298) 

3.14174 

(0.14411) 

0.10400 

(0.00601) 
21173.76 

0.89555 

(0.40073) 

3.04691 

(0.14561) 

0.41834 

(0.32179) 

n=10000 2805.43 
0.47691 

(0.02333) 

3.14567 

(0.1470) 

0.10444 

(0.00643) 
25753.34 

0.89853 

(0.40310) 

3.06180 

(0.14149) 

0.43373 

(0.33679) 
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Table 4.3.4: ML estimates and standard errors (in bracket) for INAR(1) and Pegram's AR(1) with outliers 

Method Thinning INAR(1) Pegram's AR(1) 

Outlier max(X)+3 max(X)+6 max(x)+3 max(X)+6 

True Values: 

(𝛼, 𝜆) 
𝛼 𝑀𝐿  𝜆  𝑀𝐿  𝛼 𝑀𝐿  𝜆  𝑀𝐿  𝛼 𝑀𝐿  𝜆  𝑀𝐿  𝛼 𝑀𝐿  𝜆  𝑀𝐿  

(0.3, 1.0) 
100 

0.2121 

(0.1274) 

1.1795 

(0.2490) 

0.1671 

(0.1550) 

1.2663 

(0.3138) 

0.2025 

(0.1388) 

1.0603 

(0.1480) 

0.1533 

(0.1687) 

1.0907 

(0.1650) 

500 
0.4437 

(0.1488) 

0.8378 

(0.1758) 

0.5217 

(0.2239) 

0.7379 

(0.2686) 

0.5108 

(0.2135) 

1.0750 

(0.0876) 

0.5497 

(0.2515) 

1.0995 

(0.1163) 

1000 
0.4891 

(0.1920) 

0.770 

(0.2349) 

0.5800 

(0.2812) 

0.6465 

(0.3563) 

0.5091 

(0.2117) 

1.0731 

(0.0851) 

0.6083 

(0.3093) 

1.1045 

(0.1133) 

5000 
0.5490 

(0.2503) 

0.6853 

(0.3170) 

0.6433 

(0.3440) 

0.5524 

(0.4487) 

0.5719 

(0.2732) 

1.0813 

(0.0839) 

0.6766 

(0.3772) 

1.1128 

(0.1147) 

10000 
0.5648 

(0.2660) 

0.6628 

(0.3392) 

0.6591 

(0.3597) 

0.5395 

(0.4715) 

0.5887 

(0.1741) 

1.0846 

(0.1081) 

0.6924 

(0.3929) 

1.1148 

(0.1159) 

(0.3, 2.0) 

100 

0.2257 

(0.1156) 

2.2802 

(0.4096) 

0.1983 

(0.1311) 

2.3707 

(0.4713) 

0.2243 

(0.1267) 

2.0776 

(0.2003) 

0.1895 

(0.1462) 

2.1001 

(0.2171) 

500 
0.4135 

(0.1205) 

1.7292 

(0.3000) 

0.4728 

(0.1763) 

1.5727 

(0.4422) 

0.4232 

(0.1302) 

2.0822 

(0.1203) 

0.4907 

(0.1940) 

2.1134 

(0.1410) 

1000 
0.4508 

(0.1540) 

1.6221 

(0.3895) 

0.5167 

(0.2185) 

1.4408 

(0.5659) 

0.4647 

(0.1677) 

2.0877 

(0.1078) 

0.5425 

(0.2442) 

2.1172 

(0.1318) 

5000 
0.5024 

(0.2040) 

1.4776 

(0.5272) 

0.5753 

(0.2761) 

1.2730 

(0.7297) 

0.5184 

(0.2201) 

2.0973 

(0.1010) 

0.6053 

(0.3062) 

2.1282 

(0.1313) 

10000 
0.5170 

(0.2184) 

1.4349 

(0.5694) 

0.5917 

(0.2925) 

1.2259 

(0.7766) 

0.5341 

(0.1576) 

2.1016 

(0.1000) 

0.6194 

(0.3201) 

2.1326 

(0.1343) 

(0.5, 2.0) 

100 

0.3970 

(0.1337) 

2.4610 

(0.5977) 

0.3471 

(0.1754) 

2.6956 

(0.7983) 

0.3836 

(0.1587) 

2.0825 

(0.2671) 

0.3166 

(0.2099) 

2.1015 

(0.2705) 

500 
0.5599 

(0.0689) 

1.8038 

(0.2444) 

0.5888 

(0.0941) 

1.6986 

(0.3313) 

0.5716 

(0.0818) 

2.0805 

(0.1377) 

0.6091 

(0.1138) 

2.1151 

(0.1637) 

1000 
0.5878 

(0.0915) 

1.6916 

(0.3279) 

0.6258 

(0.1279) 

1.5469 

(0.4635) 

0.6043 

(0.1085) 

2.0883 

(0.1179) 

0.6577 

(0.1594) 

2.1142 

(0.1384) 

5000 
0.6296 

(0.1309) 

1.5276 

(0.4782) 

0.6743 

(0.1752) 

1.3520 

(0.6516) 

0.6500 

(0.1513) 

2.0948 

(0.1009) 

0.7103 

(0.2110) 

2.1256 

(0.1305) 

10000 
0.6412 

(0.1421) 

1.4808 

(0.5233) 

0.6862 

(0.1869) 

1.3038 

(0.6989) 

0.6617 

(0.1629) 

2.1012 

(0.1042) 

0.7222 

(0.2228) 

2.1278 

(0.1304) Univ
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Figure 4.3.1: Breakdown point of MLE via EM algorithm with AO and IO 

outliers for MPT(1) process for the true parameters of  𝝓,𝜶,𝝀 = (𝟎.𝟏,𝟎.𝟕,𝟏.𝟎) 

 
 

 

 

 

 

 

 

  

 

-1.5

-1

-0.5

0

0.5

1 3 5 7 9 11 13 15 17 19

D
ev

ia
ti

o
n

 o
f 

es
ti

m
a

te
d

 

p
a

ra
m

et
er

s

Innovative Outliers

phi

alpha

lambda

-1.5

-1

-0.5

0

0.5

1 3 5 7 9 11 13 15 17

D
ev

ia
ti

o
n

 o
f 

es
ti

m
a

te
d

 

p
a

ra
m

et
er

s

Additive Outliers

phi

alpha

lambda

Contamination percentage 

Contamination percentage 

Univ
ers

ity
 of

 M
ala

ya



 

63 

 

 

Figure 4.3.2: Deviation percentage of estimated parameters for AO and IO 

outliers for true parameters  𝝓,𝜶, 𝝀 = (𝟎.𝟏,𝟎.𝟕,𝟏.𝟎) 
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4.3.2 Binomial MPT(1) Model 

We present the Binomial MPT(1) model, which has entirely different interpretation 

for real life application. The simulation design in Section 4.2.1 is still applicable to 

Binomial MPT(1) Model. To run the simulation study we fixed the index 𝑁 in the study 

of the behaviour of Binomial MPT(1) process by numerical computation, with 𝑁 = 5 

for different combinations of the parameters  𝜙,𝑝,𝛼 . Again, the CLS method has been 

presented for comparison. The simulation results have been tabulated in Table 4.3.5. 

Similarly, as with the Poisson MPT(1) process, overall the EM algorithm performed 

much better compared with CLS. The estimates converged to the true values when the 

sample size is increased. Therefore empirically, consistency is achieved. Likewise, CLS 

gives poor estimates for the parameters, especially the mixing proportion. Also, the 

computation time of CLS is much longer than the EM algorithm.  
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Table 4.3.5: Parameter estimates, standard errors (in brackets) by MLE (EM Algorithm) and CLS for Binomial MPT(1), 𝑵 = 𝟓 

Parameter: 

(𝜙,𝑝,𝛼) 
 

𝑵 = 𝟓 

EM Algorithm 

 

CLS 

 

Duration (sec) 𝜙 𝑀𝐿 𝑝 𝑀𝐿  𝛼 𝑀𝐿  Duration (sec) 𝜙 𝐶𝐿𝑆  𝑝 𝐶𝐿𝑆 𝛼 𝐶𝐿𝑆 

(0.2,0.3,0.5) 

n=100 
17.58 

0.19679 

(0.02290) 

0.28999 

(0.02197) 

0.48332 

(0.03662) 
4630.84 

0.11061 

(0.10432) 

0.28791 

(0.02422) 

0.54287 

(0.27623) 

n=500 64.71 
0.19937 

(0.00856) 

0.28998 

(0.01354) 

0.48330 

(0.02257) 
4965.51 

0.09717 

(0.11427) 

0.29195 

(0.01568) 

0.44868 

(0.25820) 

n=1000 120.56 
0.19970 

(0.00616) 

0.28999 

(0.01195) 

0.48332 

(0.01992) 
5490.92 

0.09234 

(0.11848) 

0.29249 

(0.01307) 

0.43172 

(0.25980) 

n=5000 627.89 
0.20013 

(0.00290) 

0.28989 

(0.01053) 

0.48315 

(0.01755) 
9196.58 

0.08253 

(0.12653) 

0.29210 

(0.01058) 

0.36473 

(0.27801) 

n=10000 1169.17 
0.20000 

(0.00199) 

0.29000 

(0.01019) 

0.48334 

(0.01698) 
14568.31 

0.07826 

(0.13088) 

0.29254 

(0.00940) 

0.33745 

(0.28501) 

(0.2,0.5,0.7) 

n=100 
41.28 

0.16040 

(0.04653) 

0.50021 

(0.02158) 

0.70029 

(0.03021) 
2009.21 

0.03714 

(0.16393) 

0.45802 

(0.04709) 

0.63930 

(0.26916) 

n=500 100.83 
0.17002 

(0.03241) 

0.50002 

(0.00981) 

0.70003 

(0.01373) 
2073.94 

0.03519 

(0.16574) 

0.45874 

(0.04368) 

0.60249 

(0.29243) 

n=1000 165.19 
0.17256 

(0.02898) 

0.50014 

(0.00724) 

0.70019 

(0.01014) 
2295.93 

0.03592 

(0.16495) 

0.46041 

(0.04140) 

0.60948 

(0.27848) 

n=5000 640.40 
0.17603 

(0.02409) 

0.49982 

(0.00323) 

0.69975 

(0.00452) 
3886.23 

0.03406 

(0.16665) 

0.46097 

(0.03986) 

0.55902 

(0.29808) 

n=10000 1082.21 
0.18434 

(0.01628) 

0.49996 

(0.00228) 

0.69994 

(0.00319) 
5886.57 

0.03219 

(0.16851) 

0.45965 

(0.04099) 

0.53036 

(0.30838) 

(0.3,0.1,0.3) 

n=100 
37.38 

0.28332 

(0.02813) 

0.09999 

(0.01318) 

0.29998 

(0.03953) 
5060.31 

0.22951 

(0.15820) 

0.10721 

(0.01527) 

0.38194 

(0.25752) 

n=500 78.39 
0.28916 

(0.01437) 

0.09988 

(0.00599) 

0.29965 

(0.01798) 
5277.32 

0.19576 

(0.16988) 

0.11017 

(0.01351) 

0.31415 

(0.22589) 

n=1000 130.67 
0.28941 

(0.01218) 

0.10030 

(0.00423) 

0.30089 

(0.01270) 
5867.84 

0.18116  

(0.17525) 

0.11028 

(0.01289) 

0.30193 

(0.22655) 

n=5000 556.75 
0.29003 

(0.01027) 

0.10006 

(0.00183) 

0.30017 

(0.00549) 
10588.78 

0.16254 

(0.18506) 

0.11453 

(0.01153) 

0.24984 

(0.22309) 

n=10000 1097.92 
0.29002 

(0.01014) 

0.10006 

(0.00133) 

0.30017 

(0.00398) 
15808.54 

0.14583 

(0.19510) 

0.11029 

(0.01116) 

0.24518 

(0.22070) 

(0.5,0.1,0.3) 

n=100 
35.81 

0.46378 

(0.05257) 

0.10003 

(0.01312) 

0.30010 

(0.03934) 
5166.66 

0.21623 

(0.31448) 

0.11288 

(0.01839) 

0.39660 

(0.27387) 

n=500 78.14 
0.47568 

(0.02891) 

0.10004 

(0.00610) 

0.30011 

(0.01831) 
4862.87 

0.19350 

(0.33237) 

0.11538 

(0.01800) 

0.32736 

(0.23263) 

n=1000 130.38 
0.47789 

(0.02411) 

0.09990 

(0.00427) 

0.29971 

(0.01281) 
5737.09 

0.18182 

(0.34247) 

0.11626 

(0.01762) 

0.29260 

(0.22614) 

n=5000 570.47 
0.47841 

(0.02193) 

0.09998 

(0.00187) 

0.29993 

(0.00560) 
10141.69 

0.15134 

(0.36891) 

0.11647 

(0.01716) 

0.26175 

(0.22392) 

n=10000 1091.60 
0.47843 

(0.02174) 

0.10001 

(0.00135) 

0.30004 

(0.00405) 
15643.30 

0.14175 

(0.37728) 

0.11645 

(0.01695) 

0.25631 

(0.22226) Univ
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4.4 Score Function and Fisher Information for Poisson MPT(1) Model 

We derive the expressions of score function and observed Fisher information for 

Poisson MPT(1) model. Note that the conditional likelihood can be written as 

𝐿 𝛼, 𝜆,𝜙 =  𝑃(𝑋𝑡|𝑋𝑡−1)𝑛
𝑡=1 , where 𝑃(𝑋𝑡|𝑋𝑡−1)  is defined in (3.5) with the 

innovation pmf form of (3.16).   

The first derivatives of the log-likelihood define the score functions. Let ℓ 𝛼 , ℓ 𝜆 , ℓ 𝜙  be 

the score functions with respect to 𝛼, 𝜆,𝜙 , while the respective score functions are 

defined by 

ℓ 𝛼 =
𝜕

𝜕𝛼
ℓ 𝛼, 𝜆,𝜙;  𝑋0,𝑋1,… ,𝑋𝑛 =  

𝜕
𝜕𝛼
𝑃(𝑋𝑡|𝑋𝑡−1)

𝑃(𝑋𝑡|𝑋𝑡−1)

𝑛

𝑡=1

 

 

(4.7a) 

ℓ 𝜆 =
𝜕

𝜕𝜆
ℓ 𝛼, 𝜆,𝜙;  𝑋0,𝑋1,… ,𝑋𝑛 =  

𝜕
𝜕𝜆
𝑃(𝑋𝑡|𝑋𝑡−1)

𝑃(𝑋𝑡|𝑋𝑡−1)

𝑛

𝑡=1

 

 

(4.7b) 

ℓ 𝜙 =
𝜕

𝜕𝜙
ℓ 𝛼, 𝜆,𝜙;  𝑋0,𝑋1,… ,𝑋𝑛 =  

𝜕
𝜕𝜙

𝑃(𝑋𝑡|𝑋𝑡−1)

𝑃(𝑋𝑡|𝑋𝑡−1)

𝑛

𝑡=1

 

 

(4.7c) 

 

 

where ℓ ∙  is the log-likelihood. The partial derivative of the conditional probability is 

found by making use of the following derivative 

 

𝜕

𝜕𝛼
 𝛼𝑖 1− 𝛼 𝑗−𝑖 =  

𝑖

𝛼 1− 𝛼 
−

𝑗

1 − 𝛼
 𝛼𝑖 1− 𝛼 𝑗−𝑖  

 

and the relation 

𝑖  
𝑗
𝑖
 = 𝑗  

𝑗 − 1
𝑖 − 1

  

Also, 

𝜕

𝜕𝛼
 
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
 = 𝜆  

𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
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and 

 

𝜕

𝜕𝜆
 
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
 = 𝛼  

𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
  

 

Besides that, 

 

𝜕

𝜕𝜆
 
𝑒−𝜆 𝜆 𝑖

𝑖!
 =

𝑒−𝜆 𝜆 𝑖−1

(𝑖 − 1)!
−
𝑒−𝜆 𝜆 𝑖

𝑖!
 

 

Now we are ready to derive the partial derivatives of the conditional probability with 

respect to 𝛼, 𝜆 and 𝜙.  

 

Proposition 4.4.1 The derivatives of 𝑃(𝑋𝑡|𝑋𝑡−1) with respect to 𝛼,𝜙 and 𝜆 are given by 

 
𝜕

𝜕𝛼
𝑃 𝑋𝑡 = 𝑖|𝑋𝑡−1 = 𝑗  

= 𝜙  
𝑗
𝑖
  

𝑖

𝛼(1− 𝛼)
−

𝑗

1− 𝛼
 𝛼𝑖 1− 𝛼 𝑗−𝑖 −𝜙𝜆  

𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
  

= 𝜙  
𝑗
𝑖
 

𝑖

𝛼(1− 𝛼)
𝛼𝑖 1 − 𝛼 𝑗−𝑖 − 𝜙  

𝑗
𝑖
 

𝑗

1 − 𝛼
𝛼𝑖 1− 𝛼 𝑗−𝑖

− 𝜙𝜆  
𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
  

=
𝜙𝑗

1 − 𝛼
  
𝑗 − 1
𝑖 − 1

 𝛼𝑖−1 1− 𝛼 𝑗−𝑖 −  
𝑗
𝑖
 𝛼𝑖 1− 𝛼 𝑗−𝑖 

− 𝜙𝜆  
𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
  

 

𝜕

𝜕𝜆
𝑃 𝑋𝑡 = 𝑖|𝑋𝑡−1 = 𝑗 =

𝑒−𝜆 𝜆 𝑖−1

(𝑖 − 1)!
−
𝑒−𝜆 𝜆 𝑖

𝑖!
− 𝜙𝛼  

𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
  

 

𝜕

𝜕𝜙
𝑃 𝑋𝑡 = 𝑖|𝑋𝑡−1 = 𝑗 =  

𝑗
𝑖
 𝛼𝑖 1− 𝛼 𝑗−𝑖 −

𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
 

 

It should be noticed here that 𝑖 ≤ 𝑗, since 𝑋𝑡  and 𝑋𝑡−1 may take any integer value and so 

we adopt the convention that for 𝑖 > 𝑗 and 𝑗 = 0, the binomial coefficient goes zero. 
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The second derivatives with respect to 𝛼, 𝜆  and 𝜙  are not hard to be computed as 

follows: 

 

Proposition 4.4.2 The score function with respect to 𝛼,𝜙 and 𝜆 are given by 

 

ℓ 𝛼

=  

𝜙𝑗
1 − 𝛼

  
𝑗 − 1

𝑖 − 1
 𝛼𝑖−1 1 − 𝛼 𝑗−𝑖 −  

𝑗

𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 − 𝜆𝜙  

𝑒−𝜆𝛼 𝜆𝛼 𝑖−1

(𝑖 − 1)!
−
𝑒−𝜆𝛼 𝜆𝛼 𝑖

(𝑖)!
 

𝑃 𝑋𝑡 𝑋𝑡−1 

𝑛

𝑡=1

 
 

(4.8a) 

ℓ 𝜙 =  
 
𝑗

𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 −

𝑒−𝜆𝛼 𝜆𝛼 𝑖

𝑖!

𝑃 𝑋𝑡 𝑋𝑡−1 

𝑛

𝑡=1

  

(4.8b) 

ℓ 𝜆 =  

𝑒−𝜆𝜆𝑖−1

(𝑖 − 1)!
−
𝑒−𝜆𝜆𝑖

𝑖!
− 𝛼𝜙  

𝑒−𝜆𝛼 𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼 𝜆𝛼 𝑖

𝑖!
 

𝑃 𝑋𝑡 𝑋𝑡−1 

𝑛

𝑡=1

  

(4.8c) 

 

Proposition 4.4.3 The second derivatives of the conditional probability are  

 

∂2

∂α2
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =

𝜕

𝜕𝛼
 
𝜕

𝜕𝛼
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗   

=
𝜙𝑗

 1 − 𝛼 2
 2 1− 𝑗  

𝑗 − 1
𝑖 − 1

 𝛼𝑖−1 1− 𝛼 𝑗−𝑖

+  𝑗 − 1   
𝑗 − 2
𝑖 − 2

 𝛼𝑖−2 1− 𝛼 𝑗−𝑖−1 +  
𝑗
𝑖
 𝛼𝑖 1− 𝛼 𝑗−𝑖   

−𝜆2𝜙  
𝑒−𝜆𝛼  𝜆𝛼 𝑖−2

 𝑖 − 2 !
− 2

𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
+
𝑒−𝜆𝛼  𝜆𝛼 𝑖

 𝑖 !
  

 

∂2

∂λ
2 𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =

𝜕

𝜕𝜆
 
𝜕

𝜕𝜆
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗   

=
𝑒−𝜆𝜆𝑖−2

(𝑖 − 2)!
− 2

𝑒−𝜆𝜆𝑖−1

(𝑖 − 1)!
+
𝑒−𝜆𝜆𝑖

(𝑖)!
− 𝛼2𝜙  

𝑒−𝜆𝛼  𝜆𝛼 𝑖−2

 𝑖 − 2 !
− 2

𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
+
𝑒−𝜆𝛼  𝜆𝛼 𝑖

 𝑖 !
  

 

∂2

∂𝜙2
𝑃 𝑋𝑡 𝑋𝑡−1 =

𝜕

𝜕𝜙
 
𝜕

𝜕𝜙
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗  = 0 
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The variance covariance matrix off-diagonal entries are also derived: 

 

∂2

∂𝛼 ∂𝜆
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =

𝜕

𝜕𝛼
 
𝜕

𝜕𝜆
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗   

= −𝜙  
𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

 𝑖 !
 

− 𝛼𝜆𝜙  
𝑒−𝜆𝛼  𝜆𝛼 𝑖−2

 𝑖 − 2 !
− 2

𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
+
𝑒−𝜆𝛼  𝜆𝛼 𝑖

 𝑖 !
  

 

 

∂2

∂𝛼 ∂𝜙
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =

𝜕

𝜕𝛼
 
𝜕

𝜕𝜙
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗   

=
𝑗

1 − 𝛼
  
𝑗 − 1
𝑖 − 1

 𝛼𝑖−1 1− 𝛼 𝑗−𝑖 −  
𝑗
𝑖
 𝛼𝑖 1− 𝛼 𝑗−𝑖 

− 𝜆  
𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

 𝑖 !
  

 

 

∂2

∂𝜙 ∂𝜆
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =

𝜕

𝜕𝜙
 
𝜕

𝜕𝜆
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗  

= −𝛼  
𝑒−𝜆𝛼  𝜆𝛼 𝑖−1

 𝑖 − 1 !
−
𝑒−𝜆𝛼  𝜆𝛼 𝑖

 𝑖 !
  

 

 

The off-diagonal entries of 
∂2

∂𝛼 ∂𝜆
,

∂2

∂𝛼 ∂𝜙
 and 

∂2

∂𝜙 ∂𝜆
 is equal to 

∂2

∂𝜆 ∂𝛼
 ,

∂2

∂𝜙 ∂𝛼
 and 

∂2

∂𝜆 ∂𝜙
 

respectively to produce the symmetric variance-covariance matrix. The second 

derivatives of the log-likelihood determine the observed Fisher information. We denote 

ℓ 𝛼𝛼 , ℓ 𝜙𝜙 , ℓ 𝜆𝜆 , ℓ 𝛼𝜆 , ℓ 𝛼𝜙 , ℓ 𝜙𝜆  as the second derivatives of the log-likelihood with respect to 

𝛼,𝜙 and 𝜆, and so the observed Fisher Information for Poisson MPT(1) is presented as 

follow, 

 

Proposition 4.4.4 Let ℓ 𝛼𝛼 , ℓ 𝜙𝜙 , ℓ 𝜆𝜆 , ℓ 𝛼𝜆 , ℓ 𝛼𝜙 ,ℓ 𝜙𝜆  denote the second derivatives of the 

log-likelihood with respect to 𝛼,𝜙and 𝜆. The observed Fisher Information for MPT(1) 

is presented as follows. 
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ℓ 𝛼𝛼 =  
𝑃 𝑋𝑡 𝑋𝑡−1 

𝜕2

𝜕𝛼2 𝑃 𝑋𝑡 𝑋𝑡−1 −  
𝜕
𝜕𝛼
𝑃(𝑋𝑡|𝑋𝑡−1) 

2

𝑃(𝑋𝑡|𝑋𝑡−1)2

𝑛

𝑡=1

 

 

(4.9a) 

ℓ 𝜙𝜙 =  
𝑃 𝑋𝑡 𝑋𝑡−1 

𝜕2

𝜕𝜙2 𝑃 𝑋𝑡 𝑋𝑡−1 −  
𝜕
𝜕𝜙

𝑃(𝑋𝑡 |𝑋𝑡−1) 
2

𝑃(𝑋𝑡 |𝑋𝑡−1)2

𝑛

𝑡=1

 

 

(4.9b) 

ℓ 𝜆𝜆 =  
𝑃 𝑋𝑡 𝑋𝑡−1 

𝜕2

𝜕𝜆2 𝑃 𝑋𝑡 𝑋𝑡−1 −  
𝜕
𝜕𝜆
𝑃(𝑋𝑡 |𝑋𝑡−1) 

2

𝑃(𝑋𝑡 |𝑋𝑡−1)2

𝑛

𝑡=1

 

 

(4.9c) 

ℓ 𝛼𝜆 =  
𝑃 𝑋𝑡 𝑋𝑡−1 

𝜕2

𝜕𝜆𝜕𝛼
𝑃 𝑋𝑡 𝑋𝑡−1 −

𝜕
𝜕𝜆
𝑃(𝑋𝑡 |𝑋𝑡−1)

𝜕
𝜕𝛼
𝑃(𝑋𝑡 |𝑋𝑡−1)

𝑃(𝑋𝑡 |𝑋𝑡−1)2

𝑛

𝑡=1

 

 

(4.9d) 

ℓ 𝜙𝛼 =  
𝑃 𝑋𝑡 𝑋𝑡−1 

𝜕2

𝜕𝜙𝜕𝛼
𝑃 𝑋𝑡 𝑋𝑡−1 −

𝜕
𝜕𝜙

𝑃(𝑋𝑡 |𝑋𝑡−1)
𝜕
𝜕𝛼
𝑃(𝑋𝑡 |𝑋𝑡−1)

𝑃(𝑋𝑡 |𝑋𝑡−1)2

𝑛

𝑡=1

 

 

(4.9e) 

ℓ 𝜙𝜆 =  
𝑃 𝑋𝑡  𝑋𝑡−1 

𝜕2

𝜕𝜙𝜕𝜆
𝑃 𝑋𝑡 𝑋𝑡−1 −

𝜕
𝜕𝜙

𝑃(𝑋𝑡 |𝑋𝑡−1)
𝜕
𝜕𝜆
𝑃(𝑋𝑡 |𝑋𝑡−1)

𝑃(𝑋𝑡 |𝑋𝑡−1)2

𝑛

𝑡=1

 

 

(4.9f) 

 

 

where the first and second derivatives are derived above. To find the elements for Fisher 

information, the expected Fisher information can be calculated numerically using the 

results of second derivatives of log-likelihood function, for which the time series data 

comprised of low counts. Otherwise, one can consider applying observed Fisher 

information to obtain standard errors of the estimates. Noting that the expected Fisher 

information is a function of  𝑋𝑡 ,𝑋𝑡−1 , we gain 

 

Proposition 4.4.5 The elements of Fisher information matrix are given by 

𝐸 ℓ 𝛼𝛼   

=  𝐸 𝑕 𝑋𝑡 ,𝑋𝑡−1  

𝑛

𝑡=2

 

=   𝑕 𝑥𝑡 , 𝑥𝑡−1 𝑃 𝑋𝑡 = 𝑥𝑡 ,𝑋𝑡−1 = 𝑥𝑡−1 

𝑎𝑙𝑙   𝑥𝑡 ,𝑥𝑡−1 

𝑛

𝑡=2

 

 

 

 

 

 

 

(4.10a) 
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= (𝑛 − 1)  𝑃 𝑋𝑡−1 = 𝑥𝑡−1 

 

 
 𝜕2

𝜕𝛼2
𝑃 𝑋𝑡 𝑋𝑡−1 −

 
𝜕
𝜕𝛼
𝑃 𝑋𝑡 𝑋𝑡−1  

2

𝑃 𝑋𝑡  𝑋𝑡−1 

 

 
 

𝑎𝑙𝑙   𝑥𝑡 ,𝑥𝑡−1 

 

𝐸 ℓ 𝜙𝜙  = (𝑛 − 1)  𝑃 𝑋𝑡−1 = 𝑥𝑡−1 

 

 
 𝜕2

𝜕𝜙2
𝑃 𝑋𝑡 𝑋𝑡−1 −

 
𝜕
𝜕𝜙

𝑃 𝑋𝑡  𝑋𝑡−1  

2

𝑃 𝑋𝑡  𝑋𝑡−1 

 

 
 

𝑎𝑙𝑙   𝑥𝑡 ,𝑥𝑡−1 

 
 

(4.10b) 

𝐸 ℓ 𝜆𝜆  = (𝑛 − 1)  𝑃 𝑋𝑡−1 = 𝑥𝑡−1 

 

 
 𝜕2

𝜕𝜆2
𝑃 𝑋𝑡  𝑋𝑡−1 −

 
𝜕
𝜕𝜆
𝑃 𝑋𝑡  𝑋𝑡−1  

2

𝑃 𝑋𝑡  𝑋𝑡−1 

 

 
 

𝑎𝑙𝑙   𝑥𝑡 ,𝑥𝑡−1 

 
 

(4.10c) 

 

𝐸 ℓ 𝛼𝜆   

=  𝑛 − 1  𝑃 𝑋𝑡−1 = 𝑥𝑡−1  
𝜕2

𝜕𝜆𝜕𝛼
𝑃 𝑋𝑡  𝑋𝑡−1 −

𝜕
𝜕𝜆
𝑃 𝑋𝑡  𝑋𝑡−1 

𝜕
𝜕𝛼
𝑃 𝑋𝑡 𝑋𝑡−1 

𝑃 𝑋𝑡  𝑋𝑡−1 
 

𝑎𝑙𝑙   𝑥𝑡 ,𝑥𝑡−1 

 

 

(4.10d) 

 

𝐸 ℓ 𝛼𝜙   

= (𝑛 − 1)  𝑃 𝑋𝑡−1 = 𝑥𝑡−1  
𝜕2

𝜕𝜙𝜕𝛼
𝑃 𝑋𝑡  𝑋𝑡−1 −

𝜕
𝜕𝜙

𝑃 𝑋𝑡  𝑋𝑡−1 
𝜕
𝜕𝛼
𝑃 𝑋𝑡  𝑋𝑡−1 

𝑃 𝑋𝑡 𝑋𝑡−1 
 

𝑎𝑙𝑙   𝑥𝑡 ,𝑥𝑡−1 

 

 

(4.10e) 

 

𝐸 ℓ 𝜙𝜆   

= (𝑛 − 1)  𝑃 𝑋𝑡−1 = 𝑥𝑡−1  
𝜕2

𝜕𝜙𝜕𝜆
𝑃 𝑋𝑡  𝑋𝑡−1 −

𝜕
𝜕𝜙

𝑃 𝑋𝑡  𝑋𝑡−1 
𝜕
𝜕𝜆
𝑃 𝑋𝑡  𝑋𝑡−1 

𝑃 𝑋𝑡 𝑋𝑡−1 
 

𝑎𝑙𝑙   𝑥𝑡 ,𝑥𝑡−1 

 

 

(4.10f) 

 

 

The expected Fisher information is used to compute the asymptotic distribution of 

the parameter estimates. Bu et al. (2008) derived expressions for the score function and 

the Fisher information matrix, which form the basis for ML estimation and inference. In 

the paper, they showed that the score function and Fisher information matrix can be 

neatly represented as conditional expectations. Freeland and McCabe (2004a) 

considered a similar approach in the information matrix (IM) test. See Silva et al. (2005) 

for expected IM derivation for replicated time series sequences.  
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4.5 Simulation Study of Forecasting Accuracy Measurements 

Based upon the forecasting accuracy measurement methods expressed in Chapter 5, 

Section 5.4, we run some simulations here to obtain better understanding of coherent 

forecasting. The data set is generated from Geometric Pegram's AR(1) process with 

known parameters. We generate three sets of data based on parameters  𝛼,𝑝 , which are 

 0.3,0.5 ,  0.5,0.5  and  0.8,0.2 . Simulations are done with data size 1000 for 100 

trials, for each set of parameter combination. Then, the data is divided into half; first 

500 observations are used for parameter estimation and the rest 500 observations are 

used to fit all descriptive measures. Table 4.5.1 displays the parameter estimation for all 

three models. The simulation results show that the parameters are close to the true 

parameters. We report the results for descriptive measures in Table 4.5.2, Table 4.5.3 

and Table 4.5.4. Table 4.5.2 shows the estimated PRMSE, PMAE and PTP of Poisson 

MPT(1) process for 𝑕 = 1,… , 4. One can see that the both PRMSE and PMAD increase 

in 𝑕 and PTP decreases in 𝑕. The results show that the MPT(1) is able to handle the data 

which has the nature of Geometric margins. Also, the PTP values show the advantage of 

using median predictor and mode predictor over mean predictor. For an example, for the 

parameter of 𝜙 =0.1649, 𝛼 =0.3004, 𝜆 =0.9994, the mean predictor gives about 25% 

to be the same with the true values, but for median and mode predictors, they both give 

about 47%. Besides, the measurements are consistent when 𝑕 is increased. On the other 

hand, INAR(1) and Pegram's AR(1) presents uncertain trends in the descriptive 

measures. This shows that the INAR(1) and Pegram's AR(1) are not the proper models 

to handle the generated data. 
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Table 4.5.1: Parameter estimation and standard errors (in bracket), for  

MPT(1), INAR(1) and Pegram's AR(1) with Poisson marginal 

True 

Parameters 

(𝜙,𝛼, 𝜆) 

Estimated parameters  

MPT(1) INAR(1) AR(1) 

(0.2,0.3,1.0) 𝜙 =0.2422(0.0434) 

𝛼 =0.3004(0.0081) 

𝜆 =0.9994(0.0268) 

𝛼 =0.2975(0.0510) 

𝜆 =1.0012(0.0154) 

𝛼 =0.2979(0.0329) 

𝜆 =0.9976(0.0096) 

(0.2,0.5,1.5) 𝜙 =0.2541(0.0543) 

𝛼 =0.5004(0.0111) 

𝜆 =1.4995(0.0333) 

𝛼 =0.4979(0.0240) 

𝜆 =1.5556(0.0704) 

𝛼 =0.4983(0.0317) 

𝜆 =1.5044(0.0226) 

(0.2,0.8,4.0) 𝜙 =0.2675(0.0679) 

𝛼 =0.8424(0.0475) 

𝜆 =3.8011(0.2211) 

𝛼 =0.7991(0.0203) 

𝜆 =3.7824(0.2139) 

𝛼 =0.7988(0.0198) 

𝜆 =3.7916(0.2138) 

 

Table 4.5.2: Estimated PRMSE, PMAD and PTP values through mean,  

median and mode for Poisson MPT(1) process 

Parameters 

(𝜙 ,𝛼 , 𝜆 ) 

h-step PTP PRMSE PMAD 

mean median mode 

 

𝜙 =0.1649 

𝛼 =0.3004 

𝜆 =0.9994 

1 25.55 46.91 46.91 1.30 1.04 

2 25.35 46.91 46.91 1.41 1.05 

3 25.35 46.71 46.71 1.41 1.07 

4 25.35 46.71 46.71 1.41 1.05 

 

𝜙 =0.2541 

𝛼 =0.5004 

𝜆 =1.4995 

 

1 39.72 43.11 43.11 1.56 1.27 

2 15.57 42.91 42.91 1.76 1.29 

3 15.57 42.71 42.71 1.78 1.29 

4 15.57 42.51 42.51 1.78 1.29 

 

𝜙 =0.2675 

𝛼 =0.8424 

𝜆 =3.8011 

1 16.17 19.96 19.96 2.93 3.68 

2 7.78 19.96 19.96 3.66 3.65 

3 7.78 19.76 19.76 3.85 3.63 

4 7.78 19.76 19.76 3.89 3.62 
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Table 4.5.3: Estimated PRMSE, PMAD and PTP values through mean,  

median and mode for Poisson INAR(1) process 

Parameters 

(𝛼 , 𝜆 ) 

h-step PTP PRMSE PMAD 

mean median mode 

 

𝛼 =0.2975 

𝜆 =1.0012 

1 3.60 67.10 67.10 2.09 1.28 

2 2.30 67.17 67.17 3.25 1.29 

3 2.30 67.23 67.23 3.90 1.29 

4 2.31 67.30 67.30 4.26 1.22 

 

𝛼 =0.4983 

𝜆 =1.4990 

1 20.40 73.40 73.40 0.94 0.58 

2 7.71 73.47 73.47 1.38 0.62 

3 7.72 73.55 73.55 1.58 0.56 

4 7.72 73.62 73.62 1.68 0.59 

 

𝛼 =0.7991 

𝜆 =3.7824 

1 2.4 8.20 8.20 3.39 2.16 

2 1.8 56.56 56.56 6.10 2.15 

3 1.80 56.61 56.61 8.26 2.10 

4 1.81 56.67 56.67 9.98 2.14 

 

Table 4.5.4: Estimated PRMSE, PMAD and PTP values through mean,  

median and mode for Poisson Pegram's AR(1) process 

Parameters 

(𝛼 , 𝜆 ) 

h-step PTP PRMSE PMAD 

mean median mode 

 

𝛼 =0.2979 

𝜆 =0.9976 

1 12.40 75.50 75.50 0.87 0.63 

2 12.31 75.58 75.58 1.12 0.71 

3 12.32 75.55 75.55 1.19 0.68 

4 12.34 75.53 75.53 1.22 0.50 

 

𝛼 =0.4983 

𝜆 =1.5044 

1 17.60 11.1 11.1 0.92 1.04 

2 17.62 71.47 71.47 1.38 0.95 

3 17.64 71.44 71.44 1.60 0.91 

4 17.65 71.40 71.40 1.71 0.89 

 

𝛼 =0.7988 

𝜆 =3.7916 

1 25.9 8.50 8.50 0.77 2.07 

2 14.81 8.51 8.51 1.37 2.05 

3 11.02 57.31 57.31 1.85 1.96 

4 11.03 57.37 57.37 2.33 2.02 

 

4.6 Concluding Remarks 

This chapter plays an important role for data analysis. For any proposed model, the 

parameters have to be estimated first before moving forward for real application. We 

have shown that the EM algorithm has good performance against CLS method. It 

Univ
ers

ity
 of

 M
ala

ya



 

   75 

 

provides good estimation for mixture model. We have done some simulation study for 

both Poisson and Binomial MPT(1) model. Also, it is noticeable that Poisson INAR(1) 

and Pegram's AR(1) processes are not able to handle the data with outliers. On the 

contrary we see that Poisson MPT(1) process was not greatly affected by small amount 

of outliers. The breakdown point has been examined.   

To further investigate the coherent forecasting in next chapter, we first require some 

fundamental theories. Score functions and expected Information Matrix have been 

developed to study the relationship of variance-covariance matrix. See Chapter 5 for 

more in-depth discussion.  
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CHAPTER 5: COHERENT FORECASTING 

5.0 Background 

Previous chapter discussed on parameter estimation of MPT(1) model, specifically in 

Poisson marginal. Once the parameters have been identified, the study on coherent 

forecasting of Poisson MPT(1) process can be further carried out in this chapter. One 

main objective of modelling the time series data is to forecast the future values as a 

given threshold of the interested variables. Traditional forecasting in continuous time 

series modelling is based upon conditional expectation, in which the technique will 

yield forecasts with minimum mean squared error. However, this method commonly 

results in non-integer-valued forecasts, which are thus not a reality in the context of 

count data models. Therefore, it is suggested here that the 𝑘-step-ahead conditional 

distribution can be used instead to forecast the integer-valued time series models. 

Freeland and McCabe (2004b) suggested using the median (and mode) of probability 

distribution because the median always lies in the support and is thus coherent. 

However, they give a conclusive result to say that it would be more informative to 

consider probability distribution in the support. 

In the literature, there are some researchers who have been concerned with the 

coherency in the forecasting of INAR process. The supportive elements for computing 

the asymptotic distributions such as score functions and inverse Fisher IM have been  

expressed in terms of conditional expectation by Freeland and McCabe (2004a). This 

technique created a new page in coherent forecasting study. Simultaneously but in a 

separate work, Freeland and McCabe (2004b) exemplified the idea with real data 

analysis of wage loss claim counts. Silva et al. (2005) considered expected Fisher 

information matrix for replicated INAR(1) process. Later, Bu and McCabe (2008) 

continued to conduct forecasting in the INAR(𝑝) models. Silva et al. (2009) considered 
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coherent forecasts using Bayesian methodology for the numerical computing. Several 

researchers have also considered the Bayesian method in obtaining the confidence 

intervals. For instances, McCabe and Martin (2005) considered the Bayesian predictions 

for low count time series discrete valued data. Other than that, Jung and Tremayne 

(2006) used block-bootstrap techniques to estimate the asymptotic standard errors for 

coherent forecasting.  

Having reviewed all these works, it is noticed that there is not much research 

involving coherent forecasting for discrete-valued models. Therefore, we are motivated 

to consider coherent forecasting for Poisson MPT(1) model in this chapter. Section 5.1 

gave the forecasting properties of 𝑘 -step-ahead forecasting distributions. The 

expressions for score functions and Fisher information matrix as previously discussed in 

subsection 4.4 will be further investigated in Section 5.2. The readily estimated 

parameters have also been applied to compute the conditional distribution in forecasting. 

Section 5.3 examines the prediction intervals. Section 5.4 elaborate some descriptive 

measures of forecasting accuracy. Section 5.5 concludes. 

5.1 k-step-ahead Forecasting Distribution of Poisson MPT(1) Model 

This section constructed k-step ahead conditional distributions for Poisson MPT(1) 

model. Example 3.4.1 can be viewed as a special case when 𝑘 = 1. Let 𝑋𝑡  be a Poisson 

process with mean 𝜆, the following results have been developed for the forecasting 

distribution of Poisson MPT(1) process. 

Theorem 5.1.1 (k-step ahead Conditional Distribution): In the Poisson MPT(1) process 

the conditional pgf of 𝑋𝑡+𝑘  given 𝑋𝑡  is given by 

 

𝐺𝑋𝑡+𝑘 |𝑋𝑡
 𝑧 = 𝜙𝑘 1 − 𝛼𝑘 + 𝛼𝑘𝑧 𝑋𝑡 + 𝑒𝜆(𝑧−1) − 𝜙𝑘𝑒𝜆𝛼𝑘 (𝑧−1) (5.1) 
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Proof:  

We prove the results by mathematical induction.  

The 1-step-ahead conditional pgf is given by 

𝐺𝑋𝑡+1|𝑋𝑡
 𝑧 = 𝐸 𝑧𝑋𝑡+1 |𝑋𝑡 = 𝜙 1 − 𝛼 + 𝛼𝑧 𝑋𝑡 + 𝑒𝜆(𝑧−1) − 𝜙𝑒𝜆𝛼 (𝑧−1) 

The 2-step-ahead conditional pgf is given by 

𝐺𝑋𝑡+2|𝑋𝑡
 𝑧 = 𝐸 𝑧𝑋𝑡+2 |𝑋𝑡 = 𝐸𝑋𝑡+1|𝑋𝑡

𝐸 𝑧𝑋𝑡+2 |𝑋𝑡+1  

 = 𝐸𝑋𝑡+1|𝑋𝑡
 𝜙 1 − 𝛼 + 𝛼𝑧 𝑋𝑡+1 |𝑋𝑡 + 𝑒𝜆(𝑧−1) − 𝜙𝑒𝜆𝛼 (𝑧−1) 

 = 𝜙2 1 − 𝛼2 + 𝛼2𝑧 𝑋𝑡 + 𝑒𝜆(𝑧−1) − 𝜙2𝑒𝜆𝛼2(𝑧−1) 

By induction, assuming that 𝑘-step-ahead conditional pgf (5.1) holds, then 

𝐺𝑋𝑡+𝑘+1|𝑋𝑡
 𝑧 = 𝐸 𝑧𝑋𝑡+𝑘+1 |𝑋𝑡 = 𝐸𝑋𝑡+1|𝑋𝑡

𝐸 𝑧𝑋𝑡+𝑘+1 |𝑋𝑡+1  

 = 𝜙𝑘+1 1 − 𝛼𝑘+1 + 𝛼𝑘+1𝑧 𝑋𝑡 + 𝑒𝜆(𝑧−1) − 𝜙𝑘+1𝑒𝜆𝛼𝑘+1(𝑧−1) 

 

 

Hence, Theorem 5.1.1 is true for all 𝑘. 

Corollary 5.1.1 (k-step-ahead Conditional Expectation): Let 𝐸 𝑋𝑡 = 𝜇𝑥 , the k-step-

ahead conditional pgf results in the conditional expectation 

 

𝐸 𝑋𝑡+𝑘 𝑋𝑡 =  𝜙𝛼 𝑘𝑋𝑡 + (1 −  𝜙𝛼 𝑘)𝜇𝑥  

 

(5.2) 

  

Proof:  

Taking first derivative of conditional pgf and letting 𝑧 = 1, we get 

 

𝐺𝑋𝑡+𝑘 |𝑋𝑡

′  𝑧 = 𝜙𝑘𝛼𝑘𝑋𝑡 1 − 𝛼𝑘 + 𝛼𝑘𝑧 𝑋𝑡−1 + 𝜆𝑒𝜆(𝑧−1) − 𝜆𝜙𝑘𝛼𝑘𝑒𝜆𝛼𝑘 (𝑧−1) 
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𝐺𝑋𝑡+𝑘 |𝑋𝑡

′  𝑧 |𝑧=1 = 𝜙𝑘𝛼𝑘𝑋𝑡 + 𝜆 − 𝜆𝜙𝑘𝛼𝑘  

 = 𝜙𝑘𝛼𝑘𝑋𝑡 + 𝜆(1 − 𝜙𝑘𝛼𝑘) 
 

 

It is slightly complicated to obtain k-step-ahead conditional variance, but it can be found 

as follow. 

 

Corollary 5.1.2 (k-step-ahead Conditional Variance): The k-step-ahead conditional 

variance is  

 

𝑉𝑎𝑟 𝑋𝑡+𝑘  𝑋𝑡  

= 𝜙𝑘𝛼2𝑘(𝑋𝑡
2 − 𝑋𝑡) + (1 − 𝜙𝑘𝛼2𝑘)𝜆2+𝜙𝑘𝛼𝑘𝑋𝑡 + 𝜆 1 − 𝜙𝑘𝛼𝑘 −

 𝜙𝑘𝛼𝑘𝑋𝑡 + 𝜆(1 − 𝜙𝑘𝛼𝑘) 2 

 

(5.3) 

 

 

Proof:  

We apply the formula 𝑉𝑎𝑟 𝑋𝑡+𝑘  𝑋𝑡 = 𝐺𝑋𝑡+𝑘 |𝑋𝑡

"  1 + 𝐺𝑋𝑡+𝑘 |𝑋𝑡

′  1 −  𝐺𝑋𝑡+𝑘 |𝑋𝑡

′  1  
2
, and 

the second derivatives are 

 

𝐺𝑋𝑡+𝑘 |𝑋𝑡

"  𝑧 = 𝜙𝑘𝛼2𝑘𝑋𝑡(𝑋𝑡 − 1) 1 − 𝛼𝑘 + 𝛼𝑘𝑧 𝑋𝑡−2 + 𝜆2𝑒𝜆(𝑧−1)

− 𝜆2𝜙𝑘𝛼2𝑘𝑒𝜆𝛼𝑘(𝑧−1) 

𝐺𝑋𝑡+𝑘 |𝑋𝑡

"  𝑧 |𝑧=1 = 𝜙𝑘𝛼2𝑘 𝑋𝑡
2 − 𝑋𝑡 + 𝜆2(1 − 𝜙𝑘𝛼2𝑘) 

 

 

 

By letting 𝑘 → ∞, we obtain the unconditional expectation and variance of the MPT(1) 

process: 𝐸 𝑋𝑡 = 𝜆, 𝑣𝑎𝑟 𝑋𝑡 = 𝜆. 

 

Theorem 5.1.2 (lag-𝑘 Autocovariance Function): The lag-𝑘 ACVF is given by 

 

𝛾 𝑘 =  𝜙𝛼 𝑘𝑉𝑎𝑟(𝑋𝑡−𝑘) 

 

(5.4) 

 

Proof:  

We prove the result by using the equation  
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𝑐𝑜𝑣 𝑋𝑡  𝑋𝑡−𝑘   

= 𝐸 𝑋𝑡−𝑘  𝜙𝛼 𝑋𝑡−1 + (1 − 𝜙)𝜇𝜀  − 𝐸 𝑋𝑡 𝐸 𝑋𝑡−𝑘  

=  𝜙𝛼 𝐸 𝑋𝑡−𝑘𝑋𝑡−1 +  1 − 𝜙 𝜇𝜀𝜇𝑥 − 𝜇𝑥
2 

=  𝜙𝛼 𝐸 𝑋𝑡−𝑘  𝜙𝛼 𝑋𝑡−2 + (1 − 𝜙)𝜇𝜀  +  1 − 𝜙 𝜇𝜀𝜇𝑥 − 𝜇𝑥
2 

=  𝜙𝛼 2𝐸 𝑋𝑡−𝑘𝑋𝑡−2 +  𝜙𝛼 (1 − 𝜙)𝜇𝜀𝜇𝑥 +  1 − 𝜙 𝜇𝜀𝜇𝑥 − 𝜇𝑥
2 

=          ⋮ 

=  𝜙𝛼 𝑘𝐸 𝑋𝑡−𝑘
2 +   𝜙𝛼 𝑗 (1 − 𝜙)𝜇𝜀𝜇𝑥

𝑘−1

𝑗 =0

− 𝜇𝑥
2 

=  𝜙𝛼 𝑘𝑉𝑎𝑟 𝑋𝑡−𝑘 +  𝜙𝛼 𝑘𝜇𝑥
2 +   𝜙𝛼 𝑗 (1 − 𝛼𝜙)𝜇𝑥

2

𝑘−1

𝑗 =0

− 𝜇𝑥
2 

=  𝜙𝛼 𝑘𝑉𝑎𝑟 𝑋𝑡−𝑘 +  𝜙𝛼 𝑘𝜇𝑥
2 +   𝜙𝛼 𝑗𝜇𝑥

2

𝑘−1

𝑗 =0

−   𝜙𝛼 𝑗 +1𝜇𝑥
2

𝑘−1

𝑗 =0

− 𝜇𝑥
2 

=  𝜙𝛼 𝑘𝑉𝑎𝑟 𝑋𝑡−𝑘 + 𝜇𝑥
2 − 𝜇𝑥

2 

=  𝜙𝛼 𝑘𝑉𝑎𝑟 𝑋𝑡−𝑘  

 

Corollary 5.1.3 (lag-𝑘 Autocorrelation Functions): The lag-𝑘 autocorrelation function 

is given by  

 

𝜌 𝑘 =  𝜙𝛼 𝑘  (5.5) 

 

 

It is easy to obtain Eq. (5.5) by just taking 𝜌 𝑘 =
𝛾(𝑘)

𝛾(0)
 , where 𝛾(0) is the variance of 

𝑋𝑡 . Furthermore, we found some immediate results from the propositions above, which 

are given as follow. 

 

Theorem 5.1.3 (Mean of 𝑋𝑡):  Let 𝜇𝑘  denote the conditional mean of 𝑋𝑡+𝑘 |𝑋𝑡  and let 𝜇𝑥  

be the mean of Poisson marginal distribution with 
(1−𝜙)𝜇𝜀

1−𝜙𝛼
 . Then, 𝜇𝑘

𝑤
→ 𝜇𝑥 . That is 𝜇𝑘  
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converges weakly to 𝜇𝑥  or 𝑋𝑡+𝑘 |𝑋𝑡  has a Poisson limiting distribution with mean 

(1−𝜙)𝜇𝜀

1−𝜙𝛼
 .  

 

 

Proof:  

From (5.2), we have 

lim
𝑘→∞

𝐸 𝑋𝑡+𝑘  𝑋𝑡 = lim
𝑘→∞

 𝜙𝛼 𝑘𝑋𝑡 +  1 −  𝜙𝛼 𝑘 𝜇𝑥  

 = 𝜇𝑥 =
(1 − 𝜙)𝜇𝜀

1 − 𝜙𝛼
 

 

 

 

Theorem 5.1.4 (Variance of 𝑋𝑡): Let 𝜎𝑘
2 denote the conditional variance of 𝑋𝑡+𝑘 |𝑋𝑡  and 

let 𝜎𝑋
2  be the variance of Poisson marginal distribution. Then, 𝜎𝑘

2
𝑤
→ 𝜎𝑋

2 . That is 𝜎𝑘
2 

converges weakly to 𝜎𝑋
2. 

 

Proof:  

 

From (5.3), we have 

 

lim
𝑘⟶∞

𝑉𝑎𝑟 𝑋𝑡+𝑘 𝑋𝑡 = lim
𝑘⟶∞

𝜙𝑘𝛼2𝑘 𝑋𝑡
2 − 𝑋𝑡 +  1 − 𝜙𝑘𝛼2𝑘 𝜆2 + 𝜙𝑘𝛼𝑘𝑋𝑡  

+𝜆 1 − 𝜙𝑘𝛼𝑘 −  𝜙𝑘𝛼𝑘𝑋𝑡 + 𝜆 1 − 𝜙𝑘𝛼𝑘  
2

 

 = 𝜆 = 𝑉𝑎𝑟(𝑋𝑡) 
 

 

Theorem 5.1.5 (Marginal Distribution of 𝑋𝑡 ): Let 𝑃𝑘(𝑥)  denote the distribution of 

𝑋𝑡+𝑘 |𝑋𝑡  and let 𝑃𝑋(𝑥)  be the distribution of a Poisson random variable which is 

𝑃𝑋 𝑥 =
𝑒−𝜆𝜆𝑥

𝑥 !
 , 𝑥 = 0,1, … . Then, 𝑃𝑘(𝑥)

𝑤
→ 𝑃𝑋(𝑥). That is 𝑃𝑘(𝑥) converges weakly to 

𝑃𝑋(𝑥). The proof is given as follow.  

 

Proof:  

Taking multiple derivatives of (5.1) we have 
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lim
𝑘→∞

𝑃 𝑋𝑡+𝑘 = 𝑥 𝑋𝑡 = 𝑥𝑡  

= lim
𝑘→∞

𝜙𝑘  
𝑥𝑡

𝑥
  𝛼𝑘 𝑥 1 − 𝛼𝑘 𝑋𝑡−𝑥

+ lim
𝑘→∞

 𝜙𝑖  
𝑒−𝜆𝛼 𝑖

 𝜆𝛼𝑖 
𝑥

𝑥!
− 𝜙𝑘

𝑒−𝜆𝛼 𝑖+1
 𝜆𝛼𝑖+1 

𝑥

𝑥!
 

𝑘−1

𝑖=0

 

= lim
𝑘→∞

 
𝑒−𝜆𝜆𝑥

𝑥!
+  𝜙𝑖

𝑒−𝜆𝛼 𝑖
(𝜆𝛼𝑖)𝑥

𝑥!

𝑘−1

𝑖=1

−  𝜙𝑗
𝑒−𝜆𝛼 𝑗

(𝜆𝛼𝑗 )𝑥

𝑥!

𝑘

𝑗 =1

  

= lim
𝑘→∞

 
𝑒−𝜆𝜆𝑥

𝑥!
− 𝜙𝑘

𝑒−𝜆𝛼𝑘
(𝜆𝛼𝑘)𝑥

𝑥!
  

=
𝑒−𝜆𝜆𝑥

𝑥!
= 𝑃𝑋(𝑥) 

 

 

5.2 Point Mass Forecasts 

Point mass forecasts and 𝑘-step-ahead conditional distribution have been developed 

in this section. Point masses have been applied to forecast by simply referring to the 

median, and cumulative distributions may determine the median forecast. However, the 

median may not be very informative for low counts. Therefore, using the probability 

distribution considered here would be more appropriate to forecast the outcomes. 

Theorem 5.1.1 gives the distribution of 𝑋𝑡+𝑘  given 𝑋𝑡  is a mixture distribution. The 

conditional pmf of Poisson MPT(1) process of 𝑋𝑡+𝑘  given 𝑋𝑡  is, 

𝑃(𝑋𝑡+𝑘 = 𝑥|𝑋𝑡 = 𝑥𝑡)

= 𝜙𝑘  
𝑥𝑡

𝑥
  𝛼𝑘 𝑥(1 − 𝛼𝑘)𝑋𝑡−𝑥 +

𝑒−𝜆𝜆𝑥

𝑥!
− 𝜙𝑘

𝑒−𝜆𝛼𝑘
(𝜆𝛼𝑘)𝑥

𝑥!
 

 

(5.6) 

 

The expression shown is relatively simpler than the 𝑘 -step-ahead conditional 

distribution of Poisson INAR(1) model. See Freeland (1998, Eq. (3.3.1)). In the 

following section, we illustrate the conditional mean, median, mode and point mass 
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forecasts with real data set. The conditional mode is easy to find since for the non-

negative integer point, 𝑥, the 𝑘-step-ahead conditional probability mass, 𝑝𝑘(𝑥|𝑋𝑡), is the 

largest. 

5.3 Prediction Intervals 

Knowledge of the parameters 𝜽 = (𝛼, 𝜆, 𝜙)′  is required to implement the forecasting 

ideas. The parameters have been prior estimated to compute 𝑝𝑘(𝑥|𝑋𝑛). Suppose we 

have a sample of size 𝑛 and denote the ML estimates for this sample by 𝜽 𝒏. Under some 

mild regularities conditions as in Freeland (1998, Section 4.1), 𝜽 𝒏
′
 is asymptotically 

normal with mean 𝜽𝟎
′
 and variance 𝑛−1𝑖−1, where i is denoted as Fisher information 

matrix, and 𝜽𝟎
′ = (𝛼0, 𝜆0, 𝜙0)′  are the true parameters; which have been estimated by 

MLE via EM algorithm. The inverse Fisher information matrix can be obtained via the 

following theorem,  

Theorem 5.3.1 (Inverse Fisher Information Matrix): Denote the parameters as 𝜽 =

(𝛼, 𝜆, 𝜙)′ . We are interested to compute 𝜽 ,  where 𝜽  is asymptotically normally 

distributed around the true parameter values for Eq. (5.6), i.e.  𝑛 𝜽 − 𝜽𝟎 ~𝑁(𝟎, 𝐕) for 

some variance covariance matrix 𝐕, where 𝐕 is the inverse Fisher information matrix. 

The inverse matrix can be written as 

𝐕 =   −𝐸  
𝜕2 ln 𝑃(𝑋𝑡 |𝑋𝑡−1)

𝜕𝜃𝜕𝜃 ′
  

−1

 

where  

𝜕2 𝑙𝑛 𝑃(𝑋𝑡 |𝑋𝑡−1)

𝜕𝜃𝜕𝜃 ′
=  

ℓ 𝛼𝛼 ℓ 𝛼𝜆 ℓ 𝜙𝛼

ℓ 𝛼𝜆 ℓ 𝜆𝜆 ℓ 𝜙𝜆

ℓ 𝜙𝛼 ℓ 𝜙𝜆 ℓ 𝜙𝜙

  

  

The elements of Fisher information matrix are calculated by truncating the infinite sums 

to 𝑚, which corresponds to substituting the sample space of  0,1,2, …   of 𝑋𝑡  by the 
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sample space of  0,1,2, … , 𝑚 . The value for 𝑚 is selected so that 𝑃 𝑋𝑡 > 𝑚 < 10−15  

(Silva et al., 2005). These elements can be computed numerically using the derivatives. 

The expectation of second derivatives can be computed numerically by using the 

formulas in Chapter 4, (4.10a) - (4.10f). Now, we applied the 𝛿- method for finding the 

asymptotic distribution of function 𝑝𝑘(𝑥|𝑋𝑛 ; 𝜽 𝒏) . By referring to Theorem 3.4.1 

(Freeland, 1998), we obtain the following asymptotical property, 

 

Theorem 5.3.2 (Asymptotic Normal Distribution): We consider the k-step-ahead 

conditional probability here as 𝑝𝑘(𝑥|𝑋𝑛 ; 𝜽 𝒏), which for a fixed 𝑥 and sample size 𝑛, it 

has an asymptotically normal distribution with 𝑝𝑘(𝑥|𝑋𝑛 ; 𝜽𝟎) and variance  

𝜎𝑘
2 𝑥;  𝛼0 , 𝜆0 , 𝜙0 

= 𝑛−1  𝜈𝛼   𝜕𝑝𝑘

𝜕𝛼
 
𝛼=𝛼0,𝜆=𝜆0 ,𝜙=𝜙0

 

2

+ 𝜈𝜆   𝜕𝑝𝑘

𝜕𝜆
 
𝛼=𝛼0 ,𝜆=𝜆0 ,𝜙=𝜙0

 

2

+ 𝜈𝜙   𝜕𝑝𝑘

𝜕𝜙
 
𝛼=𝛼0 ,𝜆=𝜆0 ,𝜙=𝜙0

 

2

+ 2𝜈𝛼𝜆

𝜕𝑝𝑘

𝜕𝛼
 𝜕𝑝𝑘

𝜕𝜆
 
𝛼=𝛼0 ,𝜆=𝜆0 ,𝜙=𝜙0

+ 2𝜈𝛼𝜙

𝜕𝑝𝑘

𝜕𝛼
 𝜕𝑝𝑘

𝜕𝜙
 
𝛼=𝛼0 ,𝜆=𝜆0 ,𝜙=𝜙0

+ 2𝜈𝜆𝜙

𝜕𝑝𝑘

𝜕𝜆
 𝜕𝑝𝑘

𝜕𝜙
 
𝛼=𝛼0 ,𝜆=𝜆0 ,𝜙=𝜙0

  

 

 

 

 

(5.7) 

 

where 𝜈𝛼 , 𝜈𝜆  and 𝜈𝜙  are the diagonal elements and 𝜈𝛼𝜆 , 𝜈𝛼𝜙  and 𝜈𝜆𝜙  are the off-

diagonal elements of 𝐕 in Theorem 5.3.1, respectively. Here 

𝜕

𝜕𝛼
𝑝𝑘 𝑥 𝑋𝑛 =

𝜙𝑘𝑘𝛼𝑘−1𝑋𝑛

1 − 𝛼𝑘
  

𝑋𝑛 − 1
𝑥 − 1

  𝛼𝑘 𝑥−1 1 − 𝛼𝑘 𝑋𝑛 −𝑥

−  
𝑋𝑛

𝑥
  𝛼𝑘 𝑥 1 − 𝛼𝑘 𝑋𝑛 −𝑥 

− 𝜆𝜙𝑘𝑘𝛼𝑘−1  
𝑒−𝜆𝛼𝑘

 𝜆𝛼𝑘 𝑥−1

 𝑥 − 1 !
−

𝑒−𝜆𝛼𝑘
 𝜆𝛼𝑘 𝑥

𝑥!
  

Univ
ers

ity
 of

 M
ala

ya



85 
 

𝜕

𝜕𝜆
𝑝𝑘 𝑥 𝑋𝑛 =

𝑒−𝜆 𝜆 𝑥−1

 𝑥 − 1 !
−

𝑒−𝜆 𝜆 𝑥

 𝑥 !
−  𝛼𝜙 𝑘  

𝑒−𝜆𝛼𝑘
 𝜆𝛼𝑘 𝑥−1

 𝑥 − 1 !
−

𝑒−𝜆𝛼𝑘
 𝜆𝛼𝑘 𝑥

𝑥!
  

𝜕

𝜕𝜙
𝑝𝑘 𝑥 𝑋𝑛 = 𝑘𝜙𝑘−1   

𝑋𝑛

𝑥
  𝛼𝑘 𝑥(1 − 𝛼𝑘)𝑋𝑛 −𝑥 −

𝑒−𝜆𝛼𝑘
 𝜆𝛼𝑘 𝑥

𝑥!
  

 

Thus, we can compute a 95% confidence interval for 𝑝𝑘(𝑥|𝑋𝑛 ;  𝛼0, 𝜆0, 𝜙0), based on its 

asymptotic distribution, by means of 

 

𝑝𝑘 𝑥 𝑋𝑛 ;  𝛼 𝑛 , 𝜆 𝑛 , 𝜙 𝑛 ± 1.96𝜎𝑘 𝑥;  𝛼0, 𝜆0, 𝜙0  (5.8) 

 

5.4 Descriptive Measures of Forecasting Accuracy 

We describe some methods in descriptive measures of forecasting accuracy. Given a 

set of observed data  𝑌1, 𝑌2, … , 𝑌𝑛 , 𝑌𝑛+1 … , 𝑌𝑛+𝑚  of size  𝑛 + 𝑚 , the data is partitioned 

into two sets;  𝑌1, 𝑌2, … , 𝑌𝑛  is called training set and  𝑌𝑛+1 … , 𝑌𝑛+𝑚  is called testing set. 

The training data set containing first 𝑛 observations is used for parameter estimation 

and the rest of the data which containing 𝑚  observations is used for forecasting 

accuracy measurements. There are three measurements for forecasting accuracy which 

are described as follow, 

i) Prediction root mean squared error (denoted by PRMSE), which is defined as  

𝑃𝑅𝑀𝑆𝐸 =  
1

𝑚
  𝑌𝑡+ℎ − 𝑌 𝑡+ℎ

𝑚𝑒
 

2
𝑚

ℎ=1

 

where 𝑌 𝑡+ℎ
𝑚𝑒

 is the mean of the estimated ℎ-step ahead forecasting distribution 𝑌𝑡+ℎ  

given 𝑌𝑡  given in Eq. (5.6). 

ii) Prediction mean absolute deviation (denoted by PMAD), which is defined as 
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𝑃𝑀𝐴𝐸 =
1

𝑚
  𝑌𝑡+ℎ − 𝑌 𝑡+ℎ

𝑚𝑒𝑑
 

𝑚

ℎ=1

 

where 𝑌 𝑡+ℎ
𝑚𝑒𝑑

 is the median of the estimated ℎ-step ahead forecasting distribution 𝑌𝑡+ℎ  

given 𝑌𝑡  given in Eq. (5.6). 

iii) Percentage of true predictions (PTP), which is defined as  

𝑃𝑇𝑃 =
1

𝑚
 𝐼 𝑌𝑡+ℎ − 𝑌 𝑡+ℎ × 100%

𝑚

ℎ=1

 

where 𝐼 ∙  is an indicator function. Here, 𝑌 𝑡+ℎ  can be the predictive mean, median and 

mode (round to the nearest integer) in Eq. (5.6). 

Remark: The PRMSE(ℎ) and PMAD(ℎ) should intuitively increase in ℎ whereas the 

PTP(ℎ) should intuitively decrease in ℎ. 

All the methods above are used to measure the performance of forecasting models, 

Poisson MPT(1), Poisson INAR(1) and Poisson Pegram's AR(1) processes. Some 

simulation has been done based on these forecasting measurements. See the simulation 

results in Section 4.5, Chapter 4 for more information. 

5.5 Concluding Remarks 

This chapter discussed the significance of coherent forecasting in discrete-valued 

time series modelling and subsequently developed coherent forecasting for a new 

Poisson MPT(1) process. Important quantities of the new model, such as score functions 

and Fisher information matrix, have also been derived. Prediction intervals together 

with asymptotical normal distribution have been studied. Numerical simulation has been 

carried out to compare it with existing models, and it is noticed that the results are in 
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favour of the proposed model. Real data has been fitted to the forecasting distribution 

for illustration. See Chapter 7 for real data illustration. 

Univ
ers

ity
 of

 M
ala

ya



88 
 

CHAPTER 6: MIXED AUTOREGRESSIVE MOVING AVERAGE MODELS 

6.0 Introduction 

The first-order mixed Autoregressive (AR) model, a mixture of Pegram and 

Thinning (MPT) model, its relevant properties, parameter estimation with simulation 

studies have been investigated in detail. For a more complete study of time series 

models for the MPT family, Moving Average (MA) and higher order of AR (AR(p)) 

processes, as well as the mixed Autoregressive Moving Average (ARMA) of MPT 

processes will be discussed in this Chapter together with fitting for some discrete 

marginal distributions. Chapter 6 comprises several sections. Section 6.1 gives the 

literature reviews of existing ARMA models. The first-order integer-valued MPT 

Moving Average (MPT-MA(1)) model is constructed in Section 6.2. The sample paths 

of Poisson and Binomial marginals are displayed to illustrate realizations of the process. 

The important property of reversibility has been considered. Section 6.3 extends the 

order-one MPT-MA process to higher order of MPT-MA processes; it is named as MPT 

of 𝒒 -th order integer-valued MA processes which is abbreviated by MPT-MA(q). 

Section 6.4 is an immediate extension from Chapter 3. The higher order of MPT 

processes have been considered. The first-order integer-valued MPT Autoregressive 

Moving Average (MPT-ARMA(1,1)) model has been developed in Section 6.5. All 

relevant statistical and regression properties have been studied for each of the 

considered models. Section 6.6 concludes. 

 

6.1 Background of ARMA Processes 

There have been much research studies on ARMA processes in continuous time 

series modelling for past few decades. Back in 1970s, Jacobs and Lewis (1977) were 

perhaps the first to develop a mixed ARMA(1,1) with exponential sequence 

(EARMA(1,1)). Later, this model was then extended to a general mixed EARMA(p,q) 
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(Lawrence and Lewis, 1980). McKenzie (1981) continued the development of the 

EARMA model by extending the range of the correlation to negative values. The vast 

exploration of ARMA models motivates modelling for the discrete case in a similar 

direction. Discrete-valued ARMA models are rare. McKenzie (1988) developed a 

family of models for discrete-time processes with Poisson marginal distributions. 

Brannas and Hall (2001) presented a new characterization of an integer-valued MA 

models. They derived the moments and probability generating functions for four MA 

model variants. Al-Osh and Alzaid (1988) provided various properties of an integer-

valued Moving Average (INMA) model, such as joint distribution, regression, time 

reversibility, partial correlations and conditional regression properties. The non-

Markovian INMA model has been investigated for the Poisson sequences only. Aly and 

Bouzar (1994) provided a detailed and complete discussion on the ARMA models and 

the generalizations in terms of probability generating functions. On the other hand, 

Jacobs and Lewis (1978a, b) introduced an entirely different discrete-valued time series 

models, the discrete-valued Autoregressive Moving Average models, in which the 

sequence 𝑋𝑡  is taken as a probabilistic linear combination of i.i.d. integer-valued 

random variables. Also, Biswas and Song (2009) introduced DARMA models, analogue 

to Jacobs-Lewis approach but with simpler interpretation, to accommodate categorical 

data. The literature review suggested the construction and extension of the MPT 

processes. The proposed models have been based upon the structure of the well-known 

MA and ARMA models. The study with regards to autocovariance and autocorrelation 

structures which are analogue of continuous ARMA models will also be considered for 

the discrete-valued models.  

 

 

 

Univ
ers

ity
 of

 M
ala

ya



90 
 

6.2 Mixture of Pegram and Thinning First Order Integer-Valued  Moving 

Average Process 

Here, we focus on a correlated sequence of  𝑋𝑡 . A stationary sequence  𝜀𝑡  of i.i.d 

non-negative integer-valued random variable is introduced. The sequence of  𝑋𝑡  and 

 𝜀𝑡  are uncorrelated. We have the following definition of a mixed Pegram and thinning 

MA process.   

Definition 6.2.1 (Mixture of Pegram-INMA(1) process): Let  𝑋𝑡 𝑡∈ℕ  be a sequence 

independent of time. Suppose the sequence  𝜀𝑡 𝑡∈ℕ  is an i.i.d. non-negative integer-

valued random variables having mean 𝜇𝜀  and variance 𝜎𝜀
2. Let 𝛽 ∈ [0,1] with 𝑃 𝑊𝑖 =

1=1−𝑃(𝑊𝑖=0)=𝛽. Define the random variable 𝛽∘𝜀𝑡 by 

 

𝛽 ∘ 𝜀𝑡 =  𝑊𝑖

𝜀𝑡

𝑖=1

 

 

with the sequence of  𝑊𝑖 𝑖∈ℕ  is i.i.d. random variables independent of  𝑋𝑡 𝑡∈ℕ  and 

 𝜀𝑡 𝑡∈ℕ. Then, we say that 𝑋𝑡  is a mixture of Pegram and thinning first order integer-

valued Moving Average, abbreviated by MPT-MA(1) process if it admits the form  

 

𝑋𝑡 =  𝜃0,𝛽0 ∘ 𝜀𝑡 ∗  𝜃1,𝛽1 ∘ 𝜀𝑡−1  (6.1) 

 

where 𝜃0 ,𝜃1 ∈  0,1 , 𝛽0,𝛽1 ∈  0,1  are the mixing weights,  𝜃𝑖
𝑞
𝑖=0 = 1 and  𝛽𝑖

𝑞
𝑖=0 =

1. Here, 𝑞 = 1. The pgf is given by 

 

𝐺𝑋 𝑧 = 𝜃0𝐺𝜀 1 − 𝛽0 + 𝛽0𝑧 + 𝜃1𝐺𝜀 1 − 𝛽1 + 𝛽1𝑧  (6.2) 

 

 

where 𝐺𝜀(𝑧) is the pgf of 𝜀𝑡 .  

For simplicity we assign the value of 𝛽0 = 1 here. It is reminded that 1 ∘ 𝑋 = 𝑋 (Al-

Osh and Alzaid, 1987). However it is possible for 𝛽0 to take any real numbers between 
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0 and 1 inclusive. See Brannas and Hall (2001) discussed four models for potential real 

life applications. They show that 𝛽0 could be assigned differently to suit the respective 

models.  

6.2.1  Model Interpretation 

It is obvious that model (6.1) is a mixture model consisting of two independent 

components 𝜀𝑡  and 𝜀𝑡−1(𝛽 ∘ 𝜀𝑡−𝑖  and 𝛽 ∘ 𝜀𝑡−𝑗  are independent for 𝑖 ≠ 𝑗) , mixed by 

Pegram's operator (Pegram, 1980) with respect to the mixing parameter, as in the 

MPT(1) model. Note that 𝛽 ∘ 𝜀𝑡−1 is a binomial random variable having the parameters 

of (𝜀𝑡−1,𝛽); here we assume 𝑈𝑡−1 = 𝛽 ∘ 𝜀𝑡−1 , and 𝜀𝑡  is i.i.d. discrete-valued random 

variables having mean 𝜇  and variance 𝜎𝜀
2 .  𝑋𝑡  is dependent random variable. The 

interpretation of the MPT-MA(1) process is now apparent. 𝑈𝑡−1 represents the survivals 

at time 𝑡 − 1, and 𝜀𝑡  represents arrivals at time 𝑡, where both counting processes are 

mixed with the mixing proportions of 𝜃0  and 𝜃1  respectively. Realizations of many 

counting processes such as the number of patients staying in a hospital, the number of 

customers in the department store and the stock transaction could be described by MPT-

MA(1) model. 

6.2.2 Properties of MPT-MA(1) Process 

Similar to the MA and INMA(1) processes, MPT-MA(1) process is a non-Markovian 

time series model. This section develops some structure properties as follow, 

Theorem 6.2.1 (Conditional pgf of MPT-MA(1) process): Let  𝜀𝑡  be any discrete 

random variable, then the conditional pgf corresponding to Definition 6.2.1 is  

 

𝐺𝑋𝑡 |𝜀𝑡 ,𝜀𝑡−1
 𝑧 = 𝜃0(𝑧)𝜀𝑡 + 𝜃1(1 − 𝛽1 + 𝛽1𝑧)𝜀𝑡−1  

 

(6.4) 
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Proof: We have 

𝐺𝑋𝑡 |𝜀𝑡 ,𝜀𝑡−1
 𝑧  = 𝐸 𝑧𝑋𝑡 |𝜀𝑡 , 𝜀𝑡−1  

 = 𝜃0𝐸 𝑧
𝜀𝑡 |𝜀𝑡 , 𝜀𝑡−1 + 𝜃1𝐸 𝑧

𝛽1∘𝜀𝑡−1 |𝜀𝑡 , 𝜀𝑡−1  

 = 𝜃0𝐸 𝑧
𝜀𝑡 |𝜀𝑡 + 𝜃1𝐸 𝑧

𝛽1∘𝜀𝑡−1 |𝜀𝑡−1  

 = 𝜃0(𝑧)𝜀𝑡 + 𝜃1(1 − 𝛽1 + 𝛽1𝑧)𝜀𝑡−1  
 

 

Corollary 6.2.1 (Conditional Probability Function): We obtain the conditional 

probability function as  

 

𝑃 𝑋𝑡 = 𝑖 𝜀𝑡 , 𝜀𝑡−1 = 𝜃0𝑃 𝜀𝑡 = 𝑖 + 𝜃1  
𝜀𝑡−1

𝑖
  𝛽1 

𝑖 1 − 𝛽1 
𝜀𝑡−1−𝑖  

 

Finally, by assuming the value of 𝛽0 = 1 we show that the ACRF of 𝑋𝑡  may be derived 

analogue to Box-Jenkins (1970): 

 

𝜌𝑋 𝑘 =  
𝜃0𝜃1𝛽1,   𝑘 = 1
     0          𝑘 > 1

  (6.5) 

 

 

6.2.3 Fitting of Discrete Marginal Distributions 

We show that MPT-MA(1) can be fitted by any discrete marginal distribution, 

including non infinitely divisible distributions like the binomial distribution. 

Example 6.2.1 (Poisson MPT-MA(1) Process): Let  𝜀𝑡  be a Poisson process with mean 

𝜆 and 𝛽0 = 1, then the pgf of Eq. (6.2) is given by 

 

𝐺𝑋 𝑧 = 𝜃0𝑒
𝜆(𝑧−1) + 𝜃1𝑒

𝜆𝛽1(𝑧−1) (6.6) 

 

A compound distribution has pgf form of 𝐺1 𝐺2(𝑧) , Eq. (6.6) shows that 𝑋𝑡  has 

compound Poisson mixture process with the mean  𝜃0 + 𝛽1𝜃1 𝜆 and variance  𝜃0 +
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𝛽1
2𝜃1 𝜆

2 . The condition 
𝜃0

𝜃1
< 𝑒𝜆(1−𝛽1) ensures that the pmf of 𝑋𝑡  is strictly positive. 

The simulated pmf, sample paths and respective histograms of Poisson MPT-MA(1) 

process are displayed in the following graphs. 
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(a) 

 

 
(b) 

Figure 6.2.1: Simulated probability mass function with different combination of 

parameters  
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(a) 

 
(b) 

 
(c) 

Figure 6.2.2: Simulated sample paths and histogram of Poisson MPT-MA(1) 

process for 𝝀 = 𝟏.𝟎,𝟐.𝟎,𝟑.𝟎;  𝜽𝟎,𝜽𝟏 = 𝟎.𝟓;  𝜷𝟏 = 𝟎.𝟓 
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Figure 6.2.3: Probability mass function of Poisson MPT-MA(1) Process  

with different combination of parameters 
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In Figure 6.2.1, we varied the parameters of 𝜆 and 𝛽1 to observe the pattern of pmf of 

Poisson MA(1) model. It is seen that the distribution is long tailed. The skewness to the 

right is getting more pronounced when parameter 𝜆 increases. Figure 6.2.2 shows the 

simulated sample paths and histogram of Poisson MA(1) process. When 𝜆 is increased, 

we tend to obtain higher counts in the sample paths. It can be seen in Figure 6.2.3, the 

parameter 𝜆 determines the shape of the distribution. The bell-shaped and long tailed 

distribution is more apparent when 𝜆 is large. Comparatively, both Figure 3.4.3(a) and 

6.2.1(a) gives similar pattern for the pmf. This is the similarity between Poisson AR(1) 

and Poisson MA(1) processes. It is of interest to compare both models in real life 

applications. It is noted that our model is practically applicable for any discrete marginal 

distribution. This is the main different with INMA(1) process, which accommodates 

only Poisson marginal (Al-Osh and Alzaid, 1988).  

Example 6.2.2 (Binomial MPT-MA(1) process): Let the random variables  𝜀𝑡  be the 

Binomial process with the parameters (𝑁,𝑝), where 𝑁 is the number of trials and 𝑝 is 

the probability of success. Let 𝛽0 = 1 and the pgf of  𝑋𝑡  is given by 

 

𝐺𝑋 𝑧 = 𝜃0 1 − 𝑝 + 𝑝𝑧 𝑁 + 𝜃1 1 − 𝛽1𝑝 + 𝛽1𝑝𝑧 
𝑁 

 

(6.8) 

 

where 𝑝,𝛽1 ∈ [0,1]. 

We simulated the pmf of binomial MA(1) process with arbitrary combination of 

parameters in Figure 6.2.4. It is clearly seen that binomial MA(1) process appears to 

have two peaks for some parameter combinations, especially when we fixed the 

parameter values for of 𝜃0 ,𝜃1 and 𝛽1 and vary the parameter 𝑝. In Figure 6.2.4(b), there 

are two modes for smaller values of 𝛽1, and this evolves to a nice bell shape when 𝛽1 

gets larger. We fixed the parameters 𝑝 and 𝛽1, and vary the parameters 𝜃0 ,𝜃1 in Figure 

6.2.4 (c). Initially with small value of 𝜃0 and large value of 𝜃1, the combination results 
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in a bell-shaped curve which is skewed to the right. When both parameters are nearly 

equal, two modes appear. Finally, large 𝜃0 and small 𝜃1, results in a bell-shaped curve 

with skewing to the left. These phenomena shows that the binomial MA(1) process 

holds important characteristic of a mixture distribution. It may be the model to cater for 

data with multimodality in real life application. Additional information for the binomial 

MA(1) process are obtained from the simulated sample paths and frequency histogram 

shown in Figure 6.2.5. Figure 6.2.5 (a) shows a distribution skewed to the right while 

Figure 6.2.5 (b) is almost bell-shaped. We conclude that the larger sample mean will 

provide higher counts in the sample paths. Besides that, left-skewed bimodal 

distribution appears in the simulated sample path as shown in Figure 6.2.5 (c). This 

indicates that the binomial MA(1) process is a potential candidate to handle different 

shapes in count data and is thus flexible model for real life application. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 6.2.4: Simulated probability mass function of binomial MPT-MA(1) 

process with different combination of parameters 
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(a) 

 
(b) 

 
(c) 

Figure 6.2.5: Simulated sample paths and frequency histogram of binomial 

MPT-MA(1) process for 𝑵 = 𝟐𝟎;  𝜽𝟎,𝜽𝟏 = 𝟎.𝟓;  𝜷𝟏 = 𝟎.𝟓;  𝒂 𝒑 = 𝟎.𝟏; 
 𝒃 𝒑 = 𝟎.𝟑;  𝒄 𝒑 = 𝟎.𝟓 

 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

c
o
u
n
ts

x

theta0=0.5;theta1=0.5;beta1=0.5;n=20;p=0.1

0 1 2 3 4 5
0

10

20

30

40

fr
e
q
u
e
n
c
y

x

theta0=0.5;theta1=0.5;beta1=0.5;n=20;p=0.1

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

c
o
u
n
ts

x

theta0=0.5;theta1=0.5;beta1=0.5;n=20;p=0.3

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

fr
e
q
u
e
n
c
y

x

theta0=0.5;theta1=0.5;beta1=0.5;n=20;p=0.3

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

c
o
u
n
ts

x

theta0=0.5;theta1=0.5;beta1=0.5;n=20;p=0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

fr
e
q
u
e
n
c
y

x

theta0=0.5;theta1=0.5;beta1=0.5;n=20;p=0.5

Univ
ers

ity
 of

 M
ala

ya



101 
 

6.3 Mixture of Pegram and Thinning of 𝒒th-Order Moving Average Process 

In order to attain flexibility in the discrete time series modelling, it is natural to 

extend MPT-MA(1) to higher order of MA process, which is abbreviated here with 

MPT-MA(q). At the first sight, it seems reasonable to define the MPT-MA(q) process 

based upon Definition 6.2.1 extension as defined by 

Definition 6.3.1 (Mixture of Pegram-INMA(q) process): Let 𝑋𝑡  be a discrete-valued 

stochastic process such that 

 

𝑋𝑡 =  𝜃0,𝛽0 ∘ 𝜀𝑡 ∗  𝜃1,𝛽1 ∘ 𝜀𝑡−1 ∗  𝜃2,𝛽2 ∘ 𝜀𝑡−2 ∗ … ∗ (𝜃𝑞 ,𝛽𝑞 ∘ 𝜀𝑡−𝑞) (6.10) 

 

 

where  𝜃𝑖
𝑞
𝑖=0 = 1 and 𝜃𝑖 ≥ 0, and  𝜀𝑡  is an i.i.d. random variable having mean 𝜇𝜀  and 

variance 𝜎𝜀
2.  The pgf is 

𝐺𝑋 𝑧 =  𝜃𝑖𝐺𝜀𝑡−𝑖 1 − 𝛽𝑖 + 𝛽𝑖𝑧 

𝑞

𝑖=0

 (6.11) 

 

Example 6.3.1 (Poisson MPT-MA(q) Process): Let 𝜀𝑡  be Poisson(𝜆), then the pgf is 

given by 

𝐺𝑋 𝑧 =  𝜃𝑖𝑒
𝜆𝛽𝑖(𝑧−1)

𝑞

𝑖=0

 (6.12) 

 

Since 𝜇𝜀 = 𝜎𝜀
2 = 𝜆, it is easy to see that the expectation of 𝑋𝑡  is 𝐸 𝑋𝑡 =  𝜃𝑖𝛽𝑖𝜆

𝑞
𝑖=0  

and variance 𝑉𝑎𝑟 𝑋𝑡 =  𝜃𝑖𝛽𝑖
2𝑞

𝑖=0 𝜆2. Therefore, the random variable 𝑋𝑡  is a mixture 

of compound Poisson marginal distributions. 

 

Theorem 6.3.1 (Conditional pgf of MPT-MA(q) Process): Let  𝜀𝑡  be any discrete 

random variables, then the conditional pgf that corresponds to Definition 6.3.1 is 

generally given by 
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𝐺𝑋𝑡 |𝜀𝑡 ,𝜀𝑡−1 ,…,𝜀𝑡−𝑞
 𝑧 =  𝜃𝑖(1 − 𝛽𝑖 + 𝛽𝑖𝑧)𝜀𝑡−𝑖

𝑞

𝑖=0

 

 

 

Corollary 6.3.1 (Conditional pmf of MPT-MA(q) Process): The conditional probability 

function for MPT-MA(q) process is  

𝑃 𝑋𝑡 = 𝑖 𝜀𝑡 , 𝜀𝑡−1,… , 𝜀𝑡−𝑞 = 𝜃0𝑃 𝜀𝑡 = 𝑖 +  𝜃𝑗  
𝜀𝑡−𝑗
𝑖
  𝛽𝑗  

𝑖
 1 − 𝛽𝑗  

𝜀𝑡−𝑗−𝑖

𝑞

𝑗=1

 (6.13) 

 

Corollary 6.3.2 (Conditional expectation of MPT-MA(q) Process): By taking the first 

derivative of Theorem 6.3.1 and let 𝑧 = 1, the conditional expectation is given by 

𝐸 𝑋𝑡 𝜀𝑡 , 𝜀𝑡−1,… , 𝜀𝑡−𝑞 =  𝜃𝑖𝛽𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

 (6.14) 

 

Corollary 6.3.3 (Conditional variance of MPT-MA(q) Process): By the similar 

expression we obtain the conditional variance as follow 

𝑉𝑎𝑟 𝑋𝑡 𝜀𝑡 , 𝜀𝑡−1,… , 𝜀𝑡−𝑞 

=  𝜃𝑖𝛽𝑖
2𝜀𝑡−𝑖(𝜀𝑡−𝑖 − 1) −

𝑞

𝑖=0

 𝜃𝑖𝛽𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

+   𝜃𝑖𝛽𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

 

2

 

 

(6.15) 

 

Proposition 6.3.1 (lag-𝑘 Autocovariance function of MPT-MA(q) process): Let 𝜀𝑡  be 

i.i.d. random variable as stated in Definition 6.3.1, the lag-k autocovariance function of 

MPT-MA(q) process is given by 

𝛾 𝑘  

=  

𝜃0
2 +  𝜃1𝛽1 

2 +  𝜃2𝛽2 
2 + ⋯+  𝜃𝑞𝛽𝑞 

2
 𝜎𝜀

2  ;𝑘 = 0

𝜃0 𝜃𝑘𝛽𝑘 +  𝜃1𝛽1  𝜃𝑘+1𝛽𝑘+1 + ⋯+  𝜃𝑞𝛽𝑞  𝜃𝑞−𝑘𝛽𝑞−𝑘 𝜎𝜀
2

0 ; 𝑘 > 𝑞

 ;𝑘 = 1,2,… , 𝑞 

 

 

(6.16) 
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Proof:  

Let 𝑐𝑜𝑣(𝑋𝑡 ,𝑋𝑡−𝑘) be the autovariance of 𝑋𝑡  and 𝑋𝑡−𝑘 . Then, 

Substitute 𝑘 = 0,1,… , 𝑞 to obtain Proposition 6.3.1. Subsequently, Proposition 6.3.2 is 

obtained. 

 

Proposition 6.3.2 (lag-𝑘 Autocorrelation function of MPT-MA(q) process) The lag-k 

autocorrelation function is given by 

𝜌 𝑘 =

 
 
 

 
 

1   ;𝑘 = 0

𝜃0 𝜃𝑘𝛽𝑘 +  𝜃1𝛽1  𝜃𝑘+1𝛽𝑘+1 + ⋯+  𝜃𝑞𝛽𝑞  𝜃𝑞−𝑘𝛽𝑞−𝑘 

𝜃0
2 +  𝜃1𝛽1 

2 +  𝜃2𝛽2 
2 + ⋯+  𝜃𝑞𝛽𝑞 

2

0 ;𝑘 > 𝑞

 ; 𝑘 = 1,2,… , 𝑞 

 

(6.17) 

 

6.4 Mixture of Pegram and Thinning of 𝒑th-Order Autoregressive Processes 

This section is an immediate extension of Chapter 3. It is natural to extend the order 

one MPT model to 𝑝th-order. Here, we abbreviate the mixture of Pegram and thinning 

𝑝 th-order integer-valued Autoregressive process as MPT(p) to avoid confusion. 

Extending from Definition 3.1.1, we define the MPT 𝑝 th-order integer-valued AR 

process as follow, 

Definition 6.4.1 (Mixture of Pegram-INAR(p)): Let 𝜀𝑡  be an i.i.d process with range ℕ0 

which having mean 𝐸 𝜀𝑡 = 𝜇𝜀  and variance 𝑣𝑎𝑟 𝜀𝑡 = 𝜎𝜀
2
. Let 𝛼 ∈ (0,1) and 𝜙𝑗  be 

the mixing weights where 𝜙𝑗 ∈  0,1 , 𝑗 = 1,… ,𝑝  and  𝜙𝑗
𝑝
𝑗=1 = 1 . For every 𝑡 =

0, ±1, ±2,… a discrete-valued stochastic process (𝑋𝑡)ℤ is defined by 

𝑐𝑜𝑣 𝑋𝑡 ,𝑋𝑡−𝑘  = 𝐸(𝑋𝑡  𝑋𝑡−𝑘) 

 = 𝐸( 𝜃0𝛽0𝜀𝑡 + 𝜃1𝛽1𝜀𝑡−1 + ⋯+ 𝜃𝑞𝛽𝑞𝜀𝑡−𝑞  𝜃0𝛽0𝜀𝑡−𝑘 + 𝜃1𝛽1𝜀𝑡−𝑘−1

+ ⋯+ 𝜃𝑞𝛽𝑞𝜀𝑡−𝑞−𝑘 ) 

 = 𝐸   𝜃0𝛽0 
2𝜀𝑡𝜀𝑡−𝑘 +  𝜃0𝛽0  𝜃1𝛽1 𝜀𝑡𝜀𝑡−𝑘−1 + ⋯

+  𝜃𝑞𝛽𝑞 
2
𝜀𝑡−𝑞𝜀𝑡−𝑘−𝑞  
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𝑋𝑡 =  𝜙1,𝛼 ∘𝑡 𝑋𝑡−1 ∗ … ∗  𝜙𝑝 ,𝛼 ∘𝑡 𝑋𝑡−𝑝 ∗  1 − 𝜙1 − 𝜙2 −⋯− 𝜙𝑝 , 𝜀𝑡  
 

(6.18) 

 

The time index 𝑡 below the thinning operation indicates that the corresponding thinning 

is used to define the discrete-valued stochastic process 𝑋𝑡 , which is uncorrelated with 𝜀𝑡 ,  

and the notation ∗ indicates Pegram's mixing operator. Equation (6.18) is called MPT(p) 

process if it follows the assumptions (i) 𝜀𝑡  is independent of thinning at time 𝑡 (∘𝑡), 

𝛼 ∘𝑡 𝑋𝑡  is independent of 𝛼 ∘𝑡  𝑋𝑠 𝑠<𝑡 , (ii) the mixing weights 𝜙𝑗 , 𝑗 = 1,… ,𝑝  is 

independent of 𝜀𝑡  and the thinning at time 𝑡, and (iii) the conditional distribution on 𝑋𝑡  

𝑃 𝛼 ∘𝑡+1 𝑋𝑡 ,… ,𝛼 ∘𝑡+𝑝 𝑋𝑡|𝑋𝑡 = 𝑥𝑡 ,ℋ𝑡−1  is equal to 𝑃 𝛼 ∘𝑡+1 𝑋𝑡 ,… ,𝛼 ∘𝑡+𝑝 𝑋𝑡|𝑋𝑡 =

𝑥𝑡, where for 𝑠≤𝑡−1 and 𝑗=1,…,𝑝, ℋ𝑡−1 abbreviates the process history of all 𝑋𝑠 and 

𝛼 ∘𝑠+𝑗 𝑋𝑠.  

 

The MPT(p) process is defined with its pgf which has to fulfil 

𝐺𝑋𝑡 𝑧 =  𝜙𝑗𝐸 𝑧
𝛼∘𝑡𝑋𝑡−𝑗  +  1 − 𝜙𝑗

𝑝

𝑗=1

 𝐸 𝑧𝜀𝑡 

𝑝

𝑗=1

 

 

=  𝜙𝑗𝐺𝑋𝑡−𝑗 (1 − 𝛼 + 𝛼𝑧) +  1 − 𝜙𝑗

𝑝

𝑗=1

 𝐺𝜀𝑡(𝑧)

𝑝

𝑗=1

 

 

 

Theorem 6.4.1 (Conditional pgf of MPT(p) Process): The conditional pgf takes the 

form 

𝐺𝑋𝑡 |𝑋𝑡−1 ,…,𝑋𝑡−𝑝 (𝑧) =  𝜙𝑗

𝑝

𝑗=1

 1 − 𝛼 + 𝛼𝑧 𝑋𝑡−𝑗 +  1 − 𝜙𝑗

𝑝

𝑗=1

 𝐺𝜀𝑡(𝑧) 

 

(6.19) 

 

 

Corollary 6.4.1 (Conditional pmf of MPT(p) Process): The probability mass function is 

given by   
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𝑃 𝑋𝑡 = 𝑥𝑡  𝑋𝑡−1,… = 𝑃 𝑋𝑡 = 𝑥𝑡  𝑋𝑡−1,… ,𝑋𝑡−𝑝 

=  𝜙𝑗  
𝑥𝑡−𝑗
𝑥𝑡

 𝛼𝑥𝑡 1 − 𝛼 𝑥𝑡−𝑗−𝑥𝑡

𝑝

𝑗=1

+  1 − 𝜙𝑗

𝑝

𝑗=1

 𝑃(𝜀𝑡 = 𝑥𝑡) 

 

(6.20) 

 

Corollary 6.4.2 (Conditional Expectation): The conditional expectation is given by 

𝐸 𝑋𝑡 𝑋𝑡−1,… ,𝑋𝑡−𝑝 = 𝛼 𝜙𝑗𝑋𝑡−𝑗

𝑝

𝑗=1

+  1 − 𝜙𝑗

𝑝

𝑗=1

 𝜇𝜀  (6.21) 

 

Corollary 6.4.3 (Conditional Variance): The conditional variance in quadratic form is 

given by 

 

𝑉𝑎𝑟 𝑋𝑡 𝑋𝑡−1,… ,𝑋𝑡−𝑝  

= 𝛼 𝜙𝑗𝑋𝑡−𝑗

𝑝

𝑗=1

+  𝛼2𝜙𝑗𝑋𝑡−𝑗  𝑋𝑡−𝑗 − 1 +

𝑝

𝑗=1

 1 − 𝜙𝑗

𝑝

𝑗=1

  𝜎𝜀
2 + 𝜇𝜀

2  

    −𝛼2  𝜙𝑗
2𝑋𝑡−𝑗

2

𝑝

𝑗=1

−  1 − 𝜙𝑗

𝑝

𝑗=1

 

2

𝜇𝜀
2 − 2𝛼 𝜙𝑗

𝑝

𝑗=1

𝑋𝑡−𝑗  1 − 𝜙𝑗

𝑝

𝑗=1

 𝜇𝜀  

 

 

 

 

 

 

(6.22) 

 

 

Next, we would like to study the autocovariance and autocorrelation functions. The 

assumption that all thinnings are identical and independent holds true, and they are 

derived as follows. 

 

Theorem 6.4.2 (Autocovariance Function of MPT(p) Models): Let  𝑋𝑡 ℤ  be a 

stationary MPT(p) process according to Definition 6.4.1. Let 𝛾 𝑘 = 𝐶𝑜𝑣(𝑋𝑡 ,𝑋𝑡−𝑘) 

denote the autocovariance function and 

 

𝜇 𝑗,𝑘 = 𝐸  𝛼 ∘𝑡 𝑋𝑡−𝑗  ∙ 𝑋𝑡−𝑘 − 𝛼 ∙ 𝐸 𝑋𝑡−𝑗 ∙ 𝑋𝑡−𝑘 ,    𝑘 ≥ 1 

 

The autocovariance function is 
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𝛾 𝑘 = 𝛼 ∙ 𝜙𝑗 ∙ 𝛾  𝑘 − 𝑗  +  𝜙𝑗 ∙ 𝜇(𝑗,𝑘)

𝑝

𝑗=𝑘+1

𝑝

𝑗=1

 
 

(6.23) 

 

 

where for 𝑗 > 𝑘, 

 

𝜇 𝑗,𝑘 = 𝛼  𝜙𝑗

𝑗−𝑘−1

𝑚=1

𝜇 𝑗,𝑘 + 𝑚 + 𝜙𝑗−𝑘 𝑐𝑜𝑣 𝛼 ∘𝑡 𝑋𝑡−𝑗 ,𝛼 ∘𝑡−𝑘 𝑋𝑡−𝑗  − 𝛼2𝜎𝑋
2  

 

otherwise 𝑗 ≤ 𝑘, 𝜇 𝑗,𝑘 = 0. 

 

Proof:  

 

   𝑐𝑜𝑣 𝑋𝑡 ,𝑋𝑡−𝑘 = 𝐸 𝑋𝑡𝑋𝑡−𝑘 − 𝐸 𝑋𝑡 𝐸 𝑋𝑡−𝑘  

𝐸 𝑋𝑡𝑋𝑡−𝑘  = 𝐸    𝜙𝑗  𝛼 ∘ 𝑋𝑡−𝑗  

𝑝

𝑗=1

+  1 − 𝜙𝑗

𝑝

𝑗=1

 𝜀𝑡 𝑋𝑡−𝑘  

 

= 𝐸   𝜙𝑗  𝛼 ∘ 𝑋𝑡−𝑗  ∙ 𝑋𝑡−𝑘

𝑝

𝑗=1

+  1 − 𝜙𝑗

𝑝

𝑗=1

 𝜀𝑡 ∙ 𝑋𝑡−𝑘  

 

=  𝜙𝑗

𝑝

𝑗=1

𝐸  𝛼 ∘ 𝑋𝑡−𝑗  ∙ 𝑋𝑡−𝑘 +  1 − 𝜙𝑗

𝑝

𝑗=1

 𝐸 𝜀𝑡 𝐸 𝑋𝑡−𝑘  

 

=  𝜙𝑗

𝑝

𝑗=1

𝐸  𝛼 ∘ 𝑋𝑡−𝑗  ∙ 𝑋𝑡−𝑘 +  1 − 𝛼 𝜙𝑗

𝑝

𝑗=1

 𝜇𝑥
2 

 

Similarly as defined in Weiβ (2008), we obtain 

 

𝜇 𝑗,𝑘 = 𝐸  𝛼 ∘𝑡 𝑋𝑡−𝑗  ∙ 𝑋𝑡−𝑘 − 𝛼 ∙ 𝐸 𝑋𝑡−𝑗 ∙ 𝑋𝑡−𝑘 ,   𝑘 ≥ 1 

 

Then, the autocovariance function can be determined from the equations 

 

𝛾 𝑘 = 𝛼 ∙ 𝜙𝑗

𝑝

𝑗=1

∙ 𝛾 |𝑘 − 𝑗| +  𝜙𝑗 ∙ 𝜇(𝑗,𝑘)

𝑝

𝑗=𝑘+1
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where 𝜇 𝑗,𝑘 = 0 for 𝑗 ≤ 𝑘,   

 

Remark: Identical and independent thinnings have been considered in Weiβ (2008), 

who proposed combined INAR(p) models. The autocovariance and autocorrelation 

functions of MPT(p) process may be given similar consideration as in Weiβ (2008). 

 

Theorem 6.4.3 (Autocorrelation Function of MPT(p) Model): Assuming all the 

thinning operations are independent, then 𝑐𝑜𝑣 𝛼 ∘𝑡 𝑋𝑡−𝑗 ,𝛼 ∘𝑡−𝑘 𝑋𝑡−𝑗  = 𝛼2𝜎𝑋
2 . The 

autocorrelation function has the structure 

 

𝜌 𝑘 = 𝛼 ∙  𝜙1 ∙ 𝜌 |𝑘 − 1| + ⋯+ 𝜙𝑝 ∙ 𝜌 |𝑘 − 𝑝|   (6.24) 

 

 

As mentioned above, similar results have also been provided by Weiβ (2008). Next, we 

consider the random variable 𝑋𝑡  to be a Poisson process, and some important equations 

will be derived. 

 

Example 6.4.1 (Probability Generating Function Poisson MPT(p) Process): Let 𝑋𝑡  be 

Poisson process with mean 𝜆, which fulfills Definition 6.4.1, the pgf is given by 

 

𝐺𝑋𝑡 𝑧 =  𝜙𝑗

𝑝

𝑗=1

𝐺𝑋𝑡−𝑗  1 − 𝑎 + 𝛼𝑧 + 𝑒𝜆(𝑧−1) − 𝜙𝑗 𝑒
𝜆𝛼 (𝑧−1)

𝑝

𝑗=1

 

 

where the pgf of innovation process  𝜀𝑡  is  

 

𝐺𝜀𝑡 𝑧 =
1

1 −  𝜙𝑗
𝑝
𝑗=1

 𝑒𝜆(𝑧−1) − 𝜙𝑗𝑒
𝜆𝛼 (𝑧−1)

𝑝

𝑗=1

  

 

with the corresponding pmf of  𝜀𝑡  is 
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𝑃 𝜀𝑡 = 𝑖 =
1

1 −  𝜙𝑗
𝑝
𝑗=1

 
𝑒−𝜆𝜆𝑖

𝑖!
− 𝜙𝑗

𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!

𝑝

𝑗=1

  

 

To ensure the pmf of 𝜀𝑡  is strictly positive, the parameters must fulfils 
1

 𝜙𝑗
𝑝
𝑗=1

> 𝑒𝜆(1−𝛼) 

for 𝑖 = 0,1,2…. 

 

Remark: Refer to Section 7.5 for real illustration of Poisson MPT(p) processes. 

 

6.5 Mixture of Pegram and Thinning of (p,q)th-Order Integer-Valued 

Autoregressive Moving Average Processes 

To end this chapter, we introduce the combination of mixture of integer-valued AR(p) 

and MA(q), which yields the thinning and Pegram's mixture of integer-valued 

autoregressive moving average. It is abbreviated by MPT-ARMA(p,q). 

Definition 6.5.1 (Mixture of Pegram-INARMA(p,q) Process): Let 𝜀𝑡  be an i.i.d. discrete 

random variable, the mixing weights 𝛼 ∈  0,1 , 𝑖 = 1,2,… ,𝑝  and 𝛽𝑗 ∈  0,1 , 𝑗 =

0,1,2,… , 𝑞 

 

𝑋𝑡 =  𝜙1,𝛼 ∘ 𝑋𝑡−1 ∗  𝜙2,𝛼 ∘ 𝑋𝑡−2 ∗ … ∗  𝜃0 ,𝛽0 ∘ 𝜀𝑡 ∗  𝜃1,𝛽1 ∘ 𝜀𝑡−1 ∗ …

∗ (𝜃𝑞 ,𝛽𝑞 ∘ 𝜀𝑡−𝑞) 
(6.25) 

 

with the pgf 

𝐺𝑋 𝑧 =  𝜙𝑖𝐺𝑋−𝑖 1 − 𝛼 + 𝛼𝑧 +  𝜃𝑗𝐺𝜀(1 − 𝛽𝑗 + 𝛽𝑗 𝑧)

𝑞

𝑗=0

𝑝

𝑖=1

 (6.26) 

 

where all thinning and mixture operators follow Definition (6.3.1) and (6.4.1). The 

above definition leads to autocovariance function in the form of  

 

𝛾 𝑘 = 𝛼 𝜙𝑖

𝑝

𝑖=1

𝐸 𝑋𝑡−𝑖𝑋𝑡−𝑘 +  𝜃𝑗𝛽𝑗𝐸 𝜀𝑡−𝑗𝑋𝑡−𝑘 

𝑞

𝑗=0

 

 

(6.27) 
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To reduce the complexity, we consider only when 𝑝 = 1 and 𝑞 = 1.  

 

Example 6.5.1 (MPT-INARMA(1,1)): Consider the random variable 𝑋𝑡  as a mixture of 

Pegram and thinning of first order Integer-valued Autoregressive and Moving Average 

process which is given by 

 

𝑋𝑡 =  𝜙1,𝛼 ∘ 𝑋𝑡−1 ∗  𝜃0,𝛽0 ∘ 𝜀𝑡 ∗  𝜃1,𝛽1 ∘ 𝜀𝑡−1  (6.28) 

 

 

and the autocovariance function is 

 

 

𝛾 𝑘 = 𝜙1𝛼𝛾 𝑘 − 1 + 𝜃0𝛽0𝛾𝜀𝑥  𝑘 + 𝜃0𝛽0𝛾𝜀𝑥  𝑘 − 1  (6.29) 

 

 

where 𝛾𝜀𝑥  𝑘 = 𝐸 𝜀𝑡𝑋𝑡−𝑘  is the cross covariance function between random variables 

𝜀𝑡  and 𝑋𝑡−𝑘 . Since 𝑋𝑡−𝑘  occurs only up to 𝑡 − 𝑘, it follows that 𝛾𝜀𝑥  𝑘 = 0 for 𝑘 > 0 

otherwise 𝛾𝜀𝑥  𝑘 ≠ 0  for 𝑘 ≤ 0 . To obtain the expression for the autocovariance 

function of the process, some algebra are needed. First, multiply Eq. (6.28) with 𝜀𝑡−1 

and taking the expectation, we obtain 

 

𝛾𝜀𝑥  −1 =  𝜙1𝛼 + 𝜃1𝛽1 𝜎𝜀
2 

 

Also, multiplying Eq. (6.28) with 𝑋𝑡−𝑘  and taking expectation before proceeding to set 

𝑘 = 0 and 𝑘 = 1, we arrive at the following two equations 

  

𝛾 0 = 𝜙1𝛼𝛾 1 +  𝜃0𝛽0 + 𝜃1𝛽1 𝜙1𝛼 + 𝜃1𝛽1  𝜎𝜀
2 

𝛾 1 = 𝜙1𝛼𝛾 1 + 𝜃1𝛽1𝜎𝜀
2 

 

Solving both equations simultaneously, we obtain the autocovariance function for MPT-

ARMA (1,1) process.  
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𝛾 0 =
𝜃0𝛽0 + (𝜃1𝛽1)2 + 2𝜙1𝜃1𝛽1𝛼

1 − (𝜙1𝛼1)2
𝜎𝜀

2                                       ; 𝑘 = 0 

𝛾 1 =
𝜃0𝛽0𝜙1𝛼 + (𝜃1𝛽1)2𝜙1𝛼 +  𝜙1𝛼 

2𝜃1𝛽1 + 𝜃1𝛽1

1 − (𝜙1𝛼1)2
𝜎𝜀

2     ; 𝑘 = 1 

𝛾 𝑘 = 𝜙1𝛼𝛾 𝑘 − 1                                                                         ; 𝑘 ≥ 2 

 

 

The expressions are rather complicated but it may be useful in real application, which 

can be discussed in the future research. 

 

6.6 Concluding Remarks 

Chapter 6 is an extension of Chapter 3. With newly defined discrete-valued operator, 

it presents other potential candidates for MPT family. In this chapter, we discussed the 

MPT-MA(q) model and studied the order one process as a special case, which is 

abbreviated by MPT-MA(1). Discrete marginal distributions such as Poisson and 

Binomial have been fitted in the models. Also, some important properties like 

reversibility have been highlighted. One natural extension of the MPT(1) model is a 

higher order process. This is the  thinning and Pegram's mixture of 𝑝th-order integer-

valued autoregressive (MPT(p)) process. The investigation has been done to MPT(p) 

model, specifically fitting of Poisson margin for real data and this is illustrated in the 

next chapter. Last but not least, the combination of AR(p) and MA(q) processes which 

contains mixing parameters, yields the new MPT-ARMA(p,q) model. 
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CHAPTER 7: APPLICATION TO REAL DATA SETS 

7.0 Introduction 

This chapter illustrates the application of the proposed model. One of the aim of this 

thesis is to show that the proposed model has competitive advantages over existing 

models. We fitted a variety of real data sets into MPT(1) process and various graphical 

plots and simple descriptive statistics are given to summarize the analysis. Model 

parameter estimation is discussed and extensive comparison with existing discrete-

valued time series models has been carried out. 

7.1 Criminal: Sex Offences 

7.1.1 Data Description 

An observation of the time series represents a count of sex offences reported in the 

21st police car beat in Pittsburgh, during one month. The data consists of 144 

observations, starting in January 1990 and ending in December 2001. The data are 

available on-line at http://www.forecastingprinciples.com under the section of crime 

data. The partial autocorrelation cuts off after the first lag. This behaviour indicates that 

MPT(1) is appropriate. See Fig. 7.1.1. A summary of simple descriptive statistics of the 

data is given in Table 7.1.1. From preliminary observation, the data are overdispersed 

since the index of dispersion exceeds 1. We further diagnose whether this 

overdispersion is statistically significant by adopting the dispersion test of Schweer and 

Weiβ (2014). The null hypothesis is that the data are equi-dispersed from the Poisson 

INAR(1) process against the alternative of an INAR(1) with an over dispersed marginal 

distribution. From Schweer and Weiβ (2014, Eq. (9)) the critical value is 1.1977 and the 

index of dispersion of the data, 𝐼 𝑑𝑎𝑡𝑎 =
𝑠𝑎𝑚𝑝𝑙𝑒  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑠𝑎𝑚𝑝𝑙𝑒  𝑚𝑒𝑎𝑛
 is 1.7395. The null hypothesis is 

rejected as the index of dispersion exceeds the critical value and an overdispersed 

marginal may be assumed for the data. 
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Figure 7.1.1: Time series plot, sample autocorrelation and partial 

autocorrelation function of sex offence counts 

 

Table 7.1.1: Descriptive statistics of criminal data 

Data set Minimum Maximum Median Mode Mean Variance 

Sex 

offence 

0 6 0 0 0.5903 1.0268 

 

7.1.2 Comparison with Existing Models 

We fitted the proposed MPT(1) model to the criminal offense data and compared 

with the fit of existing models in the literature. Since the data is overdispersed, 

marginals such as negative binomial and geometric have been considered. Table 7.1.2 

tabulates the models as follow: 
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(I) MPT(1) with  

(a) Poisson, (b) Negative Binomial, (c) Geometric, (d) New Geometric marginals; 

(II) Pegram's AR(1) with  

(e) Poisson (Biswas and Song 2009), (f) Negative Binomial, (g) Geometric 

marginals; 

(III) INAR(1) with  

(h) Geometric (Alzaid and Al-Osh 1988), (i) Poisson (Al-Osh and Alzaid 1987), (j) 

Negative Binomial (Zhu and Joe 2006), (k) New Geometric (Ristic et al. 2009) 

marginals; 

(IV) Iterated INAR(1) with  

(l) Negative Binomial marginal (Al-Osh and Aly 1992); 

(V) Random coefficient INAR(1) with  

(m) Negative Binomial marginal (Weiβ 2008); 

(VI) Quasi-Binomial INAR(1) with  

(n) Generalized Poisson marginal (Alzaid and Al-Osh 1993). 
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Table 7.1.2: Transition probabilities of integer-valued time series models 

Model Conditional probabilities 

(I) MPT(1)   

       (a) Poisson 𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙  
𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 +  1 −𝜙 𝑃 𝜀𝑡 = 𝑖  

where 

𝑃 𝜀𝑡 = 𝑖 =
1

1 − 𝜙
 
𝑒−𝜆𝜆𝑖

𝑖!
−𝜙

𝑒−𝜆𝛼  𝜆𝛼 𝑖

𝑖!
  𝑖 = 0,1,… 

(b) Negative Binomial 𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙  
𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 +  1 −𝜙 𝑃 𝜀𝑡 = 𝑖  

where 

𝑃 𝜀𝑡 = 𝑖 =
1

1 − 𝜙
  
𝑘 + 𝑥 − 1
𝑘 − 1

 𝑝𝑘 1 − 𝑝 𝑖 − 𝜙  
𝑘 + 𝑥 − 1
𝑘 − 1

 𝛼𝑝𝑘 1 − 𝛼𝑝 𝑖  

(c) Geometric 𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙  
𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 +  1 −𝜙 𝑃 𝜀𝑡 = 𝑖  

where 

𝑃 𝜀𝑡 = 𝑖 =
1

1 − 𝜙
 𝑝 1 − 𝑝 𝑖 − 𝜙𝛼𝑝 1 − 𝛼𝑝 𝑖  

(d) New Geometric  

       
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙  

𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 +  1 −𝜙 𝑃 𝜀𝑡 = 𝑖  

where 

𝑃 𝜀𝑡 = 0 =
1

1 − 𝜙
 

1

1 + 𝑝
− 𝜙

1 + 𝛼

1 + 𝛼(1 + 𝑝)
  

𝑃 𝜀𝑡 = 𝑖 =
1

1 − 𝜙
 

𝑝𝑖

(1 + 𝑝)𝑖+1
− 𝛼𝑖𝜙𝑝  

(1 + 𝑝)𝑖−1

{1 + 𝛼(1 + 𝑝)}𝑖+1
        𝑖 = 1,2,3,… 
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(II) Pegram’s AR(1)  

(e) Poisson 

            (Biswas and Song, 2009) 
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙𝐼 𝑋𝑡−1 = 𝑗 +  1 − 𝜙 𝑃(𝜀𝑡 = 𝑖) 

where 

𝑃(𝜀𝑡 = 𝑖) =
𝑒−𝜆𝜆𝑖

𝑖!
 

 (f) Negative Binomial 𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙𝐼 𝑋𝑡−1 = 𝑗 +  1 − 𝜙 𝑃(𝜀𝑡 = 𝑖) 

where 

𝑃(𝜀𝑡 = 𝑖) =  
𝑘 + 𝑥 − 1
𝑘 − 1

 𝑝𝑘 1 − 𝑝 𝑖  

(g) Geometric 

 

 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙𝐼 𝑋𝑡−1 = 𝑗 +  1 − 𝜙 𝑃(𝜀𝑡 = 𝑖) 

where 

𝑃(𝜀𝑡 = 𝑖) = 𝑝 1 − 𝑝 𝑖  

(III) INAR(1) with  

  (h) Poisson  

              (Al-Osh and Alzaid, 1987) 
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =   

𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 ⋅ 𝑃(𝜀𝑡 = 𝑖 − 𝑘)

𝑚𝑖𝑛 (𝑖 ,𝑗 )

𝑘=0
 

where 

𝑃 𝜀𝑡 = 𝑖 =
𝑒−𝜆(1−𝛼)𝜆(1 − 𝛼)𝑖

𝑖!
 

   (i) Geometric  

             (Alzaid and Al-Osh, 1988) 𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =   
𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 ⋅ 𝑃(𝜀𝑡 = 𝑖 − 𝑘)

𝑚𝑖𝑛 (𝑖 ,𝑗 )

𝑘=0
 

The innovation distribution of  𝜀𝑡 ℕ is 

𝑃 𝜀𝑡 = 𝑘 =  
𝛼 +  1 − 𝛼 𝑝, 𝑘 = 0

 1 − 𝛼 𝑝𝑞𝑘 ,     𝑘 > 0
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(j) Negative Binomial  

             (Zhu and Joe, 2006) 
𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =   

𝑗
𝑖
 𝛼𝑖 1 − 𝛼 𝑗−𝑖 ⋅ 𝑃(𝜀𝑡 = 𝑖 − 𝑚)

𝑚𝑖𝑛 (𝑖 ,𝑗 )

𝑚=0
 

The innovation distribution of  𝜀𝑡 ℕ is 

𝑃 𝜀 𝛼 = 0 =
𝑃(𝑋 = 0)

𝑃(𝛼 ∗ 𝑋 = 0)
 , 

𝑃 𝜀 𝛼 = 𝑗 =
𝑃 𝑋 = 𝑗 −  𝑃(𝛼 ∗ 𝑋 = 𝑙) ⋅

𝑗
𝑙=1 𝑃 𝜀 𝛼 = 𝑗 − 𝑙 

𝑃 𝛼 ∗ 𝑋 = 0 
,   𝑗 = 1,2,… 

where 

𝑃 𝛼 ∗ 𝑋 = 𝑙 =   
𝑘
𝑙
 𝛼𝑙 1 − 𝛼 𝑘−𝑙𝑃(𝑋 = 𝑘)

∞

𝑘=𝑙
,   𝑙 = 0,1,2,… 

and 𝑃 𝑋 = 𝑘 =  
𝑟 + 𝑘 − 1

𝑘
 𝑝𝑘 1 − 𝑝 𝑟 ,   𝑘 = 0,1,2,… 

(k) New Geometric  

              (Ristic et al., 2009) 𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 0 =  1 −
𝛼𝜇

𝜇 − 𝛼
 

𝜇 𝑗

 1 + 𝜇 𝑗+1
+

𝛼𝜇

𝜇 − 𝛼

𝛼𝑗

 1 + 𝛼 𝑗+1
 ,   𝑗 = 0 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =
𝜇𝛼𝑖+1

 𝜇 − 𝛼  1 + 𝛼 𝑗+𝑖+1
 
𝑖 + 𝑗
𝑖

  

+  1 −
𝛼𝜇

𝜇 − 𝛼
 

𝜇𝑖

 1 + 𝛼 𝑗  1 + 𝜇 𝑖+1
  

𝑗 + 𝑘 − 1
𝑗 − 1

 
𝑖

𝑘=0
 
𝛼 1 + 𝜇 

𝜇 1 + 𝛼 
 

𝑘

,   𝑗 ≥ 1 
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(IV) Iterated INAR(1) with  

        Negative Binomial  

        (Al-Osh and Aly, 1992) 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗  

=
𝛼𝑛 1 − 𝛼𝜌 𝑗

 1 + 𝛼 𝑛+𝑖

∙   
𝑛 + 𝑖 − 1

𝑖
 

+   
𝑗
𝑘
 ∙  

𝛼𝜌

1 − 𝛼𝜌
 
𝑘𝑗

𝑘=1

∙  
𝛼

1 + 𝛼
 
𝑘

  
𝑛 + 𝑖 − 𝑚 − 1

𝑖 − 𝑚
  

𝑚 + 𝑘 − 1
𝑚

 
𝑖

𝑚=0
  

(V) Random coefficient INAR(1)      

       with Negative Binomial marginal 

      (Weiβ, 2008) 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 =   
𝑗
𝑘
 
𝐵 𝑘 + 𝑛𝜌, 𝑗 − 𝑘 + 𝑛(1 − 𝜌) 

𝐵(𝑛𝜌,𝑛(1 − 𝜌))
∙ 𝑃(𝜀𝑡 = 𝑖 − 𝑘)

𝑚𝑖𝑛 (𝑖 ,𝑗 )

𝑘=0

 

where 

 𝜀𝑡 ℕ ~𝑁𝐵(𝑛 1 − 𝜌 ,𝑝) 

(VI) Quasi-Binomial INAR(1)  

        with Generalized Poisson    

        marginal  

        (Alzaid and Al-Osh, 1993) 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗  

=   
𝑗
𝑘
 
𝜌 1 − 𝜌 𝜆

𝜆 + 𝑗𝜃

𝑚𝑖𝑛  𝑖 ,𝑗  

𝑘=0
 
𝜌𝜆 + 𝑘𝜃

𝜆 + 𝑗𝜃
 
𝑘−1

 

                                           ×  
 1 − 𝜌 𝜆 +  𝑗 − 𝑘 𝜃

𝜆 + 𝑗𝜃
 

𝑗−𝑘−1

× 𝑃(𝜀𝑡 = 𝑖 − 𝑘) 

where 

 𝜀𝑡 ℕ ~𝐺𝑃(𝜆 1 − 𝜌 ,𝜃) Univ
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For each model from (a)-(g), we obtain the ML estimates and the corresponding AIC 

values while for models (h)-(n), the values found in Ristic et al. (2009) are quoted. More 

details about the models can be obtained from the references cited above. Section 3.4 

gives the expressions for several discrete-valued marginals, including Negative 

Binomial, Geometric (𝑘 = 1), and new Geometric (Ristic et al., 2009), fitted in MPT(1) 

models. 

As seen from Table 7.1.3, MPT(1) model is competitive with the existing models. 

The AIC value of Poisson MPT(1) provides 315.41, which is lower than Poisson 

Pegram’s AR(1) and Poisson INAR(1). As the data is overdispersed, the Poisson 

marginal is not appropriate and negative binomial, geometric and new geometric 

marginal are considered. We applied these marginals in MPT(1) process. Here, the 

results show that the MPT(1) with new Geometric marginal gives the substantially 

lowest AIC value of 243.19. It can be concluded that the new geometric MPT(1) 

performs the best among all discrete time series models. 

Table 7.1.3: Estimated parameters of the models and AIC 

Model ML estimates AIC 

(I) MPT(1) with  

𝜆 = 0.5749 

𝛼 = 0.7936 

𝜙 = 0.1154 

 

315.41 (a) Poisson marginal 

(b) Negative Binomial marginal 𝑘 = 0.9741 

𝑝 = 0.6451 

𝛼 = 0.9394 

𝜙 = 0.0807 

307.05 

(c) Geometric marginal 𝑝 = 0.6288 

𝛼 = 0.9388 

𝜙 = 0.0848 

304.70 

(d) New Geometric marginal 𝑝 = 0.6288 

𝛼 = 0.9388 

𝜙 = 0.3304 

243.19 

(II) Pegram’s AR(1) with  

𝜆 = 0.5979 

𝜙 = 0.0370 

 

322.98 (e) Poisson marginal 

(f) Negative Binomial marginal 𝑝 = 0.6122 313.29 
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𝑘 = 0.9371 

𝜙 = 0.0317 

(g) Geometric marginal 𝑝 = 0.6275 

𝜙 = 0.0311 

311.78 

(III) INAR(1) with  

𝜆 = 0.5063 

𝛼 = 0.1404 

 

316.89 (h) Poisson marginal 

(i) Geometric marginal 𝑝 = 0.6304 

𝛼 = 0.1055 

303.74 

(j) Negative Binomial marginal 𝑟 = 1.1167 

𝑝 = 0.6552 

𝛼 = 0.1113 

305.67 

(k) New Geometric 𝜇 = 0.5872 

𝛼 = 0.1650 

302.67 

(lV) Iterated INAR(1) Negative Binomial 

marginal 
𝛼 = 0.9838 

𝑛 = 2.0270 

𝜌 = 0.1753 

303.28 

(V) Random coefficient INAR(1) Negative 

Binomial marginal 
𝑛 = 1.0858 

𝑝 = 0.6529 

𝜌 = 0.1315 

303.71 

(VI) Quasi-Binomial INAR(1) Generalized 

Poisson marginal 
𝜆 = 0.4050 

𝜃 = 0.1940 

𝜌 = 0.1304 

303.38 

 

7.2 Internet Protocol (IP) Addresses Counts 

7.2.1 Data Description 

The IP access count data has been analyzed by Weiβ (2007, 2012). The server of the 

Statistics Department of the University of W𝑢 rzburg collects log data concerning 

accesses to pages on the server. Each line of this data corresponds to exactly one such 

access, containing information like host name of the user accessing a Web site, date and 

time of the request, the address of the page required, etc. The data set can be arranged in 

a way that for each minute in the period observed, it is indicated if there was an access 

to the home directory of one of six particular members of the Department of Statistics. 

If 𝑋𝑡  denotes the sum of these indicator variables from number of different staff 

members, whose home directory was accessed in minutes 𝑡. 𝑋𝑡  has a range of {0,… , 5}. 

The number of different IP addresses registered within the period of 2-minute length at 

the server of the Department of Statistics of the University of W𝑢 rzburg is collected. In 
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particular, the time series data (without the outliers) on November 29
th

, 2005, between 

10 o’clock in the morning and 6 o’clock in the evening, a length of 241 is collected. The 

lag-1 MPT process is appropriate to analyze the IP count data, as the ACF and PACF 

both cut off at lag 1. It is also obvious from the graph that the data exhibits serial 

dependence. The empirical variance is smaller than mean which shows that binomial 

marginal is suitable. 

 

Figure 7.2.1: Time series plot, sample autocorrelation and partial 

autocorrelation function of IP addresses counts 

 

Table 7.2.2: Descriptive statistics of IP counts 

Data set Minimum Maximum Median Mode Mean Variance 

Sex offence 0 5 1 1 1.2863 1.2051 
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7.2.2 Data Implication 

We may interpret the binomial MPT(1) in light of conditional expectation. Suppose 

that we have a server, that can be used to count the number of access to the home 

directory: Given 𝑛 members of the Department of Statistics, each of them either access 

(log-in) or non-access (log-out). The expected number of the member log-in to the home 

directory at time 𝑡  now consists of 𝑋𝑡−1  members with transition probability 𝛼  who 

have logged in previously, and the average number 𝜇  machines which logged in 

recently. The parameter 𝜙 indicates the weight for the number of members logged in 

recently.  

7.2.3 Comparison with Binomial Marginal Models 

It is well-known that the limit of a sequence of Binomial distributions with 𝑁 

independent trials tend to infinity and probability of success 𝑝 tends to zero while 𝑁𝑝 

remains finite and equal to a parameter, say 𝜃 , lead to Poisson distribution. In this 

section, we carried out the marginal comparison; Poisson and Binomial marginals. The 

result is shown in Table 7.2.3. Then, we compare Binomial MPT(1) with Binomial 

Pegram's AR(1), and the existing binomial AR(1) model proposed by McKenzie (1985), 

which was well discussed by Weiβ. See Table 7.2.4 for the result of model comparison. 

Table 7.2.3: Comparison of MPT(1) process, estimated parameters and AIC 

values 

MPT(1) model ML estimates AIC 

Poisson marginal 𝛼 = 0.7536 

𝜙 = 0.1354 

𝜆 = 1.2852 

692.12 

Binomial marginal 𝛼 = 0.6224 

𝜙 = 0.1524 

𝑝 = 0.2593 

666.00 
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Table 7.2.4: Models comparison, estimated parameters and AIC values 

Model ML estimates AIC 

Binomial MPT(1) 𝛼 = 0.6224 

𝜙 = 0.1524 

𝑝 = 0.2593 

666.00 

Binomial AR(1) 

(McKenzie, 1985) 
𝛼 = 0.4359 

𝛽 = 0.1965 

681.55 

Binomial Pegram's AR(1) 𝛼 = 0.2598 

𝜙 = 0.0845 

698.36 

 

 Since Weiβ (2007) suggested applying Poisson marginal to fit the IP counts data, 

we are keen to compare the fits between Poisson and binomial marginal in MPT(1) 

model. The result shows that Binomial MPT(1) performs better than the Poisson 

marginal. Also, the comparison has been made between the existing integer-valued time 

series models. Here, we provide the transition probability of binomial Pegram's AR(1) 

model for convenience, which is shown as follows: 

 

𝑃 𝑋𝑡 = 𝑖 𝑋𝑡−1 = 𝑗 = 𝜙𝐼 𝑖 = 𝑗 +  1 − 𝜙 𝑃(𝜀𝑡 = 𝑖) 

 

where 𝜙 ∈  0,1 ,𝛼 ∈ [0,1], the innovation distribution is simply 

 

𝑃 𝜀𝑡 = 𝑖 =  
𝑛
𝑖
 𝛼𝑖(1 − 𝛼)𝑛−𝑖  

 

The transition probability of Binomial AR(1) process can be obtained in McKenzie 

(1985). Also see Weiβ (2008) for model properties. Binomial MPT(1) process gives the 

lowest AIC value, 666.00 which outperformed the results computed by Binomial AR(1) 

and Pegram's AR(1) models. We conclude that the proposed MPT(1) model with a 

simple interpretation is a good viable alternative to INAR(1) and Pegram's AR(1) for 

empirical modelling. 
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7.3 Worker Compensation Burn Claims 

7.3.1  Data Description 

This section analyses the real time series count data obtained from the Workers 

Compensation Board (WCB) of British Columbia, Canada. The data consists of 

monthly counts of claims collecting Short Term Wage Loss Benefit (STWLB) for 

injuries reported in the workplace. In the selected data set all the claimants are male, 

between the age of 35 and 54 work in logging industry and reported their claim to the 

Richmond, BC service delivery location. The considered data consist of 120 

observations starting in January 1984 and ending in December 1994. The data are 

claimants whose injuries are burn related. This data has been analyzed by Freeland and 

McCabe (2004) with the removing of outliers to be able to fit the first order time series 

models. Table 7.3.1 provides the basic statistical summary of the data. It is sensible to 

apply Poisson marginal in the analysis for mean equals to variance. There are two 

objectives of the analysis. The first is to produce forecasting of the numbers of 

claimants of 1995 for the Richmond delivery area. We are interested to know the k-step 

convergence of conditional distribution to marginal distribution. The second aim is to 

compare Poisson MPT(1) model with INAR(1) and Pegram’s based AR(1) model, in 

terms of 95% confidence intervals width and conditional mean. 

In this section we show one equi-dispersed claim count data. This set of data has 

been used in Chapter 5 as an application for coherent forecasting. At first glance the 

time series plot of burn claims data has significant change in the pattern after the middle 

of 1993. It is therefore unlikely that an order-one AR process will fit the series well. 

This is further confirmed by the sample ACF and PACF, whereby the ACF does not 

decay fast enough for an AR(1) model. Also, the PACF shows that an AR(2) might be a 

more appropriate suggestion. However, this thesis is concentrated on AR(1) process and 
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may leave this for future research works. See Figure 7.3.1 for the sample plots, ACF 

and PACF.  

 
 

Figure 7.3.1: Time series plots, sample autocorrelation function and sample 

partial autocorrelation function of burn claim counts 

 

Table 7.3.1: Descriptive statistics of burn claims data 

Data set Minimum Maximum Median Mode Mean Variance 

Sex 

offence 

0 2 0 0 0.34 0.33 

 

 The burn claims data has been handled by Freeland (1998) in his thesis with 

outliers removed. The new series which is distinguished from the original is referred to 

as data 1*, in Freeland (1998, Appendix). The new series is shown in Figure 7.3.2. Now, 

we see that the sample autocorrelation presents a slight seasonal pattern, but it may not 

be necessarily so, since the correlations at lag-6 and lag-12 are within the 5% 

confidence intervals. Also, sample partial autocorrelation function indicates that a first-

order AR process is appropriate. 
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Figure 7.3.2: Time series plot, sample autocorrelation function and sample 

partial autocorrelation function of burn claim counts (without outlier) 

 

 Table 7.3.2: Model comparison, ML estimates and AIC values 

Model ML estimates AIC 

MPT(1) 𝛼 = 0.9979 

𝜆 = 0.1792 

𝜙 = 0.1789 

119.30 

INAR(1) 𝛼 = 0.2397 

𝜆 = 0.1342 

115.47 

Pegram's AR(1) 𝜙 = 0.1811 

𝜆 = 0.1768 

116.90 

  

Likewise, for each model we obtain the ML estimates and AIC value, which is shown in 

Table 7.3.2. The Poisson marginal is applied in the respective models. For burn claim 

counts, the Poisson INAR(1) gives the lowest AIC value. The forecasts from burn 

claims data have been compared among three models. 
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7.3.2 Application in Coherent Forecasting Distribution  

To compute the 95% confidence intervals, we first estimate the parameters of 

Poisson MPT(1) process. The MLE elaborated in Section 4.1.1 has been applied. The 

parameters  α,𝜙, λ  for burn claims were estimated to be (0.9979, 0.1789, 0.1792). 

Then, the inverse of Fisher information matrix is computed numerically which is given 

by  

𝑖−1 =  
   0.0006 −0.0042 −0.0022
−0.0042    0.0272 −0.0006
−0.0022 −0.0006    0.0000

  

 

The diagonal of information matrix gives the variance of the parameters and the off-

diagonal elements are the covariances between the parameters of the model; i.e. 

 𝜎𝛼
2,𝜎𝜆

2,𝜎𝜙
2 =  0.0006, 0.0272, 0.0000 .  Then, we compute the k-step-ahead 

distributions (Theorem 5.1.1) to perform forecast for burn claims data by the MPT(1), 

and also present the 95% confidence intervals. The results are shown in Table 7.3.3 and 

7.3.4 respectively. In this real data analysis, we run 𝑘 = 10  to see the overall 

performance of the model in burn claims data. However, we only show the analysis 

results for the first 6 months because we noted that after the 6-step-ahead conditional 

distribution it is very close to the marginal distribution, thus presenting a consistent 

pattern beyond the 6th-step predictive distribution. The 10-step-ahead forecast 

distribution for 𝑥 = 0,1,2,3,4  are 0.835939, 0.149800, 0.013422, 0.00000802, and 

0.000036, respectively. It is noted that there is not much difference in the results 

between the 6-step-ahead and the 10-step-ahead forecasting distributions. Also, the 

consistent standard errors are observed when k-step is increased. Therefore, it can be 

concluded that if we require forecasting for more than 6 months ahead, it is suggested to 

simply use the marginal distribution or marginal mean. The table provides more 

information. The mean (rounded down), median and mode show that there is no injuries 
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to be expected in the following k-step forecast periods. It quantifies that the probability 

of having zero claim in the first month forecast is 0.8652 (point estimate); that is, the 

possibility is 87% of having zero claims and 13% of having a single claim. Similar 

forecast are obtained with INAR(1) and AR(1) processes. 

7.3.3 Model Comparison with INAR(1) and Pegram’s Based AR(1)  Processes 

This section discusses the model comparison by using the forecasting distribution of 

the INAR(1) and Pegram’s based AR(1) process. We adopted the formulation of Fisher 

information matrix by Silva et al. (2005) when 𝑘 = 1  for INAR(1) process. The 

asymptotic distributions of Pegram's AR(1) model can be obtained from Biswas and 

Song (2009). For each of the models we develop the numerical computation by using 

MATLAB R2013a. The 95% confidence interval in this thesis is slightly different from 

Freeland and McCabe (2004b) due to the difference in numerical software and program 

implementation. Furthermore, Freeland and McCabe (2004a) considered the Fisher IM 

in conditional expectations. The predictive results with 95% confidence interval of 

Pegram's AR(1) are tabulated in Table 7.3.5 and 7.3.6, while Table 7.3.7 and 7.3.8 

provide the predictive information and 95% confidence intervals for INAR(1) process. 

It can be noted that all models are relatively similar in prediction. All conditional means 

and predictive distributions are approximately equal to the unconditional means and the 

marginal distributions after the 6th step. Also, the predictions are similar which is to 

have zero claims for the first 6 months. It should be noted here that the width of the 95% 

confidence intervals for MPT(1) is narrower compared to the other two models. One 

particular example for the 6-step-ahead 𝑝𝑘(0|1); the standard deviation (in 3 decimal 

places) for MPT(1) is 0.013, but for Pegram’s AR(1) is 0.075 and INAR(1) is 0.045. 
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Table 7.3.3: Forecast from burn claims data by Poisson MPT(1) process 

k 1 2 3 4 5 6 ∞ 

Mean 0.3257 0.2054 0.1839 0.1800 0.1793 0.1792 0.1792 

Median 0 0 0 0 0 0 0 

Mode 0 0 0 0 0 0 0 

𝑝k (0|1) 
0.865233 

(0.01045) 

0.841169 

(0.01223) 

0.836873 

(0.01253) 

0.836105 

(0.01258) 

0.835958 

(0.01258) 

0.835944 

(0.01258) 

0.835939 

(0.01258) 

𝑝k (1|1) 
0.123047 

(0.00858) 

0.145022 

(0.01004) 

0.148947 

(0.01028) 

0.149648 

(0.01032) 

0.149773 

(0.01032) 

0.149795 

(0.01032) 

0.149800 

(0.01033) 

𝑝k (2|1) 
0.011030 

(0.00170) 

0.012996 

(0.00199) 

0.013346 

(0.00204) 

0.013409 

(0.00205) 

0.013420 

(0.00205) 

0.013422 

(0.00205) 

0.013422 

(0.00205) 

𝑝k (3|1) 
0.000659 

(0.00016) 

0.000776 

(0.00018) 

0.000797 

(0.00019) 

0.000801 

(0.00019) 

0.000802 

(0.00019) 

0.000802 

(0.00019) 

0.000802 

(0.00019) 

𝑝k (4|1) 
0.000030 

(0.00001) 

0.000035 

(0.00001) 

0.000036 

(0.00001) 

0.000036 

(0.00001) 

0.000036 

(0.00001) 

0.000036 

(0.00001) 

0.000036 

(0.00001) 

𝑝k (5|1) 
0.000001 

(0.00000) 

0.000001 

(0.00001) 

0.000001 

(0.00001) 

0.000001 

(0.00001) 

0.000001 

(0.00001) 

0.000001 

(0.00001) 

0.000001 

(0.00001) 

 

Table 7.3.4: 95% confidence interval for k-step ahead conditional distributions,  

Poisson MPT(1) process 

k 1 2 3 4 5 6 ∞ 

𝑝k (0|1) 
(0.8443, 

0.8861) 

(0.8167, 

0.8656) 

(0.8118, 

0.8619) 

(0.8110, 

0.8613) 

(0.8108, 

0.8611) 

(0.8108, 

0.8611) 

(0.8108, 

0.8611) 

𝑝k (1|1) 
(0.1059, 

0.1402) 

(0.1250, 

0.1651) 

(0.1284, 

0.1695) 

(0.1290, 

0.1703) 

(0.1291, 

0.1704) 

(0.1291, 

0.1704) 

(0.1291, 

0.1704) 

𝑝k (2|1) 
(0.0076, 

0.0144) 

(0.0090, 

0.0170) 

(0.0093, 

0.0174) 

(0.0093, 

0.0175) 

(0.0093, 

0.0175) 

(0.0093, 

0.0175) 

(0.0093, 

0.0175) 

𝑝k (3|1) 
(0.0003, 

0.0010) 

(0.0004, 

0.0010) 

(0.0004, 

0.0012) 

(0.0004, 

0.0012) 

(0.0004, 

0.0012) 

(0.0004, 

0.0012) 

(0.0004, 

0.0012) 

𝑝k (4|1) 
(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

𝑝k (5|1) 
(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 
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Table 7.3.5: Forecast distribution by Poisson Pegram’s AR(1),  

and SE (in bracket) 

k 1 2 3 4 5 6 ∞ 

Mean 0.3254 0.2036 0.1816 0.1776 0.1769 0.1767 0.1767 

Median 0 0 0 0 0 0 0 

Mode 0 0 0 0 0 0 0 

𝑝k (0|1) 
0.86728 

(0.01454) 

0.84331 

(0.04281) 

0.83899 

(0.06646) 

0.83820 

(0.07313) 

0.83806 

(0.07477) 

0.83804 

(0.07514) 

0.83803 

(0.07524) 

𝑝k (1|1) 
0.12134 

(0.01330) 

0.14325 

(0.01330) 

0.14721 

(0.01330) 

0.14792 

(0.01330) 

0.14805 

(0.01330) 

0.14808 

(0.01330) 

0.14808 

(0.01330) 

𝑝k (2|1) 
0.01072 

(0.00118) 

0.01266 

(0.00118) 

0.01301 

(0.00118) 

0.01301 

(0.00118) 

0.01301 

(0.00118) 

0.01301 

(0.00118) 

0.01301 

(0.00118) 

𝑝k (3|1) 
0.00063 

(0.00007) 

0.00075 

(0.00007) 

0.00077 

(0.00007) 

0.00077 

(0.00007) 

0.00077 

(0.00007) 

0.00077 

(0.00007) 

0.00077 

(0.00007) 

𝑝k (4|1) 
0.00003 

(0.00000) 

0.00003 

(0.00000) 

0.00003 

(0.00000) 

0.00003 

(0.00000) 

0.00003 

(0.00000) 

0.00003 

(0.00000) 

0.00003 

(0.00000) 

 

Table 7.3.6: 95% confidence intervals for k-step ahead conditional distributions,  

Poisson Pegram's AR(1) process 

k 1 2 3 4 5 6 ∞ 

𝑝k (0|1) 
(0.8382, 

0.8964) 

(0.7577, 

0.9289) 

(0.7061, 

0.9719) 

(0.6920, 

0.9846) 

(0.6885, 

0.9876) 

(0.6878, 

0.9883) 

(0.6875, 

0.9885) 

𝑝k (1|1) 
(0.0947, 

0.1479) 

(0.1167, 

0.1698) 

(0.1206, 

0.1738) 

(0.1213, 

0.1745) 

(0.1215, 

0.1746) 

(0.1215, 

0.1746) 

(0.1215, 

0.1747) 

𝑝k (2|1) 
(0.0084, 

0.0131) 

(0.0103, 

0.0150) 

(0.0107, 

0.0154) 

(0.0107, 

0.0154) 

(0.0107, 

0.0154) 

(0.0107, 

0.0154) 

(0.0107, 

0.0154) 

𝑝k (3|1) 
(0.0005, 

0.0008) 

(0.0006, 

0.0008) 

(0.0006, 

0.0009) 

(0.0006, 

0.0009) 

(0.0006, 

0.0009) 

(0.0006, 

0.0009) 

(0.0006, 

0.0009) 

𝑝k (4|1) 
(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 
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Table 7.3.7: Forecast distribution by Poisson INAR(1) model, and SE (in bracket) 

k 1 2 3 4 5 6 ∞ 

Mean 0.374 0.224 0.188 0.179 0.177 0.176 0.176 

Median 0 0 0 0 0 0 0 

Mode 0 0 0 0 0 0 0 

𝑝k (0|1) 
0.87459 

(0.03546) 

0.84691 

(0.04255) 

0.84040 

(0.04417) 

0.83884 

(0.04455) 

0.83847 

(0.04465) 

0.83838 

(0.04467) 

0.83835 

(0.04468) 

𝑝k (1|1) 
0.11720 

(0.03071) 

0.14072 

(0.03548) 

0.14613 

(0.03649) 

0.14741 

(0.03672) 

0.14772 

(0.03678) 

0.14779 

(0.03679) 

0.14782 

(0.03679) 

𝑝k (2|1) 
0.00785 

(0.00443) 

0.01169 

(0.00648) 

0.01270 

(0.00701) 

0.01295 

(0.00714) 

0.01301 

(0.00717) 

0.01303 

(0.00718) 

0.01303 

(0.00718) 

𝑝k (3|1) 
0.00035 

(0.00030) 

0.00065 

(0.00056) 

0.00074 

(0.00063) 

0.00076 

(0.00065) 

0.00076 

(0.00065) 

0.00077 

(0.00065) 

0.00077 

(0.00065) 

𝑝k (4|1) 
0.00001 

(0.00001) 

0.00003 

(0.00003) 

0.00003 

(0.00003) 

0.00003 

(0.00004) 

0.00003 

(0.00004) 

0.00003 

(0.00004) 

0.00003 

(0.00004) 

 

Table 7.3.8: 95% confidence intervals for k-step ahead conditional distributions,  

Poisson INAR(1) process 

k 1 2 3 4 5 6 ∞ 

𝑝k (0|1) 
(0.8051, 

0.9441) 

(0.7635, 

0.9303) 

(0.7538, 

0.9269) 

(0.7515, 

0.9262) 

(0.7510, 

0.9260) 

(0.7508, 

0.9259) 

(0.7508, 

0.9259) 

𝑝k (1|1) 
(0.0570, 

0.1774) 

(0.0712, 

0.2103) 

(0.0746, 

0.2177) 

(0.0754, 

0.2194) 

(0.0756, 

0.2198) 

(0.0756, 

0.2199) 

(0.0756, 

0.2199) 

𝑝k (2|1) 
(0.0000, 

0.0165) 

(0.0000, 

0.0244) 

(0.0000, 

0.0264) 

(0.0000, 

0.0269) 

(0.0000, 

0.0271) 

(0.0000, 

0.0271) 

(0.0000, 

0.0271) 

𝑝k (3|1) 
(0.0000, 

0.0009) 

(0.0000, 

0.0020) 

(0.0000, 

0.0020) 

(0.0000, 

0.0020) 

(0.0000, 

0.0020) 

(0.0000, 

0.0020) 

(0.0000, 

0.0020) 

𝑝k (4|1) 
(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

(0.0000, 

0.0000) 

 

 

 

 

 Univ
ers

ity
 of

 M
ala

ya



 

131 
 

7.4 Criminal: Drug Offences 

7.4.1 Data Description 

Finally, we illustrate the proposed Poisson MPT(p) model as defined in Chapter 6 

with a real data set. The data was taken from crime data section of the Forecasting 

Principles; http://forecastingprinciples.com. It is reported in the 33rd police car beat, 

from January 1990 to December 2001, consisting of 144 observations. The mean and 

variance of the data are 4.6250 and 12.3059, respectively. The autocorrelation value is 

0.379. In Figure 7.4.1 we notice from PACF that the data is suitable to be fitted by the 

5th order model. We fitted the data to 6th order Poisson MPT(6) process. However, the 

lower order models have been considered for comparison. 

 
 

Figure 7.4.1: Time series plot of 33rd carbeat drug counts 
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7.4.2 Fitting to Poisson MPT(p) Models 

All models have been estimated by MLE via EM algorithm. First, the parameter 

mean 𝛼 = 0.9977 and 𝜆 = 4.6355 are estimated, then the mixing proportions (as stated 

above) are estimated recursively until the tolerance level reaches 0.001. Obviously, by 

the information criteria AIC, it indicates that the model with 𝑝 = 5 has the lowest score. 

In terms of AIC criterion, it is the most appropriate model to be fitted by the data. Also, 

the fourth component gives the greatest impact among others. 

Table 7.4.1: Parameter estimates and AIC values of the models 

Order 𝜙 1 𝜙 2 𝜙 3 𝜙 4 𝜙 5 𝜙 6 AIC 

𝑝 = 1 0.03220      799.35 

𝑝 = 2 0.02795 0.01672     795.08 

𝑝 = 3 0.02831 0.01832 0.01659    781.62 

𝑝 = 4 0.03010 0.01858 0.01574 0.04354   767.46 

𝑝 = 5 0.02821 0.02022 0.01619 0.04327 0.03513  752.96 

𝑝 = 6 0.02800 0.01144 0.01231 0.04160 0.01626 0.00485 758.58 

 

7.5 Concluding Remarks  

This chapter reveals the practical advantage of MPT(1) model. The proposed MPT(1) 

process is compared extensively with the current integer-valued time series models (see 

Chapter 2 for details) for the criminal data set. The new Geometric MPT(1) process is 

seen to outperform the other models.  

For IP counts data set, Binomial MPT(1) shows its flexibility in handling the data set. 

The transition probability of Binomial MPT(1) has a simple form, is straightforward to 

apply as well as being easy to construct. This is unlike the Binomial AR(1) (McKenzie, 

1985) that requires modification from the conventional INAR(1) and the derivation of 

the properties are relatively more involved. For underdispersed data set, it is obvious 

that the binomial marginal model performs better than Poisson marginal model. The 

Binomial MPT(1) model has the lowest AIC values compared to the Binomial AR(1) 

and Pegram's AR(1) models. 
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In the third data set, MPT(1) model fits not better than the other two. However in 

coherent forecasting the confidence interval is narrower due to smaller standard 

deviation. From the illustrative fits to real count data sets, it can be concluded that 

MPT(1) model appear to be a useful alternative model in discrete-valued time series 

modelling.  
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CHAPTER 8: CONCLUSION AND FURTHER RECOMMENDATIONS 

Discrete-valued time series modelling has been a dynamic research topic since three 

decades ago. Back in the 80's, the thinning operator which replaces the scalar 

multiplication in continuous time series models, has been extensively discussed in the 

literature. However, it is well known that the thinning operator is confined to infinitely 

divisible distributions. Joe (1996) discussed the thinning operator with convolution-

closed infinite divisible univariate margins. Aly and Bouzar (2005) studied the 

generalized thinning operator with stationarity solution. In the studies, many researchers 

have showed the significance of thinning operator in describing the real phenomena. 

However, it is limited to infinitely divisible cases. Weiβ (2008) handled the Binomial 

case through relatively more complicated expressions. One alternative operator was 

introduced by Pegram's (1980) to deal with non-infinitely divisible cases. The Pegram's 

operator was applied by Biswas and Song (2009) for categorical data with discussion on 

its statistical analysis by Song et al. (2013). In ARMA-type time series model, Pegram's 

operator emphasizes the mixing concept, which appears to be more flexible than the 

thinning operator in dealing with Binomial and categorical observations. 

The new model proposed in this dissertation inherits the traits from thinning and 

Pegram's operators, as it was created via the combination of both operators. This 

dissertation proposed and investigated an entirely new model, which is able to deal with 

infinitely and non-infinitely divisible distributions in a simpler approach. It has been 

further revealed to have better performance than the current existing thinning and 

Pegram's operators. The previous chapters have begun with the construction of the 

proposed MPT(1) model, followed by a discussion of useful properties; stationarity and 

regression, as well as simulation studies. Along this line, we consider also the 

forecasting model and the asymptotical distributions. Some real applications have been 
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studied to illustrate the performance of the MPT(1) model with infinitely and non 

infinitely divisible distributions. Comparison with existing discrete-valued models has 

also been carried out and the results show that the proposed model has outstanding 

performance. The merits of the proposed model have been explored. On top of these, 

model flexibility and simplicity are distinguished features of the proposed model. This 

is the main distribution of the study. 

It is important to consider the possible extensions from the current research work. 

One immediate extension from Chapter 3 is to consider the Negative Binomial (NB) 

and Geometric marginal distributions in MPT(1) model. It is of interest as the NB and 

Geometric margins are well known for overdispersed observations. Compared to the 

complication encountered by NB and Geometric in INAR(1) model; see McKenzie 

(1987), the NB MPT(1) model may be considered in the near future. It is suggested to 

make comparison with NB and Geometric in MPT(1) model. Real life examples can be 

presented based upon that to illustrate the model efficiency.  

Future development on higher order moments of Poisson MPT(1) model can be 

considered. Schweer and Weiβ (2014) investigated the statistical analysis in stochastic 

properties and testing for overdispersion for compound Poisson INAR(1) process. It is 

recommended to implement a similar analysis for the Poisson, NB and Binomial MPT(1) 

processes. Weiβ has discussed the Binomial AR(1) model in a series of papers. One 

particular paper (Wei β  and Kim, 2013) derived explicit expressions for the joint 

moments and cumulants up to order 4. Thus it is of interest to further explore Binomial 

MPT(1) process. 

Coherent forecasting model of Binomial MPT(1) model is one of the possible piece 

of future work. As it can be seen, we discussed only for Poisson case in this dissertation. 

It will be of particular interest to derive the asymptotic distributions for k-step-ahead 
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forecasting Binomial MPT(1) process. Besides applying Fisher Information Matrix to 

estimate the standard errors, one can consider estimation by block-of-block 

bootstrapping. Both methods can be compared through simulation studies. The coherent 

forecasting for time series models has been studied by some researchers. Kim and Park 

(2010a) extended the INAR(2) forecasting results of Jung and Tremayne (2006) to the 

Binomial AR(p) model. The bootstrap method for prediction intervals is clearly 

explained in the paper, and empirical application is shown for illustration. Maiti et al. 

(2014) investigated the coherent forecasting of zero-inflated count time series process.  

It is a straightforward to extend the current first order MPT(1) process to MPT(p) 

process. The MPT(p) model has been discussed in Chapter 6, mainly in model 

construction and fundamental properties, with other properties left to be investigated. 

One important aspect is the existence of MPT(p) process. A unique, stationary and 

ergodic MPT(p) process can be studied in the similar approach as presented by Ristic 

and Nastic (2012). On the other hand, there are many studies left behind for MPT-MA 

processes. In Chapter 6, the construction and fundamental properties of MPT-MA 

processes have been developed. Bra nna s and Hall (2001) investigated four different 

characteristics of INMA processes. Further research works for the MPT-MA processes, 

can be done in this direction. Parameter estimation and Monte Carlo simulation and 

potential real life applications can also be considered in further investigation of the 

MPT-MA processes. The 𝑞th-order MPT-MA processes can be examined along with 

the real examples. This will be a new research area in discrete-valued time series 

modelling. 

Last but not least, a slight modification can be considered over the current proposed 

model. This dissertation mainly emphasized the mixture of thinning operator (𝛼 ∘ 𝑋𝑡−1) 

and innovation process(𝜀𝑡); where we mixed both random variables with parameters 𝜙 
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and 1 − 𝜙 respectively. In considering the modification, we mix the INAR(1) process 

(𝛼 ∘ 𝑋𝑡−1 + 𝜀𝑡)  and innovation process (𝜀𝑡)  with the parameter 1 − 𝜙  and 𝜙 

respectively. Assuming that the mixing parameter 𝜙 ∈ (0,1). Bakouch and Ristic (2009) 

have discussed zero-truncated Poisson mixed INAR(1) model which is the special case 

of this modified model. Preliminary works are shown to make the modified version 

possible. The definition is given as such. Let 𝑋𝑡  be a NB process with parameter (𝜃, 𝑝), 

where 𝜃 > 0 and 0 < 𝑝 < 1, let 𝜙 ∈ (0,1),  then the modified model is defined by 

𝑋𝑡 =  1 − 𝜙, 𝛼 ∘ 𝑋𝑡−1 + 𝜀𝑡 ∗  𝜙, 𝜀𝑡  (8.1) 

 

where the INAR(1) process follows Definition 2.1.2 and the marginal distribution of the 

innovation process follows 𝑋𝑡 . A general pgf of Eq. (8.1) is given by  

 

𝐺𝑋 𝑧 =  1 − 𝜙 𝐺𝑋𝑡−1
 1 − 𝛼 + 𝛼𝑧 𝐺𝜀 𝑧 + 𝜙𝐺𝜀 𝑧  (8.2) 

 

while the pgf of innovation process is given by 

 

 

𝐺𝜀 𝑧 =
𝐺𝑋 𝑧 

 1 − 𝜙 𝐺𝑋𝑡−1
 1 − 𝛼 + 𝛼𝑧 + 𝜙

 (8.3) 

 

 

If we consider 𝑋𝑡~𝑁𝐵(𝜃, 𝑝), then the pgf of 𝜀𝑡  is  

 

 

𝐺𝜀 𝑧 =
(1 + 𝑝 − 𝑝𝑧)−𝜃

 1 − 𝜙 (1 + 𝛼𝑝 − 𝛼𝑝𝑧)−𝜃 + 𝜙
 (8.4) 

  

 

First, the pmf of model (8.1) can be obtained via the multiple differentiation at 𝑧 = 0. 

We have 

 

𝐺𝜀
′ 𝑧 = 𝐺𝜀 𝑧  𝜃𝑝(1 + 𝑝 − 𝑝𝑧)−1 −  1 − 𝜙  𝜃 (𝛼𝑝)

 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃−1

 1 − 𝜙 (1 + 𝛼𝑝 − 𝛼𝑝𝑧)−𝜃 + 𝜙
  

 

and 
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 𝐺𝜀
′ 𝑧  𝑧=0 = 𝐺𝜀 𝑧 |𝑧=0  𝜃𝑝(1 + 𝑝)−1 −  1 − 𝜙  𝜃 (𝛼𝑝)

 1 + 𝛼𝑝 −𝜃−1

 1 − 𝜙 (1 + 𝛼𝑝)−𝜃 + 𝜙
  

 

Before we move forward to find the second derivative of 𝐺𝜀 𝑧 , we assume that 

 

𝐴 = 𝜃𝑝(1 + 𝑝 − 𝑝𝑧)−1 −  1 − 𝜙  𝜃 (𝛼𝑝)
 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃−1

 1 − 𝜙 (1 + 𝛼𝑝 − 𝛼𝑝𝑧)−𝜃 + 𝜙
 

 

𝐴′ = 𝜃𝑝2(1 + 𝑝 − 𝑝𝑧)−2 −  1 − 𝜙  𝜃  𝛼𝑝 
 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃−2

 1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙

−  1 − 𝜙 2 𝜃 2 𝛼𝑝 2
 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −2(𝜃+1)

  1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙 2
 

 

𝐴′|𝑧=0 = 𝜃𝑝2(1 + 𝑝)−2 −  1 − 𝜙  𝜃  𝛼𝑝 
 1 + 𝛼𝑝 −𝜃−2

 1 − 𝜙  1 + 𝛼𝑝 −𝜃 + 𝜙

−  1 − 𝜙 2 𝜃 2 𝛼𝑝 2
 1 + 𝛼𝑝 −2(𝜃+1)

  1 − 𝜙  1 + 𝛼𝑝 −𝜃 + 𝜙 2
 

 

and so the second derivative of 𝜀𝑡  pgf is   

 

𝐺𝜀
′′  𝑧 = 𝐺𝜀 𝑧 ⋅ 𝐴′ + 𝐴 ⋅ 𝐺𝜀

′  𝑧  

 

We continue to find the third derivative. To avoid confusion, we look at the derivatives 

of 𝐴′ one by one 

 
𝑑

𝑑𝑧
(1 + 𝑝 − 𝑝𝑧)−2 = 2𝑝(1 + 𝑝 − 𝑝𝑧)−3 

 

𝑑

𝑑𝑧

 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃−2

 1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙

=
 −𝜃 − 2  −𝛼𝑝 (1 + 𝛼𝑝 − 𝛼𝑝𝑧)−𝜃−3

 1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙

−  1 − 𝜙  𝜃 (𝛼𝑝)
 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −2𝜃−3

  1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙 2
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𝑑

𝑑𝑧

 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −2(𝜃+1)

  1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙 2

=
2 𝜃 + 1 (𝛼𝑝) 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −2𝜃−3

  1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙 2

− 2 1 − 𝜙  𝜃 (𝛼𝑝)
 1 + 𝛼𝑝 − 𝛼𝑝𝑧 −3(𝜃+1)

  1 − 𝜙  1 + 𝛼𝑝 − 𝛼𝑝𝑧 −𝜃 + 𝜙 3
 

 

the third derivative of 𝜀𝑡  pgf becomes 

 

𝐺𝜀
(3) 𝑧 = 𝐺𝜀 𝑧 ⋅ 𝐴′′ + 𝐴′ ⋅ 𝐺𝜀

′ 𝑧 + 𝐴 ⋅ 𝐺𝜀
′′  𝑧 + 𝐺𝜀

′ 𝑧 ⋅ 𝐴′  

            = 𝐴′′ ⋅ 𝐺𝜀 𝑧 + 2𝐴′ ⋅ 𝐺𝜀
′  𝑧 + 𝐴 ⋅ 𝐺𝜀

′′  𝑧  

 

and 

 

𝐺𝜀
 4  𝑧 = 𝐴(3) ⋅ 𝐺𝜀 𝑧 + 3 𝐴′′ ⋅ 𝐺𝜀

′ 𝑧 + 𝐴′ ⋅ 𝐺𝜀
′′  𝑧  + 𝐴 ⋅ 𝐺𝜀

(3) 𝑧  

 

The multiple derivations can be represented in the form of binomial coefficient and it is 

generally represented by the formulation 

 

𝐺𝜀
 𝑛  𝑧 =  

𝑛 − 1
𝑖

 𝐴𝑖  𝐺𝜀
 𝑛−1  𝑧 ; 𝑛 = 1,2, … ;  𝑖 = 1,2, …𝑛 − 1 

 

and so the pmf can be obtained via the expression above. 

This modified version can then be extended to consider more details, such as 

fundamental and regression properties, parameter estimation and consistency problems. 

Stationarity is immediate. Real life applications should be carried out as well upon the 

introduction of important properties. The special case of applying Geometric marginal 

through this approach is possible, by just taking the parameter 𝜃 = 1. In fact, it is a neat 

form for Geometric case as the denominator of 𝐺𝜀 0  leads to  1 − 𝜙  1 + 𝛼𝑝 −1 + 𝜙, 

which can be simplified to 1. Therefore, one can observe that the marginal of 𝑋𝑡  is 
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deterministic for Geometric marginal case. Indeed, a simpler formulation is obtained for 

Geometric marginal. One important result is discovered, that the Poisson marginal may 

not be applicable or still undetermined for this modified version. The implementation 

for non-infinitely divisible distributions like Binomial is still under investigation. 

Comparison with other time series models is of interest, such as the recent works by 

Nastic and Ristic (2012). The mixture model suggested in the paper seems complicated. 

An easy interpretation and efficient model is needed for the time series of counts 

community. More detailed study can be explored in the near future. 

This thesis has proposed a useful time series model for count data, which has also 

been extended to the MA and ARMA processes. It is hoped that this thesis has 

contributed to discrete-valued time series modelling. 
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