UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Tiong Khing Gueok (LC/Passport No: 900517138146)
Registration/Matric No: SGH130011
Name of Degree: MASTER OF TECHNOLOGY (ENVIRONMENTAL MANAGEMENT)
Adsorption Studies of Methylene Blue using Selected agro-wastes as Low Cost Adsorbents

Field of Study:
I do solemnly and sincerely declare that:
(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name: Date
Designation:
ABSTRACT

Today, there are a lot of dyes available commercially. Effluent discharge from textile industries to neighbouring water bodies is currently causing significant health problem. Synthetic dyes used in textile industries, if not treated prior to its disposal can enter our water systems and cause pollution. The study was performed using different agro-wastes namely kenaf (FH 990), banana stem, and sugarcane bagasse to produce low cost industrial adsorbents. Adsorption method was applied in removing methylene blue (MB) dye from aqueous solution. The aims of this study are to investigate the adsorption capacity under optimal parameters and compare the cost effectiveness together with the calorific value of adsorbents before and after the treatment. The characteristics of wastewater effluent was examined and the characteristics of adsorbents were determined by using FTIR, FESEM and BET analysis. The experiments were conducted in single adsorbate system by batch technique to determine the optimum condition for higher adsorbency. The determination of optimum conditions was carried out in different pH (2 - 10), agitation time (5- 300 minutes), initial concentration (10 – 70 mg/L) and temperature (20 - 100 ºC). The adsorption isotherms of Langmuir and Freundlich were employed to examine the equilibrium adsorption data. Thermodynamic parameters such as ΔH°, ΔS° and ΔG° were also calculated. The optimal adsorption was achieved by banana stem with the adsorption capacity of 68.47 mg/L and maximum removal percentage of 97.82 % for initial methylene blue concentration of 70 mg/L. The adsorption of methylene blue can be well describes by Freundlich isotherm and the adsorption process was found to be exothermic and spontaneous for all the adsorbents. Thus, all results indicated that the selected agro-wastes could be employed as an effective new low cost adsorbent for the removal of textile dyes from aqueous solutions.
ABSTRAK

Kini, terdapat banyak pewarna yang boleh didapati secara komersial. Pembuangan efluen dari industri tekstil ke dalam sistem pengairan telah menyebabkan masalah kesihatan yang ketara. Pewarna sintetik yang digunakan dalam industri tekstil boleh menyebabkan pencemaran jika tidak dirawat sebelum dilepaskan ke dalam sistem air. Kajian ini dilakukan dengan menggunakan sisa pertanian terpilih iaitu kenaf (FH 990), batang pisang dan hampas tebu untuk menghasilkan penjerap perindustrian kos rendah. Kaedah penjerapan telah digunakan untuk menyingkirkan pewarna metilena biru (MB) daripada larutan cecair. Tujuan kajian ini adalah untuk mengkaji kapasiti penjerapan di bawah parameter optimum dan membandingkan keberkesanan kos bersama dengan nilai kalori adsorben sebelum dan selepas rawatan. Ciri-ciri air sisa efluen telah dikaji dan ciri-ciri penjerap ditentukan dengan menggunakan analisis FTIR, FESEM dan BET. Kajian ini telah dijalankan dengan menggunakan sistem penjerapan berkala untuk menentukan keadaan yang optimum untuk penyerapan yang lebih tinggi. Rawatan ini termasuk penentuan keadaan optimum pada pH yang berbeza (2 - 10), masa pergolakan (5-300 minit), kepekatan awal (10 - 70 mg / L) dan suhu (20 - 100 ºC). Sesuhu penjerapan Langmuir dan Freundlich telah digunakan untuk mengkaji data penjerapan pada keseimbangan. Parameter termodinamik seperti ΔH°, ΔS dan ΔG° juga telah dikira. Penjerapan optimum telah diperolehi dengan menggunakan batang pokok pisang dengan kapasiti penjerapan 68.47 mg/L dan kadar penjerapan maksimum 97.82% bagi kepekatan metilena biru sebanyak 70 mg/L. Penjerapan metilena biru dapat diterangkan dengan isoterma Freundlich di mana penjerapan didapati adalah proses eksotermik dan spontan untuk semua bahan penjerap. Keputusan menunjukkan bahawa sisa pertanian boleh digunakan sebagai bahan penjerap baru yang berkesan untuk penyingkiran pewarna tekstil dari larutan cecair dengan kos yang rendah.
ACKNOWLEDGEMENT

I am grateful and would like to express my gratitudes to my supervisors Dr. Fauziah Shahul Hamid and Dr. Sharifah Mohamad for their invaluable guidance, continuous encouragement and constant support for making this research possible. I appreciate their guidance which enabled me to develop an understanding of this research thoroughly. Without their advice and assistance it would be difficult to complete.

I would like to offer my special thanks to National Kenaf and Tobacco Board (IKTN), Malacca for their support in providing kenaf (FH-990) samples and ideas for this research. My extended thanks to all lab assistants and seniors of Central Analytical Lab, Environmental Microbiology Lab and Postgraduate Environmental Lab, Faculty of Science, University Malaya for their help to accomplished this research by offering technical support and knowledge sharing.

I wish to acknowledge the help provided by my friends to finish this research. Finally, my heartfelt thanks to my lovely parents who spends their time years after years to grow me up and encourage me with moral and spiritual supports throughout my studies.
TABLE OF CONTENT

Content PAGE

ABSTRACT II
ABSTRAK III
ACKNOWLEDGEMENT IV
CONTENT V
LIST OF FIGURES IX
LIST OF PLATES XI
LIST OF TABLES XII
LIST OF SYMBOLS AND ABBREVIATIONS XIV

CHAPTER 1 INTRODUCTION 1
1.1 Background of Study 1
 1.1.1 Water Crisis 1
 1.1.2 Usage of Dyes in Industry 2
 1.1.3 Environmental Impacts of Dyes 3
 1.1.4 Methods of Dye Removal 4
 1.1.4.1 Chemical Methods 4
 1.1.4.2 Biological Methods 4
 1.1.4.3 Physical Methods 5
1.2 Problem Statement 6
1.3 Significance of Study 7
1.4 Objectives of Study 7

CHAPTER 2 LITERATURE REVIEW 8
2.1 Textile Industry in Malaysia 8
2.2 Environmental Aspects 11
2.3 Wastewater Treatment in Textile Industry 13
2.4 Colorant 14
2.5 Dye 14
2.6 Classification of Dyes 16
 2.6.1 Acid Dyes 16
 2.6.2 Premetalized Acid Dyes 16
 2.6.3 Mordant Dyes (Chrome Dyes) 17
 2.6.4 Cationic Dyes (Basic Dyes) 17
 2.6.4.1 Methylene Blue 17
 2.6.5 Direct Dyes (Substantive Dyes) 18
 2.6.6 Disperse Dyes 18
 2.6.7 Naphthol Dyes 19
 2.6.8 Reactive Dyes 19
 2.6.9 Sulfur Dyes 19
 2.6.10 Vat Dyes 19
2.7 Existing Approaches of Dye Removal 21
 2.7.1 Biodegradation 22
 2.7.2 Coagulation-Flocculation 22
 2.7.3 Adsorption by Activated Carbon 23
 2.7.4 Ozone Treatment 25
 2.7.5 Electrochemical Processes 27
 2.7.6 Reverse Osmosis 27
 2.7.7 Nanofiltration 28
 2.7.8 Ultrafiltration-Microfiltration 29
 2.7.9 Ion Exchange 30
 2.7.10 Fenton’s Reagent (H$_2$O$_2$Fe$^{2+}$ salts) Treatment 30
 2.7.11 Photochemical (H$_2$O$_2$-UV radiation) 31
 2.7.12 Photocatalytical (TiO$_2$-UV radiation) 31
2.8 Adsorption 33
 2.8.1 Physisorption 34
 2.8.2 Chemisorption 35
 2.8.3 Adsorbent 36
 2.8.4 Adsorption Mechanism 37
 2.8.5 Factors Affecting Adsorption 39
2.9 Previous Studies of Adsorption using Agricultural Waste Products 42
 2.9.1 Characteristics of Agricultural Wastes as Adsorbents 42
2.9.2 Studies of natural form of agricultural waste adsorbents 43

CHAPTER 3 MATERIALS AND METHODS 47

3.1 Characteristics of Textile Effluent 47

3.1.1 Biological Oxygen Demand (BOD) 47

3.1.1.1 Reagents and Standards 47

3.1.1.2 Preparation of Solution 48

3.1.1.2 Sample Preparation 48

3.1.2 Chemical Oxygen Demand (COD) 48

3.1.3 Total Dissolved Solids (TDS) 48

3.1.4 Total Suspended Solids (TSS) 48

3.1.5 pH 49

3.1.6 Total Solid 49

3.1.7 Turbidity 49

3.2 Preparation of Adsorbent 49

3.3 Characteristics of Adsorbents 49

3.4 Adsorption Studies 50

3.4.1 Effect of pH 50

3.4.2 Determination of Optimum Agitation Time 50

3.4.3 Effect of Initial Concentration 51

3.4.4 Effect of Temperature 51

3.5 Isotherms 51

3.5.1 Removal Efficiency of Adsorbents 51

3.5.2 Adsorption Capacity 52

3.5.2 Langmuir Isotherm 52

3.5.3 Freundlich Isotherm 53

3.6 Adsorption Thermodynamic 54

3.7 Determination of Calorific Value Bomb Calorimeter 54

3.7.1 Calculation of Temperature Rise 55

3.7.2 Calculation of Gross Heat of Combustion 56

CHAPTER 4 RESULTS AND DISCUSSIONS 57

4.1 Characteristics of Textile Effluent 57

4.1.1 Characteristics of Textile Effluent before the Treatment 57

4.1.2 Characteristics of Effluent after the Treatment 58
4.2 Characteristics of Adsorbent
 4.2.1 FTIR (Fourier transform infrared spectroscopy) Analysis
 4.2.2 Morphology Observation via FESEM (Field Emission Scanning Electron Microscope)
 4.2.3 BET Surface Area Analysis of Agro-wastes

4.3 Adsorption Studies
 4.3.1 Calibration Curve of Methylene Blue
 4.3.2 Effect of pH
 4.3.3 Determination of Optimum Agitation Time
 4.3.4 Effect of Initial Concentration
 4.3.5 Effect of Temperature
 4.3.6 Maximum Adsorption Capacity under Optimum Condition

4.4 Isotherm Studies
 4.4.1 Langmuir Isotherm
 4.4.2 Freundlich Isotherm

4.5 Adsorption Thermodynamic

4.6 Calorific Value

4.7 Economic Feasibility

CHAPTER 5 CONCLUSION

REFERENCES

LIST OF PUBLICATIONS AND PAPERS PRESENTED
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NO.</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Examples of chromophore groups (Lam, 2005)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Structure of methylene blue (Cragon, 1999)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Coagulation-flocculation process</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Activated carbon in different forms</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Ozone treatment process</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Components of reverse osmosis membrane</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Types of materials that can be filtered by nanofiltration</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Basic process of adsorption (Worch, 2012)</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Mechanism of adsorption (Sharifah Nhatasha Syed Jaafar, 2006)</td>
<td>38</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>FTIR spectra of kenaf, banana stem and sugarcane bagasse</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Calibration of methylene blue dye using various dye concentrations</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Determination of optimum pH of adsorbents for methylene blue dye in 70 mg/L concentration</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Determination of optimum agitation time for removing methylene blue dye</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Determination of optimum initial concentration for methylene blue dye</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Determination of optimum temperature of kenaf, banana stem and sugarcane bagasse for removing methylene blue dye</td>
<td>75</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Maximum adsorption capacity of kenaf, banana stem and sugarcane Bagasse</td>
<td>76</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Langmuir plot for MB dye by using kenaf</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Langmuir plot for MB dye by using banana stem</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Langmuir plot for MB dye by using sugarcane bagasse</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Freundlich plot for MB dye using kenaf</td>
<td>80</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Freundlich plot for MB dye using banana stem</td>
<td>80</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Freundlich plot for MB dye using sugarcane bagasse</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Van’t Hoff plot for the estimation of thermodynamics parameters</td>
<td>83</td>
</tr>
<tr>
<td>NO.</td>
<td>Description</td>
<td>PAGE</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Plate 4.2</td>
<td>Field emission scanning electron microscopy for kenaf</td>
<td>65</td>
</tr>
<tr>
<td>Plate 4.3</td>
<td>Field emission scanning electron microscopy for banana stem</td>
<td>66</td>
</tr>
<tr>
<td>Plate 4.4</td>
<td>Field emission scanning electron microscopy for sugarcane bagasse</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>NO.</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>2</td>
</tr>
<tr>
<td>Dye loss as effluent for different dye-fiber systems (Shertate And Thorat, 2013; Chun, 2010)</td>
<td></td>
</tr>
<tr>
<td>Table 2.1</td>
<td>9</td>
</tr>
<tr>
<td>Malaysian made textile and apparel</td>
<td></td>
</tr>
<tr>
<td>Table 2.2</td>
<td>10</td>
</tr>
<tr>
<td>Malaysian exports of textiles and apparel by years (Malaysian Knitting Manufacturers Association, 2014)</td>
<td></td>
</tr>
<tr>
<td>Table 2.3</td>
<td>12</td>
</tr>
<tr>
<td>Specific pollutants from textile wet processing operations (Eglia, 2007)</td>
<td></td>
</tr>
<tr>
<td>Table 2.4</td>
<td>20</td>
</tr>
<tr>
<td>Application classes of dyes and their chemical types (Chun, 2010)</td>
<td></td>
</tr>
<tr>
<td>Table 2.5</td>
<td>32</td>
</tr>
<tr>
<td>Advantages and disadvantages of different wastewater treatment used in textile industry</td>
<td></td>
</tr>
<tr>
<td>Table 2.6</td>
<td>35</td>
</tr>
<tr>
<td>Comparison between physical and chemical adsorption (Sharifah Nhatasha Syed Jaafar, 2006)</td>
<td></td>
</tr>
<tr>
<td>Table 4.1</td>
<td>57</td>
</tr>
<tr>
<td>Characteristics of textile effluent</td>
<td></td>
</tr>
<tr>
<td>Table 4.2</td>
<td>59</td>
</tr>
<tr>
<td>Characteristics of textile effluent before and after treatment</td>
<td></td>
</tr>
<tr>
<td>Table 4.3</td>
<td>62</td>
</tr>
<tr>
<td>Percentage reduction of pollutant in textile effluent</td>
<td></td>
</tr>
<tr>
<td>Table 4.4</td>
<td>67</td>
</tr>
<tr>
<td>BET surface area characterization</td>
<td></td>
</tr>
<tr>
<td>Table 4.5</td>
<td>77</td>
</tr>
<tr>
<td>Langmuir isotherm constants and regression data for adsorption of methylene blue</td>
<td></td>
</tr>
<tr>
<td>Table 4.6</td>
<td>82</td>
</tr>
<tr>
<td>Freundlich isotherm constants and regression data for adsorption of methylene blue</td>
<td></td>
</tr>
</tbody>
</table>
Table 4.7 Thermodynamics parameters for kenaf, banana stem and sugarcane bagasse
Table 4.8 Calorific value before and after the treatment for kenaf, banana stem and sugarcane bagasse
Table 4.9 Calorific value of agro wastes (AZUEZ, 2012)
Table 4.9 Cost of using kenaf, banana stem and sugarcane bagasse as adsorbent
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>Unit used for wavenumber</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per litre</td>
</tr>
<tr>
<td>L/mg</td>
<td>Litre per milligram</td>
</tr>
<tr>
<td>J K⁻¹ mol⁻¹</td>
<td>Gas constant</td>
</tr>
<tr>
<td>ΔG°</td>
<td>Gibbs free energy change</td>
</tr>
<tr>
<td>ΔS°</td>
<td>Entropy change</td>
</tr>
<tr>
<td>ΔH°</td>
<td>Enthalpy change</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>KJ/mol</td>
<td>Kilojoule per mole</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>mm</td>
<td>Millilitre</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram per litre</td>
</tr>
<tr>
<td>mg/g</td>
<td>Milligram per gram</td>
</tr>
<tr>
<td>R²</td>
<td>Linear correlation</td>
</tr>
<tr>
<td>mV</td>
<td>Megavolt</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>m³/mol</td>
<td>Metre square per mole</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>atm</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>FAU</td>
<td>Formazin Attenuation Unit</td>
</tr>
<tr>
<td>cm³</td>
<td>Centimetre square</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>m²/g</td>
<td>Metre square per gram</td>
</tr>
<tr>
<td>cm²/g</td>
<td>Centimetre square per gram</td>
</tr>
<tr>
<td>Kᵥ</td>
<td>Freundlich constant</td>
</tr>
<tr>
<td>n</td>
<td>Freundlich exponent related to adsorption intensity</td>
</tr>
<tr>
<td>Qₘ</td>
<td>Maximum amount of adsorption</td>
</tr>
<tr>
<td>b</td>
<td>Adsorption equilibrium constant</td>
</tr>
<tr>
<td>MIDA</td>
<td>Malaysia Industrial Development Authority</td>
</tr>
<tr>
<td>Matrade</td>
<td>Malaysia External Trade Development Corporation</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>AOX</td>
<td>Adsorbable organic halides</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>MB</td>
<td>Methylene Blue</td>
</tr>
<tr>
<td>LMB</td>
<td>Leukomethylene blue</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological oxygen demand</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>rpm</td>
<td>Rate per minute</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>UV-VIS</td>
<td>Visible and Ultraviolet Spectroscopy</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
</tbody>
</table>