PREPARATION, CHARACTERIZATION AND BIODEGRADABILITY PERFORMANCE OF POLY(3-HYDROXYBUTYRIC ACID)/POLYVINYL ACETATE FILMS

OLLA H. S. SHARHAN

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2015

ABSTRACT

In this work, microbial polyester, poly(3-hydroxybutyric acid) (PHB) was blended with polyvinyl acetate (PVAc) in various composition %(100/0, 95/5, 90/10, 85/15, 80/20, 75/25, 70/30, 65/35 and 0/100) and the film for each ratio was prepared by the solution casting method. The prepared films were then characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) for information regarding chemical structure and surface morphology of the films. Thermal stability of the blends was investigated by thermogravimetric analysis (TGA) while the melting point and glass transition temperatures (T_g) were investigated by Differential Scanning Calorimetry (DSC) at a heating rate of 10 °C min⁻¹. Results showed that the thermal stability increased with increasing PVAc ratio. In addition the blends were also characterized by X-Ray Diffraction (XRD). For the biodegradability studies the films

Intermolecular hydrogen bonding was observed from FTIR spectra and the best improvement in thermal stability and mechanical properties was shown by the blend ratio of PHB/PVAc (65/35). Biodegradability of the blends was studied by volume change measurement at room temperature and it was found to improve with increasing PVAc content. Blends of poly(hydroxyalkanoate) (PHA) with other biodegradable polymers also usually show similar improved biodegradability when compared with pure poly (hydroxyalkanoates) (PHAs).

ABSTRAK

Dalam penyelidikan ini, mikrobial poliester poli(3-hidroksibutarik asid) (PHB) telah diadun dengan polivinal asetat (PVAc) pada pelbagai komposisi% (100/0, 95/5, 90/10, 85/15, 80/20, 75/25, 70/30, 65/35 and 0/100) dan filem bagi setiap nisbah disediakan dengan kaedah tuangan larutan. Tipisan yang telah disediakan kemudiannya dicirikan oleh Spektroskopi Fourier Transform Inframerah(FTIR) dan Mikroskopi Imbasan Elektron (SEM) bagi maklumat berhubung struktur kimia dan morpologi permukaan tipisan. Kestabilan terma adunan dikaji dengan analisis termogravimetri (TGA) manakala takat cair dan suhu peralihan kaca (T_g) dikaji dengan Kalometri Imbasan Kerbedaan (DSC) pada kadar pemanasan 10 °C min⁻¹. Keputusan menunjukkan bahawa kestbilan terma bertambah dengan pertambahan nisbah PVAc. Sebagai tambahan adunan juga dicirikan dengan Pembelauan Sinar-X (XRD). Untuk kajian berhubung kebio filem ditanam dalam tanah untuk beberapa hari yang ditetapkan diikuti oleh analisis kimia.

Ikatan hydrogen antaramolekul diperhatikan berlaku melalui spektra FTIR dan kemajuan terbaik dalam kestabilan terma dan sifat sifat mekanikal diperlihatkan peda nisbah adunan PHB/PVAc (65/35). Bio adunan dikaji melalui pengukuran perubahan isipadu pada suhu bilik dan didapati biobertambah baik dengan bertambahnya kandongan PVAc. Adunan poli(hidroksialkanoat) (PHA) dengan polimer bio yang lain juga biasanya menunjukkan bio yang bertambah baik berbanding dengan poli(hidroksialkanoats)(PHAs) yang tulen.

ACKNOWLEDGEMENT

First and foremost, all praise is to Allah the Almighty, the Lord of the worlds, the most beneficent, and the most merciful for helping me accomplish this work and for guidance throughout my life.

Special appreciation goes to my supervisors: Prof. Dr. Abdul Hamid bin Yahaya and Prof. Dr. Rosiyah Yahya for their encouragement, constant support, enthusiastic care, constructive comments, valuable suggestions and sincere guidance during the entire progression of this work.

I would also like to express my deepest gratitude to my parents for their everlasting, unconditional love, support and prayers. My warmest thanks go to my lovely and patient brothers and sisters, who generously stand by my side.

Sincere thanks to all my friends, especially Nowal and Yasameen and other friends for their kindness and support during my study.

I am thankful to all my colleagues in the Chemistry Research Laboratory and all staff members of the Chemistry Department for their assistance.

Last but not least; I am deeply grateful for my government sponsorship suffered to me by Thamar University to conduct this study.

LIST OF CONTENT

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
LIST OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF APPENDICES	xvi
CHAPTER 1: INTRODUCTION	2
1.1 Problem of the Statement	4
1.2 Objectives of the study	5
1.3 Scope of this study	6
1.4 Organizations of the thesis	
References	9
CHAPTER 2: LITERATURE REVIEW	11
2.1 Introduction	12
2.2 Polyhydroxyalkanoates (PHAs)	13
2.3 Poly(3-hydroxybutyrate) (PHB)	14
2.4 Microbial polyesters	17
2.5 Background and Significance	18
2.5.1 Occurrence and chemical structure of PHB	18

v

2.5.2 Properties of PHB	22
2.5.2.1 Physical and Chemical properties	23
2.5.2.2 Biological properties	24
2.5.3 Properties of PVA	24
2.5.4 Some application of PHB	26
2.6 Blends of PHB	29
2.6.1 Introduction	29
2.6.2 Preparation of PHB blended solutions and films	30
2.6.3 Blended of PHB with synthetic polymers	31
2.6.4 Blending of PHB with natural polymers	31
2.6.5 Poly(3-hydroxybutyric acid) and a modified natural biodegradable	32
polymer	
References	33
CHAPTER 3: MATERIALS AND METHODS	43
3.0 Experimental	44
3.1 Materials	44
3.2 Procedures	45
3.2.1 Preparation of the solutions	45
3.2.2 Preparation of the blended solutions	46
3.2.3 Preparation of the blended films	47
3.2.4 Film thickness	47
3.3 Methods and equipments	48
3.3.1 Viscosity measurements	48
3.3.2 Fourier Transform Infrared Spectroscopy (FTIR measurements)	48

3.3.3 FESEM measurements	48
3.3.4 Thermal studies	48
3.3.4.1 Thermogravimetric measurements (TGA)	48
3.3.4.2 Differential scanning calorimetry measurements (DSC)	49
3.3.5 X-ray diffraction	50
3.3.6 Testing of (PHB/PVAc) films	50
3.3.6.1 Burial Method	50
References	51
CHAPTER 4: RESULTS AND DISCUSSION	52
4.1 Viscosity Measurement	53
4.1.1 Rheological study of PHB/PVAc blended solutions	53
4.2 Fourier Transform Infrared Spectroscopy (FTIR Measurements)	58
4.3 Field Emission Scanning Electron Microscopy (FESEM) Measurements	62
4.4 Thermal analysis	
4.4.1 Thermogravimetric Measurements (TGA)	65
4.4.2 Differential Scanning Calorimetry Measurements (DSC)	69
4.5 X-ray diffraction	73
4.6 Biodegradation	77
4.6.1 Fourier Transform Infrared Spectroscopy (FTIR)	77
4.6.2 Thermogravimetric analysis (TGA)	84
References	88

CHAPTER 5: CONCLUSIONS AND RECOMMENDATION FOR	95
FUTURE WORK	
8.1 Conclusions	96
8.2 Recommendation for future work	97
APPENDICES	98
APPENDIX 1: LIST OF PUBLICATIONS	99
APPENDIX 2	100

LIST OF FIGURES

Figure	Schematic representation of the scope of this study	9
1.1 Figure 2.1	Structure of poly(3-hydroxybutyric acid)	12
Figure 2.2 Figure 2.3	Structure of polyhydroxyalkanoate PHA	17
	PHB random chain scission	18
Figure	Chemical structure of poly (3-hydroxybutyrate) (PHB) and Research	19
2.4	medium chain length poly (3-hydroxyalkanoate) (mclPHA).	
Figure 2.5	Chemical structures of (a) PHB (b) PHV and (c) their copolymer PHBV.	20
Figure 2.6	Structure of polyvinyl acetate	25
Figure 2.7	Free-radical mechanisms of thermal degradation in PVAc	25
Figure 2.8	Classification of the biodegradable polymers	29
Figure 2.9	The description of the process for mixing two polymers	30
Figure 3.1	Structure details of PHB and PVAc	45
Figure	The relationship between viscosity and shear rate for time independent	54
4.1	flow fluids	
Figure	The apparent viscosities and shear stress versus shear rates of (b)	55
4.2	PHB,(c)PVAc and blends of PHB/PVAc of (d) 95/5, (e)90/10, (f) 85/15,	
	(g) 80/20, (h) (75/25, (i) (70/30), (k) (65/35) thin films	
Figure 4.3	FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc	61
	of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25, (i) 65/35 thin films	
Figure	The scanning electron micrographs of (a) pure PHB and (b) pure PVAc	62
4.4	thin films	
Figure	The scanning electron micrographs of PHB/PVAc blend thin films with	64
4.5	various proportions (a) 95/5, (b) 90/10, (c) 85/15, (d) 80/20, (e) 75/25, (f)	
	70/30 and (g) 65/35	

Figure 4.6	TGA curves of (a) pure PHB, (b) pure PVAc, blends of PHB/PVAc of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25, (h) 70/30, (i) 65/35	67
Figure 4.7	The DSC for two heating-cooling cycle curve of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc of (c) $95/5$, (d) $90/10$, (e) $85/15$, (f) $80/20$, (g) $75/25$, (h) $70/30$ and (i) $65/35$	70
Figure	Typical XRD pattern for all proportions blends	73
4.8		
Figure	Typical XRD pattern of (a) pure PHB, (b) pure PVAc and blends of	76
4.9	PHB/PVAc of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25,	
	(h)70/30, (i) 65/35 blend thin films	
Figure	FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc	78
4.10	(c) 95/5, (d) 90/10, (e)85/15, (f) 80/20, (g) 75/25, (h) 70/30, (i) 65/35	
	after the first week	
Figure	FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc	79
4.11	(c) 95/5, (d) 90/10, (e)85/15, (f) 80/20, (g) 75/25, (h)70/30, (i) 65/35 after	
	the fifth week	

Figure TGA curves of pure PHB, pure PVAc and blends of PHB/PVAc after (a) 84

х

4.12 the first week, (b) eighth week of degradation

LIST OF TABLES

		page
Table 3.1	Specifications of poly(3-hydroxybutyric acid) (PHB) and polyvinyl acetate (PVAc) polymers	44
Table 3.2	Composition of the PHB and PVAc mixture	46
Table 4.1	FTIR characteristic bands of pure PHB and pure PVAc and PHB/PVAc blended films	61
Table 4.2	Weight loss (%) of the thin films pure PHB, pure PVAc and their blends	68
Table 4.3	Thermal properties of pure PHB and pure PVAc films together with their blend films with different PVAc contents	72
Table 4.4	The XRD data of pure polymers and their blends	75
Table 4.5.a	Weights of pure PHB and pure PVAc and PHB/PVAc blends films with different proportions before and after from first week and second week of degradation	85
Table 4.5.b	Weights of pure PHB and pure PVAc and PHB/PVAc blend films with different proportions before and after from seventh week and eighth week of degradation	85
Table 4.6.a	FTIR characterization of pure PHB and pure PVAc and PHB/PVAc blends films with different proportions after first week and second week of degradation	82
Table 4.6.b	FTIR characterization of pure PHB and pure PVAc and PHB/PVAc blends films with different proportions after seventh week and eighth week of degradation	83

- TableTGA characterization of pure PHB and pure PVAc and PHB/PVAc blend864.7.afilms with different proportions after first week and second week of
degradation86
- TableTGA characterization of pure PHB and pure PVAc and PHB/PVAc blend874.7.bfilms with different proportions after seventh week and eighth week of
degradation60

LIST OF SYMBOLS

- T_g Glass transition temperature (°C)
- T_m Melting temperature (°C)
- T_c Crystalline temperature (°C)
- W Weight (g)
- V Volume (mL)
- M.W Molecular weight (g mol⁻¹)

LIST OF ABBREVIATIONS

CAB Cellulose Acetate Butyrate CAP Cellulose Acetate Propionate DP Degree of Polymerization DSC Differential Scanning Calorimetry FTIR Fourier Transform Infrared Spectroscopy GPC Gel Permeation Chromatography HECA Hydroxyl cellulose acetate MW Molecular Weight PBA Poly(1,4-butylene adipate) PHBV Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) PHB Poly(3-hydroxybutyric acid) PECH Polyepichlorohydrin PEG Poly(ethylene glycol) PET Poly(ethylene terephthalate) PHA Poly(hydroxyalkanoate) PLA Poly(lactic acid) PVA Poly(vinyl alcohol) PLLA Poly- L-lactic acid Poly(vinyl acetate) **PVAc** PBS Polybuthylene succinate PCLO Polycaprolactones

PE Polyethylene PGA Polyglycolic acid PP Polypropylene PVLO Polyvalerolactones SEM Scanning Electron Microscopy SA Starch acetate Thermogravimetric Analysis TGA XRD X-Ray Diffraction

LIST OF APPENDICES

- A.1 FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc of (c) 95/5, (d) 90/10, (e)85/15, (f) 80/20, (g) 75/25, (h)70/30, (i) 65/35 after the second week of degradation
- A.2 FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25, (h)70/30, (i) 65/35 after the third week of degradation
- A.3 FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25, (h)70/30, (i) 65/35 after the fourth week of degradation
- A.4 FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25, (h)70/30, (i) 65/35 after the sixth week of degradation.
- A.5 FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25, (h)70/30, (i) 65/35 after the seventh week of degradation
- A.6 FTIR spectra of (a) pure PHB, (b) pure PVAc and blends of PHB/PVAc of (c) 95/5, (d) 90/10, (e) 85/15, (f) 80/20, (g) 75/25, (h)70/30, (i) 65/35 after the eighth week of degradation
- B.1 TGA curves of pure PHB, pure PVAc and blends of PHB/PVAc after the second week of degradation
- B.2 TGA curves of pure PHB, pure PVAc and blends of PHB/PVAc after the third week of degradation
- B.3 TGA curves of pure PHB, pure PVAc and blends of PHB/PVAc after the fourth week of degradation
- B.4 TGA curves of pure PHB, pure PVAc and blends of PHB/PVAc after the fifth week of degradation
- B.5 TGA curves of pure PHB, pure PVAc and blends of PHB/PVAc after the sixth week of degradation

TGA curves of pure PHB, pure PVAc and blends of PHB/PVAc after the

B.6 seventh week of degradation

- B.6 TGA curves of (a) pure PVAc, (b) pure PHB and blends of PHB/PVAc of (c) 90/10,
 (d) 85/15, (e) 75/25, (f) 65/35
- C.1 Weights of pure PHB and pure PVAc and their blends before and after degradation from third week and fourth week
- C.2 Weights of pure PHB and pure PVAc and their blends with different proportions before and after degradation from fifth week and sixth week
- C.3 FTIR characterization of pure PHB and pure PVAc and PHB/PVAc blend films with different proportions after third week and fourth week of degradation
- C.4 FTIR characterization of pure PHB and pure PVAc and PHB/PVAc blend film with different proportions after fifth week and sixth week of degradation
- C.5 TGA characterization of pure PHB and pure PVAc and their blends with different proportions after third week and fourth week of degradation in the soil
- C.6 TGA characterization of pure PHB and pure PVAc and their blends with different proportions after third week and fourth week of degradation in the soil