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ABSTRACT 

Previous in vitro and in vivo studies have reported that 1’S-1’-acetoxychavicol acetate 

(ACA) and its analogue, 1’S-1’-acetoxyeugenol acetate (AEA) isolated from rhizomes of 

the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) induces 

apoptosis-mediated cell death in tumour cells via dysregulation of the NF-κB pathway and 

reduced physiological side effects on non-transformed cells. Nevertheless, there were some 

clinical development drawbacks such as poor solubility in vivo, depreciation of biological 

activity and non-specific targeting of tumour cells. In collaborative study with Institute of 

Engineering Immunology Russia, all the problems above were addressed using their novel 

drug conjugation technology involving a recombinant human alpha fetoprotein (rhAFP). 

However, in terms of future cost effectiveness, only ACA which is a major compound was 

selected for conjugation with rhAFP because AEA being a minor analogue, requires 

extensive purification steps with very low yield. As examined, thermodynamic studies 

showed that water soluble rhAFP was successful in retaining non-soluble forms of ACA 

within its hydrophobic pockets, hence acting as a chaperone which specifically targets 

tumour cells containing AFP surface receptors. This study also takes advantage of coupling 

ACA chemopotentiating effect and extrinsic pathway induction together with rhAFP’s 

specificity and intrinsic pathway induction of apoptosis to increase the efficacy of drugs 

whilst maintaining a lower dose per se. To study the synergistic effect of both agents on 

human cancer xenografts, nude athymic (Nu/Nu) mice were used and treated with various 

combination regimes subcutaneously. It was found that mice exposed to combined 

treatments displayed higher reductions in tumour volume compared to standalone agents. In 

addition to this, combined drug treated mice also demonstrated milder signs of systemic 

toxicity, such as loss in body weight and inflammation of vital organs compared to 
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standalone treatments. The immunohistochemistry, ELISA and western blotting results also 

provided evidence that rhAFP/ACA was not only able to downregulate NF-κB activation, 

but also reduced the expression of NF-κB regulated genes and inflammatory biomarkers. 

Therefore, this drug conjugation technology shows great therapeutic potential and a pioneer 

for the basis of future combination anti-neoplastic drugs development. 
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ABSTRAK 

Kajian in vitro dan in vivo terdahulu telah melaporkan bahawa 1’S-1’-acetoxychavicol 

acetate (ACA) dan analog nya, 1’S-1’-acetoxyeugenol acetate (AEA) yang diperolehi dari 

rizom tumbuhan etno-perubatan Alpinia conchigera Griff (Zingiberaceae) telah mendorong 

kematian sel-pengantara apoptosis dalam sel-sel tumor melalui penyahaktifan laluan signal 

NF-κB dan mengurangkan kesan sampingan fisiologi pada sel-sel normal. Walau 

bagaimanapun, mereka mempunyai beberapa kelemahan dalam pengujian klinikal seperti 

kelarutan yang rendah dalam in vivo, penyusutan aktiviti biologi dan tidak mensasar secara 

spesifik kepada sel-sel tumor. Dalam kajian bersama Institut Kejuruteraan Immunologi 

Russia, semua masalah tersebut telah diatasi dengan menggunakan teknologi konjugasi 

yang melibatkan rekombinan alfa fetoprotein manusia (rhAFP). Walau bagaimanapun, dari 

segi keberkesanan kos pada masa hadapan, hanya ACA yang merupakan sebatian utama 

telah dipilih untuk dikonjugasi bersama rhAFP kerana AEA adalah analog kecil, 

memerlukan langkah-langkah pembersihan yang menyeluruh dengan hasil yang sangat 

rendah. Setelah diuji, kajian termodinamik menunjukkan bahawa rhAFP yang bersifat larut 

air telah berjaya mengekalkan bentuk tidak larut ACA di dalam poket hidrofobiknya yang 

bertindak sebagai ‘chaperone’ yang mensasar secara spesifik kepada sel-sel tumor yang 

mempunyai reseptor pada permukaan AFP. Kajian ini juga menggunakan kelebihan dari 

kesan gabungan ACA kimo-potensi dalam induksi laluan ekstrinsik bersama dengan rhAFP 

yang spesifik dalam rangsangan laluan intrinsik apoptosis untuk meningkatkan 

keberkesanan ubat, sementara mengekalkan dos ‘per se’ yang lebih rendah. Untuk 

mengkaji kesan sinergi kedua-dua agen dalam ‘xenografts’ kanser manusia, tikus athymic 

(Nu/Nu) telah digunakan dan dirawat dengan pelbagai rejim gabungan secara suntikan 

‘subcutaneous’. Hasil kajian mendapati bahawa tikus yang dirawat secara rawatan 
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gabungan telah mempamerkan penurunan dalam jumlah pertumbuhan tumor berbanding 

dengan rawatan secara persendirian. Di samping itu, tikus yang dirawat secara rawatan 

gabungan juga menunjukkan tanda-tanda yang lebih rendah dalam ketoksikan sistemik, 

seperti kehilangan berat badan dan keradangan pada organ-organ penting, berbanding 

dengan rawatan secara persendirian. Keputusan immunohistochemistry, ELISA dan 

Western blot juga menunjukkan bahawa gabungan rhAFP/ACA bukan sahaja dapat 

menyahaktifan laluan signal NF-κB, tetapi juga mengurangkan ekspresi gen yang dikawal 

oleh NF-κB serta ‘inflammatory biomarkers’. Oleh yang demikian, teknologi konjugasi ini 

telah menunjukkan potensi teraputik yang besar dan menjadi asas perintis bagi 

pembangunan gabungan ubat-ubatan ‘anti-neoplastic’ pada masa hadapan. 
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rhAFP treated group (E) rhAFP/ACA (1:1) treated 

group (F) rhAFP/ACA (1:3) treated group (G) 

rhAFP/ACA (1:5) treated group. 
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Figure 4.37  Quantification of relative intensity of IHC DAB 

staining on PC-3 prostate xenograft sections treated 

with various rhAFP/ACA combination regimes.  
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Figure 4.38  Western blotting analysis of CDK4 and MMP-9 in 

A549 lung tumour tissues derived from (A) placebo 

treated group, (B) CDDP treated group, (C) ACA 

standalone treated group, (D) rhAFP standalone treated 

group, (E) rhAFP/ACA 1:1 ratio treated group, (F) 

rhAFP/ACA 1:3 treated group and (G) rhAFP/ACA 1:5 

ratio treated group. GAPDH control antibodies were 

used for normalization of band intensities. 
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Figure 4.39  Western blotting analysis of CDK4 and MMP-9 in PC-

3 prostate tumour tissues derived from (A) placebo 

treated group, (B) CDDP treated group, (C) ACA 

standalone treated group, (D) rhAFP standalone treated 

group, (E) rhAFP/ACA 1:1 ratio treated group, (F) 

rhAFP/ACA 1:3 treated group and (G) rhAFP/ACA 1:5 

ratio treated group. GAPDH control antibodies were 

used for normalization of band intensities. 
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