CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Abstrak</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
</tbody>
</table>

1 : INTRODUCTION

1.1 Landfill in Malaysia | 1 |
1.2 Landfill Functionality: Sink vs Reservoir | 1 |
1.3 Waste and Material Flow | 3 |
1.4 Mass & Element Balances in Municipal Solid Waste Landfill | 3 |
1.5 Carbon and Nitrogen Mass Balance in Landfill | 5 |
1.6 Problem Statement and Objectives | 6 |

2 : LITERATURE REVIEW

2.0 Municipal Solid Waste Generations Trends | 7
2.0.1 Global Trends | 7 |
2.0.2 Regional Trends

2.0.3 National Trends

2.1 Historical background and development of Material Flow Analysis. 16

2.2 Progress in the study of Material Flow Analysis. 26

2.3 Application of Material Flow Analysis in Municipal Solid Waste Management (MSW).

2.4 Landfill as a sink 35

2.5 Waste and Climate Change 38

2.6 Carbon Flows Through Waste Management Systems

 2.6.1 Carbon Cycle Process in Sanitary Landfill 43

 2.6.2 Global Greenhouse Gas Emission Trend 45

 2.6.3 Methane as a Greenhouse Gas. 46

2.7 Nitrogen Flows Through Waste Management Systems

 2.7.1 Nitrogen Removal and Transformation Process in Landfill 49

 2.7.2 Ammonia-nitrogen removal in leachate and gas. 50

3: MATERIALS AND METHOD

3.1 System Analysis in Jeram Sanitary Landfill (JSL)

 3.1.1 Field site :Background Primary Data Collection 53

 3.1.2 Sampling of Municipal Solid Waste (MSW) 54

 3.1.3 Chemical Analysis for MSW characterization 55

 3.1.4 Physical and Chemical Analysis for leachate and rainwater and gas. 56

3.2. MFA framework in Sanitary Landfill System

 3.2.1 System Analysis 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Municipal Solid Waste (MSW) Degradation</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>The stoichiometric model</td>
<td></td>
</tr>
<tr>
<td>3.2.3</td>
<td>Quantitative Analysis on Waste Input: MSW</td>
<td>60</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Carbon Mass Balance</td>
<td>61</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Nitrogen Mass Balance</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Quantitative Analysis on Waste Output: Leachate and Greenhouse Gases (GHG)</td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Water Balance Factor in Landfill</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Conceptual Model</td>
<td>62</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Water Balance Modelling (WBM)</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>The Landfill Gas Emission (LandGEM) software application</td>
<td></td>
</tr>
<tr>
<td>3.4.1</td>
<td>GHG projection in landfill condition</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Data Modelling approach: Substance Analysis software (STAn)</td>
<td></td>
</tr>
<tr>
<td>3.5.1</td>
<td>Short Operating Program Description: Flow analysis and Mass Balance</td>
<td>66</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Overall Mass Balance in Sanitary Landfill System</td>
<td>68</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Substance flow Analysis for Carbon and Nitrogen</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>RESULTS AND DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>System Analysis in Jeram Sanitary Landfill (JSL)</td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Municipal Solid Waste (MSW) characterization/Composition Studies</td>
<td>73</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Physical and Chemical Analysis for leachate and rainwater</td>
<td>79</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Emission from small-scale composting</td>
<td>79</td>
</tr>
</tbody>
</table>
4.2 MSW Characterization & Flow in JSL

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1 Quantitative Analysis on Waste Input : MSW</td>
<td>81</td>
</tr>
<tr>
<td>4.2.2 Quantitative Analysis on Waste Output : Leachate and GHG</td>
<td>83</td>
</tr>
<tr>
<td>4.3 Water Balance Factor in Landfill</td>
<td></td>
</tr>
<tr>
<td>4.4.1 Precipitation in terms of Rainfall in JSL</td>
<td>85</td>
</tr>
<tr>
<td>4.4.2 Water Balance (Leachate and Rainfall)</td>
<td>86</td>
</tr>
<tr>
<td>4.4 The Landfill Gas Emission (LandGEM) application</td>
<td></td>
</tr>
<tr>
<td>4.4.1 GHG emission projection for 10 years.</td>
<td>94</td>
</tr>
<tr>
<td>4.5 Data Modelling approach : Substance Analysis software (STAn)</td>
<td></td>
</tr>
<tr>
<td>4.5.1 Substance flow Analysis for Nitrogen</td>
<td>101</td>
</tr>
<tr>
<td>4.5.2 Substance flow Analysis for Carbon</td>
<td>114</td>
</tr>
</tbody>
</table>

5: CONCLUSION

REFERENCES

128