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Abstract 

 

We investigate the properties of modulational instability in the Salerno equation in 

quasi-one dimension in Bose-Einstein condensate (BEC). We analyzed the regions of 

modulational instability of nonlinear plane waves and determine the conditions of its 

existence in BEC. 

The existence and stability of strongly localized modes in discrete media is investigated 

with the framework of the Salerno model by using a linear analysis method. The regions 

of stability and instability are determined. Also the existence of localized modes for 

different values of parameters is shown numerically by homoclinic orbits intersection 

method. 

The response of Bose–Einstein condensates is studied with strong dipole–dipole atomic 

interactions to periodically varying perturbation. The dynamics is governed by the 

Gross–Pitaevskii equation with an additional nonlinear term, corresponding to nonlocal 

dipolar interactions. A mathematical model, based on the variational approximation, has 

been developed and applied to study parametric excitation of the condensates due to 

coefficient of nonlocal nonlinearity varying periodically. The model predicts the 

waveform of solitons in dipolar condensates and describes their small amplitude 

dynamics quite accurately. Theoretical predictions are verified by numerical simulations 

of the nonlocal Gross–Pitaevskii equation and a good agreement between them is found. 

The results can lead to better understanding of the properties of ultra-cold quantum 

gases, such as 
52

Cr, 
164

Dy and 
168

Er, where the long-range dipolar atomic interactions 

dominate the usual contact interactions.  

Dynamics of a matter wave soliton bouncing on the reflecting surface (atomic mirror) 

under the effect of gravity has been studied by analytical and numerical means. The 
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analytical description is based on the variational approach. Resonant oscillations of the 

soliton's center of mass and width, induced by appropriate modulation of the atomic 

scattering length and the slope of the linear potential are analyzed. In numerical 

experiments, we observe the Fermi type acceleration of the soliton when the vertical 

position of the reflecting surface is periodically varied in time. Analytical predictions 

are compared with the results of numerical simulations of the Gross-Pitaevskii equation 

and a qualitative agreement between them is found. 
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Abstrak  

 

Kami menyiasat sifat-sifat ketidakstabilan modulasi di dalam persamaan Salerno dalam 

quasi satu dimensi intuk kondensat Bose-Einstein (BEC). Kami menganalisis kawasan 

ketidakstabilan modulasi gelombang planar tidak linear dan menentukan syarat 

kewujudannya dalam BEC.  

Kewujudan dan kestabilan mod kuat setempat dikaji di dalam media diskret di dalam 

model Salerno dengan menggunakan kaedah analisis linear. Kawasan kestabilan dan 

ketidakstabilan ditentukan. Juga kewujudan mod setempat untuk nilai parameter yang 

berbeza ditunjukkan dengan kaedah persimpangan orbit homoklinik. 

Tindak balas daripada kondensat Bose-Einstein dikaji dengan interaksi atom kuat 

dwikutub-dwikutub untuk usikan secara berkala yang berbeza-beza. Dinamik dikawal 

oleh persamaan Gross-Pitaevskii dengan tidak linear tambahan, menghasillan dengan 

satu interaksi dipol tidah bersetempat. Model matematik, berdasarkan variasi anggaran, 

telah dihasilkan dan digunakan untuk pengujaan parametrik kondensat kerana pekali 

berkala yang berbeza-beza daripada ketaklelurusan tidak bersetempat. Model ini 

meramalkan bentuk gelombang bagi soliton dalam kondensat dipol dan menerangkan 

amplitud dinamik kecil dengan agak tepat. Ramalan teori disahkan oleh simulasi 

persamaan tidak bersetempat Gross-Pitaevskii dan persamaan yang baik di antara 

mereka didapati. Keputusan boleh membawa kepada pemahaman yang lebih baik 

mengenai sifat-sifat gas kuantum ultra-sejuk, seperti 
52

Cr, 
164

Dy dan 
168

Er, di mana jarak 

jauh interaksi atom dwikutub menguasai interaksi biasa. 

Dinamik lantunan gelombang soliton di permukaan (cermin atom) di bawah kesan 

graviti telah dikaji melalui analisis simulasi. Penerangan analisis adalah berdasarkan 

kepada teknik variasi. Ayunan salunan pusat jisim soliton, disebabkan oleh modulasi 
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panjang penyerakan atom dan kecerunan keupayaan linear telah dianalisis. Dalam 

ujikaji berangka kita memerhatikan pecutan soliton apabila kedudukan permukaan dan 

berubah secara berkala. Ramalan Analisis dibandingkan dengan hasil simulasi berangka 

persamaan Gross-Pitaevskii dan persamaan kualitatif di antara mereka didapati. 
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1 Introduction to 

Bose-Einstein condensate 

 

 

The background area of research of this study shall be presented. The main subject of 

this study is Bose-Einstein condensate. In this chapter, the definition of Bose-Einstein 

condensate is given. The history of Bose-Einstein condensation is briefly reviewed 

based on classic textbooks and scientific literatures. In this study, the mathematical 

models employed to describe the phenomenon in different approaches and different 

aspects, are developed. Finally, we take a glimpse into variational approximation, 

modulation instability, intrinsic localized modes, dipolar interaction and finally, the 

bouncing of matter wave solitons reflecting on mirror. 

 

 Outline of thesis 1.1

The thesis contains five chapters, and it is structured as the follows. In chapter one, the 

definition of Bose-Einstein condensate is given and brief history of its development is 

presented, which was a big challenge to orient the experimental physicist. In addition, 

Gross-Pitaevskii equation is reviewed in time-dependent scheme and then deduced into 

time-independent equation. Furthermore, a short introduction and review on the 

variational approximation approach, the modulation instability, and intrinsic localized 

modes and dipolar local (short arrange) and nonlocal interaction (long-arrange) are 

given. Finally, the bouncing of a matter wave solitons reflecting on mirror is reviewed.  



 

2 

In second chapter, the modulation instability in one-dimension in discrete system is 

investigated, which was described by Salerno equation. The model can applied to Bose-

Einstein condensate in deep optical lattice. The analytical expression for the modulation 

instability gain spectra is obtained. The regions and conditions of instability of plan 

wave solutions in the parameter space of the governing Salerno model are determined 

by using linear perturbation theory. The existence solutions and stability criteria for the 

different type strongly localized modes in discrete Salerno model have been derived. In 

addition, by applying the homoclinic orbits intersection method, the localized solutions 

of Salerno model were obtained numerically  

In third chapter, the dipolar interaction is studied. The concepts of nonlocal interactions 

between particles are briefly introduced. The convenient model for this problem is 

suggested and the trial function is chosen. The variational approximation method is 

applied then the problem is simulated numerically. The analytical results and numerical 

results were compared. 

In fourth chapter, the bouncing of particles of Bose-Einstein condensate on mirror is 

studied, the mirrors were created by strongly magnetic field using similar method. 

In fifth and last chapter, we conclude and highlight the main results of this study. 

 

 Bose-Einstein condensation 1.2

Recently, there has been increased interest in the study of theoretical, experimental and 

numerical simulations of Bose-Einstein condensates in different aspects; see for 

example (Abdullaev, Gammal, Malomed, & Tomio, 2013; Alamoudi, Al Khawaja, & 

Baizakov, 2014; M. H. Anderson, Ensher, Matthews, Wieman, & Cornell, 1995; 

Bradley, Sackett, Tollett, & Hulet, 1995; Davis et al., 1995; Grossmann & Holthaus, 
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1995; Ketterle & Van Druten, 1996; Lin, Jimenez-Garcia, & Spielman, 2011; Plumhof, 

Stöferle, Mai, Scherf, & Mahrt, 2013).  

Let us first introduce the definition of Bose-Einstein condensation. A Bose-Einstein 

condensation is the phenomenon of a macroscopic population of the ground state of the 

many body quantum system at finite temperature. Bose-Einstein condensate is 

considered a coherent matter wave. 

In this section, a short introduction about Bose-Einstein condensate is presented. First, 

the history of Bose-Einstein condensate is presented and then, the basic idea of Gross-

Pitaevskii equation is described. At the end of this section, the recent literature related to 

the subject of this study is surveyed. 

 

1.2.1 Brief history of Bose-Einstein condensation 

At the beginning of first quarter of last century in 1924, Satyendra Nath Bose proposed 

new statistical approach to describe quantum statistical distribution of light quanta 

(photons) (Bose, 1924) at low temperature. Bose’s paper was rejected for publication. 

He then sent it to Albert Einstein to review and evaluate his article. Albert Einstein 

translated the paper to German and published the work in a journal in Germany. Albert 

Einstein extended Bose’s approach to massive particles (Einstein, 1924). Einstein’s 

approach was different from the Bose approach. The number of massive particles is 

conserved in Einstein’s approach, however, the number of photons is non-conserved in 

Bose’s approach. Einstein predicted theoretically that, it is possible to condense massive 

particles under certain conditions such as temperature (below critical temperature). At 

the critical temperature, a new phase starts to occur and a part of particles will condense 

into the new quantum state which has the lowest state energy, and which is called 
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ground state energy with non-interaction between particles. This means that the 

condensate particles occupy the single quantum state and then it creates a new quantum 

state of matter, which is called ―The Bose-Einstein condensate‖. 

Since then, attempts have been made to achieve this phase of matter experimentally. 

The first experiment connecting to The Bose-Einstein condensation was superfluidity. 

The work was proposed by F. London (London, 1938), who worked on liquid helium. 

L. Keldysh applied the idea of Bose-Einstein condensates on the condensation of 

excitons in semiconductor in 1968 (Keldysh & Kozlov, 1968).  

There had not been any real experiment producing Bose-Einstein condensates until 

1995. Bose-Einstein condensates have been observed in the weakly interaction Bose gas 

for vapor of rubidium  87 Rb  (M. H. Anderson et al., 1995), in sodium  23 Na  (Davis 

et al., 1995) and in Lithium  4 Li  (Bradley, Sackett, & Hulet, 1997). The particles are 

trapped by a magnetic potential, the atoms cooled to micro-Kelvin by using evaporative 

cooling. For this work, Cornell, Wieman and Ketterle won the Nobel prize in 2001 

(Cornell & Wieman, 2002). 

It is easy to achieve Bose-Einstein condensates in alkali gases due to the level structure 

of atoms.  Lasers can be applied for cooling atoms. Since these atoms have magnetic 

moments, they can be trapped using a magnetic potential. Up to this date (2014), Bose-

Einstein condensate was realized by around 13 elements Rb (Rubidium), Na (Sodium), 

Li (Lithium), K (Potassium), Cs (Cesium), H (Hydrogen), He (Helium), Yb 

(Ytterbium), Cr (Chromium), Ca ( Calcium), Sr ( Strontium), Dy (Dysprosium), Er 

(Erbium). The typical experimental parameters are given, the density of Bose-Einstein 

condensate is around                 , The dilute gases density is ,
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13 14 310 10  atom/cmn    with we know the air density very dilute gases is around 

19 310 atom/cmn  . 

The properties of cold quantum gases are mainly determined by interaction forces 

between particles. For dilute gases of alkali atoms, which constitute the major part of 

the Bose-Einstein condensate family, the interaction potential in the ultra-cold regime 

can be modeled, to a very good precision, by a delta function  

 
24

. ( )s
cont

a
U r r

m


 .                                           (1.1) 

This corresponds to an isotropic contact interaction between particles of mass m , 

whose strength is proportional to the s-wave atomic scattering length sa . Such a single 

parameter pseudo-potential has been quite successfully used in the interpretation of 

experimental data obtained in the mean field regime (Dalfovo, Giorgini, Pitaevskii, & 

Stringari, 1999; Kevrekidis, Frantzeskakis, & Carretero-González, 2007). 

As it is known, a Bose-Einstein condensate starts to form when the distance between 

particles is comparable to the de Broglie wave length in thermal equilibrium, which has 

form 

,
2

dB

Bmk T



                                                 (1.2) 

where T  is the temperature of the particles, Bk  is Boltzmann’s constant and m  is the 

mass of the particles which share to construct condensate. 

The definition of an ultra-cold gas is the system which satisfies the condition (Baranov, 

2001) 
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1/3,dB n                                                          (1.3) 

where n  is the density of the gas. In this case, the atomic wave function starts to 

overlap and the single wave function can describe the system. 

 

Figure ‎1.1: Showing the occurrence of Bose-Einstein condensate (BEC) is depended by 

decreasing the temperature zero. ref (Durfee & Ketterle, 1998). 

 

 

Bose-Einstein condensate is produced by a dynamical evaporation method to create 

Bose Einstein condensates. 

As we know, a matter has five kinds of phases in the nature, gas, liquid, solid, plasma 

and Bose-Einstein condensation. So, the phase of the matter was changes from one 

phase to other by changing some parameters such as temperature, pressure, density of 

particles, potential trap and so on. A Bose-Einstein condensation is a phase transition in 

a macroscopic number of particles which have the same quantum states under special 

conditions, which will be discussed later. Bose-Einstein condensation is considered as a 
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very interesting and exciting area of research in physical systems. There are many 

recently hot topics which are related to Bose-Einstein Condensation such as spin-orbit 

coupled Bose-Einstein Condensation, dipolar interaction in single or coupled Bose-

Einstein condensation, bouncing matter wave bright solitons of Bose-Einstein 

condensation on mirror, which is affected by the potential of gravity, and so on.  

The aim of this thesis is studying the proprieties of Bose-Einstein condensate. In this 

study, we suggest some models, to describe Bose-Einstein condensate and its properties. 

Let us first gives a short survey of existing models before describing the model studied 

in this thesis. 

 

1.2.2 Description of Gross-Pitaevskii equation 

The Gross-Pitaevskii equation (GPE) is one of the main models that can properly 

describe the behavior of condensate particles below to critical temperature. Gross. and 

Pitaevskii (Gross, 1961; Pitavskii,1961; Pitaevskii, Stringari, & Leggett, 2004) have 

developed the main field theory for describing the interaction in Bose-Einstein 

condensation by using the mean field approach. Gross-Pitaevskii equation is considered 

as Schrödinger equation valid below the critical temperature, where all particles 

(bosons) exist in the same quantum states. It is derived and applied to the calculation of 

ground-state energy of the system. The Hamiltonian can be formulated as follows: 

               
2

† 2 † †1ˆ ˆ ˆ ˆ ˆ ˆ .
2 2

H dr r V r r drdr r r V r r r r
m

 
               

 
         (1.3) 

where  † r  is the creation of operator,  ˆ r  is the annihilation of operator at position 

r  in second quantization and  V r r  is the two body interaction potential.  
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The field operator  ˆ ,r t  decomposed into two parts,  

     Ψ , Ψ ,ˆ ' ,r t r t r t                                  (1.4) 

where    ˆ, ,r t r t    represents the macroscopic wave function of the condensate. 

 ˆ ,r t  represents the non-condensate part at temperatures below cT . Which is 

neglected in the present study. Thus, we assume that  

 ˆ , 0r t                                                   (1.5) 

For deriving the equation of Gross-Pitaevskii, The Heisenberg equation should be used  

 
 

d r, t
,H

dt
i


                                                      (1.6) 

Gross-Pitaevskii has famous form, which is given (Pethick & Smith, 2002) as 

 
     

2
22

3 .
2

ext d

r
i V r g r r

t m

  
      

  
                        (1.7) 

where 
2

3

4 s
d

a
g

m


  is the nonlinear coefficient and that discribes effective interaction 

between particles in three dimensional. sa  is s-wave scattering length and it is negative 

(positive) for attractive (repulsive) interactions. m  is mass of an atom.  r  is the 

wave function, which describes the macroscopic condensates. It is important to know 

that the description of the interaction as a mean field as it done in the GPE is valid for a 

dilute gas, where 3 1sna   as mentioned early.  

The ground state energy is given  

 
2

2 2 41
,

2 2
E V r g dr

m
  

 
    

 
                         (1.8) 
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For time independent phenomena, we have  

( , ) ( ) exp
t

r t r i



 

   
 

                                               (1.9) 

where ( )r  is real function and normalized to the total number of particles as 

2
( , ) .r t dr N





                                                        (1.10) 

Then the time independent Gross-Pitaevskii equation (GPE) is obtained 

     
2

22(
2

) extV r g r
m

r r  
 

   
 

                            (1.11) 

Obtaining the ground State Energy from stationary solution of the GPE, using the 

formalism the mean field theory 

( ) .r const nn a t                                                 (1.12) 

At a temperature very close to the zero temperature T 0 , the chemical potential is 

given by 

.
dE

dN
                                                                    (1.13) 

For a special case in absence of external potential  0, 0kiniticV E    

2

Kinitic extE V g gn                                          (1.14) 

where 
2

n   is the density of Bose gas. 
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Then, the ground state energy is  

22 sa nE

N m


                                                 (1.15) 

 

 Description of variational approximation 1.3

In this section, we will present the short introduction and description of variational 

approximation method. We will use this method in chapter three and four for our 

analysis. The variational approximation method (Malomed, 2002) is one of the 

important tools to help us describe the dynamical of parameters of soliton solution of 

the non-integrable model, where the model of equation is a complicated partial 

differential equation (PDE) , which has non-integral analytical solutions. It was first 

developed for studying pulse propagation in the optical fibers (D. Anderson, 1983) and 

later applied to many other areas of nonlinear physics (Malomed, 2002). 

So, the main idea of variational method is to find the Lagrangian density, which yields 

the main equations using the Euler-Lagrangian equation.  

     , , , , , , , , , , , ,
0

x t x t x t

t x

q q q x t q q q x t q q q x td d

dt q dx q q

  
  

  
               (1.16) 

Where ,   and x tq q q  are general coordinates,  and x t  are space and time coordinates 

respectively.  

Starting from this equation to find the averaged Lagrangian L   

.L dx





                                                                  (1.17) 
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Using the Euler-Lagrange equations again but with parameters variation of soliton (trial 

solution), we obtain the system of ordinary differential equations. Solving the ordinary 

differential equations gives the dynamical solutions of parameters, which means that, 

the parameters of trial function solution are obtained. Furthermore, useful relations 

between soliton parameters will be obtained. Additionally, we will treat the main model 

(PDE) numerically. Then in this step, we will compare the results between analytical 

results obtained from variational approximation method and numerical results from the 

PDE. It is worthy to mention here that the initial conditions affect the results. So, it is 

very important to choose suitable parameters at the initial time 0t .  

In selecting the trial function for a soliton shape, there are many potential forms such as 

 The Gaussian Ansatz is applied in (Benseghir, Abdullah, Baizakov, & 

Abdullaev, 2014)  

  

 
           

2
2

2
2

( )( , ) .

x t
ib t x t ik t x t i t

a t
A tx t e


  




     

           (1.18) 

This trial function will be applied in the third chapter, good to specify conditions 

for the applicability of this ansatz. 

 The Hyperbolic Secant Ansatz is applied in (Benseghir, Abdullah, Umarov, & 

Baizakov, 2013) 

  
 

           
2

( )sech( , ) .
ib t x t ik t x t i tx t

A t
a t

x t e
  


   

        (1.19) 

This trial function, we will be applied in the fourth chapter.  
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where A  is amplitude, a  is width,   is center of mass position, b  is the chirp, k  is the 

velocity and   is the phase of soliton. These parameters are called the time dependent 

variational parameters. 

The Gaussian trial function is convenient for strong enough trapping potential and 

nonlinearity is defocussing. The hyperbolic scant trial function is more suitable for 

week confining potential and self-focusing nonlinearity. 

Justification for the use of variational approximation, when the soliton solution is 

available, can have some advantages provided by the variational approximation in the 

analysis of existence and stability of soliton.  

 

 Modulation Instability in Bose-Einstein condensation  1.4

Modulational instability is one of the physical phenomenon which is known as the 

fundamental aspect of theory of nonlinear waves. This phenomenon consists of the 

instability of nonlinear plane waves against weak long-scale modulations with wave 

numbers (frequency) lower than some critical values. It has been predicted by Benjamin 

and Feir (Benjamin & Feir, 1967) for waves in deep water and by Bespalov and Talanov 

(Bespalov & Talanov, 1966) for electro-magnetic waves in nonlinear media with cubic 

nonlinearity. Later, it was observed in nonlinear optics (Karpman, 1967; Ostrovskii, 

1967; Taniuti & Washimi, 1968), plasma physics (Gómez-Gardeñes, Malomed, Floría, 

& Bishop, 2006; Hasegawa, 1970), and condensate matter (Bose-Einstein Condensate, 

long Josephson junction,...) (Nicolin, Carretero-González, & Kevrekidis, 2007; 

Strecker, Partridge, Truscott, & Hulet, 2002). The phenomenon of modulational 

instability will be investigated in the next chapter. 
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 Intrinsic Localized modes in Salerno equation  1.5

In the last decades much attention has been directed toward the investigation of 

localized solutions based on nonlinear models in different areas of physics and 

engineering. In particular, the dynamical nonlinear localization phenomena (Flach & 

Gorbach, 2008; Kevrekidis, 2009; Lederer et al., 2008) have been observed in spatially 

discrete system by both theoretical, experimental and numerical simulation studies. 

Spatial localized oscillations are called localized modes, which can exist in impure 

harmonic crystal. For lattices free from impurities, the localized modes can exist due to 

the nonlinearity of on-site and inter-site interactions. In this section, we review strongly 

localized nonlinear modes in anti-continuum in the well-known Salerno discrete model 

(Salerno, 1992). This model has been applied to describe Bose-Einstein condensation in 

nonlocal optical lattices (Gómez-Gardeñes et al., 2006) and in biophysics of DNA 

(Tabi, Mohamadou, & Kofane, 2010).  

 

 Long-range dipolar interaction in Bose-Einstein condensates 1.6

Bose-Einstein condensation of chromium with anisotropic and long-range dipolar 

atomic interactions has opened a new direction in the physics of ultra-cold quantum 

gases  (Griesmaier, Werner, Hensler, Stuhler, & Pfau, 2005; Lahaye, Menotti, Santos, 

Lewenstein, & Pfau, 2009). Subsequently, two other species with strong dipolar 

interactions, namely dysprosium (Lu, Burdick, Youn, & Lev, 2011) and erbium 

(Aikawa et al., 2012), were confirmed to be Bose condensed. The principal difference 

of chromium condensates from the alkali atom condensates is that, 
52Cr  has a large 

permanent magnetic dipole moment 6 B  , where  
2

B

e

e

m
   is the Bohr magneton. 

Since the dipole-dipole force is proportional to the square of the magnetic moment, the 
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dipolar interactions in chromium condensate is a factor of 36 times stronger than in 

alkali atom condensates, like 
87 Rb . Similar arguments pertain also for other dipolar 

quantum gases, 
164 Dy  and 

168 Er . There is another group of alkaline-earth elements 

40 Ca  and 
84Sr , Bose-condensation which do not carry the magnetic moment, were 

reported in Ref. (Kraft, Vogt, Appel, Riehle, & Sterr, 2009) and Ref. (Stellmer, Tey, 

Huang, Grimm, & Schreck, 2009) respectively,. The peculiarity of this group is that, the 

condensate can be held and manipulated in optical traps. In addition, magnetic Feshbach 

resonances frequently applied to tune the scattering properties of other atomic systems. 

The optical Feshbach resonance technique (Ciuryło, Tiesinga, & Julienne, 2005; Naidon 

& Julienne, 2006), instead of magnetic, serves the purpose in BEC of alkaline-earth 

elements. This group holds promise for wide applications in metrology, quantum 

computation, quantum simulators of many-body phenomena and ultracold plasmas. 

Long-range and anisotropic character of atomic interactions drastically modify the 

properties of dipolar condensates compared to other BECs that have been found 

(Griesmaier, 2007). Tunability of contact interactions by a Feshbach resonance (Chin, 

Grimm, Julienne, & Tiesinga, 2010; Köhler, Góral, & Julienne, 2006) allows to enter 

the regime of dominant dipolar interactions by lowering the contact interactions. In fact 

continuous transition between both regimes, with dominant contact or long range 

interactions is possible by this technique. 

Interactions between atoms in Bose-Einstein condensate is the factor leading to 

nonlinearity of the governing equation. Although these interactions are very weak in 

dilute gases, all essential properties of Bose-Einstein condensates are determined by the 

strength, range and symmetry of interatomic forces. For short range contact interactions 

and sufficiently low temperature the dynamics of Bose-Einstein condensates is well 

described by the Gross-Pitaevskii equation with local cubic nonlinearity (Pethick & 
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Smith, 2002; Pitaevskii et al., 2004). In contrast to other elements in the Bose-Einstein 

condensates family, the atomic interactions of dipolar gases are long-range and 

anisotropic. This circumstance substantially changes the properties and mathematical 

treatment of dipolar Bose-Einstein condensates. Due to the long-range correlations, not 

only the local density but also the whole density distribution in the condensate 

determines the interaction potential of an atom in the cloud. This interaction leads to the 

nonlocal Gross-Pitaevskii equation for description of the dynamics of dipolar 

condensates. 

The nonlocal characteristics of atomic interactions prevents the collapse of a two-

dimensional (2D) Bose-Einstein condensate loaded in a pancake-shaped trap and gives 

rise to stable isotropic (Pedri & Santos, 2005) and anisotropic 2D solitons 

(Tikhonenkov, Malomed, & Vardi, 2008), whose properties are well described by the 

variational approximation. Some essential properties of 1D bright solitons in dipolar 

Bose-Einstein condensates with competing local and nonlocal atomic interactions, 

including the existence regimes, stability and collision dynamics, were reported in ref 

(Cuevas, Malomed, Kevrekidis, & Frantzeskakis, 2009). Recently a model for 

describing the dipolar condensate has been introduced, in which the dipole-dipole 

interaction is periodically modulated in space (Abdullaev et al., 2013). It was shown 

that the variational approximation (VA) provides accurate predictions for the shape of 

solitons and their stability by means of the Vakhitov-Kolokolov criterion. The 

importance of low energy shape oscillations of matter-wave packets in studying the 

microscopic properties of dipolar quantum gases was pointed out in Ref. (Yi & You, 

2002). A non-integral form of the Gross-Pitaevskii equation for polarized molecules 

was proposed in (Andreev, Magomedbekov, & Sicking, 2013) and applied to the 

investigate of the collective excitation spectrum of dipolar Bose-Einstein condensate. 
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The existence regime of bright solitons in the electrically polarized Bose-Einstein 

condensates was identified using the proposed model. 

 The bouncing of matter-wave bright soliton in Bose-Einstein condensates 1.7

A particle bouncing on the reflecting surface under the effect of gravity represents one 

of the analytically solvable models in quantum mechanics ( l gge, 1971; Sakurai, 

1994). Gibbs introduced the name ―quantum bounce‖ (Gibbs, 1975) for the object, and 

it was extensively studied in many articles of pedagogical orientation (Desko & Bord, 

1983; Gea-Banacloche, 1999, 2000; Goodings & Szeredi, 1991; Langhoff, 1971; 

Whineray, 1992) and original research papers (for a recent review see (Belloni & 

Robinett, 2014)). The practical interest in this model has emerged from recent 

experiments aimed at probing the coherence properties of Bose-Einstein condensates 

falling under gravity and bouncing off a mirror formed by a far-detuned sheet of light 

(Bongs et al., 1999; Perrin, Colombe, Mercier, Lorent, & Henkel, 2006; Savalli et al., 

2002), quantum reflection of matter waves (Cornish et al., 2009; Lee & Brand, 2006; T. 

Pasquini et al., 2006; T. A. Pasquini et al., 2004), and measuring the Casimir-Polder 

force acting upon the atoms near solid surfaces (Harber, Obrecht, McGuirk, & Cornell, 

2005; Obrecht et al., 2007; Sorrentino et al., 2009). 

Another important result linked to the quantum bouncer problem has been the 

experimental observation of quantum bound states of neutrons in the Earth's 

gravitational field (Abele & Leeb, 2012; Ichikawa, Komamiya, & Kamiya, 2014; 

Nesvizhevsky et al., 2002). In these pioneering experiments the quantum states of 

matter formed by a gravitational field were observed for the first time. Also, the model 

is of particular interest from the viewpoints of the physics and applications of quantum 

states of nanoparticles in the vicinity of surfaces (Canaguier-Durand et al., 2011). An 

optical analogue of the quantum bouncer, a photon bouncing ball, was experimentally 



 

17 

demonstrated using a circularly curved optical waveguide (Della Valle et al., 2009). 

Significance of the model for the study of the dynamics of particles in quantum-

classical interface was pointed out in (Belloni, Doncheski, & Robinett, 2005; M. 

Doncheski & Robinett, 2001; M. A. Doncheski & Robinett, 1999). 

This work extends the quantum bouncer model to the nonlinear domain by considering 

the dynamics of a matter wave soliton that are governed by the Gross-Pitaevskii 

equation. The linear potential entering the Gross-Pitaevskii equation represents the 

Earth's gravitational field acting on the soliton along the vertical direction, while the 

horizontal atomic mirror (Kasevich, Weiss, & Chu, 1990) created by a laser beam or 

magnetic field stands for the reflecting surface. The matter wave soliton performs 

bounded motion in such a gravitational cavity. The effect of nonlinearity, originating 

from the atomic interactions in Bose-Einstein condensate (BEC), shows up as an ability 

of the bouncing wave packet to remain localized during the evolution, behaving like a 

rigid ball, rather than a deformable wave packet. The possibility of tuning the atomic 

interactions in the condensate by external magnetic (Köhler et al., 2006) and optical 

(Ciuryło et al., 2005) fields opens perspectives in exploring the bouncer problem in both 

the quantum and classical limits. 

The main objective under this subject is to develop analytical descriptions for describing 

the dynamics of soliton above the atomic mirror under the effect of gravity. As an 

illustration of the developed model, we considered the resonant oscillations of the 

soliton's center of mass position under periodically varying strength of nonlinearity and 

the slope of the quasi-1D trap with respect to the horizontal reflecting surface. The 

strength of nonlinearity can be tuned using the Feshbach resonance technique (Köhler et 

al., 2006), or alternatively, by changing the strength of the radial confinement. The 

Fermi type acceleration of the soliton is demonstrated by numerical simulation when the 
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vertical position of the mirror is periodically varied in time. It should be noted that 

Fermi acceleration of matter wave packets was previously considered in (Saif, Naseer, 

& Ayub, 2014; Saif & Rehman, 2007) for the case of non-interacting BEC, in the 

setting where matter wave solitons do not exist. This work a non-dispersive acceleration 

of the wave packet was reported to take place under certain conditions, when the 

modulation strength and frequency provide the dynamical localization of the matter 

wave. 

The advantage of the present setting is that, the bouncing matter wave packet preserves 

its integrity due to the focusing nonlinearity of BEC, which counteracts the dispersive 

spreading. Another interesting approach to acceleration of a single quantum particle, 

also feasible in the context of matter waves, was reported in (Granot & Malomed, 

2011). The mechanism consists in binding the wave packet by a delta function potential 

well and evolving in accelerated motion along with the potential. In the linear case and 

ideal mirror potential our model reduces to the equation which has analytic solution in 

terms of Airy functions. The dynamics of Airy beams currently represents one of the 

actively explored topics motivated by important applications in optical communications 

and nonlinear optics (Broky, Siviloglou, Dogariu, & Christodoulides, 2008; Chamorro-

Posada, Sánchez-Curto, Aceves, & McDonald, 2014; Chremmos & Efremidis, 2012; 

Siviloglou, Broky, Dogariu, & Christodoulides, 2007)   

In the final of this chapter, I should mention to the objectives of this study. 

 We investigate the properties of Modulational Instability in the Salerno equation 

in quasi-one dimension in Bose-Einstein condensate (BEC). 

 We analyzed the regions of modulational instability of Nonlinear plane waves 

and determine the conditions of its existence in BEC 
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 We investigate the Strongly localized modes in nonlinear models in different 

areas of physics and engineering.  

 We compare the analytical results of SLM in spatial discrete system with 

numerical simulation 

 We study the response of a Bose-Einstein condensate with strong dipole-dipole 

atomic interaction to periodically varying perturbation. 

 To develop analytical description of soliton’s dynamic above the atomic mirror 

under the effect of the gravity, we consider the resonant oscillations of the 

soliton’s center of mass position under periodically varying strength of 

nonlinearity and slop of quasi 1D  

 Use the numerical tools to investigate Bose-Einstein condensate s through 

solving the GPE (Nonlinear PDE) 
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2 Modulation instability and strongly Localized Modes in 

discrete 1D Systems 

 

In this chapter, the modulation of instability of plane waves and intrinsic localized 

modes are investigated in discrete system by using the Salerno model. 

 

 Modulational Instability in Salerno Model 2.1

In this section, the modulation instability in Salerno model will be studied, the regions 

and conditions of existence of modulational instability are determined in Bose-Einstein 

condensates in a periodic potential trap, in this case we choose the potential trap as 

optical lattices, which are created by laser beams. 

 

2.1.1 The model equation  

It is very important to investigate the modulational instability in different models. We 

restrict ourselves to the Salerno model for Bose-Einstein condensate in optical lattice in 

quasi-1D. This model is a combination of the discrete non-linear Schrodinger (DNLS) 

equation (Eilbeck & Johansson, 2003) with cubic nonlinearity and Ablowitz-Ladik (AL) 

equation (Ablowitz, Prinari, & Trubatch, 2004) s follows (Gómez-Gardeñes et al., 

2006). 

  
2 2

1 1  1   2 0n n n n ni µ                                            (2.1) 

where    is the complex field amplitude at       site of the lattice, µ is the nonlinearity 

of (AL) equation, and 𝝊 is the nonlinearity of the discrete nonlinear Schrödinger 

(DNLS) equation. 
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2.1.2 Modulational Instability of nonlinear plane wave 

The nonlinear discrete equation (2.1) has a plane wave solution  

 n 0  exp i qn ωt ,                                                     (2.2) 

where 0  is the amplitude q  is wave number and   is the frequency of plane wave. 

When substituted in equation (2.1), we obtain 

  2 2

0 0  2cos 1 2 0nq        
                              (2.3) 

Equation (2.3) has two solutions, one is the trivial solution for n 0  , this solution is 

not important and it does not give us any information on our system, the other solution 

is  

  2 2

0 02cos 1 2   0.q      
 

Then, this solution gives us the relationship between the frequency and wave number, 

which is called ― dispersion relation‖. 

  2 2

0 02cos 1 2q                                 (2.4) 

For an unstaggered solution, when 0q  , the dispersion becomes  

  2

02 2      , 

for the staggered solution, when q π  the dispersion becomes 

  2

0ω 2 2 μ υ     , 

we find the same result as in (Hasegawa, 1970). 



 

22 

For investigating the stability of the plane wave solution in equation (2.2) against small 

perturbation  n t , we use  the perturbation theory and linear approximation theory 

by adding a small perturbation to the amplitude of the plane wave solution such that 

    0      expn n t i qn t                                         (2.5) 

and examine the evolution of the perturbation  n t  using the linear stability analysis. 

Substituting equation.(2.5) into equation.(2.1) and linearizing for n , it becomes  

          

 

2 2

0 0 1 1

2

0

2cos 2cos   1

2 0

n n n n n

n n

i q q exp iq exp iq      

  

      

  
         (2.6) 

where         or        then        ( )      , so the equation (2.6) becomes 

       

 

2 2

0 0 1 1

2

0

  2cos 2cos   cos 1

2 0

n n n n n

n n

i q q q      

  

     

  

 

After simplifying the above equation, we obtain  

     

 

2 2

0 1 1 0

2

0

cos 1 2cos  

2 0

n n n n n

n n

i q q      

  

 
      

  

              

(2.7) 

to consider the modulational in the form below  n n nu iv    then its complex 

conjugate is      n n nu iv   , substituting the terms above into equation (2.6), we find  



 

23 

       

     

2

0 1 1 1 1

2 2

0 0

  cos 1

2cos       2 2   0

n n n n n n

n n n n n

i u iv q u u i v v

q u iv u iv u



 

         

      

                  (2.8) 

it is important to separate the last equation into real part and imaginary part as shown 

below  

   

   

2

0 1 1

2 2

0 1 1 0

cos 1 2 0

 cos 1 2 4 0

n n n n

n n n n n

u q v v v

v q u u u u



 

 

 

    

    






 

                     (2.9) 

It is then considered the modulation in the new form below  

 

u

exp i Qn t

v





   
         
      

                              (2.10) 

Where     and     are the wave number and frequency of the perturbation respectively. 

,   are the amplitude of the small perturbation . 

Substituting equation (2.10) into equation (2.9), we then obtain a system of equations as 

follow: 

   

   

2 2

0

2 2 2 2

0 0 0

4cos sin 1   0
2

               

4 4cos sin 1 0
2

Q
i q

Q
q i

  

    

  
    

 


            
      

 

This system of equations is rewritten in matrix form  
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   

   

2 2

0

2 2 2 2

0 0 0

4cos sin 1
2

0

4cos sin 1
2

Q
qi

Q
q i

 

   

  
     

    
   
  

                   

If     ( )    , the system has trivial solution where  

   

   

2 2

0

2 2 2 2

0 0 0

4cos sin 1
2

4cos sin 1
2

Q
qi

A

Q
q i



  

  
    

  
 
 

               

Computing the determinant of matrix, requiring  det A 0 , it is found that 

       2 2 2 2 2 2 2

0 0 0 016cos sin 1 cos sin 1 0
2 2

Q Q
q q   

    
          

      

Then, the frequency of perturbation modulation is given by 

       2 2 2 2 2 2 2

0 0 0 016cos sin 1 cos sin 1
2 2

Q Q
q q   

     
           

       

Then, we derive the gain which has form  

  
    

2 2
2 20 0
0 2 2

0 0

4sin cos 1 sin .
2 2cos 1 1

Q Q
g m q

q

   


   

   
         

         (2.11) 

From the gain equation (2.11), we determine the regions of modulational instability. If 

the expression under square root is negative then the frequency of perturbation is real, 

and the modulation is stable. Hence the perturbation leads to small oscillations. If the 

expression under square root is positive then the gain g  is positive, the modulation is 

unstable, it means that the modulation is grows exponentially over time. 
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From the gain equation (2.11), we can see that the unstaggered solution 0q   is 

unstable whenever 
2

0

1



 ,  and the staggered solution q   is unstable whenever 

2

0

1



  . In the general case where q takes any value, we can distinguish two regions of 

modulational instability as shown in figure (Fig 2.1). 
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Figure 2.1: Modulational Instability regions 
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One region is fully unstable and other is conditionally stable, it means that it depends on 

the wave number of carrier waves   ( )  and wave number of perturbation   ( )   as 

shown in the figure 2.1. 
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 Strongly Localized Modes in Discrete Salerno Model 2.2

In this section, strongly localized nonlinear modes will be investigated in anti-

continuum in discrete Salerno model. This model has been applied to describe Bose-

Einstein condensate in nonlocal optical lattices.  

 

2.2.1 The Model Equation  

The Salerno Model is given as follows (Salerno, 1992; Umarov, Benseghir, & Messikh, 

2011) 

  
2 2

1 11 0n
n n n n ni c

t
  


        


                        (2.12)  

where t  is the evolution parameter, n  is the site index, n  represents the excitation at 

the 
thn  site, c  is the linear coupling coefficient,   and   are the effective non-linear 

coefficient, if 0  , equation (2.12) reduces to discrete nonlinear Schrödinger 

equation, which is non-integrable, if 0   the equation (2.12) is the Ablowitz-Ladik 

equation, which is integrable (Umarov et al., 2011), all quantities are dimensionless.  

In order to identify strongly localized intrinsic modes (SLIMs), we follow the method of 

ref. (Darmanyan, Kobyakov, & Lederer, 1998). We will consider two major types of 

solutions, the first one is the even mode or centered between sites modes, the second is 

odd or on site centered modes as shown in the figure 2.2.  
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Figure ‎2.3: Strongly localized modes a) symmetric (in-phase oscillation) even mode 

(centred inter-sites) b)antisymmetric (out-phase oscillations) even mode c) symmetric 

odd mode ( centred on a site) d) antisymmteric odd mode 

 

Inserting  

 ( ) expn nt i t    

into equation (2.12), where n  represents the respective amplitudes of a bright localized 

modes, we obtain the system of equations for the even mode solutions  

 3 2 2 3..., 0 , , , 1, , , , 0 ...n A s s s     , 

where 1,2,3,...n   and 1s   . For symmetry reasons the subscript 0n   has been 

dropped. We can see that  

n ns    
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the parameters defines the symmetry of the mode. For strong localization 

3 2 1    

it follows that 0n   for 3n  . 

2
2

2even

Lc
A sLc

A
  


                                                            (2.13) 

2
2

2 2

c
c A sL

A
 



 
   

 
                                                       (2.14) 

2
2

2

3 2 2

c

A
 



 
   

 
                                                             (2.15) 

where  
21 .L A   

For the odd mode, the ansatz is  

 2 1 0 1 2..., 0, , , , , , 0...n B s s      . 

For the symmetric odd mode 01, 1s    

2
2

2
2oddsm

c
B K

B
  


                                                                 (2.16) 

21
B

c


                                                                                   (2.17) 

2

2

2
2

2 









B

c


                                                                             (2.18) 

Where 
21K B  .  or the antisymmetric mode 0 11, 0, 1.s       
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2
2

2
2oddantsm

c
B K

B
  


                                                    (2.19) 

2 2

c

B
 


                                                                       (2.20) 

The illustrations of different modes are given in figure (2.2). 

To study the stability of Strongly Intrinsic Localized modes (SILMs), we impose 

complex perturbation  t  to each non-zero excitation amplitude (Darmanyan et al., 

1998).  

For even mode, we insert the perturbed profile  

 2 1 1 2...,0, ,1 , , , 0,...n A s s            

into equation (2.12). Considerable simplification can be achieved by decomposition of 

the perturbations into symmetric and anti-symmetric component as  

j j j  

   , 

where (j=1,2) (Flach & Gorbach, 2008), which leads to decoupling the system. 

Separating the real and imaginary part of the perturbation, scaling time 
e
t  , we get 

two independent systems for the vector  

 1 1 2 2, , ,j r i r i      
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   210 0

3
2 1 2 0 0

2

0 0 1

0 1 0

s p L A

p s
s L L

d

d

  

  
 

  












   
 
 
 

                    
 
 
 
 
 
 
  
 

       (2.21) 

where 1p    depends with symmetric  j
  and antisymmetric  j

  perturbation. 

Introducing exp( )j g   (Kevrekidis, 2009), then the eigenvalue g  of equation (2.21) 

is given by 

       

       

   

4 2 2

2 4 3 2

2 2 1 1 2 1 1

2 2 1 2 2 1 1

                                           2 1 0

g L s p L p s L ps L p s ps g

L L L p s L L L ps s p L p

L p s ps

  
 

  

  
  

  






    
               

    

   
             

   

 
     

 

   (2.22) 

 

where 1  and  1s p    . 

Solving equation (2.22) with unknown g. The system is stable when ( ) 0g   and 

otherwise unstable. Let us discuss the stability of system for different values of 

coefficients of Salerno equation equation (2.12). To be able to obtain the analytical 

results we ignore the higher powers of  . When s p ,  

21 8g L s    , 
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if 1s   , then the system exhibits the stability, if 1s  , the system is unstable if 

28cr L s     . When s p  ,  

( )g L s    . 

If 1s  , then we have the instability if 0  , 2

1

A
    and 0    , or ,  and 

  are positive, if   is negative then    . In case   and   are negative and 

  positive then    or 2

10
A

    and 0   then  .  

The system is stable in the following cases, when   and   are positive and 2

1  ,
A

    

then    or 0   then 0      or 2

10, 0
A

     , and 0   . For   

negative,  and   are positive, or   and   are negative 0   . If 2

10,
A

     

then 0    .  

For odd modes, we will follow the same procedure to study the stability of odd strongly 

localized modes with ignoring the second order 2  for the odd symmetric, we identify 

the term of gain as 

21 2g K   . 

The system is unstable if cr  , where 2

1

2 2cr B



 , it may be stable if cr  and 

  is negative and 2

1

B
  .  
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2.2.2 Two-Dimensional map 

In this part, we aim to look for a solution in the form  

, 1i t

n nu e c                                                         (2.23) 

Inserting the previous equation into equation (2.12), it is found 

  2 3

1 11 2 0n n n n nu u u u u                                           (2.24) 

With the transformation 1n nV u  , the equation (2.24) becomes a two-dimensional map  

2

1 2

2

1

n
n n n

n

u
u V u

u

 




 
    

 
                                     (2.25) 

Now we can apply the method developed in (Carretero-González, Talley, Chong, & 

Malomed, 2006), to get the localized solutions of equation (2.25). But before showing 

how to use this map, to obtain the solution of equation (2.25), we give a brief 

introduction on homoclinic orbits. It is known that a fixed point in two-dimensional 

map is a saddle point if the two eigenvalues of the Jacobian of the map, 1 and 2 , 

satisfy the following inequalities  

1 21, 1                                                            (2.26) 

A saddle fixed point has a stable manifold and an unstable manifold. The stable 

manifold corresponds to the eigenvalue 1 , while the unstable manifold corresponds to 

the other eigenvalue 2 . A point of intersection between the stable and unstable 

manifolds is called a homoclinic point. The orbit that contains this point is called a 

homoclinic orbit. It is clear that any point in a homoclinic orbit will converge to the 
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saddle fixed point by forward and backward iterations. Finding an homoclinc point is 

important for us to investugate the type of soliton we can get.  

Returning back to our map, equation (2.25), we can see that it has a singularity at 

1
nu


 


 for negative values of . The fixed points for this map are found by 

solving the following set of equations  

1 ,

1 .

n n

n n

u u

V V








 

                                                         (2.27) 

Which leads to the following equation  

  22 2 0.u u                                                        (2.28) 

From equation (2.28), one can see that the value 0u   is always a fixed point. In 

addition to this, one can show that it is a saddle point only if 2  .  

For the case when 0    and 2   , any value of u  is indeed a fixed point but not 

a saddle point. For the case when 0    there are at most three fixed points 

corresponding to the values  

0 0,

1 / 2

1 / 2

u

u

u



 



 












 
 




  

 


                                                    (2.29) 
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We will focus on solutions where 0nu   when n  . This corresponds to the saddle 

fixed point 0 0u   with 2  .  

It is worth mentioning that if the parameter 0,   one can set 0   by using the 

transformation ( 1)n

n n    , and then set it to one by scaling  

n
n

n

 


 


 



,                                                        (2.30) 

In figure (2.3), we plot the homoclinic orbits. The point denoted by a square symbol 

which is approximately at (0 99 0 77)    is a homoclinic point. This points leads to the 

type of soliton depicted in figure (2.4) 

 

Figure ‎2.4: Homoclinic orbits intersections. The stable manifold (blue color) and 

the unstable manifold (red color). We choose the intersection point at the square 

symbol. The dots are resulted from forward and backward iterations of the map. 

The parameters are: 0 93    , 1  , and 2 10    . 
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The parameters used are 1   and 2.091   . As we know, we have to use 2   in 

order to have saddle point at zero. The solutions are the intersection between the stable 

and unstable manifolds. The more the manifolds intersect the more solitons exist.  

From the figures we can conclude that. For 0   the model is not rich, we have loop. 

The stable manifold coincides with the unstable manifold. Increasing   results in 

decreasing the central pick magnitude (see Fig.2.4).  

 

 

Figure ‎2.5: The type of soliton resulted from picking an intersection point from the 

homoclinic orbits. The parameters are the same as in Fig.2.3 

 

For 0  , increasing   will destroy the loop and the stable manifold will be different 

than the unstable manifold. The two manifolds intersect and the model becomes rich, 

i.e., there are many different soliton solutions. when   approaches -1, the homoclinic 
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orbits become more complicated and the intersection are hard to see. May be this an 

index that there are more soliton types. Increasing   the homoclinic orbits 

intersections are clear (see Fig.2.4). 
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3 Parametric Excitation of solitons in dipolar interaction of 

Bose-Einstein condensate 

 

The aim of this chapter to study the dynamics of a dipolar BEC governed by the 

nonlocal GPE by means of variational approximation (D. Anderson, 1983) and perform 

numerical simulations. Recently, similar approach has been applied to interaction of a 

soliton with a weak potential barrier in the middle of the parabolic trap (Abdullaev & 

Brazhnyi, 2012). This work distinguishes itself from other relevant publications in that, 

we obtain explicit ordinary differential equation for parameters of the soliton, instead of 

integro-differential equations, involving special functions. Also, we provide thorough 

comparison between the results of variational approximation and numerical simulations 

of the Gross-Pitaevskii equation.  

In this chapter, the potential of dipolar interactions between atoms and the nonlocal 

Gross-Pitaevskii equation are briefly described. Therefore, the variational 

approximation for the nonlocal Gross-Pitaevskii equation has been developed and 

applied to low energy shape oscillations of the condensate. 

 

 The interaction potential and governing equation  3.1

Atomic density in dilute quantum gases is in the range 13 15 -310 10 cm  , which is four to 

six orders of magnitude smaller than the molecular density in air at room temperature 

and normal atmospheric pressure 19 -310 cm . Despite the extremely low atomic density 

of BECs, their properties are strongly influenced by interatomic interactions. In ultra-

cold quantum gases without significant magnetic or electric dipole moments, usually 

only short-range, isotropic contact interactions are important. 
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When atoms have significant dipole moment a new kind of interaction via long-range 

and anisotropic dipolar forces arises, in addition to the contact interactions. The 

corresponding potential of dipole-dipole interactions is (Lahaye et al., 2009) 

 
 

3

1 3cos 2
, .

4

dd
dd

C
U r

r







                                                (3.1) 

where the coupling constant 2

0ddC    for atoms having permanent magnetic dipole 

moment  ( 0  is the permeability of vacuum), and 

2

0

dd

d
C


  for atoms having 

permanent electric dipole moment d ( 0  is the permittivity of vacuum),  is the angle 

between the direction joining the two dipoles, and the orientation of the dipoles (here 

we assumed that all dipoles are aligned along the same direction). It should be pointed 

out that electric dipole moment can also be induced by exposing the gas to DC electric 

fields (Marinescu & You, 1998). 

It is evident from equation (3.1) that dipolar interactions are anisotropic.For instance, 

two dipoles placed head-to-tail  0   attract each other, while placed side-by-side 

2



 

 
 

 repel. Tuning the strength of dipolar interaction is also possible by fast 

rotation of the orientation of dipoles in the polarizing field (Giovanazzi, Görlitz, & Pfau, 

2002). The time averaged potential has the form (Lahaye et al., 2009) 

 
   22

0

3

1 3cos 2 3cos 1
, ,

4 2
ddU r

r

  
 



  
  

 
                     (3.2) 

When the tilt angle changes in the interval 0,
2




 
  
 

 the term in the rectangular 

brackets changes from 1 to -1/2.  
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In real experimental conditions, there is always a competition between the dipolar and 

contact interactions. A dimensionless coefficient, characterizing the relative strength of 

these two kinds of atomic forces has been introduced (Lahaye et al., 2009) 

2

0

2
,

12
dd

s

m

a

 



                                                  (3.3) 

where the numerical factors are chosen in such a way that, the homogeneous condensate 

is stable against 3D collapse, when 1dd  . In particular, for 52Cr  atoms with the 

s wave scattering length  16s Ba a and magnetic dipole moment 6 B  , where Ba  

and B  are the Bohr radius and the Bohr magneton respectively, one has 0.16dd  . 

This can be compared to the ordinary case of 87 Rb atoms with  0.7s Ba a  and 

1.0 B  , when the calculation gives 0.007dd  . Therefore, the effect of dipolar 

interactions in 52Cr  condensate is much stronger than in 87 Rb  condensate. The GPE for 

the wave function of a dipolar condensate has the form (G ral, Rza  ewski, & Pfau, 

2000; Santos, Shlyapnikov, Zoller, & Lewenstein, 2000; Yi & You, 2000) 

     
22

224
, , ,

2

s
ext dd

a
i V r U r r t r t dr

t m m

 
            

  
      (3.4)  

where  extV r  is the external trapping potential for the condensate.  

In this chapter, it is considered the dynamics of a dipolar condensate in quasi-1D 

geometry. Experimentally this setting can be realized by loading the condensate in a 

cigar shaped trap with a tight radial confinement and a weak axial confinements. The 

dipoles are assumed to be aligned along the axial x -direction, therefore the dipolar 

interaction is attractive. When the radial confinement is strong enough, one can assume 

that the radial dynamics is frozen and factorize the wave function  can be expressed as  
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     , , ,x t x t    
, 

where  

 
2

2

1
exp

2ll


 



 
  

   

is the ground state of a 2D harmonic oscillator with 

l
m



 

being the radial harmonic oscillator length,   is the radial trap frequency. Inserting the 

above the factorized wave function into equation (3.4) and performing integration with 

respect to variable  , the following reduced 1D GPE can be obtained 

     
2 2

22

12
, ,

2
ext D ddi V x g U x t d

t m x

 
     





  
      

   
        (3.5) 

where 1 2D sg a  is the reduced 1D nonlinear coupling constant, 

  2 21

2
extV x m x

 

is axially confining potential (parabolic trap with frequency  ). The reduced 1D 

potential of dipolar interactions was derived in (Sinha & Santos, 2007)  

       
2

2 2

3

2
2 1 2 exp erfc ,dd

d
U x x x x x

l


    

 
                     (3.6) 

where d  is the dipole moment, l  is the harmonic oscillator length of strong radial 

confinement,   is a variable that may change between  1 0    and 
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1

2 2


 

 
   

 
. Note that although the original 3D potential of dipole-dipole 

interactions is singular at 0r  , the reduced 1D potential is regularized and finite at 

0x  . The equation (3.5) can be further reduced to dimensionless form by introducing 

variables: 
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We can rewrite the equation   

     
2

22 2

2

1
2 , ,

2
exti V x q d R x t d

t x

 
      





  
      

   
          (3.7) 

where ( ) ~ ( )ddR x U x  is the dimensionless nonlocal kernel function, and ~ sgn( )sq a  is 

the dimensionless strength of contact interactions. 

In absence of an external potential, the nonlocal integral term of equation (3.7) is the 

well known 1D nonlinear Schrödinger equation, which supports a spectrum of exact 

soliton solutions. In experiments, one approaches this limit by confining the condensate 

in an elongated cigar shaped trap with tight radial confinements. Although the presence 

of a weak axial trap  extV x  breaks the integrability of the governing equation, many 

properties of localized states remain close to those of the classical solitons, as 

demonstrated in the recent experiment (Marchant et al., 2013). The nonlocal term in 
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equation (3.7) also breaks the integrability, but it does not exclude the existence of 

stable localized states in the system in particular regions of the parameter space (Cuevas 

et al., 2009). Since we are mainly interested in self-trapped localized states of BEC, for 

our purposes the external trap potential can be set to zero  extV x 0 , and this will be 

assumed below. It should be pointed out, that the external potential can be easily 

incorporated into the scheme of VA (D. Anderson, 1983). 

Thus, when the dipolar atomic interactions are taken into account, the equation 

governing the dynamics of the condensate is the nonlocal GPE (3.7). Both the contact 

interactions in equation (3.7) represented by the cubic nonlinearity, and dipolar 

interactions represented by the integral term, are tunable by the Feshbach resonance 

technique. In the following we shall be interested in periodic variation of the dipolar 

interactions at fixed strength of contact interactions. 

 

  The variational approximation in non-local interaction 3.2

We consider the following equation describing the dynamics of the condensate in 

presence of both dipolar and contact interactions  

2
2 2

2

1
| | ( ) (| |)| ( , ) | 0,

2
i q g t R x t d

t x

 
      





 
    

              (3.8) 

where 
2( ) 2 ( )g t t d  is the strength of dipolar interactions, which can be varied 

through time dependent  t . The wave function ( , )x t  is normalized to 

2| ( ) |N x dx



  , 
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which is a conserved quantity of equation (3.8), proportional to the number of atoms in 

the condensate. 

The kernel function (3.6) is complicated for the variational analysis. For a qualitative 

understanding of the effect of non-locality on the dynamics of dipolar BEC we consider 

analytically tractable Gaussian ansatz for the response function 

2

2

1
( ) exp

22

x
R x

ww

 
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 
                               (3.9) 

which is normalized to one 

( ) 1,R x dx



  

and Gaussian ansatz  

2
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x t A t ib t x i t
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 
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with norm  

2 2( ) .N x dx A a    

Equation (3.8) can be derived from the Lagrangian density  

2 4 2 21 1 1
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 
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        (3.11) 

where the subscript denotes derivative with respect to corresponding variable, 

 i.e    
  

  
  and     

  

  
 . 
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Now using the trial function (3.10) one obtains  
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To evaluate the last integral in 4  we make the change of variables (Abdullaev & 

Brazhnyi, 2012) 
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therefore  

x y z

y z

 


    

i.e. we have functional dependence between old and new variables  

( , )
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x x y z

y z 




  . 

Then for the Jacobian of the transformation we have  

2.y z z yJ x x   
 

Consequently 2  .dx d dy dz   The averaged Lagrangian terms become 

, 1, 4i iL dx i   

are computed straightforwardly 
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Then the final expression for the averaged Lagrangian is  
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The Euler-Lagrange equations is given 
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for variational parameters , ,b a   yield the following system  

2

4 3 2 2 3/2

0,

2 ,

1 ( )
2 .

2 2 2 2 2 ( )

t

t

t

N

a ab

qN g t N
b b

a a a w 


 









   


                  (3.21) 

The first equation in (3.21) is decoupled from others and declares the conservation of 

the wave packet's norm. The equation for the width of the soliton can be derived from 

the last two equations in (3.21) 

3 2 2 3/22
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( )2 2
tt

qN g t N a
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This equation is similar to equation of motion for a unit mass particle in the anharmonic 

potential 

tt

U
a

a


 

  

with 

2 2 2 1/2

1
( ) .

2 2 2 ( )

qN gN
U a

a a a w 
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
                    (3.23) 

The stationary state corresponding to the minimum of the potential well  

0
U

a




  

gives the width of the soliton and its amplitude via the norm as 

.
N

A
a 



 

Therefore, the shape of the soliton, given by equation (3.10) can be determined by the 

variational approximation. 

Solving equation (3.22), which gives the stationary solution of the original GPE (3.8) 

that describes its dynamics near the fixed point, corresponds to the main result of the 

present work. At large departures from the stationary state, the waveform (3.10) can 

deviate from the Gaussian shape, and the predictions of the VA become less accurate. 

The stationary width of the soliton 0a  is calculated from the following condition:  

4
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                                      (3.24) 
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Figure 3.1 illustrates the shape of the potential  U a  for a pure dipolar condensate 

 0q  , and when the contact interactions are also present  1q   . The stationary state 

solutions of the GPE for these cases are obtained by the method of relaxation in 

imaginary time, as described in (Chiofalo, Succi, & Tosi, 2000). As can be seen from 

this figure, the soliton in a pure dipolar condensate  0q   is perfectly described by the 

Gaussian function. The result of numerical solution of the GPE is indistinguishable 

from the prediction of VA.  
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Figure ‎3.1: Top panel: The shape of the anharmonic potential given by equation (3.23) 

for pure dipole-dipole interactions ( 0q  , red solid line), and in presence of repulsive (

1q   , blue dashed line) and attractive ( 1q   , purple dot-dashed line) contact 

interactions. The stationary width of the soliton corresponding to these cases are 

0a   2.59 , 0a   3.37 , and 0a  1.80  respectively. Bottom panel: Stationary 

localized solutions of the GPE(3.8) with Gaussian response function (3.9) for pure 

dipolar interactions (red line) and in presence of repulsive (blue line) and attractive 

(purple line) contact interactions. Dashed lines correspond to predictions of the VA. 

Parameter values: N 1, w 5.0, g 10.    
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In presence of contact interactions  1q    noticeable deviation from the Gaussian 

shape is seen near the peak and periphery of the wave packet. 

The frequency of small amplitude oscillations around the fixed point 0a is 

1/2
2

0
0 4 2 23 2 2 3/2

0 00 0

33 2
1 .

2 2 ( )

aqN gN

a a wa a w


 

  
     

   
               (3.25) 

The repulsive contact interactions    0q  give rise to decreasing of the frequency of 

oscillations compared to the case of pure dipolar interactions   = 0q , while the effect 

of attractive interactions   > 0q  is opposite, leading to increasing of the oscillations 

frequency. In figure (3.2) we depict the frequency of shape oscillations of the soliton as 

a function of the strength of contact interactions, according to equation (3.25). The same 

figure shows the stationary width of the soliton for a given strength of contact 

interactions, obtained from equation (3.24). Comparison between the prediction of VA 

and the result of numerical solution of the governing GPE (3.8), expressed by symbols, 

reveals fairly good agreement.  

Low energy collective oscillations of atoms can provide essential information about the 

interatomic forces in BEC (Jin, Ensher, Matthews, Wieman, & Cornell, 1996). In this 

regard, the analytic expression (3.25) for the frequency of shape oscillations of a matter-

wave packet can be useful in relevant experiments with dipolar BEC.  
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Figure ‎3.2: The frequency of low energy shape oscillations ( 0 ) of a matter-wave 

packet in dipolar BEC as a function of the strength of contact interactions q , according 

to equation (3.25). (red solid line), and the stationary width of the soliton 0a  obtained 

from equation. (3.22) (blue line). The symbols indicate the results of numerical solution 

of the GPE(3.8). Parameter values: 1, 5, 10N w g   . 

 

 

Figure 3.3 illustrates the oscillations of the soliton's width under periodic variation of 

the strength of nonlocal interactions. As for the physical implementation of this setting, 

changing the strength of dipole-dipole interactions can be performed by means of a 

rotating polarizing magnetic field (Giovanazzi et al., 2002). Such a field gives rise to 

precession of dipoles (arranged in "head-to-tail" configuration 0  , in a quasi-one 

dimensional trap) around the axial direction, on a cone of aperture 2  . When the 

angular frequency of rotation   is small than the Larmor frequency, but much greater 

than the trapping frequencies, only the time average over the period 2 /   determines 
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the effective strength of dipole-dipole interactions, given by equation (3.2). Thus, by 

introducing periodic variation of the tilt angle   one can induce the periodic change of 

the strength of dipolar interactions.  

As can be seen in the left panel of figure (3.3), the amplitude of oscillations 

 max mina a  increases linearly at the initial stage, which is characteristic to the 

resonance phenomenon. Scanning over the interval of frequencies 0 1    reveals the 

parametric resonance at 02  in addition to the main peak at 0 . To retrieve the width 

of the wave packet from the solution of the GPE we use the following relation  

1/2
2 2
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 




                              (3.26) 

In figure (3.4), we show the evolution of the matter-wave packet under periodically 

changing coefficient of nonlocal interactions. Excitation of regular oscillations with the 

frequency of parametric driving is clearly observed. A gradual increase of the amplitude 

of oscillations is due to the resonance phenomenon.  
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Figure ‎3.3: Above panel: Periodic variation of the coefficient of nonlocal nonlinearity 

2( ) 2 ( )g t d t  at resonant frequency 0( ) 1 0.01sin( )t t   , with 5d  , 0 0.274   

gives rise to oscillations of the soliton's width The amplitude of oscillations increases 

linearly at the initial stage, as characteristic to resonant response. Down panel: Scan 

over some interval of frequencies [0,1]  reveals also the parametric resonance at

0.54  , which is the twice of the main resonance frequency 0 . In both panels the 

red solid line corresponds to numerical solution of the. GPE (3.8), while blue dashed 

line to variational approximation (3.22). All parameters are the same as in figure (3.1) 

for pure dipolar interactions 
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Figure ‎3.4: Evolution of the matter-wave packet under periodic variation of the strength 

of dipolar interactions. Excitation ofshape oscillations under parametric perturbation is 

evident. The initial condition for the GPE (3.8) is taken as stationary solution predicted 

by the variational approximation 
2

0 2
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, with 0A 0.467  and 

0a 2.586 . The coefficient of nonlocal nonlinearity is periodically changed at resonant 

frequency 0 0.274   as   0( ) 10· 1 0.01·sing t t   
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For numerical simulations of the GPE (3.8), we employ the split-step method (Agrawal, 

2007) with 1024 Fourier modes in the integration domain [ 6 , 6 ]x    . The time step 

was set to 0.001t  . To speed up the evaluation of the integral in the nonlocal term, 

the convolution theorem has been used (Press, Flannery, Teukolsky, & Vetterling, 

1990). It is well known, that soliton under perturbation emits linear waves, which can 

re-enter the integration domain due to reflection from the domain boundaries. For 

emulation of the infinite integration domain length and preventing the interference of 

the soliton with the emitted linear waves, we use the absorbing boundary technique 

(Berg, If, Christiansen, & Skovgaard, 1987). 
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4 Matter-Wave Soliton Bouncing 

 On a Reflecting Surface 

 

 

In this chapter, the mathematical model will be introduced to illustrate the distinctive 

features of the nonlinear model as compared to its linear counterpart. The variational 

approach for analytical treatment of the nonlinear model has been developed. The 

predicted results are compared with numerical simulations of the original Gross-

Pitaevskii equation. The resonant oscillations of the wave packet above the mirror is 

explored, and the Fermi type of acceleration of matter wave solitons when the vertical 

position of the reflecting surface is periodically varied in time is investigated. 

 

 The model  4.1

The Bose-Einstein condensate is a giant matter wave packet which is strongly affected 

by gravity. In particular, a matter wave packet released from the trap falls towards Earth 

like a bunch of coherent atoms. The effect of gravity is essential for the operation of 

atom lasers (Bolpasi et al., 2014; Mewes et al., 1997). 

In the present model the gravitational field is acting on atoms in the vertical direction 

and a horizontal atom mirror which reflects them back, form a cavity for the matter 

wave packet. In the following we consider the motion of a matter wave soliton within 

such a gravitational cavity. The model is based on the following one dimensional GPE 
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where  ,x t  is the wave function of the condensate trapped in a tight quasi-1D trap, x  

is the spatial coordinate of the wave packet above the horizontal atomic mirror, 

represented by the reflecting potential  U x , g  is the strength of the gravitational 

potential,   is the trap frequency in the tightly confining radial direction, ,  sm a  are the 

atomic mass and s-wave scattering length, respectively. 

The gravitational units of space and time, defined as 
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                                                         (4.2) 

 

allows to rewrite the equation (4.1) in the dimensionless form 

 
21

0,
2

t xxi x V x                                               (4.3) 

where the new variables are defined as  
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Here we consider that for BEC with attractive atomic interactions, 0.sa   The norm of 

the dimensionless wave function is defined by  
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2| ( ) | ,N x dx



   

and it is proportional to the number of atoms in the condensate. In equation (4.3) the 

linear potential term  ~ x  accounts for the effect of gravity, while the atomic mirror is 

represented by  V x .  We introduced an additional parameter  

sin( )   

to account for the possibility of altering the effect of gravity by changing the angle   

formed by the axis of the quasi-1D waveguide and the horizontal reflecting surface. For 

vertical position  / 2   of the waveguide 1  , at smaller angles 0
2


  , then 

0 1  . Such a setting is of interest in view of recent research on the behavior of BEC 

in microgravity (van Zoest et al., 2010) and the quantum reflection of matter waves 

(Cornish et al., 2009; Lee & Brand, 2006; T. Pasquini et al., 2006; T. A. Pasquini et al., 

2004), where the cold atoms should approach the attractive potential at very low speed. 

Similarly, the additional parameter   can be used for nonlinearity management 

0( ) ( ) /s st a t a  , then in the normalization for   in equation (4.3) the background value 

of 0

sa  should be assumed. The following two cases will be relevant to our further 

analysis 

a) an ideal mirror 

  0,    if  0

( ) ,

,  if  <0

x

V x

x




 
   
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b) a weakly transparent reflecting surface 

0 ( ) ( ),V x V x                                                            (4.4) 

where ( )x  is the Dirac delta function which has been multiplied by the strength 0V . 

A detailed study of the wave packet dynamics described by equation (4.3) in the linear 

model ( 0  ) for ideal mirror was reported in Ref. (Gea-Banacloche, 1999). Before 

proceeding to analytical description of the nonlinear model (   1  ) it is instructive to 

compare these two limits by numerical simulations of the governing equation (4.3). 

Such a preliminary study will help to elucidate the effect of nonlinearity on the 

dynamics of a wave packet bouncing above the atomic mirror. 

In figure (4.1), we illustrate the features of the linear and nonlinear models for the 

dynamics of the wave packet dropped from the height 0 10x   above the mirror 

positioned at 0x  . The main difference appears to be enhanced spreading of the wave 

packet and strong interference with reflected waves in the linear model, as compared to 

the nonlinear case, where these phenomena do not show up. 
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Figure ‎4.1: Above panel: The first three bouncing of the wave packet from the ideal 

mirror for the linear model ( 0)   is shown through the density plot 
2| ( , ) |x t . Down 

panel: The same for the nonlinear model  1  . In both cases a wave packet 

2 2

0( ,0) exp( ( ) / )x A x x a     with 2,  0.8A a   and 0 10x   has been employed as 

initial condition for the governing equation (4.3), with the coefficient of linear potential 

1   
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The distinctions between the two models is clearly observed in figure (4.2), where we 

compare the corresponding wave profiles at different times during one period of 

bouncing bT , which is estimated from classical equation 
2

2

d x
g

dt
  . In dimensionless 

units introduced for equation (4.3), we need to set 1g  . Then a classical particle 

dropped from the height 0x  reaches the ground at   

02bt x , 

 

Figure ‎4.2: (Part I) Snapshots of the wave packet dropped from the height 0 10x   at 

0t   (shown on different time for each figure) during one bouncing period 8.94bT  . 

In the linear model the wave packet quickly expands and shows strong interference with 

waves reflected by the mirror placed at 0x   (blue dashed line). At final time bT  the 

wave packet does not fully recover its initial form. In the nonlinear case the wave packet 

better keeps its integrity during the evolution and almost fully recovers its initial form at 

bT  (red solid line). All parameters are the same as in the previous figure. (Continuous) 
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Figure ‎4.2: (Part II) Snapshots of the wave packet dropped from the height 0 10x   at 

2.24t  . All parameters are the same as in the previous figure. (Continuous) 

 

 

 

Figure ‎4.2: (Part III) Snapshots of the wave packet dropped from the height 0 10x   at 

2.47t  . All parameters are the same as in the previous figure. (Continuous) 
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Figure ‎4.2: (Part IV) Snapshots of the wave packet dropped from the height 0 10x   at 

6.71t  . All parameters are the same as in the previous figure. (Continuous) 

 

 

 

Figure ‎4.2: (Part II) Snapshots of the wave packet dropped from the height 0 10x   at 

8.94t  . All parameters are the same as in the previous figure. (continuous) 
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therefore the classical bouncing period is  

02 2 2b bT t x 
. 

It should be noted that in figure (4.2), we show the situation, when the wave packet is 

dropped from a quite large height and the effect of gravity is maximal ( 1  ). This 

gives rise to notable deformation of the nonlinear wave packet too, in proximity of the 

mirror (see the middle panel). After the instant interaction with the mirror at 
2

bT
t  , 

soliton quickly recovers its form. Asymmetric deformation of the wave packet and 

emergence of side peaks (interference fringes) during the evolution are the main factors 

compromising the precision of analytical description developed in the next section. 

To estimate the parameters of the model we consider the 58Rb  condensate, for which 

20 ,sa nm   1.3 ,  0.36g gl m t ms  . At the strength of radial confinement 

310 /rad s   we have 1  . For 4N   the soliton contains 720  atoms. Similar 

estimates for 7 Li  condensate with 1.6nmsa    gives 7 ,  0.84 ,g gl m t ms   

4  10 / ,rad s   the soliton contains 1400  atoms. 
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 Variational approximation method 4.2

For arbitrary forms of the reflecting potential  V x ,  the governing equation (4.3) 

cannot be analytically investigated. One of the efficient approaches to the problem in 

such cases is the variational approximation (VA). 

In the following we develop the VA for the governing equation using the second choice 

(b) for the potential equation (4.4). It is well known from quantum mechanics textbooks 

that the wave packet falling on the delta potential barrier is always partially transmitted. 

However, by increasing the strength of the barrier  0V  the transmission coefficient can 

be reduced to negligible level. This allows us to consider the norm of the wave packet 

above the mirror as a conserved quantity and to develop the VA using an appropriate 

ansatz for the pulse shape. 

Equation (4.3) can be generated from the following Lagrangian density 

* * 2 2 2 41
( ) | | | | ( ) | | | | .

2 2 2
t t x

i
x V x


                         (4.5) 

An important step in the development of VA is the proper choice of the trial function. 

We shall consider the following hyperbolic secant ansatz 

2( ) ( )( , ) sech ,ib x i x ix
x t A e

a

   
     

  
 

                       (4.6) 

where ( ),  ( ),  ( ),  ( ),  ( ),  ( )A t a t t t b t t    are variational parameters representing the 

amplitude, width, center of mass position, velocity, chirp parameter and phase of the 

wave packet, respectively. This choice is motivated by the fact that when the wave 

packet is sufficiently far from the reflecting potential ( )V x  (and therefore its effect can 

be neglected), equation (4.3) has the exact accelerated soliton solution of the hyperbolic 

secant form (Chen & Liu, 1976). 
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Substituting the ansatz equation (4.6) into equation (4.5) 

1 ( )
2

t t

i
     

       
2

22     2 secht t t t t

x
A b x b v x v

a


    

 
        

 
 

      

2

22
22 2

2

2

2

1
| |

2 2

1 1
   ta

1

nh 4 4 sech
2

xx x

xx
A b x b x

a a a

  


   



    
            



 



 

 

  
 

0

3

2

2

2

   s

,

h

( )

ec
x

A x

x

v x

V x

a

t







 





 







 

 4

4

4

4

| |
2

     = sech
2

1

x
A

a











 
 
 

 

integrating over the space variable, we get the averaged Lagrangian  

 
4 4

11

i

i

i

i

L L dx





  
 

1
1

2 2

2 2

1
    

2

1
     =N

12

t t t

t t t

L dx

A a a b

a b

  

  






 
   

 

 
  

 


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2
2

2 2 2 2 2

2

2 2 2 2

2

1 1 1
    

6 6 2

1 1 1
     =N

6 6 2

L dx

A a a b
a

a b
a

  

 






 
   

 

 
  

 



 

3
3

2 20

20

    sech
2

    sech
2

L dx

v
A a

a a

v
N

a a


 









  
   

  

  
   

  



 

4
4

2    
6

L dx

N
a








 


 

Then, the total averaged Lagrangian is obtained  

2 2
2 2 2 2 20

2

1 1
sech ,

12 6 2 6 2 6
t t t

V N
L N a b a b

a a a a

   
  

  
         

  
       (4.7) 

where we have taken into account that the velocity is equal to the time derivative of the 

center of mass position t   and 
2 / (2 ),A N a  with the norm of the wave packet  

 
2 22N x dx A a





   

being the conserved quantity. Now the usual procedure of the VA, applied to equation 

(4.7) leads to the following set of equations for the width and center of mass position of 

the wave packet 
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20

2 3 2 2 2 2

64 2 2
sech 1 tanh ,tt

V N
a

a a a a a a

   

  

    
       

                         (4.8) 

20

2
sech tanh . tt

V

a a a

 
 

   
      

   
                                                    (4.9) 

The coupled system of equations (4.8) and (4.9) represents the main result of this 

section. Its fixed points provides the stationary width of the soliton  0a  and its distance 

from the mirror  0 , where the actions of the gravity and repulsive potential ( )V   

cancel each other. As a result of this balance, the soliton placed at a fixed point remains 

at rest (levitates) above the mirror. Small amplitude dynamics of the soliton's width and 

center of mass position near the stationary state can be described as motion of a unit 

mass particle in the anharmonic potentials 1( )U a  and 2 ( ),U   respectively, 

1

20 0
1 2 2 2 2

,

62 2
( ) sech ,

tt

U
a

a

VN
U a

a a a a



  


 



 
    

 

                                        (4.10) 

2

20
2

0 0

,

( ) sech .
2

tt

U

V
U

a a





 


 



 
   

 

                                                     (4.11) 

In figure (4.3) the shapes of the potentials in equations (4.10) and (4.11) and examples 

of soliton bouncing dynamics over the reflecting surface, modeled by a delta function, 

are illustrated. As expected, when the soliton is positioned at a fixed point  0 0 ,,  a  it 

stays motionless (lower pair of curves in the middle panel). Small amplitude oscillations 

in PDE data is due to the fact that the VA gives approximate values for the fixed point. 

When the soliton is dropped towards the mirror from a height 0 3,x   it performs 
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bouncing motion. Slow decay of the amplitude of oscillations and increase of its 

bouncing frequency are due to partial escape of the wave packet via tunnel effect (upper 

pair of curves in the middle panel). 

The frequency of small amplitude oscillations of the soliton's motion can be estimated 

from VA by linearizing the Eqs. (4.8)-(4.9) near the fixed point  0 0 ., a  

  
1/2 1/2

3 2 2

0 0 0 0 0 0 0/ sech ( / ) 2sinh ( / ) 1 .V a a a                                (4.12) 

The corresponding period for 0 01,  1.213V    and 0 0.468a   is 0 02 / 9.7T   > . 

This is in quite good agreement with numerical simulations of the GPE equation (4.3) 

for equilibrium state, as shown in the middle panel of Fig. (4.3). An expression similar 

to equation (4.12) can be derived for the frequency of the soliton's width. 

 

1/2

2 2 2 2 20 0 0 0
0 0 0 0 0 0 02

0 0 0 0 0

32
3 sech 2 4 tanh 3 sech .

V
Na a a

a a a a a

  
   



     
     
     

   
           

         (4.13) 
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Figure ‎4.3: (Part I) Comparison of the center of mass position as a function of time, 

obtained from solving the VA equation (4,8) and numerical simulation of the governing 

equation (4.3) for the reflecting surface of the delta function type  

 ( )     ( ). The lower pair of curves corresponds to the fixed point initial 

conditions, while the upper pair of curves corresponds to dropping the wave packet 

from height 0 3x   above the mirror. 
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Figure ‎4.3: (Part II) Anharmonic potentials for the center of mass ( )U   and width 

( )U a  of the soliton, according to equations (4.10)-(4.11). For the set of parameters 

4,  1,  0.1,N      and 0 1V   the fixed point is found to be 0 01.213,  0.468a   . 

(Continuous) 
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Figure ‎4.3: (Part III) (Continuous) nonlinear resonance in the center of mass dynamics 

when the coefficient of gravity is varied in time with a resonance frequency 

0( ) 0.1[1 0.3sin( )]t t   . Stationary state of the soliton with parameters predicted by 

VA is used as initial condition. Discrepancy (phase shift) between the GPE and VA is 

associated with asymmetric deformation of the wave packet when reflecting from the 

mirror 

  

  

Numerical estimate for the fixed point  0 0,  ,a  and 04,  1,  1N V    is  

0

0

2
1.94,T


 


 

which is also in good agreement with the results of GPE. 

When the mathematical model has been developed, it is appropriate to mention its range 

of validity. As pointed out in the previous section, hard bounces of the soliton lead to its 

asymmetric deformation at the instant of collision with the mirror. Deviation of the 

waveform from the class of selected anzats equation (4.6) is the main factor 

compromising the accuracy of the variational approach. Therefore, the validity of the 
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analytical model developed in this section is limited to the domain of soft collisions (at 

small velocity) and dense (tall and narrow) wave packets. These conditions are satisfied 

when the effect of gravity is reduced  1   and the soliton contains a large number 

of atoms, so that the nonlinearity-induced self-focusing of the wave packet is 

significant. 

The VA is especially useful when small amplitude oscillations of the wave packet near 

its equilibrium position are the subject of interest. In this case the analytic formulas for 

the frequency of oscillations for the center-of-mass equation (4.12) and width equation 

(4.13) are quite accurate. If the relevant experiment shows deviation from the prediction 

of these formulas the results will be an indication of the presence of additional forces 

acting on the soliton near the surface. Actually, the experiments with BEC aimed at 

exploring the Casimir-Polder force near the surface use the perturbations of the 

frequency of center-of-mass oscillations of the condensate to detect this force (Harber et 

al., 2005; Obrecht et al., 2007; Sorrentino et al., 2009). Similar experiments with 

attractive BEC in the bouncing soliton regime would be very informative. 

 

 Fermi type acceleration of a matter wave soliton 4.3

The capability of the matter wave soliton to perform bouncing motion above the atomic 

mirror, preserving its integrity, suggests to consider the Fermi type acceleration (FA) in 

this system. FA is the energy gained by a particle that expose to periodic or random 

driving forces. It was proposed by Enrico Fermi (Fermi, 1949) to explain why cosmic 

rays have so high energy. For the mechanical analogue, the possibility of unbounded 

growth of energy by an elastic ball bouncing vertically on a single periodically 

oscillating plate, under the effect of gravity, was rigorously proven in Ref. (Pustylnikov, 

1995). A simple derivation of the growth rate of the ball's velocity within the framework 
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of classical mechanics  1/3~v t can be found in (Zaslavsky, 1984). Most studies of FA 

of matter waves are concerned with dynamical localization and chaotic behavior. In our 

model localization of the matter wave naturally arises from the nonlinearity of the 

condensate, and the parameter space does not contain chaotic regions. 

Although the matter wave soliton does not have all necessary properties to demonstrate 

true FA (due to non elastic collision with the mirror, leakage of energy via tunnel effect, 

etc.), some features of FA can be observed, as we have revealed in numerical 

experiments. At first we need to prepare the initial stationary state of the matter wave 

packet levitating above the atomic mirror. The prediction of VA for parameters of the 

soliton and stationary state distance above the mirror (where the forces of gravity and 

repulsion of the mirror balance out) is approximated, as we have seen in the previous 

section. The inaccuracy leads to small amplitude oscillations of the soliton near the 

equilibrium state in the GPE simulations (see figure (4.3) Part II). In order to create a 

truly stationary initial state of the soliton above the reflecting surface we consider the 

first choice (a) for ( )V x  in equation (4.4). For this ideal mirror potential, the equation 

(4.3) in the linear limit  0 ,   with boundary condition (0, ) 0,t   has analytic 

stationary solutions in terms of the Airy functions (Vallée & Soares, 2004), 

1/3( ) Ai[(2 ) ( )],n nx x x                                             (4.14) 

where  is the normalization constant. In the following section, we shall be concerned 

with the ground state  n 0  of the wave packet in the gravitational cavity. The first 

root, given by 
1/3Ai[(2 ) ] 0x   for 0.1,   is found to be equal to 0 3.998.x    The 

corresponding normalization factor is 

1/2

2 1/3

0

0

Ai [ ( )] 1.09.x x dx


 

   
 
                              (4.15) 
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In order to produce the initial state for numerical simulations of the FA, we insert the 

ground state wave function (4.14) with an appropriate norm into the GPE (4.3) with 

0   and slowly raise it to final value 1   according to the law  

 
0

5
tanh

t
t

t


 
  

 
 

with 0 ~ 1000t . The obtained nonlinear waveform is shown in the abovepanel of figure 

(4.4). 

Also in this figure we illustrate the resonant oscillations of the soliton's center of mass 

when the coefficient of nonlinearity (via atomic scattering length) is periodically 

changed in time. 
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Figure ‎4.4: (Part I):   Transformation of the ground state wave function of the linear 

problem (blue dot-dashed line) into solution of the nonlinear problem (blue dashed line) 

by slowly raising the coefficient of nonlinearity   in equation (4.3) from zero to one. In 

the prediction of the VA Eqs. (4.8)-(4.9) for delta barrier potential (red solid line) the 

wave packet slightly penetrates into the region 0x   due to the wave tunneling effect. 

 

 

 

 

 

 



 

78 

 

Figure ‎4.4: (Part II) Nonlinear resonance in the center of mass dynamics of the soliton, 

when the coefficient of nonlinearity is periodically varied in time 01 sin( )t    
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Figure ‎4.4: (Part III)  Dynamics of the width has not resonant character due to the 

difference in frequencies 0  and 0 ,  estimated from equation (4.12)–(4.13). Parameter 

values 0 0 04,  0.1,  5,  0.05,  0.66,  1.7.N V         

 

 

  

It is evident that nonlinear resonance takes place at the frequency of small amplitude 

oscillations 0  estimated from the VA equation (4.12). Similar behavior was observed 

when the slope of the linear potential (strength of gravity) is changed with appropriate 

frequency (see the figure 3 Part(III)). Since the resonant frequencies are different for the 

center of mass  0 and width  0  of the soliton, periodic modulation of the 
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parameter   or   with frequency 0  does not induce resonant oscillations of the 

width, and vice versa. Characteristic feature inherent to both cases is that, oscillations 

show notable phase shift as compared to predictions of VA, which can be explained by 

asymmetric deformation of the soliton at the impact with the reflecting surface. In the 

VA we deal with the dynamics of a unit mass particle in the anharmonic potential. 

Nevertheless the VA provides qualitatively correct description of the system. 

The focusing nonlinearity, inherent to BEC with negative s-wave scattering length, 

provides the wave packet's robustness against dispersive spreading and different kinds 

of perturbations. Due to this property matter wave solitons keep their integrity after 

reflection from the atomic mirror. In the following discussion, we consider the 

possibility of Fermi type of acceleration in the system. In numerical simulations we take 

the stationary state of the wave packet, predicted by VA as an initial condition for 

equation (4.3) and periodically change the vertical position of the reflecting surface or 

the slope of the linear potential.  

Figure (4.5) illustrates the progressive gain of energy by the soliton when the position of 

the reflecting delta potential is periodically varied in time at a parametric resonance 

frequency. As the amplitude of oscillation above the mirror increases, de-tuning from 

the resonance occurs and further gain of energy stops. A proper synchronization would 

allow more increase of the kinetic energy of the soliton. Also there is a contribution of 

tunnel loss of the wave packet through the reflecting delta potential barrier 
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Figure ‎4.5: Soliton continuously increases its kinetic energy and farther departs from 

the stationary point 0 1.57,x   when the vertical position of the delta function mirror 

with strength 0V 5,  initially positioned at 0,x   is periodically changed at a 

parametric resonance frequency ( ) sin( ),f t t   with 0 00.25,  2 ,  0.66,       

according to numerical simulations of the GPE equation (4.3). As the amplitude of 

oscillations increases, the de-tuning from the resonance occurs and energy gain 

reverses. Down panel: Corresponding prediction of the VA for the soliton's center of 

mass and width. A qualitative agreement with the results of the GPE is observed. 
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The corresponding predictions of the VA for the center of mass position   and width 

a  are also shown on the down panel of figure (4.5). Note that the space coordinate in 

GPE and VA equations are designated by x  and   respectively. Variation of the 

vertical position of the delta function mirror  

0( ) ( ( )),V x V x f t   

where  

( ) sin( )f t t   

 is a periodic function with amplitude   and frequency ,  leads to the VA equations, 

similar to Eqs. (4.8)-(4.9), but with replaced space variable on the right hand side 

( ).f t    

The frequency of small amplitude oscillations of the width, measured at upper turning 

point is 0 2.1,T >  which is close to the estimation from equation (4.13). 
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5 Conclusion 

 

 

To conclude this thesis we summarize on main results as follow. In chapter one, we 

have given some background theory information about Bose-Einstein condensate and 

briefly described subjects studied in this thesis such as Modulation Instability, dipolar 

interaction and bouncing matter wave soliton reflecting on mirror, etc. In addition, we 

gave a brief history on the development of Bose-Einstein condensation. Furthermore, 

we have also given an introduction and review of the variational approximation 

approach. 

In chapter two, we have investigated the modulational instability in a one-dimension as 

described by the Salerno equation. Salerno model can applied to Bose-Einstein 

Condensates in deep optical lattices. The analytical expression of modulation instability 

gain spectra is obtained, the regions and conditions of instability of plane wave 

solutions in the parameter space of the governing Salerno model were determined. 

The existence and stability criteria for different type of strongly localized modes in 

discrete Salerno model have been derived. The localized solutions of Salerno model 

were obtained numerically using the homoclinic orbits intersection method. 

In chapter three, we studied the effect of atomic dipole-dipole interactions on the 

dynamics of Bose-Einstein condensates by means of variational approximation and 

numerical simulations. Dipolar interactions give rise to an additional nonlinear term in 

the Gross-Pitaevskii equation which is spatially nonlocal. For qualitative analysis, we 

have employed a Gaussian response function in the nonlocal term. The developed 

model predicts the stationary shape of the soliton in dipolar BEC and its small 
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amplitude dynamics near the equilibrium state quite accurately. Solitons in dipolar BEC 

exhibit a resonant response to periodic variation of the coefficient of nonlocal 

nonlinearity at the main perturbation frequency and double of the main frequency, 

which is characteristic to the phenomenon of parametric resonance. Analytic expression 

for the frequency of low energy shape oscillations of the matter-wave packet has been 

derived, which elucidates the contribution of contact and dipolar interactions to the 

frequency of collective oscillations of the condensate. The obtained results can lead to a 

better understanding of the properties of ultra-cold dipolar quantum gases.  

In chapter four the model of a quantum bouncer has been extended to a nonlinear 

domain of Bose-Einstein condensates. The analytical description is based on the 

variational approach. It has been revealed that a matter wave soliton bouncing above the 

reflecting surface (or atomic mirror) better preserves its integrity compared to a linear 

wave packet due to the focusing effect of the nonlinearity. This feature of the bright 

matter wave soliton allows to develop a variational approach, using an appropriate trial 

function, which provides a qualitatively correct description of its dynamics. A particle 

like behavior of the matter wave soliton bouncing above the atomic mirror is suggested 

to consider the Fermi type acceleration in the system. In numerical experiments, we 

observed the progressive energy gain by the soliton when the vertical position of the 

mirror is periodically varied in time. Further development of the proposed model may 

include the stochastic variation of the nonlinearity variation of the slope of the linear 

potential, and finally adjustment of the vertical position of the reflecting surface. 
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Appendix A: 

Ordinary Differential Equations solving code 

One of the most famously used method is fourth order Rang-Kutta method 

(RK4) to solve ordinary differential equation, the equation is given  

( )
( ( ), )

y t
f y t t

t




  
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1

2 1

3 2
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If we have second order ordinary differential equation such as in chapter 3 and 

four, we convert it to first ordinary differential by using the auxiliary function for 

example we have this function 

2

2

( ) ( )
.

d y t dy t
a b

dt dt
 

 

This second ordinary equation is transformed to the system of first ordinary 

equations  
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( )
( )

( )
. ( )

dy t
z t

dt

dz t
a z t b

dt





   


 

 

Fortran code, which use it to solve system of OD equation with subroutine of 

Runge-Kutta IV method. 

ROGRAM width (or Center of mass) 

IMPLICIT none 

INTEGER n 

PARAMETER (n=2) 

REAL t, dt, tend, y(n), dydt(n), yout(n) 

EXTERNAL derivs 

tend=100.      ! final time 

dt=tend/1000. ! time step 

c---- initial conditions 

t=0. 

y(1)=1.  !  y(0) is initial position  

y(2)=0.1 !    z 0   y 0  is initial velocity 

c---- propagate the solution from 0 to tend 
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do while(t<tend) 

  call rk4(a,dadt,n,t,dt,aout,derivs) 

  t=t+dt 

  y(1)=yout(1) 

  write(7,'(1x,3f12.6)') t, yout(1) 

enddo  

close(7) 

END 

 

SUBROUTINE derivs(t,y,dydt) 

real pi,t,y(2),dydt(2) 

 Amp= 1.0. 

 alp=0.1 

pi=4.*atan(1.) 

dydt(1)=y(2) 

dydt(2)= -a*y(2)+b 

return 

END 
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SUBROUTINE rk4(y,dydx,n,x,h,yout,derivs) 

INTEGER n,NMAX 

REAL h,x,dydx(n),y(n),yout(n) 

EXTERNAL derivs 

PARAMETER (NMAX=50)  

INTEGER i 

REAL h6,hh,xh,dym(NMAX),dyt(NMAX),yt(NMAX) 

hh=h*0.5 

h6=h/6. 

xh=x+hh 

do i=1,n 

  yt(i)=y(i)+hh*dydx(i) 

enddo 

call derivs(xh,yt,dyt) 

do i=1,n 

  yt(i)=y(i)+hh*dyt(i) 

enddo 
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call derivs(xh,yt,dym) 

do i=1,n 

  yt(i)=y(i)+h*dym(i) 

  dym(i)=dyt(i)+dym(i) 

enddo 

call derivs(x+h,yt,dyt) 

do i=1,n  

  yout(i)=y(i)+h6*(dydx(i)+dyt(i)+2.*dym(i)) 

enddo 

return 

END 
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Appendix B: 

Gross-Pitaevskii equation with local interaction  

 

We used this code program to solve Gross-Pitaevskii equation, interaction, 

which is investigated in chapter 4.  

The model equation is  

   
       

2
2

2

, ,
, , ( ) , , 0,

2
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t x

 
    

 
    

 
      (C.1) 

For solving this equation, we used the split step method. The split step method is 

one of important method used to solve partial differential equation PDE numerically  

The PDE such as GPE is written as 

Which rewrite it as  

 
   

, ˆ ˆ ,
x t

i L N x t
t





 


                                                   (C.2) 

The part of L̂  represents linear part and N̂ represents nonlinear part in 

equation(C.1)  

The equation (C.1) can be split into linear part,  

   
 

2

2

, , ˆ ,
2

i x t dt x td
L x t

t x

 


  
  

 
                                  (C.2) 

and non-linear part  

 
      
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
        (C.3) 
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By using FFT (fast Fourier Transform) to get the solution 

    

  
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                  = ,
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 

  
 

 
 

 

The code program is given  

 

PROGRAM GPE_1D 

IMPLICIT none 

INTEGER n,i,istep,nsteps,nout 

PARAMETER (n=1024) 

REAL*8 L,x(n),dx,t,dt,tend,d,g,pi,x0,w0,tcl,delx 

REAL*8 a,amp,xcom,wdth,norm,alp,v0,v(n),sink(n) 

COMPLEX*16 u(n),smul(n) 

COMMON L,dt,pi,d 

open(7,file='data\Lc1.dat') 

open(8,file='data\Lf1.dat') 

pi=4.d0*datan(1.d0) 

d=1.d0 

g=0.d0 

L=40.d0 
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x0= 10.d0 

 !1.2132d0 ! 3.d0 ! 1.2132d0; ! 10.d0  ! initial position of the soliton 

tcl=2.d0*dsqrt(2.d0*x0) ! classical period for our scaling 

dx=L/n 

dt=0.001d0 

tend = 4.d0*tcl 

    ! 106.d0 ! 4.d0*tcl 

nsteps=int(tend/dt)+1; nout=nsteps/400 

alp=1.d0 ! 1.d0            ! linear potential 

v0 = 1.d0 ! strength of the delta potential 

amp=2.d0 

 a=0.8d0  

c     amp=1.d0/dsqrt(dsqrt(2.d0*pi)) ! initial wave packet for linear problem  

c  a=0.4679d0; amp=dsqrt(norm/(2.d0*a)) 

c----********* initial wave profile ***************** 

do i=1,n 

x(i)=(i-1)*dx-L/2.d0 

u(i)=dcmplx(amp/dcosh((x(i)-x0)/a),0.d0) 
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u(i)=dcmplx(amp*dexp(-(x(i)-x0)**2/a**2),0.d0) 

write(8,'(1x,f12.6,f12.2,f12.6)') x(i),0.0,cdabs(u(i))**2 

enddo 

 call center(n,x,dx,u,xcom,wdth,norm) 

 x0=xcom 

w0=wdth 

write(7,'(1x,4f12.4)') 0.d0,xcom,wdth,norm 

c---- generate boundary absorption function 

call absorb(n,x,L,dt,sink) 

c---- evaluate spectral multiplicative 

call spectr(n,smul) 

c---- main cycle on time 

do istep=1,nsteps 

t=istep*dt   

!  g=1.d0+0.3d0*dsin(0.65d0*t)           ! nonlinearity management 

!        alp=0.1d0*(1.d0+0.3d0*dsin(0.65d0*t)) ! gravity strength management 

!        delx=0.2d0*dsin(2.d0*0.65d0*t)              ! mirror's position varied 

call pot(n,x,delx,v0,alp,v) 
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call nlstep(n,u,v,g,dt) 

call linstep(n,u,smul) 

c---- boundary absorption 

u=u*sink 

if(istep/nout*nout.eq.istep) then 

call center(n,x,dx,u,xcom,wdth,norm) 

write(7,'(1x,4f12.4)') t,xcom,wdth,norm 

c---- print the result 

do i=1,n 

write(8,'(1x,f12.6,f12.2,f12.6)') x(i),t,cdabs(u(i))**2 

enddo  

write(*,'(1x,2(a,f16.6))') 't = ',t,'   tend =',tend 

endif 

enddo 

close(7) 

close(8) 

END 
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SUBROUTINE pot(n,x,delx,v0,alp,v) 

c---- supply the potential  

IMPLICIT none 

INTEGER i,n 

REAL*8 x(n),xd,delx,alp,v0,v(n) 

do i=1,n 

c---- static ideal mirror 

  if(x(i).gt.0.d0) then 

    v(i)=alp*x(i) 

  else 

         v(i)=1000.d0 

        endif 

c---- static delta barrier 

!        v(i)=alp*x(i)+v0*100.d0/(3.1415d0*(10000.d0*x(i)**2+1.d0)) 

c---- oscillating delta barrier 

!        xd=x(i)+delx 

!        v(i)=alp*xd+v0*100.d0/(3.1415d0*(10000.d0*xd**2+1.d0)) 

      enddo 
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      END 

 

      SUBROUTINE spectr(n,smul) 

c---- prepare spectral multiplicative 'smul' for fft 

      IMPLICIT none 

      INTEGER i,n 

      REAL*8 om2dt,L,dt,pi,d 

      COMPLEX*16 smul(n)  

      COMMON L,dt,pi,d 

      do i=1,n/2 

        om2dt=(d/2.d0)*(2.d0*pi*dble(i-1)/L)**2*dt 

        smul(i)=dcmplx(dcos(om2dt),-dsin(om2dt)) 

      enddo 

      do i=n/2+1,n 

        om2dt=(d/2.d0)*(2.d0*pi*dble(i-1-n)/L)**2*dt 

        smul(i)=dcmplx(dcos(om2dt),-dsin(om2dt)) 

      enddo 

      END 
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      SUBROUTINE linstep(n,u,smul) 

c---- linear step of integration 

      IMPLICIT none 

      INTEGER i,j,n,n2,isign 

      REAL*8 w(2*n) 

      COMPLEX*16 u(n),smul(n),tmp 

      n2=2*n 

c---- forward transform 

      j=1 

      do i=1,n2-1,2 

        w(i)=dreal(u(j)); w(i+1)=dimag(u(j)) 

        j=j+1 

      enddo 

      isign=1 

      call four1d(w,n,isign) 

c---- multiply by factor 'smul' 

      j=1 

      do i=1,n2-1,2 
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        tmp=smul(j)*dcmplx(w(i),w(i+1)) 

        w(i)=dreal(tmp); w(i+1)=dimag(tmp) 

        j=j+1 

      enddo 

c---- backward transform and devide to n 

      isign=-1 

      call four1d(w,n,isign) 

      j=1 

      do i=1,n2-1,2 

        u(j)=dcmplx(w(i),w(i+1))/dble(n) 

        j=j+1 

      enddo 

      END 

 

      SUBROUTINE nlstep(n,u,v,g,dt) 

c---- nonlinear step of integration 

      IMPLICIT none 

      INTEGER i,n 
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      REAL*8 dt,arg,v(n),g 

      COMPLEX*16 u(n) 

      do i=1,n 

        arg=(g*cdabs(u(i))**2 - v(i))*dt 

        u(i)=u(i)*dcmplx(dcos(arg),dsin(arg)) 

      enddo 

      END 

 

      SUBROUTINE absorb(n,x,L,dt,sink) 

c---- a function modelling the absorbing boundaries 

      IMPLICIT none 

      INTEGER i,n 

      REAL*8 x(n),L,dt,xleft,xright,alpha,g0,sh1,sh2,sink(n) 

      PARAMETER(alpha=0.5d0, g0=20.d0) 

      xleft=-L/2.d0; xright=L/2.d0  

      do i=1,n 

        sh1=1.d0/dcosh(alpha*(x(i)-xleft)) 

        sh2=1.d0/dcosh(alpha*(x(i)-xright)) 
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        sink(i)=dexp(-g0*(sh1*sh1+sh2*sh2)*dt) 

      enddo 

      END 

 

SUBROUTINE center(n,x,dx,u,xcom,wdth,norm) 

c---- evaluation of energy, amplitude, width,position 

      IMPLICIT none 

      INTEGER i,n 

      REAL*8 x(n),dx,sx,sw,sn,xcom,wdth,norm 

      REAL*8 L,dt,pi,d,absu2(n) 

      COMPLEX*16 u(n) 

      COMMON L,dt,pi,d 

      sx=0.0; sn=0.0; sw=0.0; 

c---- find center-of-mass position 

      do i=1,n 

        absu2(i)=cdabs(u(i))**2 

        sn=sn+absu2(i) 

        sx=sx+x(i)*absu2(i) 
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      enddo 

 xcom=sx/sn        ! center-of-mass position 

 norm=sn*dx         ! norm 

c---- find the width 

do i=1,n 

sw=sw+(x(i)-xcom)**2*absu2(i) 

enddo 

wdth=dsqrt(sw/sn) ! width  

END 
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Appendix C: 

Fortran codes for Gross-Pitaevskii equation non-local 

interaction 

 

We used this code program to solve Gross-petavskii equation, with non-local 

interaction, which is investigated in chapter 3. I would like to mention that, subroutine 

code is taken from ―Numerical recipes‖ [Press et al., 1996]. The code program material 

may used by beginner researcher and postgraduate students who are treating similar 

mathematical models. 

The model equation is  

2
2 2

2

1
| | ( ) (| |)| ( , ) | 0,

2
i q g t R x t d

t x

 
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



 
    

    

We can rewrite in this form  

21
| | ( ) ( ) 0

2
t xxiu u q u u g t uw x     

Where nonlocal term w(x) is evaluated via convolution theorem 

PROGRAM  GPE 

IMPLICIT none 

INTEGER  n, i, istep, nsteps, nout 

PARAMETER (n=1024) 

REAL*8 L, x(n), dx, t, dt, dtt, tend, pi, v0, v(n), sink(n), q, g 
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REAL*8 a, amp, norm, mu, krnl(2*n), absu2(n), w(n), n0, dmy 

COMPLEX*16 u(n), smul(n) 

COMMON L, dt, dx, pi 

COMMON /nonl/ q, g 

pi=4.d0*datan(1.d0) 

L=12.d0*pi; dx=L/n 

dt=0.001d0; tend=100.d0 

nsteps=int(tend/dt);  nout=nsteps/500 

q  = -1.d0       ! local term 

g  = 100.d0! nonlocal term = 2*d^2 

v0 = 0.d0        ! strength of optical lattice 

n0 = 1.d0        ! norm variable 

a=1.55375d0; amp=dsqrt(n0/(a*dsqrt(pi)))  ! Gaussian's norm = n0 

c---- initial wave profile 

do i=1,n 

  x(i)=(i-1)*dx-L/2.d0 

  read(6,*) dmy,u(i) 

!  u(i)=dcmplx(amp*dexp(-x(i)**2/(2.d0*a**2)), 0.0) 
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  v(i)=v0*dsin(dsqrt(pi)*x(i))**2 

  write(8,'(1x,3f14.6)') x(i),0.0,cdabs(u(i))**2 

enddo 

close(6) 

c---- generate boundary absorption function 

call absorb(n,sink) 

c---- evaluate spectral multiplicative 

call spectr(n,smul) 

c---- prepare FT of the kernel function 

call kernel(n,x,krnl) 

c---- main cycle on time 

t=0.d0 

dtt=0.5d0*dt 

do istep=1,nsteps 

t=istep*dt         

g=100.d0*(1.d0 + 0.01d0*dsin(0.965d0*t)) 

absu2=cdabs(u)**2 

call nlstep(n,u,absu2,v,krnl,dx,dt) 
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call linstep(n,u,smul)  

c---- boundary absorption 

u=sink*u 

if(istep/nout*nout.eq.istep) then 

norm=sum(cdabs(u)**2)*dx 

c---- renormalize the wave function to = n0 

call energy(n,x,u,v,w,a,amp,mu) 

write(9,'(1x,5f12.6)') t,a,amp,norm,mu 

write(*,'(1x,5(a,f10.4))') ' time =',t,'    norm =', norm, ' mu =', mu,'     

                                           Amp=',amp,'    width=',a 

do i=1,n 

write(8,'(1x,3f14.6)') x(i),t,cdabs(u(i))**2 

enddo  

endif  

enddo 

close(8) 

close(9) 

END 
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SUBROUTINE spectr(n,smul) 

c---- prepare spectral multiplicative 'smul' for fft 

IMPLICIT none 

INTEGER i,n 

REAL*8 om2dt,L,dt,dx,pi 

COMPLEX*16 smul(n)  

COMMON L,dt,dx,pi 

do i=1,n/2 

  om2dt=0.5d0*(2.d0*pi*dble(i-1)/L)**2*dt 

  smul(i)=dcmplx(dcos(om2dt),-dsin(om2dt)) 

enddo 

do i=n/2+1,n 

  om2dt=0.5d0*(2.d0*pi*dble(i-1-n)/L)**2*dt 

  smul(i)=dcmplx(dcos(om2dt),-dsin(om2dt)) 

enddo 

END 
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SUBROUTINE linstep(n,u,smul) 

c---- linear step of integration 

IMPLICIT none 

INTEGER i,j,n,n2,isign 

REAL*8 w(2*n) 

COMPLEX*16 u(n),smul(n),tmp 

n2=2*n 

c---- forward transform 

j=1 

do i=1,n2-1,2 

  w(i)=dreal(u(j)); w(i+1)=dimag(u(j)) 

  j=j+1 

enddo 

isign=1 

call four1d(w,n,isign) 

c---- multiply by factor 'smul' 

j=1 
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do i=1,n2-1,2 

  tmp=smul(j)*dcmplx(w(i),w(i+1)) 

  w(i)=dreal(tmp); w(i+1)=dimag(tmp) 

  j=j+1 

enddo 

c---- backward transform and devide to n 

isign=-1 

call four1d(w,n,isign) 

j=1 

do i=1,n2-1,2 

  u(j)=dcmplx(w(i),w(i+1))/dble(n) 

  j=j+1 

enddo 

END 
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SUBROUTINE nlstep(n,u,absu2,v,krnl,dx,dt) 

c---- nonlinear step of integration 

IMPLICIT none 

INTEGER n,i,isign 

REAL*8 dx,dt,arg,v(n),q,g,krnl(2*n),u2(2*n),conv(2*n),absu2(n) 

COMPLEX*16 u(n) 

COMMON /nonl/ q,g 

do i=1,n 

  u2(2*i-1)=absu2(i) 

  u2(2*i)=0.d0 

enddo 

c---- forward transform and multiply by krnl 

isign=1 

call four1d(u2,n,isign) 

do i=1,n 

  conv(2*i-1)=u2(2*i-1)*krnl(2*i-1) 

  conv(2*i)=0.d0 
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enddo  

c---- backward transform 

isign=-1 

call four1d(conv,n,isign) 

conv=conv/dble(n) 

 

do i=1,n 

  arg=(q*absu2(i) + g*conv(2*i-1)*dx + v(i))*dt 

  u(i)=u(i)*dcmplx(dcos(arg),dsin(arg)) 

enddo 

END 
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SUBROUTINE kernel(n,x,krnl) 

IMPLICIT none 

INTEGER i,n,isign 

REAL*8 pi,x(n),w,w2,tmp,krnl(2*n) 

pi=4.d0*datan(1.d0) 

w=5.d0  

 w2=2.d0*w*w 

tmp=1.d0/(dsqrt(2.d0*pi)*w) 

c---- response function (arranged as prescribed in Num. Recipes) 

do i=1,n/2 

  krnl(2*i-1)=tmp*dexp(-x(i+n/2)**2/w2) 

  krnl(2*i)  =0.d0 

enddo 

do i=n/2+1,n 

  krnl(2*i-1)=tmp*dexp(-x(i-n/2)**2/w2) 

  krnl(2*i)  =0.d0 

enddo 
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isign=1 

call four1d(krnl,n,isign) 

return 

END 

 

SUBROUTINE energy(n,x,u,v,w,a,amp,mu) 

IMPLICIT none 

INTEGER i,n 

REAL*8 L,dt,dx,sa,sn,sk,sq,sp,si,absu2(n) 

REAL*8 x(n),v(n),a,amp,mu,q,g,pi,w(n) 

COMPLEX*16 u(n) 

COMMON L,dt,dx,pi 

COMMON /nonl/ q,g 

sa=0.d0; sk=0.d0; sq=0.d0; sp=0.d0; si=0.d0; amp=0.d0 

c---- evaluate the norm, kinetic, potential and interaction energies 

absu2=cdabs(u)**2 

sn=sum(absu2) 

do i=2,n-1 
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  sk=sk+cdabs((u(i+1)-u(i-1))/(2.d0*dx))**2 

c---- local cubic nonlinearity 

  sq=sq+absu2(i)**2 

  sp=sp+v(i)*absu2(i) 

  si=si+absu2(i)*w(i) 

  if (cdabs(u(i)).gt.amp) amp=cdabs(u(i)) 

enddo 

a=sn*dx/(amp**2*sqrt(pi)) 

mu=(0.5d0*sk - sp - q*sq - g*si)/sn 

END 

 

SUBROUTINE absorb(n,sink) 

c---- a function modelling the absorbing boundaries 

IMPLICIT none 

INTEGER i,n 

REAL*8 x,dx,xleft,xright,alpha,g0,sh1,sh2,sink(n) 

REAL*8 L,dt,pi,d 

PARAMETER(alpha=1.d0, g0=20.d0) 
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COMMON L,dt,pi,d 

dx=L/n; xleft=-L/2.d0; xright=L/2.d0  

do i=1,n 

  x=(i-1)*dx-L/2.d0 

  sh1=1.d0/dcosh(alpha*(x-xleft)) 

  sh2=1.d0/dcosh(alpha*(x-xright)) 

  sink(i)=dexp(-g0*(sh1*sh1+sh2*sh2)*dt) 

enddo 

END 

 

 SUBROUTINE four1d(data,nn,isign) 

IMPLICIT none 

INTEGER isign,nn 

REAL*8 data(2*nn) 

INTEGER i,istep,j,m,mmax,n 

REAL*8 tempi,tempr 

REAL*8 theta,wi,wpi,wpr,wr,wtemp 

n=2*nn 
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j=1 

do 11 i=1,n,2 

if(j.gt.i)then 

tempr=data(j) 

tempi=data(j+1) 

data(j)=data(i) 

data(j+1)=data(i+1) 

data(i)=tempr 

data(i+1)=tempi 

endif 

m=n/2 

1    if ((m.ge.2).and.(j.gt.m)) then 

    j=j-m 

    m=m/2 

  goto 1 

  endif 

  j=j+m 

11    continue 
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mmax=2 

2     if (n.gt.mmax) then 

  istep=2*mmax 

  theta=6.28318530717959d0/dble(isign*mmax) 

  wpr=-2.d0*dsin(0.5d0*theta)**2 

  wpi=dsin(theta) 

  wr=1.d0 

  wi=0.d0 

  do 13 m=1,mmax,2 

    do 12 i=m,n,istep 

j=i+mmax 

tempr=wr*data(j)-wi*data(j+1) 

tempi=wr*data(j+1)+wi*data(j) 

data(j)=data(i)-tempr 

data(j+1)=data(i+1)-tempi 

data(i)=data(i)+tempr 

data(i+1)=data(i+1)+tempi 

12  continue 
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    wtemp=wr 

    wr=wr*wpr-wi*wpi+wr 

    wi=wi*wpr+wtemp*wpi+wi 

13continue 

  mmax=istep 

goto 2 

endif 

return 

END. 


