NEW POLYMER ELECTROLYTES OF BIO-BASED POLYURETHANE FOR DYE-SENSITIZED SOLAR CELL APPLICATIONS

SALMIAH BINTI IBRAHIM

INSTITUTE OF GRADUATE STUDIES
UNIVERSITY OF MALAYSIA
KUALA LUMPUR

2016
NEW POLYMER ELECTROLYTES OF BIO-BASED POLYURETHANE FOR DYE-SENSITIZED SOLAR CELL APPLICATIONS

SALMIAH BINTI IBRAHIM

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF GRADUATE STUDIES
UNIVERSITY OF MALAYA
KUALA LUMPUR

2016
UNIVERSITY OF MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Salmiah Binti Ibrahim
I.C/Passport No:
Registration/Matric No: HHC 110005
Name of Degree: Doctor of Philosophy

NEW POLYMER ELECTROLYTES OF BIO-BASED POLYURETHANE FOR
DYE-SENSITIZED SOLAR CELL APPLICATIONS

Field of Study: Applied Science

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature: ____________________________ Date: __________

Subscribed and solemnly declared before,

Witness’s Signature: ____________________________ Date: __________

Name: ____________________________
Designation: ____________________________
ABSTRACT

In this research work, a new bio-based polyurethane (PU) based on castor oil was synthesized as host polymer in electrolytes for application in dye-sensitized solar cell (DSSC). In the first stage of this work, castor oil based polyol was synthesized via transesterification reaction under nitrogen gas atmosphere at room temperature. The polyol possessed acid value of 3.0 mg KOH g\(^{-1}\), hydroxyl value of 190 mg KOH g\(^{-1}\) and molecular weight of 2786 g mol\(^{-1}\), characteristics suitable for producing flexible PU. The polyol was reacted with 4,4’-diphenylmethane diisocyanate at room temperature in appropriate ratios to form flexible PU. The formation of urethane linkage was confirmed using Fourier transform infrared analysis by the disappearance of NCO peak and appearance of amine (secondary), carbonyl and ether group in PU chain. For the preparation of PU polymer electrolytes, the PU was added with sodium iodide (NaI) and lithium iodide (LiI) salts in different weight percentages to form PU-LiI and PU-NaI systems respectively. 3-propyl-1-methylimidazolium iodide (PMII) ionic liquid was added to the highest conducting sample of PU-NaI and PU-LiI systems to enhance the conductivity as well as the efficiency of DSSC. The characteristics of polymer electrolytes were analyzed using Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, transference number measurement and linear sweep voltammetry. Glass transition temperature of –15.8 °C of PU decreased upon addition of salts. The lowest glass transition temperature of PU-NaI system was –26.2 °C and PU-LiI system was –27.3 °C. The highest conductivity achieved for the systems were 4.28 × 10\(^{-7}\) S cm\(^{-1}\) and 1.41 × 10\(^{-6}\) S cm\(^{-1}\), respectively. The inclusion of PMII ionic liquid to the PU-NaI and PU-LiI enhanced the ionic conductivity of the polymer electrolytes by one order of magnitude and also lowered the \(T_g\) value to \(~ –33.0 \) °C. Ionic liquid is believed to act as plasticizer to soften the polymer backbone.
therefore increase the polymer segmental motion to ease ions migration which in turn increased the ionic conductivity. The conductivity for all PU electrolyte films increased with increase of temperature and follow the Arrhenius behaviour for PU-NaI, PU-LiI and PU-NaI-PMII systems, and Vogel-Tamman-Fulcher behaviour for PU-LiI-PMII. The calculation of activation energy, E_a from the gradient of Arrhenius and Vogel-Tamman-Fulcher plots showed that the trend of conductivity was consistent with the trend of E_a, i.e: the higher conducting sample possessed lower activation energy. The addition of ionic liquid to the PU-salt also enhanced electrochemical stability window of the polymer electrolytes. The electrochemical stability windows were ~ 2.0 V. DSSCs were fabricated employing PU based polymer electrolytes with configuration of FTO/TiO$_2$-dye/PU electrolytes-I$_2$/Pt/FTO. Photovoltaic parameters such as current density, open circuit voltage, fill factor and efficiency were calculated from photocurrent–voltage measurement. The highest efficiency employing PU-NaI and PU-LiI systems were 0.80% and 0.83%, respectively, whereas for PU-NaI-PMII was 1.06% and PU-LiI-PMII was 1.92%. These results revealed that the new bio polymer electrolytes have potential for application in DSSC.
ABSTRAK

Dalam penyelidikan ini, bio poliuretana (PU) baru berasaskan minyak jarak telah disintesis sebagai polimer perumah dalam elektrolit untuk diaplikasi dalam sel suria terpeka pewarna (DSSC). Pada peringkat awal kajian ini, poliol berasaskan minyak jarak telah disintesis melalui tindak balas transesterifikasi di bawah persekitaran gas nitrogen pada suhu bilik. Poliol yang dihasilkan mempunyai jumlah asid 3.0 mg KOH g⁻¹, jumlah hidroksil 190 mg KOH g⁻¹ dan berat molekul 2786 g mol⁻¹ iaitu ciri-ciri yang sesuai untuk menghasilkan poliuretana yang mudah dibentuk. Poliol telah ditindak balaskan dengan 4,4’-difenilmetilena diisosianat pada suhu bilik dalam nisbah yang sesuai untuk membentuk poliuretana mudah bentuk. Pembentukan jaringan uretana dibuktikan melalui analisis spektroskopi inframerah transformasi Fourier iaitu dengan kehilangan puncak NCO dan kemunculan amina (sekunder), karbonil dan kumpulan eter dalam rantaian PU. Untuk penyediaan elektrolit polimer, PU ditambah dengan garam natrium iodida (NaI) dan litium iodida (LiI) dalam peratusan jisim yang berbeza-beza untuk membentuk sistem sistem PU-NaI dan PU-LiI. 3-propil-1-metilimidazolium iodida (PMII) cecair ionik telah ditambah kepada sampel yang mempunyai kekondusksian paling tinggi dari sistem PU-NaI dan sistem PU-LiI untuk meningkatkan kekondusksian serta kecekapan DSSC. Ciri-ciri elektrolit polimer dianalisis menggunakan spektroskopi inframerah transformasi Fourier, analisis dinamik mekanikal, rintangan elektrokimia spektroskopi, pengukuran nombor pindahan dan voltammetri sapuan linear. Suhu peralihan kaca PU iaitu –15.8 °C menurun apabila garam ditambah kepadanya. Suhu peralihan kaca yang paling rendah pada sistem PU-NaI adalah –26.2 °C dan pada sistem PU-LiI pula adalah –27.3 °C. Kekondusksian tertinggi yang diperolehi dari sistem-sistem ini ialah 4.28 × 10⁻⁷ S cm⁻¹ dan 1.41 × 10⁻⁶ S cm⁻¹. Kemasukan cecair ionik PMII kepada PU-NaI dan PU-LiI telah meningkatkan kekondusksian ionik elektrolit polimer sebanyak
satu magnitud dan juga menurunkan nilai T_g kepada $\sim -33.0 \, ^\circ C$. Cecair ionik dipercayai bertindak sebagai pemplastik untuk melembutkan polimer seterusnya meningkatkan pergerakan segmen polimer untuk memudahkan pergerakan ion-ion, dengan itu meningkatkan kekonduksian ionik. Kekonduksian untuk semua filem elektrolit PU meningkat dengan peningkatan suhu dan mematuhi hukum Arrhenius bagi sistem-sistem PU-NaI, PU-LiI dan PU-NaI-PMII, dan hukum Vogel-Tamman-Fulcher bagi system PU-LiI-PMII. Pengiraan tenaga pengaktifan, E_a dari kecerunan plot Arrhenius dan Vogel-Tamman-Fulcher menunjukkan bahawa nilai kekonduksian konsisten dengan nilai E_a, di mana sampel yang berkekonduksian tinggi mempunyai tenaga pengaktifan yang rendah. Penambahan cecair ionik kepada PU-garam juga meningkatkan tetingkap kestabilan elektrokimia elektrolit polimer. Nilai tetingkap kestabilan elektrokimia adalah $\sim 2.0 \, V$. DSSC telah difabrikasi menggunakan elektrolit polimer berasaskan PU dengan konfigurasi FTO/TiO$_2$-pewarna/PU elektrolit-I$_2$/Pt/FTO. Parameter-parameter fotovoltan seperti ketumpatan arus, voltan litar buka, faktor isi dan kecekapan telah dikira dari pengukuran fotoarus-voltan. Kecekapan tertinggi yang diperolehi menggunakan sistem-sistem PU-NaI dan PU-LiI adalah masing-masing 0.80% dan 0.83%, manakala bagi PU-NaI-PMII adalah 1.06% dan PU-LiI-PMII adalah 1.92%. Semua keputusan ini menunjukkan bahawa elektrolit bio polimer baru berasaskan poliuretana dari minyak jarak berpotensi untuk diaplikasi dalam DSSC.
ACKNOWLEDGEMENTS

Thank you Allah for giving me the strength and determination to complete my doctoral thesis.

I wish to express my deepest gratitude and profound appreciation to my supervisor Professor Dr. Nor Sabirin Mohamed from Centre for Foundation Studies in Science, University of Malaya for her assistance, guidance, concern, patience and encouragements that greatly enhanced the outcome of this thesis. I am also very thankful to my co-supervisor, Professor Dr. Azizan Ahmad from Universiti Kebangsaan Malaysia for his assistance, support, motivate and understanding.

I also want to thank the Ministry of Higher Education, Malaysia for MyPhD scholarship under MyBrain15 scheme and the University of Malaya for Postgraduate Research Fund Grant (PG073/2012B).

I also like to thank science officer at PASUM and her assistant, my colleagues and members of Electrochemical and Materials Research Group especially Akma, Siti, Amalina, Fatin, Lin, Saiful, Fizha, Watie, Zul, Yana and Wan for their helps and ideas. A very big appreciation to my close friends Azlina for helping me in the polymer synthesis part and Hamdah who always understands my problems. A note of thanks also goes to my friends from Polymer Electrolytes research group in UKM; Nad, Jue, Fatihah and Edison. Thanks to Sukor from Solar Energy Research Centre, UKM who helped me in DSSC fabrication stage.

Last but not least, special thanks to my beloved mother for her support and prayers. My sincere appreciation also extends to my sisters and brother for support and encouragement. Also, thank you to all people that I met during this journey. Thank you very much.
TABLE OF CONTENTS

DECLARATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS viii
LIST OF FIGURES xiii
LIST OF TABLES xvii
LIST OF SCHEME xviii
LIST OF SYMBOLS xix
LIST OF ABBREVIATIONS xxı

CHAPTER 1: INTRODUCTION

1.1 Introduction
1.2 Problem Statements
1.3 Research Objectives
1.4 Scope of Study
1.5 Thesis Organization

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction to Dye-Sensitized Solar Cell
2.2 Materials in DSSC
 2.2.1 Working electrode
 2.2.2 Sensitizer
 2.2.3 Electrolytes

Error! Bookmark not defined.
2.2.4 Counter electrode

2.3 Operation Principles

2.4 Characterization Technique of DSSC

2.5 Polyurethane

2.5.1 Bio based Polyurethane

2.5.2 Castor oil

2.6 Polymer Electrolytes

2.6.1 Ionic Liquid

2.6.2 Polyurethane Polymer Electrolytes

2.6.3 Polymer Electrolytes based DSSC

CHAPTER 3: EXPERIMENTAL

3.1 Materials

3.2 Preparation of Samples

3.2.1 Synthesis and characterization of castor oil-polyol (CO-p) based polyurethane

 i) Synthesis of castor oil-polyol (CO-p)

 Error! Bookmark not defined.

 ii) Synthesis of the castor oil-polyol (CO-p) based polyurethane

 Error! Bookmark not defined.

3.2.2 Development of CO-p based polyurethane polymer electrolytes

 i) Preparation of polymer-salts electrolytes

 Error! Bookmark not defined.

 ii) Preparation of polymer-salt-ionic liquid electrolytes

 Error! Bookmark not defined.
3.2.3 Fabrication of DSSC

3.3 Analytical Measurements

3.3.1 Fourier Transform Infrared Spectroscopy (FTIR)

3.3.2 Gel Permeation Chromatography (GPC)

3.3.3 Dynamic Mechanical Analysis (DMA)

3.3.4 Thermogravimetric Analysis (TGA)

3.3.5 Scanning Electron Microscopy (SEM)

3.3.6 Linear Sweep Voltammetry (LSV)

3.3.7 Transference Number Measurement

3.3.8 Electrochemical Impedance Spectroscopy (EIS)

3.3.9 Current-Voltage Measurement

CHAPTER 4: CASTOR OIL BASED POLYURETHANE FOR POTENTIAL APPLICATION AS HOST IN POLYMER ELECTROLYTES

4.1 Introduction

4.2 Results of the castor oil-polyol (CO-p)

4.3 Results of castor oil-polyol (CO-p) based polyurethane

4.3.1 FTIR Analysis

4.3.2 GPC Result

4.3.3 Dynamic Mechanical Analysis

4.3.4 Thermogravimetric Analysis

4.3.5 Morphological Analysis
CHAPTER 5: PU-SALT POLYMER ELECTROLYTES

5.1 Introduction

5.2.1 FTIR Analysis

5.3 Dynamic Mechanical Analysis

5.4 Ionic Conductivity Study
 5.4.1 Room Temperature Conductivity
 5.4.2 Temperature Dependent Conductivity

5.5 Transference Number Measurement
 5.5.1 Ionic Transference number
 5.5.2 Cationic Transference Number

5.6 Linear Sweep Voltammetry

5.7 Summary

CHAPTER 6: PU-SALT-PMII POLYMER ELECTROLYTES
CHAPTER 7: DYE-SENSITIZED SOLAR CELLS PERFORMANCE

7.1 Introduction

7.2 DSSC Performance

7.2.1 PU-NaI polymer electrolytes based DSSCs

7.2.2 PU-LiI polymer electrolytes based DSSCs

7.2.3 PU-salt-ionic liquid based DSSCs

7.3 Electrochemical Impedance Spectroscopic Analysis of DSSC

7.4 Summary

CHAPTER 8: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

8.1 Conclusions

8.2 Suggestions for further work

REFERENCES

LIST OF PUBLICATIONS
LIST OF FIGURES

Figure 2.1: Schematic diagram of dye-sensitized solar cell............Error! Bookmark not defined.

Figure 2.2: Schematic representation of the principle of the dye–sensitized solar cell. D stands for dye, D^* is electronically excited dye and D^+ is oxidized dye. (Adapted from Hagfeldt and Graetzel, 1995)Error! Bookmark not defined.

Figure 2.3: Example of $J–V$ curve of DSSCError! Bookmark not defined.

Figure 2.4: Chemical structure of TDI and MDIError! Bookmark not defined.

Figure 2.5: Linear polyurethaneError! Bookmark not defined.

Figure 2.6: Structure of castor oilError! Bookmark not defined.
Figure 2.7: Chemical structure of 3-propyl-1-methylimidazolium iodide.............. Error! Bookmark not defined.

Figure 2.8: Chemical structures of ionic liquid based on imidazolium iodide used in DSSCs ... Error! Bookmark not defined.

Figure 3.1: Assembling procedure of FTO/TiO$_2$-dye/ Polymer electrolytes-I$_2$/Pt/FTO dye-sensitized solar cell... Error! Bookmark not defined.

Figure 3.2: Photograph of FTO/TiO$_2$-dye/ Polymer electrolytes-I$_2$/Pt/FTO dye-sensitized solar cell fabrication Error! Bookmark not defined.

Figure 4.1: FTIR spectra of castor oil and polyol...Error! Bookmark not defined.

Figure 4.2: FTIR spectra of castor oil based polyurethaneError! Bookmark not defined.

Figure 4.3: The photograph of castor oil based polyurethane with Formulation 1..Error! Bookmark not defined.

Figure 4.4: Tangent δ and storage modulus as a function of temperature for castor oil based polyurethane................................. Error! Bookmark not defined.

Figure 4.5: Thermogravimetric and derivative thermogravimetric curves of polyurethane ... Error! Bookmark not defined.

Figure 4.6: SEM image of cross-section of castor oil based polyurethane filmError! Bookmark not defined.

Figure 5.1: FTIR spectra of PU electrolytes with different wt % of NaI.Error! Bookmark not defined.

Figure 5.2: FTIR spectra of PU electrolytes with different wt % of LiI................. Error! Bookmark not defined.
Figure 5.3: FTIR spectra of (a) NH, (b) carbonyl and (c) ether stretching region of PU-NaI electrolytes ... Error! Bookmark not defined.

Figure 5.4: FTIR spectra of (a) NH, (b) carbonyl and (c) ether stretching region of PU-LiI electrolytes ... Error! Bookmark not defined.

Figure 5.5: Tangent δ as a function of temperature for PU-NaI polymer electrolyte films ... Error! Bookmark not defined.

Figure 5.6: Tangent δ as a function of temperature for PU-LiI polymer electrolyte films ... Error! Bookmark not defined.

Figure 5.7: Conductivity behaviour of PU based polymer electrolytes with different wt% of LiI and NaI ... Error! Bookmark not defined.

Figure 5.8: Change in relative number of charge carrier with different wt% of NaI at frequency of 50 Hz ... Error! Bookmark not defined.

Figure 5.9: Change in relative number of charge carrier with different wt% of LiI at frequency of 50 Hz ... Error! Bookmark not defined.

Figure 5.10: Temperature dependence of ionic conductivity of (a) PU-NaI and (b) PU-LiI polymer electrolyte films ... 69

Figure 5.11: The plots of normalized polarization current versus time for selected sample of PU-NaI systems .. Error! Bookmark not defined.

Figure 5.12: The plots of normalized polarization current versus time for selected sample of PU-LiI systems .. Error! Bookmark not defined.

Figure 5.13: The current versus time plot of Na/PU-NaI/Na configuration. Inset graph is the impedance spectra of the sample before and after polarization Error! Bookmark not defined.

Figure 5.14: The current versus time plot of Li/PU-LiI/Li configuration. Inset graph is the impedance spectra of the sample before and after polarization Error! Bookmark not defined.
Figure 5.1: Linear sweep voltammogram of the highest conducting sample PU-NaI polymer electrolyte using stainless steel as WE, RE, CE electrodes with a scan rate of 0.5 mV s\(^{-1}\).............................. Error! Bookmark not defined.

Figure 5.16: Linear sweep voltammogram of the highest conducting sample PU-LiI polymer electrolyte using stainless steel as WE, RE, CE electrodes with a scan rate of 0.5 mV s\(^{-1}\).............................. Error! Bookmark not defined.

Figure 6.1: FTIR spectra of (a) N-H stretching region, (b) carbonyl stretching region and (c) ether stretching region for PU-NaI added with PMII..........................79

Figure 6.2: FTIR spectra of N-H stretching region, (b) carbonyl stretching region and (c) ether stretching region for PU-LiI added with PMII ... Error! Bookmark not defined.

Figure 6.3: Tangent \(\delta\) as a function of temperature for PU-NaI-PMII polymer electrolyte films... Error! Bookmark not defined.

Figure 6.4: Tangent \(\delta\) as a function of temperature for PU-LiI-PMII polymer electrolyte films... Error! Bookmark not defined.

Figure 6.5: Arrhenius plots of ionic conductivity of PU-NaI-PMII polymer electrolytes ... Error! Bookmark not defined.

Figure 6.6 (a): Arrhenius plots of ionic conductivity of PU-LiI-20PMII and PU-LiI-30PMII polymer electrolyte films.............. Error! Bookmark not defined.

Figure 6.6 (b): VTF plots of ionic conductivity of PU-LiI-20PMII and PU-LiI-30PMII polymer electrolyte films...87

Figure 6.7: The plot of normalized polarization current versus time for PU-NaI-20PMII electrolyte...89

Figure 6.8: The plot of normalized polarization current versus time for PU-LiI-20PMII electrolyte...90
Figure 6.9: Time dependant response of DC polarization for PU-NaI-PMII electrolyte polarized with a potential 1.0 V. The inset graph shows the impedance spectra of PU-NaI-PMII electrolyte before and after polarization.

Figure 6.10: Time dependant response of DC polarization for PU-LiI-PMII electrolyte polarized with a potential 1.0 V. The inset graph shows the impedance spectra of PU-LiI-PMII electrolyte before and after polarization.

Figure 6.11: Linear sweep voltammogram of (a) PU-NaI-20PMII and (b) PU-LiI-20PMII polymer electrolytes using stainless steel as WE, RE, CE electrodes with a scan rate of 0.5 mV s⁻¹.

Figure 7.1: J–V curves of DSSCs using PU-10NaI, PU-20NaI and PU-30NaI polymer electrolytes under irradiation of 100 mW cm⁻².

Figure 7.2: J–V curves of DSSCs using PU-20LiI and PU-30LiI polymer electrolytes under irradiation of 100 mW cm⁻².

Figure 7.3: J–V curves of DSSC using PU-NaI-20PMII and PU-LiI-20PMII polymer electrolytes under irradiation of 100 mW cm⁻².

Figure 7.4: Electrochemical impedance spectrum of DSSCs with PU-30NaI and PU-30LiI electrolytes measured at 100 mW cm⁻² light intensity.

Figure 7.5: Electrochemical impedance spectrum of DSSCs with (a) PU-NaI-PMII and (b) PU-LiI-PMII electrolytes measured at 100 mW cm⁻² light intensity.

Figure 7.6: Equivalent circuit model for DSSCs employing PU electrolytes.
LIST OF TABLES

Table 2.1: Polyurethane based polymer electrolytes......Error! Bookmark not defined.
Table 2.2: Different types of polymer electrolytes based DSSC with/without IL...Error! Bookmark not defined.
Table 2.3: DSSCs utilizing biopolymer electrolytes, their conductivity and efficiency ...Error! Bookmark not defined.
Table 3.1: The wt% and designation of polyurethane-salt electrolyte systems............31
Table 3.2: The wt% and designation of polyurethane-salt-IL electrolyte systems.......32
Table 4.1: Weight ratio of NCO:OH in different formulationsError! Bookmark not defined.
Table 4.2: Value of molecular weight, average number molecular weight and polydispersity index of castor oil, polyol and polyurethaneError! Bookmark not defined.
Table 4.3: Decomposition temperatures, T_d and percentages weight losses of polyurethane film ...49
Table 5.1: Glass transition temperature, T_g of PU-NaI systems........................Error! Bookmark not defined.
Table 5.2: Glass transition temperature, T_g of PU-LiI systems.....Error! Bookmark not defined.
Table 5.3: Activation energy, E_a of PU-Nal and PU-LiI polymer electrolyte filmsError! Bookmark not defined.
Table 6.1: Ionic conductivity value of PU-Nal-PMIIError! Bookmark not defined.
Table 6.2: Ionic conductivity value of PU-LiI-PMII Error! Bookmark not defined.

Table 6.3: Activation energy, E_a value of PU-NaI-PMII Error! Bookmark not defined.

Table 6.4: Activation energy, E_a value of PU-LiI-PMII. Error! Bookmark not defined.

Table 7.1: $J-V$ parameters of DSSCs fabricated using PU-NaI polymer electrolytes…Error! Bookmark not defined.

Table 7.2: $J-V$ parameters of DSSCs with PU-LiI polymer electrolytes.................Error! Bookmark not defined.

Table 7.3: Characteristics of PU-salt-PMII based DSSCs..........Error! Bookmark not defined.

LIST OF SCHEME

Scheme 4.1: Schematic representation of the preparation of castor oil based polyol .. Error! Bookmark not defined.

Scheme 5.1: Schematic for suggested coordination of salt with: (a) the nitrogen atoms of free -NH groups, (b) the hydrogen bonded carbonyl oxygen and (c) the hydrogen bonded ether oxygen of PU...Error! Bookmark not defined.
LIST OF SYMBOLS

\(A \) \hspace{1cm} \text{Cross sectional area}
\(C \) \hspace{1cm} \text{Capacitor}
\(E_a \) \hspace{1cm} \text{Activation energy}
\(FF \) \hspace{1cm} \text{Fill factor}
\(I_f \) \hspace{1cm} \text{Final current}
\(I_t \text{ or } I_o \) \hspace{1cm} \text{Initial current}
\(I_{ss} \) \hspace{1cm} \text{Steady state current}
\(I_T \) \hspace{1cm} \text{Total current}
\(J_{sc} \) \hspace{1cm} \text{Short-circuit current density}
\(J-V \) \hspace{1cm} \text{Current density-voltage}
\(k_B \) \hspace{1cm} \text{Boltzmann constant}
\(l \) \hspace{1cm} \text{Thickness}
\(M_w \) \hspace{1cm} \text{Molecular weight}
\(P_{in} \) \hspace{1cm} \text{Incident power}
P_{max} Maximum power
R Resistance
R_b Bulk resistance
R_{ct} Charge-transfer resistance
R_0 Bulk resistance before polarization
R_{ss} Bulk resistance after polarization
R_w Warburg diffusion impedance
T Temperature
t_{ele} Electronic transference number
T_g Glass transition temperature
t_{ion} Ionic transference number
t_{Li^+} Lithium transference number
t_{Na^+} Sodium transference number
V_{oc} Open-circuit voltage
wt % Weight percentage
Z Impedance
Z_R Real part of impedance
η Energy conversion efficiency
σ Conductivity
σ_0 Pre-exponential factor of conductivity
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating current</td>
</tr>
<tr>
<td>AlCl₄⁻</td>
<td>Tetrachloroaluminate</td>
</tr>
<tr>
<td>AM</td>
<td>Air Mass</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated Total Reflectance</td>
</tr>
<tr>
<td>BD</td>
<td>1,4-Butanediol</td>
</tr>
<tr>
<td>BMII</td>
<td>1-butyl-3-methylimidazolium iodide</td>
</tr>
<tr>
<td>Br⁻/Br₂</td>
<td>Bromine/bromide</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
</tr>
<tr>
<td>CE</td>
<td>Counter electrode</td>
</tr>
<tr>
<td>CO</td>
<td>Castor oil</td>
</tr>
<tr>
<td>CoNi₂S₄</td>
<td>Cobalt nickel sulfide</td>
</tr>
<tr>
<td>CO-p</td>
<td>Castor oil-polyol</td>
</tr>
<tr>
<td>CoTe</td>
<td>Cobalt telluride</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>CPE</td>
<td>Constant phase element</td>
</tr>
<tr>
<td>CZTS</td>
<td>Copper-zinc tin sulfide</td>
</tr>
<tr>
<td>DBP</td>
<td>Dibutyl phthalate</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DEC</td>
<td>Diethyl carbonate</td>
</tr>
<tr>
<td>DEG</td>
<td>Diethylene glycol</td>
</tr>
<tr>
<td>DEP</td>
<td>Diethyl phthalate</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic Mechanical Analysis</td>
</tr>
<tr>
<td>DMII</td>
<td>1,3-dimethylimidazolium iodide</td>
</tr>
<tr>
<td>DMPII</td>
<td>1,2-dimethyl-3-propylimidazolium iodide</td>
</tr>
<tr>
<td>DMPP</td>
<td>2,2-dimethoxy-2-phenylacetophenone</td>
</tr>
<tr>
<td>DSSC</td>
<td>Dye-sensitized solar cells</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene Carbonate</td>
</tr>
<tr>
<td>EGMEM</td>
<td>Ethylene glycol methyl ether methacrylate</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>EMIBF₄</td>
<td>1-ethyl-3-methylimidazolium tetrafluoroborate</td>
</tr>
<tr>
<td>EMII</td>
<td>1-ethyl-3-methylimidazolium iodide</td>
</tr>
<tr>
<td>EMImTFSI</td>
<td>1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide</td>
</tr>
<tr>
<td>EMISCN</td>
<td>1-ethyl-3-methylimidazolium thiocyanate</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>FTO</td>
<td>Fluorine-doped tin oxide, SnO₂:F</td>
</tr>
<tr>
<td>GMA</td>
<td>Glycidyl methacrylate</td>
</tr>
<tr>
<td>GPC</td>
<td>Gel permeation chromatography</td>
</tr>
<tr>
<td>GPE</td>
<td>Gel polymer electrolyte</td>
</tr>
<tr>
<td>H₁₂MDI</td>
<td>4,4′-methylenebis(cyclohexyl isocyanate)</td>
</tr>
<tr>
<td>HBPU</td>
<td>Hyperbranched polyurethane</td>
</tr>
<tr>
<td>Hex₄NI</td>
<td>Tetrahexylammonium iodide</td>
</tr>
<tr>
<td>HMII</td>
<td>1-hexyl-3-methylimidazolium iodide</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>I/3^-</td>
<td>Iodide-triiodide</td>
</tr>
<tr>
<td>I₂</td>
<td>Iodine</td>
</tr>
<tr>
<td>IL</td>
<td>Ionic liquid</td>
</tr>
<tr>
<td>IPDI</td>
<td>Isophorone disocyanate</td>
</tr>
<tr>
<td>KI</td>
<td>Potassium iodide</td>
</tr>
<tr>
<td>KOH</td>
<td>Potassium hydroxide</td>
</tr>
<tr>
<td>Li₃N</td>
<td>Lithium nitride</td>
</tr>
<tr>
<td>LiAl₂O₃</td>
<td>Lithium aluminum oxide</td>
</tr>
<tr>
<td>LiAsF₆</td>
<td>Lithium hexafluoroarsenate (V)</td>
</tr>
<tr>
<td>LiBF₄</td>
<td>Lithium tetrafluoroborate</td>
</tr>
<tr>
<td>LiBr</td>
<td>Lithium bromide</td>
</tr>
<tr>
<td>LiCF₃SO₃</td>
<td>Lithium trifluoromethane sulfonate</td>
</tr>
<tr>
<td>LiClO₄</td>
<td>Lithium perchlorate</td>
</tr>
<tr>
<td>LiI</td>
<td>Lithium iodide</td>
</tr>
<tr>
<td>LiN(SO₂CF₃)₂</td>
<td>Lithium bis(tri-fluoromethanesulfonyl)imide</td>
</tr>
<tr>
<td>LiTf</td>
<td>Lithium triflate</td>
</tr>
<tr>
<td>LiTFSI</td>
<td>Lithium bis(tri-fluoromethanesulfonyl)imide</td>
</tr>
<tr>
<td>LSV</td>
<td>Linear sweep voltammetry</td>
</tr>
<tr>
<td>MDI</td>
<td>4,4’-diphenylmethane diisocyanate</td>
</tr>
<tr>
<td>MgI₂</td>
<td>Magnesium iodide</td>
</tr>
<tr>
<td>MMT</td>
<td>Montmorillonite</td>
</tr>
<tr>
<td>N₃</td>
<td>cis-Bis(isothiocyanato) bis(2,2’-bipyridyl-4,4’-dicarboxylato ruthenium(II))</td>
</tr>
<tr>
<td>N-719</td>
<td>di-tetradecylammonium cis-bis(isothiocyanato) bis(2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) dye</td>
</tr>
<tr>
<td>NaI</td>
<td>Sodium iodide</td>
</tr>
<tr>
<td>NaTf</td>
<td>Sodium trifluoromethanesulfonate</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>Niobium pentoxide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>NCO</td>
<td>Isocyanate</td>
</tr>
<tr>
<td>NiTe$_2$</td>
<td>Nickel telluride</td>
</tr>
<tr>
<td>NMBI</td>
<td>N-methylbenzimidazole</td>
</tr>
<tr>
<td>NR</td>
<td>Natural rubber</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl</td>
</tr>
<tr>
<td>P(EO-EPI)</td>
<td>Poly(ethylene oxide-co-epichlorohydrin)</td>
</tr>
<tr>
<td>P(MMA-co-EMA)</td>
<td>Poly(methyl methacrylate-co-ethyl methacrylate)</td>
</tr>
<tr>
<td>PA</td>
<td>Phthalic anhydride</td>
</tr>
<tr>
<td>PAN</td>
<td>Polyacrylonitrile</td>
</tr>
<tr>
<td>PC</td>
<td>Propylene carbonate</td>
</tr>
<tr>
<td>PDMS-g PEO</td>
<td>Poly[dimethylsiloxane-g-poly(ethylene oxide)]</td>
</tr>
<tr>
<td>PEDOT</td>
<td>Poly(3,4-ethylenedioxythiophene)</td>
</tr>
<tr>
<td>PEDOT:PSS</td>
<td>Poly(3,4-ethylenedioxythiophene):poly(styrene</td>
</tr>
<tr>
<td></td>
<td>sulfonate)</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly(ethylene glycol)</td>
</tr>
<tr>
<td>PEM</td>
<td>Poly(methoxy polyethylene glycol monomethacrylates)</td>
</tr>
<tr>
<td>PEMA</td>
<td>Poly(ethyl methacrylate)</td>
</tr>
<tr>
<td>PEMPS</td>
<td>Polyether modified polysiloxane</td>
</tr>
<tr>
<td>PEO</td>
<td>Poly(ethylene oxide)</td>
</tr>
<tr>
<td>PEs</td>
<td>Polymer electrolytes</td>
</tr>
<tr>
<td>PET</td>
<td>Poly(ethylene terphthalate)</td>
</tr>
<tr>
<td>PHEA</td>
<td>Poly(hydroxyethylacrylate)</td>
</tr>
<tr>
<td>PMII</td>
<td>3-propyl-1-methylimidazolium iodide</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PPG</td>
<td>Poly(propylene) glycol</td>
</tr>
<tr>
<td>Pr$_4$NI</td>
<td>Tetrapropylammonium iodide</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PTMG</td>
<td>Poly(tetramethylene glycol)</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>PVA or PVAc</td>
<td>Polyvinyl acetate</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly(vinyl chloride)</td>
</tr>
<tr>
<td>PVDF</td>
<td>Poly(vinylidene fluoride)</td>
</tr>
<tr>
<td>PVDF-HFP</td>
<td>Poly(vinylidene fluoride-co-hexafluoropropylene)</td>
</tr>
<tr>
<td>PVP</td>
<td>Poly(vinyl pyrolidone)</td>
</tr>
<tr>
<td>PYRA_{120}TFSI</td>
<td>N-ethyl(methylether)-N-methylpyrrolidinium trifluoromethanesulfonimate</td>
</tr>
<tr>
<td>RE</td>
<td>Reference electrode</td>
</tr>
<tr>
<td>RS</td>
<td>Rice starch</td>
</tr>
<tr>
<td>(SeCN)$_2$</td>
<td>Selenocyanogen</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>Silicon oxide</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>Tin oxide</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid polymer electrolyte</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless steel</td>
</tr>
<tr>
<td>TBAI</td>
<td>Tetrabutylammonium iodide</td>
</tr>
<tr>
<td>TBP</td>
<td>4-tert-butylpyridine</td>
</tr>
<tr>
<td>TCO</td>
<td>Transparent conducting oxide</td>
</tr>
<tr>
<td>TDI</td>
<td>Toluene diisocyanate</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>Titanium oxide</td>
</tr>
<tr>
<td>TPU</td>
<td>Thermoplastic polyurethane</td>
</tr>
<tr>
<td>VTF</td>
<td>Vogel-Tamman-Fulcher</td>
</tr>
<tr>
<td>WE</td>
<td>Working electrode</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
</tbody>
</table>