LIST OF FIGURES

Figures 2.1 : MSW composition by economic level classification.	12
Figure 2.2 : Urban metabolism of Brussels, Belgium in the early 1970s.	21
Figure 2.3 : Example of a urban metabolism analysis in forest management.	22
Figure 2.4 : A multi-purpose family of tools and overall architecture	27
of MFA and related tools.	
Figure 2.5: Waste management at an urban city Addis Ababa, Ethiopia.	35
Figure 2.6 : Comparison of two system (factory and landfill) versus time.	37
Figure 2.7 : Comparison between the sustainable landfill model	38
(tolerable emission within 30 years) and a traditional landfill scenario)
Figure 2.8 : Contribution from waste to climate change in a waste	42
management field.	
Figure 2.9 :Carbon flows through major waste management systems	43
including C storage and gaseous C emissions.	
Figure 2.10 : Simplified Landfill Methane Mass Balance showing	44
pathways for GHG emissions from landfills and leachate systems.	
Figure 2.11: Global Greenhouse Gas Emissions In 2000 and Anthropogenic	46
Methane Sources.	
Figure 2.12 : Malaysian's emission intensity compared to global average	48
for the energy sector in 2007.	
Figure 2.13: Potential pathways of nitrogen transformation	50
and/or removal in a sanitary landfill	
(Reproduced from Berge & Reinhart, 2005)	
Figure 3.1: Proposed procedure for the analysis	59

Figure 3.2: A simplified system to show water balance in a sanitary	62
landfill condition	
Figure 3.3: Hydrologic balance of landfill.	63
Figure 3.4: Graphical User Interface or GUI of STAn.	67
Figure 3.5 : MFA system definition and analysis shown in a graphic	69
representation of qualitative system analysis of JSL	
Figure 3.6: The typical results display for a sanitary landfill.	70
Figure 3.7: Data table with grouped input data.	71
Figure 3.8 : Calculation box for C and N input	72
Figure 4.1 : Tonnage of monthly landfilled waste at JSL from 2007 until 2010.	77
Figure 4.2 : 3 major sources of incoming waste (PBT : Municipality/Council,	78
SOWACO : Solid Waste Company, Others, Special).	
Figure 4.3 : Weekly gas monitoring for mature compost for 12-weeks in JSL.	80
Figure 4.4 : System Boundary in identified in Jeram Sanitary Landfill study	82
Figure 4.5 : Mass Flow Analysis (in tonne/year) of Jeram Sanitary Landfill.	84
Figure 4.6 : Seasonal precipitation in terms of rainfall in JSL from	85
year 2007 until 2013.	
Figure 4.7: Percentage of C in landfilled waste	92
Figure 4.8: Percentage of N in landfilled waste.	94
Figure 4.9 : Gap scenario between LFG generation and capture rate in JSL	96
Figure 4.10: Landfill Gas (LFG) concentration at selected wells in JSL.	97
Figure 4.11 : Headspace gas composition from gas wells using	99
gas chromatography.	
Figure 4.12 : NH ₃ gas distribution and concentration at JSL	100
Figure 4.13 : Substance Flow Analysis for N in JSL (tones/year).	106
Figure 4.14 : Substance Flow Analysis for C in JSL (tones/year)	118

LIST OF PLATES

Plates 3.1: Satellite Image shows the JSL location.	54
Plates 3.2 : Gas Analyser Model Binder GA-M.	57
Plates 3.3 :Gas Chromatograph (Model GC-8A Shimadzu).	57

LIST OF TABLES

Table 2.1 : Global Perspective of Municipal Solid Waste Generation	8
Rates and The Respective Management Costs.	
Table 2.2 : Waste Generation Projections for 2025 Region by Income	10
from reliable sources.	
Table 2.3: MSW Disposal by Income (million tonnes)	10
in low-income and upper middle-income countries.	
Table 2.4 : Specific milestone targets for solid waste management	14
and performance in Malaysia	
Table 2.5 : Total Number of operating landfill/dump sites, end-of-life sites	15
and sanitary landfills according to Malaysian states	
as at 31st December 2012	
Table 2.6 : Summary of MFA study at the national level.	29
Table 2.7 : Summary of MFA study at the regional level.	30
Table 2.8 : Summary of MFA study at the industrial level.	31
Table 2.9: Global warming potential (GWP) for a given time	40
Table 2.10: Emissions estimates and projections on Global GHG emission trend.	45
Table 3.1: Available information on good or substance flows in	56
preparation for the landfill material balance in JSL.	
Table 4.1: Waste composition in JSL.	75
Table 4.2 : Cumulative of waste disposed into JSL from 2007 till June 2013	76
Table 4.3 : Actual waste received compared to monthly target in JSL	77
operation from 2007 until 2010.	
Table 4.4: Chemical Analysis for Carbon and Nitrogen for rainwater and	78
raw leachate from JSL.	

xi

Table 4.5: Landfill leachate classification versus age	88
Table 4.6 : Physico-chemical characteristics of leachate taken from	90
the leachate treatment plant. (EQA B is for Malaysian	
Environmental Quality Act Standard B).	
Table 4.7 : Extrapolation for LFG generation and capture in JSL from	95
2009 until 2021	
Table 4.8 : N from various waste samples.	103
Table 4.9: Complete process list for N mass flow	108
(actual and calculated) in JSL.	
Table 4.10: Initial C analysis in domestic waste, bulky waste and	115
garden waste in JSL.	
Table 4.11: Complete process list for carbon mass flow (actual and calculated)	121

in JSL.