LIST OF FIGURES

Figures 2.1 : MSW composition by economic level classification. 12
Figure 2.2 : Urban metabolism of Brussels, Belgium in the early 1970s. 21
Figure 2.3 : Example of a urban metabolism analysis in forest management. 22
Figure 2.4 : A multi-purpose family of tools and overall architecture 27
of MFA and related tools.
Figure 2.5: Waste management at an urban city Addis Ababa, Ethiopia. 35
Figure 2.6 : Comparison of two system (factory and landfill) versus time. 37
Figure 2.7 : Comparison between the sustainable landfill model 38
(tolerable emission within 30 years) and a traditional landfill scenario
Figure 2.8 : Contribution from waste to climate change in a waste 42
management field.
Figure 2.9 : Carbon flows through major waste management systems 43
including C storage and gaseous C emissions.
Figure 2.10 : Simplified Landfill Methane Mass Balance showing 44
pathways for GHG emissions from landfills and leachate systems.
Figure 2.11: Global Greenhouse Gas Emissions In 2000 and Anthropogenic 46
Methane Sources.
Figure 2.12 : Malaysian’s emission intensity compared to global average 48
for the energy sector in 2007.
Figure 2.13: Potential pathways of nitrogen transformation 50
and/or removal in a sanitary landfill
(Reproduced from Berge & Reinhart, 2005)
Figure 3.1: Proposed procedure for the analysis 59
Figure 3.2: A simplified system to show water balance in a sanitary landfill condition

Figure 3.3: Hydrologic balance of landfill.

Figure 3.4: Graphical User Interface or GUI of STAn.

Figure 3.5: MFA system definition and analysis shown in a graphic representation of qualitative system analysis of JSL.

Figure 3.6: The typical results display for a sanitary landfill.

Figure 3.7: Data table with grouped input data.

Figure 3.8: Calculation box for C and N input.

Figure 4.1: Tonnage of monthly landfilled waste at JSL from 2007 until 2010.

Figure 4.2: 3 major sources of incoming waste (PBT: Municipality/Council, SOWACO: Solid Waste Company, Others, Special).

Figure 4.3: Weekly gas monitoring for mature compost for 12-weeks in JSL.

Figure 4.4: System Boundary in identified in Jeram Sanitary Landfill study.

Figure 4.5: Mass Flow Analysis (in tonne/year) of Jeram Sanitary Landfill.

Figure 4.6: Seasonal precipitation in terms of rainfall in JSL from year 2007 until 2013.

Figure 4.7: Percentage of C in landfilled waste.

Figure 4.8: Percentage of N in landfilled waste.

Figure 4.9: Gap scenario between LFG generation and capture rate in JSL.

Figure 4.10: Landfill Gas (LFG) concentration at selected wells in JSL.

Figure 4.11: Headspace gas composition from gas wells using gas chromatography.

Figure 4.12: NH₃ gas distribution and concentration at JSL.

Figure 4.13: Substance Flow Analysis for N in JSL (tones/year).

Figure 4.14: Substance Flow Analysis for C in JSL (tones/year).
LIST OF PLATES

Plates 3.1: Satellite Image shows the JSL location. 54
Plates 3.2: Gas Analyser Model Binder GA-M. 57
Plates 3.3: Gas Chromatograph (Model GC-8A Shimadzu). 57
LIST OF TABLES

Table 2.1 : Global Perspective of Municipal Solid Waste Generation Rates and The Respective Management Costs. 8
Table 2.2 : Waste Generation Projections for 2025 Region by Income from reliable sources. 10
Table 2.3: MSW Disposal by Income (million tonnes) in low-income and upper middle-income countries. 10
Table 2.4 : Specific milestone targets for solid waste management and performance in Malaysia 14
Table 2.5 : Total Number of operating landfill/dump sites, end-of-life sites and sanitary landfills according to Malaysian states as at 31st December 2012 15
Table 2.6 : Summary of MFA study at the national level. 29
Table 2.7 : Summary of MFA study at the regional level. 30
Table 2.8 : Summary of MFA study at the industrial level. 31
Table 2.9: Global warming potential (GWP) for a given time 40
Table 2.10: Emissions estimates and projections on Global GHG emission trend. 45
Table 3.1: Available information on good or substance flows in preparation for the landfill material balance in JSL. 56
Table 4.1: Waste composition in JSL. 75
Table 4.2 : Cumulative of waste disposed into JSL from 2007 till June 2013 76
Table 4.3 : Actual waste received compared to monthly target in JSL operation from 2007 until 2010. 77
Table 4.4: Chemical Analysis for Carbon and Nitrogen for rainwater and raw leachate from JSL. 78
Table 4.5: Landfill leachate classification versus age

Table 4.6: Physico-chemical characteristics of leachate taken from the leachate treatment plant. (EQA B is for Malaysian Environmental Quality Act Standard B).

Table 4.7: Extrapolation for LFG generation and capture in JSL from 2009 until 2021

Table 4.8: N from various waste samples.

Table 4.9: Complete process list for N mass flow (actual and calculated) in JSL.

Table 4.10: Initial C analysis in domestic waste, bulky waste and garden waste in JSL.

Table 4.11: Complete process list for carbon mass flow (actual and calculated) in JSL.