
ABSTRACT

This thesis is a study of certain Engel conditions. First, we will define the set

of all the X-relative left Engel elements L(G,X) and the set of all the bounded

X-relative left Engel elements L(G,X), where X is a subset of G. When X = G,

L(G,X) = L(G) and L(G,X) = L(G), where L(G) is the set of all the usual left

Engel elements and L(G) is the set of all the usual bounded left Engel elements.

Next, we define the X-relative Hirsch-Plotkin radical HP (G,X) and the X-relative

Baer radical B(G,X). When X = G, HP (G,X) = HP (G) and B(G,X) = B(G)

where HP (G) is the usual Hirsch-Plotkin radical and B(G) is the usual Baer radical.

We will show that if X is a normal solvable subgroup of G, then B(G,X) = L(G,X)

and HP (G,X) = L(G,X). This is an extension of the classical results B(G) = L(G)

and HP (G) = L(G) provided that G is solvable. Next, we show that if X is

a normal subgroup of G and G satisfies the maximal condition, then L(G,X) =

HP (G,X) = B(G,X) = L(G,X), which is also an extension of the classical result

L(G) = HP (G) = B(G) = L(G). We also proved similar results when X is a

subgroup of certain linear groups.

Let G be a group and h, g ∈ G. The 2-tuple (h, g) is said to be an n-Engel pair,

n ≥ 2, if h = [h,n g], g = [g,n h] and h 6= 1. We will show that the subgroup generated

by the 5-Engel pair (x, y) satisfying yxy = xyx and x5 = 1 is the alternating

group A5. Next, we show that if (x, y) is an n-Engel pair, xyx−2yx = yxy and

yxy−2xy = xyx, then n = 2k where k = 4 or k ≥ 6. Furthermore, the subgroup

generated by {x, y} is determined for k = 4, 6, 7 and 8.
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Finally, we prove the existence of Engel pairs in certain special linear groups of

order 2. In particular, we show that if SL(2, F ) is the special linear group of order

2 over the field F , then given any field L, there is a field extension F ′ of L with

[F ′ : L] ≤ 6 such that SL(2, F ′) has an n-Engel pair for some integer n ≥ 4. We will

also show that SL(2, F ) has a 5-Engel pair if F is a field of characteristic p ≡ ±1

mod 5.
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ABSTRAK

Tesis ini merupakan suatu kajian bagi kondisi Engel. Yang pertama, kami

menakrifkan set unsur Engel kiri relatif-X, L(G,X) , dan set unsur Engel kiri

relatif-X terkurung L(G,X), di mana X ialah subset bagi G. Apabila X = G,

L(G,X) = L(G) dan L(G,X) = L(G), di mana L(G) ialah set bagi semua un-

sur Engel kiri dan L(G) ialah set bagi semua unsur Engel kiri terkurung. Kemu-

dian, kami menakrifkan Radikal Hirsch-Plotkin relatif-X HP (G,X) dan radikal Baer

relatif-X, B(G,X). Apabila X = G, HP (G,X) = HP (G) dan B(G,X) = B(G)

di mana HP (G) merupakan radikal Hirsch-Plotkin dan B(G) ialah radikal Baer.

Kami akan buktikan bahawa jikalau X subkumpulan normal boleh selesai bagi G,

maka B(G,X) = L(G,X) dan HP (G,X) = L(G,X). Ini ialah suatu generalisasi

bagi B(G) = L(G) dan HP (G) = L(G) di mana G boleh selesai. Kemudian, kami

buktikan jikalau X ialah subkumpulan normal bagi G dan G memuaskan kondisi

maksimal, maka L(G,X) = HP (G,X) = B(G,X) = L(G,X), juga generalisasi

bagi L(G) = HP (G) = B(G) = L(G). Kami juga buktikan hasil serupa bila X

ialah subkumpulan bagi kumpulam linear tertentu.

Biar G suatu kumpulan dan h, g ∈ G. Suatu rangkap-2 (h, g) ialah pasangan

n-Engel , n ≥ 2, jika h = [h,n g], g = [g,n h] dan h 6= 1. Kami akan tunjukkan

bahawa subkumpulan yang dijana oleh pasangan 5-Engel (x, y) yang memuaskan

yxy = xyx dan x5 = 1 ialah kumpulan A5. Kemudian, kami tunjukkan bakawa

jikalau (x, y) ialah pasangan n-Engel, xyx−2yx = yxy dan yxy−2xy = xyx, maka

n = 2k di mana k = 4 atau k ≥ 6. Di samping itu, subkumpulan yang dijana oleh

{x, y} dikenalpasti bagi k = 4, 6, 7 dan 8.
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Akhirnya, kami buktikan wujudnya pasangan Engel dalam kumpulan linear is-

timewa berperingkat 2 yang tertentu. Terutamanya, kami buktikan jikalau SL(2, F )

merupakan kumpulan linear istimewa berperingkat 2 di atas medan F , maka bagi

semua medan L, wujud suatu peluasan medan F ′ oleh L dengan [F ′ : L] ≤ 6 di

mana SL(2, F ′) ada suatu pasangan n-Engel bagi sesuatu integer n ≥ 4. Kami juga

akan buktikan SL(2, F ) mempunyai pasangan 5-Engel jikalau F ialah suatu medan

sengan cirian p ≡ ±1 mod 5.
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Chapter 1

Introduction

1.1 General Introduction

The aim of this thesis is to give some generalizations on Engel elements, and to

characterize finite groups having Engel pairs.

In recent decades, increasingly more mathematicians are involved in the study

of Engel elements in groups. The study of such elements are facilitated by the

increasing processing power of computer and its software. With such computational

power, we are able to visualize abstract objects and find new examples, which lead

to the finding of new theorems.

1.2 Relative Engel Elements

Let G be a group. Let x1, x2, . . . , xm ∈ G. The commutator of x1 and x2 is [x1, x2] =

x−11 x−12 x1x2, and a simple commutator of weight m ≥ 2 is defined recursively as

[x1, x2, . . . , xm] = [[x1, x2, . . . , xm−1], xm],

where by convention [x1] = x1. Let x, y ∈ G. A useful shorthand notation is

[x,m y] = [x,
m︷ ︸︸ ︷

y, y, . . . , y],

where by convention [x,0 y] = [x].
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An element g ∈ G is called a left Engel element of G, if for each x ∈ G, there is a

positive integer n = n(g, x) such that [x,n g] = 1. The set of all left Engel elements

is denoted by L(G). An element g ∈ G is called a left m-Engel element of G, if

[x,m g] = 1 for all x ∈ G. The set of all left m-Engel elements is denoted by Lm(G).

Let N be the set of all positive integers. The elements in L(G) =
⋃
m∈N Lm(G) are

called bounded left Engel elements of G.

An element g ∈ G is called a right Engel element of G, if for each x ∈ G, there

is a positive integer n = n(g, x) such that [g,n x] = 1. The set of all right Engel

elements is denoted by R(G). An element g ∈ G is called a right m-Engel element

of G, if [g,m x] = 1 for all x ∈ G. The set of all right m-Engel elements is denoted

by Rm(G). The elements in R(G) =
⋃
m∈NRm(G) are called bounded right Engel

elements of G.

Let X be a subset of a group G. An element g ∈ G is called an X-relative left

Engel element of G, if for each x ∈ X, there is a positive integer n = n(g, x) such

that [x,n g] = 1. The set of all X-relative left Engel elements is denoted by L(G,X).

An element g ∈ G is called an X-relative left m-Engel element of G, if [x,m g] = 1 for

all x ∈ X. The set of all X-relative left m-Engel elements is denoted by Lm(G,X).

Let N be the set of all positive integers. The elements in L(G,X) =
⋃
m∈N Lm(G,X)

are called bounded X-relative left Engel elements of G.

The set of X-relative right Engel elements of G, X-relative right m-Engel ele-

ments of G, and bounded X-relative right Engel elements of G, denoted by R(G,X),

Rm(G,X) and R(G,X) respectively, are defined similarly.
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Note that when X = G, we have L(G,G) = L(G), Lm(G,G) = Lm(G) and

L(G,G) = L(G). The same are true for R(G,G), Rm(G,G) and R(G,G).

1.3 Relative Hirsch-Plotkin and Baer Radicals

Let a, b ∈ G, H be a subgroup of G, and X be a subset of G. We shall use the

following notations:

(a) ab = b−1ab,

(b) Hb = b−1Hb,

(c) 〈X〉 is the subgroup generated by X.

(d) HX = 〈{hx : h ∈ H, x ∈ X}〉.

The Hirsch-Plotkin radical of a group G, denoted by HP (G), is the unique

maximal normal locally nilpotent subgroup of G (see [28, 12.1.3 on p. 343]). In fact

HP (G) = {a ∈ G : 〈a〉G is locally nilpotent}.

This motivates us to define the X-relative Hirsch-Plotkin radical by

HP (G,X) = {a ∈ G : 〈a〉X is locally nilpotent}.

Note that HP (G,X) may not be a group.

The Baer radical of a group G, denoted by B(G) is the set of all a ∈ G such

that 〈a〉 is subnormal in G. In fact

B(G) = {a ∈ G : 〈a〉 is subnormal in 〈a〉G}.

This motivates us to define the X-relative Baer radical by

B(G,X) = {a ∈ G : 〈a〉 is subnormal in 〈a〉X}.
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Note that HP (G,G) = HP (G) and B(G,G) = B(G).

1.4 Classical and New Results

A common problem in the theory of Engel elements is to find conditions on G, so

that HP (G) = L(G) and B(G) = L(G). In the sense of relativity, the problem is to

find conditions on X, so that HP (G,X) = L(G,X) and B(G,X) = L(G,X).

Gruenberg [14] proved the following classical theorem for solvable groups (see

also [28, 12.3.3 on p. 357]).

Theorem 1.4.1. If G is a solvable group, then B(G) = L(G) and HP (G) = L(G).

A group G is said to satisfy the maximal condition if there is no infinite ascending

chain of subgroups

H1 ( H2 ( H3 ( · · · .

Baer ([28, 12.3.7 on p. 360]) proved that similar identities hold if G satisfies the

maximal condition.

Theorem 1.4.2. If G satisfies the maximal condition, then L(G) = HP (G) =

B(G) = L(G).

The following theorems which are generalizations of Theorems 1.4.1 and 1.4.2

will be proved in Chapter 2.

Main Theorem 1. Let X be a normal solvable subgroup of a group G. Then

(a) B(G,X) = L(G,X),

(b) HP (G,X) = L(G,X).
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Main Theorem 2. Let X be a normal subgroup of a group G. If G satisfies the

maximal condition, then L(G,X) = HP (G,X) = B(G,X) = L(G,X).

Let R be a commutative ring with identity and A be an R-module. We shall

denote the group of all R-automorphisms of A by AutRA. Let

FAutRA = {α ∈ AutRA : (α− 1)A is a Noetherian R-module}.

Note that FAutRA is a subgroup of AutRA and it is called the finitary automor-

phisms group of A over R (see [33, Section 1]).

Theorem 1.4.3. Let R be a commutative Noetherian ring with identity and A be

a finitely generated R-module. If G is a subgroup of AutRA, then L(G) = HP (G)

and L(G) = B(G).

Theorem 1.4.4. Let G be a subgroup of a finitary automorphisms group of a module

over a commutative ring with identity. Then L(G) = HP (G) and L(G) = B(G).

Theorem 1.4.3 was proved by Gruenberg [15, Theorem 0] and Theorem 1.4.4 was

proved by Wehrfritz [33, 4.4]. We will give a generalization of these two results (see

Main Theorem 3 and 4).

Definition 1.4.5. Let H,K be subgroups of a group G and H / K. Let N0 be the

set of non-negative integers. An element b ∈ G is said to be (H,K)-centralizable if

there is a sequence of normal subgroups of K, say {Hi}i∈N0 such that

(a) H0 = H,

(b) Hi+1 = {d ∈ K : [d, b] ∈ Hi} for all i ∈ N0.
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It is not hard to see that H = H0 / H1 / H2 / · · · . The sequence {Hi}i∈N0 shall be

called the (H,K)-centralized normal sequence of b.

A set W ⊆ G is said to be (H,K)-centralizable if every element in W is (H,K)-

centralizable.

Main Theorem 3. Let G be a group, R be a commutative Noetherian ring with

identity and A be a finitely generated R-module. Let S be a normal subgroup of G

such that 〈L(S)〉 is a subgroup of AutRA. If L(G,S) is (HP (S), S)-centralizable,

then

(a) B(G,S) = L(G,S),

(b) HP (G,S) = L(G,S).

Main Theorem 4. Let G be a group, R be a commutative ring with identity and

A be an R-module. Let S be a normal subgroup of G such that 〈L(S)〉 is a subgroup

of FAutRA. If L(G,S) is (HP (S), S)-centralizable, then HP (G,S) = L(G,S).

These two theorems will be proved in Chapter 3.

1.5 Engel Pairs

Every finite group G satisfies a law [x,r y] = [x,s y] for some positive integers r < s.

The minimal value of r is called the Engel depth of G (see [5, 6]). So, given any

non-left Engel element g ∈ G, there exists a h ∈ G and a positive integer n such

that h = [h,n g]. However we do not know whether g = [g,n h] or not.
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Let G(a, b) = {x, y|x = [x,a y], y = [y,b x]}. It can be shown that G(1, b) = 1 and

G(2, 2) = 1. However, we wonder if G(a, b) is also finite for other values of a and b

(see Problem 11.18 of [24]: Note that Problem 17.80 is a special case for Problem

11.18 in which a = b).

Definition 1.5.1. Let G be a group and h, g ∈ G. The 2-tuple (h, g) is said to be

an n-Engel pair, n ≥ 2, if h = [h,n g], g = [g,n h] and h 6= 1.

In Chapter 4, we will show that if (h, g) is an n-Engel pair and hgh = ghg,

then n must be a multiple of 5. Furthermore, the subgroup generated by {h, g} is

isomorphic to A5 if the order of h is 5, and is isomorphic to H2 if the order of h is 10.

Here, A5 is the alternating subgroup on 5 elements and H2 is the central extension

of the cyclic group of order 2 by A5 (see Main Theorem 5).

In Chapter 5, we will show that if (h, g) is an n-Engel pair in a group H satisfying

the conditions hgh−2gh = ghg and ghg−2hg = hgh, then n = 2k where k = 4 or

k ≥ 6 (see Main Theorem 6). For k = 4, 6, 7, 8, we will give characterizations of the

subgroup generated by this n-Engel pair (see Main Theorem 7).

Let SL(2, F ) be the special linear group of order 2 over the field F . If F = Zp

for a prime p, then we shall write SL(2, p) instead of SL(2, F ). In Chapter 6, we

will prove the following theorems.

Main Theorem 8. Given any field L, there is a field extension F of L with [F : L] ≤

6 such that SL(2, F ) has an n-Engel pair for some integer n ≥ 4.

Main Theorem 9. Given any field F of characteristic p ≡ ±1 mod 5, SL(2, F )

has a 5-Engel pair.
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Chapter 2

Relative Engel Elements I

2.1 A Brief Introduction

Let X be a subset of a group G. Recall that an element g ∈ G is called an X-relative

left Engel element of G, if for each x ∈ X, there is a positive integer n = n(g, x) such

that [x,n g] = 1. The set of all X-relative left Engel elements is denoted by L(G,X).

An element g ∈ G is called an X-relative left m-Engel element of G, if [x,m g] = 1 for

all x ∈ X. The set of all X-relative left m-Engel elements is denoted by Lm(G,X).

Let N be the set of all positive integers. The elements in L(G,X) =
⋃
m∈N Lm(G,X)

are called bounded X-relative left Engel elements of G.

The set of X-relative right Engel elements of G, X-relative right m-Engel ele-

ments of G, and bounded X-relative right Engel elements of G, denoted by R(G,X),

Rm(G,X) and R(G,X) respectively, are defined similarly.

Let Z(G) be the center of G. Note that L1(G) = R1(G) = Z(G). Let CG(X) =

{g ∈ G : gx = xg ∀x ∈ X}. Clearly CG(X) is a subgroup of G, and L1(G,X) =

R1(G,X) = CG(X). We shall characterize L2(G,X) and R2(G,X) in Section 2.2.
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We will prove Main Theorem 1 and Main Theorem 2 in Sections 2.3 and 2.4,

respectively.

The main results in this chapter have been published ( see S. G. Quek, K. B.

Wong, P. C. Wong, On Engel elements of a group relative to certain subgroup, Comm.

Algebra 40 (2012), 4693–4701 ).

2.2 2-Engel elements

Let G be a group. Let a, b ∈ G, H be a subgroup of G, and X be a subset of G.

We shall use the following notations:

(a) ab = b−1ab,

(a) Hb = b−1Hb,

(c) 〈X〉 is the subgroup generated by X.

(d) HX = 〈{hx : h ∈ H, x ∈ X}〉.

(e) NG(H) = {g ∈ G : Hg = H} (note that NG(H) is called the normalizer of

H in G).

Now Theorem 2.2.1 and Theorem 2.2.2 follow from the fact that [x, g, g] = 1 if

and only if g commutes with [x, g] = g−xg if and only if g commutes with gx.

Theorem 2.2.1. Let X be a subset of a group G. Then

L2(G,X) = {g ∈ G : [g, gx] = 1 for all x ∈ X}.

Furthermore if X is a subgroup, then L2(G,X) = {g ∈ G : 〈g〉X is abelian }.
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Theorem 2.2.2. Let X be a subset of a group G. Then

R2(G,X) = {g ∈ G : [x, xg] = 1 for all x ∈ X}.

Note that Theorem 2.2.1 is a generalization of the well-known fact L2(G) =

{g ∈ G : 〈g〉G is abelian} (see [23] and [28, 12.3.6 on p. 358]). It was shown

by Kappe [22] that when X = G, R2(G,G) ⊆ L2(G,G), and R2(G,G) is a group.

However in general we do not know whether R2(G,X) is a group or not. We give a

characterization of R2(G,X) in Corollary 2.2.3.

Corollary 2.2.3. Let X be a subset of a group G and g ∈ R2(G,X). Then

(a) g−1 ∈ R2(G,X),

(b) if a ∈ G and aXa−1 ⊆ X, then a−1ga ∈ R2(G,X),

(c) R2 = R2(G,X) is a subgroup of G if and only if 〈x〉R2 is abelian for all x ∈ X.

Proof. (a) By Theorem 2.2.2, for all x ∈ X, [x, xg] = 1, i.e, [xg
−1
, x] = 1, and this

implies [x, xg
−1

] = 1. Hence g−1 ∈ R2(G,X).

(b) Again by Theorem 2.2.2, for all x ∈ X, [x, xg] = 1, i.e., [xa, xga] = 1. Now let

y ∈ X and set x = ya
−1

, then [y, ya
−1ga] = 1. Hence a−1ga ∈ R2(G,X).

(c) Suppose R2 is a subgroup of G. Let x ∈ X and a, b ∈ R2. Then ab−1 ∈ R2, and

by Theorem 2.2.2, [x, xab
−1

] = 1, i.e., [xb, xa] = 1. This implies that 〈x〉R2 is abelian.

The converse is proved similarly.

Note that Abdollahi [1] and Newell [27] have given characterizations of L3(G) =

L3(G,G) and R3(G) = R3(G,G), respectively. It would be interesting to know

how elements in L3(G,X) and R3(G,X) behave. See also a more recent paper by
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Abdollahi and Khosravi [2] on 4-Engel elements. The reader may also refer to a

chapter by Abdollahi in a recent textbook [3] on Engel elements.

2.3 Main Theorem 1

Recall that the X-relative Hirsch-Plotkin radical is defined by

HP (G,X) = {a ∈ G : 〈a〉X is locally nilpotent},

and the X-relative Baer radical is defined by

B(G,X) = {a ∈ G : 〈a〉 is subnormal in 〈a〉X}.

Lemma 2.3.1. Let G be a group and A,K1, K2 be subgroups of G such that K1 /K2

and A ⊆ K1. If AK1 is locally nilpotent, then AK2 is locally nilpotent.

Proof. First note that AK2 is a subgroup of K1. So AK1 / AK2 . Let x ∈ K2. If u ∈

K1, then ux
−1 ∈ K1, and u−1(AK1)xu = u−1x−1(AK1)xu = x−1u−x

−1
(AK1)ux

−1
x =

(AK1)x. So (AK1)x / K1, and thus (AK1)x / AK2 . Now (AK1)x is locally nilpotent

implies that (AK1)x ⊆ HP (AK2). Since AK2 =
〈⋃

x∈K2
(AK1)x

〉
, AK2 = HP (AK2) is

locally nilpotent.

Theorem 2.3.2. Let X be a subgroup of a group G. Then

(a) B(G,X) ⊆ HP (G,X),

(b) B(G,X) ⊆ L(G,X),

(c) HP (G,X) ⊆ L(G,X).

Proof. (a) Let a ∈ B(G,X). Then 〈a〉 is subnormal in 〈a〉X . Since 〈a〉X / 〈a,X〉,

there is a subnormal chain

〈a〉 = A0 / A1 / A2 / · · · / An = 〈a,X〉.
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Now 〈a〉 = 〈a〉A1 is locally nilpotent implies that 〈a〉A2 is locally nilpotent (Lemma

2.3.1). So by applying Lemma 2.3.1 repeatedly, we conclude that 〈a〉〈a,X〉 is locally

nilpotent. Therefore 〈a〉X is locally nilpotent as it is a subgroup of 〈a〉〈a,X〉. Hence

a ∈ HP (G,X).

(b) Let a ∈ B(G,X). Again we have 〈a〉 = A0/A1/A2/· · ·/An = 〈a,X〉. Let x ∈ X.

As a ∈ An−1 and x ∈ An, we have [x, a] ∈ An−1. As a ∈ An−2 and [x, a] ∈ An−1,

we have [x, a, a] ∈ An−2. We can continue this process to obtain [x,n a] ∈ A0. So

[x,n+1 a] = 1 for all x ∈ X. Thus a ∈ Ln+1(G,X) ⊆ L(G,X).

(c) Let a ∈ HP (G,X). Then 〈a〉X is locally nilpotent. Let x ∈ X. Note that

[x, a], a ∈ 〈a〉X , and so 〈a, [x, a]〉 is nilpotent. Therefore there is a positive integer

n = n(x, a) such that [x,n a] = 1. Hence a ∈ L(G,X).

Lemma 2.3.3. Let C,D be normal subgroups of a group G such that C ⊆ D and

D/C is abelian. Let a ∈ L(G,D) be fixed. Inductively set C0 = C, and for i ≥ 1,

Ci = {d ∈ D : [d, a] ∈ Ci−1}. Then

(a) Ci is a normal subgroup of D and D/Ci is abelian for all i ≥ 0,

(b) Ci ⊆ Ci+1 for all i ≥ 0,

(c) D =
⋃
i≥0Ci,

(d) if a ∈ L(G,D), then D = Cm for some positive integer m.

Proof. (a) We shall prove by induction on i. Clearly it is true for i = 0. Suppose

i ≥ 1. Assume that Ci−1 is a normal subgroup of D and D/Ci−1 is abelian.
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Note that Ci/Ci−1 is the centralizer of aCi−1 in D/Ci−1 and Ci/Ci−1 / D/Ci−1

for D/Ci−1 is abelian. Hence Ci is a normal subgroup of D and D/Ci is abelian,

being a quotient of D/Ci−1.

(b) This follows from part (a) of this theorem.

(c) Clearly
⋃
i≥0Ci ⊆ D. Let d ∈ D. If d = 1, then d ∈

⋃
i≥0Ci. We may

assume d 6= 1. Note that [d,n a] = 1 for some positive integer n, and [d,l a] ∈ D

for l = 1, 2, . . . , n − 1 (because D / G). Now [[d,n−1 a], a] = [d,n a] = 1 implies

that [d,n−1 a] ∈ C1. As [[d,n−2 a], a] = [d,n−1 a] ∈ C1, we have [d,n−2 a] ∈ C2. By

continuing this way, we see that [d, a] ∈ Cn−1 and d ∈ Cn. Hence D =
⋃
i≥0Ci.

(d) If a ∈ L(G,D), then there is a positive integer m such that [d,m a] = 1 for all

d ∈ D. By using a similar argument as in the proof of part (c) of this theorem, we

see that D = Cm.

Main Theorem 1. Let X be a normal solvable subgroup of a group G. Then

(a) B(G,X) = L(G,X),

(b) HP (G,X) = L(G,X).

Proof. Let the derived length of X be d. Note that X(i+1) and X(i) are normal in G

and X(i)/X(i+1) is abelian for i = 0, 1, 2, . . . , d − 1, and furthermore X(0) = X and

X(d) = 1.

(a) By part (b) of Theorem 2.3.2, it is sufficient to show that L(G,X) ⊆ B(G,X).

Let a ∈ L(G,X). Then a ∈ L(G,X(i)) (for X(i) ⊆ X). By part (d) of Lemma 2.3.3,

there is a positive integer mi such that X(i) = Cimi
where Ci0 = X(i+1) and for

j = 1, 2, . . . ,mi, Cij = {d ∈ X(i) : [d, a] ∈ Ci(j−1)}. Note that 〈a, Cij〉 / 〈a, Ci(j+1)〉.
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Therefore 〈a,X(i+1)〉 is subnormal in 〈a,X(i)〉. This implies that 〈a〉 = 〈a,X(d)〉 is

subnormal in 〈a,X〉. As 〈a〉X is a subgroup of 〈a,X〉, 〈a〉 is subnormal in 〈a〉X .

Hence a ∈ B(G,X).

(b) By part (c) of Theorem 2.3.2, it is sufficient to show that L(G,X) ⊆ HP (G,X).

Let a ∈ L(G,X). Then a ∈ L(G,X(i)). By Lemma 2.3.3, X(i) =
⋃
j≥0Cij where

Ci0 = X(i+1) and for j ≥ 1, Cij = {d ∈ X(i) : [d, a] ∈ Ci(j−1)}. Note that

〈a, Cij〉 / 〈a, Ci(j+1)〉.

When i = d− 1, we have C(d−1)0 = X(d) = 1 and

〈a〉 = 〈a, C(d−1)0〉 / 〈a, C(d−1)1〉 / 〈a, C(d−1)2〉 / · · · .

Note that 〈a〉 = 〈a〉〈a,C(d−1)1〉 is locally nilpotent. By Lemma 2.3.1, 〈a〉〈a,C(d−1)2〉 is

locally nilpotent. In fact inductively, we see that 〈a〉〈a,C(d−1)j〉 is locally nilpotent for

all j ≥ 1. Furthermore 〈a〉〈a,C(d−1)1〉 ⊆ 〈a〉〈a,C(d−1)2〉 ⊆ 〈a〉〈a,C(d−1)3〉 ⊆ · · · is an as-

cending chain of locally nilpotent groups. Therefore 〈a〉〈a,X(d−1)〉 =
⋃
j≥1〈a〉〈a,C(d−1)j〉

is locally nilpotent.

When i = d− 2, we have C(d−2)0 = X(d−1) and

〈a, C(d−2)0〉 / 〈a, C(d−2)1〉 / 〈a, C(d−2)2〉 / · · · .

Note that 〈a〉〈a,C(d−2)0〉 = 〈a〉〈a,X(d−1)〉 is locally nilpotent. By using similar argument

as in the previous paragraph, we deduce that 〈a〉〈a,X(d−2)〉 is locally nilpotent.

By continuing this process, we see that 〈a〉〈a,X〉 is locally nilpotent. Hence 〈a〉X

is locally nilpotent, and a ∈ HP (G,X).

21



Note that Main Theorem 1 is a generalization of a theorem of Gruenberg which

states that B(G) = L(G) and HP (G) = L(G) for any solvable group G (see [14]

and [28, 12.3.3 on p. 357]).

2.4 Main Theorem 2

Lemma 2.4.1. Let X be a subgroup of a group G. If G satisfies the maximal

condition, then HP (G,X) = B(G,X).

Proof. By part (a) of Theorem 2.3.2, it is sufficient to show that HP (G,X) ⊆

B(G,X). Let a ∈ HP (G,X). Then 〈a〉X is locally nilpotent. Since G satisfies

maximal condition, 〈a〉X is finitely generated. Thus 〈a〉X is nilpotent, and 〈a〉 is

subnormal in 〈a〉X . So a ∈ B(G,X).

Lemma 2.4.2. Let X be a subgroup of a group G. If a ∈ L(G,X), then au ∈

L(G,X) for all u ∈ X.

Proof. Let u ∈ X be fixed. Let x ∈ X. Then xu
−1 ∈ X (as X is a group), and there

is a positive integer n such that [xu
−1
,n a] = 1. So [xu

−1
,n a]u = 1 and [x,n a

u] = 1.

Hence au ∈ L(G,X).

Lemma 2.4.3. Let X be a normal subgroup of a group G, and a ∈ G. Let {a}X =

{ax : x ∈ X}. Then vu, vu
−1 ∈ {a}X for all u, v ∈ {a}X .

Proof. Let u = ax1 and v = ax2 where x1, x2 ∈ X. Then

vu = x−11 a−1x1x
−1
2 ax2x

−1
1 ax1

= (x−11 a−1x1x
−1
2 a)a(a−1x2x

−1
1 ax1) ∈ {a}X ,

for x−11 a−1x1x
−1
2 a ∈ X. Similarly vu

−1 ∈ {a}X .
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Let u ∈ G. A subgroup A of G is said to be (X, u)-generated if A is generated

by elements in {u}X , i.e., A = 〈A ∩ {u}X〉.

Lemma 2.4.4. Let X be a normal subgroup of a group G, and u ∈ G. Suppose A,

B are (X, u)-generated subgroups of G. If A ( B and B is nilpotent, then there is

an element x ∈ X such that ux ∈ B \ A and ux ∈ NG(A).

Proof. Since B is nilpotent, A is subnormal in B, i.e., A = A0 / A1 / A2 / · · · /

An = B. As both A and B are (X, u)-generated, and A ( B, we deduce that

A ∩ {u}X ( B ∩ {u}X . So there is a i0 such that A ∩ {u}X = A1 ∩ {u}X = · · · =

Ai0 ∩{u}X ( Ai0+1 ∩{u}X . Let ux ∈ Ai0+1 ∩{u}X \ (Ai0 ∩{u}X). Since Au
x

i0
= Ai0 ,

by Lemma 2.4.3, (A∩{u}X)u
x

= (Ai0∩{u}X)u
x ⊆ Ai0∩{u}X = A∩{u}X . Similarly

(A ∩ {u}X)u
−x ⊆ A ∩ {u}X . Hence ux ∈ NG(A).

Lemma 2.4.5. Let M be a subgroup of a group G. Let a ∈ NG(M). Suppose that

M = 〈w1, w2, . . . , wn〉 and there is a positive integer m such that [wi,m a] = 1 for

i = 1, 2, . . . , n. If M is nilpotent, then 〈a,M〉 is nilpotent.

Proof. Note that M / 〈a,M〉. This implies that [M,M ] / 〈a,M〉. It is clear that

〈a,M〉/[M,M ] is nilpotent of class at most m. Since M is nilpotent, 〈a,M〉 is

nilpotent (see [28, 5.2.10 on p. 129]).

Lemma 2.4.6. Let x, y, a be elements in a group G. If l is a positive integer, then

[a−x,l a
y] = [y−1x,l+1 a

y]a
−y

.

23



Proof. Note that

[a−x,l a
y] = [a−yy

−1x,l a
y]

= [(ay)−y
−1x,l a

y]

= [[y−1x, ay]a−y,l a
y]

= [[[y−1x, ay]a−y, ay],l−1 a
y]

= [[[y−1x, ay], ay]a
−y

[a−y, ay],l−1 a
y]

= [[y−1x, ay, ay]a
−y

,l−1 a
y]

= [[y−1x, ay, ay],l−1 a
y]a

−y

= [y−1x,l+1 a
y]a

−y

.

Main Theorem 2. Let X be a normal subgroup of a group G. If G satisfies the

maximal condition, then L(G,X) = HP (G,X) = B(G,X) = L(G,X).

Proof. By Theorem 2.3.2 and Lemma 2.4.1, it is sufficient to show that L(G,X) ⊆

HP (G,X). Let a ∈ L(G,X). We need to show that 〈a〉X is nilpotent.

Let T be the set of all (X, a)-generated nilpotent subgroups of G. Note that

T 6= ∅ for 〈a〉 ∈ T . Since G satisfies the maximal condition, it has a maximal

(X, a)-generated nilpotent subgroup in T .

Claim 1. Let U ∈ T . If Uay = U for some y ∈ X, then 〈U, ay〉 ∈ T .

Proof of Claim 1. Note that U / 〈U, ay〉. As U is (X, a)-generated and G sat-

isfies the maximal condition, we may assume that U = 〈ax1 , ax2 , . . . , axm〉 where

x1, x2, . . . , xm ∈ X. By Lemma 2.4.2, ay ∈ L(G,X). So there is a positive inte-

24



ger l such that [y−1xi,l+1 a
y] = 1 for i = 1, 2, . . . ,m. It is not hard to see that

U = 〈a−x1 , a−x2 , . . . , a−xm〉.

Now for i = 1, 2, . . . ,m, by Lemma 2.4.6, we have [a−xi ,l a
y] = [y−1xi,l+1 a

y]a
−y

=

1. By Lemma 2.4.5, 〈U, ay〉 is nilpotent, and therefore 〈U, ay〉 ∈ T .

Case 1. G has only one maximal (X, a)-generated nilpotent subgroup in T , say M .

If M = 〈a〉X , then 〈a〉X is nilpotent, and a ∈ HP (G,X). Suppose M ( 〈a〉X . Then

there is a y ∈ X with ay /∈M . Note that by Lemma 2.4.3, May is (X, a)-generated,

and it is nilpotent. Since G satisfies the maximal condition, May is contained in a

maximal (X, a)-generated nilpotent subgroup. This means May ⊆M , for G has only

one maximal (X, a)-generated nilpotent subgroup. Similarly Ma−y ⊆M . Therefore

May = M , and by Claim 1, 〈M,ay〉 ∈ T , but this contradicts the maximality of M .

Hence M = 〈a〉X .

Case 2. G has at least two maximal (X, a)-generated nilpotent subgroups in T .

We will show that this case cannot happen. Consider the following set

I =
{
〈U ∩ V ∩ {a}X〉

}
,

where U, V are distinct maximal (X, a)-generated nilpotent subgroups in T . Since G

satisfies the maximal condition, there is a maximal element I = 〈U0∩V0∩{a}X〉 ∈ I,

where U0, V0 are distinct maximal (X, a)-generated nilpotent subgroups in T . Let

W = 〈NU0(I) ∩ {a}X〉. So W is also (X, a)-generated, and nilpotent (for W is a

subgroup of the nilpotent group U0).

Note that I 6= U0, for otherwise U0 = V0. So I ( U0, and by Lemma 2.4.4, there

is a u ∈ X with au ∈ U0 \ I and au ∈ NG(I). This means I ( W , as au ∈ W .

Similarly I 6= V0, and there is a v ∈ X with av ∈ V0 \ I and av ∈ NG(I). Note that
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av /∈ U0 and au /∈ V0.

Claim 2. There is no y ∈ X with ay ∈ NG(W ) and ay /∈ U0.

Proof of Claim 2. Suppose the contrary. Then there is a y ∈ X with ay ∈ NG(W )

and ay /∈ U0. So W / 〈W,ay〉. By Claim 1, 〈W,ay〉 ∈ T . So it is contained in a

maximal element T ∈ T . Note that T 6= U0, as ay /∈ U0. It is not hard to see that

W ⊆ 〈U0 ∩ T ∩ {a}X〉 ∈ I. This means I ( W ⊆ 〈U0 ∩ T ∩ {a}X〉, a contradiction

to the maximality of I.

Now by Claim 2, av /∈ NG(W ). By Lemma 2.4.2, au ∈ L(G,X). So there is a

positive integer l such that [u−1v,l+1 a
u] = 1. By Lemma 2.4.6, [a−v,l a

u] = 1. From

this we deduce that there is a positive integer k such that [a−v,k a
u] ∈ NG(W ) and

[a−v,k−1 a
u] /∈ NG(W ) (note that k ≥ 1, as av /∈ NG(W )). Let z = [a−v,k−1 a

u].

Then z ∈ NG(I), and a−uzau = [z, au] ∈ NG(W ). Since au ∈ W , auz ∈ NG(W ).

By Lemma 2.4.3, auz ∈ {a}X . So by Claim 2, we conclude that auz ∈ U0. Since

z ∈ NG(I) and au /∈ I, auz /∈ I.

Now auz ∈ W z implies that I ( 〈U0∩W z∩{a}X〉. By Lemma 2.4.3, W z ∈ T . So

W z is contained in a maximal element P in T . If P 6= U0, then 〈U0∩P ∩{a}X〉 ∈ I,

and this contradicts the maximality of I. Hence P = U0, and W z ⊆ U0. This means

(NU0(I) ∩ {a}X)z ⊆ U0.

By Lemma 2.4.3 and the fact that z ∈ NG(I), we have (NU0(I)∩ {a}X)z ⊆ U0 ∩

NG(I) ∩ {a}X = NU0(I) ∩ {a}X . Therefore W z ⊆ W . By the choice of z, W z ( W ,

but then we have an ascending chain of subgroups W ( W z−1 ( W z−2 ( · · · , a

contradiction. Hence Case 2 cannot happen.

26



Note that Main Theorem 2 is a generalization of a theorem of Baer which states

that L(G) = HP (G) = B(G) = L(G) for any group G that satisfies the maximal

condition (see [28, 12.3.7 on p. 360]).
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Chapter 3

Relative Engel Elements II

3.1 A Brief Introduction

This chapter is motivated by the following two results, one by Gruenberg [15, The-

orem 0] and the other by Wehrfritz [33, 4.4].

Theorem 1.4.3. [Gruenberg’s Theorem] Let R be a commutative Noetherian ring

with identity and A be a finitely generated R-module. If G is a subgroup of AutRA,

then L(G) = HP (G) and L(G) = B(G).

Theorem 1.4.4. [Wehrfritz’s Theorem] Let G be a subgroup of a finitary automor-

phisms group of a module over a commutative ring with identity. Then L(G) =

HP (G) and L(G) = B(G).

Considering the work in Chapter 2, it is quite natural to ask whether similar

results hold for relative left Engel elements. The answers are affirmative (see Main

Theorem 3 and Main Theorem 4). We will also show that if X is a normal locally

solvable subgroup of G, then HP (G,X) = L(G,X) (see Theorem 3.4.3).

The materials in this chapter have been published ( see S. G. Quek, K. B. Wong,

P. C. Wong, On left Engel elements of a group relative to subgroup of certain linear

groups, J. Pure Appl. Algebra 217 (2013) 427–431 ).
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3.2 A generalization of Gruenberg’s Theorem

We shall need the following theorem.

Theorem 3.2.1. [15, Theorem 2] Let X be a class of groups. Suppose that

(i) X is closed with respect to formation of images, i.e., if G ∈ X, then G/N ∈ X

for all N / G,

(ii) if G ∈ X, then every finitely generated subgroup of G lies in a finitely generated

X-subgroup,

(iii) if G ∈ X and G is finite, then G is solvable.

Let R be a commutative Noetherian ring with identity and A be a finitely generated

R-module. If G is a subgroup of AutRA and G ∈ X, then G is solvable.

Let F, G, S be the class of all finite, finitely generated and solvable groups,

respectively. If we use the Hall’s calculus of closure operations [16, Section 1.3], say

Q (quotient group closure) and L (local closure), then conditions (i), (ii) and (iii) of

Theorem 3.2.1 can be written as (i) QX = X; (ii) X 6 L(G ∩ X); (iii) X ∩ F 6 S,

respectively.

Lemma 3.2.2. If S and T are normal subgroups of a group G, then 〈L(S, S ∩ T )〉

is a normal subgroup of G.

Proof. It is sufficient to show that ag = g−1ag ∈ L(S, S ∩ T ) for all a ∈ L(S, S ∩ T )

and g ∈ G. Let x ∈ S ∩ T . Then xg
−1

= gxg−1 ∈ S ∩ T and there is a positive

integer n = n(a, xg
−1

) with [xg
−1
,n a] = 1. Note that [x,n a

g] = g−1[xg
−1
,n a]g = 1.

Since x was arbitrary, we conclude that ag ∈ L(S, S ∩ T ).
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The following lemma is obvious.

Lemma 3.2.3. Let S and T be subgroups of a group G. If S ⊆ T , then L(T )∩S ⊆

L(S) and L(T ) ∩ S ⊆ L(S).

Theorem 3.2.4. The following hold for any group G.

(a) If L(〈L(G)〉) = HP (〈L(G)〉), then L(G) = HP (G).

(b) If L(〈L(G)〉) = HP (〈L(G)〉) and L(〈L(G)〉) = B(〈L(G)〉), then L(G) =

B(G).

Proof. (a) By Theorem 2.3.2, it is sufficient to show that L(G) ⊆ HP (G). By

Lemma 3.2.3, L(G) = L(G) ∩ 〈L(G)〉 ⊆ L(〈L(G)〉). Since HP (〈L(G)〉) is a char-

acteristic subgroup of 〈L(G)〉 and 〈L(G)〉 is normal in G (by taking T = S =

G in Lemma 3.2.2), we have HP (〈L(G)〉) is normal in G. Hence L(〈L(G)〉) =

HP (〈L(G)〉) ⊆ HP (G) and L(G) ⊆ HP (G).

(b) By Theorem 2.3.2, it is sufficient to show that L(G) ⊆ B(G). By part (a),

L(G) = HP (G) = 〈L(G)〉. Therefore L(HP (G)) = B(HP (G)), and

L(G) = L(G) ∩ L(G) = L(G) ∩HP (G).

It then follows from Lemma 3.2.3 that L(G) ⊆ L(HP (G)) = B(HP (G)). So it is

sufficient to show that B(HP (G)) ⊆ B(G).

Let g ∈ B(HP (G)). Then 〈g〉 is subnormal in 〈g〉HP (G). Since 〈g〉HP (G)/HP (G)/

G, we conclude that 〈g〉 is subnormal in G and thus in 〈g〉G. So g ∈ B(G) and

B(HP (G)) ⊆ B(G).
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Corollary 3.2.5. Let G be a group. If 〈L(G)〉 is solvable, then

(a) L(G) = 〈L(G)〉 = HP (G),

(b) L(G) = B(G).

Proof. Since 〈L(G)〉 is solvable,

L(〈L(G)〉) = HP (〈L(G)〉), and L(〈L(G)〉) = B(〈L(G)〉),

(see [14] and [28, 12.3.3 on p. 357]). The corollary then follows from Theorem

3.2.4.

Lemma 3.2.6. For any group G, 〈L(G)〉 = 〈L(〈L(G)〉)〉.

Proof. By Lemma 3.2.3, L(G) = L(G) ∩ 〈L(G)〉 ⊆ 〈L(〈L(G)〉)〉. So 〈L(G)〉 ⊆

〈L(〈L(G)〉)〉. The lemma follows by noticing that L(〈L(G)〉) ⊆ 〈L(G)〉.

Lemma 3.2.7. Let X be the class of groups that satisfies G = 〈L(G)〉. Then X

satisfies conditions (i), (ii) and (iii) of Theorem 3.2.1.

Proof. Let G ∈ X. Then G = 〈L(G)〉.

(i) Let N be a normal subgroup of G. We need to show that G/N = 〈L(G/N)〉.

This follows by noting that aN ∈ L(G/N) for all a ∈ L(G).

(ii) Let S be a finitely generated subgroup of G, say S = 〈s1, s2, . . . , sn〉. For each

i, let

si =
∏

1≤j≤mi

t
εij
ij ,

where εij = ±1 and tij ∈ L(G). Let T be the subgroup of G generated by all

tij’s. We need to show that T ∈ X. Clearly 〈L(T )〉 ⊆ T . By Lemma 3.2.3,

T = L(G) ∩ T ⊆ L(T ) ⊆ 〈L(T )〉. Thus T = 〈L(T )〉 and T ∈ X.
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(iii) We need to show that if G is finite, then G is solvable. By [28, 12.3.7 on p.

360], L(G) = HP (G). So G = HP (G) is nilpotent, and thus solvable.

Theorem 3.2.8. Let G be a group, R be a commutative Noetherian ring with iden-

tity and A be a finitely generated R-module. If 〈L(G)〉 is a subgroup of AutRA, then

L(G) = HP (G) and L(G) = B(G). Furthermore, 〈L(G)〉 is solvable.

Proof. Let X be defined as in Lemma 3.2.7. By Lemma 3.2.6, 〈L(G)〉 ∈ X. It then

follows from Lemma 3.2.7 and Theorem 3.2.1 that 〈L(G)〉 is solvable. Therefore

L(G) = HP (G) and L(G) = B(G) by Corollary 3.2.5.

Note that in Theorem 3.2.8, we have replaced the condition ‘G is a subgroup of

AutRA’ in Theorem 1.4.3 with ‘〈L(G)〉 is a subgroup of AutRA’.

3.3 Main Theorem 3

Let us recall the following definition.

Definition 1.4.5. Let H,K be subgroups of a group G and H / K. Let N0 be the

set of non-negative integers. An element b ∈ G is said to be (H,K)-centralizable if

there is a sequence of normal subgroups of K, say {Hi}i∈N0 such that

(a) H0 = H,

(b) Hi+1 = {d ∈ K : [d, b] ∈ Hi} for all i ∈ N0.

It is not hard to see that H = H0 / H1 / H2 / · · · . The sequence {Hi}i∈N0 shall be

called the (H,K)-centralized normal sequence of b.

A set W ⊆ G is said to be (H,K)-centralizable if every element in W is (H,K)-

centralizable.
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Lemma 3.3.1. Let S be a subgroup of a group G, and S ′ be the commutator subgroup

of S. Let b ∈ NG(S) = {g ∈ G : Sg = S}. Then b is (S ′, S)-centralizable.

Proof. Let H0 = S ′, inductively let

Hi+1 = {d ∈ S : [d, b] ∈ Hi},

for all i ∈ N0. Suppose Hi /S. We shall show that Hi+1 /S. Let d1, d2 ∈ Hi+1. Note

that

[d1d
−1
2 , b] = [d1, b]

d−1
2 [d−12 , b] = [d1, b]

d−1
2 ([d2, b]

d2)−1 ∈ Hi.

So d1d
−1
2 ∈ Hi+1 and Hi+1 is a subgroup of S. Since S/S ′ is abelian and Hi+1/S

′ is a

subgroup of S/S ′, we conclude that Hi+1 /S. Hence {Hi}i∈N0 is a (S ′, S)-centralized

normal sequence of b.

Lemma 3.3.2. Let H,K be subgroups of a group G and H /K. Let b ∈ NG(H) be

(H,K)-centralizable. Then the following hold.

(a) If b ∈ L(G,K) and 〈b〉H is locally nilpotent, then 〈b〉K is locally nilpotent.

(b) If b ∈ L(G,K), then 〈b〉H is subnormal in 〈b〉K.

Proof. Let {Hi}i∈N0 be the (H,K)-centralized normal sequence of b.

(a) First we show that K =
⋃
i∈N0

Hi. Clearly
⋃
i∈N0

Hi ⊆ K. Let k ∈ K. Then

[k,n b] = 1 for a positive integer n. Then [k,n−1 b] ∈ H1, and then [k,n−2 b] ∈ H2. So

by continuing this way, we see that k ∈ Hn. Hence K =
⋃
i∈N0

Hi.

Note that

〈b,H0〉 / 〈b,H1〉 / 〈b,H2〉 / · · · .
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Since b ∈ NG(H0), every element in 〈b,H0〉 can be written in the form of blh where

h ∈ H0 and l an integer. So 〈b〉〈b,H0〉 = 〈b〉H0 is locally nilpotent. By Lemma 2.3.1,

〈b〉〈b,H1〉 is locally nilpotent. Inductively, 〈b〉〈b,Hi〉 is locally nilpotent for all i ∈ N0.

Now

〈b〉〈b,H0〉 ⊆ 〈b〉〈b,H1〉 ⊆ 〈b〉〈b,H2〉 ⊆ · · ·

is an ascending chain of locally nilpotent groups. Therefore 〈b〉〈b,K〉 =
⋃
i∈N0
〈b〉〈b,Hi〉

is locally nilpotent. This implies that 〈b〉K is locally nilpotent, for it is a subgroup

of 〈b〉〈b,K〉.

(b) Since b ∈ L(G,K), there is a fixed positive integer n such that [k,n b] = 1 for all

k ∈ K. This implies that K = Hn = Hn+1 = · · · , and

〈b,H0〉 / 〈b,H1〉 / 〈b,H2〉 / · · · / 〈b,Hn〉 = 〈b,K〉.

Therefore 〈b〉H0 = 〈b〉〈b,H0〉 is subnormal in 〈b〉〈b,K〉, and thus subnormal in 〈b〉K .

The following theorem can be proved easily by using Lemmas 3.3.1 and 2.3.1,

and by noting that every element in L(G,S) is (S(i+1), S(i))-centralizable where S(i)

is the ith derived subgroup of S.

Theorem 3.3.3. Let S be a normal solvable subgroup of a group G. Then

(a) B(G,S) = L(G,S),

(b) HP (G,S) = L(G,S).
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The following lemma is obvious and it is an analogue of Lemma 3.2.3 for relative

Engel elements.

Lemma 3.3.4. Let S and T be subgroups of a group G. If S ⊆ T , then L(G, T ) ⊆

L(G,S) and L(G, T ) ⊆ L(G,S).

Main Theorem 3. Let G be a group, R be a commutative Noetherian ring with

identity and A be a finitely generated R-module. Let S be a normal subgroup of G

such that 〈L(S)〉 is a subgroup of AutRA. If L(G,S) is (HP (S), S)-centralizable,

then

(a) B(G,S) = L(G,S),

(b) HP (G,S) = L(G,S).

Proof. By Theorem 3.2.8, L(S) = HP (S) and L(S) = B(S). Furthermore, HP (S)

= 〈L(S)〉 is solvable and HP (S) / G.

(a) By Theorem 2.3.2, it is sufficient to show that L(G,S) ⊆ B(G,S). By part

(a) of Main Theorem 1, B(G,HP (S)) = L(G,HP (S)). Let b ∈ L(G,S). Then

b ∈ L(G,HP (S)) by Lemma 3.3.4. So b ∈ B(G,HP (S)), i.e., 〈b〉 is subnormal in

〈b〉HP (S). By part (b) of Lemma 2.3.1, 〈b〉HP (S) is subnormal in 〈b〉S. Hence 〈b〉 is

subnormal in 〈b〉S, and L(G,S) ⊆ B(G,S).

(b) By Theorem 2.3.2, it is sufficient to show that L(G,S) ⊆ HP (G,S). By part

(b) of Main Theorem 1, HP (G,HP (S)) = L(G,HP (S)). Let b ∈ L(G,S). Then

b ∈ L(G,HP (S)) by Lemma 3.3.4. So b ∈ HP (G,HP (S)), i.e., 〈b〉HP (S) is locally

nilpotent. By part (a) of Lemma 2.3.1, 〈b〉S is locally nilpotent, and thus b ∈

HP (G,S). Hence L(G,S) ⊆ HP (G,S).
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We note here that when S = G in Main Theorem 3, we have L(G) = L(G,G) =

HP (G). Let H0 = HP (G) and Hi = G for all i ≥ 1. If b ∈ L(G), then {Hi}i∈N0

is the (HP (G), G)-centralized normal sequence of b. So the condition L(G) is

(HP (G), G)-centralizable is redundant. Therefore Main Theorem 3 is a general-

ization of Theorem 3.2.8, and thus a generalization of Theorem 1.4.3.

3.4 Main Theorem 4

Theorem 3.4.1. Let G be a group, R be a commutative ring with identity and A

be an R-module. If 〈L(G)〉 is a subgroup of FAutRA, then L(G) = HP (G) and

L(G) = B(G).

Proof. By Theorem 1.4.4, L(〈L(G)〉) = HP (〈L(G)〉) and L(〈L(G)〉) = B(〈L(G)〉).

Therefore L(G) = HP (G) and L(G) = B(G) by Theorem 3.2.4.

Note that in Theorem 3.4.1, we have replaced the condition ‘G is a subgroup of

FAutRA’ in Theorem 1.4.4 with ‘〈L(G)〉 is a subgroup of FAutRA’.

Lemma 3.4.2. [28, Exercise 12.3.6 on p. 362] Let x, a be two elements of a group

such that [x,n a] = 1 for some positive integer n. Then 〈x〉〈a〉 is finitely generated.

In fact,

〈x〉〈a〉 = 〈x, [x, a], [x,2 a], . . . , [x,n−1 a]〉 .

Theorem 3.4.3. Let S be a normal locally solvable subgroup of a group G. Then

HP (G,S) = L(G,S).

Proof. By Theorem 2.3.2, it is sufficient to show that L(G,S) ⊆ HP (G,S). Let

a ∈ L(G,S). We need to show that 〈a〉S is locally nilpotent. Let K be a finitely
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generated subgroup of 〈a〉S. Then K = 〈k1, . . . , km〉, where

ki =

li∏
j=1

s−1ij a
zijsij,

sij ∈ S and zij is an integer.

Let T be the subgroup generated by all 〈sij〉〈a〉, i.e.,

T = 〈{〈sij〉〈a〉 : for all i, j}〉.

Since S is normal in G, T is a subgroup of S. Furthermore, by Lemma 3.4.2, T is

finitely generated. So T is solvable.

Let the derived length of T be d. Note that a ∈ NG(T ). Since the ith derived

subgroup T (i) is a characteristic subgroup of T , we have a ∈ NG(T (i)). Therefore

T (i) is a normal subgroup of 〈T, a〉. By Lemma 3.3.4, a ∈ L(G, T (i)), and by Lemma

3.3.1, a is (T (i+1), T (i))-centralizable. Now 〈a〉 = 〈a〉T (d)
is abelian, and thus locally

nilpotent. So, by part (a) of Lemma 2.3.1, 〈a〉T (d−1)
is locally nilpotent. By applying

Lemma 2.3.1 repeatedly, we see that 〈a〉T is locally nilpotent. Since K is a subgroup

of 〈a〉T , K is nilpotent. Hence 〈a〉S is locally nilpotent, and HP (G,S) = L(G,S).

Main Theorem 4. Let G be a group, R be a commutative ring with identity and

A be an R-module. Let S be a normal subgroup of G such that 〈L(S)〉 is a subgroup

of FAutRA. If L(G,S) is (HP (S), S)-centralizable, then HP (G,S) = L(G,S).

Proof. By Theorem 2.3.2, it is sufficient to show that L(G,S) ⊆ HP (G,S). Note

that HP (S) is a normal locally solvable subgroup of G. By Theorem 3.4.3,

HP (G,HP (S)) = L(G,HP (S)). Let b ∈ L(G,S). Then b ∈ L(G,HP (S)) by
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Lemma 3.3.4. So b ∈ HP (G,HP (S)), i.e., 〈b〉HP (S) is locally nilpotent. By part

(a) of Lemma 2.3.1, 〈b〉S is locally nilpotent, and thus b ∈ HP (G,S). Hence

L(G,S) ⊆ HP (G,S).

We note here that when S = G in Main Theorem 4, we have L(G) = L(G,G) =

HP (G). Furthermore, L(G) is (HP (G), G)-centralizable. Therefore Main Theorem

4 is a generalization of Theorem 3.4.1, and thus a generalization of Theorem 1.4.4.

However we do not know whether L(G,S) = B(G,S) or not, under the hypothesis

of Theorem 3.4.3 and Main Theorem 4.

Finally we would like to refer the reader to Abdollahi [1], Abdollahi and Khosravi

[2], Crosby and Traustason [9, 10], and Newell [27], for some recent results on left

and right Engel elements. It is natural to ask whether similar results hold for relative

left and right Engel elements.
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Chapter 4

Non-Engel Elements

4.1 A Brief Introduction

Note that every finite group G satisfies a law [x,r y] = [x,s y] for some positive

integers r < s. The minimal value of r is called the Engel depth of G (see [5, 6]).

So, given any non-left Engel element g ∈ G, there exists a h ∈ G and a positive

integer n such that h = [h,n g]. However we do not know whether g = [g,n h] or not.

This motivates us to propose the following problem.

Problem 4.1.1. Let G be a finite group. Given any positive integer n, does there

exist h, g ∈ G such that h = [h,n g] and g = [g,n h]?

Note that when n = 1, we have h = 1 = g. So we shall only consider n ≥ 2.

Since every finite group can be embedded into a Symmetric group, we may first

consider the following problem.

Problem 4.1.2. Let [l] = {1, 2, . . . , l} and Sl be the symmetric group on [l], l ≥ 2.

Given any positive integer n ≥ 2, does there exist α, β ∈ Sl such that β = [β,n α]

and α = [α,n β]?

Let us recall the following definition.
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Definition 1.5.1. Let G be a group and h, g ∈ G. The 2-tuple (h, g) is said to be

an n-Engel pair, n ≥ 2, if h = [h,n g], g = [g,n h] and h 6= 1.

Now consider the following elements in S40:

α1 = (1 2 3 4 5),

β1 = (1 5 2 4 3),

u1 = (1 2 3 4 5 6 7 8 9 10),

u2 = (11 12 13 14 15 16 17 18 19 20),

u3 = (21 22 23 24 25 26 27 28 29 30),

u4 = (31 32 33 34 35 36 37 38 39 40),

v1 = (1 8 11 21 18 6 3 16 26 13),

v2 = (2 31 30 27 39 7 36 25 22 34),

v3 = (4 37 12 33 5 9 32 17 38 10),

v4 = (14 40 20 24 28 19 35 15 29 23),

α2 = u1u2u3u4,

β2 = v1v2v3v4.

Note that (α1, β1) and (α2, β2) are 5-Engel pairs. Let H1 and H2 be the subgroups

generated by {α1, β1} and {α2, β2}, respectively. Then H1 has 60 elements and H2

has 120 elements. Since H1 is also a subgroup of S5 and has 60 elements (thus of
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index 2), it must be the alternating subgroup A5. Note that α5
2 is in the centre of

H2 and H2/〈α5
2〉 ∼= H1 = A5. Therefore H2 is the central extension of the cyclic

group of order 2 by A5.

It can be verified that αiβiαi = βiαiβi for i = 1, 2. This motivates us to consider

n-Engel pairs with such property. In other words, given any 5-Engel pair (α, β)

with αβα = βαβ, we would like to know about the structure of the the subgroups

generated by {α, β}.

In this chapter, we will show that if (h, g) is an n-Engel pair and hgh = ghg,

then n must be a multiple of 5. Furthermore, the subgroup generated by {h, g} is

either isomorphic to A5 or H2 (see Main Theorem 5). We will also show that if

(h, g) is an n-Engel pair, hgth = ghg, and ghtg = hgh, then n and t− 1 must be a

multiple of 5, and hgh = ghg (see Theorem 4.4.2).

The main results in this chapter have been published ( see S. G. Quek, K. B.

Wong, P. C. Wong, On certain pairs of non-Engel elements in finite groups, J.

Algebra Appl. 12 (2013), #1250213 ).

4.2 Equivalent forms

In this section, we shall assume x, y are elements in a group G.

Lemma 4.2.1. Let k be the smallest positive integer such that (x, y) is a k-Engel

pair. If (x, y) is an n-Engel pair, then n is a multiple of k.

Proof. By the Division Algorithm, n = qk + r for some positive integers q, r and

0 ≤ r < k. If r 6= 0, then x = [x,n y] = [x,qk+r y] = [x,r y] and y = [y,r x]. If r = 1,

then y = 1 = x, a contradiction. So r ≥ 2, and (x, y) is an r-Engel pair, again a
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contradiction, for r < k. Hence r = 0 and n is a multiple of k.

The following corollary follows from Lemma 4.2.1.

Corollary 4.2.2. Let k be the smallest positive integer such that (x, y) is a k-Engel

pair. If (x, y) is a p-Engel pair and p is a prime, then p = k.

Note that the following are two equivalent variants of yxy = xyx.

xy = yx
−1

, (4.2.1)

[x, y] = yx−1. (4.2.2)

From these, we get the following useful consequences.

xy = xyx−1 = y(xy)x−1, (4.2.3)

[x,2 y] = [x−1, y] = y−x
−1

y = x−yy = (x−1y)y = (yx−1)y
2

= [x, y]y
2

. (4.2.4)

By induction on n and (4.2.4), we derive that

[x,n+1 y] = [x, y]y
2n

. (4.2.5)

All consequences have a variant where we swap x and y.

Lemma 4.2.3. If x = [x,n y], y = [y,n x], and yxy = xyx, then xy
2

= yx−1 and

yx
2

= xy−1.

Proof. By (4.2.5), [x, y] = [x,n+1 y] = [x, y]y
2n

. It then follows from (4.2.2) that

x−1 = (x−1)y
2n

. So, y2n commutes with x. Then by using (4.2.4),

xy
2

= [x,n y]y
2

= [[x, y]y
2

,n−1 y] = [x,n+1 y] = [x, y]y
2n

= [x, y] = yx−1.

By symmetry, yx
2

= xy−1.
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Lemma 4.2.4.

(a) If xy
2

= yx−1, then y5x = xy5.

(b) If xy
2

= yx−1, yx
2

= xy−1 and yxy = xyx, then y5 = x5, y10 = x10 = 1,

x = [x,5 y], and y = [y,5 x].

Proof. (a) It follows from xy
4

= y(xy
2
)−1 = yxy−1 = xy

−1
.

(b) By using (4.2.3) repeatedly, we obtain xy = y5(xy)x−5. It then follows from part

(a) of this lemma that y5 = x5. Therefore x5 commutes with y and x5 = (xy
2
)5 =

(yx−1)5. By symmetry, y5 = (xy−1)5. So, x5 = y−5 = x−5, and thus y10 = x10 = 1.

By (4.2.2), xy
2

= yx−1 = [x, y]. Then by (4.2.5), [x,5 y] = [x, y]y
8

= xy
10

= x. By

symmetry, y = [y,5 x].

Theorem 4.2.5. Let n be a positive integer and

Gn = 〈x, y ; x = [x,n y], y = [y,n x], yxy = xyx〉.

Then Gn is the trivial group if n is not a multiple of 5. Furthermore, for all positive

integers l,

G5l
∼= G5

∼= 〈x, y ; xy2x = y3, yx2y = x3, yxy = xyx〉.

Proof. Suppose Gn is not the trivial group. Then (x, y) is an n-Engel pair. By

Lemma 4.2.3 and part (b) of Lemma 4.2.4, (x, y) is a 5-Engel pair. Since 5 is a

prime, it follows from Lemma 4.2.1 and Corollary 4.2.2 that n is a multiple of 5.

Note that xy
2

= yx−1 and yx
2

= xy−1 are equivalent to xy2x = y3 and yx2y = x3,
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respectively. By Lemma 4.2.3 and part (b) of Lemma 4.2.4, we deduce that

G5l = 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx〉

= 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx, xy2x = y3, yx2y = x3〉

= 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx, xy2x = y3,

yx2y = x3, x = [x,5 y], y = [y,5 x]〉

= 〈x, y ; x = [x,5 y], y = [y,5 x], yxy = xyx〉

= 〈x, y ; xy2x = y3, yx2y = x3, yxy = xyx〉.

4.3 Main Theorem 5

Let A be a non-empty set. This set A is called an alphabet and the elements of A

are called letters. We shall denote the free semigroup on A by A+. The elements

of A+ are called words. Given a word W ∈ A+, we shall denote its length by ‖W‖,

defined as the number of letters in W .

A rewriting system R over A is a set of rules U → V , which are elements of

A+ × A+. A word W1 ∈ A+ is said to be rewritten to another word W2 ∈ A+ by

a one-step reduction induced by R, if W1 = Z1XZ2 and W2 = Z1Y Z2 for a rule

X → Y in R. In this situation we write W1 →R W2. The reflexive transitive closure

and the reflexive symmetric transitive closure of →R are denoted by →∗R and ↔∗R,

respectively. The relation↔∗R is defined to be the congruence on A+ generated by R

and it defines the quotient semigroup M = A+/↔∗R. M is said to be presented by

the semigroup presentation [A;R]. If both A and R are finite, we say the semigroup

presentation is finitely presented. For U ∈ A+, [U ]R shall denote the class of U
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modulo ↔∗R.

A word W ∈ A+ is called an irreducible word if W does not contain any subword

U in which U → V is a rule in R.

We say R is Noetherian if there is no infinite reduction sequence,

W1 →R W2 →R W3 →R · · · .

R is said to be confluent if whenever U →∗R V and U →∗R W , then there is an

X ∈ A+ such that V →∗R X and W →∗R X. If R is both Noetherian and confluent,

we say that R is a complete rewriting system (see [8, 11, 12, 20, 19, 25, 34]).

Let A = {x, x−1, y, y−1, e} and R be the following rules:

ee→ e, ex→ x, xe→ x,

ey → y, ye→ y, ex−1 → x−1,

x−1e→ x−1, y−1e→ y−1, ey−1 → y−1,

xx−1 → e, x−1x→ e, yy−1 → e,

y−1y → e, yxy → xyx, xy2x→ y3,

yx2y → x3.

By using the well known Knuth-Bendix rewriting completion algorithm (see [4,

Chapter 7]) or by GAP [13], one can find a complete rewriting system Rc such that

M = [A;R] = [A;Rc].

Note that M = [A;R] is a group and by Theorem 4.2.5,

M ∼= 〈x, y ; xy2x = y3, yx2y = x3, yxy = xyx〉 ∼= G5.
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Recall that H2 is the subgroup of S40, generated by α2, β2, and it has exactly 120

elements. By Theorem 4.2.5, the mapping ψ : G5 → H2 defined by ψ(x) = α2 and

ψ(y) = β2 is an epimorphism. For each u ∈ H2, there exists a v ∈ G5 such that

ψ(v) = u. By using the complete rewriting system Rc, we may assume that v is

irreducible. Therefore we have 120 irreducible words. Again, by using the complete

rewriting system Rc, it can be shown that all these words are distinct in G5. Let T

be the set of all these words. Then xT = T = yT . Therefore T is a subgroup of

G5. Since G5 is generated by x, y, we conclude that T = G5. Thus G5
∼= H2, via

ψ. Recall that A5 is the subgroup of S40, generated by α1, β1. Since H2/〈α5
2〉 ∼= A5,

we conclude that G5/〈x5〉 ∼= A5. Hence we have proved part (a) of the following

theorem.

Main Theorem 5.

(a) G5
∼= 〈x, y ; xy2x = y3, yx2y = x3, yxy = xyx〉 ∼= H2

G5/〈x5〉 ∼= 〈x, y ; xy2x = y3, yx2y = x3, yxy = xyx, x5〉 ∼= A5.

(b) If N is a non-trivial proper normal subgroup of G5, then N = 〈x5〉 = Z(G5),

where Z(G5) is the centre of G5.

(c) Let G be a group and h, g ∈ G. If (h, g) is an n-Engel pair and hgh = ghg,

then n must be a multiple of 5. Furthermore, the subgroup generated by {h, g}

is isomorphic to A5 if the order of h is 5, and is isomorphic to H2 if the order

of h is 10.

Proof. (b) By part (a) of Lemma 4.2.4, x5 ∈ Z(G5). Since N〈x5〉/〈x5〉 is normal in

G5/〈x5〉 ∼= A5 and A5 is simple, either N〈x5〉 = G5 or N〈x5〉 = 〈x5〉. Suppose the
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latter holds. Then |N ||〈x5〉|/|N ∩ 〈x5〉| = |N〈x5〉| = |〈x5〉| and |N | = |N ∩ 〈x5〉|.

Thus N = 〈x5〉, for |〈x5〉| = 2.

Suppose the former holds. Then |N ||〈x5〉|/|N ∩ 〈x5〉| = |G5| = |H2| = 120 =

23 · 3 · 5. If |N ∩ 〈x5〉| 6= 1, then x5 ∈ N and N = G5. So, we may assume

|N ∩ 〈x5〉| = 1. This implies that |N | = 60. Since 5 divides |N |, N contains all the

Sylow 5-subgroups of G5. In particular, x2 ∈ N . Since y = x−1y−1xyx, we have

y2 = x−1y−1x2yx ∈ N and (x2y2)2 ∈ N . Note that (x2y2)2 = x2y2x2y2 = x2yx3y.

So x2yx3y(y4) ∈ N . By part (b) of Lemma 4.2.4, x2yx−2 = x2yx8 = x2yx3y5 ∈ N .

Hence y ∈ N and N = G5. This completes the proof of part (b) of this theorem.

(c) Let U be the subgroup generated by h, g, and Gn be defined as in Theorem 4.2.5.

Then φ : Gn → U defined by φ(x) = h and φ(y) = g is an epimorphism.

If n is a not a multiple of 5, then by Theorem 4.2.5, Gn is the trivial group. This

implies that U is the trivial group and h = g = 1, a contradiction, for (h, g) is an

n-Engel pair. Hence n must be a multiple of 5.

Let n = 5l. By Theorem 4.2.5 and part (b) of this theorem, we conclude that

U ∼= G5
∼= H2 if h is of order 10, or U ∼= G5/〈x5〉 ∼= H1 if h is of order 5.

4.4 A Generalization

In this section, we shall assume x, y are elements in a group G.

Lemma 4.4.1. Suppose x = [x,n y] and y = [y,n x]. If yxty = xyx and xytx = yxy,

then xyx = yxy.

47



Proof. Note that the following are two equivalent variants of xytx = yxy.

yx
−1

= y−1xyt, (4.4.1)

[x, y] = yx−1y1−t. (4.4.2)

From these, we obtain

[x,2 y] = [yx−1y1−t, y] = [x−1, y]y
1−t

= (y−x
−1

y)y
1−t

= ((y−1xyt)−1y)y
1−t

= (yx−1y1−t)y
2

= [x, y]y
2

. (4.4.3)

By induction on n and (4.4.3), we derive that

[x,n+1 y] = [x, y]y
2n

. (4.4.4)

All identities have a variant where we swap x and y.

By (4.4.4), [x, y] = [x,n+1 y] = [x, y]y
2n

. It then follows from (4.4.2) that x−1 =

(x−1)y
2n

. So, y2n commutes with x. Then by using (4.4.3),

y−2xy2 = xy
2

= [x,n y]y
2

= [[x, y]y
2

,n−1 y] = [x,n+1 y] = [x, y]y
2n

= [x, y] = yx−1y1−t,

which is equivalent to x−1y−1x = y−3xytx. Therefore x−1y−1x = y−3(yxy) = y−2xy,

i.e., xy−2x = y−1xy−1.

By symmetry, yx−2y = x−1yx−1, and multiplying these two identities together

gives

xy−1x−1 = (xy−2x)(x−1yx−1) = (y−1xy−1)(yx−2y) = y−1x−1y,

which is equivalent to xyx = yxy.
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Theorem 4.4.2. Let

Gn,t = 〈x, y ; x = [x,n y], y = [y,n x], yxy = xytx, xyx = yxty〉.

Then

(a) Gn,t is the trivial group if n or t− 1 is not a multiple of 5.

(b) If t ≡ 1 mod 5, then

G5l,t
∼=

{
A5 if t ≡ 6 mod 10

H2 if t ≡ 1 mod 10.

(c) Let G be a group and h, g ∈ G. If (h, g) is an n-Engel pair, hgth = ghg, and

ghtg = hgh, then n and t−1 must be a multiple of 5. Furthermore, hgh = ghg.

Proof. By Lemma 4.4.1,

Gn,t = 〈x, y ; x = [x,n y], y = [y,n x], yxy = xytx, yxty = xyx, yxy = xyx〉.

(a) Let Gn be defined as in Theorem 4.2.5. Then Gn,t is an epimorphic image of Gn.

If n is not a multiple of 5, then Gn and thus Gn,t is the trivial group.

Suppose gcd(5, t − 1) = 1. Then there exist integers z1, z2 such that 5z1 + (t −

1)z2 = 1. From yxy = xyx and xytx = yxy, we have yt−1 = 1. By Lemma 4.2.3 and

part (a) of Lemma 4.2.4, y5x = xy5. This implies that y = y5z1 commutes with x,

and thus y = [y,n x] = 1, x = [x,n y] = 1, and Gn,t is the trivial group.

(b) Note that yt−1 = 1 = xt−1. Therefore

G5l,t = 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xytx, yxty = xyx, yxy = xyx〉

= 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx, xt−1, yt−1〉.

Furthermore, by Lemma 4.2.3 and part (b) of Lemma 4.2.4, x10 = 1 = y10.
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Now, either t ≡ 1 mod 10 or t ≡ 6 mod 10. Suppose t ≡ 1 mod 10. By

Theorem 4.2.5 and part (a) of Main Theorem 5,

G5l,t = 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx, xt−1, yt−1〉

= 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx〉

∼= H2.

Suppose t ≡ 6 mod 10. Then xt−1 = x5 = 1 = y5 = yt−1. By Lemma 4.2.3

and part (b) of Lemma 4.2.4, y5 = x5. So, by Theorem 4.2.5 and part (a) of Main

Theorem 5,

G5l,t = 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx, x5, y5〉

= 〈x, y ; x = [x,5l y], y = [y,5l x], yxy = xyx, x5〉

∼= A5.

(c) Let U be the subgroup generated by h, g. Then φ : Gn,t → U defined by φ(x) = h

and φ(y) = g is an epimorphism. Since U cannot be the the trivial group, by part

(a) of this theorem, n and t − 1 must be a multiple of 5. The identity hgh = ghg

follows from Lemma 4.4.1.

Remark 1. Heineken [18, Theorem 1] showed that SL(2, 5) is generated by a 5-

Engel pair. In this chapter, we give a presentation of SL(2, 5) in terms of a 5-Engel

pair. We also characterize all groups generated by this Engel pair. The results in

this chapter are therefore an extension of Theorem 1 in [18].
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Chapter 5

Engel Pairs I

5.1 A Brief Introduction

Let SL(n, q) and PSL(n, q) be the special linear group and projective linear group,

respectively, of order n over the field of order q. It was shown in Main Theorem

5 that if (h, g) is an n-Engel pair and hgh = ghg, then n must be a multiple

of 5. Furthermore, the subgroup generated by {h, g} is either isomorphic to A5

(PSL(2, 5)) or is the central extension of the cyclic group of order 2 by A5 (SL(2, 5)).

This suggests us to look at Engel pairs in SL(2, q). We find that most of the

Engel pairs (h, g) in SL(2, q) for all values of q < 100, satisfy either hgh = ghg,

or hgh−2gh = ghg and ghg−2hg = hgh. This motivates us to study Engel pairs

satisfying the latter conditions.

Let n be a positive integer and

Gn = 〈x, y ; x = [x,n y], y = [y,n x], xyx−2yx = yxy, yxy−2xy = xyx〉.

We will show that G2k = 〈x, y ; yk = xk, xyx−2yx = yxy, yxy−2xy = xyx〉 for all

integers k ≥ 1 (Lemma 5.2.2) and Gn is the trivial group when n is odd (Theorem

5.2.3). We apply these results to prove that if (h, g) is an n-Engel pair in a group

H satisfying the conditions hgh−2gh = ghg and ghg−2hg = hgh, then n = 2k where
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k = 4 or k ≥ 6 (Main Theorem 6). Furthermore, the subgroup generated by {h, g}

is

(a) SL(2, 7) or PSL(2, 7) if k = 4,

(b) SL(2, 13) or PSL(2, 13) if k = 6, 7,

(c) an extension of an abelian group by PSL(2, 7) if k = 8.

The main results in this chapter have been published ( see S. G. Quek, K. B.

Wong, P. C. Wong, On n-Engel pair satisfying certain conditions, J. Algebra Appl.

13 (2014), #1350135 ).

5.2 Main Theorem 6

Lemma 5.2.1. Let x, y be elements in a group G. If xyx−2yx = yxy and yxy−2xy =

xyx, then

(a) [x, y] = yx−1y−1x2 and [x, y] = y−2xyx−1,

(b) [y, x] = xy−1x−1y2 and [y, x] = x−2yxy−1,

(c) yxy−3xy = x3,

(d) yxy−1xy = xyx−1yx,

(e) yxy−1xry−1xy = xyr+1x and xyx−1yrx−1yx = yxr+1y for r ≥ 1,

(f) [x,2r y] = xy
r

and [y,2r x] = yx
r

for r ≥ 1.

Proof. (a) [x, y] = yx−1y−1x2 is obtained from

(x−1y−1)(xyx−2yx)(x−1y−1x2) = (x−1y−1)(yxy)(x−1y−1x2),

52



and [x, y] = y−2xyx−1 is obtained from

(x−1y−1)(yxy−2xy)(x−1) = (x−1y−1)(xyx)(x−1).

(b) By swapping x and y in part (a).

(c) It follows from part (a), yx−1y−1x2 = [x, y] = y−2xyx−1.

(d) It follows from

(yxy)(y−2xy) = (xyx−2yx)(y−2xy) = (xyx−2)(yxy−2xy) = (xyx−2)(xyx).

(e) It is sufficient to show that yxy−1xry−1xy = xyr+1x. The second equation can

be obtained similarly by swapping x and y.

By part (d),

yxy−1xy−1xy = (yxy−2)(yxy−1xy)

= (yxy−2)(xyx−1yx)

= (yxy−2xy)(x−1yx)

= (xyx)(x−1yx) = xy2x.

Suppose yxy−1xry−1xy = xyr+1x for some r. Multiplying both sides on the right

by x−1yx, (yxy−1xry−1xy)(x−1yx) = (xyr+1x)(x−1yx) = xyr+2x. By part (d),

(yxy−1xry−1xy)(x−1yx) = (yxy−1xry−1)(xyx−1yx)

= (yxy−1xry−1)(yxy−1xy)

= yxy−1xr+1y−1xy.

Hence, yxy−1xry−1xy = xyr+1x for r ≥ 1.
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(f) It is sufficient to show that [x,2r y] = xy
r
. The second equation can be obtained

similarly by swapping x and y. Note that by part (a) and the identity [uv, w] =

[u,w]v[u,w],

[x,2 y] = [[x, y], y]

= [y−2xyx−1, y]

= [xyx−1, y]

= xy−1(x−1y−1xy)x−1y

= xy−1([x, y])x−1y

= xy−1(yx−1y−1x2)x−1y

= xy.

Suppose [x,2r y] = xy
r

for some r. Then [x,2(r+1) y] = [[x,2 y],2r y] = [xy,2r y] =

[x,2r y]y = (xy
r
)y = xy

r+1
, where the second last equation follows by induction.

Hence, [x,2r y] = xy
r

for r ≥ 1.

Lemma 5.2.2. Let x, y be elements in a group G and l a positive integer. Then the

following relations are equivalent:

(a) x = [x,2l y], y = [y,2l x], xyx−2yx = yxy and yxy−2xy = xyx;

(b) yl = xl, xyx−2yx = yxy and yxy−2xy = xyx.

Proof. ((a) ⇒ (b)). By part (f) of Lemma 5.2.1, x = xy
l

= y−lxyl and y = yx
l

=

x−lyxl. By part (e) of Lemma 5.2.1,

xl(yxy−2xy) = yxy−1xly−1xy = xyl+1x = yl(xyx).

Since yxy−2xy = xyx, yl = xl.
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((b) ⇒ (a)). It follows from part (f) of Lemma 5.2.1.

Let n be a positive integer and

Gn = 〈x, y ; x = [x,n y], y = [y,n x], xyx−2yx = yxy, yxy−2xy = xyx〉.

Theorem 5.2.3. Gn is the trivial group when n is odd.

Proof. Let n = 2k + 1. Note that x = [x,n y] = [[x,n y],n y] = [x,2n y]. Similarly,

y = [y,2n x]. By Lemma 5.2.2, yn = xn.

By part (f) of Lemma 5.2.1, x = [x,2k+1 y] = [[x,2k y], y] = [xy
k
, y] = [x, y]y

k
.

Therefore ykxy−k = x−1y−1xy and xykx = y−1xyk+1. Multiplying the last equation

on the right by yk, we obtain xykxyk = y−1xyn. Similarly, yxkyxk = x−1yxn. This

implies that

x−ky−1x−ky−1 = x−ny−1x

= y−ny−1x

= y−1xyn(y−2n)

= xykxyk(y−2n).

Therefore y−1x−ky−1 = xk+1ykxyk(y−2n). Multiplying the equation by xn,

xk+1ykxyk(y−n) = y−1xn−ky−1 = y−1xk+1y−1.

By part (e) of Lemma 5.2.1,

xyk+2x = yx(y−1xk+1y−1)xy

= yx(xk+1ykxyk(y−n))xy

= yxk+2ykxykxy(y−n).
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Similarly, yxk+2y = xyk+2xkyxkyx(x−n). Therefore

xyk+2x = yxk+2ykxykxy(y−n)

= (yxk+2y)(yk−1xykxy(y−n))

= (xyk+2xkyxkyx(x−n))(yk−1xykxy(y−n))

= xyk+2xkyxkyxyk−1xykxy(y−2n),

and xk−1yxkyxyk−1xykxy(y−2n) = 1.

The equations ykxykx = x−1y−1x2yn and yxy−1x−1 = x2y−1x−1y are obtained

from xykxyk = y−1xyn and yxy = xyx−2yx, respectively. We will use these equations

together with yxkyxk = x−1yxn to simplify the term xk−1yxkyxyk−1xykxy(y−2n),

1 = xk−1yxkyxyk−1xykxy(y−2n) = xk−1yxkyxy−1(ykxykx)y(y−2n)

= xk−1yxkyxy−1(x−1y−1x2yn)y(y−2n)

= xk−1yxk(yxy−1x−1)y−1x2y(y−n)

= xk−1yxk(x2y−1x−1y)y−1x2y(y−n)

= xk−1yxk+2y−1xy(y−n)

= xk−1yxk+2(x−1yxn)−1y

= xk−1yxk+2(yxkyxk)−1y

= xk−1yxk+2(x−ky−1x−ky−1)y

= xk−1yx2y−1x−k.

Therefore yx2y−1 = x and yx2 = xy. Similarly, xy2 = yx. This implies that

xy2x = yx2 = xy and yx = 1, i.e., x = y−1. So x = [x,n y] = [y−1,n y] = 1 and y = 1.

Hence Gn is the trivial group.
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Main Theorem 6. If (h, g) is an n-Engel pair in a group H satisfying the conditions

hgh−2gh = ghg and ghg−2hg = hgh, then n = 2k where k = 4 or k ≥ 6.

Proof. Note that the subgroup generated by {h, g} in H, 〈h, g〉 is the epimorphic

image of Gn via the epimorphism x→ h and y → g. Since h 6= 1, Gn cannot be the

trivial group. Therefore by Theorem 5.2.3, n = 2k. It is sufficient to show that G2k

is the trivial group for k = 1, 2, 3 and 5.

By Lemma 5.2.2,

G2k = 〈x, y ; yk = xk, xyx−2yx = yxy, yxy−2xy = xyx〉.

If k = 1, then y = x. This implies that x = [x,2 y] = 1 and y = 1. If k = 2, then

y2 = x2. This implies that yxy = xyx−2yx = xy(y−2)yx = x2 = y2. So x = 1 and

y = 1. If k = 3, then y3 = x3. By part (c) of Lemma 5.2.1, y3 = x3 = yxy−3xy =

yx(x−3)xy = yx−1y. So, y = x−1, x = [x,2 y] = 1 and y = 1.

Suppose k = 5. Then y5 = x5. By part (c) of Lemma 5.2.1, x3 = yxy−3xy =

yxy2xy(y−5). By part (e) of Lemma 5.2.1, xyx−1y4x−1yx = yx5y = y7. So,

x3 = yxy2xy(y−5)

= yx(y7)xy(y−10)

= yx(xyx−1y4x−1yx)xy(y−10)

= yx2yx−1y4x−1yx2y(y−10),

i.e., 1 = yx2yx−1y4x−1yx2yx−3(y−10).

By part (c) of Lemma 5.2.1, y3 = xyx−3yx = xyx2yx(y−5). Therefore yx2y =
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x−1y3x−1y5 and

1 = yx2yx−1y4x−1yx2yx−3(y−10) = (yx2y)(x−1y4x−1)(yx2y)x−3(y−10)

= (x−1y3x−1y5)(x−1y4x−1)(x−1y3x−1y5)x−3(y−10)

= x−1y3x−2y4x−2y3x−4.

This implies that x5 = y3x−2y4x−2y3 and

1 = x5y−5 = yx−2y4x−2 = y6x−2y−1x−2.

So, y−1 = y5x−2y−1x−2 and y−1 = y5x−2(y5x−2y−1x−2)x−2 = (y10)x−4y−1x−4 =

xy−1x. This implies that y−1x−1yx = x2 and y = [y,10 x] = [[y, x],9 x] = [x2,9 x] = 1.

Hence G2k is the trivial group when k = 1, 2, 3 and 5.

By using GAP [13], the sizes of G8, G12 and G14 are determined to be 336, 2184

and 2184, respectively. Note that GAP uses the Todd-Coxeter procedure (coset enu-

meration). Coset enumeration is one of the fundamental tools for the examination

of finitely presented groups (see [7, 17, 26, 30, 32]).

Let SL(n, q) and PL(n, q) be the special linear group and projective linear group,

respectively, of order n over the field of order q. Note that PL(n, q) is a simple group

except when (n, q) = (2, 2) or (2, 3) [21, Theorem 6.14 on p. 380].

Let α1 =

(
5 5
2 5

)
and β1 =

(
4 5
6 6

)
be elements in SL(2, 7) and α2 =

(
7 7
0 2

)
,

β2 =

(
7 0
12 2

)
, α3 =

(
7 7
12 1

)
and β3 =

(
7 5
9 1

)
be elements in SL(2, 13). Note that

αiβiα
−2
i βiαi = βiαiβi and βiαiβ

−2αiβi = αiβiαi. Furthermore, α4
1 = β4

1 , α6
2 = β6

2 ,

α7
2 = β7

2 , 〈α1, β1〉 = SL(2, 7) and 〈α2, β2〉 = 〈α3, β3〉 = SL(2, 13). Now, SL(2, 7) is

an epimorphic image of G8 via the epimorphism x → α1 and y → β1. Since both
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SL(2, 7) and G8 have size 336, the epimorphism is an isomorphism. Hence

G8
∼= SL(2, 7).

Similarly,

G12
∼= SL(2, 13) ∼= G14.

Let us denote the centre of a group G by Z(G), the derived subgroup of G by

G′, and the normal closure of a subgroup S of G by SG.

Note that both Z(SL(2, 7)) and Z(SL(2, 13)) have size 2. By Lemma 5.2.2, xk

is in the centre of G2k. Therefore

G8/〈x4〉 ∼= SL(2, 7)/Z(SL(2, 7)) = PL(2, 7),

G12/〈x6〉 ∼= SL(2, 13)/Z(SL(2, 13)) = PL(2, 13) ∼= G14/〈x7〉. (1)

5.3 Main Theorem 7

By using GAP, the subgroup 〈x4, y4〉G16 is generated by

A = {x4, y4, xy4x−1, x−1y4x, y−1x4y, xy−1x4yx−1, (yx)3}.

All the elements in A commute with each other. Furthermore, all elements in A are

of order 4 except for (yx)3 which is of order 2. Let a1 = x4, a2 = x4y4, a3 = x5y4x−1,

a4 = x3y4x, a5 = x4y−1x4y, a6 = x5y−1x4yx−1 and a7 = (yx)3. Then

〈x4, y4〉G16 = 〈a1〉 × 〈a2〉 × 〈a3〉 × 〈a4〉 × 〈a5〉 × 〈a6〉 × 〈a7〉

= Z4 × Z2 × Z2 × Z2 × Z2 × Z2 × Z2. (2)

Since

G16/〈x4, y4〉G16 ∼= G8/〈x4〉 ∼= PL(2, 7),

59



G16 is an extension of Z4 × Z2 × Z2 × Z2 × Z2 × Z2 × Z2 by PL(2, 7).

In fact, one can use the Knuth-Bendix rewriting completion algorithm to get a

complete rewriting system (see [4, 8, 11, 12, 20, 19, 25, 34]). By using the complete

rewriting system for G8, a multiplication table can be obtained. So, the size of G8

will be known. Similarly, the size of G12 and G14, and the structure of 〈x4, y4〉G16

will also be known.

Lemma 5.3.1. Let S be a normal subgroup of a group G. Suppose G = G′, G/S

is simple and S is abelian. If N is a proper normal subgroup of G, then N is a

subgroup of S.

Proof. Now NS/S is a normal subgroup of G/S implies that NS = G or NS = S. If

the latter holds, we are done. Suppose NS = G. Then G/N = NS/N ∼= S/(N ∩S)

is abelian. This implies that G = G′ ⊆ N , a contradiction.

Main Theorem 7. Let (h, g) be a 2k-Engel pair in a group H satisfying the con-

ditions hgh−2gh = ghg and ghg−2hg = hgh. Then

(a) 〈h, g〉 = SL(2, 7) or PL(2, 7) if k = 4;

(b) 〈h, g〉 = SL(2, 13) or PL(2, 13) if k = 6, 7;

(c) 〈h, g〉 is an extension of an abelian group by PL(2, 7) if k = 8.

Proof. Since 〈h, g〉 is the epimorphic image of G2k via the epimorphism x→ h and

y → g, the theorem follows from Lemma 5.3.1, equations (1) and (2).

Remark 2. Heineken [18, Theorem 2] showed that SL(2, 7) and SL(2, 13) are gen-

erated by an 8-Engel pair and a 12-Engel pair, respectively. In this chapter, we give
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a presentation of SL(2, 7) and SL(2, 13) in terms of an 8-Engel pair and a 12-Engel

pair, respectively. We obtain the presentations for SL(2, 7) and SL(2, 13) by study-

ing the group G2k. The results here are therefore different from that of Heineken.

Furthermore, when k = 9, the group G2k is shown to be infinite.
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Chapter 6

Engel Pairs II

6.1 A Brief Introduction

Let L be a field. A field F is called a field extension of L if L ⊆ F . Note that F

can be considered as a vector space over the field L. The dimension of F as a vector

space over the field L is denoted by [F : L]. Let SL(2, F ) be the special linear group

of order 2 over the field F . If F = Zp for a primes p, then we shall write SL(2, p)

instead of SL(2, F ).

Problem 6.1.1. Given a field F , can we tell whether SL(2, F ) has an Engel pair

or not?

Problem 6.1.2. Determine the prime p, so that SL(2, p) has an Engel pair.

Lemma 6.1.3. A solvable group does not have Engel pairs.

Proof. Let G be a solvable group and (h, g) be an n-Engel pair in G. Then h 6=

1. Let the mth derived subgroup of G be denoted by G(m). Since G is solvable,

G(m0) = {1} for some positive integer m0. Now, h = [h,n g] and g = [g,n h] imply

that h, g ∈ G(1). In fact, by induction, h, g ∈ G(m) for every positive integer m.

Thus, h ∈ G(m0) = {1}, a contradiction. Hence, the lemma holds.

Theorem 6.1.4. SL(2, 2) and SL(2, 3) do not have Engel pairs.
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Proof. It follows from Lemma 6.1.3 and the fact that SL(2, 2) and SL(2, 3) are

solvable.

In this chapter we will prove the following two theorems.

Main Theorem 8. Given any field L, there is a field extension F of L with [F :

L] ≤ 6 such that SL(2, F ) has an n-Engel pair for some integer n ≥ 4.

Main Theorem 9. Given any field F of characteristic p ≡ ±1 mod 5, SL(2, F )

has a 5-Engel pair.

6.2 Main Theorem 8

Lemma 6.2.1. Let x, y be elements in a group G. If xyx−2yx = yxy and yxy−2xy =

xyx, then (x, y) cannot be an n-Engel pair for n = 2 or 3.

Proof. Suppose (x, y) is a 2-Engel pair. Then x = [x,2 y], y = [y,2 x] and x 6= 1. By

part (f) of Lemma 5.2.1, [x,2 y] = y−1xy and [y,2 x] = x−1yx. Therefore, y−1xy = x,

i.e., [x, y] = 1. Thus, x = [[x, y], y] = 1, a contradiction.

Suppose (x, y) is a 3-Engel pair. Then x = [x,3 y], y = [y,3 x] and x 6= 1. Note

that [x,6 y] = [[x,3 y],3 y] = [x,3 y] = x and [y,6 x] = y. By part (f) of Lemma 5.2.1,

x = [x,3 y] = [[x,2 y], y] = [y−1xy, y] = y−1[x, y]y = y−1x−1y−1xy2,

x = [x,6 y] = y−3xy3.

Therefore xy2 = yxyx and xy3 = y3x. Similarly, yx2 = xyxy and yx3 = x3y.

Thus,

y3x = xy3 = xy2y = (yxyx)y = y(xyxy) = y(yx2) = y2x2,
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which may be equal to x = y. So, [x, y] = 1, and x = [x,3 y] = [[x, y],2 y] = 1, a

contradiction.

This completes the proof of the lemma.

Lemma 6.2.2. Let x, y be non-identity elements in a finite group G. If xyx−2yx =

yxy and yxy−2xy = xyx, then (x, y) is an n-Engel pair for some integer n ≥ 4.

Proof. Since G is a finite group, x and y have finite order. Let m1 and m2 be the

orders of x and y, respectively. Let m be the least common multiple of m1 and m2.

Then xm = 1 = ym. By Lemma 5.2.2, x = [x,2m y] and y = [y,2m x]. Since x 6= 1,

(x, y) is a 2m-Engel pair. It then follows from Lemma 6.2.1 that 2m ≥ 4.

Proof of Main Theorem 8. Consider the following equation

x6 + 4x4 + 3x2 − 1 = 0

over the field L. Let F be a field extension of L that contains a root of the above

equation. Let the root be denoted by a. Note that [F : L] ≤ 6 and F may be equal

to L.

Let A =

(
1 a
a 1 + a2

)
and B =

(
0 1
−1 2 + a2

)
. Since |A| = |B| = 1, A,B ∈

SL(2, F ). It can be verified that

A−1 =

(
1 + a2 −a
−a 1

)
, B−1 =

(
2 + a2 −1

1 0

)
,
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AB =

(
−a 1 + 2a+ a3

−1− a2 2 + a+ 3a2 + a4

)
,

BA =

(
a 1 + a2

−1 + 2a+ a3 2− a+ 3a2 + a4

)
,

A−2 =

(
1 + 3a2 + a4 −2a− a3
−2a− a3 1 + a2

)
,

B−2 =

(
3 + 4a2 + a4 −2− a2

2 + a2 −1

)
.

Therefore,

(AB)A−2(BA) =

(
c11 c12
c21 c22

)
,

where

c11 = −1− 2a2 + 3a4 + 4a6 + a8,

c12 = 2 + 3a2 + 2a3 + a4 + 7a5 + 5a7 + a9,

c21 = −2− 3a2 + 2a3 − a4 + 7a5 + 5a7 + a9,

c22 = 3 + 6a2 + 10a4 + 12a6 + 6a8 + a10.

Since a6 + 4a4 + 3a2 − 1 = 0,

c11 = (a2)(−1 + 3a2 + 4a4 + a6) + (−1− a2) = −1− a2,

c12 = (a+ a3)(−1 + 3a2 + 4a4 + a6) + (2 + a+ 3a2 + a4) = 2 + a+ 3a2 + a4,

c21 = (a+ a3)(−1 + 3a2 + 4a4 + a6) + (−2 + a− 3a2 − a4) = −2 + a− 3a2 − a4,

c22 = (1 + 2a2 + a4)(−1 + 3a2 + 4a4 + a6) + (4 + 5a2 + a4) = 4 + 5a2 + a4

= 4 + 5a2 + a4 + (−1 + 3a2 + 4a4 + a6) = a6 + 5a4 + 8a2 + 3.

Thus,

(AB)A−2(BA) =

(
−1− a2 2 + a+ 3a2 + a4

−2 + a− 3a2 − a4 a6 + 5a4 + 8a2 + 3

)
= BAB.
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Next,

(BA)B−2(AB) =

(
d11 d12
d21 d22

)
,

where

d11 = 1− a2 − 3a4 − a6,

d12 = 2a+ 2a2 + 3a3 + 7a4 + a5 + 5a6 + a8,

d21 = 2a− 2a2 + 3a3 − 7a4 + a5 − 5a6 − a8,

d22 = 1 + 5a2 + 16a4 + 17a6 + 7a8 + a10.

Again from a6 + 4a4 + 3a2 − 1 = 0,

d11 = (−1)(−1 + 3a2 + 4a4 + a6) + (2a2 + a4)

= 2a2 + a4,

d12 = (1 + a2)(−1 + 3a2 + 4a4 + a6) + (1 + 2a+ 3a3 + a5)

= 1 + 2a+ 3a3 + a5,

d21 = (−1− a2)(−1 + 3a2 + 4a4 + a6) + (−1 + 2a+ 3a3 + a5)

= −1 + 2a+ 3a3 + a5,

d22 = (2 + 3a2 + a4)(−1 + 3a2 + 4a4 + a6) + (3 + 2a2)

= 3 + 2a2

= 3 + 2a2 + (−1 + 3a2 + 4a4 + a6)

= a6 + 4a4 + 5a2 + 2.

Thus,

(BA)B−2(AB) =

(
2a2 + a4 1 + 2a+ 3a3 + a5

−1 + 2a+ 3a3 + a5 a6 + 4a4 + 5a2 + 2

)
= ABA.
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Now, if A =

(
1 0
0 1

)
, then a = 0 and 0 = a6+4a4+3a2−1 = −1, a contradiction.

If B =

(
1 0
0 1

)
, then 1 = 0, a contradiction. Hence, A and B are non-identity, and

by Lemma 6.2.2, (A,B) is an n-Engel pair for some integer n ≥ 4.

This completes the proof of Main Theorem 8.

6.3 Main Theorem 9

Lemma 6.3.1. Let p ≥ 2 be a prime and a, c ∈ Zp with a 6= 0. Let U = {y2 : y ∈

Zp} and V = {ax2 + c : x ∈ Zp}. Then U ∩ V 6= ∅.

Proof. Note that 0 ∈ U and for each y0 ∈ Zp \ {0}, y20 = (−y0)2 ∈ U \ {0}.

Furthermore, x2 = y20 implies that x = ±y0. Therefore, we conclude that |U | = p+1
2

.

Similarly, |V | = p+1
2

. If U ∩ V = ∅, then

p = |Zp| ≥ |U ∪ V |

= |U |+ |V |

=
p+ 1

2
+
p+ 1

2
= p+ 1,

a contradiction. Hence, U ∩ V 6= ∅.

Lemma 6.3.2. Let p ≥ 2 be a prime and a, b, c ∈ Zp with (a, b) 6= (0, 0). Then there

exist x, y ∈ Zp with y2 = ax2 + bx+ c.

Proof. Suppose a = 0. Then b 6= 0. Note that {bx + c : x ∈ Zp} = Zp. So, by

choosing any y ∈ Zp, there exists an x ∈ Zp with y2 = bx+ c.

Suppose a 6= 0. Then ax2 + bx + c = a(x + 2−1ba−1)2 + a(ca−1 − (2−1ba−1)2)

where 2−1 and a−1 are inverses of 2 and a, respectively, in Zp. By Lemma 6.3.1,
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there exist X, y ∈ Zp with y2 = aX2 + a(ca−1 − (2−1ba−1)2). The lemma follows by

taking x = X − 2−1ba−1.

Lemma 6.3.3. Let p ≥ 3 be a prime. Then {(2s−10, 4s−4) : s ∈ Zp} 6= {(0, 0)}.

Proof. Let s ∈ Zp be such that 2s − 10 = 0 = 4s − 4. Since p ≥ 3, 4 = 4s implies

that s = 1. So, −8 = 2s− 10 = 0, a contradiction. Hence, the lemma holds.

Proof of Main Theorem 9. Since F is of characteristic p, Zp ⊆ F . By the Quadratic

Reciprocity Law, x2 ≡ 5 mod p is solvable for all p ≡ ±1 mod 5. Therefore, there

exists an s ∈ Zp with

s2 = 5. (6.3.1)

By Lemma 6.3.3, (2s− 10, 4s− 4) 6= (0, 0). It then follows from Lemma 6.3.2 that

y2 = (2s− 10)x2 + (4s− 4)x+ (2s− 10), (6.3.2)

for some x, y ∈ Zp.

Therefore,

y2 + sy2 = ((2s− 10)x2 + (4s− 4)x+ (2s− 10))+ (6.3.3)

s((2s− 10)x2 + (4s− 4)x+ (2s− 10))

= −10− 8s+ 2s2 − 4x+ 4s2x− 10x2 − 8sx2 + 2s2x2

= −10− 8s+ 2(5)− 4x+ 4(5)x− 10x2 − 8sx2 + 2(5)x2

= −8s+ 16x− 8sx2. (6.3.4)

Let

A = 4−1
(

4x (1− x)(1 + s)− y
(x− 1)(1 + s)− y 2(1− 2x+ s)

)
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and

B = 2−1
(

0 2
−2 1 + s

)
.

Note that by equations (6.3.1) and (6.3.2),

|A| = 16−1(s2x2 − 2s2x+ 2sx2 + s2 + 4sx− 15x2 − y2 + 2s+ 6x+ 1)

= 16−1(5x2 − 2(5)x+ 2sx2 + 5 + 4sx− 15x2

− ((2s− 10)x2 + (4s− 4)x+ (2s− 10)) + 2s+ 6x+ 1)

= 1,

and |B| = 1. Thus, A,B ∈ SL(2, F ).

Now,

A2 =

(
a11 a12
a21 a22

)
,

where

a11 = 16−1(−1− 2s− s2 + 2x+ 4sx+ 2s2x+ 15x2 − 2sx2 − s2x2 + y2)

a12 = 16−1(2 + 4s+ 2s2 − 2x− 4sx− 2s2x− 2y − 2sy)

a21 = 16−1(−2− 4s− 2s2 + 2x+ 4sx+ 2s2x− 2y − 2sy)

a22 = 16−1(3 + 6s+ 3s2 − 14x− 12sx+ 2s2x+ 15x2 − 2sx2 − s2x2 + y2).

By equations (6.3.1) and (6.3.2),

a11 = 8−1(−8 + 4x+ 4sx)

a12 = 8−1(6 + 2s− 6x− 2sx− y − sy)

a21 = 8−1(−6− 2s+ 6x+ 2sx− y − sy)

a22 = 8−1(4 + 4s− 4x− 4sx).

So,

A3 = A2(A) =

(
b11 b12
b21 b22

)
,
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where

b11 = 32−1(−2s2x2 − s2xy + 4s2x+ s2y + 8sx2 + (y2 + sy2)− 2s2 + 16sx+ 10x2 + 5xy − 8s− 20x− 5y − 6)

b12 = 32−1(−4s2x2 − 2s2y + 4s2 − 8sx− 4sy + 20x2 + 8s− 24x+ 6y + 4)

b21 = 32−1(−4s2x2 + 8s2x− 4s2 + 8sx− 4sy + 20x2 − 8s− 16x− 4y − 4)

b22 = 32−1(−2s2x2 + s2xy − 4s2x− s2y + 8sx2 + (y2 + sy2) + 6s2 − 16sx+ 10x2 − 5xy + 8s− 12x+ 5y + 2).

By equations (6.3.1) and (6.3.4),

b11 = 8−1(−4 + 4x− 4s+ 4sx)

b12 = 8−1(6− y − 6x+ 2s− sy − 2sy)

b21 = 8−1(−6− y + 6x− 2s− sy + 2sy)

b22 = 8−1(8− 4x− 4sx).

Next,

B3 = 8−1
(
−4 2 + 2s

−2− 2s −3 + 2s+ s2

)(
0 2
−2 1 + s

)
= 8−1

(
−4 2 + 2s

−2− 2s −3 + 2s+ 5

)(
0 2
−2 1 + s

)
= 4−1

(
−2 1 + s
−1− s 1 + s

)(
0 2
−2 1 + s

)
= 4−1

(
−2s− 2 s2 + 2s− 3
−2s− 2 s2 − 1

)
= 4−1

(
−2s− 2 5 + 2s− 3
−2s− 2 5− 1

)
= 2−1

(
−1− s 1 + s
−1− s 2

)
,

AB = 8−1
(
−2− 2s+ 2x+ 2sx+ 2y 1 + 2s+ s2 + 7x− 2sx− s2x− y − sy

−4− 4s+ 8x 2s+ 2s2 − 2x− 2sx− 2y

)
= 8−1

(
−2− 2s+ 2x+ 2sx+ 2y 1 + 2s+ 5 + 7x− 2sx− 5x− y − sy

−4− 4s+ 8x 2s+ 2(5)− 2x− 2sx− 2y

)
= 8−1

(
−2− 2s+ 2x+ 2sx+ 2y 6 + 2s+ 2x− 2sx− y − sy

−4− 4s+ 8x 10 + 2s− 2x− 2sx− 2y

)
,
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and

BA = 8−1
(

−2− 2y + 2x− 2s+ 2sx 4− 8x+ 4s
−1− y − 7x− 2s− sy + 2sx− s2 + s2x 2y − 2x+ 2s− 2sx+ 2s2

)
= 8−1

(
−2− 2y + 2x− 2s+ 2sx 4− 8x+ 4s

−1− y − 7x− 2s− sy + 2sx− 5 + 5x 2y − 2x+ 2s− 2sx+ 2(5)

)
= 8−1

(
−2− 2y + 2x− 2s+ 2sx 4− 8x+ 4s
−6− y − 2x− 2s− sy + 2sx 10 + 2y − 2x+ 2s− 2sx

)
.

So,

(AB)A =

(
c11 c12
c21 c22

)
,

where

c11 = 32−1(−6− 8s− 2s2 − 4x+ 4s2x+ 10x2 + 8sx2 − 2s2x2 − 5y + s2y + 5xy − s2xy + (y2 + sy2))

c12 = 32−1(10 + 12s+ 2s2 − 16x− 10x2 + 4sx2 − 2s2x2 + 2y − 2s2y − 2y2)

c21 = 32−1(−10− 12s− 2s2 − 4x+ 4s2x+ 30x2 − 4sx2 − 2s2x2 − 8y + 2y2)

c22 = 32−1(16 + 16s− 32x).

By equations (6.3.1), (6.3.2) and (6.3.4),

c11 = 16−1(−8− 8s+ 16x)

c12 = 16−1(20 + 4s− 4x− 4sx− 4y)

c21 = 16−1(−4s− 20 + 4x+ 4sx− 4y)

c22 = 16−1(8 + 8s− 16x).

On the other hand,

B(AB) = 16−1
(

−8− 8s+ 16x 20 + 4s− 4x− 4sx− 4y
−4s− 4s2 + 4x+ 4sx− 4y −2 + 8s+ 2s2 − 6x− 2s2x

)
= 16−1

(
−8− 8s+ 16x 20 + 4s− 4x− 4sx− 4y

−4s− 4(5) + 4x+ 4sx− 4y −2 + 8s+ 2(5)− 6x− 2(5)x

)
= ABA.

Now,

AB2A = (AB)(BA) = 64−1
(
d11 d12
d21 d22

)
,
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where

d11 = −32− 32x− 16s+ 16sx2 + ((s2 − 3)y2 + 2sy2)

d12 = 52 + 10y + 32x+ 16s− 2(y2 + sy2)− 10xy − 20x2 − 4s2 − 16sx2 − 2s2y + 2s2xy + 4s2x2

d21 = −52 + 10y − 32x− 16s+ 2(y2 + sy2)− 10xy + 20x2 + 4s2 + 16sx2 − 2s2y + 2s2xy − 4s2x2

d22 = 84 + 24x+ 8s− 4y2 − 60x2 + 16sx− 12s2 + 8sx2 − 8s2x+ 4s2x2.

By equations (6.3.1), (6.3.2) and (6.3.4),

d11 = −32− 32s

d12 = 32 + 32s

d21 = −32− 32s

d22 = 64.

Hence, AB2A = B3.

Next,

BA2B = (BA)(AB) = 64−1
(
e11 e12
e21 e22

)
,

where

e11 = −12 + 56x− 24s− 4y2 − 60x2 + 48sx− 12s2 + 8sx2 − 8s2x+ 4s2x2

e12 = 28− 18y − 80x+ 32s+ 10xy + 20x2 − 8sy − 16sx+ 4s2 + 2(sy2 + y2) + 16sx2 + 2s2y − 2s2xy − 4s2x2

e21 = −28− 18y + 80x− 32s+ 10xy − 20x2 − 8sy + 16sx− 4s2 − 2(sy2 + y2)− 16sx2 + 2s2y − 2s2xy + 4s2x2

e22 = 64− 64x+ 16s− 32sx+ 16sx2 + (s2 − 3)y2 + 2sy2.

By equations (6.3.1), (6.3.2) and (6.3.4),

e11 = −32− 32s+ 32x+ 32sx

e12 = 48− 8y − 48x+ 16s− 8sy − 16sx

e21 = −48− 8y + 48x− 16s− 8sy + 16sx

e22 = 64− 32x− 32sx.

Hence, BA2B = A3.
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By part (b) of Lemma 4.2.4, A = [A,5B], and B = [B,5A]. Now, if A =

(
1 0
0 1

)
,

then x = 1 and 1 = 2−1(1 − 2x + s) = 2−1(s − 1), i.e., s = 3. By equation (6.3.1),

9 = s2 = 5. This implies that 4 = 0, which is impossible, for p ≥ 3. So, A is not the

identity. Hence, (A,B) is a 5-Engel pair in SL(2, F ).

This completes the proof of Main Theorem 9.

We also get the following corollary.

Corollary 6.3.4. If p ≡ ±1 mod 5 is a prime, then SL(2, p) has a 5-Engel pair.

Remark 3. Heineken [18, Theorem 2] showed that SL(2, p3) is generated by an

n-Engel pair. This overlaps with Main Theorem 8. However, the proof for Main

Theorem 8 is different from that of Heineken.

Remark 4. It can be seen by GAP that H2 = SL(2, 5). This means that SL(2, 5)

has a 5-Engel pair. By page 411 of [31], it is known that SL(2, 5) is isomorphic to

a subgroup of SL(2, p) if and only if p is odd and 5 divides p(p2 − 1). This gives

another proof for Main Theorem 9.

6.4 Computer Codes

The following programming script was used to search for Engel pairs in the special

linear group SL(2, p) with Mathematica. No complex symbolic computations is

involved and therefore it can be translated to work on other programs, such as the

open source mathematical system SAGE (www.sagemath.org).

Set1 := { };
Set2 := { };
X1 := { {1, 0} {0, 1} };
Y1 := { {1, 0} {0, 1} };
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EX1 := { {1, 0} {0, 1} };
EY1 := { {1, 0} {0, 1} };
invX1 := { {1, 0} {0, 1} };
invY1 := { {1, 0} {0, 1} };
invEX1 := { {1, 0} {0, 1} };
invEY1 := { {1, 0} {0, 1} };
ClX := { };
ClY := { };
CIE := { };
PrmD := 1;

Engl := 0;

For[jv = 1, jv < 10, jv++,

{

PrmD = Prime[jv],

Print[PrmD],

Set1 = { },
Set2 = { },
CIE = { },
For[ja = 0, ja < PrmD, ja++,

{
For[jb = 0, jb < PrmD, jb++,

{
For[jc = 0, jc < PrmD, jc++,

{
For[jd = 0, jd < PrmD, jd++,

{
If[Mod[ja*jd - jb*jc, PrmD] == 1,

Set1 = Append[Set1, { {ja, jb}, {jc, jd} }]],
If[ja == 0 && jb == 1 && jc == PrmD - 1,

Set2 = Append[Set2, { {ja, jb}, {jc, jd} }]],
}
]

}
]

}
]

}
],

For[je = 1, je < Length[Set2] + 1, je++,

{
For[jf = 1, jf < Length[Set1] + 1, jf++,

{
Engl = 0,

ClX = { },
ClY = { },
X1 = Set2[[je]],

Y1 = Set1[[jf]],

EX1 = X1,

EY1 = Y1,

invX1 = { {X1[[2, 2]], PrmD - X1[[1, 2]]},
{PrmD - X1[[2, 1]], X1[[1, 1]]} },

invY1 = { {Y1[[2, 2]], PrmD - Y1[[1, 2]]},
{PrmD - Y1[[2, 1]], Y1[[1, 1]]} },

For[jg = 1, jg < Length[Set1] + 1, jg++,

{
Engl = Engl + 1,

invEX1 = { {EX1[[2, 2]], PrmD - EX1[[1, 2]]},
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{PrmD - EX1[[2, 1]], EX1[[1, 1]]} },
invEY1 = { {EY1[[2, 2]], PrmD - EY1[[1, 2]]},

{PrmD - EY1[[2, 1]], EY1[[1, 1]]} },
EX1 = invEX1.invY1.EX1.Y1,

EY1 = invEY1.invX1.EY1.X1,

EX1 = { {Mod[EX1[[1, 1]], PrmD], Mod[EX1[[1, 2]], PrmD]},
{Mod[EX1[[2, 1]], PrmD], Mod[EX1[[2, 2]], PrmD]} },

EY1 = { {Mod[EY1[[1, 1]], PrmD], Mod[EY1[[1, 2]], PrmD]},
{Mod[EY1[[2, 1]], PrmD], Mod[EY1[[2, 2]], PrmD]} },

If[

EX1 == X1 && EY1 == Y1 && Engl > 2, {
If[ MemberQ[CIE, Engl] == False, {Print[{X1, Y1, Engl}],
CIE = Append[CIE, Engl]} ] , Break[]}],

If[MemberQ[ClX, EX1] == True, Break[]],

If[MemberQ[ClY, EY1] == True, Break[]],

ClX = Append[ClX, EX1],

ClY = Append[ClY, EY1]

}
]

}
]

}
]

}
]
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semigroups, Theoret. Comput. Sci. 250 (2001) 365–391.

76



[9] P. G. Crosby and G. Traustason, On right n-Engel subgroups, J. Algebra 324

(2010) 875–883.

[10] P. G. Crosby and G. Traustason, On right n-Engel subgroups II, J. Algebra 328

(2011) 504–510.

[11] D. B. A. Epstein, D. F. Holt, and S. E. Rees, The use of Knuth-Bendix methods

to solve the wordproblem in automatic groups, J. Symbolic Comput. 12 (1991)

397–414.

[12] D. B. A. Epstein and P. J. Sanders, KnuthBendix for groups with infinitely

many rules, Internat. J. Algebra Comput. 10 (2000) 539–589.

[13] The GAP Group, GAP – Groups, Algorithms, and Programming, Version

4.4.12; 2008. (http://www.gap-system.org)

[14] K. W. Gruenberg, The Engel elements of a soluble group, Illinois J. Math. 3

(1959),151–169.

[15] K. W. Gruenberg, The Engel structure of linear groups, J. Algebra 3 (1966),

291–303.

[16] P. Hall, On non-strictly simple groups, Proc. Cambridge Phil. Soc. 59 (1963),

531–553.

[17] R. Hartung, Coset enumeration for certain infinitely presented groups, Internat.

J. Algebra Comput. 21 (2011), 1369–1380.

[18] H. Heineken, Groups Generated by two Mutually Engel Periodic Elements, Bol-

lettino U. M. I. (8) 3-B (2000), 461–470.

77



[19] D. F. Holt, An alternative proof that the Fibonacci group F (2, 9) is infinite,

Experiment. Math. 4 (1995) 97–100.

[20] D. F. Holt, Some challenging group presentations, J. Aust. Math. Soc. 67 (1999)

206–213.

[21] N. Jacobson Basic Algebra I, W. H. Freeman and Company, New York (1985).

[22] W. P. Kappe, Die A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187–197.

[23] F. W. Levi, Groups in which the commutator operation satisfies certain algebraic

conditions, J. Indian Math. Soc. 6 (1942), 87–97.

[24] V. D. Mazurov, E. I. KhuKhro Unsolved problems in group theory, the Korovka

notebook, no. 18, Russian Academy of Sciences, Siberian Division, Institute of

Mathematics, 2014

[25] R. E. Needham, Infinite complete group presentations, J. Pure Appl. Algebra

110 (1996), 195–218.
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