ABSTRACT

This thesis is a study of certain Engel conditions. First, we will define the set of all the X-relative left Engel elements $L(G, X)$ and the set of all the bounded X-relative left Engel elements $\bar{L}(G, X)$, where X is a subset of G. When $X=G$, $L(G, X)=L(G)$ and $\bar{L}(G, X)=\bar{L}(G)$, where $L(G)$ is the set of all the usual left Engel elements and $\bar{L}(G)$ is the set of all the usual bounded left Engel elements. Next, we define the X-relative Hirsch-Plotkin radical $\operatorname{HP}(G, X)$ and the X-relative Baer radical $B(G, X)$. When $X=G, H P(G, X)=H P(G)$ and $B(G, X)=B(G)$ where $H P(G)$ is the usual Hirsch-Plotkin radical and $B(G)$ is the usual Baer radical. We will show that if X is a normal solvable subgroup of G, then $B(G, X)=\bar{L}(G, X)$ and $H P(G, X)=L(G, X)$. This is an extension of the classical results $B(G)=\bar{L}(G)$ and $H P(G)=L(G)$ provided that G is solvable. Next, we show that if X is a normal subgroup of G and G satisfies the maximal condition, then $L(G, X)=$ $H P(G, X)=B(G, X)=\bar{L}(G, X)$, which is also an extension of the classical result $L(G)=H P(G)=B(G)=\bar{L}(G)$. We also proved similar results when X is a subgroup of certain linear groups.

Let G be a group and $h, g \in G$. The 2-tuple (h, g) is said to be an n-Engel pair, $n \geq 2$, if $h=\left[h,_{n} g\right], g=\left[g,_{n} h\right]$ and $h \neq 1$. We will show that the subgroup generated by the 5 -Engel pair (x, y) satisfying $y x y=x y x$ and $x^{5}=1$ is the alternating group A_{5}. Next, we show that if (x, y) is an n-Engel pair, $x y x^{-2} y x=y x y$ and $y x y^{-2} x y=x y x$, then $n=2 k$ where $k=4$ or $k \geq 6$. Furthermore, the subgroup generated by $\{x, y\}$ is determined for $k=4,6,7$ and 8 .

Finally, we prove the existence of Engel pairs in certain special linear groups of order 2. In particular, we show that if $S L(2, F)$ is the special linear group of order 2 over the field F, then given any field L, there is a field extension F^{\prime} of L with $\left[F^{\prime}: L\right] \leq 6$ such that $S L\left(2, F^{\prime}\right)$ has an n-Engel pair for some integer $n \geq 4$. We will also show that $S L(2, F)$ has a 5 -Engel pair if F is a field of characteristic $p \equiv \pm 1$ $\bmod 5$.

ABSTRAK

Tesis ini merupakan suatu kajian bagi kondisi Engel. Yang pertama, kami menakrifkan set unsur Engel kiri relatif-X, $L(G, X)$, dan set unsur Engel kiri relatif-X terkurung $\bar{L}(G, X)$, di mana X ialah subset bagi G. Apabila $X=G$, $L(G, X)=L(G)$ dan $\bar{L}(G, X)=\bar{L}(G)$, di mana $L(G)$ ialah set bagi semua unsur Engel kiri dan $\bar{L}(G)$ ialah set bagi semua unsur Engel kiri terkurung. Kemudian, kami menakrifkan Radikal Hirsch-Plotkin relatif-X $H P(G, X)$ dan radikal Baer relatif-X, $B(G, X)$. Apabila $X=G, H P(G, X)=H P(G)$ dan $B(G, X)=B(G)$ di mana $H P(G)$ merupakan radikal Hirsch-Plotkin dan $B(G)$ ialah radikal Baer. Kami akan buktikan bahawa jikalau X subkumpulan normal boleh selesai bagi G, maka $B(G, X)=\bar{L}(G, X)$ dan $H P(G, X)=L(G, X)$. Ini ialah suatu generalisasi bagi $B(G)=\bar{L}(G)$ dan $H P(G)=L(G)$ di mana G boleh selesai. Kemudian, kami buktikan jikalau X ialah subkumpulan normal bagi G dan G memuaskan kondisi maksimal, maka $L(G, X)=H P(G, X)=B(G, X)=\bar{L}(G, X)$, juga generalisasi bagi $L(G)=H P(G)=B(G)=\bar{L}(G)$. Kami juga buktikan hasil serupa bila X ialah subkumpulan bagi kumpulam linear tertentu.

Biar G suatu kumpulan dan $h, g \in G$. Suatu rangkap-2 (h, g) ialah pasangan n-Engel, $n \geq 2$, jika $h=\left[h,_{n} g\right], g=\left[g,_{n} h\right]$ dan $h \neq 1$. Kami akan tunjukkan bahawa subkumpulan yang dijana oleh pasangan 5-Engel (x, y) yang memuaskan $y x y=x y x$ dan $x^{5}=1$ ialah kumpulan A_{5}. Kemudian, kami tunjukkan bakawa jikalau (x, y) ialah pasangan n-Engel, $x y x^{-2} y x=y x y$ dan $y x y^{-2} x y=x y x$, maka $n=2 k$ di mana $k=4$ atau $k \geq 6$. Di samping itu, subkumpulan yang dijana oleh $\{x, y\}$ dikenalpasti bagi $k=4,6,7$ dan 8 .

Akhirnya, kami buktikan wujudnya pasangan Engel dalam kumpulan linear istimewa berperingkat 2 yang tertentu. Terutamanya, kami buktikan jikalau $S L(2, F)$ merupakan kumpulan linear istimewa berperingkat 2 di atas medan F, maka bagi semua medan L, wujud suatu peluasan medan F^{\prime} oleh L dengan $\left[F^{\prime}: L\right] \leq 6$ di mana $S L\left(2, F^{\prime}\right)$ ada suatu pasangan n-Engel bagi sesuatu integer $n \geq 4$. Kami juga akan buktikan $S L(2, F)$ mempunyai pasangan 5-Engel jikalau F ialah suatu medan sengan cirian $p \equiv \pm 1 \bmod 5$.

ACKNOWLEDGMENT

My utmost gratitude to my supervisors, Dr Wong Kok Bin and Prof. Dr. Wong Peng Choon, for guiding me throughout the entire PhD program.

I will also like to thank my parents for their financial support, especially during the last 3 months of the year 2014 when I was looking for a new career.

In addition, thanks to my brother and sister, Shio Chuan and Shio Yee, and all their friends, for their support which cheered me up throughout my career and my postgraduate program.

Thanks to all programmer communities of general public license software, especially Debian, Libreoffice, Texmaker, Miktex, and SAGE. Your kind contributions has somewhat eased my financial burden as a research candidate.

Contents

Chapter 1 Introduction 8
1.1 General Introduction 8
1.2 Relative Engel Elements 8
1.3 Relative Hirsch-Plotkin and Baer Radicals 10
1.4 Classical and New Results 11
1.5 Engel Pairs 13
Chapter 2 Relative Engel Elements I 15
2.1 A Brief Introduction 15
2.2 2-Engel elements 16
2.3 Main Theorem 1 18
2.4 Main Theorem 2 22
Chapter 3 Relative Engel Elements II 28
3.1 A Brief Introduction 28
3.2 A generalization of Gruenberg's Theorem 29
3.3 Main Theorem 3 32
3.4 Main Theorem 4 36
Chapter 4 Non-Engel Elements 39
4.1 A Brief Introduction 39
4.2 Equivalent forms 41
4.3 Main Theorem 5 44
4.4 A Generalization 47
Chapter 5 Engel Pairs I 51
5.1 A Brief Introduction 51
5.2 Main Theorem 6 52
5.3 Main Theorem 7 59
Chapter 6 Engel Pairs II 62
6.1 A Brief Introduction 62
6.2 Main Theorem 8 63
6.3 Main Theorem 9 67
6.4 Computer Codes 73
References 76

Chapter 1

Introduction

1.1 General Introduction

The aim of this thesis is to give some generalizations on Engel elements, and to characterize finite groups having Engel pairs.

In recent decades, increasingly more mathematicians are involved in the study of Engel elements in groups. The study of such elements are facilitated by the increasing processing power of computer and its software. With such computational power, we are able to visualize abstract objects and find new examples, which lead to the finding of new theorems.

1.2 Relative Engel Elements

Let G be a group. Let $x_{1}, x_{2}, \ldots, x_{m} \in G$. The commutator of x_{1} and x_{2} is $\left[x_{1}, x_{2}\right]=$ $x_{1}^{-1} x_{2}^{-1} x_{1} x_{2}$, and a simple commutator of weight $m \geq 2$ is defined recursively as

$$
\left[x_{1}, x_{2}, \ldots, x_{m}\right]=\left[\left[x_{1}, x_{2}, \ldots, x_{m-1}\right], x_{m}\right],
$$

where by convention $\left[x_{1}\right]=x_{1}$. Let $x, y \in G$. A useful shorthand notation is

$$
\left[x,{ }_{m} y\right]=[x, \overbrace{y, y, \ldots, y}^{m}],
$$

where by convention $[x, 0 y]=[x]$.

An element $g \in G$ is called a left Engel element of G, if for each $x \in G$, there is a positive integer $n=n(g, x)$ such that $[x, n g]=1$. The set of all left Engel elements is denoted by $L(G)$. An element $g \in G$ is called a left m-Engel element of G, if $\left[x,_{m} g\right]=1$ for all $x \in G$. The set of all left m-Engel elements is denoted by $L_{m}(G)$. Let \mathbb{N} be the set of all positive integers. The elements in $\bar{L}(G)=\bigcup_{m \in \mathbb{N}} L_{m}(G)$ are called bounded left Engel elements of G.

An element $g \in G$ is called a right Engel element of G, if for each $x \in G$, there is a positive integer $n=n(g, x)$ such that $\left[g,_{n} x\right]=1$. The set of all right Engel elements is denoted by $R(G)$. An element $g \in G$ is called a right m-Engel element of G, if $\left[g,_{m} x\right]=1$ for all $x \in G$. The set of all right m-Engel elements is denoted by $R_{m}(G)$. The elements in $\bar{R}(G)=\bigcup_{m \in \mathbb{N}} R_{m}(G)$ are called bounded right Engel elements of G.

Let X be a subset of a group G. An element $g \in G$ is called an X-relative left Engel element of G, if for each $x \in X$, there is a positive integer $n=n(g, x)$ such that $\left[x,{ }_{n} g\right]=1$. The set of all X-relative left Engel elements is denoted by $L(G, X)$. An element $g \in G$ is called an X-relative left m-Engel element of G, if $[x, m g]=1$ for all $x \in X$. The set of all X-relative left m-Engel elements is denoted by $L_{m}(G, X)$. Let \mathbb{N} be the set of all positive integers. The elements in $\bar{L}(G, X)=\bigcup_{m \in \mathbb{N}} L_{m}(G, X)$ are called bounded X-relative left Engel elements of G.

The set of X-relative right Engel elements of G, X-relative right m-Engel elements of G, and bounded X-relative right Engel elements of G, denoted by $R(G, X)$, $R_{m}(G, X)$ and $\bar{R}(G, X)$ respectively, are defined similarly.

Note that when $X=G$, we have $L(G, G)=L(G), L_{m}(G, G)=L_{m}(G)$ and $\bar{L}(G, G)=\bar{L}(G)$. The same are true for $R(G, G), R_{m}(G, G)$ and $\bar{R}(G, G)$.

1.3 Relative Hirsch-Plotkin and Baer Radicals

Let $a, b \in G, H$ be a subgroup of G, and X be a subset of G. We shall use the following notations:
(a) $a^{b}=b^{-1} a b$,
(b) $H^{b}=b^{-1} H b$,
(c) $\langle X\rangle$ is the subgroup generated by X.
(d) $H^{X}=\left\langle\left\{h^{x}: h \in H, x \in X\right\}\right\rangle$.

The Hirsch-Plotkin radical of a group G, denoted by $\operatorname{HP}(G)$, is the unique maximal normal locally nilpotent subgroup of G (see [28, 12.1.3 on p. 343]). In fact

$$
H P(G)=\left\{a \in G:\langle a\rangle^{G} \text { is locally nilpotent }\right\}
$$

This motivates us to define the X-relative Hirsch-Plotkin radical by

$$
H P(G, X)=\left\{a \in G:\langle a\rangle^{X} \text { is locally nilpotent }\right\} .
$$

Note that $H P(G, X)$ may not be a group.
The Baer radical of a group G, denoted by $B(G)$ is the set of all $a \in G$ such that $\langle a\rangle$ is subnormal in G. In fact

$$
B(G)=\left\{a \in G:\langle a\rangle \text { is subnormal in }\langle a\rangle^{G}\right\} .
$$

This motivates us to define the X-relative Baer radical by

$$
B(G, X)=\left\{a \in G:\langle a\rangle \text { is subnormal in }\langle a\rangle^{X}\right\} .
$$

Note that $H P(G, G)=H P(G)$ and $B(G, G)=B(G)$.

1.4 Classical and New Results

A common problem in the theory of Engel elements is to find conditions on G, so that $H P(G)=L(G)$ and $B(G)=\bar{L}(G)$. In the sense of relativity, the problem is to find conditions on X, so that $H P(G, X)=L(G, X)$ and $B(G, X)=\bar{L}(G, X)$.

Gruenberg [14] proved the following classical theorem for solvable groups (see also [28, 12.3.3 on p. 357]).

Theorem 1.4.1. If G is a solvable group, then $B(G)=\bar{L}(G)$ and $H P(G)=L(G)$.

A group G is said to satisfy the maximal condition if there is no infinite ascending chain of subgroups

$$
H_{1} \subsetneq H_{2} \subsetneq H_{3} \subsetneq \cdots .
$$

Baer ([28, 12.3.7 on p. 360]) proved that similar identities hold if G satisfies the maximal condition

Theorem 1.4.2. If G satisfies the maximal condition, then $L(G)=H P(G)=$ $B(G)=\bar{L}(G)$.

The following theorems which are generalizations of Theorems 1.4.1 and 1.4.2 will be proved in Chapter 2.

Main Theorem 1. Let X be a normal solvable subgroup of a group G. Then
(a) $B(G, X)=\bar{L}(G, X)$,
(b) $H P(G, X)=L(G, X)$.

Main Theorem 2. Let X be a normal subgroup of a group G. If G satisfies the maximal condition, then $L(G, X)=H P(G, X)=B(G, X)=\bar{L}(G, X)$.

Let R be a commutative ring with identity and A be an R-module. We shall denote the group of all R-automorphisms of A by $\operatorname{Aut}_{R} A$. Let

$$
F \operatorname{Aut}_{R} A=\left\{\alpha \in \operatorname{Aut}_{R} A:(\alpha-1) A \text { is a Noetherian } R \text {-module }\right\} .
$$

Note that $F \mathrm{Aut}_{R} A$ is a subgroup of $\operatorname{Aut}_{R} A$ and it is called the finitary automorphisms group of A over R (see [33, Section 1]).

Theorem 1.4.3. Let R be a commutative Noetherian ring with identity and A be a finitely generated R-module. If G is a subgroup of $\operatorname{Aut}_{R} A$, then $L(G)=H P(G)$ and $\bar{L}(G)=B(G)$.

Theorem 1.4.4. Let G be a subgroup of a finitary automorphisms group of a module over a commutative ring with identity. Then $L(G)=H P(G)$ and $\bar{L}(G)=B(G)$.

Theorem 1.4.3 was proved by Gruenberg [15, Theorem 0] and Theorem 1.4.4 was proved by Wehrfritz [33, 4.4]. We will give a generalization of these two results (see Main Theorem 3 and 4).

Definition 1.4.5. Let H, K be subgroups of a group G and $H \triangleleft K$. Let \mathbb{N}_{0} be the set of non-negative integers. An element $b \in G$ is said to be (H, K)-centralizable if there is a sequence of normal subgroups of K, say $\left\{H_{i}\right\}_{i \in \mathbb{N}_{0}}$ such that
(a) $H_{0}=H$,
(b) $H_{i+1}=\left\{d \in K:[d, b] \in H_{i}\right\}$ for all $i \in \mathbb{N}_{0}$.

It is not hard to see that $H=H_{0} \triangleleft H_{1} \triangleleft H_{2} \triangleleft \cdots$. The sequence $\left\{H_{i}\right\}_{i \in \mathbb{N}_{0}}$ shall be called the (H, K)-centralized normal sequence of b.

A set $W \subseteq G$ is said to be (H, K)-centralizable if every element in W is (H, K) centralizable.

Main Theorem 3. Let G be a group, R be a commutative Noetherian ring with identity and A be a finitely generated R-module. Let S be a normal subgroup of G such that $\langle L(S)\rangle$ is a subgroup of $\operatorname{Aut}_{R} A$. If $L(G, S)$ is $(H P(S), S)$-centralizable, then
(a) $B(G, S)=\bar{L}(G, S)$,
(b) $H P(G, S)=L(G, S)$.

Main Theorem 4. Let G be a group, R be a commutative ring with identity and A be an R-module. Let S be a normal subgroup of G such that $\langle L(S)\rangle$ is a subgroup of $F \operatorname{Aut}_{R} A$. If $L(G, S)$ is $(H P(S), S)$-centralizable, then $H P(G, S)=L(G, S)$. These two theorems will be proved in Chapter 3.

1.5 Engel Pairs

Every finite group G satisfies a law $[x, r y]=[x, s y]$ for some positive integers $r<s$. The minimal value of r is called the Engel depth of G (see [5, 6]). So, given any non-left Engel element $g \in G$, there exists a $h \in G$ and a positive integer n such that $h=\left[h,{ }_{n} g\right]$. However we do not know whether $g=\left[g,{ }_{n} h\right]$ or not.

Let $G(a, b)=\{x, y \mid x=[x, a y], y=[y, b x]\}$. It can be shown that $G(1, b)=1$ and $G(2,2)=1$. However, we wonder if $G(a, b)$ is also finite for other values of a and b (see Problem 11.18 of [24]: Note that Problem 17.80 is a special case for Problem 11.18 in which $a=b$).

Definition 1.5.1. Let G be a group and $h, g \in G$. The 2-tuple (h, g) is said to be an n-Engel pair, $n \geq 2$, if $h=\left[h,_{n} g\right], g=\left[g,_{n} h\right]$ and $h \neq 1$.

In Chapter 4, we will show that if (h, g) is an n-Engel pair and $h g h=g h g$, then n must be a multiple of 5 . Furthermore, the subgroup generated by $\{h, g\}$ is isomorphic to A_{5} if the order of h is 5 , and is isomorphic to H_{2} if the order of h is 10 . Here, A_{5} is the alternating subgroup on 5 elements and H_{2} is the central extension of the cyclic group of order 2 by A_{5} (see Main Theorem 5).

In Chapter 5 , we will show that if (h, g) is an n-Engel pair in a group H satisfying the conditions $h g h^{-2} g h=g h g$ and $g h g^{-2} h g=h g h$, then $n=2 k$ where $k=4$ or $k \geq 6$ (see Main Theorem 6). For $k=4,6,7,8$, we will give characterizations of the subgroup generated by this n-Engel pair (see Main Theorem 7).

Let $S L(2, F)$ be the special linear group of order 2 over the field F. If $F=\mathbb{Z}_{p}$ for a prime p, then we shall write $S L(2, p)$ instead of $S L(2, F)$. In Chapter 6 , we will prove the following theorems.

Main Theorem 8. Given any field L, there is a field extension F of L with $[F: L] \leq$ 6 such that $S L(2, F)$ has an n-Engel pair for some integer $n \geq 4$.

Main Theorem 9. Given any field F of characteristic $p \equiv \pm 1 \bmod 5, S L(2, F)$ has a 5-Engel pair.

Chapter 2

Relative Engel Elements I

2.1 A Brief Introduction

Let X be a subset of a group G. Recall that an element $g \in G$ is called an X-relative left Engel element of G, if for each $x \in X$, there is a positive integer $n=n(g, x)$ such that $\left[x,{ }_{n} g\right]=1$. The set of all X-relative left Engel elements is denoted by $L(G, X)$. An element $g \in G$ is called an X-relative left m-Engel element of G, if $[x, m g]=1$ for all $x \in X$. The set of all X-relative left m-Engel elements is denoted by $L_{m}(G, X)$. Let \mathbb{N} be the set of all positive integers. The elements in $\bar{L}(G, X)=\bigcup_{m \in \mathbb{N}} L_{m}(G, X)$ are called bounded X-relative left Engel elements of G.

The set of X-relative right Engel elements of G, X-relative right m-Engel elements of G, and bounded X-relative right Engel elements of G, denoted by $R(G, X)$, $R_{m}(G, X)$ and $\bar{R}(G, X)$ respectively, are defined similarly.

Let $Z(G)$ be the center of G. Note that $L_{1}(G)=R_{1}(G)=Z(G)$. Let $C_{G}(X)=$ $\{g \in G: g x=x g \forall x \in X\}$. Clearly $C_{G}(X)$ is a subgroup of G, and $L_{1}(G, X)=$ $R_{1}(G, X)=C_{G}(X)$. We shall characterize $L_{2}(G, X)$ and $R_{2}(G, X)$ in Section 2.2.

We will prove Main Theorem 1 and Main Theorem 2 in Sections 2.3 and 2.4, respectively.

The main results in this chapter have been published (see S. G. Quek, K. B. Wong, P. C. Wong, On Engel elements of a group relative to certain subgroup, Comm. Algebra 40 (2012), 4693-4701).

2.2 2-Engel elements

Let G be a group. Let $a, b \in G, H$ be a subgroup of G, and X be a subset of G.

We shall use the following notations:
(a) $a^{b}=b^{-1} a b$,
(a) $H^{b}=b^{-1} H b$,
(c) $\langle X\rangle$ is the subgroup generated by X.
(d) $H^{X}=\left\langle\left\{h^{x}: h \in H, x \in X\right\}\right\rangle$.
(e) $N_{G}(H)=\left\{g \in G: H^{g}=H\right\}$ (note that $N_{G}(H)$ is called the normalizer of H in $G)$.

Now Theorem 2.2.1 and Theorem 2.2.2 follow from the fact that $[x, g, g]=1$ if and only if g commutes with $[x, g]=g^{-x} g$ if and only if g commutes with g^{x}.

Theorem 2.2.1. Let X be a subset of a group G. Then

$$
L_{2}(G, X)=\left\{g \in G:\left[g, g^{x}\right]=1 \text { for all } x \in X\right\}
$$

Furthermore if X is a subgroup, then $L_{2}(G, X)=\left\{g \in G:\langle g\rangle^{X}\right.$ is abelian $\}$.

Theorem 2.2.2. Let X be a subset of a group G. Then

$$
R_{2}(G, X)=\left\{g \in G:\left[x, x^{g}\right]=1 \text { for all } x \in X\right\}
$$

Note that Theorem 2.2.1 is a generalization of the well-known fact $L_{2}(G)=$ $\left\{g \in G:\langle g\rangle^{G}\right.$ is abelian $\}$ (see [23] and [28, 12.3.6 on p. 358]). It was shown by Kappe [22] that when $X=G, R_{2}(G, G) \subseteq L_{2}(G, G)$, and $R_{2}(G, G)$ is a group. However in general we do not know whether $R_{2}(G, X)$ is a group or not. We give a characterization of $R_{2}(G, X)$ in Corollary 2.2.3.

Corollary 2.2.3. Let X be a subset of a group G and $g \in R_{2}(G, X)$. Then
(a) $g^{-1} \in R_{2}(G, X)$,
(b) if $a \in G$ and $a X a^{-1} \subseteq X$, then $a^{-1} g a \in R_{2}(G, X)$,
(c) $R_{2}=R_{2}(G, X)$ is a subgroup of G if and only if $\langle x\rangle^{R_{2}}$ is abelian for all $x \in X$.

Proof. (a) By Theorem 2.2.2, for all $x \in X,\left[x, x^{g}\right]=1$, i.e, $\left[x^{g^{-1}}, x\right]=1$, and this implies $\left[x, x^{g^{-1}}\right]=1$. Hence $g^{-1} \in R_{2}(G, X)$.
(b) Again by Theorem 2.2.2, for all $x \in X,\left[x, x^{g}\right]=1$, i.e., $\left[x^{a}, x^{g a}\right]=1$. Now let $y \in X$ and set $x=y^{a^{-1}}$, then $\left[y, y^{a^{-1} g a}\right]=1$. Hence $a^{-1} g a \in R_{2}(G, X)$.
(c) Suppose R_{2} is a subgroup of G. Let $x \in X$ and $a, b \in R_{2}$. Then $a b^{-1} \in R_{2}$, and by Theorem 2.2.2, $\left[x, x^{a b^{-1}}\right]=1$, i.e., $\left[x^{b}, x^{a}\right]=1$. This implies that $\langle x\rangle^{R_{2}}$ is abelian. The converse is proved similarly.

Note that Abdollahi [1] and Newell [27] have given characterizations of $L_{3}(G)=$ $L_{3}(G, G)$ and $R_{3}(G)=R_{3}(G, G)$, respectively. It would be interesting to know how elements in $L_{3}(G, X)$ and $R_{3}(G, X)$ behave. See also a more recent paper by

Abdollahi and Khosravi [2] on 4-Engel elements. The reader may also refer to a chapter by Abdollahi in a recent textbook [3] on Engel elements.

2.3 Main Theorem 1

Recall that the X-relative Hirsch-Plotkin radical is defined by

$$
H P(G, X)=\left\{a \in G:\langle a\rangle^{X} \text { is locally nilpotent }\right\},
$$

and the X-relative Baer radical is defined by

$$
B(G, X)=\left\{a \in G:\langle a\rangle \text { is subnormal in }\langle a\rangle^{X}\right\} .
$$

Lemma 2.3.1. Let G be a group and A, K_{1}, K_{2} be subgroups of G such that $K_{1} \triangleleft K_{2}$ and $A \subseteq K_{1}$. If $A^{K_{1}}$ is locally nilpotent, then $A^{K_{2}}$ is locally nilpotent.

Proof. First note that $A^{K_{2}}$ is a subgroup of K_{1}. So $A^{K_{1}} \triangleleft A^{K_{2}}$. Let $x \in K_{2}$. If $u \in$ K_{1}, then $u^{x^{-1}} \in K_{1}$, and $u^{-1}\left(A^{K_{1}}\right)^{x} u=u^{-1} x^{-1}\left(A^{K_{1}}\right) x u=x^{-1} u^{-x^{-1}}\left(A^{K_{1}}\right) u^{x^{-1}} x=$ $\left(A^{K_{1}}\right)^{x}$. So $\left(A^{K_{1}}\right)^{x} \triangleleft K_{1}$, and thus $\left(A^{K_{1}}\right)^{x} \triangleleft A^{K_{2}}$. Now $\left(A^{K_{1}}\right)^{x}$ is locally nilpotent implies that $\left(A^{K_{1}}\right)^{x} \subseteq H P\left(A^{K_{2}}\right)$. Since $A^{K_{2}}=\left\langle\bigcup_{x \in K_{2}}\left(A^{K_{1}}\right)^{x}\right\rangle, A^{K_{2}}=H P\left(A^{K_{2}}\right)$ is locally nilpotent.

Theorem 2.3.2. Let X be a subgroup of a group G. Then
(a) $B(G, X) \subseteq H P(G, X)$,
(b) $B(G, X) \subseteq \bar{L}(G, X)$,
(c) $H P(G, X) \subseteq L(G, X)$.

Proof. (a) Let $a \in B(G, X)$. Then $\langle a\rangle$ is subnormal in $\langle a\rangle^{X}$. Since $\langle a\rangle^{X} \triangleleft\langle a, X\rangle$, there is a subnormal chain

$$
\langle a\rangle=A_{0} \triangleleft A_{1} \triangleleft A_{2} \triangleleft \cdots \triangleleft A_{n}=\langle a, X\rangle .
$$

Now $\langle a\rangle=\langle a\rangle^{A_{1}}$ is locally nilpotent implies that $\langle a\rangle^{A_{2}}$ is locally nilpotent (Lemma 2.3.1). So by applying Lemma 2.3.1 repeatedly, we conclude that $\langle a\rangle^{\langle a, X\rangle}$ is locally nilpotent. Therefore $\langle a\rangle^{X}$ is locally nilpotent as it is a subgroup of $\langle a\rangle^{\langle a, X\rangle}$. Hence $a \in H P(G, X)$.
(b) Let $a \in B(G, X)$. Again we have $\langle a\rangle=A_{0} \triangleleft A_{1} \triangleleft A_{2} \triangleleft \cdots \triangleleft A_{n}=\langle a, X\rangle$. Let $x \in X$. As $a \in A_{n-1}$ and $x \in A_{n}$, we have $[x, a] \in A_{n-1}$. As $a \in A_{n-2}$ and $[x, a] \in A_{n-1}$, we have $[x, a, a] \in A_{n-2}$. We can continue this process to obtain $\left[x,{ }_{n} a\right] \in A_{0}$. So $\left[x,_{n+1} a\right]=1$ for all $x \in X$. Thus $a \in L_{n+1}(G, X) \subseteq \bar{L}(G, X)$.
(c) Let $a \in H P(G, X)$. Then $\langle a\rangle^{X}$ is locally nilpotent. Let $x \in X$. Note that $[x, a], a \in\langle a\rangle^{X}$, and so $\langle a,[x, a]\rangle$ is nilpotent. Therefore there is a positive integer $n=n(x, a)$ such that $\left[x,{ }_{n} a\right]=1$. Hence $a \in L(G, X)$.

Lemma 2.3.3. Let C, D be normal subgroups of a group G such that $C \subseteq D$ and D / C is abelian. Let $a \in L(G, D)$ be fixed. Inductively set $C_{0}=C$, and for $i \geq 1$, $C_{i}=\left\{d \in D:[d, a] \in C_{i-1}\right\}$. Then
(a) C_{i} is a normal subgroup of D and D / C_{i} is abelian for all $i \geq 0$,
(b) $C_{i} \subseteq C_{i+1}$ for all $i \geq 0$,
(c) $D=\bigcup_{i \geq 0} C_{i}$,
(d) if $a \in \bar{L}(G, D)$, then $D=C_{m}$ for some positive integer m.

Proof. (a) We shall prove by induction on i. Clearly it is true for $i=0$. Suppose $i \geq 1$. Assume that C_{i-1} is a normal subgroup of D and D / C_{i-1} is abelian.

Note that C_{i} / C_{i-1} is the centralizer of $a C_{i-1}$ in D / C_{i-1} and $C_{i} / C_{i-1} \triangleleft D / C_{i-1}$ for D / C_{i-1} is abelian. Hence C_{i} is a normal subgroup of D and D / C_{i} is abelian, being a quotient of D / C_{i-1}.
(b) This follows from part (a) of this theorem.
(c) Clearly $\bigcup_{i \geq 0} C_{i} \subseteq D$. Let $d \in D$. If $d=1$, then $d \in \bigcup_{i \geq 0} C_{i}$. We may assume $d \neq 1$. Note that $\left[d,_{n} a\right]=1$ for some positive integer n, and $[d, l a] \in D$ for $l=1,2, \ldots, n-1$ (because $D \triangleleft G)$. Now $\left[\left[d,{ }_{n-1} a\right], a\right]=\left[d,{ }_{n} a\right]=1$ implies that $\left[d_{,_{n-1}} a\right] \in C_{1}$. As $\left[\left[d_{n_{n-2}} a\right], a\right]=\left[d,_{n-1} a\right] \in C_{1}$, we have $\left[d,_{n_{-2}} a\right] \in C_{2}$. By continuing this way, we see that $[d, a] \in C_{n-1}$ and $d \in C_{n}$. Hence $D=\bigcup_{i \geq 0} C_{i}$.
(d) If $a \in \bar{L}(G, D)$, then there is a positive integer m such that $\left[d,,_{m} a\right]=1$ for all $d \in D$. By using a similar argument as in the proof of part (c) of this theorem, we see that $D=C_{m}$.

Main Theorem 1. Let X be a normal solvable subgroup of a group G. Then
(a) $B(G, X)=\bar{L}(G, X)$,
(b) $H P(G, X)=L(G, X)$.

Proof. Let the derived length of X be d. Note that $X^{(i+1)}$ and $X^{(i)}$ are normal in G and $X^{(i)} / X^{(i+1)}$ is abelian for $i=0,1,2, \ldots, d-1$, and furthermore $X^{(0)}=X$ and $X^{(d)}=1$.
(a) By part (b) of Theorem 2.3.2, it is sufficient to show that $\bar{L}(G, X) \subseteq B(G, X)$. Let $a \in \bar{L}(G, X)$. Then $a \in \bar{L}\left(G, X^{(i)}\right)$ (for $\left.X^{(i)} \subseteq X\right)$. By part (d) of Lemma 2.3.3, there is a positive integer m_{i} such that $X^{(i)}=C_{i m_{i}}$ where $C_{i 0}=X^{(i+1)}$ and for $j=1,2, \ldots, m_{i}, C_{i j}=\left\{d \in X^{(i)}:[d, a] \in C_{i(j-1)}\right\}$. Note that $\left\langle a, C_{i j}\right\rangle \triangleleft\left\langle a, C_{i(j+1)}\right\rangle$.

Therefore $\left\langle a, X^{(i+1)}\right\rangle$ is subnormal in $\left\langle a, X^{(i)}\right\rangle$. This implies that $\langle a\rangle=\left\langle a, X^{(d)}\right\rangle$ is subnormal in $\langle a, X\rangle$. As $\langle a\rangle^{X}$ is a subgroup of $\langle a, X\rangle,\langle a\rangle$ is subnormal in $\langle a\rangle^{X}$. Hence $a \in B(G, X)$.
(b) By part (c) of Theorem 2.3.2, it is sufficient to show that $L(G, X) \subseteq H P(G, X)$. Let $a \in L(G, X)$. Then $a \in L\left(G, X^{(i)}\right)$. By Lemma 2.3.3, $X^{(i)}=\bigcup_{j \geq 0} C_{i j}$ where $C_{i 0}=X^{(i+1)}$ and for $j \geq 1, C_{i j}=\left\{d \in X^{(i)}:[d, a] \in C_{i(j-1)}\right\}$. Note that $\left\langle a, C_{i j}\right\rangle \triangleleft\left\langle a, C_{i(j+1)}\right\rangle$.

When $i=d-1$, we have $C_{(d-1) 0}=X^{(d)}=1$ and

$$
\langle a\rangle=\left\langle a, C_{(d-1) 0}\right\rangle \triangleleft\left\langle a, C_{(d-1) 1}\right\rangle \triangleleft\left\langle a, C_{(d-1) 2}\right\rangle \triangleleft \cdots .
$$

Note that $\langle a\rangle=\langle a\rangle^{\left\langle a, C_{(d-1) 1}\right\rangle}$ is locally nilpotent. By Lemma 2.3.1, $\langle a\rangle^{\left\langle a, C_{(d-1) 2}\right\rangle}$ is locally nilpotent. In fact inductively, we see that $\langle a\rangle^{\left\langle a, C_{(d-1) j}\right\rangle}$ is locally nilpotent for all $j \geq 1$. Furthermore $\langle a\rangle^{\left\langle a, C_{(d-1) 1)}\right\rangle} \subseteq\langle a\rangle^{\left\langle a, C_{(d-1) 2}\right\rangle} \subseteq\langle a\rangle^{\left\langle a, C_{(d-1) 3}\right\rangle} \subseteq \cdots$ is an ascending chain of locally nilpotent groups. Therefore $\langle a\rangle^{\left\langle a, X^{(d-1)}\right\rangle}=\bigcup_{j \geq 1}\langle a\rangle^{\left\langle a, C_{(d-1) j}\right\rangle}$ is locally nilpotent.

When $i=d-2$, we have $C_{(d-2) 0}=X^{(d-1)}$ and

$$
\left\langle a, C_{(d-2) 0}\right\rangle \triangleleft\left\langle a, C_{(d-2) 1}\right\rangle \triangleleft\left\langle a, C_{(d-2) 2}\right\rangle \triangleleft \cdots .
$$

Note that $\langle a\rangle^{\left\langle a, C_{(d-2) 0}\right\rangle}=\langle a\rangle^{\left\langle a, X^{(d-1)}\right\rangle}$ is locally nilpotent. By using similar argument as in the previous paragraph, we deduce that $\langle a\rangle^{\left\langle a, X^{(d-2)}\right\rangle}$ is locally nilpotent.

By continuing this process, we see that $\langle a\rangle^{\langle a, X\rangle}$ is locally nilpotent. Hence $\langle a\rangle^{X}$ is locally nilpotent, and $a \in H P(G, X)$.

Note that Main Theorem 1 is a generalization of a theorem of Gruenberg which states that $B(G)=\bar{L}(G)$ and $H P(G)=L(G)$ for any solvable group G (see [14] and [28, 12.3.3 on p. 357]).

2.4 Main Theorem 2

Lemma 2.4.1. Let X be a subgroup of a group G. If G satisfies the maximal condition, then $H P(G, X)=B(G, X)$.

Proof. By part (a) of Theorem 2.3.2, it is sufficient to show that $\operatorname{HP}(G, X) \subseteq$ $B(G, X)$. Let $a \in H P(G, X)$. Then $\langle a\rangle^{X}$ is locally nilpotent. Since G satisfies maximal condition, $\langle a\rangle^{X}$ is finitely generated. Thus $\langle a\rangle^{X}$ is nilpotent, and $\langle a\rangle$ is subnormal in $\langle a\rangle^{X}$. So $a \in B(G, X)$.

Lemma 2.4.2. Let X be a subgroup of a group G. If $a \in L(G, X)$, then $a^{u} \in$ $L(G, X)$ for all $u \in X$.

Proof. Let $u \in X$ be fixed. Let $x \in X$. Then $x^{u^{-1}} \in X$ (as X is a group), and there is a positive integer n such that $\left[x^{u^{-1}}{ }_{n} a\right]=1$. So $\left[x^{u^{-1}}{ }_{, n} a\right]^{u}=1$ and $\left[x,_{n} a^{u}\right]=1$. Hence $a^{u} \in L(G, X)$.

Lemma 2.4.3. Let X be a normal subgroup of a group G, and $a \in G$. Let $\{a\}^{X}=$ $\left\{a^{x}: x \in X\right\}$. Then $v^{u}, v^{u^{-1}} \in\{a\}^{X}$ for all $u, v \in\{a\}^{X}$.

Proof. Let $u=a^{x_{1}}$ and $v=a^{x_{2}}$ where $x_{1}, x_{2} \in X$. Then

$$
\begin{aligned}
v^{u} & =x_{1}^{-1} a^{-1} x_{1} x_{2}^{-1} a x_{2} x_{1}^{-1} a x_{1} \\
& =\left(x_{1}^{-1} a^{-1} x_{1} x_{2}^{-1} a\right) a\left(a^{-1} x_{2} x_{1}^{-1} a x_{1}\right) \in\{a\}^{X}
\end{aligned}
$$

for $x_{1}^{-1} a^{-1} x_{1} x_{2}^{-1} a \in X$. Similarly $v^{u^{-1}} \in\{a\}^{X}$.

Let $u \in G$. A subgroup A of G is said to be (X, u)-generated if A is generated by elements in $\{u\}^{X}$, i.e., $A=\left\langle A \cap\{u\}^{X}\right\rangle$.

Lemma 2.4.4. Let X be a normal subgroup of a group G, and $u \in G$. Suppose A, B are (X, u)-generated subgroups of G. If $A \subsetneq B$ and B is nilpotent, then there is an element $x \in X$ such that $u^{x} \in B \backslash A$ and $u^{x} \in N_{G}(A)$.

Proof. Since B is nilpotent, A is subnormal in B, i.e., $A=A_{0} \triangleleft A_{1} \triangleleft A_{2} \triangleleft \cdots \triangleleft$ $A_{n}=B$. As both A and B are (X, u)-generated, and $A \subsetneq B$, we deduce that $A \cap\{u\}^{X} \subsetneq B \cap\{u\}^{X}$. So there is a i_{0} such that $A \cap\{u\}^{X}=A_{1} \cap\{u\}^{X}=\cdots=$ $A_{i_{0}} \cap\{u\}^{X} \subsetneq A_{i_{0}+1} \cap\{u\}^{X}$. Let $u^{x} \in A_{i_{0}+1} \cap\{u\}^{X} \backslash\left(A_{i_{0}} \cap\{u\}^{X}\right)$. Since $A_{i_{0}}^{u^{x}}=A_{i_{0}}$, by Lemma 2.4.3, $\left(A \cap\{u\}^{X}\right)^{u^{x}}=\left(A_{i_{0}} \cap\{u\}^{X}\right)^{u^{x}} \subseteq A_{i_{0}} \cap\{u\}^{X}=A \cap\{u\}^{X}$. Similarly $\left(A \cap\{u\}^{X}\right)^{u^{-x}} \subseteq A \cap\{u\}^{X}$. Hence $u^{x} \in N_{G}(A)$.

Lemma 2.4.5. Let M be a subgroup of a group G. Let $a \in N_{G}(M)$. Suppose that $M=\left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle$ and there is a positive integer m such that $\left[w_{i, m} a\right]=1$ for $i=1,2, \ldots, n$. If M is nilpotent, then $\langle a, M\rangle$ is nilpotent.

Proof. Note that $M \triangleleft\langle a, M\rangle$. This implies that $[M, M] \triangleleft\langle a, M\rangle$. It is clear that $\langle a, M\rangle /[M, M]$ is nilpotent of class at most m. Since M is nilpotent, $\langle a, M\rangle$ is nilpotent (see [28, 5.2.10 on p. 129]).

Lemma 2.4.6. Let x, y, a be elements in a group G. If l is a positive integer, then

$$
\left[a^{-x}{ }_{, l} a^{y}\right]=\left[y^{-1} x_{, l+1} a^{y}\right]^{a^{-y}} .
$$

Proof. Note that

$$
\begin{aligned}
{\left[a^{-x}{ }_{, l} a^{y}\right] } & =\left[a^{-y y^{-1} x},{ }_{l} a^{y}\right] \\
& =\left[\left(a^{y}\right)^{-y^{-1} x},{ }_{, l} a^{y}\right] \\
& =\left[\left[y^{-1} x, a^{y}\right] a^{-y},{ }_{l} a^{y}\right] \\
& =\left[\left[\left[y^{-1} x, a^{y}\right] a^{-y}, a^{y}\right]_{, l-1} a^{y}\right] \\
& =\left[\left[\left[y^{-1} x, a^{y}\right], a^{y}\right]^{a^{-y}}\left[a^{-y}, a^{y}\right]_{, l-1} a^{y}\right] \\
& =\left[\left[y^{-1} x, a^{y}, a^{y}\right]^{a^{-y}},{ }_{l-1} a^{y}\right] \\
& =\left[\left[y^{-1} x, a^{y}, a^{y}\right]_{, l-1} a^{y}\right]^{a^{-y}} \\
& =\left[y^{-1} x, l+1 a^{y}\right]^{-y} .
\end{aligned}
$$

Main Theorem 2. Let X be a normal subgroup of a group G. If G satisfies the maximal condition, then $L(G, X)=H P(G, X)=B(G, X)=\bar{L}(G, X)$.

Proof. By Theorem 2.3.2 and Lemma 2.4.1, it is sufficient to show that $L(G, X) \subseteq$ $H P(G, X)$. Let $a \in L(G, X)$. We need to show that $\langle a\rangle^{X}$ is nilpotent.

Let \mathcal{T} be the set of all (X, a)-generated nilpotent subgroups of G. Note that $\mathcal{T} \neq \varnothing$ for $\langle a\rangle \in \mathcal{T}$. Since G satisfies the maximal condition, it has a maximal (X, a)-generated nilpotent subgroup in \mathcal{T}.

Claim 1. Let $U \in \mathcal{T}$. If $U^{a^{y}}=U$ for some $y \in X$, then $\left\langle U, a^{y}\right\rangle \in \mathcal{T}$.

Proof of Claim 1. Note that $U \triangleleft\left\langle U, a^{y}\right\rangle$. As U is (X, a)-generated and G satisfies the maximal condition, we may assume that $U=\left\langle a^{x_{1}}, a^{x_{2}}, \ldots, a^{x_{m}}\right\rangle$ where $x_{1}, x_{2}, \ldots, x_{m} \in X$. By Lemma 2.4.2, $a^{y} \in L(G, X)$. So there is a positive inte-
ger l such that $\left[y^{-1} x_{i, l+1} a^{y}\right]=1$ for $i=1,2, \ldots, m$. It is not hard to see that $U=\left\langle a^{-x_{1}}, a^{-x_{2}}, \ldots, a^{-x_{m}}\right\rangle$.

Now for $i=1,2, \ldots, m$, by Lemma 2.4.6, we have $\left[a^{-x_{i}}{ }_{l} a^{y}\right]=\left[y^{-1} x_{i, l+1} a^{y}\right]^{-y}=$

1. By Lemma 2.4.5, $\left\langle U, a^{y}\right\rangle$ is nilpotent, and therefore $\left\langle U, a^{y}\right\rangle \in \mathcal{T}$.

Case 1. G has only one maximal (X, a)-generated nilpotent subgroup in \mathcal{T}, say M. If $M=\langle a\rangle^{X}$, then $\langle a\rangle^{X}$ is nilpotent, and $a \in H P(G, X)$. Suppose $M \subsetneq\langle a\rangle^{X}$. Then there is a $y \in X$ with $a^{y} \notin M$. Note that by Lemma 2.4.3, $M^{a^{y}}$ is (X,a)-generated, and it is nilpotent. Since G satisfies the maximal condition, $M^{a^{y}}$ is contained in a maximal (X, a)-generated nilpotent subgroup. This means $M^{a^{y}} \subseteq M$, for G has only one maximal (X, a)-generated nilpotent subgroup. Similarly $M^{a^{-y}} \subseteq M$. Therefore $M^{a^{y}}=M$, and by Claim $1,\left\langle M, a^{y}\right\rangle \in \mathcal{T}$, but this contradicts the maximality of M. Hence $M=\langle a\rangle^{X}$.

Case 2. G has at least two maximal (X, a)-generated nilpotent subgroups in \mathcal{T}. We will show that this case cannot happen. Consider the following set

$$
\mathcal{I}=\left\{\left\langle U \cap V \cap\{a\}^{X}\right\rangle\right\},
$$

where U, V are distinct maximal (X, a)-generated nilpotent subgroups in \mathcal{T}. Since G satisfies the maximal condition, there is a maximal element $I=\left\langle U_{0} \cap V_{0} \cap\{a\}^{X}\right\rangle \in \mathcal{I}$, where U_{0}, V_{0} are distinct maximal (X, a)-generated nilpotent subgroups in \mathcal{T}. Let $W=\left\langle N_{U_{0}}(I) \cap\{a\}^{X}\right\rangle$. So W is also (X, a)-generated, and nilpotent (for W is a subgroup of the nilpotent group U_{0}).

Note that $I \neq U_{0}$, for otherwise $U_{0}=V_{0}$. So $I \subsetneq U_{0}$, and by Lemma 2.4.4, there is a $u \in X$ with $a^{u} \in U_{0} \backslash I$ and $a^{u} \in N_{G}(I)$. This means $I \subsetneq W$, as $a^{u} \in W$. Similarly $I \neq V_{0}$, and there is a $v \in X$ with $a^{v} \in V_{0} \backslash I$ and $a^{v} \in N_{G}(I)$. Note that
$a^{v} \notin U_{0}$ and $a^{u} \notin V_{0}$.

Claim 2. There is no $y \in X$ with $a^{y} \in N_{G}(W)$ and $a^{y} \notin U_{0}$.
Proof of Claim 2. Suppose the contrary. Then there is a $y \in X$ with $a^{y} \in N_{G}(W)$ and $a^{y} \notin U_{0}$. So $W \triangleleft\left\langle W, a^{y}\right\rangle$. By Claim $1,\left\langle W, a^{y}\right\rangle \in \mathcal{T}$. So it is contained in a maximal element $T \in \mathcal{T}$. Note that $T \neq U_{0}$, as $a^{y} \notin U_{0}$. It is not hard to see that $W \subseteq\left\langle U_{0} \cap T \cap\{a\}^{X}\right\rangle \in \mathcal{I}$. This means $I \subsetneq W \subseteq\left\langle U_{0} \cap T \cap\{a\}^{X}\right\rangle$, a contradiction to the maximality of I.

Now by Claim 2, $a^{v} \notin N_{G}(W)$. By Lemma 2.4.2, $a^{u} \in L(G, X)$. So there is a positive integer l such that $\left[u^{-1} v,{ }_{l+1} a^{u}\right]=1$. By Lemma 2.4.6, $\left[a^{-v}{ }_{, l} a^{u}\right]=1$. From this we deduce that there is a positive integer k such that $\left[a^{-v}{ }_{, k} a^{u}\right] \in N_{G}(W)$ and $\left[a^{-v}{ }_{, k-1} a^{u}\right] \notin N_{G}(W)$ (note that $k \geq 1$, as $a^{v} \notin N_{G}(W)$). Let $z=\left[a^{-v}{ }_{, k-1} a^{u}\right]$. Then $z \in N_{G}(I)$, and $a^{-u z} a^{u}=\left[z, a^{u}\right] \in N_{G}(W)$. Since $a^{u} \in W, a^{u z} \in N_{G}(W)$. By Lemma 2.4.3, $a^{u z} \in\{a\}^{X}$. So by Claim 2, we conclude that $a^{u z} \in U_{0}$. Since $z \in N_{G}(I)$ and $a^{u} \notin I, a^{u z} \notin I$.

Now $a^{u z} \in W^{z}$ implies that $I \subsetneq\left\langle U_{0} \cap W^{z} \cap\{a\}^{X}\right\rangle$. By Lemma 2.4.3, $W^{z} \in \mathcal{T}$. So W^{z} is contained in a maximal element P in \mathcal{T}. If $P \neq U_{0}$, then $\left\langle U_{0} \cap P \cap\{a\}^{X}\right\rangle \in \mathcal{I}$, and this contradicts the maximality of I. Hence $P=U_{0}$, and $W^{z} \subseteq U_{0}$. This means $\left(N_{U_{0}}(I) \cap\{a\}^{X}\right)^{z} \subseteq U_{0}$.

By Lemma 2.4.3 and the fact that $z \in N_{G}(I)$, we have $\left(N_{U_{0}}(I) \cap\{a\}^{X}\right)^{z} \subseteq U_{0} \cap$ $N_{G}(I) \cap\{a\}^{X}=N_{U_{0}}(I) \cap\{a\}^{X}$. Therefore $W^{z} \subseteq W$. By the choice of $z, W^{z} \subsetneq W$, but then we have an ascending chain of subgroups $W \subsetneq W^{z^{-1}} \subsetneq W^{z^{-2}} \subsetneq \cdots$, a contradiction. Hence Case 2 cannot happen.

Note that Main Theorem 2 is a generalization of a theorem of Baer which states that $L(G)=H P(G)=B(G)=\bar{L}(G)$ for any group G that satisfies the maximal condition (see [28, 12.3.7 on p. 360]).

Chapter 3

Relative Engel Elements II

3.1 A Brief Introduction

This chapter is motivated by the following two results, one by Gruenberg [15, Theorem 0] and the other by Wehrfritz [33, 4.4].

Theorem 1.4.3. [Gruenberg's Theorem] Let R be a commutative Noetherian ring with identity and A be a finitely generated R-module. If G is a subgroup of $\mathrm{Aut}_{R} A$, then $L(G)=H P(G)$ and $\bar{L}(G)=B(G)$.

Theorem 1.4.4. [Wehrfritz's Theorem] Let G be a subgroup of a finitary automorphisms group of a module over a commutative ring with identity. Then $L(G)=$ $H P(G)$ and $\bar{L}(G)=B(G)$.

Considering the work in Chapter 2, it is quite natural to ask whether similar results hold for relative left Engel elements. The answers are affirmative (see Main Theorem 3 and Main Theorem 4). We will also show that if X is a normal locally solvable subgroup of G, then $\operatorname{HP}(G, X)=L(G, X)$ (see Theorem 3.4.3).

The materials in this chapter have been published (see S. G. Quek, K. B. Wong, P. C. Wong, On left Engel elements of a group relative to subgroup of certain linear groups, J. Pure Appl. Algebra 217 (2013) 427-431).

3.2 A generalization of Gruenberg's Theorem

We shall need the following theorem.

Theorem 3.2.1. [15, Theorem 2] Let \mathfrak{X} be a class of groups. Suppose that
(i) \mathfrak{X} is closed with respect to formation of images, i.e., if $G \in \mathfrak{X}$, then $G / N \in \mathfrak{X}$ for all $N \triangleleft G$,
(ii) if $G \in \mathfrak{X}$, then every finitely generated subgroup of G lies in a finitely generated \mathfrak{X}-subgroup,
(iii) if $G \in \mathfrak{X}$ and G is finite, then G is solvable.

Let R be a commutative Noetherian ring with identity and A be a finitely generated R-module. If G is a subgroup of $\operatorname{Aut}_{R} A$ and $G \in \mathfrak{X}$, then G is solvable.

Let $\mathfrak{F}, \mathfrak{G}, \mathfrak{S}$ be the class of all finite, finitely generated and solvable groups, respectively. If we use the Hall's calculus of closure operations [16, Section 1.3], say Q (quotient group closure) and L (local closure), then conditions (i), (ii) and (iii) of Theorem 3.2.1 can be written as (i) $\mathrm{Q} \mathfrak{X}=\mathfrak{X}$; (ii) $\mathfrak{X} \leqslant \mathrm{L}(\mathfrak{G} \cap \mathfrak{X})$; (iii) $\mathfrak{X} \cap \mathfrak{F} \leqslant \mathfrak{S}$, respectively.

Lemma 3.2.2. If S and T are normal subgroups of a group G, then $\langle L(S, S \cap T)\rangle$ is a normal subgroup of G.

Proof. It is sufficient to show that $a^{g}=g^{-1} a g \in L(S, S \cap T)$ for all $a \in L(S, S \cap T)$ and $g \in G$. Let $x \in S \cap T$. Then $x^{g^{-1}}=g x g^{-1} \in S \cap T$ and there is a positive integer $n=n\left(a, x^{g^{-1}}\right)$ with $\left[x^{g^{-1}}{ }_{n} a\right]=1$. Note that $\left[x,_{n} a^{g}\right]=g^{-1}\left[x^{g^{-1}}{ }_{, n} a\right] g=1$. Since x was arbitrary, we conclude that $a^{g} \in L(S, S \cap T)$.

The following lemma is obvious.

Lemma 3.2.3. Let S and T be subgroups of a group G. If $S \subseteq T$, then $L(T) \cap S \subseteq$ $L(S)$ and $\bar{L}(T) \cap S \subseteq \bar{L}(S)$.

Theorem 3.2.4. The following hold for any group G.
(a) If $L(\langle L(G)\rangle)=H P(\langle L(G)\rangle)$, then $L(G)=H P(G)$.
(b) If $L(\langle L(G)\rangle)=H P(\langle L(G)\rangle)$ and $\bar{L}(\langle L(G)\rangle)=B(\langle L(G)\rangle)$, then $\bar{L}(G)=$ $B(G)$.

Proof. (a) By Theorem 2.3.2, it is sufficient to show that $L(G) \subseteq H P(G)$. By Lemma 3.2.3, $L(G)=L(G) \cap\langle L(G)\rangle \subseteq L(\langle L(G)\rangle)$. Since $H P(\langle L(G)\rangle)$ is a characteristic subgroup of $\langle L(G)\rangle$ and $\langle L(G)\rangle$ is normal in G (by taking $T=S=$ G in Lemma 3.2.2), we have $H P(\langle L(G)\rangle)$ is normal in G. Hence $L(\langle L(G)\rangle)=$ $H P(\langle L(G)\rangle) \subseteq H P(G)$ and $L(G) \subseteq H P(G)$.
(b) By Theorem 2.3.2, it is sufficient to show that $\bar{L}(G) \subseteq B(G)$. By part (a), $L(G)=H P(G)=\langle L(G)\rangle$. Therefore $\bar{L}(H P(G))=B(H P(G))$, and

$$
\bar{L}(G)=\bar{L}(G) \cap L(G)=\bar{L}(G) \cap H P(G) .
$$

It then follows from Lemma 3.2.3 that $\bar{L}(G) \subseteq \bar{L}(H P(G))=B(H P(G))$. So it is sufficient to show that $B(H P(G)) \subseteq B(G)$.

Let $g \in B(H P(G))$. Then $\langle g\rangle$ is subnormal in $\langle g\rangle^{H P(G)}$. Since $\langle g\rangle^{H P(G)} \triangleleft H P(G) \triangleleft$ G, we conclude that $\langle g\rangle$ is subnormal in G and thus in $\langle g\rangle^{G}$. So $g \in B(G)$ and $B(H P(G)) \subseteq B(G)$.

Corollary 3.2.5. Let G be a group. If $\langle L(G)\rangle$ is solvable, then
(a) $L(G)=\langle L(G)\rangle=H P(G)$,
(b) $\bar{L}(G)=B(G)$.

Proof. Since $\langle L(G)\rangle$ is solvable,

$$
L(\langle L(G)\rangle)=H P(\langle L(G)\rangle), \text { and } \bar{L}(\langle L(G)\rangle)=B(\langle L(G)\rangle),
$$

(see [14] and [28, 12.3.3 on p. 357]). The corollary then follows from Theorem 3.2.4.

Lemma 3.2.6. For any group $G,\langle L(G)\rangle=\langle L(\langle L(G)\rangle)\rangle$.

Proof. By Lemma 3.2.3, $L(G)=L(G) \cap\langle L(G)\rangle \subseteq\langle L(\langle L(G)\rangle)\rangle$. So $\langle L(G)\rangle \subseteq$ $\langle L(\langle L(G)\rangle)\rangle$. The lemma follows by noticing that $L(\langle L(G)\rangle) \subseteq\langle L(G)\rangle$.

Lemma 3.2.7. Let \mathfrak{X} be the class of groups that satisfies $G=\langle L(G)\rangle$. Then \mathfrak{X} satisfies conditions (i), (ii) and (iii) of Theorem 3.2.1.

Proof. Let $G \in \mathfrak{X}$. Then $G=\langle L(G)\rangle$.
(i) Let N be a normal subgroup of G. We need to show that $G / N=\langle L(G / N)\rangle$. This follows by noting that $a N \in L(G / N)$ for all $a \in L(G)$.
(ii) Let S be a finitely generated subgroup of G, say $S=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right\rangle$. For each i, let

$$
s_{i}=\prod_{1 \leq j \leq m_{i}} t_{i j}^{\epsilon_{i j}},
$$

where $\epsilon_{i j}= \pm 1$ and $t_{i j} \in L(G)$. Let T be the subgroup of G generated by all $t_{i j}$'s. We need to show that $T \in \mathfrak{X}$. Clearly $\langle L(T)\rangle \subseteq T$. By Lemma 3.2.3, $T=L(G) \cap T \subseteq L(T) \subseteq\langle L(T)\rangle$. Thus $T=\langle L(T)\rangle$ and $T \in \mathfrak{X}$.
(iii) We need to show that if G is finite, then G is solvable. By [28, 12.3.7 on p. 360], $L(G)=H P(G)$. So $G=H P(G)$ is nilpotent, and thus solvable.

Theorem 3.2.8. Let G be a group, R be a commutative Noetherian ring with identity and A be a finitely generated R-module. If $\langle L(G)\rangle$ is a subgroup of Aut $_{R} A$, then $L(G)=H P(G)$ and $\bar{L}(G)=B(G)$. Furthermore, $\langle L(G)\rangle$ is solvable.

Proof. Let \mathfrak{X} be defined as in Lemma 3.2.7. By Lemma 3.2.6, $\langle L(G)\rangle \in \mathfrak{X}$. It then follows from Lemma 3.2.7 and Theorem 3.2.1 that $\langle L(G)\rangle$ is solvable. Therefore $L(G)=H P(G)$ and $\bar{L}(G)=B(G)$ by Corollary 3.2.5.

Note that in Theorem 3.2.8, we have replaced the condition ' G is a subgroup of $\operatorname{Aut}_{R} A$ ' in Theorem 1.4.3 with ' $\langle L(G)\rangle$ is a subgroup of $\mathrm{Aut}_{R} A$ '.

3.3 Main Theorem 3

Let us recall the following definition.

Definition 1.4.5. Let H, K be subgroups of a group G and $H \triangleleft K$. Let \mathbb{N}_{0} be the set of non-negative integers. An element $b \in G$ is said to be (H, K)-centralizable if there is a sequence of normal subgroups of K, say $\left\{H_{i}\right\}_{i \in \mathbb{N}_{0}}$ such that
(a) $H_{0}=H$,
(b) $H_{i+1}=\left\{d \in K:[d, b] \in H_{i}\right\}$ for all $i \in \mathbb{N}_{0}$.

It is not hard to see that $H=H_{0} \triangleleft H_{1} \triangleleft H_{2} \triangleleft \cdots$. The sequence $\left\{H_{i}\right\}_{i \in \mathbb{N}_{0}}$ shall be called the (H, K)-centralized normal sequence of b.

A set $W \subseteq G$ is said to be (H, K)-centralizable if every element in W is (H, K) centralizable.

Lemma 3.3.1. Let S be a subgroup of a group G, and S^{\prime} be the commutator subgroup of S. Let $b \in N_{G}(S)=\left\{g \in G: S^{g}=S\right\}$. Then b is $\left(S^{\prime}, S\right)$-centralizable.

Proof. Let $H_{0}=S^{\prime}$, inductively let

$$
H_{i+1}=\left\{d \in S:[d, b] \in H_{i}\right\},
$$

for all $i \in \mathbb{N}_{0}$. Suppose $H_{i} \triangleleft S$. We shall show that $H_{i+1} \triangleleft S$. Let $d_{1}, d_{2} \in H_{i+1}$. Note that

$$
\left[d_{1} d_{2}^{-1}, b\right]=\left[d_{1}, b\right]^{d_{2}^{-1}}\left[d_{2}^{-1}, b\right]=\left[d_{1}, b\right]^{d_{2}^{-1}}\left(\left[d_{2}, b\right]^{d_{2}}\right)^{-1} \in H_{i} .
$$

So $d_{1} d_{2}^{-1} \in H_{i+1}$ and H_{i+1} is a subgroup of S. Since S / S^{\prime} is abelian and H_{i+1} / S^{\prime} is a subgroup of S / S^{\prime}, we conclude that $H_{i+1} \triangleleft S$. Hence $\left\{H_{i}\right\}_{i \in \mathbb{N}_{0}}$ is a $\left(S^{\prime}, S\right)$-centralized normal sequence of b.

Lemma 3.3.2. Let H, K be subgroups of a group G and $H \triangleleft K$. Let $b \in N_{G}(H)$ be (H, K)-centralizable. Then the following hold.
(a) If $b \in L(G, K)$ and $\langle b\rangle^{H}$ is locally nilpotent, then $\langle b\rangle^{K}$ is locally nilpotent.
(b) If $b \in \bar{L}(G, K)$, then $\langle b\rangle^{H}$ is subnormal in $\langle b\rangle^{K}$.

Proof. Let $\left\{H_{i}\right\}_{i \in \mathbb{N}_{0}}$ be the (H, K)-centralized normal sequence of b.
(a) First we show that $K=\bigcup_{i \in \mathbb{N}_{0}} H_{i}$. Clearly $\bigcup_{i \in \mathbb{N}_{0}} H_{i} \subseteq K$. Let $k \in K$. Then $[k, n b]=1$ for a positive integer n. Then $\left[k,_{n-1} b\right] \in H_{1}$, and then $\left[k,_{n-2} b\right] \in H_{2}$. So by continuing this way, we see that $k \in H_{n}$. Hence $K=\bigcup_{i \in \mathbb{N}_{0}} H_{i}$.

Note that

$$
\left\langle b, H_{0}\right\rangle \triangleleft\left\langle b, H_{1}\right\rangle \triangleleft\left\langle b, H_{2}\right\rangle \triangleleft \cdots .
$$

Since $b \in N_{G}\left(H_{0}\right)$, every element in $\left\langle b, H_{0}\right\rangle$ can be written in the form of $b^{l} h$ where $h \in H_{0}$ and l an integer. So $\langle b\rangle^{\left\langle b, H_{0}\right\rangle}=\langle b\rangle^{H_{0}}$ is locally nilpotent. By Lemma 2.3.1, $\langle b\rangle^{\left\langle b, H_{1}\right\rangle}$ is locally nilpotent. Inductively, $\langle b\rangle^{\left\langle b, H_{i}\right\rangle}$ is locally nilpotent for all $i \in \mathbb{N}_{0}$. Now

$$
\langle b\rangle^{\left\langle b, H_{0}\right\rangle} \subseteq\langle b\rangle^{\left\langle b, H_{1}\right\rangle} \subseteq\langle b\rangle^{\left\langle b, H_{2}\right\rangle} \subseteq \cdots
$$

is an ascending chain of locally nilpotent groups. Therefore $\langle b\rangle^{\langle b, K\rangle}=\bigcup_{i \in \mathbb{N}_{0}}\langle b\rangle^{\left\langle b, H_{i}\right\rangle}$ is locally nilpotent. This implies that $\langle b\rangle^{K}$ is locally nilpotent, for it is a subgroup of $\langle b\rangle^{\langle b, K\rangle}$.
(b) Since $b \in \bar{L}(G, K)$, there is a fixed positive integer n such that $\left[k,{ }_{n} b\right]=1$ for all $k \in K$. This implies that $K=H_{n}=H_{n+1}=\cdots$, and

$$
\left\langle b, H_{0}\right\rangle \triangleleft\left\langle b, H_{1}\right\rangle \triangleleft\left\langle b, H_{2}\right\rangle \triangleleft \cdots \triangleleft\left\langle b, H_{n}\right\rangle=\langle b, K\rangle .
$$

Therefore $\langle b\rangle^{H_{0}}=\langle b\rangle^{\left\langle b, H_{0}\right\rangle}$ is subnormal in $\langle b\rangle^{\langle b, K\rangle}$, and thus subnormal in $\langle b\rangle^{K}$.

The following theorem can be proved easily by using Lemmas 3.3.1 and 2.3.1, and by noting that every element in $L(G, S)$ is $\left(S^{(i+1)}, S^{(i)}\right)$-centralizable where $S^{(i)}$ is the i th derived subgroup of S.

Theorem 3.3.3. Let S be a normal solvable subgroup of a group G. Then
(a) $B(G, S)=\bar{L}(G, S)$,
(b) $H P(G, S)=L(G, S)$.

The following lemma is obvious and it is an analogue of Lemma 3.2.3 for relative Engel elements.

Lemma 3.3.4. Let S and T be subgroups of a group G. If $S \subseteq T$, then $L(G, T) \subseteq$ $L(G, S)$ and $\bar{L}(G, T) \subseteq \bar{L}(G, S)$.

Main Theorem 3. Let G be a group, R be a commutative Noetherian ring with identity and A be a finitely generated R-module. Let S be a normal subgroup of G such that $\langle L(S)\rangle$ is a subgroup of $\operatorname{Aut}_{R} A$. If $L(G, S)$ is $(H P(S), S)$-centralizable, then
(a) $B(G, S)=\bar{L}(G, S)$,
(b) $H P(G, S)=L(G, S)$.

Proof. By Theorem 3.2.8, $L(S)=H P(S)$ and $\bar{L}(S)=B(S)$. Furthermore, $H P(S)$ $=\langle L(S)\rangle$ is solvable and $H P(S) \triangleleft G$.
(a) By Theorem 2.3.2, it is sufficient to show that $\bar{L}(G, S) \subseteq B(G, S)$. By part (a) of Main Theorem 1, $B(G, H P(S))=\bar{L}(G, H P(S))$. Let $b \in \bar{L}(G, S)$. Then $b \in \bar{L}(G, H P(S))$ by Lemma 3.3.4. So $b \in B(G, H P(S))$, i.e., $\langle b\rangle$ is subnormal in $\langle b\rangle^{H P(S)}$. By part (b) of Lemma 2.3.1, $\langle b\rangle^{H P(S)}$ is subnormal in $\langle b\rangle^{S}$. Hence $\langle b\rangle$ is subnormal in $\langle b\rangle^{S}$, and $\bar{L}(G, S) \subseteq B(G, S)$.
(b) By Theorem 2.3.2, it is sufficient to show that $L(G, S) \subseteq H P(G, S)$. By part (b) of Main Theorem 1, $H P(G, H P(S))=L(G, H P(S))$. Let $b \in L(G, S)$. Then $b \in L(G, H P(S))$ by Lemma 3.3.4. So $b \in H P(G, H P(S))$, i.e., $\langle b\rangle^{H P(S)}$ is locally nilpotent. By part (a) of Lemma 2.3.1, $\langle b\rangle^{S}$ is locally nilpotent, and thus $b \in$ $H P(G, S)$. Hence $L(G, S) \subseteq H P(G, S)$.

We note here that when $S=G$ in Main Theorem 3, we have $L(G)=L(G, G)=$ $H P(G)$. Let $H_{0}=H P(G)$ and $H_{i}=G$ for all $i \geq 1$. If $b \in L(G)$, then $\left\{H_{i}\right\}_{i \in \mathbb{N}_{0}}$ is the $(H P(G), G)$-centralized normal sequence of b. So the condition $L(G)$ is ($H P(G), G)$-centralizable is redundant. Therefore Main Theorem 3 is a generalization of Theorem 3.2.8, and thus a generalization of Theorem 1.4.3.

3.4 Main Theorem 4

Theorem 3.4.1. Let G be a group, R be a commutative ring with identity and A be an R-module. If $\langle L(G)\rangle$ is a subgroup of $F \operatorname{Aut}_{R} A$, then $L(G)=H P(G)$ and $\bar{L}(G)=B(G)$.

Proof. By Theorem 1.4.4, $L(\langle L(G)\rangle)=H P(\langle L(G)\rangle)$ and $\bar{L}(\langle L(G)\rangle)=B(\langle L(G)\rangle)$. Therefore $L(G)=H P(G)$ and $\bar{L}(G)=B(G)$ by Theorem 3.2.4.

Note that in Theorem 3.4.1, we have replaced the condition ' G is a subgroup of $F \operatorname{Aut}_{R} A$ ' in Theorem 1.4.4 with ' $\langle L(G)\rangle$ is a subgroup of $F \operatorname{Aut}_{R} A$ '.

Lemma 3.4.2. [28, Exercise 12.3 .6 on p. 362] Let x, a be two elements of a group such that $\left[x_{n} a\right]=1$ for some positive integer n. Then $\langle x\rangle^{\langle a\rangle}$ is finitely generated. In fact,

$$
\langle x\rangle^{\langle a\rangle}=\left\langle x,[x, a],\left[x,,_{2} a\right], \ldots,\left[x,{ }_{n-1} a\right]\right\rangle .
$$

Theorem 3.4.3. Let S be a normal locally solvable subgroup of a group G. Then $H P(G, S)=L(G, S)$.

Proof. By Theorem 2.3.2, it is sufficient to show that $L(G, S) \subseteq H P(G, S)$. Let $a \in L(G, S)$. We need to show that $\langle a\rangle^{S}$ is locally nilpotent. Let K be a finitely
generated subgroup of $\langle a\rangle^{S}$. Then $K=\left\langle k_{1}, \ldots, k_{m}\right\rangle$, where

$$
k_{i}=\prod_{j=1}^{l_{i}} s_{i j}^{-1} a^{z_{i j}} s_{i j}
$$

$s_{i j} \in S$ and $z_{i j}$ is an integer.
Let T be the subgroup generated by all $\left\langle s_{i j}\right\rangle^{\langle a\rangle}$, i.e.,

$$
T=\left\langle\left\{\left\langle s_{i j}\right\rangle^{\langle a\rangle}: \text { for all } i, j\right\}\right\rangle .
$$

Since S is normal in G, T is a subgroup of S. Furthermore, by Lemma 3.4.2, T is finitely generated. So T is solvable.

Let the derived length of T be d. Note that $a \in N_{G}(T)$. Since the i th derived subgroup $T^{(i)}$ is a characteristic subgroup of T, we have $a \in N_{G}\left(T^{(i)}\right)$. Therefore $T^{(i)}$ is a normal subgroup of $\langle T, a\rangle$. By Lemma 3.3.4, $a \in L\left(G, T^{(i)}\right)$, and by Lemma 3.3.1, a is $\left(T^{(i+1)}, T^{(i)}\right)$-centralizable. Now $\langle a\rangle=\langle a\rangle^{T^{(d)}}$ is abelian, and thus locally nilpotent. So, by part (a) of Lemma 2.3.1, $\langle a\rangle^{T^{(d-1)}}$ is locally nilpotent. By applying Lemma 2.3.1 repeatedly, we see that $\langle a\rangle^{T}$ is locally nilpotent. Since K is a subgroup of $\langle a\rangle^{T}, K$ is nilpotent. Hence $\langle a\rangle^{S}$ is locally nilpotent, and $H P(G, S)=L(G, S)$.

Main Theorem 4. Let G be a group, R be a commutative ring with identity and A be an R-module. Let S be a normal subgroup of G such that $\langle L(S)\rangle$ is a subgroup of $F \mathrm{Aut}_{R} A$. If $L(G, S)$ is $(H P(S), S)$-centralizable, then $H P(G, S)=L(G, S)$.

Proof. By Theorem 2.3.2, it is sufficient to show that $L(G, S) \subseteq H P(G, S)$. Note that $H P(S)$ is a normal locally solvable subgroup of G. By Theorem 3.4.3, $H P(G, H P(S))=L(G, H P(S))$. Let $b \in L(G, S)$. Then $b \in L(G, H P(S))$ by

Lemma 3.3.4. So $b \in H P(G, H P(S))$, i.e., $\langle b\rangle^{H P(S)}$ is locally nilpotent. By part (a) of Lemma 2.3.1, $\langle b\rangle^{S}$ is locally nilpotent, and thus $b \in H P(G, S)$. Hence $L(G, S) \subseteq H P(G, S)$.

We note here that when $S=G$ in Main Theorem 4, we have $L(G)=L(G, G)=$ $H P(G)$. Furthermore, $L(G)$ is $(H P(G), G)$-centralizable. Therefore Main Theorem 4 is a generalization of Theorem 3.4.1, and thus a generalization of Theorem 1.4.4. However we do not know whether $\bar{L}(G, S)=B(G, S)$ or not, under the hypothesis of Theorem 3.4.3 and Main Theorem 4.

Finally we would like to refer the reader to Abdollahi [1], Abdollahi and Khosravi [2], Crosby and Traustason [9, 10], and Newell [27], for some recent results on left and right Engel elements. It is natural to ask whether similar results hold for relative left and right Engel elements.

Chapter 4

Non-Engel Elements

4.1 A Brief Introduction

Note that every finite group G satisfies a law $[x, r y]=[x, s y]$ for some positive integers $r<s$. The minimal value of r is called the Engel depth of G (see $[5,6]$). So, given any non-left Engel element $g \in G$, there exists a $h \in G$ and a positive integer n such that $h=[h, n g]$. However we do not know whether $g=[g, n h$ or not. This motivates us to propose the following problem.

Problem 4.1.1. Let G be a finite group. Given any positive integer n, does there exist $h, g \in G$ such that $h=\left[h,_{n} g\right]$ and $g=\left[g,_{n} h\right]$?

Note that when $n=1$, we have $h=1=g$. So we shall only consider $n \geq 2$. Since every finite group can be embedded into a Symmetric group, we may first consider the following problem.

Problem 4.1.2. Let $[l]=\{1,2, \ldots, l\}$ and S_{l} be the symmetric group on $[l], l \geq 2$. Given any positive integer $n \geq 2$, does there exist $\alpha, \beta \in S_{l}$ such that $\beta=\left[\beta,{ }_{n} \alpha\right]$ and $\alpha=\left[\alpha,{ }_{n} \beta\right]$?

Let us recall the following definition.

Definition 1.5.1. Let G be a group and $h, g \in G$. The 2-tuple (h, g) is said to be an n-Engel pair, $n \geq 2$, if $h=\left[h,_{n} g\right], g=\left[g,_{n} h\right]$ and $h \neq 1$.

Now consider the following elements in S_{40} :

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right), \\
& \beta_{1}=\left(\begin{array}{lllll}
1 & 5 & 2 & 4 & 3
\end{array}\right), \\
& u_{1}=\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}\right), \\
& u_{2}=\left(\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}\right), \\
& u_{3}=\left(\begin{array}{llllllllll}
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30
\end{array}\right), \\
& u_{4}=\left(\begin{array}{llllllllll}
31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40
\end{array}\right), \\
& v_{1}=\left(\begin{array}{llllllllll}
1 & 8 & 11 & 21 & 18 & 6 & 3 & 16 & 26 & 13
\end{array}\right), \\
& v_{2}=\left(\begin{array}{llllllllll}
2 & 31 & 30 & 27 & 39 & 7 & 36 & 25 & 22 & 34
\end{array}\right), \\
& v_{3}=\left(\begin{array}{llllllllll}
4 & 37 & 12 & 33 & 5 & 9 & 32 & 17 & 38 & 10
\end{array}\right), \\
& v_{4}=\left(\begin{array}{llllllllll}
14 & 40 & 20 & 24 & 28 & 19 & 35 & 15 & 29 & 23
\end{array}\right), \\
& \alpha_{2}=u_{1} u_{2} u_{3} u_{4}, \\
& \beta_{2}=v_{1} v_{2} v_{3} v_{4} .
\end{aligned}
$$

Note that $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are 5-Engel pairs. Let H_{1} and H_{2} be the subgroups generated by $\left\{\alpha_{1}, \beta_{1}\right\}$ and $\left\{\alpha_{2}, \beta_{2}\right\}$, respectively. Then H_{1} has 60 elements and H_{2} has 120 elements. Since H_{1} is also a subgroup of S_{5} and has 60 elements (thus of
index 2), it must be the alternating subgroup A_{5}. Note that α_{2}^{5} is in the centre of H_{2} and $H_{2} /\left\langle\alpha_{2}^{5}\right\rangle \cong H_{1}=A_{5}$. Therefore H_{2} is the central extension of the cyclic group of order 2 by A_{5}.

It can be verified that $\alpha_{i} \beta_{i} \alpha_{i}=\beta_{i} \alpha_{i} \beta_{i}$ for $i=1,2$. This motivates us to consider n-Engel pairs with such property. In other words, given any 5-Engel pair (α, β) with $\alpha \beta \alpha=\beta \alpha \beta$, we would like to know about the structure of the the subgroups generated by $\{\alpha, \beta\}$.

In this chapter, we will show that if (h, g) is an n-Engel pair and $h g h=g h g$, then n must be a multiple of 5 . Furthermore, the subgroup generated by $\{h, g\}$ is either isomorphic to A_{5} or H_{2} (see Main Theorem 5). We will also show that if (h, g) is an n-Engel pair, $h g^{t} h=g h g$, and $g h^{t} g=h g h$, then n and $t-1$ must be a multiple of 5, and $h g h=g h g$ (see Theorem 4.4.2).

The main results in this chapter have been published (see S. G. Quek, K. B. Wong, P. C. Wong, On certain pairs of non-Engel elements in finite groups, J. Algebra Appl. 12 (2013), \#1250213).

4.2 Equivalent forms

In this section, we shall assume x, y are elements in a group G.

Lemma 4.2.1. Let k be the smallest positive integer such that (x, y) is a k-Engel pair. If (x, y) is an n-Engel pair, then n is a multiple of k.

Proof. By the Division Algorithm, $n=q k+r$ for some positive integers q, r and $0 \leq r<k$. If $r \neq 0$, then $x=\left[x,{ }_{n} y\right]=[x, q k+r y]=[x, r y]$ and $y=\left[y,{ }_{r} x\right]$. If $r=1$, then $y=1=x$, a contradiction. So $r \geq 2$, and (x, y) is an r-Engel pair, again a
contradiction, for $r<k$. Hence $r=0$ and n is a multiple of k.

The following corollary follows from Lemma 4.2.1.

Corollary 4.2.2. Let k be the smallest positive integer such that (x, y) is a k-Engel pair. If (x, y) is a p-Engel pair and p is a prime, then $p=k$.

Note that the following are two equivalent variants of $y x y=x y x$.

$$
\begin{align*}
x^{y} & =y^{x^{-1}} \tag{4.2.1}\\
{[x, y] } & =y x^{-1} . \tag{4.2.2}
\end{align*}
$$

From these, we get the following useful consequences.

$$
\begin{gather*}
x^{y}=x y x^{-1}=y\left(x^{y}\right) x^{-1} \tag{4.2.3}\\
{[x, 2 y]=\left[x^{-1}, y\right]=y^{-x^{-1}} y=x^{-y} y=\left(x^{-1} y\right)^{y}=\left(y x^{-1}\right)^{y^{2}}=[x, y]^{y^{2}} .} \tag{4.2.4}
\end{gather*}
$$

By induction on n and (4.2.4), we derive that

$$
\begin{equation*}
\left[x,_{n+1} y\right]=[x, y]^{y^{2 n}} . \tag{4.2.5}
\end{equation*}
$$

All consequences have a variant where we swap x and y.

Lemma 4.2.3. If $x=[x, n y], y=\left[y,{ }_{n} x\right]$, and $y x y=x y x$, then $x^{y^{2}}=y x^{-1}$ and $y^{x^{2}}=x y^{-1}$.

Proof. By (4.2.5), $[x, y]=\left[x,_{n+1} y\right]=[x, y]^{y^{2 n}}$. It then follows from (4.2.2) that $x^{-1}=\left(x^{-1}\right)^{y^{2 n}}$. So, $y^{2 n}$ commutes with x. Then by using (4.2.4),

$$
x^{y^{2}}=[x, n y]^{y^{2}}=\left[[x, y]^{y^{2}}{ }_{n-1} y\right]=\left[x,_{n+1} y\right]=[x, y]^{y^{2 n}}=[x, y]=y x^{-1} .
$$

By symmetry, $y^{x^{2}}=x y^{-1}$.

Lemma 4.2.4.

(a) If $x^{y^{2}}=y x^{-1}$, then $y^{5} x=x y^{5}$.
(b) If $x^{y^{2}}=y x^{-1}, y^{x^{2}}=x y^{-1}$ and $y x y=x y x$, then $y^{5}=x^{5}, y^{10}=x^{10}=1$, $x=[x, 5 y]$, and $y=[y, 5 x]$.

Proof. (a) It follows from $x^{y^{4}}=y\left(x^{y^{2}}\right)^{-1}=y x y^{-1}=x^{y^{-1}}$.
(b) By using (4.2.3) repeatedly, we obtain $x^{y}=y^{5}\left(x^{y}\right) x^{-5}$. It then follows from part (a) of this lemma that $y^{5}=x^{5}$. Therefore x^{5} commutes with y and $x^{5}=\left(x^{y^{2}}\right)^{5}=$ $\left(y x^{-1}\right)^{5}$. By symmetry, $y^{5}=\left(x y^{-1}\right)^{5}$. So, $x^{5}=y^{-5}=x^{-5}$, and thus $y^{10}=x^{10}=1$. By (4.2.2), $x^{y^{2}}=y x^{-1}=[x, y]$. Then by (4.2.5), $[x, 5 y]=[x, y]^{y^{8}}=x^{y^{10}}=x$. By symmetry, $y=[y, 5 x]$.

Theorem 4.2.5. Let n be a positive integer and

$$
G_{n}=\left\langle x, y ; x=\left[x,{ }_{n} y\right], y=\left[y,{ }_{n} x\right], y x y=x y x\right\rangle .
$$

Then G_{n} is the trivial group if n is not a multiple of 5. Furthermore, for all positive integers l,

$$
G_{5 l} \cong G_{5} \cong\left\langle x, y ; x y^{2} x=y^{3}, y x^{2} y=x^{3}, y x y=x y x\right\rangle
$$

Proof. Suppose G_{n} is not the trivial group. Then (x, y) is an n-Engel pair. By Lemma 4.2.3 and part (b) of Lemma 4.2.4, (x, y) is a 5 -Engel pair. Since 5 is a prime, it follows from Lemma 4.2.1 and Corollary 4.2.2 that n is a multiple of 5 .

Note that $x^{y^{2}}=y x^{-1}$ and $y^{x^{2}}=x y^{-1}$ are equivalent to $x y^{2} x=y^{3}$ and $y x^{2} y=x^{3}$,
respectively. By Lemma 4.2.3 and part (b) of Lemma 4.2.4, we deduce that

$$
\begin{aligned}
& G_{5 l}=\langle x, y ; x=[x, 5 l y], y=[y, 5 l x], y x y=x y x\rangle \\
& =\left\langle x, y ; x=[x, 5 l y], y=\left[y,{ }_{5 l} x\right], y x y=x y x, x y^{2} x=y^{3}, y x^{2} y=x^{3}\right\rangle \\
& =\left\langle x, y ; x=\left[x, 5_{l l} y\right], y=[y, 5 l x], y x y=x y x, x y^{2} x=y^{3},\right. \\
& \left.y x^{2} y=x^{3}, x=[x, 5 y], y=\left[y,{ }_{5} x\right]\right\rangle \\
& =\langle x, y ; x=[x, 5 y], y=[y, 5 x], y x y=x y x\rangle \\
& =\left\langle x, y ; x y^{2} x=y^{3}, y x^{2} y=x^{3}, y x y=x y x\right\rangle .
\end{aligned}
$$

4.3 Main Theorem 5

Let A be a non-empty set. This set A is called an alphabet and the elements of A are called letters. We shall denote the free semigroup on A by A^{+}. The elements of A^{+}are called words. Given a word $W \in A^{+}$, we shall denote its length by $\|W\|$, defined as the number of letters in W.

A rewriting system R over A is a set of rules $U \rightarrow V$, which are elements of $A^{+} \times A^{+}$. A word $W_{1} \in A^{+}$is said to be rewritten to another word $W_{2} \in A^{+}$by a one-step reduction induced by R, if $W_{1}=Z_{1} X Z_{2}$ and $W_{2}=Z_{1} Y Z_{2}$ for a rule $X \rightarrow Y$ in R. In this situation we write $W_{1} \rightarrow_{R} W_{2}$. The reflexive transitive closure and the reflexive symmetric transitive closure of \rightarrow_{R} are denoted by \rightarrow_{R}^{*} and \leftrightarrow_{R}^{*}, respectively. The relation \leftrightarrow_{R}^{*} is defined to be the congruence on A^{+}generated by R and it defines the quotient semigroup $M=A^{+} / \leftrightarrow_{R}^{*}$. M is said to be presented by the semigroup presentation $[A ; R]$. If both A and R are finite, we say the semigroup presentation is finitely presented. For $U \in A^{+},[U]_{R}$ shall denote the class of U
modulo \leftrightarrow_{R}^{*}.

A word $W \in A^{+}$is called an irreducible word if W does not contain any subword U in which $U \rightarrow V$ is a rule in R.

We say R is Noetherian if there is no infinite reduction sequence,

$$
W_{1} \rightarrow_{R} W_{2} \rightarrow_{R} W_{3} \rightarrow_{R} \cdots
$$

R is said to be confluent if whenever $U \rightarrow_{R}^{*} V$ and $U \rightarrow_{R}^{*} W$, then there is an $X \in A^{+}$such that $V \rightarrow_{R}^{*} X$ and $W \rightarrow_{R}^{*} X$. If R is both Noetherian and confluent, we say that R is a complete rewriting system (see $[8,11,12,20,19,25,34]$).

Let $A=\left\{x, x^{-1}, y, y^{-1}, e\right\}$ and R be the following rules:

$$
\begin{array}{rrr}
e e \rightarrow e, & e x \rightarrow x, & x e \rightarrow x, \\
e y \rightarrow y, & y e \rightarrow y, & e x^{-1} \rightarrow x^{-1}, \\
x^{-1} e \rightarrow x^{-1}, & y^{-1} e \rightarrow y^{-1}, & e y^{-1} \rightarrow y^{-1}, \\
x x^{-1} \rightarrow e, & x^{-1} x \rightarrow e, & y y^{-1} \rightarrow e, \\
y^{-1} y \rightarrow e, & y x y \rightarrow x y x, & x y^{2} x \rightarrow y^{3}, \\
y x^{2} y \rightarrow x^{3} . &
\end{array}
$$

By using the well known Knuth-Bendix rewriting completion algorithm (see [4, Chapter 7]) or by GAP [13], one can find a complete rewriting system R^{c} such that

$$
M=[A ; R]=\left[A ; R^{c}\right] .
$$

Note that $M=[A ; R]$ is a group and by Theorem 4.2.5,

$$
M \cong\left\langle x, y ; x y^{2} x=y^{3}, y x^{2} y=x^{3}, y x y=x y x\right\rangle \cong G_{5} .
$$

Recall that H_{2} is the subgroup of S_{40}, generated by α_{2}, β_{2}, and it has exactly 120 elements. By Theorem 4.2.5, the mapping $\psi: G_{5} \rightarrow H_{2}$ defined by $\psi(x)=\alpha_{2}$ and $\psi(y)=\beta_{2}$ is an epimorphism. For each $u \in H_{2}$, there exists a $v \in G_{5}$ such that $\psi(v)=u$. By using the complete rewriting system R^{c}, we may assume that v is irreducible. Therefore we have 120 irreducible words. Again, by using the complete rewriting system R^{c}, it can be shown that all these words are distinct in G_{5}. Let T be the set of all these words. Then $x T=T=y T$. Therefore T is a subgroup of G_{5}. Since G_{5} is generated by x, y, we conclude that $T=G_{5}$. Thus $G_{5} \cong H_{2}$, via ψ. Recall that A_{5} is the subgroup of S_{40}, generated by α_{1}, β_{1}. Since $H_{2} /\left\langle\alpha_{2}^{5}\right\rangle \cong A_{5}$, we conclude that $G_{5} /\left\langle x^{5}\right\rangle \cong A_{5}$. Hence we have proved part (a) of the following theorem.

Main Theorem 5.

(a) $G_{5} \cong\left\langle x, y ; x y^{2} x=y^{3}, y x^{2} y=x^{3}, y x y=x y x\right\rangle \cong H_{2}$

$$
G_{5} /\left\langle x^{5}\right\rangle \cong\left\langle x, y ; x y^{2} x=y^{3}, y x^{2} y=x^{3}, y x y=x y x, x^{5}\right\rangle \cong A_{5} .
$$

(b) If N is a non-trivial proper normal subgroup of G_{5}, then $N=\left\langle x^{5}\right\rangle=Z\left(G_{5}\right)$, where $Z\left(G_{5}\right)$ is the centre of G_{5}.
(c) Let G be a group and $h, g \in G$. If (h, g) is an n-Engel pair and hgh $=g h g$, then n must be a multiple of 5. Furthermore, the subgroup generated by $\{h, g\}$ is isomorphic to A_{5} if the order of h is 5 , and is isomorphic to H_{2} if the order of h is 10 .

Proof. (b) By part (a) of Lemma 4.2.4, $x^{5} \in Z\left(G_{5}\right)$. Since $N\left\langle x^{5}\right\rangle /\left\langle x^{5}\right\rangle$ is normal in $G_{5} /\left\langle x^{5}\right\rangle \cong A_{5}$ and A_{5} is simple, either $N\left\langle x^{5}\right\rangle=G_{5}$ or $N\left\langle x^{5}\right\rangle=\left\langle x^{5}\right\rangle$. Suppose the
latter holds. Then $|N|\left|\left\langle x^{5}\right\rangle\right| /\left|N \cap\left\langle x^{5}\right\rangle\right|=\left|N\left\langle x^{5}\right\rangle\right|=\left|\left\langle x^{5}\right\rangle\right|$ and $|N|=\left|N \cap\left\langle x^{5}\right\rangle\right|$. Thus $N=\left\langle x^{5}\right\rangle$, for $\left|\left\langle x^{5}\right\rangle\right|=2$.

Suppose the former holds. Then $|N|\left|\left\langle x^{5}\right\rangle\right| /\left|N \cap\left\langle x^{5}\right\rangle\right|=\left|G_{5}\right|=\left|H_{2}\right|=120=$ $2^{3} \cdot 3 \cdot 5$. If $\left|N \cap\left\langle x^{5}\right\rangle\right| \neq 1$, then $x^{5} \in N$ and $N=G_{5}$. So, we may assume $\left|N \cap\left\langle x^{5}\right\rangle\right|=1$. This implies that $|N|=60$. Since 5 divides $|N|, N$ contains all the Sylow 5-subgroups of G_{5}. In particular, $x^{2} \in N$. Since $y=x^{-1} y^{-1} x y x$, we have $y^{2}=x^{-1} y^{-1} x^{2} y x \in N$ and $\left(x^{2} y^{2}\right)^{2} \in N$. Note that $\left(x^{2} y^{2}\right)^{2}=x^{2} y^{2} x^{2} y^{2}=x^{2} y x^{3} y$. So $x^{2} y x^{3} y\left(y^{4}\right) \in N$. By part (b) of Lemma 4.2.4, $x^{2} y x^{-2}=x^{2} y x^{8}=x^{2} y x^{3} y^{5} \in N$. Hence $y \in N$ and $N=G_{5}$. This completes the proof of part (b) of this theorem.
(c) Let U be the subgroup generated by h, g, and G_{n} be defined as in Theorem 4.2.5. Then $\phi: G_{n} \rightarrow U$ defined by $\phi(x)=h$ and $\phi(y)=g$ is an epimorphism.

If n is a not a multiple of 5 , then by Theorem 4.2.5, G_{n} is the trivial group. This implies that U is the trivial group and $h=g=1$, a contradiction, for (h, g) is an n-Engel pair. Hence n must be a multiple of 5 .

Let $n=5 l$. By Theorem 4.2.5 and part (b) of this theorem, we conclude that $U \cong G_{5} \cong H_{2}$ if h is of order 10 , or $U \cong G_{5} /\left\langle x^{5}\right\rangle \cong H_{1}$ if h is of order 5.

4.4 A Generalization

In this section, we shall assume x, y are elements in a group G.

Lemma 4.4.1. Suppose $x=\left[x,{ }_{n} y\right]$ and $y=\left[y,_{n} x\right]$. If $y x^{t} y=x y x$ and $x y^{t} x=y x y$, then $x y x=y x y$.

Proof. Note that the following are two equivalent variants of $x y^{t} x=y x y$.

$$
\begin{gather*}
y^{x^{-1}}=y^{-1} x y^{t} \tag{4.4.1}\\
{[x, y]=y x^{-1} y^{1-t} .} \tag{4.4.2}
\end{gather*}
$$

From these, we obtain

$$
\left.\begin{array}{rl}
{[x, 2} & y]
\end{array}\right)=\left[y x^{-1} y^{1-t}, y\right]=\left[x^{-1}, y\right]^{y^{1-t}}=\left(y^{-x^{-1}} y\right)^{y^{1-t}} .
$$

By induction on n and (4.4.3), we derive that

$$
\begin{equation*}
\left[x,{ }_{n+1} y\right]=[x, y]^{y^{2 n}} . \tag{4.4.4}
\end{equation*}
$$

All identities have a variant where we swap x and y.
By (4.4.4), $[x, y]=\left[x,_{n+1} y\right]=[x, y]^{y^{2 n}}$. It then follows from (4.4.2) that $x^{-1}=$ $\left(x^{-1}\right)^{y^{2 n}}$. So, $y^{2 n}$ commutes with x. Then by using (4.4.3),
$y^{-2} x y^{2}=x^{y^{2}}=\left[x,_{n} y\right]^{y^{2}}=\left[[x, y]^{y^{2}}{ }_{, n-1} y\right]=\left[x,_{n+1} y\right]=[x, y]^{y^{2 n}}=[x, y]=y x^{-1} y^{1-t}$, which is equivalent to $x^{-1} y^{-1} x=y^{-3} x y^{t} x$. Therefore $x^{-1} y^{-1} x=y^{-3}(y x y)=y^{-2} x y$, i.e., $x y^{-2} x=y^{-1} x y^{-1}$.

By symmetry, $y x^{-2} y=x^{-1} y x^{-1}$, and multiplying these two identities together gives

$$
x y^{-1} x^{-1}=\left(x y^{-2} x\right)\left(x^{-1} y x^{-1}\right)=\left(y^{-1} x y^{-1}\right)\left(y x^{-2} y\right)=y^{-1} x^{-1} y,
$$

which is equivalent to $x y x=y x y$.

Theorem 4.4.2. Let

$$
G_{n, t}=\left\langle x, y ; x=\left[x,{ }_{n} y\right], y=\left[y,{ }_{n} x\right], y x y=x y^{t} x, x y x=y x^{t} y\right\rangle .
$$

Then
(a) $G_{n, t}$ is the trivial group if n or $t-1$ is not a multiple of 5 .
(b) If $t \equiv 1 \bmod 5$, then

$$
G_{5 l, t} \cong\left\{\begin{array}{lll}
A_{5} & \text { if } t \equiv 6 & \bmod 10 \\
H_{2} & \text { if } t \equiv 1 & \bmod 10
\end{array}\right.
$$

(c) Let G be a group and $h, g \in G$. If (h, g) is an n-Engel pair, $h g^{t} h=g h g$, and $g h^{t} g=h g h$, then n and $t-1$ must be a multiple of 5. Furthermore, $h g h=g h g$.

Proof. By Lemma 4.4.1,

$$
G_{n, t}=\left\langle x, y ; x=\left[x,{ }_{n} y\right], y=\left[y,_{n} x\right], y x y=x y^{t} x, y x^{t} y=x y x, y x y=x y x\right\rangle .
$$

(a) Let G_{n} be defined as in Theorem 4.2.5. Then $G_{n, t}$ is an epimorphic image of G_{n}. If n is not a multiple of 5 , then G_{n} and thus $G_{n, t}$ is the trivial group.

Suppose $\operatorname{gcd}(5, t-1)=1$. Then there exist integers z_{1}, z_{2} such that $5 z_{1}+(t-$ 1) $z_{2}=1$. From $y x y=x y x$ and $x y^{t} x=y x y$, we have $y^{t-1}=1$. By Lemma 4.2.3 and part (a) of Lemma 4.2.4, $y^{5} x=x y^{5}$. This implies that $y=y^{5 z_{1}}$ commutes with x, and thus $y=\left[y,{ }_{n} x\right]=1, x=\left[x,{ }_{n} y\right]=1$, and $G_{n, t}$ is the trivial group.
(b) Note that $y^{t-1}=1=x^{t-1}$. Therefore

$$
\begin{aligned}
& G_{5 l, t}=\left\langle x, y ; x=\left[x,{ }_{5 l} y\right], y=\left[y,{ }_{5 l} x\right], y x y=x y^{t} x, y x^{t} y=x y x, y x y=x y x\right\rangle \\
&=\langle x, y ; x=[x, 5 l y], y=[y, 5 l \\
&\left.x], y x y=x y x, x^{t-1}, y^{t-1}\right\rangle .
\end{aligned}
$$

Furthermore, by Lemma 4.2.3 and part (b) of Lemma 4.2.4, $x^{10}=1=y^{10}$.

Now, either $t \equiv 1 \bmod 10$ or $t \equiv 6 \bmod 10$. Suppose $t \equiv 1 \bmod 10$. By Theorem 4.2.5 and part (a) of Main Theorem 5,

$$
\begin{aligned}
G_{5 l, t} & =\langle x, y ; x=[x, 5 l \\
& y], y=[y, 5 l \\
& =\left\langle x, y ; x=\left[x,{ }_{5 l} y\right], y=[y, 5 l\right. \\
& \cong H_{2} .
\end{aligned}
$$

Suppose $t \equiv 6 \bmod 10$. Then $x^{t-1}=x^{5}=1=y^{5}=y^{t-1}$. By Lemma 4.2.3 and part (b) of Lemma 4.2.4, $y^{5}=x^{5}$. So, by Theorem 4.2.5 and part (a) of Main Theorem 5,

$$
\begin{aligned}
G_{5 l, t} & =\langle x, y ; x=[x, 5 l y], y=[y, 5 l \\
& \left.x], y x y=x y x, x^{5}, y^{5}\right\rangle \\
& =\langle x, y ; x=[x, 5 l \\
& \left.\cong A_{5}\right], y=[y, 5 l
\end{aligned}
$$

(c) Let U be the subgroup generated by h, g. Then $\phi: G_{n, t} \rightarrow U$ defined by $\phi(x)=h$ and $\phi(y)=g$ is an epimorphism. Since U cannot be the the trivial group, by part (a) of this theorem, n and $t-1$ must be a multiple of 5 . The identity $h g h=g h g$ follows from Lemma 4.4.1.

Remark 1. Heineken [18, Theorem 1] showed that $S L(2,5)$ is generated by a 5 Engel pair. In this chapter, we give a presentation of $S L(2,5)$ in terms of a 5 -Engel pair. We also characterize all groups generated by this Engel pair. The results in this chapter are therefore an extension of Theorem 1 in [18].

Chapter 5

Engel Pairs I

5.1 A Brief Introduction

Let $S L(n, q)$ and $P S L(n, q)$ be the special linear group and projective linear group, respectively, of order n over the field of order q. It was shown in Main Theorem 5 that if (h, g) is an n-Engel pair and $h g h=g h g$, then n must be a multiple of 5. Furthermore, the subgroup generated by $\{h, g\}$ is either isomorphic to A_{5} $(\operatorname{PSL}(2,5))$ or is the central extension of the cyclic group of order 2 by $A_{5}(S L(2,5))$. This suggests us to look at Engel pairs in $S L(2, q)$. We find that most of the Engel pairs (h, g) in $S L(2, q)$ for all values of $q<100$, satisfy either $h g h=g h g$, or $h g h^{-2} g h=g h g$ and $g h g^{-2} h g=h g h$. This motivates us to study Engel pairs satisfying the latter conditions.

Let n be a positive integer and

$$
G_{n}=\left\langle x, y ; x=\left[x,{ }_{n} y\right], y=\left[y,_{n} x\right], x y x^{-2} y x=y x y, y x y^{-2} x y=x y x\right\rangle .
$$

We will show that $G_{2 k}=\left\langle x, y ; y^{k}=x^{k}, x y x^{-2} y x=y x y, y x y^{-2} x y=x y x\right\rangle$ for all integers $k \geq 1$ (Lemma 5.2.2) and G_{n} is the trivial group when n is odd (Theorem 5.2.3). We apply these results to prove that if (h, g) is an n-Engel pair in a group H satisfying the conditions $h g h^{-2} g h=g h g$ and $g h g^{-2} h g=h g h$, then $n=2 k$ where
$k=4$ or $k \geq 6$ (Main Theorem 6). Furthermore, the subgroup generated by $\{h, g\}$ is
(a) $S L(2,7)$ or $P S L(2,7)$ if $k=4$,
(b) $S L(2,13)$ or $\operatorname{PSL}(2,13)$ if $k=6,7$,
(c) an extension of an abelian group by $P S L(2,7)$ if $k=8$.

The main results in this chapter have been published (see S. G. Quek, K. B. Wong, P. C. Wong, On n-Engel pair satisfying certain conditions, J. Algebra Appl. 13 (2014), \#1350135).

5.2 Main Theorem 6

Lemma 5.2.1. Let x, y be elements in a group G. If $x y x^{-2} y x=y x y$ and $y x y^{-2} x y=$ $x y x$, then
(a) $[x, y]=y x^{-1} y^{-1} x^{2}$ and $[x, y]=y^{-2} x y x^{-1}$,
(b) $[y, x]=x y^{-1} x^{-1} y^{2}$ and $[y, x]=x^{-2} y x y^{-1}$,
(c) $y x y^{-3} x y=x^{3}$,
(d) $y x y^{-1} x y=x y x^{-1} y x$,
(e) $y x y^{-1} x^{r} y^{-1} x y=x y^{r+1} x$ and $x y x^{-1} y^{r} x^{-1} y x=y x^{r+1} y$ for $r \geq 1$,
(f) $[x, 2 r y]=x^{y^{r}}$ and $[y, 2 r x]=y^{x^{r}}$ for $r \geq 1$.

Proof. (a) $[x, y]=y x^{-1} y^{-1} x^{2}$ is obtained from

$$
\left(x^{-1} y^{-1}\right)\left(x y x^{-2} y x\right)\left(x^{-1} y^{-1} x^{2}\right)=\left(x^{-1} y^{-1}\right)(y x y)\left(x^{-1} y^{-1} x^{2}\right)
$$

and $[x, y]=y^{-2} x y x^{-1}$ is obtained from

$$
\left(x^{-1} y^{-1}\right)\left(y x y^{-2} x y\right)\left(x^{-1}\right)=\left(x^{-1} y^{-1}\right)(x y x)\left(x^{-1}\right) .
$$

(b) By swapping x and y in part (a).
(c) It follows from part (a), $y x^{-1} y^{-1} x^{2}=[x, y]=y^{-2} x y x^{-1}$.
(d) It follows from

$$
(y x y)\left(y^{-2} x y\right)=\left(x y x^{-2} y x\right)\left(y^{-2} x y\right)=\left(x y x^{-2}\right)\left(y x y^{-2} x y\right)=\left(x y x^{-2}\right)(x y x) .
$$

(e) It is sufficient to show that $y x y^{-1} x^{r} y^{-1} x y=x y^{r+1} x$. The second equation can be obtained similarly by swapping x and y.

By part (d),

$$
\begin{aligned}
y x y^{-1} x y^{-1} x y & =\left(y x y^{-2}\right)\left(y x y^{-1} x y\right) \\
& =\left(y x y^{-2}\right)\left(x y x^{-1} y x\right) \\
& =\left(y x y^{-2} x y\right)\left(x^{-1} y x\right) \\
& =(x y x)\left(x^{-1} y x\right)=x y^{2} x .
\end{aligned}
$$

Suppose $y x y^{-1} x^{r} y^{-1} x y=x y^{r+1} x$ for some r. Multiplying both sides on the right by $x^{-1} y x,\left(y x y^{-1} x^{r} y^{-1} x y\right)\left(x^{-1} y x\right)=\left(x y^{r+1} x\right)\left(x^{-1} y x\right)=x y^{r+2} x$. By part (d),

$$
\begin{aligned}
\left(y x y^{-1} x^{r} y^{-1} x y\right)\left(x^{-1} y x\right) & =\left(y x y^{-1} x^{r} y^{-1}\right)\left(x y x^{-1} y x\right) \\
& =\left(y x y^{-1} x^{r} y^{-1}\right)\left(y x y^{-1} x y\right) \\
& =y x y^{-1} x^{r+1} y^{-1} x y .
\end{aligned}
$$

Hence, $y x y^{-1} x^{r} y^{-1} x y=x y^{r+1} x$ for $r \geq 1$.
(f) It is sufficient to show that $[x, 2 r y]=x^{y^{r}}$. The second equation can be obtained similarly by swapping x and y. Note that by part (a) and the identity $[u v, w]=$ $[u, w]^{v}[u, w]$,

$$
\begin{aligned}
{[x, 2 y] } & =[[x, y], y] \\
& =\left[y^{-2} x y x^{-1}, y\right] \\
& =\left[x y x^{-1}, y\right] \\
& =x y^{-1}\left(x^{-1} y^{-1} x y\right) x^{-1} y \\
& =x y^{-1}([x, y]) x^{-1} y \\
& =x y^{-1}\left(y x^{-1} y^{-1} x^{2}\right) x^{-1} y \\
& =x^{y} .
\end{aligned}
$$

Suppose $\left[x,{ }_{2 r} y\right]=x^{y^{r}}$ for some r. Then $\left[x_{, 2(r+1)} y\right]=\left[[x, 2 y]{ }_{, 2 r} y\right]=\left[x^{y}, 2 r y\right]=$ $[x, 2 r y]^{y}=\left(x^{y^{r}}\right)^{y}=x^{y^{r+1}}$, where the second last equation follows by induction. Hence, $[x, 2 r y]=x^{y^{r}}$ for $r \geq 1$.

Lemma 5.2.2. Let x, y be elements in a group G and l a positive integer. Then the following relations are equivalent:
(a) $x=\left[x,{ }_{2 l} y\right], y=[y, 2 l x], x y x^{-2} y x=y x y$ and $y x y^{-2} x y=x y x$;
(b) $y^{l}=x^{l}, x y x^{-2} y x=y x y$ and $y x y^{-2} x y=x y x$.

Proof. ((a) $\Rightarrow(\mathrm{b}))$. By part (f) of Lemma 5.2.1, $x=x^{y^{l}}=y^{-l} x y^{l}$ and $y=y^{x^{l}}=$ $x^{-l} y x^{l}$. By part (e) of Lemma 5.2.1,

$$
x^{l}\left(y x y^{-2} x y\right)=y x y^{-1} x^{l} y^{-1} x y=x y^{l+1} x=y^{l}(x y x) .
$$

Since $y x y^{-2} x y=x y x, y^{l}=x^{l}$.
$((\mathrm{b}) \Rightarrow(\mathrm{a}))$. It follows from part (f) of Lemma 5.2.1.

Let n be a positive integer and

$$
G_{n}=\left\langle x, y ; x=\left[x,{ }_{n} y\right], y=\left[y,_{n} x\right], x y x^{-2} y x=y x y, y x y^{-2} x y=x y x\right\rangle .
$$

Theorem 5.2.3. G_{n} is the trivial group when n is odd.

Proof. Let $n=2 k+1$. Note that $x=\left[x,_{n} y\right]=\left[\left[x,_{n} y\right]_{, n} y\right]=\left[x,_{2 n} y\right]$. Similarly, $y=\left[y,{ }_{2 n} x\right]$. By Lemma 5.2.2, $y^{n}=x^{n}$.

By part (f) of Lemma 5.2.1, $x=[x, 2 k+1 y]=[[x, 2 k y], y]=\left[x^{y^{k}}, y\right]=[x, y]^{y^{k}}$. Therefore $y^{k} x y^{-k}=x^{-1} y^{-1} x y$ and $x y^{k} x=y^{-1} x y^{k+1}$. Multiplying the last equation on the right by y^{k}, we obtain $x y^{k} x y^{k}=y^{-1} x y^{n}$. Similarly, $y x^{k} y x^{k}=x^{-1} y x^{n}$. This implies that

$$
\begin{aligned}
x^{-k} y^{-1} x^{-k} y^{-1} & =x^{-n} y^{-1} x \\
& =y^{-n} y^{-1} x \\
& =y^{-1} x y^{n}\left(y^{-2 n}\right) \\
& =x y^{k} x y^{k}\left(y^{-2 n}\right) .
\end{aligned}
$$

Therefore $y^{-1} x^{-k} y^{-1}=x^{k+1} y^{k} x y^{k}\left(y^{-2 n}\right)$. Multiplying the equation by x^{n},

$$
x^{k+1} y^{k} x y^{k}\left(y^{-n}\right)=y^{-1} x^{n-k} y^{-1}=y^{-1} x^{k+1} y^{-1} .
$$

By part (e) of Lemma 5.2.1,

$$
\begin{aligned}
x y^{k+2} x & =y x\left(y^{-1} x^{k+1} y^{-1}\right) x y \\
& =y x\left(x^{k+1} y^{k} x y^{k}\left(y^{-n}\right)\right) x y \\
& =y x^{k+2} y^{k} x y^{k} x y\left(y^{-n}\right) .
\end{aligned}
$$

Similarly, $y x^{k+2} y=x y^{k+2} x^{k} y x^{k} y x\left(x^{-n}\right)$. Therefore

$$
\begin{aligned}
x y^{k+2} x & =y x^{k+2} y^{k} x y^{k} x y\left(y^{-n}\right) \\
& =\left(y x^{k+2} y\right)\left(y^{k-1} x y^{k} x y\left(y^{-n}\right)\right) \\
& =\left(x y^{k+2} x^{k} y x^{k} y x\left(x^{-n}\right)\right)\left(y^{k-1} x y^{k} x y\left(y^{-n}\right)\right) \\
& =x y^{k+2} x^{k} y x^{k} y x y^{k-1} x y^{k} x y\left(y^{-2 n}\right),
\end{aligned}
$$

and $x^{k-1} y x^{k} y x y^{k-1} x y^{k} x y\left(y^{-2 n}\right)=1$.
The equations $y^{k} x y^{k} x=x^{-1} y^{-1} x^{2} y^{n}$ and $y x y^{-1} x^{-1}=x^{2} y^{-1} x^{-1} y$ are obtained from $x y^{k} x y^{k}=y^{-1} x y^{n}$ and $y x y=x y x^{-2} y x$, respectively. We will use these equations together with $y x^{k} y x^{k}=x^{-1} y x^{n}$ to simplify the term $x^{k-1} y x^{k} y x y^{k-1} x y^{k} x y\left(y^{-2 n}\right)$,

$$
\begin{aligned}
1=x^{k-1} y x^{k} y x y^{k-1} x y^{k} x y\left(y^{-2 n}\right) & =x^{k-1} y x^{k} y x y^{-1}\left(y^{k} x y^{k} x\right) y\left(y^{-2 n}\right) \\
& =x^{k-1} y x^{k} y x y^{-1}\left(x^{-1} y^{-1} x^{2} y^{n}\right) y\left(y^{-2 n}\right) \\
& =x^{k-1} y x^{k}\left(y x y^{-1} x^{-1}\right) y^{-1} x^{2} y\left(y^{-n}\right) \\
& =x^{k-1} y x^{k}\left(x^{2} y^{-1} x^{-1} y\right) y^{-1} x^{2} y\left(y^{-n}\right) \\
& =x^{k-1} y x^{k+2} y^{-1} x y\left(y^{-n}\right) \\
& =x^{k-1} y x^{k+2}\left(x^{-1} y x^{n}\right)^{-1} y \\
& =x^{k-1} y x^{k+2}\left(y x^{k} y x^{k}\right)^{-1} y \\
& =x^{k-1} y x^{k+2}\left(x^{-k} y^{-1} x^{-k} y^{-1}\right) y \\
& =x^{k-1} y x^{2} y^{-1} x^{-k} .
\end{aligned}
$$

Therefore $y x^{2} y^{-1}=x$ and $y x^{2}=x y$. Similarly, $x y^{2}=y x$. This implies that $x y^{2} x=y x^{2}=x y$ and $y x=1$, i.e., $x=y^{-1}$. So $x=\left[x,{ }_{n} y\right]=\left[y^{-1}{ }_{, n} y\right]=1$ and $y=1$. Hence G_{n} is the trivial group.

Main Theorem 6. If (h, g) is an n-Engel pair in a group H satisfying the conditions $h g h^{-2} g h=g h g$ and $g h g^{-2} h g=h g h$, then $n=2 k$ where $k=4$ or $k \geq 6$.

Proof. Note that the subgroup generated by $\{h, g\}$ in $H,\langle h, g\rangle$ is the epimorphic image of G_{n} via the epimorphism $x \rightarrow h$ and $y \rightarrow g$. Since $h \neq 1, G_{n}$ cannot be the trivial group. Therefore by Theorem 5.2.3, $n=2 k$. It is sufficient to show that $G_{2 k}$ is the trivial group for $k=1,2,3$ and 5 .

By Lemma 5.2.2,

$$
G_{2 k}=\left\langle x, y ; y^{k}=x^{k}, x y x^{-2} y x=y x y, y x y^{-2} x y=x y x\right\rangle .
$$

If $k=1$, then $y=x$. This implies that $x=[x, 2 y]=1$ and $y=1$. If $k=2$, then $y^{2}=x^{2}$. This implies that $y x y=x y x^{-2} y x=x y\left(y^{-2}\right) y x=x^{2}=y^{2}$. So $x=1$ and $y=1$. If $k=3$, then $y^{3}=x^{3}$. By part (c) of Lemma 5.2.1, $y^{3}=x^{3}=y x y^{-3} x y=$ $y x\left(x^{-3}\right) x y=y x^{-1} y$. So, $y=x^{-1}, x=\left[x,_{2} y\right]=1$ and $y=1$.

Suppose $k=5$. Then $y^{5}=x^{5}$. By part (c) of Lemma 5.2.1, $x^{3}=y x y^{-3} x y=$ $y x y^{2} x y\left(y^{-5}\right)$. By part (e) of Lemma 5.2.1, $x y x^{-1} y^{4} x^{-1} y x=y x^{5} y=y^{7}$. So,

$$
\begin{aligned}
x^{3} & =y x y^{2} x y\left(y^{-5}\right) \\
& =y x\left(y^{7}\right) x y\left(y^{-10}\right) \\
& =y x\left(x y x^{-1} y^{4} x^{-1} y x\right) x y\left(y^{-10}\right) \\
& =y x^{2} y x^{-1} y^{4} x^{-1} y x^{2} y\left(y^{-10}\right),
\end{aligned}
$$

i.e., $1=y x^{2} y x^{-1} y^{4} x^{-1} y x^{2} y x^{-3}\left(y^{-10}\right)$.

By part (c) of Lemma 5.2.1, $y^{3}=x y x^{-3} y x=x y x^{2} y x\left(y^{-5}\right)$. Therefore $y x^{2} y=$
$x^{-1} y^{3} x^{-1} y^{5}$ and

$$
\begin{aligned}
1=y x^{2} y x^{-1} y^{4} x^{-1} y x^{2} y x^{-3}\left(y^{-10}\right) & =\left(y x^{2} y\right)\left(x^{-1} y^{4} x^{-1}\right)\left(y x^{2} y\right) x^{-3}\left(y^{-10}\right) \\
& =\left(x^{-1} y^{3} x^{-1} y^{5}\right)\left(x^{-1} y^{4} x^{-1}\right)\left(x^{-1} y^{3} x^{-1} y^{5}\right) x^{-3}\left(y^{-10}\right) \\
& =x^{-1} y^{3} x^{-2} y^{4} x^{-2} y^{3} x^{-4} .
\end{aligned}
$$

This implies that $x^{5}=y^{3} x^{-2} y^{4} x^{-2} y^{3}$ and

$$
1=x^{5} y^{-5}=y x^{-2} y^{4} x^{-2}=y^{6} x^{-2} y^{-1} x^{-2} .
$$

So, $y^{-1}=y^{5} x^{-2} y^{-1} x^{-2}$ and $y^{-1}=y^{5} x^{-2}\left(y^{5} x^{-2} y^{-1} x^{-2}\right) x^{-2}=\left(y^{10}\right) x^{-4} y^{-1} x^{-4}=$ $x y^{-1} x$. This implies that $y^{-1} x^{-1} y x=x^{2}$ and $y=\left[y,{ }_{10} x\right]=\left[[y, x]_{, 9} x\right]=\left[x^{2},_{9} x\right]=1$. Hence $G_{2 k}$ is the trivial group when $k=1,2,3$ and 5 .

By using GAP [13], the sizes of G_{8}, G_{12} and G_{14} are determined to be 336, 2184 and 2184, respectively. Note that GAP uses the Todd-Coxeter procedure (coset enumeration). Coset enumeration is one of the fundamental tools for the examination of finitely presented groups (see [7, 17, 26, 30, 32]).

Let $S L(n, q)$ and $P L(n, q)$ be the special linear group and projective linear group, respectively, of order n over the field of order q. Note that $P L(n, q)$ is a simple group except when $(n, q)=(2,2)$ or $(2,3)[21$, Theorem 6.14 on p. 380$]$.

Let $\alpha_{1}=\left(\begin{array}{ll}5 & 5 \\ 2 & 5\end{array}\right)$ and $\beta_{1}=\left(\begin{array}{ll}4 & 5 \\ 6 & 6\end{array}\right)$ be elements in $S L(2,7)$ and $\alpha_{2}=\left(\begin{array}{ll}7 & 7 \\ 0 & 2\end{array}\right)$, $\beta_{2}=\left(\begin{array}{cc}7 & 0 \\ 12 & 2\end{array}\right), \alpha_{3}=\left(\begin{array}{cc}7 & 7 \\ 12 & 1\end{array}\right)$ and $\beta_{3}=\left(\begin{array}{ll}7 & 5 \\ 9 & 1\end{array}\right)$ be elements in $S L(2,13)$. Note that $\alpha_{i} \beta_{i} \alpha_{i}^{-2} \beta_{i} \alpha_{i}=\beta_{i} \alpha_{i} \beta_{i}$ and $\beta_{i} \alpha_{i} \beta^{-2} \alpha_{i} \beta_{i}=\alpha_{i} \beta_{i} \alpha_{i}$. Furthermore, $\alpha_{1}^{4}=\beta_{1}^{4}, \alpha_{2}^{6}=\beta_{2}^{6}$, $\alpha_{2}^{7}=\beta_{2}^{7},\left\langle\alpha_{1}, \beta_{1}\right\rangle=S L(2,7)$ and $\left\langle\alpha_{2}, \beta_{2}\right\rangle=\left\langle\alpha_{3}, \beta_{3}\right\rangle=S L(2,13)$. Now, $S L(2,7)$ is an epimorphic image of G_{8} via the epimorphism $x \rightarrow \alpha_{1}$ and $y \rightarrow \beta_{1}$. Since both
$S L(2,7)$ and G_{8} have size 336, the epimorphism is an isomorphism. Hence

$$
G_{8} \cong S L(2,7)
$$

Similarly,

$$
G_{12} \cong S L(2,13) \cong G_{14} .
$$

Let us denote the centre of a group G by $Z(G)$, the derived subgroup of G by G^{\prime}, and the normal closure of a subgroup S of G by S^{G}.

Note that both $Z(S L(2,7))$ and $Z(S L(2,13))$ have size 2. By Lemma 5.2.2, x^{k} is in the centre of $G_{2 k}$. Therefore

$$
\begin{align*}
& G_{8} /\left\langle x^{4}\right\rangle \cong S L(2,7) / Z(S L(2,7))=P L(2,7) \\
& G_{12} /\left\langle x^{6}\right\rangle \cong S L(2,13) / Z(S L(2,13))=P L(2,13) \cong G_{14} /\left\langle x^{7}\right\rangle . \tag{1}
\end{align*}
$$

5.3 Main Theorem 7

By using GAP, the subgroup $\left\langle x^{4}, y^{4}\right\rangle^{G_{16}}$ is generated by

$$
A=\left\{x^{4}, y^{4}, x y^{4} x^{-1}, x^{-1} y^{4} x, y^{-1} x^{4} y, x y^{-1} x^{4} y x^{-1},(y x)^{3}\right\}
$$

All the elements in A commute with each other. Furthermore, all elements in A are of order 4 except for $(y x)^{3}$ which is of order 2. Let $a_{1}=x^{4}, a_{2}=x^{4} y^{4}, a_{3}=x^{5} y^{4} x^{-1}$, $a_{4}=x^{3} y^{4} x, a_{5}=x^{4} y^{-1} x^{4} y, a_{6}=x^{5} y^{-1} x^{4} y x^{-1}$ and $a_{7}=(y x)^{3}$. Then

$$
\begin{align*}
\left\langle x^{4}, y^{4}\right\rangle^{G_{16}} & =\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times\left\langle a_{3}\right\rangle \times\left\langle a_{4}\right\rangle \times\left\langle a_{5}\right\rangle \times\left\langle a_{6}\right\rangle \times\left\langle a_{7}\right\rangle \\
& =\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} . \tag{2}
\end{align*}
$$

Since

$$
G_{16} /\left\langle x^{4}, y^{4}\right\rangle^{G_{16}} \cong G_{8} /\left\langle x^{4}\right\rangle \cong P L(2,7)
$$

G_{16} is an extension of $\mathbb{Z}_{4} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by $P L(2,7)$.

In fact, one can use the Knuth-Bendix rewriting completion algorithm to get a complete rewriting system (see $[4,8,11,12,20,19,25,34]$). By using the complete rewriting system for G_{8}, a multiplication table can be obtained. So, the size of G_{8} will be known. Similarly, the size of G_{12} and G_{14}, and the structure of $\left\langle x^{4}, y^{4}\right\rangle^{G_{16}}$ will also be known.

Lemma 5.3.1. Let S be a normal subgroup of a group G. Suppose $G=G^{\prime}, G / S$ is simple and S is abelian. If N is a proper normal subgroup of G, then N is a subgroup of S.

Proof. Now $N S / S$ is a normal subgroup of G / S implies that $N S=G$ or $N S=S$. If the latter holds, we are done. Suppose $N S=G$. Then $G / N=N S / N \cong S /(N \cap S)$ is abelian. This implies that $G=G^{\prime} \subseteq N$, a contradiction.

Main Theorem 7. Let (h, g) be a $2 k$-Engel pair in a group H satisfying the conditions $h g h^{-2} g h=g h g$ and $g h g^{-2} h g=h g h$. Then
(a) $\langle h, g\rangle=S L(2,7)$ or $P L(2,7)$ if $k=4$;
(b) $\langle h, g\rangle=S L(2,13)$ or $P L(2,13)$ if $k=6,7$;
(c) $\langle h, g\rangle$ is an extension of an abelian group by $P L(2,7)$ if $k=8$.

Proof. Since $\langle h, g\rangle$ is the epimorphic image of $G_{2 k}$ via the epimorphism $x \rightarrow h$ and $y \rightarrow g$, the theorem follows from Lemma 5.3.1, equations (1) and (2).

Remark 2. Heineken [18, Theorem 2] showed that $S L(2,7)$ and $S L(2,13)$ are generated by an 8-Engel pair and a 12-Engel pair, respectively. In this chapter, we give
a presentation of $S L(2,7)$ and $S L(2,13)$ in terms of an 8-Engel pair and a 12-Engel pair, respectively. We obtain the presentations for $S L(2,7)$ and $S L(2,13)$ by studying the group $G_{2 k}$. The results here are therefore different from that of Heineken. Furthermore, when $k=9$, the group $G_{2 k}$ is shown to be infinite.

Chapter 6

Engel Pairs II

6.1 A Brief Introduction

Let L be a field. A field F is called a field extension of L if $L \subseteq F$. Note that F can be considered as a vector space over the field L. The dimension of F as a vector space over the field L is denoted by $[F: L]$. Let $S L(2, F)$ be the special linear group of order 2 over the field F. If $F=\mathbb{Z}_{p}$ for a primes p, then we shall write $S L(2, p)$ instead of $S L(2, F)$.

Problem 6.1.1. Given a field F, can we tell whether $S L(2, F)$ has an Engel pair or not?

Problem 6.1.2. Determine the prime p, so that $S L(2, p)$ has an Engel pair.

Lemma 6.1.3. A solvable group does not have Engel pairs.

Proof. Let G be a solvable group and (h, g) be an n-Engel pair in G. Then $h \neq$ 1. Let the m th derived subgroup of G be denoted by $G^{(m)}$. Since G is solvable, $G^{\left(m_{0}\right)}=\{1\}$ for some positive integer m_{0}. Now, $h=\left[h,_{n} g\right]$ and $g=\left[g,_{n} h\right]$ imply that $h, g \in G^{(1)}$. In fact, by induction, $h, g \in G^{(m)}$ for every positive integer m. Thus, $h \in G^{\left(m_{0}\right)}=\{1\}$, a contradiction. Hence, the lemma holds.

Theorem 6.1.4. $S L(2,2)$ and $S L(2,3)$ do not have Engel pairs.

Proof. It follows from Lemma 6.1.3 and the fact that $S L(2,2)$ and $S L(2,3)$ are solvable.

In this chapter we will prove the following two theorems.

Main Theorem 8. Given any field L, there is a field extension F of L with $[F$: $L] \leq 6$ such that $S L(2, F)$ has an n-Engel pair for some integer $n \geq 4$.

Main Theorem 9. Given any field F of characteristic $p \equiv \pm 1 \bmod 5, S L(2, F)$ has a 5-Engel pair.

6.2 Main Theorem 8

Lemma 6.2.1. Let x, y be elements in a group G. If $x y x^{-2} y x=y x y$ and $y x y^{-2} x y=$ $x y x$, then (x, y) cannot be an n-Engel pair for $n=2$ or 3 .

Proof. Suppose (x, y) is a 2-Engel pair. Then $x=[x, 2 y], y=\left[y,{ }_{2} x\right]$ and $x \neq 1$. By part (f) of Lemma 5.2.1, $\left[x,{ }_{2} y\right]=y^{-1} x y$ and $\left[y,_{2} x\right]=x^{-1} y x$. Therefore, $y^{-1} x y=x$, i.e., $[x, y]=1$. Thus, $x=[[x, y], y]=1$, a contradiction.

Suppose (x, y) is a 3 -Engel pair. Then $x=\left[x,{ }_{3} y\right], y=\left[y,{ }_{3} x\right]$ and $x \neq 1$. Note that $\left[x,{ }_{6} y\right]=\left[\left[x,{ }_{3} y\right]{ }_{, 3} y\right]=\left[x,{ }_{3} y\right]=x$ and $\left[y,{ }_{6} x\right]=y$. By part (f) of Lemma 5.2.1,

$$
x=\left[x,{ }_{3} y\right]=\left[\left[x,{ }_{2} y\right], y\right]=\left[y^{-1} x y, y\right]=y^{-1}[x, y] y=y^{-1} x^{-1} y^{-1} x y^{2},
$$

$$
x=[x, 6 y]=y^{-3} x y^{3} .
$$

Therefore $x y^{2}=y x y x$ and $x y^{3}=y^{3} x$. Similarly, $y x^{2}=x y x y$ and $y x^{3}=x^{3} y$. Thus,

$$
y^{3} x=x y^{3}=x y^{2} y=(y x y x) y=y(x y x y)=y\left(y x^{2}\right)=y^{2} x^{2},
$$

which may be equal to $x=y$. So, $[x, y]=1$, and $x=\left[x,{ }_{3} y\right]=\left[[x, y]_{, 2} y\right]=1$, a contradiction.

This completes the proof of the lemma.

Lemma 6.2.2. Let x, y be non-identity elements in a finite group G. If $x y x^{-2} y x=$ $y x y$ and $y x y^{-2} x y=x y x$, then (x, y) is an n-Engel pair for some integer $n \geq 4$.

Proof. Since G is a finite group, x and y have finite order. Let m_{1} and m_{2} be the orders of x and y, respectively. Let m be the least common multiple of m_{1} and m_{2}. Then $x^{m}=1=y^{m}$. By Lemma 5.2.2, $x=[x, 2 m y]$ and $y=\left[y,{ }_{2 m} x\right]$. Since $x \neq 1$, (x, y) is a $2 m$-Engel pair. It then follows from Lemma 6.2.1 that $2 m \geq 4$.

Proof of Main Theorem 8. Consider the following equation

$$
x^{6}+4 x^{4}+3 x^{2}-1=0
$$

over the field L. Let F be a field extension of L that contains a root of the above equation. Let the root be denoted by a. Note that $[F: L] \leq 6$ and F may be equal to L.

Let $A=\left(\begin{array}{cc}1 & a \\ a & 1+a^{2}\end{array}\right)$ and $B=\left(\begin{array}{cc}0 & 1 \\ -1 & 2+a^{2}\end{array}\right)$. Since $|A|=|B|=1, A, B \in$ $S L(2, F)$. It can be verified that

$$
A^{-1}=\left(\begin{array}{cc}
1+a^{2} & -a \\
-a & 1
\end{array}\right), \quad B^{-1}=\left(\begin{array}{cc}
2+a^{2} & -1 \\
1 & 0
\end{array}\right)
$$

$$
\begin{aligned}
A B & =\left(\begin{array}{cc}
-a & 1+2 a+a^{3} \\
-1-a^{2} & 2+a+3 a^{2}+a^{4}
\end{array}\right), \\
B A & =\left(\begin{array}{cc}
a & 1+a^{2} \\
-1+2 a+a^{3} & 2-a+3 a^{2}+a^{4}
\end{array}\right), \\
A^{-2} & =\left(\begin{array}{cc}
1+3 a^{2}+a^{4} & -2 a-a^{3} \\
-2 a-a^{3} & 1+a^{2}
\end{array}\right), \\
B^{-2} & =\left(\begin{array}{cc}
3+4 a^{2}+a^{4} & -2-a^{2} \\
2+a^{2} & -1
\end{array}\right) .
\end{aligned}
$$

Therefore,

$$
(A B) A^{-2}(B A)=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& c_{11}=-1-2 a^{2}+3 a^{4}+4 a^{6}+a^{8}, \\
& c_{12}=2+3 a^{2}+2 a^{3}+a^{4}+7 a^{5}+5 a^{7}+a^{9}, \\
& c_{21}=-2-3 a^{2}+2 a^{3}-a^{4}+7 a^{5}+5 a^{7}+a^{9}, \\
& c_{22}=3+6 a^{2}+10 a^{4}+12 a^{6}+6 a^{8}+a^{10} .
\end{aligned}
$$

Since $a^{6}+4 a^{4}+3 a^{2}-1=0$,

$$
\begin{aligned}
c_{11} & =\left(a^{2}\right)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(-1-a^{2}\right)=-1-a^{2}, \\
c_{12} & =\left(a+a^{3}\right)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(2+a+3 a^{2}+a^{4}\right)=2+a+3 a^{2}+a^{4}, \\
c_{21} & =\left(a+a^{3}\right)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(-2+a-3 a^{2}-a^{4}\right)=-2+a-3 a^{2}-a^{4}, \\
c_{22} & =\left(1+2 a^{2}+a^{4}\right)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(4+5 a^{2}+a^{4}\right)=4+5 a^{2}+a^{4} \\
& =4+5 a^{2}+a^{4}+\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)=a^{6}+5 a^{4}+8 a^{2}+3 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
(A B) A^{-2}(B A) & =\left(\begin{array}{cc}
-1-a^{2} & 2+a+3 a^{2}+a^{4} \\
-2+a-3 a^{2}-a^{4} & a^{6}+5 a^{4}+8 a^{2}+3
\end{array}\right) \\
& =B A B .
\end{aligned}
$$

Next,

$$
(B A) B^{-2}(A B)=\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& d_{11}=1-a^{2}-3 a^{4}-a^{6}, \\
& d_{12}=2 a+2 a^{2}+3 a^{3}+7 a^{4}+a^{5}+5 a^{6}+a^{8}, \\
& d_{21}=2 a-2 a^{2}+3 a^{3}-7 a^{4}+a^{5}-5 a^{6}-a^{8}, \\
& d_{22}=1+5 a^{2}+16 a^{4}+17 a^{6}+7 a^{8}+a^{10} .
\end{aligned}
$$

Again from $a^{6}+4 a^{4}+3 a^{2}-1=0$,

$$
\begin{aligned}
d_{11} & =(-1)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(2 a^{2}+a^{4}\right) \\
& =2 a^{2}+a^{4}, \\
d_{12} & =\left(1+a^{2}\right)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(1+2 a+3 a^{3}+a^{5}\right) \\
& =1+2 a+3 a^{3}+a^{5}, \\
d_{21} & =\left(-1-a^{2}\right)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(-1+2 a+3 a^{3}+a^{5}\right) \\
& =-1+2 a+3 a^{3}+a^{5}, \\
d_{22} & =\left(2+3 a^{2}+a^{4}\right)\left(-1+3 a^{2}+4 a^{4}+a^{6}\right)+\left(3+2 a^{2}\right) \\
& =3+2 a^{2} \\
& =3+2 a^{2}+\left(-1+3 a^{2}+4 a^{4}+a^{6}\right) \\
& =a^{6}+4 a^{4}+5 a^{2}+2 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
(B A) B^{-2}(A B) & =\left(\begin{array}{cc}
2 a^{2}+a^{4} & 1+2 a+3 a^{3}+a^{5} \\
-1+2 a+3 a^{3}+a^{5} & a^{6}+4 a^{4}+5 a^{2}+2
\end{array}\right) \\
& =A B A
\end{aligned}
$$

Now, if $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then $a=0$ and $0=a^{6}+4 a^{4}+3 a^{2}-1=-1$, a contradiction. If $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then $1=0$, a contradiction. Hence, A and B are non-identity, and by Lemma 6.2.2, (A, B) is an n-Engel pair for some integer $n \geq 4$.

This completes the proof of Main Theorem 8.

6.3 Main Theorem 9

Lemma 6.3.1. Let $p \geq 2$ be a prime and $a, c \in \mathbb{Z}_{p}$ with $a \neq 0$. Let $U=\left\{y^{2}: y \in\right.$ $\left.\mathbb{Z}_{p}\right\}$ and $V=\left\{a x^{2}+c: x \in \mathbb{Z}_{p}\right\}$. Then $U \cap V \neq \varnothing$.

Proof. Note that $0 \in U$ and for each $y_{0} \in \mathbb{Z}_{p} \backslash\{0\}, y_{0}^{2}=\left(-y_{0}\right)^{2} \in U \backslash\{0\}$. Furthermore, $x^{2}=y_{0}^{2}$ implies that $x= \pm y_{0}$. Therefore, we conclude that $|U|=\frac{p+1}{2}$. Similarly, $|V|=\frac{p+1}{2}$. If $U \cap V=\varnothing$, then

$$
\begin{aligned}
p=\left|Z_{p}\right| & \geq|U \cup V| \\
& =|U|+|V| \\
& =\frac{p+1}{2}+\frac{p+1}{2}=p+1,
\end{aligned}
$$

a contradiction. Hence, $U \cap V \neq \varnothing$.

Lemma 6.3.2. Let $p \geq 2$ be a prime and $a, b, c \in \mathbb{Z}_{p}$ with $(a, b) \neq(0,0)$. Then there exist $x, y \in \mathbb{Z}_{p}$ with $y^{2}=a x^{2}+b x+c$.

Proof. Suppose $a=0$. Then $b \neq 0$. Note that $\left\{b x+c: x \in \mathbb{Z}_{p}\right\}=\mathbb{Z}_{p}$. So, by choosing any $y \in \mathbb{Z}_{p}$, there exists an $x \in \mathbb{Z}_{p}$ with $y^{2}=b x+c$.

$$
\text { Suppose } a \neq 0 \text {. Then } a x^{2}+b x+c=a\left(x+2^{-1} b a^{-1}\right)^{2}+a\left(c a^{-1}-\left(2^{-1} b a^{-1}\right)^{2}\right)
$$

where 2^{-1} and a^{-1} are inverses of 2 and a, respectively, in \mathbb{Z}_{p}. By Lemma 6.3.1,
there exist $X, y \in \mathbb{Z}_{p}$ with $y^{2}=a X^{2}+a\left(c a^{-1}-\left(2^{-1} b a^{-1}\right)^{2}\right)$. The lemma follows by taking $x=X-2^{-1} b a^{-1}$.

Lemma 6.3.3. Let $p \geq 3$ be a prime. Then $\left\{(2 s-10,4 s-4): s \in \mathbb{Z}_{p}\right\} \neq\{(0,0)\}$. Proof. Let $s \in \mathbb{Z}_{p}$ be such that $2 s-10=0=4 s-4$. Since $p \geq 3,4=4 s$ implies that $s=1$. So, $-8=2 s-10=0$, a contradiction. Hence, the lemma holds.

Proof of Main Theorem 9. Since F is of characteristic $p, \mathbb{Z}_{p} \subseteq F$. By the Quadratic Reciprocity Law, $x^{2} \equiv 5 \bmod p$ is solvable for all $p \equiv \pm 1 \bmod 5$. Therefore, there exists an $s \in \mathbb{Z}_{p}$ with

$$
\begin{equation*}
s^{2}=5 . \tag{6.3.1}
\end{equation*}
$$

By Lemma 6.3.3, $(2 s-10,4 s-4) \neq(0,0)$. It then follows from Lemma 6.3.2 that

$$
\begin{equation*}
y^{2}=(2 s-10) x^{2}+(4 s-4) x+(2 s-10) \tag{6.3.2}
\end{equation*}
$$

for some $x, y \in \mathbb{Z}_{p}$.

Therefore,

$$
\begin{align*}
y^{2}+s y^{2}= & \left((2 s-10) x^{2}+(4 s-4) x+(2 s-10)\right)+ \tag{6.3.3}\\
& s\left((2 s-10) x^{2}+(4 s-4) x+(2 s-10)\right) \\
= & -10-8 s+2 s^{2}-4 x+4 s^{2} x-10 x^{2}-8 s x^{2}+2 s^{2} x^{2} \\
= & -10-8 s+2(5)-4 x+4(5) x-10 x^{2}-8 s x^{2}+2(5) x^{2} \\
= & -8 s+16 x-8 s x^{2} . \tag{6.3.4}
\end{align*}
$$

Let

$$
A=4^{-1}\left(\begin{array}{cc}
4 x & (1-x)(1+s)-y \\
(x-1)(1+s)-y & 2(1-2 x+s)
\end{array}\right)
$$

and

$$
B=2^{-1}\left(\begin{array}{cc}
0 & 2 \\
-2 & 1+s
\end{array}\right) .
$$

Note that by equations (6.3.1) and (6.3.2),

$$
\begin{aligned}
& |A|=16^{-1}\left(s^{2} x^{2}-2 s^{2} x+2 s x^{2}+s^{2}+4 s x-15 x^{2}-y^{2}+2 s+6 x+1\right) \\
& =16^{-1}\left(5 x^{2}-2(5) x+2 s x^{2}+5+4 s x-15 x^{2}\right. \\
& \left.\quad-\left((2 s-10) x^{2}+(4 s-4) x+(2 s-10)\right)+2 s+6 x+1\right) \\
& \quad=1
\end{aligned}
$$

and $|B|=1$. Thus, $A, B \in S L(2, F)$.

Now,

$$
A^{2}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& a_{11}=16^{-1}\left(-1-2 s-s^{2}+2 x+4 s x+2 s^{2} x+15 x^{2}-2 s x^{2}-s^{2} x^{2}+y^{2}\right) \\
& a_{12}=16^{-1}\left(2+4 s+2 s^{2}-2 x-4 s x-2 s^{2} x-2 y-2 s y\right) \\
& a_{21}=16^{-1}\left(-2-4 s-2 s^{2}+2 x+4 s x+2 s^{2} x-2 y-2 s y\right) \\
& a_{22}=16^{-1}\left(3+6 s+3 s^{2}-14 x-12 s x+2 s^{2} x+15 x^{2}-2 s x^{2}-s^{2} x^{2}+y^{2}\right) .
\end{aligned}
$$

By equations (6.3.1) and (6.3.2),

$$
\begin{aligned}
& a_{11}=8^{-1}(-8+4 x+4 s x) \\
& a_{12}=8^{-1}(6+2 s-6 x-2 s x-y-s y) \\
& a_{21}=8^{-1}(-6-2 s+6 x+2 s x-y-s y) \\
& a_{22}=8^{-1}(4+4 s-4 x-4 s x) .
\end{aligned}
$$

So,

$$
A^{3}=A^{2}(A)=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right),
$$

where

$$
\begin{aligned}
& b_{11}=32^{-1}\left(-2 s^{2} x^{2}-s^{2} x y+4 s^{2} x+s^{2} y+8 s x^{2}+\left(y^{2}+s y^{2}\right)-2 s^{2}+16 s x+10 x^{2}+5 x y-8 s-20 x-5 y-6\right) \\
& b_{12}=32^{-1}\left(-4 s^{2} x^{2}-2 s^{2} y+4 s^{2}-8 s x-4 s y+20 x^{2}+8 s-24 x+6 y+4\right) \\
& b_{21}=32^{-1}\left(-4 s^{2} x^{2}+8 s^{2} x-4 s^{2}+8 s x-4 s y+20 x^{2}-8 s-16 x-4 y-4\right) \\
& b_{22}=32^{-1}\left(-2 s^{2} x^{2}+s^{2} x y-4 s^{2} x-s^{2} y+8 s x^{2}+\left(y^{2}+s y^{2}\right)+6 s^{2}-16 s x+10 x^{2}-5 x y+8 s-12 x+5 y+2\right)
\end{aligned}
$$

By equations (6.3.1) and (6.3.4),

$$
\begin{aligned}
& b_{11}=8^{-1}(-4+4 x-4 s+4 s x) \\
& b_{12}=8^{-1}(6-y-6 x+2 s-s y-2 s y) \\
& b_{21}=8^{-1}(-6-y+6 x-2 s-s y+2 s y) \\
& b_{22}=8^{-1}(8-4 x-4 s x) .
\end{aligned}
$$

Next,

$$
\begin{aligned}
B^{3} & =8^{-1}\left(\begin{array}{cc}
-4 & 2+2 s \\
-2-2 s & -3+2 s+s^{2}
\end{array}\right)\left(\begin{array}{cc}
0 & 2 \\
-2 & 1+s
\end{array}\right) \\
& =8^{-1}\left(\begin{array}{cc}
-4 & 2+2 s \\
-2-2 s & -3+2 s+5
\end{array}\right)\left(\begin{array}{cc}
0 & 2 \\
-2 & 1+s
\end{array}\right) \\
& =4^{-1}\left(\begin{array}{cc}
-2 & 1+s \\
-1-s & 1+s
\end{array}\right)\left(\begin{array}{cc}
0 & 2 \\
-2 & 1+s
\end{array}\right) \\
& =4^{-1}\left(\begin{array}{cc}
-2 s-2 & s^{2}+2 s-3 \\
-2 s-2 & s^{2}-1
\end{array}\right) \\
& =4^{-1}\left(\begin{array}{cc}
-2 s-2 & 5+2 s-3 \\
-2 s-2 & 5-1
\end{array}\right) \\
& =2^{-1}\left(\begin{array}{cc}
-1-s & 1+s \\
-1-s & 2
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
A B & =8^{-1}\left(\begin{array}{cc}
-2-2 s+2 x+2 s x+2 y & 1+2 s+s^{2}+7 x-2 s x-s^{2} x-y-s y \\
-4-4 s+8 x & 2 s+2 s^{2}-2 x-2 s x-2 y
\end{array}\right) \\
& =8^{-1}\left(\begin{array}{cc}
-2-2 s+2 x+2 s x+2 y & 1+2 s+5+7 x-2 s x-5 x-y-s y \\
-4-4 s+8 x & 2 s+2(5)-2 x-2 s x-2 y
\end{array}\right) \\
& =8^{-1}\left(\begin{array}{cc}
-2-2 s+2 x+2 s x+2 y & 6+2 s+2 x-2 s x-y-s y \\
-4-4 s+8 x & 10+2 s-2 x-2 s x-2 y
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
B A & =8^{-1}\left(\begin{array}{cc}
-2-2 y+2 x-2 s+2 s x & 4-8 x+4 s \\
-1-y-7 x-2 s-s y+2 s x-s^{2}+s^{2} x & 2 y-2 x+2 s-2 s x+2 s^{2}
\end{array}\right) \\
& =8^{-1}\left(\begin{array}{cc}
-2-2 y+2 x-2 s+2 s x & 4-8 x+4 s \\
-1-y-7 x-2 s-s y+2 s x-5+5 x & 2 y-2 x+2 s-2 s x+2(5)
\end{array}\right) \\
& =8^{-1}\left(\begin{array}{cc}
-2-2 y+2 x-2 s+2 s x & 4-8 x+4 s \\
-6-y-2 x-2 s-s y+2 s x & 10+2 y-2 x+2 s-2 s x
\end{array}\right) .
\end{aligned}
$$

So,

$$
(A B) A=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right),
$$

where

$$
\begin{aligned}
& c_{11}=32^{-1}\left(-6-8 s-2 s^{2}-4 x+4 s^{2} x+10 x^{2}+8 s x^{2}-2 s^{2} x^{2}-5 y+s^{2} y+5 x y-s^{2} x y+\left(y^{2}+s y^{2}\right)\right) \\
& c_{12}=32^{-1}\left(10+12 s+2 s^{2}-16 x-10 x^{2}+4 s x^{2}-2 s^{2} x^{2}+2 y-2 s^{2} y-2 y^{2}\right) \\
& c_{21}=32^{-1}\left(-10-12 s-2 s^{2}-4 x+4 s^{2} x+30 x^{2}-4 s x^{2}-2 s^{2} x^{2}-8 y+2 y^{2}\right) \\
& c_{22}=32^{-1}(16+16 s-32 x)
\end{aligned}
$$

By equations (6.3.1), (6.3.2) and (6.3.4),

$$
\begin{aligned}
& c_{11}=16^{-1}(-8-8 s+16 x) \\
& c_{12}=16^{-1}(20+4 s-4 x-4 s x-4 y) \\
& c_{21}=16^{-1}(-4 s-20+4 x+4 s x-4 y) \\
& c_{22}=16^{-1}(8+8 s-16 x) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
B(A B) & =16^{-1}\left(\begin{array}{cc}
-8-8 s+16 x & 20+4 s-4 x-4 s x-4 y \\
-4 s-4 s^{2}+4 x+4 s x-4 y & -2+8 s+2 s^{2}-6 x-2 s^{2} x
\end{array}\right) \\
& =16^{-1}\left(\begin{array}{cc}
-8-8 s+16 x & 20+4 s-4 x-4 s x-4 y \\
-4 s-4(5)+4 x+4 s x-4 y & -2+8 s+2(5)-6 x-2(5) x
\end{array}\right) \\
& =A B A .
\end{aligned}
$$

Now,

$$
A B^{2} A=(A B)(B A)=64^{-1}\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)
$$

where

$$
\begin{aligned}
& d_{11}=-32-32 x-16 s+16 s x^{2}+\left(\left(s^{2}-3\right) y^{2}+2 s y^{2}\right) \\
& d_{12}=52+10 y+32 x+16 s-2\left(y^{2}+s y^{2}\right)-10 x y-20 x^{2}-4 s^{2}-16 s x^{2}-2 s^{2} y+2 s^{2} x y+4 s^{2} x^{2} \\
& d_{21}=-52+10 y-32 x-16 s+2\left(y^{2}+s y^{2}\right)-10 x y+20 x^{2}+4 s^{2}+16 s x^{2}-2 s^{2} y+2 s^{2} x y-4 s^{2} x^{2} \\
& d_{22}=84+24 x+8 s-4 y^{2}-60 x^{2}+16 s x-12 s^{2}+8 s x^{2}-8 s^{2} x+4 s^{2} x^{2} .
\end{aligned}
$$

By equations (6.3.1), (6.3.2) and (6.3.4),

$$
\begin{aligned}
& d_{11}=-32-32 s \\
& d_{12}=32+32 s \\
& d_{21}=-32-32 s \\
& d_{22}=64 .
\end{aligned}
$$

Hence, $A B^{2} A=B^{3}$.

Next,

$$
B A^{2} B=(B A)(A B)=64^{-1}\left(\begin{array}{ll}
e_{11} & e_{12} \\
e_{21} & e_{22}
\end{array}\right),
$$

where

$$
\begin{aligned}
& e_{11}=-12+56 x-24 s-4 y^{2}-60 x^{2}+48 s x-12 s^{2}+8 s x^{2}-8 s^{2} x+4 s^{2} x^{2} \\
& e_{12}=28-18 y-80 x+32 s+10 x y+20 x^{2}-8 s y-16 s x+4 s^{2}+2\left(s y^{2}+y^{2}\right)+16 s x^{2}+2 s^{2} y-2 s^{2} x y-4 s^{2} x^{2} \\
& e_{21}=-28-18 y+80 x-32 s+10 x y-20 x^{2}-8 s y+16 s x-4 s^{2}-2\left(s y^{2}+y^{2}\right)-16 s x^{2}+2 s^{2} y-2 s^{2} x y+4 s^{2} x^{2} \\
& e_{22}=64-64 x+16 s-32 s x+16 s x^{2}+\left(s^{2}-3\right) y^{2}+2 s y^{2} .
\end{aligned}
$$

By equations (6.3.1), (6.3.2) and (6.3.4),

$$
\begin{aligned}
& e_{11}=-32-32 s+32 x+32 s x \\
& e_{12}=48-8 y-48 x+16 s-8 s y-16 s x \\
& e_{21}=-48-8 y+48 x-16 s-8 s y+16 s x \\
& e_{22}=64-32 x-32 s x .
\end{aligned}
$$

Hence, $B A^{2} B=A^{3}$.

By part (b) of Lemma 4.2.4, $A=\left[A,{ }_{5} B\right]$, and $B=\left[B,{ }_{5} A\right]$. Now, if $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then $x=1$ and $1=2^{-1}(1-2 x+s)=2^{-1}(s-1)$, i.e., $s=3$. By equation (6.3.1), $9=s^{2}=5$. This implies that $4=0$, which is impossible, for $p \geq 3$. So, A is not the identity. Hence, (A, B) is a 5 -Engel pair in $S L(2, F)$.

This completes the proof of Main Theorem 9.

We also get the following corollary.

Corollary 6.3.4. If $p \equiv \pm 1 \bmod 5$ is a prime, then $S L(2, p)$ has a 5-Engel pair.

Remark 3. Heineken [18, Theorem 2] showed that $S L\left(2, p^{3}\right)$ is generated by an n-Engel pair. This overlaps with Main Theorem 8. However, the proof for Main Theorem 8 is different from that of Heineken.

Remark 4. It can be seen by GAP that $H_{2}=S L(2,5)$. This means that $S L(2,5)$ has a 5 -Engel pair. By page 411 of [31], it is known that $S L(2,5)$ is isomorphic to a subgroup of $S L(2, p)$ if and only if p is odd and 5 divides $p\left(p^{2}-1\right)$. This gives another proof for Main Theorem 9.

6.4 Computer Codes

The following programming script was used to search for Engel pairs in the special linear group $S L(2, p)$ with Mathematica. No complex symbolic computations is involved and therefore it can be translated to work on other programs, such as the open source mathematical system SAGE (www.sagemath.org).

```
Set1 := { };
Set2 := { };
X1 := {{1,0} {0, 1} };
Y1 := {{1, 0} {0, 1} };
```

```
EX1 := { {1, 0} {0, 1} };
EY1 := { {1, 0} {0, 1} };
invX1 := { {1, 0} {0, 1} };
invY1 := { {1, 0} {0, 1} };
invEX1 := { {1, 0} {0, 1} };
invEY1 := { {1, 0} {0, 1} };
ClX := { };
ClY := {};
CIE := { };
PrmD := 1;
Engl := 0;
For[jv = 1, jv < 10, jv++,
{
    PrmD = Prime[jv],
    Print [PrmD],
    Set1 = { },
    Set2 = { },
    CIE = { },
    For[ja = 0, ja < PrmD, ja++,
    {
        For[jb = 0, jb < PrmD, jb++,
            {
            For[jc = 0, jc < PrmD, jc++,
            {
            For[jd = 0, jd < PrmD, jd++,
            {
                If[Mod[ja*jd - jb*jc, PrmD] == 1,
                    Set1 = Append[Set1, { {ja, jb}, {jc, jd} }]],
                If[ja == 0 && jb == 1 && jc == PrmD - 1,
                    Set2 = Append[Set2, { {ja, jb}, {jc, jd} }]],
                }
            ]
            }
            ]
        }
        ]
    }
    ],
    For[je = 1, je < Length[Set2] + 1, je++,
        {
        For[jf = 1, jf < Length[Set1] + 1, jf++,
        {
        Engl = 0,
        ClX = { },
        ClY = { },
        X1 = Set2[[je]],
        Y1 = Set1[[jf]],
        EX1 = X1,
        EY1 = Y1,
        invX1 = { {X1[[2, 2]], PrmD - X1[[1, 2]]},
                            {PrmD - X1[[2, 1]], X1[[1, 1]]} },
        invY1 = { {Y1[[2, 2]], PrmD - Y1[[1, 2]]},
                            {PrmD - Y1[[2, 1]], Y1[[1, 1]]} },
        For[jg = 1, jg < Length[Set1] + 1, jg++,
        {
            Engl = Engl + 1,
            invEX1 = { {EX1[[2, 2]], PrmD - EX1[[1, 2]]},
```

```
                                    {PrmD - EX1[[2, 1]], EX1[[1, 1]]} },
            invEY1 = { {EY1[[2, 2]], PrmD - EY1[[1, 2]]},
                        {PrmD - EY1[[2, 1]], EY1[[1, 1]]} },
            EX1 = invEX1.invY1.EX1.Y1,
            EY1 = invEY1.invX1.EY1.X1,
            EX1 = { {Mod[EX1[[1, 1]], PrmD], Mod[EX1[[1, 2]], PrmD]},
                                    {Mod[EX1[[2, 1]], PrmD], Mod[EX1[[2, 2]], PrmD]} },
            EY1 = { {Mod[EY1[[1, 1]], PrmD], Mod[EY1[[1, 2]], PrmD]},
                                    {Mod[EY1[[2, 1]], PrmD], Mod[EY1[[2, 2]], PrmD]} },
            If [
                EX1 == X1 && EY1 == Y1 && Engl > 2, {
                If[ MemberQ[CIE, Engl] == False, {Print[{X1, Y1, Engl}],
                    CIE = Append[CIE, Engl]} ] , Break[]}],
            If [MemberQ[ClX, EX1] == True, Break[]],
            If [MemberQ[ClY, EY1] == True, Break[]],
            ClX = Append[ClX, EX1],
            ClY = Append[ClY, EY1]
            }
            ]
            }
            ]
    }
    ]
}
]
```


References

[1] A. Abdollahi, Left 3-Engel elements in groups, J. Pure Appl. Algebra 188 (2004), 1-6.
[2] A. Abdollahi and H. Khosravi, On the Right and Left 4-Engel Elements, Comm. Algebra 38 (2010), 933-943.
[3] A. Abdollahi, Engel elements in groups, London Mathematical Society Lecture Note Series: 387, Groups St Andrews 2009 in Bath, Volume 1, Cambridge University Press, 2011, pp. 94-117.
[4] F. Baader and T. Nipkow, Term rewriting and all that, Cambridge University Press, 1999.
[5] R. Brandl, Engel cycles in finite groups, Arch. Math. 41 (1983) 97-102.
[6] R. Brandl, On group with small Engel depth, Bull. Aust. Math. Soc. 28 (1983) 101-110.
[7] J. N. Bray and R. T. Curtis, Double coset enumeration of symmetrically generated groups, J. Group Theory 7 (2004), 167-185.
[8] C. M. Campbell, E. F. Robertson, N. Ruškuc, and R. M. Thomas, Automatic semigroups, Theoret. Comput. Sci. 250 (2001) 365-391.
[9] P. G. Crosby and G. Traustason, On right n-Engel subgroups, J. Algebra 324 (2010) 875-883.
[10] P. G. Crosby and G. Traustason, On right n-Engel subgroups II, J. Algebra 328 (2011) 504-510.
[11] D. B. A. Epstein, D. F. Holt, and S. E. Rees, The use of Knuth-Bendix methods to solve the wordproblem in automatic groups, J. Symbolic Comput. 12 (1991) 397-414.
[12] D. B. A. Epstein and P. J. Sanders, KnuthBendix for groups with infinitely many rules, Internat. J. Algebra Comput. 10 (2000) 539-589.
[13] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.12; 2008. (http://www.gap-system.org)
[14] K. W. Gruenberg, The Engel elements of a soluble group, Illinois J. Math. 3 (1959),151-169.
[15] K. W. Gruenberg, The Engel structure of linear groups, J. Algebra 3 (1966), 291-303.
[16] P. Hall, On non-strictly simple groups, Proc. Cambridge Phil. Soc. 59 (1963), 531-553.
[17] R. Hartung, Coset enumeration for certain infinitely presented groups, Internat. J. Algebra Comput. 21 (2011), 1369-1380.
[18] H. Heineken, Groups Generated by two Mutually Engel Periodic Elements, Bollettino U. M. I. (8) 3-B (2000), 461-470.
[19] D. F. Holt, An alternative proof that the Fibonacci group $F(2,9)$ is infinite, Experiment. Math. 4 (1995) 97-100.
[20] D. F. Holt, Some challenging group presentations, J. Aust. Math. Soc. 67 (1999) 206-213.
[21] N. Jacobson Basic Algebra I, W. H. Freeman and Company, New York (1985).
[22] W. P. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187-197.
[23] F. W. Levi, Groups in which the commutator operation satisfies certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.
[24] V. D. Mazurov, E. I. KhuKhro Unsolved problems in group theory, the Korovka notebook, no. 18, Russian Academy of Sciences, Siberian Division, Institute of Mathematics, 2014
[25] R. E. Needham, Infinite complete group presentations, J. Pure Appl. Algebra 110 (1996), 195-218.
[26] J. Neubüser. An elementary introduction to coset table methods in computational group theory, in Campbell and Robertson ed., Groups-St. Andrews 1981, volume 71 of London Math. Soc. Lecture Note Ser. 1-45.
[27] M. L. Newell, On right-Engel elements of length three, Math. Proc. R. Ir. Acad. A 96 (1996), 17-24.
[28] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York (1982).
[29] J. J. Rotman, The Theory of Groups, An Introduction, Second Edition, Ally and Bacon (1978).
[30] M. Sayed, Coset enumeration of symmetrically generated groups using Grobner bases, Int. J. Algebra 3 (2009), 693-705.
[31] M. Suzuki, Group Theory I, Springer, Berlin, 1982.
[32] J. A. Todd and H. S. M. Coxeter. A practical method for enumerating cosets of a finite abstract group, Proc. Edinb. Math. Soc. 5 (1936), 26-34.
[33] B. A. F. Wehrfritz, Finitary automorphism groups over commutative rings, J. Pure Appl. Algebra 172 (2002), 337-346.
[34] K. B. Wong, P. C. Wong, On finite complete rewriting systems and large subsemigroups, J. Algebra 345 (2011) 242-256.

