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ABSTRACT

A greener method based on cloud point extraction was optimized in three systems

namely as cloud point extraction (CPE); CPE with β−cyclodextrin (CPE−βCD) and

CPE with β−cyclodextrin functionalized with ionic liquids (CPE−βCD−IL) for

removing phenolic compounds including 2,4−dichlorophenol (2,4−DCP),

2,4,6−trichlorophenol (2,4,6−TCP) and 4−nitrophenol (4−NP) in aqueous samples by

using UV−Vis spectrophotometric technique. The DC193C surfactant was chosen as an

extraction solvent due to its low water content in a surfactant rich phase. The

parameters affecting the extraction efficiency such as pH, equilibration temperature and

incubation time, concentration of surfactant, modifier, salt and analyte, volume of

surfactant and modifier and water content were evaluated and optimized. In the three

CPE systems, the solubilization were in proportion of the hydrophobicity of the target

compounds, according to the following order; 4−NP < 2,4−DCP < 2,4,6−TCP.

Langmuir model was found to fit well with the solubilization of the phenolic

compounds into DC193C surfactant. The thermodynamic results indicated that the

solubilization of the phenolic compounds solubilized into DC193C surfactant were

feasible, spontaneous and endothermic. Finally, the inclusion complex formation,

hydrogen bonding and interaction between the DC193C surfactant, β−CD,

βCD−IL and the phenolic compounds were proven using the 1H NMR and 2D NOESY

spectroscopy.
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ABSTRAK

Satu kaedah yang lebih hijau berdasarkan pengekstrakan titik awan telah dibangunkan

dalam tiga sistem iaitu pengekstrakan titik awan (CPE); CPE dengan β−cyclodextrin

(CPE−βCD) dan CPE dengan β−cyclodextrin difungsikan dengan cecair ionik

(CPE−βCD−IL) bagi menyingkirkan kumpulan fenolik termasuk 2,4−dichlorophenol

(2,4−DCP), 2,4,6−trichlorophenol (2,4,6−TCP) dan 4−nitrophenol (4−NP) dalam

sampel akueus dengan menggunakan teknik spektrofotometri UV−Vis. Surfaktan

DC193C dipilih sebagai pelarut pengekstrakan kerana kandungan air yang rendah

dalam fasa kaya surfaktan. Parameter yang mempengaruhi kecekapan pengekstrakan

seperti pH, keseimbangan suhu dan masa, kepekatan surfaktan, pengubahsuai, garam

dan analit, jumlah surfaktan dan pengubahsuai dan kandungan air telah dinilai dan

dioptimumkan. Di dalam tiga sistem CPE, kelarutan itu adalah berkadaran dengan

hidrofobik kumpulan sasaran, mengikut urutan seperti berikut; 4−NP <2,4−DCP

<2,4,6−TCP. Model Langmuir di dapati sesuai dengan kelarutan kumpulan fenolik ke

dalam surfaktan DC193C. Keputusan termodinamik menunjukkan bahawa kelarutan

kumpulan fenolik ke dalam surfactant DC193C adalah dilaksanakan, spontan dan

endotermik. Akhirnya, pembentukan kemasukan kompleks, ikatan hidrogen dan

interaksi π-π antara surfaktan DC193C, β−CD, βCD−IL dan kumpulan fenol telah

terbukti menggunakan 1H NMR dan 2D NOESY spektroskopi.
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CHAPTER 1

INTRODUCTION

1.1 Background of study.

As a result of rapid development of chemical and petrochemical industries, the

surface and ground waters are polluted by various organic and inorganic chemicals such

as phenolic compounds, dyes and heavy metals. There has been a large increase in the

use of phenol and phenolic derivatives in recent times. This high demand for phenol and

its derivatives has led to a production rate of about 6 million ton/year worldwide, with

significantly increasing trend (Ofomaja et al., 2013). Phenol and its derivatives such as

2,4–dichlorophenol (2,4–DCP), 2,4,6–trichlorophenol (2,4,6–TCP) and 4–nitrophenol

(4–NP) are found in aquatic environment as a result of the common availability of the

by−products of many industrial processes (Martínez et al., 1996; Shen et al., 2006).

These compounds are generated in the production of plastic, dyes, drugs,

pesticides, antioxidants and paper in the petrochemical industries. Most of them are

very toxic and have diverse effects on the taste and odour of water at low concentration.

The utilization of phenol−contaminated waters causes protein degeneration, tissue

erosion, and paralysis of the central nervous system and also damages the kidney, liver

and pancreas in human bodies. Nowadays, phenol and its derivatives become

particularly of interest and concern in accordance to the US Environmental Protection

Agency (US EPA) and European Union (EU) which are included in their lists of aquatic

environment (Cha and Qiang, 2012; Kavitha and Palanivelu, 2005; Rodrı́guez et al.,

2000). Additionally, these compounds can persist under environmental condition, at

ppm levels in waters for a number of days or weeks depending on the temperature and

pH (Martínez et al., 1996). According to the recommendation of World Health
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Organization (WHO), the permissible concentration of phenolic contents in potable

waters is 1 µg L-1 and the regulations by the Environmental Protection Agency (EPA),

call for lowering phenol content in wastewaters less than 1 mg L-1. Therefore, removal

of phenolic compounds from waters and wastewaters is an important issue in order to

protect public health and environment (Senturk et al.,2009).

The most common methods that have been used in research work for removing

the phenolic compounds in water samples are membrane separation process (Erhan et

al., 2002; Park et al.,2006), oxidation (Alcántara et al., 2004; Wagner and Nicell, 2001),

ozonation (Amin et al.,2010; Buffle et al., 2006) as well as the adsorption (Abay et al.,

2005; Ku and Lee, 2000; Lin et al., 2008) on different adsorbents. In contrast, simple,

fast, economical and greener analytical methods are required for removing the phenolic

compounds from the water samples. On this premise, few researchers have discovered

about the principles and advantages of the cloud point extraction (CPE) as an alternative

method to the conventional liquid−liquid extraction. Previous studies have found that

CPE method is simple, cheap, highly efficient, and has lower toxicity which offers an

alternative to more conventional extraction systems that can be classified as a “green

chemistry” principle (Manzoori and Karim-Nezhad, 2003; Nazar et al., 2011; Purkait et

al., 2005).

Surfactants are amphiphilic molecules, having two distinct structure moieties, a

hydrophilic head and one or two hydrophobic tails. This latter part is generally a

hydrocarbon chain with different numbers of carbon atoms. The hydrocarbon may be

linear or branched aliphatic chains and it may also contain aromatic rings (Arunagiria et

al., 2012; Paleologos et al., 2005). The hydrophobic tails can entrap and thus isolated

hydrophobic substances. This ability has been extensively used in cloud point extraction

(Paleologos et al., 2003a). At certain temperature, an aqueous solution of the non−ionic

surfactant micellar system becomes turbid. This temperature is known as cloud point
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temperature (CPT) (Kulichenko et al., 2003; Safavi et al., 2004; Sirimanne et al., 1996).

Above the cloud point temperature, the solution separates into two phases: first off, the

surfactant rich phase, which has small volume compared to the solution and it is also

called coacervate phase while the other phase is the aqueous phase containing surfactant

concentration which is slightly above the critical micelle concentration (CMC) (Bai et

al.,2001; Luconi et al., 2000; Paleologos et al., 2003b).

There are many potential advantages to replace the volatile organic compounds

(VOCs) with water or other types of aqueous solution as a surfactant. The most obvious

advantages for the replacement of VOCs are low cost, reduced flammability, reduced

toxicity, and reduced environmental risk as a result discharge of the supporting phase.

Therefore, relatively few articles have focused on the use of aqueous polyethylene

glycols (PEGs) solution. PEGs (also called dimethicone copolyols, silicone glycols, and

silicone surfactants) are class of amphiphilic materials having water soluble and a

silicone soluble portion in one molecule. DC193C fluid is an example which is

non–ionic surfactant based on silicone PEGs copolymer (Chen et al., 2005).

PEGs have been recognized as an alternative material to replace VOCs due to a

number of advantages, e.g. non–toxic, odourless, colourless, and non–irritating and the

fact that they do not evaporate easily. In addition, PEGs are considered inert as they are

not reacting to other materials. They are also soluble in most organic solvents. PEGs

play an important role and well−known as growing class of raw materials used in the

cosmetic, food and pharmaceutical industries; their biocompatibility and safety to

human and their friendly nature to the environment have been proven for a long time.

As reported by Chen et al. (2005), even if the PEGs are discharged to the environment;

the environment would suffer from no significant effect. Moreover, the US FDA (Food

and Drug Administration, United State) has permitted this surfactant for internal

consumption. Therefore, in this study, the phenolic compounds are more concerned in
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removing them from the water samples rather than to recover the non–ionic surfactant

of DC193C from water samples.

Nowadays, there are several types of surfactant that had been used as an

extractant solvent such as Triton X, Tergitol and PONPE series in CPE. Triton X−114

is well known for micelle formation compared to other classes of non−ionic surfactant.

However, its aromatic chromophore has strong UV absorbance or fluorescence signals

which becomes obstacles in UV and fluorescence detectors (Bai et al., 2001).

Therefore, DC193C fluid non−ionic surfactant was used to overcome this problem

because it has more flexible polysiloxane chains without any aromatic structure.

Furthermore, it can form more compact micelle structures which offer low water

content in the surfactant rich phases; thus, enhancing the extraction efficiency (Yao and

Yang, 2008a). Green chemistry can be defined as those procedures for decreasing or

eliminating the use or generation of toxic substance for the following reasons: (a)

DC193C surfactant uses as an extractor media diluted solutions of the surfactants that

are inexpensive, resulting in the economy of reagents and generation of few laboratory

residues; and (b) DC193C surfactants are not toxic, non−volatile, and non−flammable,

unlike organic solvents used in the liquid–liquid extraction (Bezerra et al., 2005).

Cyclodextrins (CDs) are cyclic glucose oligosaccharides that are classified as

α−CD, β−CD, or γ−CD, corresponding to 6,7 or 8 glucose units, respectively (Ehsan et

al., 2007; Flaherty et al., 2013). Recently, much attention has been devoted to CDs as

cyclic component for the construction of supramolecular architecture due to their

well−defined ring structure and has an affinity to form inclusion complex for different

class of compounds with varying size and shape for a variety of applications, including

pharmaceutical delivery, agricultural use, food and flavor protection, cosmetics

formulations, and complexation with hydrophobic molecules (Flaherty et al., 2013).

The unique property of these lampshade−shaped molecules is that they have hydrophilic
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exterior and substantially more hydrophobic cavity capable hosting a wide range of

organic guest molecules. They are known to solubilize many low−polarity organic

compounds through the formation of water−soluble inclusion complexes (Hanna et al.,

2003). Therefore, CDs allow their removal from aqueous solutions by encapsulating

organic pollutants in their cavities. CDs can be tailored to match particular guests and

meet the specific requirement of their host−guest interaction. Thus far, β−cyclodextrins

(β−CD) have been used more frequently than other CDs because of the appropriate

cavity size for a range of organic compounds (Ehsan et al., 2007; Harada, 1997). The

β−CD is the most accessible, the lowest−priced, less toxicity and generally the most

useful (Chadha et al., 2011; Singh et al., 2002). Thus, in this work, β−CD was chosen

as modifier for removal phenolic compounds using CPE technique.

Ionic liquids (ILs), sometimes known as molten salt, are gaining wide

recognition in analytical chemistry  including extraction in gas chromatography (GC),

in liquid chromatography (LC) and in capillary electrophoresis (CE) because they

possess several unique properties (Delmonte et al., 2011; Fernández-Navarro et al.,

2011; Han et al., 2011; Poole and Poole, 2011; Su et al., 2010; Vaher et al., 2011). ILs

that consist of organic cations (i.e. imidazolium, pyridinium, pyrrolidinium,

phosphonium and ammonium) paired with a variety of anions (i.e. Cl-, PF6
-, BF4

-, NO3
-

and OTs-) have most of the properties of conventional organic solvents. Their unique

properties such as wide liquid temperature range, low melting points, and negligible

vapor pressure have triggered researchers to explore their use as a replacement of the

traditionally more toxic, flammable and volatile organic solvents. In addition, they have

two characteristics of non−volatility and high electrical conductivities that conventional

organic solvents have not. ILs provide an alternative media for “Green Chemistry” due

to their negligible vapor pressure (Harada, 1997; Qi et al., 2004). The overall

physicochemical properties of ILs result from the composite properties of both cation
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and anion. In general, the anion is used to control the water miscibility of the IL, but the

cation can also influence the hydrophobicity or hydrogen−bonding ability of the

solvent.

Owing to the unique properties of ILs and β−CD, β−CD functionalized with ILs

may demonstrate an interesting phenomenon for extraction and separation study of

organic compounds. In recent years, β−CD functionalized with ionic liquid was widely

used as chiral selectors in capillary electrophoresis and stationary phase in HPLC

(Huang et al., 2010;Yujiao et al., 2013; Zhou et al., 2010). Our research group has

developed the research works related to the use of functionalized β−CD with ionic

liquids such as macroporous material in removing 2,4−dichlorophenol from aqueous

solution (Raoov et al., 2013) and βCD−IL as a modifier in CPE technique for extraction

of paraben compounds (Noorashikin et al., 2013). Due to the fact, β−CD was found to

be great of importance as a highly organized host media. By functionalized β−CD with

ionic liquid, the hydrophobic cavity of β−CD can serve more as a selective container for

polar organic molecules of proper size, and the hydrophobicity is really very convenient

for the need of carrying out research works in aqueous solution compared to the native

of β−CD. On the other hand, the ionic liquids (ILs) have good interaction between

anionic or polar species for extraction from aqueous solution. Therefore, ionic liquids

were selected to be used in this study to improve the extraction of the phenolic

compounds performance from aqueous solution.

1.2 Significant of study.

In the present work, the feasibility of employing the CPE as a simple and

effective method has been adopted in removing the phenolic compounds from water

samples using the DC193C as a non−ionic surfactant. This is the first attempt of the

DC193C surfactant used in the CPE for removal the phenolic compounds from water
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samples by spectrophotometric method. The three CPE systems have been optimized

namely cloud point extraction (CPE), cloud point extraction with β−cyclodextrin

(CPE−βCD) and cloud point extraction with functionalized β−cyclodextrin with ionic

liquids (CPE−βCD−IL). The functionalized β−cyclodextrin with ionic liquids (βCD−IL)

was prepared by reacting o−p−toluenesulfonyl−β−cyclodextrin (βCD−OTs) with

1−benzylimidazole (BIM) to be used as modifier in the CPE−βCD−IL system.

Meanwhile, native of β−CD was used as modifier in the CPE−βCD system. The

purpose of adding a modifier in the CPE system is to enhance the performance of the

phenolic compounds extraction and also to study their behavior towards the modifiers in

CPE system. In this work, several parameters used in the three CPE systems have been

optimized for the extraction phenolic compounds such as effect of concentration and

volume of DC193C surfactant, pH, concentration and volume of the modifiers,

equilibrium temperature and time, concentration of salt and analyte, and water content.

From the experimental data, a solubilization isotherm was developed to quantify the

amount solubilization of the phenolic compounds in the three CPE systems. The

solubilization behavior of the phenolic compounds on the non−ionic surfactant of

DC193C in the three CPE systems was studied at fix surfactant concentration.

Thermodynamic parameters such as Gibbs free energy (ΔG˚), enthalpy (ΔH˚) and

entropy (ΔS˚) were calculated to know the nature of solubilization. This fundamental

study will be helpful for further application for removal pollutant in aqueous solution by

using non−ionic surfactant of DC193C in the CPE method.
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1.3 Objectives.

The objectives of the present study are as follow:

1) To optimize parameters affecting extraction efficiency in the cloud point

extraction (CPE) for extraction of the phenolic compounds.

2) To optimize parameters affecting extraction efficiency in the cloud point

extraction with β−cyclodextrin modifier (CPE−βCD) for extraction of the

phenolic compounds.

3) To optimize parameters affecting extraction efficiency in the cloud point

extraction with β−cyclodextrin functionalized with ionic liquid modifier

(CPE−βCD−IL) for extraction of the phenolic compounds.

4) To compare the difference in the CPE systems towards the extraction of the

phenolic compounds.
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CHAPTER 2

LITERATURE REVIEW

2.1 Phenolic compounds in environment.

Polar compounds are the most problematic one among various organic

pollutants in aquatic media, having high tendency to stay in water−based samples.

Phenol and phenolic derivatives are examples of the most important contaminants

present in the environment as a result of various industrial activities such as chemical,

pharmaceutical, petroleum, paper, wood, rubber, dye and pesticide industries (Calace et

al., 2002; Mousavi et al., 2007; Saraji and Bakhshi, 2005). Industrial sources of

contaminants such as oil refineries, coal gasification sites and petrochemical units

generate large quantities of phenol and phenolic derivatives. Besides, phenolic

derivatives are widely used as intermediates in synthesis of plastics, colours, pesticides,

and insecticides. These substances which present in industrial effluents lead to the

appearance of phenol and its derivatives in the environment by degradation process.

Phenolic compounds are classified as priority pollutants due to their toxicity to humans

and aquatic life; create an oxygen demand in receiving waters. Most of these

compounds are recognized as toxic carcinogens (Aygün et al., 2003; Ersöz et al., 2004).

Concentration of phenolic compounds in wastes varies in a wide range from several to 2

– 3 mg/L. In view of the high toxicity, wide prevalence and poor biodegradability of

phenolic compounds, it is necessary to remove them from aqueous solution before used

by human being. The presence of their even low concentrations can be an obstacle to

the use (and/or) reuse of water. Phenolic compounds caused unpleasant taste and odour

of drinking water and can exert negative effects on different biological processes.
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Several methods designed to remove phenolic compounds have been proposed.

One of the most widely used methods for removing phenolic compounds from aqueous

solution is solvent extraction using polar organic solvents (Palma et al., 2007). The

disadvantage of this method is emulsion formation that may increase the organic

loading of the treated stream, requiring additional cleanup. Attention has been given to

the removal of phenolic compounds from the aqueous system by many researchers in

the world, for example, the removal of phenolic compounds by adsorption, microbial

degradation, and peroxidase−catalyzed oxidation processes. Previous studies proved

that, adsorption is an effective technique for the removal of phenolic compounds from

water to a lower level. The solubilization of phenolic compounds by different sorbent

has been investigated to find the relation between solubilization capacity and

solubilization characteristics such as surface area, and pore size distribution for

separation applications in the drinking water (Farajzadeh and Fallahi, 2005; Roostaei

and Tezel, 2004). However, only a few articles have been reported on solubilization

studied of the phenolic compounds using micellar or surfactant from aqueous solution

(Chen et al., 2009; Goswami et al., 2011; Purkait et al., 2006a, 2006b, 2009).

2.1.1 Physical and chemical properties of phenolic compounds.

Chlorophenols and nitrophenols are long−lived pollutants frequently found in

industry effluents. The solubility of these compounds in water is low and decreases with

increasing number of hydrophobic chlorine or nitro groups. Indeed, physical and

chemical properties of chlorophenols and nitrophenols are strongly influenced by the

ability of the compound to form hydrogen bonds and the ionic character in aqueous

solution (Jaoui et al., 2002).

Chlorophenols are chlorinated aromatic ring structures consisting of the benzene

ring, −OH group and atom (s) of chlorine. Chlorophenols are group of chemicals in
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which chlorines (between one and five) have been added to phenol. They include

mono−, di−, tri−, tetra−, and pentra−chlorinated phenols (CP, DCP, TCP, TTCP, and

PCP, respectively). They are mostly found in wastewater, sludge products, surface

waters and groundwater. Other sources of contamination are accidental spills, hazardous

waste disposal sites, storage tanks, or municipal landfills. They are also used in great

diversity of application, such as herbicides, insecticides, bactericides and wood

preservatives especially for 2−CP, 4−CP, 2,4−DCP and 2,4,6−TCP. In addition, 2−CP,

4−CP, 2,4−DCP and 2,4,6−TCP are the most significant chlorophenols which formed as

by−products of water chlorination. Besides, chlorophenols are major group of pollutants

of environmental concern because of their toxicity and widespread uses (Jung et al.,

2001).

All chlorophenols are solids at room temperature except 2−chlorophenol

(2−CP), which is liquid. The aqueous solubility of chlorophenols is low, but the sodium

or potassium salts of chlorophenols are up to four orders of magnitude more soluble in

water than the parent compounds. They are weak acids, which permeate human skin by

in vitro and are readily absorbed by gastro−intestinal tract. The acidity of chlorophenols

increases as the number of chlorine substitutions increases (Jaoui et al., 2002). The

n−octanol/water partition coefficients (Kow) of chlorophenols increase with

chlorination, indicating a propensity for the higher chlorophenols to bio−accumulate.

The partition of an organic pollutant between the water and organic phases is generally

correlated with various properties, such as the water solubility (S) and the octanol/water

partition coefficient (Kow) (Olaniran and Igbinosa, 2011). Cholorophenols are toxic,

mutagenic and carcinogenic pollutant. They have been also reported to cause adverse

effects on human nervous system and respiratory problem such as chronic bronchitis,

cough, and altered pulmonary function. The stable C−Cl bond and the position of
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chlorine atoms relative to the hydroxyl group are responsible for their toxicity and

persistence in the biological environment (Hameed et al., 2008).

Nitophenols compounds are among the largest and most important groups of

industrial chemicals in use today. These compounds are organic molecules that consist

of at least one nitro group (−NO2) attached to an aromatic ring. The strong

electronegativity of the nitro group stems from the combined action of the two

electron−deficient oxygen atoms bonded to the partially positive nitrogen atom. The

nitro group is able to delocalize −electrons of the ring to satisfy its own charge

deficiency, when attached to a benzene ring. This not only provides charge to the

molecule but also imparts unique properties that make the nitro group an important

functional group in chemical syntheses (Ju and Parales, 2010). Nitophenols are used as

intermediates in the synthesis of pesticides and dyes or are directly applied as herbicides

and insecticides. Moreover, nitophenols act as uncoupling agents in oxidative

phosphorylation, and they are known to affect cell metabolism at concentration lower

than 10 µM. While some nitro−aromatic compounds are produced by incomplete

combustion of fossil fuels, resulting large numbers of the pollutants are released into the

environment. Besides, nitration is an important chemical reaction for the commercial

production and use of several amino−aromatic intermediates as a feedstock for the

production of explosives, pesticides, herbicides, polymers, dye, and pharmaceuticals.

Furthermore, nitrophenols has been widely used by the weapon in industry for the

production of bombs and grenades (Crini, 2005). Therefore, large areas of ground water

and soil have been highly contaminated by these xenobiotic. Compounds which are

recalcitrant, toxic and mutagenic to various organisms (Kulkarni and Chaudhari, 2007).

In this respect, the European Union (EU) has included the phenols cited below

in its Directive 76/464/EEC concerning dangerous substances discharged into the

aquatic environment: 2−amino−4−chlorophenol, 4−chloro−3−methylphenol,
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2−chlorophenol, 3−chlorophenol, 4−chlorophenol, pentachlorophenol and

2,4,6−chlorophenols. The US Environmental Protection Agency (EPA) list of priority

pollutants also includes 11 phenolic compounds. Some of them are included in the EU

directive, but others are not, such as 2−nitrophenol, 4−nitrophenol, 2,4−dinitrophenol,

4,6−dinitro−2−methylphenol, 2,4−dichlorophenol, 2,4−dimethylphenol and

2,4,6−trichlorophenol (Bagheri et al., 2004; Castillo and Puig, 1997; Gonzalez-Toledo

et al., 2001). Therefore, in this work three phenolic compounds namely

2,4−dichlorophenol, 2,4,6−trichlorophenol and 4−nitrophenol has been studied in detail

due to their priority pollutants present in aqueous solution. The basic information

concerning these three phenolic compounds are included in Table 2.1 (Dąbrowski et al.,

2005). The removal of phenolic compounds from the environment is crucial due to its

high toxicity, carcinogenic properties, structural stabilization and persistence in the

environment.

Table 2.1 :
Basic information concerning the three phenolic compounds of interest (Dąbrowski, et
al., 2005).

Phenolic compounds IUPAC name Boiling
Point
(˚C)

pKa at
25˚C

Aqueous
solubility
at 25˚C
(g l-1)

Cl Cl

OH 2,4−dichlorophenol
(2,4−DCP)

210 7.70 4.5

Cl

Cl

Cl

OH

2,4,6−trichlorophenol
(2,4,6−TCP)

246 7.40 28.6

N+

O

-O

OH

4−nitrophenol
(4−NP)

279 7.20 1.69
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2.2 Cloud point extraction.

There are various methods that can be used to extract phenol compounds in

aqueous samples. Extraction is a well−known techniques used to recover and separate

various substances including undesirable organic pollutants. Commonly used methods

for extraction are liquid−liquid extraction (LLE), solid phase extraction (SPE) and solid

phase micro−extraction (SPME). However, these methods have several disadvantages

as shown in Table 2.2 (Sosa Ferrera et al., 2004).

LLE is one of the most frequent methods for sample extraction and pretreatment

which based on the partitioning of the target compound between two immiscible phases.

The major disadvantages of LLE are the use of large volumes of high purity organic

solvents, which will lead to costs for the analysis and their toxicity. Moreover, other

drawbacks include the length of the analysis time and the difficulties regarding

automating the procedures. The recoveries of this method are generally acceptable and

vary from one component to another and are lower for the more volatile ones. A further

serious limitation is the problems associated with the formation of emulsion or foam

when surface or waste waters are extracted (Sun and Armstrong, 2010). Therefore, SPE

has been proposed, to solve emulsion problem.

SPE is based on differential migration processes, during which compounds are

adsorbed and eluted as they are swept through a porous medium by a mobile phase

flow, which is dependent on the differential affinities between the sorbent material and

the mobile phase. The choice of sorbent is a limitation in SPE. Several sorbents are

required to be tested for extraction phenolic compounds. Besides, designs of the

cartridge have certain disadvantages for water analysis: the cross−sectional area is

small; sample processing rates are slow, the tolerance to blockage by particles and

adsorbed matrix components is low, and channeling reduces the capacity to retain
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analytes. Another drawback in SPE, which is the same for LLE, is the considerable

amount of time needed and manual operations involved. Sample throughput is low and

the economic expense is high. Laborious operations such as conditioning, washing,

elution and solvent evaporation are needed in SPE. In addition, clotting channeling and

percolation are typical problems of SPE encountered in everyday laboratory work

(Santana et al., 2002). Other methodologies have been developed with a view to

eliminate or, at least, to minimize the use of organic solvents. Solid phase

micro−extraction (SPME) is a most recent method used for the extraction of organic

compounds from environmental samples. SPME is based on the partition equilibrium of

analytes between a polymeric stationary phase and the sample matrix. Desorption step

is usually carried out by placing the fibre in a hot injector of a GC system or it can be

performed in an HPLC system by introducing an interface. An inherent disadvantage of

SPME is that quantitative work is still rather laborious because severe carry over may

occur between samples. Moreover, a relatively long equilibration time (up to 1 h) is

needed for the adsorption of analytes (Sosa Ferrera et al., 2004).
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Table 2.2:
A summary of several extraction methods for liquid sample matrices (Sosa Ferrera et
al., 2004).

LLE SPE SPME CPE
Brief
description

Analyte is
partitioned
between two
immicible
solvents.

Analyte
retained on a
solid
adsorbent.

Partition
equilibrium of
analytes
between a
polymeric
stationary
phase and the
sample matrix.

Analyte is
partitioned
between two
isotropic phase
“surfactant−rich
phase” and
“aqueous
phase”.

Extraction
time

Up to 24 h 20 – 30 min Up to 60 min 20 min

Solvent usage Organic
solvent

Organic
solvent

None Surfactant
solution

Cost Relatively low
cost

Relatively low
cost

Relatively low
cost

Low cost

Ease of
operation

Relatively easy Relatively
easy

Relatively
easy

Easy

Disadvantages Large
consumption of
solvent and
concentration
of sample
required after
extraction.

Insufficient
retention of
very polar
compounds
and limited
selectivity.

Choice of fiber
and
optimization
of procedure
required.

Optimization of
operating
conditions.

In 1978, cloud point extraction (CPE) was first exploited for analytical purposes

by pre−concentration of zinc(II) after formation of a hydrophobic complex with

1− (2−pyridylazo)−2−naphthol (Calace et al., 2002). Since then the approach has been

widely explored as a green alternative to the conventional liquid–liquid extraction. The

use of surfactant−mediated phase separations, also known as CPE, offers an alternative

environmentally benign separation approach to more conventional extraction systems.

Recently, CPE attracted the attention of analytical chemists for these reasons; (a) good

capacity to solubilize solutes with different types and nature; (b) ability to concentrate

solutes with high recoveries; (c) safety and cost benefits (surfactant based on water,
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avoiding organic toxic solvent in large amount); (d) very small amounts of the relatively

non−flammable and non−volatile surfactant are required; (e) easy disposal of the

surfactant; and (g) the inhibition by the surfactants of adsorption of nonpolar analytes to

glass surface (Nazar et al., 2011; Sirimanne et al., 1996; Tabrizi, 2006).

The CPE is a new promising environmentally benign extraction technique which

is based upon phase separation behavior exhibited by aqueous solutions of certain

surfactant micelles. In the CPE, the role of extraction solvent is played by a micellar

(surfactant rich) phase originating from a homogenous surfactant solution that is added

to the sample. A surfactant aggregate (a micelle) orientates its hydrocarbon tails

towards the center to create a nonpolar core. Isolated hydrophobic compounds (a large

number of bioactive compounds) present in the aqueous solution are favorably

partitioned in the hydrophobic core of micelles (Madej, 2009).

Aqueous solutions of certain surfactants display the so−called cloud point

phenomenon in which the aqueous surfactant solution (surfactant above the critical

micelle concentration) suddenly becomes turbid because of a decrease in the solubility

of the surfactant in water. The clouding phenomenon is usually induced by an increase

in temperature. The result is the formation of the single isotropic micellar phase

separation into two isotropic phases: the small volume “surfactant rich phase” is

separated from the bulk aqueous solution; and the “aqueous phase” which contains the

surfactant concentration is slightly above the critical micelle concentration (CMC)

(Afkhami et al., 2006). Depending upon the density of this surfactant rich phase in

relation to that of the aqueous phase, it can be either the bottom or top layer. By

addition of salt to the system, the density of the aqueous phase can be adjusted to some

degree (Quina and Hinze, 1999).
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It has been demonstrated that the surfactant rich phase, thus, separated under the

cloud point condition, is able to extract and pre−concentrated a wide range of inorganic

and organic compounds from the aqueous phase. The solute present in aqueous solution

of surfactant is distributed between the two phases above the cloud point temperature.

This phenomenon is known as CPE process. This process is schematically described in

Figure 2.1.

Figure 2.1: Schematic of basic cloud point extraction process (Zain et al., 2014).

The extraction process of the CPE system is very simple as shown in Fig. 2.1.

First, the surfactant or a concentrated surfactant solution is added to the aqueous

solution containing the analytes to be extracted or pre−concentrated. In order to ensure

formation of micelle aggregates, the final surfactant concentration must exceed its CMC

value. Hydrophobic analytes can be incorporated into the surfactant rich phase formed

by the phase separation of the micellar solution due to the hydrophobic interaction

between analytes and surfactant assemblies, while hydrophilic components remain in

the residual aqueous solution. The distribution of analytes between two phases is

already equilibrated when the surfactant micelles are homogenously dispersing in the

aqueous solution. Hence, the extraction of analytes occurs along with the phase

separation (Saitoh et al., 1999). Analytes may remain referentially in the hydrophobic

domain of the micelles in a surfactant rich phase, thus, being extracted and

Surfactant micelles with
entrapped solute

Free surfactant

Solute SRP: Surfactant Rich Phase
DP: Dilute Phase

SRP

SRP

DP

DP
OR

Above CPT
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pre−concentrated. Then, by raising or lowering the temperature and adding the additives

(analyte, salt) the conditions are altered to obtain phase separation. After de−mixing of

the biphasic system, the analytes are extracted and pre−concentrated in a small volume

of surfactant rich phase, either by gravity settling or centrifugation. Depending on the

density of the surfactant, the surfactant rich phase can be either at the bottom or the top.

Finally, the surfactant rich phase need to be diluted with aqueous or organic solvent due

to the surfactant rich phase is so viscous before proceed to instrumental analysis (Xie et

al., 2010).

2.2.1 Surfactants / Micelles.

Surfactant aggregates, or micelles, can form in a number of different types of

solvents. Micelles represent so−called colloidal dispersions that belong to a large family

of dispersed systems consisting of particulate matter or dispersed phase, distributed

within a continuous phase or dispersion medium. The colloidal dispersions occupy a

position between molecular dispersions with particle size under 1 nm and coarse

dispersions with particle size greater than 0.5 μm in terms of size. More specifically,

surfactant aggregates or micelles normally have particle size within 50 − 100 nm range.

They are divided into three principle groups among colloidal dispersions; lyophilic,

lyophobic, and association colloids (Torchilin, 2001).

The distinct structural feature of a surfactant originates from its ‘duality’: the

hydrophilic region or the tail group that usually consists of one or few hydrocarbon

chains (Vaisman et al., 2006). Their molecules present a long hydrocarbon chain and a

small charged group or polar hydrophilic. A typical surfactant has a R−X structure,

where R is a hydrocarbon chain, which can have between 8 and 18 atoms of carbon, and

X is the polar or ionic head group (Bezerra et al., 2005). Normal micelles that

spontaneously form surfactant aggregates (with the hydrophobic tails toward the center
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and the hydrophilic head groups at the outer surface) in water. Reverse or inverse

micelles or surfactant aggregates also can form in non−polar organic solvents. At low

concentration of surfactant, aggregates are present in aquatic solution, mainly as a

monomer although dimers and trimers may also be detected (Paleologos et al., 2005).

Monomer surfactants form a layer at the liquid−air surface, as surfactant

molecules added to aqueous solution. However, micelles are formed in bulk solution

when the surface becomes saturated with surfactant monomers (i.e., a monolayer is

formed) when concentration above a certain threshold, called the critical micellar

concentration (CMC) (Anderson et al., 2003; Paleologos et al., 2005). The micelles can

adopt a variety of shapes, ranging from roughly spherical to ellipsoidal (oblate or

prolate) depends on their specific surfactant and solution conditions. In either case, the

interior region of the micelle contains the hydrophobic moieties of the surfactant

molecules and the outer surface consists of the hydrated hydrophilic groups along with

any bound water molecules (Quina and Hinze, 1999). Since the micelles in water have

both hydrophobic and hydrophilic parts, and the hydrophilic part surrounding the

hydrophilic core, the micelles have the ability to solubilize the hydrophobic compounds

into their interior. This type of interaction can be expressed by Langmuir isotherm

(Zhou et al., 2009).

Surfactants belong to a group of association or amphiphilic organic substances.

Amphiphilic molecules consist of an ionic or nonionic polar head group and a

hydrophobic portion. The ambivalence of amphiphiles for an aqueous environment is

creditworthy for the phenomenon of self−association of single amphiphile molecules

leading in a variety of micellar aggregate structures above CMC. The formation of

micelles or surfactant aggregates is primarily operated by three forces: the hydrophobic

repulsion between the hydrocarbon chains and aqueous solution, the charge repulsion of

ionic head groups, and the van der Waals attraction between the hydrocarbon tails (Rub
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et al., 2012). It has been demonstrated that surfactant solutions provide a reaction

medium, able to modify reaction rate, equilibrium position, products obtained and

spectral or analytical parameters (Silva et al., 1997). There are four types of general

surfactants that are classified based on their charge on head group; non−ionic, cationic,

anionic, and amphoteric (or zwitterions). Table 2.3 presents some characteristics and

examples of each of the four groups (Bezerra et al., 2005; Vaisman et al., 2006).

Table 2.3:
Classification and characteristics of surfactants (Bezerra et al., 2005).

Classification Characteristic Example
Anionic The hydrophilic group

carrying a negative
charge such as carboxyl
(RCOO–), sulfonate
(RSO3

–)

CH3(CH2)11SO4
–Na+ Sodium

dodecyl sulfate (SDS)

Cationic The hydrophilic group
carrying a positive
charge as, for example,
the quaternary
ammonium halides
(R4N

+Cl–)

CH3(CH2)15N
+(CH3)3Br –

Cetyl trimethyl ammonium
bromide (CTAB)

Non–ionic The hydrophilic group
has no charge but derives
its water solubility from
highly polar groups such
as polyoxyethylene
(–OCH2CH2O–) or
polyol groups

CH3(CH2)11(OCH2CH2)23OH
Polyoxyethylene (23)
Dodecanol (Brij 35)

Amphoteric or
zwiterrionic

Its molecules present
both the anionic and
cationic groups and,
depending of pH, its
prevalence the anionic,
cationic, or neutral
species

CH3(CH2)11N
+(CH3)2

(CH3)COO–

4–(Dodecyldimethyl
ammonium) butirate (DAB)
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Surfactants or micelles are reported to possess unique solubilization properties.

This is attributed to their formation consisting of a hydrophilic surface and a

hydrocarbon core. The hydrophobic core can entrap and thus isolate hydrophobic

substances as illustrated in Figure 2.2. This ability has been extensively used in the past

few years under the term cloud point extraction for pre−concentration of organic

molecules and metal chelates. On the other hand, the outer sphere as well as the

interface of the micelle has been overlooked with regard to their binding capacity.

These areas can interact electrostatically with amphoteric or even charge substances,

like metal ions under certain conditions (Paleologos et al., 2003).

Figure 2.2: Binding sites of a micelle for hydrophobic, amphoteric and ionic species
(Paleologos et al., 2003).

Interface
Ionic Species

Hydrophobic Core/Molecule

Amphoteric
Molecule
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Among the class of surfactants, the non−ionic surfactant such as Triton X−114

is well known for micelle formation. However, its aromatic chromophore has strong UV

absorbance or fluorescence signals detected, resulting in measuring of the phenolic

compounds signal in spectrophotometric method. Moreover, its harm to the

environment also made it forbidden to be used in many places, including Europe (B.

Yao & Yang, 2008a, 2008b). Table 2.4 shows the previous studies on the application of

CPE technique for extracting organic pollutant from water samples using several types

of surfactant.

Table 2.4:
Some applications of CPE for selected organic pollutant in water samples.

Type of surfactant Analyte References
Non−ionic surfactant
Poly(oxyethylene)−7,5−(p−tert−octylphenyl)ether
(Triton X−114)

Polycyclic aromatic
hydrocarbons (PAHs)

(Ferrer et al.,
1996)

Oligoethylene glycol monoalkyl ether
(Genapol X−080)
Polyoxyethylene−10−cetyl ether
(Brij 56)

Polychlorinated
dibenzofurans
(PCDF)

(Fernández et
al.,1999)

Poly(oxyethylene)−7,5−(p−tert−octylphenyl)ether
(Triton X−114)

Chlorophenols
(2−chlorophenol,
4−chloro−3−methyl
phenol,
2,4−dichlorophenol,
2,4,6−trichlorophenol,
pentachlorophenol

(Calvo Seronero
et al., 2000)

Poly(oxyethylene)−7,5−(p−tert−octylphenyl)ether
(Triton X−114)

Polybrominated
diphenyl ethers
(PBDEs)

(Fontana et al.,
2009)

Oxyethylated methyl dodecannoates
(Denoted OMD)

Phenol,4−nitrophenol
4−methylphenol

(Materna et al.,
2001)

t−octylphenol polyethoxylate
(Triton X−100)

Aromatic
contaminants
(Benzene, toluene,
ethylbenzene)

(Trakultamupatam
et al., 2002)
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Dow Corning 193 (DC193)
Dow Corning 190 (DC190)

PAHs
(anthracene,
phenanthrene, pyrene)

(Yao et al., 2007)

Ethoxylated Phenol (Taechangam et
al., 2009)

Anionic surfactant
Sodium dodecyl sulfate (SDS)
Sodium dodecylbenzenesulfonic acid (SDBSA)
Sodium dodecanesulfonic acid (SDSA)
Sodium dioctylsulfosuccinatem (Aerosol OT)

Polycyclic aromatic
hydrocarbons
(Pyrene and various
PAHs)

(Casero et al.,
1999)

Cationic surfactant
Tricaprylmethylammonium chloride (Aliquat
336)

Bisphenol−A (BPA) (Yu et al., 2009)

Amphoteric or zwiterrionic surfactant
Dodecyltrimethylammonium bromide (DTAB)
Alkyldiphenyloxide disulfonaate (DPDS)

Benzene (Weschayanwiwat
et al., 2008)

‘Table 2.4, continued’

2.2.1.1 Silicone surfactant / DC193C.

Silicone surfactants (also called PEG/PPG dimethicone) are one class of

amphilic materials having water soluble and a silicone soluble portion in one molecule.

DC193C fluid which is non−ionic surfactant based on silicone PEGs copolymers.

Silicone−based surfactants are used in a wide variety of applications in the industry,

such as foam stabilizers, wetting agents, emulsifiers or lubricants. The polysiloxane

backbone is highly flexible and carries methyl groups from which the cohesive energy

is very low, giving rise to a low surface tension. Most commercial silicone surfactant

consists of a linear backbone with pendant polyalkylene oxide groups grafted within the

chain (Laubie et al., 2013).

Silicone surfactant are of novel and specialty agents and consist

poly(dimethylsiloxane)s as the hydrophobic part alongside a hydrophilic moiety, and
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the latter can be non−ionic, ionic, and zwiterrionic in nature. The non−ionic hydrophilic

groups are made of oxyethylene or grids of oxyethylene and oxypropylene units.

Silicone surfactants are available in different molecular architectures such as graft (rake

or comb) like, trisiloxane, linear, or branched. Silicone surfactants with non−ionic

hydrophilic moieties not only share many common features with conventional low

molar mass non−ionic surfactants but also possess the following properties unique only

to them (Soni et al., 2003).

Silicone surfactants are (i) equally surface active in water as well as in

non−aqueous solvents such as mineral oils and polyols, (ii) lower surface tension of

water to as low as 20 mN m-1, and (iii) remain as liquids even with very high molecular

weights. Silicone surfactants have been widely used as foam stabilizers for

polyurethanes, foam controlling agents for diesel fuel, and better wetting agents in ink,

paint and coating, and formulations for effective spreading and penetration of herbicides

on plant leafs. Despite their extensive use, only a few investigations are available in the

literature on the surface active, phase, and association behavior of these interesting

amphiphilic copolymeric surfactants (Soni et al., 2003).

2.2.2 Influential factor.

The performance of a CPE process is influenced by many factors, such as

surfactant type and its concentration, ionic strength, pH and equilibration temperature

and time.

2.2.2.1 Type and concentration of surfactant.

Explicitly, surfactant plays a vital role in the CPE process. Thus, proper

selection of surfactant could leads to satisfactory performance of the CPE process.

There are several types of surfactants used in the CPE processes include Triton series,

Igepal series and PONPE series (polyethyleneglycol mono−4−nonylphenyl ethers).
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However, these surfactants contain alkyl phenyl groups in their hydrophobic moiety,

leading to some environmental concerns. To overcome this problem, biodegradable

surfactant, mainly polyethylene glycol or silicone surfactant without phenyl group is

proposed (Hung et al., 2007).

The main requirements for a surfactant to be selected as suitable for the CPE

experiments are associated mainly with its physicochemical characteristics: high

density, which facilitates phase separation; low cloud−point temperature, below or near

room temperature in a narrow concentration range, for thermolabile molecules;

balanced hydrophobicity; commercial availability; and, low cost (Stalikas, 2002).

Depending on the nature of the hydrophilic group, surfactants are classified as

non−ionic, zwiterrionic, cationic, and anionic. Nowadays, non−ionic, zwiterrionic and

anionic surfactants are most widely used in the CPE process for organic compounds,

drugs, biomaterials and inorganic metal ions. However, the application of the cationic

surfactants in the CPE is scarce. Since, it can directly affect the extraction and

pre−concentration, and accuracy of the final analytical results, it is very important to

select an appropriate surfactant for a successful CPE analysis (Xie et al., 2010).

2.2.2.2 Effect of ionic strength.

Generally, clouding is a phenomenon detected in non−ionic surfactants when the

solution is heated to a threshold temperature which is known as clouding point

temperature (CPT). Occurrence of the clouding phenomenon is uncommon with the

ionic surfactants, presumably because of the large electrostatic repulsion between the

aggregates prevents phase separation in most cases. The phase separation occurs within

a narrow temperature range into surfactant rich phase and aqueous phase, because of

density difference due to sharp increase in aggregation number of the micelles and the

decrease in intermicellar repulsion. The CPT has been found extremely dependent on
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the presence of additives (Rub et al., 2012). Usually, the CPT of a non−ionic surfactant

can be altered in the addition of additives, such as inorganic salt and organic

compounds, into an aqueous solution. This phenomena is known as salting−out effect

where the addition of neutral salts depresses the CPT of a non−ionic surfactant aqueous

solution in proportion to their concentration (Wang and Dai, 2010).

Several factors have been considered to be responsible for the CPT phenomenon

such as surfactant molecule and its concentration, temperature and additives in the

system of CPE. However, CPT is very sensitive to the presence of additives used in the

CPE system, even at a very low concentration. The additives modify the

surfactant−solvent interactions, change the CMC, size of micelles and phase behavior in

the surfactant solutions. Many efforts has been made to investigate the effect of various

additives e.g. inorganic electrolytes, organic compounds, ionic surfactant, cationic

surfactant and zwitterionic surfactants on the cloud point of a non−ionic surfactant

(Sharma et al., 2003).

2.2.2.3 Effect of pH.

pH is one of the parameters to be considered in the CPE systems. Generally, the

pH effect on the CPE system depends on the characteristics of both surfactants and

analytes. In most studies the influence of pH on extraction efficiency is not crucial for

those neutral or non−ionized compounds such as organic pollutant. However, a few

notable exceptions have been reported that the pH plays an important role in the CPE

for analytes possessing an acidic or a basic moiety. Normally, the ionic form of a

molecule formed upon deprotonation of a weak acid or protonation of a weak base does

not interact or bind as strongly as its neutral form of an analyte is extracted (Xie et al.,

2010).
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2.2.2.4 Equilibration temperature and time.

Phase separation and efficient pre−concentration can be influenced by optimal

equilibration temperature and time. Theoretically, the phase separation can be achieved

once the optimal equilibration temperature of the CPE is higher than the CPT of the

surfactant. If the temperature is lower than the CPT, two phases cannot be formed.

However, too high temperature may lead to the decomposition of analytes. It has also

been demonstrated that the analyte extraction efficiency and preconcentration in the

CPE increase as the equilibration temperature for phase separation is progressively

increased to above the CPT. Similarly, as the equilibration temperature increases; the

volume of surfactant rich phase decrease because the hydrogen bonds are disrupted and

dehydration occurs. Based on a physical point of view, the increase of temperature

provokes the dehydration of the hydrophilic groups of the surfactant molecules, an

increase of the aggregation number and the swelling of the micelles until the micellar

solution become turbid and the separation of the surfactant rich phase takes place

(Materna et al., 2001). Since longer equilibration times (> 30 min) do not have any

significant effect on the extraction, the equilibration time of 10 – 20 min is sufficient to

obtain good extraction in most work (Xie et al., 2010).

2.3 Cyclodextrins.

Cyclodextrins (CDs) have been known for nearly 100 years. In 1881, Villiers

first produced them by digesting the starch with Bacillus amylobacter and in 1903;

Schardinger demonstrated the cyclic structure of these compounds. CDs are cyclic

oligosaccharides derived from starch containing six (α−CD), seven (β−CD) and eight

(γ−CD) as shown in Figure 2.3 (Davis and Brewster, 2004).

In general, CDs are fairly soluble in water. They are produced as a result of

intramolecular trans glycosylation reaction from degradation of starch by cyclodextrin
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glucanotransferase enzyme (CGTase) (Singh et al., 2002). Supramolecular chemistry is

intriguing and potential for future functional molecular devices and nanoscience

(Zhang et al., 2011). Supramolecule is a system of two or more molecular entities held

together and organized by means of inter−molecular non−covalent binding interaction.

CDs are a class of supramolecules in the shape of a truncated cone or torus with

a hydrophilic exterior and a less polar cavity in the center that are ideally suitable to

accommodate various kinds of guest molecules into their cavities (Li et al., 2009; Xu et

al., 2012). The hydroxyl functions are oriented to the cone and the secondary hydroxyl

groups at the wide edge. The geometry of CDs gives a hydrophobic inner cavity having

a depth of ca. 7.0 Å, and an internal diameter of ca. 4.5, 7.0, and 8.5 Å for α−, β−, and

γ−CD, respectively. Various molecules can be fitted into the cavities of CDs to form

supramolecular inclusion complexes, which have been extensively studied as models

for understanding the mechanism of molecular recognition (Brewster et al., 2007; Li et

al., 2008).

Figure 2.3: Structural formulae of (a) alpha (α−CD), (b) beta (β−CD) and (c) gamma
(γ−CD) cyclodextrins (Davis and Brewster, 2004).
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β–Cyclodextrin (β–CD) is the most studied and most frequently used owing to

its cavity with an internal diameter of 6.5Å and a depth of 8Å. As shown in Figure 2.4,

the most characteristic feature of the β–CD molecule is its ability to form inclusion

compounds with various molecules, ions, polymers (including aromatic hydrocarbons,

volatile organic compounds, and metal), through host−guest interactions (Li et al.,

2012). Each substance which presents a steric complementary, even partial, with β−CD

cavity might be included. In general, β–CD constitutes a good compromise as its

hydrophobicity cavity and its rather flexible macrocycle present an intermediate size

between α−CD and γ–CD. Besides that, it is most accessible, the lowest−priced and

generally the most useful. The main properties of those cyclodextrins are given in Table

2.5 (Del Valle, 2004; Morin-Crini & Crini, 2013).

Table 2.5:
The properties of cyclodextrins (Del Valle, 2004; Morin-Crini & Crini, 2013).

Property α–Cyclodextrin β–Cyclodextrin γ–Cyclodextrin
Number of glucopyranose 6 7 8
Molecular weight (g/mol) 972 1135 1297
Solubility in water at 25˚C

(%, w/v)
14.5 1.85 23.2

Outer diameter (Å) 14.6 15.4 17.5
Cavity diameter (Å) 4.7-5.3 6.0-6.5 7.5-8.3
Height of torus (Å) 7.9 7.9 7.9
Cavity volume (Å3) 174 262 427

2.3.1 Inclusion complex.

The formation of inclusion complexes is the basis for applications of

cyclodextrins (CDs) in several fields, including spectrophotometric analysis and

chromatographic separation, as well as in the pharmaceutical, cosmetic, and food

industries. The most notable feature of CDs is their ability to form solid inclusion

complexes (host−guest complexes) with various molecules, ions and polymers

(including aromatic derivatives, dyes, polycyclic aromatic hydrocarbons, volatile
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organic compounds and metal), the stability of the complex depends on how the guest

molecule fits into the cavity of the CDs (Abay et al., 2005). Furthermore, the influence

of CDs on the aggregation of surfactants in aqueous solution has attracted increasing

attention in colloid science. CDs are able to form host−guest complexes with most

surfactants that have high binding constants by including the surfactants’ hydrophobic

tails into the CDs’ cavities. The CD−surfactant complexes are usually believed to be

soluble in water and unable to form aggregates because of the hydrophilic outer surface.

However, all the above examples are based on the well−known observation that CD

inclusion complexes have stronger hydrophilicity, and the studies were carried out at

the premicellar region or around the critical micelle concentration (CMC). This is

especially true for the investigation of complexation between CDs and surfactants, but

may not be true for aqueous surfactant solutions of higher concentration (Xu et al.,

2012).

Due to the CDs have a high density of hydroxyl groups which can interact with

functional groups of the encapsulated substrates giving additional stability to the

inclusion complex. In these complexes, a guest molecule is held within the cavity of

the CDs host molecule (Singh et al., 2002). Complex formation is a dimensional fits

between host cavity and guest molecule. The stability of the inclusion complexes

depends primarily on hydrophobic interactions and on size and shape considerations

(Leyva et al., 2001). Despite a hydrophilic surface, CDs contain a hydrophobic cavity.

It is the presence of this cavity that enables CDs to entrap hydrophobic molecules.

Entrapment or inclusion occurs without the formation of formal chemical bonds. The

main driving force of complex formation is the release of enthalpy−rich water

molecules from the cavity. Water molecules are displaced by more hydrophobic guest

molecules present in the solution attain an a polar − a polar association and decrease of

cyclodextrin ring strain resulting in a more stable lower energy state (Del Valle, 2004).
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The formation of an inclusion complex between β−CD molecule and aromatic solute

are shown in Figure 2.4.

Figure 2.4: A schematic representation showing the formation of an inclusion complex
between β−cyclodextrin molecule and aromatic solute (Li et al., 2012).

2.3.2 Application of β−cyclodextrin in extraction and separation techniques.

More recently, β−cyclodextrin (β−CD) has been proposed as an alternative agent

in order to enhance water solubility of hydrophobic compounds. The β−CD is a cyclic

oligosaccharide with seven glucose units, with is cavity structure, and can form an

inclusion complex with certain molecules through a host−guest interaction. It has a

low−polarity cavity within which organic compounds of appropriate shape and size can

form inclusion complexes. This property provides β−CD a capacity to increase the

apparent solubility of several hydrophobic pollutants such as chlorinated phenols,

nitro−aromatic compounds, PAHs, pesticides and thus their availability for

biodegradation. This intriguing property of β−CD has inspired considerable basic



33

research, applied science, and also use in a variety of products. Separations represent a

large area of analytical chemistry. It has found wide application as HPLC stationary

phases for separation of various compounds (Guo et al., 2009; Mitchell and Armstrong,

2004; Panda et al., 2006; Zhang et al., 2008). Masqué et al. (2000) have utilized

β−cyclodextrin bonded silica as a selective sorbent for on−line solid phase extraction of

4−nitrophenol. Also, Hu et al. (2005) have applied β−cyclodextrin bonded silica as a

coating material for solid phase microextraction of some phenolic compounds.

2.4 Ionic liquids.

The field of ionic liquids (ILs) has received an increasing amount of attention in

the past decade largely due to their unique and tunable physicochemical properties and

their versatility in various applications. The increased interest in ionic liquids by

chemists and technologists clearly is due to the utility of ILs as solvents for reaction

chemistry, including catalytic reactions. ILs is very simple molten salts. As salts they

are by essence made of cations and anions. They are composed of ions comprising a

relatively large asymmetric organic cation (i.e. alkyl pyridinium, dialkyl imidazolium

ions) and an inorganic or organic anion (i.e. halide, hexafluorophosphate,

tetraflurophosphate and ions based on fluorinated amides) (Mizuuchi et al., 2008).

ILs has been recognized as a possible environmentally benign alternative to

classical organic solvents, mainly due to their thermal stability and ability to solubilize a

large range of organic molecules and transition metal complexes. The desire for “green”

solvents for industrial processes is partially responsible for this, but also many chemists

now realize that ILs offer some unique properties as solvents (Kohoutová et al., 2009).

Furthermore, ILs solvents have the prospect for custom design of the solvent to meet

specific requirements for a particular reaction type (Wilkes, 2004).
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2.4.1 Physicochemical properties of ionic liquids.

Although the first room temperature ionic liquids (RTILs) were first observed in

the middle of the 19th Century, only since the 1980s the room temperature ILs attracted

a significant and growing interest. Now, ILs which is green solvents, have been studied

extensively due to their tempting properties such as negligible vapor pressure, wide

liquid range, high thermal stability, and ability to solvate compounds of widely varying

polarity (Yao and Anderson, 2009). Utilizing ILs is one of the goals of green chemistry

because they create a cleaner and more sustainable chemistry and are receiving

increasing interest as environmental friendly solvents for many synthetic and catalytic

processes. An intriguing characteristic is to fine tune the physical−chemical properties

by suitable choice of cations and anions. Therefore, ILs have been recognized as

“designer−solvents (Zhang et al., 2006).

ILs are generally, defined as a class of non−molecular ionic solvents with low

melting points. Compared to traditional metallic molten salts, such as sodium chloride

which possesses a melting point of 801°C, ILs exists as liquid below 100°C (Anderson

et al., 2006). ILs possesses their melting point equal to or lowers than room temperature

which is referred to as RTILs. The use of a solvent in industrial processes depends on

its price and on its physical properties, such as viscosity, density, and thermal stability.

In fact, it is convenient to have solvents with low viscosities to facilitate mixing and

with a large density difference in comparison with the other fluids used in the process to

facilitate the phase separation (Vidal et al., 2005).

Selected properties, such as thermal stability and miscibility, mainly depend on

the anion, while others, such as viscosity, surface tension and density, depend on the

length of the alkyl chain in the cation and/or shape or symmetry. Beside their low

melting point, they have a wide range of solubility, viscosity or density. The extremely
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low vapour pressure of most ILs is the main reason that renders them useful in green

chemistry. In chemical processes, they are easily recyclable and produce minimum

pollution. ILs vapour pressure is most often non−measurable at room temperature

(Berthod et al., 2008). The viscosities of ILs are governed largely by hydrogen bonding

and van der Waals−type interactions between the cation and anion. For

imidazolium−based ILs, there is often an increase in viscosity with increasing length of

the alkyl chain substituents on the cation. The viscosity of an ILs can be additionally

tuned by functionalized of the substituents on the cation. ILs derived from the

imidazolium cation tends to be more thermally stable than ammonium−based ILs. The

thermal stability of ILs can usually be improved by increasing the length of the alkyl

substituent on the cation. ILs are able to solubilize inorganic as well as organic

compounds (Berthod and Carda-Broch, 2004).

2.4.2 Application ionic liquids in separation and extraction techniques.

Recently, several researchers have reported the uses for RTILs in chemical

analysis. RTILs have been used as stationary phase in gas chromatography (Anderson

& Armstrong, 2005; Armstrong et al., 1999; Ding et al., 2004) and mobile phase in

liquid chromatography (He et al., 2003; Polyakova et al., 2006; Xiaohua et al., 2004).

RTILs were able to dissolve chiral selectors to make chiral stationary phases and they

were used as unique running electrolytes in the separation of the phenolic compounds

by capillary electrophoresis (Qin et al., 2003; Vaher et al., 2001; Vaher et al., 2002;

Vaher et al., 2011). Another direction for the use of RTILs as a solvent is extraction,

where non volatility could be an advantage in cases of large−scale processes, and RTILs

thus may be suitable candidates for replacement of volatile organic solvents in

liquid−liquid extraction processes (Koel, 2005; Visser et al., 2001; Wei et al., 2003).
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The interaction mechanisms between ILs and micelles have been investigated. It

was found that the properties of micellar solution such as critical micellization

concentration (CMC), aggregation number, aggregate size, and dipolarity of micellar

pseudo−phase can be altered by the addition of ILs. Although the modifications of these

properties are significant, their practical applications are very few. Besides, ILs has

received increasing attention in liquid−liquid extraction of metal ions because of their

unique chemical and physical properties which improves the extraction efficiency (Gao

et al., 2013). A possible strategy is to introduce ILs in CPE to improve the extraction of

organic pollutant in environment.

2.5 Synthesis of mono−functionalized β−cyclodextrin with ionic liquids.

In recent years, much attention has been paid to chemical separation techniques

and the design and synthesis of new extraction reagents for ions and molecules. This

attention results in part from environmental concern, efforts to save energy and

recycling at the industrial level. In this respect, the supramolecular chemistry has

provided a much better solution to the search for molecular structures that can serve as

building blocks for the production of sophisticated molecules by anchoring functional

groups oriented in such a way that they delineate a suitable binding site.

Native of β−CD and their hydrophilic, hydrophobic or ionic derivatives can be

used in the decontamination of wastewater, aquifers, air and soil to increase the

stabilization, encapsulation, separation and sorption of contaminants. This is mainly due

to the fact that the hydrophobic cavity in their structure can take up aromatics and other

hydrophobic organic molecules, providing ideal binding sites (Morin-Crini et al., 2013).

Although native β−CD are able to encapsulate many organic pollutants, this ability can

be enhanced in many cases by their derivatization. Each glucose unit that is part of the

macrocyclic ring of native cyclodextrins has two secondary hydroxyl groups on C2 and
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C3 position and one primary hydroxyl group on C6 position. However, the primary and

secondary hydroxyl groups may be functionalized with hydrophobic (i.e. methyl,

propyl) or hydrophilic groups (sulphate, phosphate, quaternary amine). Additional

interactions, such as − staking, dipole−dipole, ion−pairing, electrostatic and steric

repulsive effects can be introduced between the associated analytes and the

appropriately functionalized β−CD. In this way, the solubility, complex−forming

capacity and selectivity of β−CD towards certain analyte can be improved (Zhong et

al., 2006).

Modification of β−CD has important effects on separation and extraction

efficiency. The unique structures of β−CD, which have a cavity possessing a

hydrophilic external surface and a hydrophobic internal surface, make them useful in

extraction and separation processes. It is well known that a chemical modification of the

hydroxyl groups bring about changes in the shapes and sizes of their cavities, in their

hydrogen−bonding abilities and in other physical properties, as well as affecting their

molecular−recognition abilities (Araki et al., 2000). Currently, substituent

group−modified β−CDs can be divided into three types: the hydrophobic, the

hydrophilic and the charge groups. Introduction of substituent groups onto the rim of

β−CD can change the size of the cavity and form − interactions, dipole−dipole

interactions and electrostatic interactions, and it can increase hydrogen bonding

between hosts and guests (Zhou et al., 2010). Through modification, the applications of

β−CD are expanded. The β−CD are modified through substituting various functional

compounds on the primary and/or secondary face of the molecule. Modified β−CD are

useful as enzyme mimics because the substituted functional groups act in molecular

recognition. The same property is used for targeted drug delivery and analytical

chemistry as modified β−CD show increased enantiomer selectivity over native β−CD

(Del Valle, 2004).
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Due to many derivatized and all non−derivatized β−CD are soluble in water,

they are often used in aqueous environments as solubilizers of hydrophobic compounds

via inclusion complex formation. Under appropriate conditions, this ability also makes

them potentially useful agents for various type extractions and separations (Li et al.,

2008).

2.5.1 Application mono−functionalized β−cyclodextrin with ionic liquids in
extraction and separation techniques.

ILs, a kind of organic salts, are liquids at or near room temperature. They have

been widely used in many fields because of their negligible vapour pressure,

non−flammability, high thermal and chemical stability, high polarity, and wide

electrochemical. Besides, they can also be designed to be environmentally benign, with

large potential benefit for sustainable chemistry. Among their various applications,

separation is important and intriguing. Owing to the interaction of ILs with CDs,

separation processes of CDs and ILs have been applied in separation and extraction

methods as shown in Table 2.6.

Table 2.6:
Application β−cyclodextrin functionalized with ionic liquids (βCD−IL) in extraction
and separation technique.

βCD−IL Extraction and separation techniques References
3−alkylimidazolium and
pyridinium based
β−cyclodextrin−ionic liquid
(βCD−IL polymers).

Preparation of βCD−IL polymers was
achieved by an initial tosylation or
iodination of the primary hydroxyl
group at the C−6 position. These
polymers were tested to remove both
organic and inorganic pollutants from
water.

(Mahlambi
et al., 2010)

β−Cyclodextrin with
Molecular imprinted polymer
(β−CD−MIPs) and
cooperative effect of ILs.

βCD−MIPs have been applied for
separation of small molecules,
nanometer−scaled molecules and larger
bioactive molecules in non−aqueous
and aqueous media. ILs and CDs
together are being studied to apply into

(Zhang et
al., 2011)
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separation methods, e.g., CE and GC.
When CDs are running electrolytes of
CE, the addition of ILs can take
synergic or reverse effects on the
separation processes.

6−tosyl−β−cyclodextrin with
1,2−dimethylimidazole or
1−amino−1,2,3−triazole

Chiral stationary phases was obtained
by 6−tosyl−β−cyclodextrin with
1,2−dimethylimidazole or
1−amino−1,2,3−triazole, and bonded to
silica gel to be used in
high−performance liquid
chromatography. The separation
performances of these stationary phases
were examined with 16 chiral aromatic
alcohol derivatives and 2 racemic
drugs.

(Zhou et al.,
2010)

Permethylated
mono−6−(butylimidazolium)−
cyclodextrin (BIM-BPM) and

permethylated
mono−6−(tripropylphosphoni
um)−cyclodextrin
(TPP−BPM)

Ionic liquids are used to dissolve ionic
cyclodextrin derivatives to produce
new type of gas chromatographic chiral
stationary phase.
The new ionic liquid−based stationary
phase exhibits broader
enantioselectivities, up to seven time’s
higher efficiencies, and greater thermal
stabilities. The most profound
separation enhancements are usually
found for more polar analytes.

(Huang et
al., 2010)

6−O−monotosyl−6−deoxy−β−
cyclodextrin with
1−benzylimidazole
(βCD−BIMOTs−TDI)

βCD−BIMOTs−TDI is a macroporous
material. This material was used as
SPE sorbent for extraction of phenols
in river water samples by using Gas
Chromatography−Flame Ionization
Detector (GC−FID).

(Raoov et
al., 2014)

‘Table 2.6, continued’
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CHAPTER 3

METHODOLOGY

3.1 Chemicals and materials.

Dow Corning DC193C, also known as polyethyleneglycol (PEG) silicone, was

supplied by Dow Corning (Shanghai, China). Figure 3.1 shows the chemical structure

of the PEGs. The values of x, y and molecular weight of these compounds were

available from the manufactures. 2,4−dichlorophenol, 2,4,6−trichlorophenol and

4−nitrophenol were purchased from Sigma−Aldrich, Malaysia. Figure 3.2 shows the

absorption of the UV−Vis spectra for 2,4−dichlorophenol (molecular weight: 163 g

mol-1, λmax: 285 nm), 2,4,6−trichlorophenol (molecular weight: 197.45 g mol-1, λmax:

295 nm) and 4−nitrophenol (molecular weight: 139.11g mol-1, λmax: 318 nm).

Figure 3.1: Structural formulae of silicone surfactant (DC193C) (Zain et al., 2014).
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Figure 3.2: The absorption of the UV−Vis spectra for individual phenolic compounds
at the respective λmax in the surfactant rich phase after the CPE.

Standard stock solutions of chlorophenols (1000 mg L-1) were prepared in

methanol and 4−nitrophenol (1000 mg L-1) in distilled water. The working solutions

were freshly prepared daily by an appropriate dilution of the stock solutions. For all

experiments, the surfactant and phenolic compounds were used without further

purification. HCl and NaOH were used for pH adjustment. Na2SO4 was prepared by

dissolving an appropriate amount in distilled water.

β−CD is commercially available and was purchased from Acros (Acros, Geel,

Belgium) (99%). 1−benzylimidazole was supplied from Sigma Aldrich (Aldrich,

Buches SG, Switzerland). The absorption of the UV−Vis spectra imidazolium−based of

1−benzylimidazole (molecular weight: 158.20, λmax: 210 nm). Other reagents and

chemicals were of the analytical reagent grade and were used and received without

further purification. Double distilled water was used throughout the experiments.

N,N−Dimethylformamide (DMF) and hexane anhydrous were purchased form Merck

(Merck, New York, USA). p−Toluene sulfonic anhydride was prepared according to a

literature procedure (Zhong et al., 1998) and was used without further purification. The

synthesis of β−cyclodextrin functionalized with ionic liquid will be discussed in Section

3.1.1.
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3.1.1 Synthesis of β−cyclodextrin functionalized with ionic liquids (βCD−IL).

βCD−IL was prepared by reacting 6−O−Monotosyl−6−deoxy−β−cyclodextrin

(βCD−OTs) with 1−benzylimidazole (BIM). βCD−OTs was prepared according to

(Zhong et al., 1998). Since tosyl is a good leaving group, imidazole can easily undergo

nucleophilic substitution. The reaction was carried out in DMF solvent since βCD−OTs

and BIM form a homogeneous solution. The preparation of mono−functionalized β−CD

with BIM (βCD−IL) was done according to the following procedure (Ong et al., 2005),

as shown in Figure 3.3: Freshly dried βCD−OTs (1.00 g, 78 mmol) and appropriate

amount of BIM (10 mole equivalent) in excess amount were dissolved in anhydrous

DMF (40 mL) and the solution was stirred at 90ºC in an inert atmosphere. After two

days, the resultant solution was cooled to room temperature and slowly added into

acetone. Then the mixture was stirred for 30 min and thereafter filtered and washed in

excess acetone.

The obtained product was recrystallized three times from hot water to get the

final product, as a white precipitate. Figure 3.3 shows the reaction to form of

compound, βCD−IL in D6−DMSO solvent. The formed product was soluble in water

and several organic solvents (DMF, DMSO and ethanol). Protons of imidazole ring (Hf,

He, Hd) appeared in the downfield region since the protons are de−shielded upon

functionalization. New peak is observed in proton (H6*, 3.95 ppm) and carbon signal

(C6*, 45.2 ppm), belongs to the substituted of β−CD.

IR/KBr, cm–1 3297 (OH), 2922 (C−H), 1652 (C=C), 1152 (C−N). 1H

NMR/ppm, DMSO−d6 Hf (9.3, s), He (7.94, s), Hd (8.20, s), Hc (7.49, s), Hb (7.74, t), Ha

(7.46,s), Hg (5.18, s), H8 (7.4, d), H9 (7.1, d), OH2−OH3 (5.5−5.9, m), H1 (4,81, s), OH6

(4.4−4.6, m), H6* (3.95), H3, H5, H6 (3.4−3.60), H2−H4 (3.2−3.4, m), H11 (2.07, s). 13C

NMR/ppm, DMSO−D6 Ca (127), Cb (123.4), Cc (128.3), Cd (128), Ce (119), Cf (136.9),
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Cg (52), Ch (137.8), C7 (145.26), C10 (137.3), C9 (128.7), C8 (125.6), C1 (101.8), C4

(81.16), C2 (73.27), C3 (71.6), C5 (69.37), C6 (60.03), C6* (45.2), C11 (21.97). CHNS

(%) C (38.2), H (6.67), S (0.47), N (1.0). Percentage yield (90%).

Figure 3.3: Preparation of mono−functionalized β−cyclodextrin (βCD−BIMOTs).

3.2 Instrumentation.

A Shimadzu (Kyoto, Japan) Model UV−1650 UV–Vis spectrophotometer was

used for the measurement of the phenolic compounds. A wise bath was used to maintain

CPE system at the desired temperature. The pH value of the sample solution was

determined by pH meter (Hanna instrument). A 15 ml calibrated centrifuge tube was

used (Copen, Malaysia). Fourier transform infrared (FT−IR) spectra for characterization

of the βCD−IL monomers were recorded on a Perkin Elmer RX1 FT−IR (Perkin Elmer,

Waltham, MA, USA) between 4000 and 400 cm-1 with a resolution of 2 cm-1 in KBr

pellets. 1H NMR, 13C NMR and 2D NOESY spectra were performed on an AVN 600

MHz (Bruker, Fallanden, Switzerland) for characterization of the βCD−IL monomers

and analysis of inclusion complex. An elemental analysis of the βCD−IL monomers

was determined with a Perkin Elmer CHNS−2400 analyzer (Perkin Elmer, Waltham,

MA, USA).
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3.3 Cloud point extraction (CPE) system.

3.3.1 Procedure of CPE system.

An aliquot of 1.0 mL of a sample or standard solution containing the analyte (10

mg L-1), surfactant of DC193C (0.5 v/v%) and 1.5 mol L-1 of Na2SO4 at pH 7.0 were

mixed in tapered glass tubes and the phase separation was induced by heating the

content in a water bath at 50ºC for 15 minutes. The separation of the phases was

achieved by centrifugation for 2 minutes at 1500 rpm. On cooling in an ice−bath for 5

minutes, the surfactant rich phases became viscous. Then, the surfactant rich phase at

the top layer was separated using a syringe to minimize the possibility of

cross−contamination of analyte from the corresponding aqueous phase. Subsequently,

2.0 mL of de−ionized water was added to the surfactant rich phase in order to decrease

its viscosity. It will also make the final volume feasible to transfer into the optical cell

for the measurement each phenolic compound spectrophotometrically at the respective

maximum absorption against a reagent blank prepared under similar conditions.

3.4 Cloud point extraction with β−cyclodextrin as a modifier (CPE−βCD)
system.

3.4.1 Procedure of CPE−βCD system.

The same procedure as in Section 3.3.1 was applied in the CPE−βCD system but

in the presence of β−CD modifier for the phenolic compounds. The modifier of β−CD

(10 mg L-1, 100 µL) was added in the CPE−βCD system.
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3.5 Cloud point extraction with β−cyclodextrin functionalized with ionic liquids
as modifier system (CPE−βCD−IL).

3.5.1 Procedure of CPE−βCD−IL system.

In the CPE−βCD−IL system, the same procedure was applied as the CPE system

(Section 3.1.1.). The modifier of βCD−IL (10 mg L-1, 100 µL) was added in the

CPE−βCD−IL system.

3.6 Optimization of parameters study.

The classical optimization (one−factor−at−a−time) was carried out by the

several parameters which affect the extraction efficiency of the phenolic compounds in

the three systems of CPE. In this method, the experimental responses have been

observed by this approach. The effect of one factor at time (OFAT) means that only one

factor is changed, whereas the others parameters are remained constant. Although, this

approach does not ensure at all the real optimum will be conformed, but it would be

valid only if the variables to be optimized would be totally independent from each other

(i.e. no interactive effects among the variables). Nevertheless, the classical optimization

certainly leads at least to an improvement of the analytical method. In as much as the

extraction efficiency of the CPE depends on dual factors, some of regarding the prior

formation of a complex with sufficient hydrophobicity and the other for the formation

of micelles to obtain the desired extraction. Consequently, the effects of pH,

concentration of surfactant, modifier, salt and analyte, volume of surfactant and

modifier, temperature and incubation time and water content were selected in this study.

In the optimization procedure of impact parameters, each data point was obtained from

the mean value of triplicate extractions.
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3.6.1 Effect of DC193C surfactant concentration.

The effect of DC193C concentration was evaluated in the range 0.1 − 0.8 (v/v

%). Then, the mixture solution containing DC193C surfactant, 10 mg L-1 of each

phenolic compounds and 1.5 mol L-1 of Na2SO4 was induced by heating the content in a

water bath at 50ºC for 15 minutes. The same procedure was carried out for each analyte

in both CPE−βCD and CPE−βCD−IL systems but in the presence of 100 µL of β−CD

and βCD−IL modifier at 10 mg L-1 concentration, respectively.

3.6.2 Effect of DC193C surfactant volume.

Different volumes of DC193C (0.5 v/v %) ranging from 0.1 − 1.0 mL were used

in the CPE system at previously optimum condition for the phenolic compounds. The

same procedure was carried out for each analyte in the CPE−βCD and CPE−βCD−IL

systems but in the presence of 100 µL of β−CD and βCD−IL modifiers at 10 mg L-1

concentration, respectively.

3.6.3 Effect of pH.

In the CPE system, to study the effect of pH, 10 mg L-1 of each phenolic

compound was investigated by varying the initial pH of the solutions from pH 2 to 9

and mixed with 0.5 v/v% of DC193C and 1.5 mol L-1 of Na2SO4. The phase separation

of solutions was induced by heating the content in a water bath at 50ºC for 15 minutes.

The pH was adjusted by adding HCl and NaOH. The same procedure was carried out

for each analyte in the CPE−βCD and CPE−βCD−IL systems but in the presence of 100

µL of βCD and βCD−IL modifiers at 10 mg L-1 concentration, respectively.
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3.6.4 Effect of equilibration temperature and incubation time.

The solution containing the analyte (10 mg L-1), surfactant of DC193C (0.5 v/v

%), and 1.5 mol L-1 of Na2SO4 at pH 7.0 were mixed in tapered glass tubes and the

phase separation was induced by heating the content in a water bath by varying the

temperature from 25ºC to 80ºC for 15 min in the CPE system for each phenolic

compounds. The same steps were taken in the CPE−βCD and CPE−βCD−IL systems in

the presence of 100 µL of βCD and βCD−IL modifiers at 10 mg L-1 concentration,

respectively.

The effect of incubation time also was investigated in the range 5 to 30 minutes

at the previous optimum condition in the different systems for phenolic compounds.

3.6.5 Effect of salt concentration.

In this CPE work, different concentrations of Na2SO4 salt, ranging from 0.5 to

2.0 mol L-1 were added to the solution that containing 10 mg L-1 of each phenolic

compounds at pH 7 and 0.5 v/v % of DC193C. Then, the mixture was heated at 50ºC

for 15 minutes to induce the phase separation. The same process was carried out in the

CPE−βCD and CPE−βCD−IL systems in the presence of 100 µL of β−CD and βCD−IL

modifiers at 10 mg L-1 concentration, respectively.

3.6.6 Effect of modifier concentration.

The effect of the β−CD and βCD−IL modifier concentration on extraction of

phenolic compounds was studied in the concentration range of 2 − 10 mg L-1. The
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others parameters were kept constant as the previous optimum condition for each

phenolic compounds in the CPE−βCD and CPE− βCD−IL systems.

3.6.7 Effect of modifier volume.

The optimum concentration of the β−CD and βCD−IL modifiers was used in the

CPE−βCD and CPE−βCD−IL systems, respectively, by different volumes of modifier

(β−CD or βCD−IL; 10 mg L-1) ranging from 50 – 500 µL were used in this study at the

previous optimum conditions for each phenolic compounds.

3.6.8 Effect of analyte concentration.

Each phenolic compound was studied on the effect of analyte concentration in

the range of 2 to 20 mg L-1 at pH 7 in the three CPE systems. The other optimized

parameters were kept constant.

3.6.9 Water content.

The water content of the surfactant rich phase after the extraction was measured

by drying surfactant rich phase at 353 K until no mass was observed in the three CPE

systems for the phenolic compounds. Water content was obtained by calculating the

weight differences of the surfactant rich phase before and after drying. All the data

given in this study were the average of triple measurements.

3.7 Isotherm study.

To study the effect of initial concentrations on the phenolic compounds uptake

in the three CPE systems, the initial concentrations were varied from 2 to 20 mg L-1.
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The initial pH of the solution was adjusted by adding either 1.0 M HCl or 1.0 M NaOH

to pH 7 for each analyte in the three CPE systems whereas the other parameters such as

the concentration of DC193C surfactant, salt and modifier, equilibration temperature

and incubation time were remained constant.

3.8 Thermodynamic study.

The effect of solution temperature on the adsorption process was studied by

varying the adsorption temperature at 25, 30, 40, 50, 60, 70 and 80ºC by adjusting the

temperature controller of the water bath for each phenolic compounds in the three CPE

systems, while other parameters such as concentration of DC193C surfactant, salt,

modifier and analyte; incubation time were remained constant while the each analyte

solution pH was adjusted to pH 7 by adding either 1.0 M HCl or 1.0 M NaOH.

3.9 Preparation and characterization of inclusion complex.

3.9.1 Inclusion complexes of β−CD, non−ionic surfactant DC193C and 4−NP.

The amount of non−ionic surfactant DC193C, β−CD and 4−NP (pH 7) at room

temperature was prepared in equimolar; 1.00 g (β−CD), 0.12 g (4−NP) and 2.73 g

(DC193C) were blended together in a mortar with sufficient in ethanol to produce a

paste by physical mixing, kneading method. The kneading operation was kept for at

least 40 minutes at room temperature. At the end of the reaction, a great deal of milky

liquid, inclusion complex of the 4−NP, DC193C and β−CD was obtained. Then, the

product was stored in a glass vial in vacuum desiccators. After drying, the milky

solution of complex was obtained. 1H NMR and 2D NOESY spectra were recorded on

AVN 600 MHz and DMSO−d6 was used as a solvent.
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3.9.2 Inclusion complexes of βCD−IL, non−ionic surfactant DC193C and 4−NP.

The inclusion complexes of βCD−IL−DC193C−NP were prepared in

equimolar; 1.00 g (βCD−IL), 0.10 g (4−NP, pH 7) and 2.73 g (DC193C) at room

temperature. These substances were blended together and next procedure applied was

similar to the procedure in Section 3.9.1.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Optimization of parameters in the three CPE systems for the phenolic
compounds.

The main variables affecting the extraction process, such as pH, concentration of

DC193C surfactant, modifier, salt and analyte, equilibration temperature and time,

volume of DC193C surfactant and modifier and water content were optimized. All the

data given in this study were the average of triple measurement. The extraction

efficiency of the phenolic compounds by DC193C surfactant from sample was

calculated using an equation as shown in Eq. (1) (Chadha et al., 2011);

Extraction efficiency (%) = CsVs x 100

CoVo

= CoVo − CwVw x 100

CoVo

(1)

where, Co represents the concentration of the phenolic compounds in the initial sample

of volume Vo, Cw represents the concentration of the phenolic compounds in the

aqueous phase of volume Vw, and Cs, represents the concentration of the phenolic

compounds in the surfactant rich phase of volume Vs.
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4.1.1 Effect of DC193C surfactant concentration.

It is desirable to use a minimum amount of DC193C surfactant for a maximum

extraction of the phenolic compounds. A successful of the CPE should be maximized

the extraction efficiency by minimizing the phase volume ratio (Vs/Vo). The amount of

DC193C surfactant not only affected the extraction efficiency, but also the volume of

the surfactant rich phase. The effect of DC193C surfactant concentration on extraction

efficiency in the three CPE systems was evaluated in the range 0.1 − 0.8 (v/v %) for the

phenolic compounds.

As shown in Figure 4.1, the similar trend was observed for the phenolic

compounds in the three CPE systems. These results indicated that the optimum

extraction efficiency was obtained for the concentration of DC193C surfactant starting

from 0.5 (v/v %) and remained constant up to 0.8 (v/v %) for the phenolic compounds

in the three CPE systems. The extraction efficiency and the volume of the surfactant

rich phase (Vs) increased on the increasing of DC193C surfactant concentration up to

0.5 (v/v %) and remained constant up to 0.8 (v/v %).

An increase in the surfactant concentration also increases the volume of the

surfactant rich phase in order to maintain the material balance, as the concentration

surfactant in the dilute phase remains almost constant. Therefore, by increasing of

DC193C surfactant concentration, the number of hydrophobic micelles increased and

caused responsive increase of extractability of DC193C surfactant (Purkait et al., 2004).

The extract was therefore more diluted when higher amount of surfactant were used,

resulting in loss of sensitivity with the increase of DC193C surfactant concentration

above 0.5 (v/v %) due to the increased viscosity of the surfactant rich phase (Ghaedi et

al., 2009). An excessive amount of DC193C surfactant increases the viscosity of the

surfactant rich phase which lowers the diffusivity of the phenolic compounds and the
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extraction rate through the highly viscous phase (Balasubramanian and Venkatesan,

2012).

At concentration below this value (0.5 v/v %), the extraction efficiency of the

phenolic compounds was low because there are few molecules of surfactant entrapping

the phenolic compounds quantitatively. The same phenomena were observed in the

addition of β−CD and βCD−IL modifiers. To fulfill the “environmentally benign”

extraction, a low concentration of DC193C, 0.5 (v/v %), was selected for use in the

three CPE systems in this work.

Figure 4.1: Effect of DC193C surfactant concentration on extraction efficiency in the
three CPE systems for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP.
Condition: 10.0 mg L-1 of analyte concentration, pH 7.0, 10.0 mg L-1 of modifier
(β−CD; βCD−IL), 1.5 mol L-1 of Na2SO4 at 50ºC.
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‘Figure 4.1, continued’.

4.1.2 Effect of DC193C surfactant volume.

Figure 4.2 depicts the effect of the variation DC193C surfactant volume on the

percentage extractions of the phenolic compounds in the three CPE systems. Different

volumes of DC193C surfactant (0.5 v/v %) ranging from 0.1 to 1.0 mL were used in

this study. As shown in Figure 4.2 (a) and (b), the same trend was observed for

2,4−DCP and 2,4,6−TCP on the percentage of extraction in the three CPE systems. The

percentage of extractions in the three CPE systems increased by increasing the volume

of DC193C surfactant up to 0.5 mL and suddenly decreased at higher amounts than 0.5

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
E

xt
ra

ct
io

n 
ef

fi
ce

in
cy

, %

Concentration of DC193C (v/v%)

(b)

CPE
CPE-βCD
CPE-βCD-IL

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
xt

ra
ct

io
n 

ef
fi

ci
en

cy
, %

Concentration of DC193C (v/v%)

(c)

CPE

CPE-βCD

CPE-βCD-IL



55

mL. This is because of the fact that the analytical signal is observed to deteriorate due to

the increase in the final volume of the surfactant. Meanwhile, as shown in Figure 4.2

(c), the same trend was also observed but there was no significant effect in the

CPE−βCD system by increasing the volume of DC193C compared to both CPE and

CPE−βCD−IL systems. The results indicate that the native of β−CD modifier did not

really affect the extraction performance of 4−NP compared to the functionalized of

β−CD. Therefore, 0.5 mL of 0.5 v/v % DC193C surfactant was used as the optimum

amount in the three CPE systems for the phenolic compounds in this work.

Figure 4.2: Effect of DC193C volume on extraction efficiency in the three CPE
systems for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition:
10.0 mg L-1 of analyte concentration, pH 7.0, 0.5 (v/v %) DC193C, 10.0 mg L-1 of
modifier (β−CD; βCD−IL), 1.5 mol L-1 of Na2SO4 at 50ºC.
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‘Figure 4.2, continued’.

4.1.3 Effect of pH.

In the CPE system, pH plays an important role in the extraction of organic

compounds in environmental water samples because the pH value of the solution

determines the existing state of analyte. This behavior can be related to the charged

characteristics of the phenolic compounds which determine the extraction efficiency of

the analyte of interest. In this work, the effect of pH on extraction performance of

phenolic compounds in the three CPE systems within the range 2 to 9 was investigated

and the results were shown in Figure 4.3. This figure illustrates the dependence of

extraction efficiency against pH in the three CPE systems for 2,4−DCP (pKa 7.7),

2,4,6−TCP (pKa 7.4) and 4−NP (pKa 7.2). The acidity of sample solution can also

influence the extraction efficiency of weak organic base or acid. The sample solution

was often adjusted to appropriate acidity to de−ionize analytes for obtaining higher

extraction efficiency (Peng et al., 2007).

Our results indicate that the maximum extraction of the three CPE systems were

achieved at pH 7 for all phenolic compounds, where the uncharged form of target
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analyte prevails (Mashhadizadeh and Jafari, 2010). In the CPE system, all the phenolic

compounds were protonated at lower pH (less than pKa value) and their ionic

characteristics increased, leading to less solubilization of the phenolic compounds in the

hydrophobic micelles due to the interaction of the protons with polyethylene oxide. At

pH > 7 (above pKa value), the extraction efficiency of the phenolic compounds

decreases, and this may be because of the formation of phenolate ion, which leaded to

the disappearance of hydrogen bond (Zhou et al., 2014). The molecular forms of the

phenolic compounds at different pH were shown in Table 4.1. According to Frankewich

and Hinze (1994), the ionic form of a neutral molecule formed upon the deprotonation

of a weak acid (or protonation of a weak base) normally does not interact with, and

bind, the micellar aggregate as strongly as does its neutral form due to the

non−dissociated type of non−ionic surfactant.

Similar trend were observed in the CPE−βCD and CPE−βCD−IL systems. In the

CPE−βCD system, all the phenolic compounds showed a decline at below pH 5

(protonated) and above pH 7 (deprotonated) as shown in Table 4.1. Some research

findings have proved that the phenolic compounds could form inclusion complex with

β−CD modifier. It was established that the hydrophilic guest molecules (protonated or

deprotonated) were unfavorable to complex with β−CD. Thus, neutral forms of the

phenolic compounds were favorable to form inclusion complex (Abdel Salam and Burk,

2008; Li et al., 2010; N. Li et al., 2012). Meanwhile, in the CPE−βCD−IL system, the

extraction of phenolic compounds was low at below pH 5 due to electrostatic repulsion

between imidazolium ring of IL and protonated of phenolic compounds (Pan et al.,

2011). However, the low extraction at high pH (pH > 7) was due to the presence of high

concentration of hydroxyl group competing with the negative phenolate ions on the

positive charge of imidazole ring of IL (Wang et al., 2013). As reported by Barraza et

al. (2004), the analytes of the phenolic compounds is found completely in the neutral
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form at pH 5, whereas, most of the phenolic compounds have been transformed to its

phenoxide ion at pH 8.

The sorption mechanism was probably simultaneously dominated by hydrogen

bonding, − interaction, electrostatic attraction between phenolic compounds and

imidazolium ring of IL and inclusion complex as discussed in Section 4.2. Therefore,

pH 7 was chosen for the subsequent analysis for all the phenolic compounds in the three

CPE systems.

Figure 4.3: Effect of pH on extraction efficiency in the three CPE systems for the
phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition: 10.0 mg L-1 of
analyte concentration, 0.5 (v/v %) DC193C, 10.0 mg L-1 of modifier (β−CD; βCD−IL),
1.5 mol L-1 of Na2SO4 at 50ºC.
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‘Figure 4.3, continued’.

Table 4.1: The molecular structure of the phenolic compounds at different pH.
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4.1.4 Effect of equilibrium temperature and time.

Temperature is the key factor and the driving force to make modifier and

surfactant disperse into the sample solution. It is desirable to have the lowest possible

equilibration temperature and the shortest incubation time, which compromise

completion of the reaction and efficient separation of phase. The lowest possible

equilibration temperature should be used to avoid unstable and decomposition of the

compound at elevated temperature (Giokas et al., 2012). In the CPE process, the cloud

point can be altered with increasing length of the hydrocarbon and sometimes

dramatically, in the presence of acids or bases, salts and organic additives (Quina and

Hinze, 1999). A series of experiments were designed from 25ºC to 80ºC for the

optimization of temperature in the three CPE systems for the phenolic compounds.

The results were exhibited in Figure 4.4, the extraction efficiency increase when

the temperature increases from 25ºC to 50ºC and almost constant up to 80ºC in the CPE

system for all phenolic compounds. The temperature affects the interaction of analyte

and surfactant in the both phases, decreasing the hydration of solutes i.e., the phenolic

compounds and DC193C surfactant in the aqueous phase and surfactant rich phase. Due

to that, depending upon experimental conditions, an increase in temperature can cause

an increase or a decrease in the extraction of the phenolic compounds (Tatara et al.,

2005). It is well known that, the critical micelle concentration (CMC) decreases at

higher temperature. Above CMC, surfactant monomers accumulate to form micelles.

Moreover, non−ionic DC193C surfactant becomes relatively more hydrophobic at

higher temperature because of an equilibrium shift that favors dehydration of the ether

oxygens (Purkait et al., 2006a).

Meanwhile, in CPE system with both modifiers, the extraction efficiency was

found to gradually increase when the temperature increases from 25ºC to 40ºC and
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almost constant up to 70ºC. The extraction of the phenolic compounds decreased at

above 70ºC. As shown in Figure 4.4, CPE−βCD and CPE−βCD−IL systems have higher

percentage of extraction to CPE system without modifier between the range of 40ºC to

70ºC due to stability of complex between the phenolic compounds with β−CD or

βCD−IL modifiers. However, above 70ºC, the decomposition of the complex occurs,

thus, decreasing the extraction of the phenolic compounds. At below 40ºC, the

extraction of the phenolic compounds was lower due to the performance of dispersing

of β−CD and/or βCD−IL modifier was poor (Zhou et al., 2011).

As reported by Zhou et al., (2011), the rise temperature has bi−functions. One of

the functions is the rise of temperature has enhanced the transferring rate of the phenolic

compounds and β−CD and/or βCD−IL modifier into the surfactant rich phase. Another

function is it also enhances the migrating rate of the phenolic compounds out from

β−CD and/or βCD−IL’s cavity as temperature reached 70ºC and above (Zhou et al.,

2011). The fact that temperature gives more than one effect upon cyclodextrin

complexes shows how important it is in the CPE system with β−CD and/or βCD−IL

modifier. This can be supported by Del Valle (2004), heating can increase the solubility

of the complex but it also destabilizes the complex. These effects often need to be

balanced. The thermal stability of β−CD inclusion complexes varies with the different

guest molecule; especially if the guest is strongly bound or the complex is highly

insoluble (Del Valle, 2004; Ratnasooriya and Rupasinghe, 2012).

By adding of the modifier and salt into CPE process, the cloud point of DC193C

surfactant can be altered to room temperature where the two phases can be formed even

at room temperature. Therefore, equilibrium temperature at 50ºC was selected as an

operating temperature in this study for the three CPE systems for all phenolic

compounds.
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Figure 4.4: Effect of temperature on the extraction efficiency in the three CPE systems
for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition: 10.0
mg L-1 of analyte concentration, pH 7.0, 0.5 (v/v %) DC193C, 10.0 mg L-1 of modifier
(β−CD; βCD−IL), 1.5 mol L-1 of Na2SO4.
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compounds in the three CPE systems. The extraction efficiency declined for the

phenolic compounds in the three systems as the incubation time exceeded 15 minutes,

which was probably due to the stability of the phenolic compounds, DC193C surfactant

and complex decreasing (Wen et al., 2013). Hence, 15 minutes at 50ºC was chosen as

an incubation time for the phenolic compounds in the three CPE systems.

Figure 4.5: Effect of incubation time on the extraction efficiency in the three CPE
systems for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition:
10.0 mg L-1 of analyte concentration, pH 7.0, 0.5 (v/v %) DC193C, 10.0 mg L-1 of
modifier (β−CD; βCD−IL), 1.5 mol L-1 of Na2SO4 at 50ºC.
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4.1.5 Effect of salt concentration.

In most sample pretreatment techniques, the addition of salt often increases the

extraction performance due to the salting out effect. Previous works proved that the

addition of salt can improve the extraction efficiency in the CPE (Wang et al., 2007;

Wei et al., 2008). This is because salt acts as “drying agent”, causing partial

dehydration which occurs by the breaking the hydrogen bonds with water molecules for

both surfactant and phenolic compounds. Furthermore, the addition of salt induces the

phase separation in the CPE by heating the mixture containing the surfactant up to a

temperature above the cloud point. The salting−out effect of salt was adopted as an

alternative to induce phase separation in the aqueous solutions of DC193C surfactant.

In this work, salts which were used in the CPE included NaCl, Na2SO4, K3PO4,

KCl and KI. The effect of salting−out electrolytes is mainly due to the dehydration of

the PEGs chain by cation and increasing water molecule self−association by anions.

However, the CPE systems had different behavior against the type of salt. Na2SO4 can

form the two−phase system when the concentration of the salt is in the range of 0.5 −

2.0 mol L-1. However, the other salts cannot form the two−phase system ≤ 2.0 mol L-1

such as NaCl, K3PO4, KCl and KI. This phenomenon is probably a solvophobic one.

The kosmotropic ions, e.g. SO4
2−, Na+ and PO4

3−, have stronger interactions with water

molecule than water itself. Therefore, the ions are capable of breaking water−water

hydrogen bonds and beneficial to the phase separation formation.

However, the chaotropic ions, e.g. Cl−, K+, I− have the opposite effect because of

their exhibiting weaker interactions with water than water itself and thus interfering

little in the hydrogen bonding of the surrounding water. The effect of the cation nature

is usually smaller than that of the anion. According to Ferreira and Teixeira (2010), the

salting‒out ability of the cations follows the Hofmeister series (Na+ > K+) and can be
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related to the Gibbs’ free energy of hydration (ΔGhyd). Comparing the cation ΔGhyd

(−89.6 kcal.mol-1 for Na+ and −72.7 kcal.mol-1 for K+) it is possible to confirm that

(Na+) is the most kosmotropic ion. Kosmotropic ions have large negative ΔGhyd due to

the resulting structured water lattice around the ion, and therefore the salting−out effect

of Na+ is greater than K+ (Ferreira and Teixeira, 2010). In general sulphate ion (SO4
2−);

as it is well established fact that anion has marked influence compared to that of cation.

It has a strong influence on the structure of the water and the hydrogen bonding

between the real oxygen of polyethylene oxide (PEO) chain and water. The interaction

between PEO and sulphate ion in water can be explained as follows: The water

surrounding the sulphate ion is polarized on the ionic field, resulting in a low free

energy, while the water in the PEO hydration shell is in a high free energy state because

of its unfavorable entropy contribution. As a sulphate ion approaches the PEO, the

amount of the intervening water decreases, leading to a repulsive force between the

sulphate ion and PEO (since the  PEO is far less polarizable than water). This

progressive dehydration of PEO disrupts hydrogen bonds between the ether oxygen of

the copolymer molecules and water or transformation of a polar PEO conformation to a

non−polar gauge formed at higher salt concentration (Kadam et al., 2010). Therefore,

Na2SO4 has been chosen due to its ability to form the two phases of separation.

The effect of salting out in the three CPE systems was investigated over a

sodium sulphate concentration in range of 0.5 to the 2.0 mol L-1 for the phenolic

compounds. The experimental results were demonstrated in Figure 4.6. As can be seen,

the extraction efficiency of the CPE system for the phenolic compounds increases with

increasing in Na2SO4 concentration from 0.5 to 1.5 mol L-1 and almost constant above

1.5 mol L-1 due to the concentration of the salt becomes saturated, causing no changes

on the extraction efficiency, compared to the concentration of salt at 1.5 mol L-1.

Meanwhile, in the CPE−βCD system, the extraction efficiency of phenolic compounds
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increases from 0.5 to 1.5 mol L-1 and then, slightly decrease above this range

concentration of Na2SO4 up to the 2.0 mol L-1. However, different trend was observed

in the CPE−βCD−IL system, where, the extraction efficiency of phenolic compounds

increases and was started to become constant from the 0.5 mol L-1 until 2.0 mol L-1

concentration of the Na2SO4.

Based on these observations, the concentration of Na2SO4 at 1.0 mol L-1 already

shows a good enough to obtain satisfactory result for the extraction of phenolic

compounds in the CPE−βCD and the CPE−βCD−IL systems. This is because of the

phase separation was induced faster at equilibrium condition in the presence of modifier

compared to the CPE system without modifier. The β−CD modifier also plays a role in

terms of its ability to act as water structure maker (kosmotroph) as well as

functionalized β−CD modifier. Kosmotrophs decrease the CMC by removing water

molecules surrounding the micelles, hence increasing the hydrophobic interactions

which affect the CPT by two ways: (a) decrease of hydration, and (b) making easy

approach of micelles to each other, leading the formation of larger micelles (Rub et al.,

2012).

In the presence of ILs, Parmar et al. (2012) reported that ILs is hydrophobic and

relatively less soluble in water. They contributed this to the fact that βCD−IL modifier

may align itself along with DC193C within the micelles through hydrophobic

interactions. The micelle size of DC193C increases as the electrostatic repulsion

between PEO groups of DC193C is increased due to the permeation of imidazolium

cation and forms bigger aggregates. This may cause expulsion of water from the

micelles causing contraction of size. The presence of βCD−IL modifier within the

micelles results in enhanced dipolarity with significantly altering CPT, micelle size and

aggregation number. This may turn out to be useful in faster induced phase separation

(Parmar et al., 2012). In addition, the experiment results showed that, with increasing
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concentration of Na2SO4 (0.5 − 1.5 mol L-1), the extraction efficiency increase due to

more DC193C surfactant and modifier were enriched in the surfactant rich phase. This

approach was compatible with the UV−visible detection even by adding salts under

saturated conditions to the surfactant solution (Mahugo et al., 2009).

Therefore, 1.5 mol L-1 Na2SO4 was selected as an optimum concentration of the

salt in the three CPE systems for the phenolic compounds. It is a fact that the addition of

Na2SO4 electrolyte increased the size of the micelle and aggregation number, thus,

enhancing the phenolic compounds to be more solubilize in the surfactant rich phase.

Consequently, more water goes to the dilute phase due to the salting−out effect. The

addition of sulphate ions also decrease the self−association of water molecules, the

hydration of the PEO chain and the surfactant solubility in water, causing decreases in

the CPE (El-Shahawi et al., 2013). It has been mentioned that adding too much Na2SO4

is not always favorable. The addition of excessive Na2SO4 to the micellar solution will

lead to the very low cloud point temperature (CPT) and thus, render the formation of the

unwanted and very viscous surfactant rich phase. The salting−out effect was also

correlated with the water content in the surfactant rich phase. The more concentration of

Na2SO4 will contribute to the occurrence of the dehydration process, resulting less

water content in the surfactant rich phase (Ulusoy et al., 2012).
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Figure 4.6: Effect of salt concentration on extraction efficiency in the three CPE
systems for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition:
10.0 mg L-1 of analyte concentration, pH 7.0, 0.5 (v/v %) DC193C, 10.0 mg L-1 of
modifier (β−CD; βCD−IL) at 50ºC.
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4.1.6 Effect of modifier concentration.

In this study, β−CD and βCD−IL have been used as a modifier to enhance the

extraction efficiency of the phenolic compounds. The concentrations of both modifiers

have been investigated in the range of 2.0 to 10.0 mg L-1 for the phenolic compounds. It

was shown obviously that the extraction efficiency gradually increases with the increase

of the both modifiers concentration in the both systems for the three phenolic

compounds as shown in Figure 4.7. This studied has been further investigated for the

concentration of modifier above 10 mg L-1 since the extraction efficiency increased with

the increases of concentration modifier in both systems for the phenolic compounds.

Nevertheless, the volume of surfactant rich phase obtained was too small for the

modifier concentration above 10 mg L-1. Hence, this study was carried within the

concentration of 10 mg L-1 for both modifiers. Therefore, 10 mg L-1 was selected as the

modifiers concentration for further experiment in this study.

The βCD−IL modifier shows that there was no significant effect compared to

the native β−CD modifier for the 2,4−DCP and 2,4,6−TCP. However, the βCD−IL

modifier shows obviously increment in the extraction efficiency of 4−NP. These results

indicates that the βCD−IL modifier improve the extraction performance of the

hydrophilic species of 4−NP. On contrary, β−CD modifier already sufficient to enhance

the extraction of the hydrophobic species of 2,4−DCP and 2,4,6−TCP. These findings

show that the influence of IL functionalized to β−CD which can improve the extraction

performance for the hydrophilic of 4−NP.

The binding of the phenolic compounds within the hydrophobic host of β−CD

is not fixed or permanent but rather is a dynamic equilibrium. Besides that, the binding

strength depends on how well the ‘host−guest’ complex fits together and on specific

local interactions between surface atoms (Singh et al., 2002). Based on these properties,
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the hydrophobic species of 2,4−DCP and 2,4,6−TCP are favorable to form inclusion

complex with β−CD than hydrophilic species of 4−NP. As amply exemplified in the

literature, the most probable binding mode of the native β−CD with various guest

involves the insertion of the less hydrophilic part of the guest molecule into the β−CD’s

cavity, while the more hydrophilic species, often charged, group stays just outside the

primary or secondary rim of the cavity. To force the charged group of the hydrophilic

4−NP to contribute appreciably to the overall complexation thermodynamics, it is a

need to introduce an oppositely charged group into the β−CD. This is expected to

enhance the binding through the attractive “long range” coulombic interaction. In fact, it

has been reported that cationic mono−CD exhibit higher or lower affinities toward

negatively or positively charged guests such as 4−NP than the corresponding of the

native β−CD (Rekharsky and Inoue, 2002).

Therefore, by functionalized the native of β−CD with ionic liquids, the

‘host−guest’ complex with the hydrophilic 4−NP can be improved due to the interaction

between imidazolium ring of ionic liquid and aromatic rings of 4−NP via electrostatic

attraction and − interaction. It is proposed that electron−withdrawing groups

enhance the − interactions by reducing the electron density of electrons,

diminishing the repulsive electrostatic interactions between the aromatic rings. As both

nitro and chloro are electron−withdrawing groups, the − interactions are enhanced

with the increase in the number of these groups. However, the nitro group has stronger

electron−withdrawing ability than the chloro group, hence the − interactions are

stronger for 4−NP than 2,4−DCP and 2,4,6−TCP (Tan et al., 2009). These interactions

have been supported by the results obtained in Section 4.2.
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Figure 4.7: Effect of modifiers concentration on extraction efficiency in the three CPE
systems for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition:
10.0 mg L-1 of analyte concentration, pH 7.0, 0.5 (v/v %) DC193C, 1.5 mol L-1 of
Na2SO4 at 50ºC.
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4.1.7 Effect of modifier volume.

The effect of volume modifier was a crucial parameter, which would have an

important effect on the extraction performance.  Large volume of modifier may lead

longer time to dissolve modifier completely and mixed entirely. Figure 4.8 shows the

volume of β−CD and βCD−IL modifier was examined within the range of 50 to 500 µL

in the CPE−βCD and CPE−βCD−IL systems, respectively, for the phenolic compounds.

The extraction efficiency of the phenolic compounds increases from 50 µL up to 100

µL, but suddenly decreases above the 100 µL for both modifiers in the three CPE

systems for the phenolic compounds.

In the CPE−βCD system, the hydrophobic 2,4−DCP and 2,4,6−TCP interact

with β−CD modifier to form inclusion complex. Hence, enhance the solubilization of

2,4−DCP and 2,4,6−TCP into the surfactant rich phase due to inclusion complexes

occurred between solutes, surfactant and modifier. For hydrophilic 4−NP, the inclusion

complex was unfavorable. By increasing β−CD modifier, the extraction of the phenolic

compounds decreases. There was no two−phase when the volume exceeds 400 µL in

the CPE−βCD system for the three phenolic compounds due to increasing the volume of

β−CD modifier. In fact, β−CD contain water molecules in its cavity and exclude the

water molecules once inclusion complex occur. The aqueous phases become too large

while the surfactant rich phases become too small due to the increase of volume β−CD

modifier that contributes to the aqueous phase volume due to its polarity. The host

cyclodextrin molecules generally possessed a greater inclusion affinity for more

hydrophobic guest molecules.

In the CPE−βCD−IL system, fine modifier of the βCD−IL droplets increased

along with the increase of the volume and then more target analytes were transferred

into the surfactant rich phase that contain of the βCD−IL modifier, but larger volume
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led to the increase of sediment phase volume, which resulted in low extraction

efficiency for the phenolic compounds. However, in this system, the extraction of

hydrophilic 4−NP enhanced compared to β−CD modifier due to the interaction between

the ionic liquid and 4−NP. However, for the hydrophobic 2,4−DCP and 2,4,6−TCP, the

βCD−IL modifier did not affect the extraction. This interaction between the βCD−IL

modifiers with hydrophobic analyte has been discussed in detail in previous Section

4.1.6. Thus, 100 µL was selected as an optimum volume for both β−CD and βCD−IL to

be added as a modifier in the CPE system for the phenolic compounds.

Figure 4.8: Effect of modifier volume on extraction efficiency in the three CPE systems
for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition: 10.0
mg L-1 of analyte concentration, pH 7.0, 0.5 (v/v %) DC193C, 10.0 mg L-1 of modifier
(β−CD; βCD−IL), 1.5 mol L-1 of Na2SO4 at 50ºC.
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‘Figure 4.8, continued’.

4.1.8 Effect of analyte concentration.

The influence of various initial concentrations of the phenolic compounds on

extraction was investigated in the three CPE systems (Figure 4.9). The quantity of

DC193C surfactant and both modifiers were kept constant while the concentrations of

the phenolic compounds were varied between 2.0 and 20.0 mg L-1 in the three CPE

systems. The initial concentration provides an important driving force between both

solute molecule on the surfactant and bulk phase, in order to overcome all mass transfer

resistance of the phenolic compounds. The results showed that the extraction efficiency

decreases with the increment in concentration of the phenolic compounds and becomes

constant from 16 mg L-1 to 20 mg L-1 in the three CPE systems for the phenolic

compounds. This phenomenon was due to the a large number of vacant surface sites

were available at lowest and moderate concentration of solute, and at a certain level of

solute concentration, the remaining vacant surface sites were difficult to be occupied

due to repulsive forces between the solute molecules on the surfactant and bulk phase

(Tan et al., 2009).

As shown in Figure 4.9 (a) and (b), the extraction of 2.4−DCP and 2,4,6−TCP

were obtained more than 80 % in the range of 2 to 20 mg L-1 in the CPE−βCD and
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CPE−βCD−IL systems. Meanwhile for 4−NP, the extraction of 4−NP was obtained

more than 80 % at 2 to 10 mg L-1 in the CPE−βCD−IL system. However, about 60 to 77

% of extraction efficiency was achieved for the CPE−βCD systems in that range of

concentration for 4−NP. The concentration of surfactant in the both aqueous and rich

surfactant phase remains constant at a constant operating temperature (50ºC). Hence,

the phenolic compounds solubilization capacity of the surfactant micelles remains

almost invariant in the both phases. Therefore, with further increase in the phenolic

compounds concentration led to excess the phenolic compounds insolubilized and were

retained in aqueous phase which account for a decrease in extraction efficiencies of

phenolic compounds in the three CPE systems (Arunagiria et al., 2012).

Figure 4.9: Effect of analyte concentration on extraction efficiency in the three CPE
systems for the phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition:
0.5 (v/v %) DC193C, pH 7.0, 10.0 mg L-1 of modifier (β−CD; βCD−IL), 1.5 mol L-1 of
Na2SO4 at 50ºC.
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‘Figure 4.9, continued’.

4.1.9 Water content.

Water content in the surfactant rich phase is one of the factors that should be

considered to improve the efficiency of extraction. In fact, about 80 wt % water content

is still present in the surfactant rich phase after the CPE process even the phase

extraction process was straightened by high speed centrifugation operation. The high

water content in the surfactant rich phase has limited the performance of the CPE to a

large extent, which caused the difficulty in distribution coefficient and extraction

efficiency (Yao and Yang, 2008a).

Therefore, in this study, the comparison of the percentage water content in the

surfactant rich phase of the CPE process between DC193C surfactant and Triton X for
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the three phenolic compounds was investigated, Figure 4.10. Based on the results,

Triton X obtained the higher percentage of water content in the surfactant rich phase

compared to DC193C surfactant after the CPE process for the three phenolic

compounds. The percentage of water content in the surfactant rich phase for DC193C

surfactant were about 58 wt % (2,4−DCP), 56 wt % (2,4,6−TCP) and 67 wt% (4−NP),

respectively. Meanwhile for Triton X, the percentage of the water content in the

surfactant rich phase was above 80 wt % for the three phenolic compounds in the CPE

system.

Figure 4.10: Water content in the surfactant rich phase obtained by the CPE process
with DC193C and Triton X at 0.5 (v/v %) surfactant concentration.
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Another factor that contributes to the specificity of the interphase transfer in the

surfactant extraction system was the influence of the analyte molecule structure and

their hydrophobicity on its distribution between the aqueous and the surfactant rich

phase (Doroschuk et al., 2005). As illustrated in Figure 4.10, the surfactant rich phase

has the highest water content for the hydrophilic 4−NP compared to 2,4−DCP and

2,4,6−TCP which are hydrophobic. The hydrophilic molecule of 4−NP has the potential

to solubilize in the aqueous phase that causes the spaces to remain for the water inside

the surfactants were not efficiently compressed. Meanwhile, the surfactant rich phase

becomes more hydrophobic when hydrophobic analytes for 2,4−DCP and 2,4,6−TCP

were bound into the surfactants. Trichlorophenol is more hydrophobic than

dichlorophenol due to the increasing numbers of chlorine atoms in the molecular

structure (Li et al., 2012). Therefore, the solubilization increases in the hydrophobic

surfactants instead of the aqueous phase. As a result, the percentage of the water content

in the surfactant rich phase decreased on the increasing of molecule hydrophobicity

according to the following order; 2,4,6−TCP  >  2,4−DCP  >  4−NP.

Figure 4.11 shows the percentage of water content in the surfactant rich phase in

the three CPE systems for the phenolic compounds. The water content in the surfactant

rich phase was studied for the concentration of DC193C surfactant in the range of 0.1 to

0.8 v/v% in the three CPE systems for the phenolic compounds. The percentage of

water content decreases as concentration of DC193C surfactant increases in the range of

0.1 to 0.5 v/v % and almost constant up to 0.8 v/v % in the three CPE systems studied

for the phenolic compounds. This is due to increasing in number of hydrophobic

micelles which results in extraction efficiency of the three CPE systems (El-Shahawi et

al., 2013). This finding has been supported by the results obtained as shown in Figure
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4.1, in which it can be concluded that, the lowest percentage of water content in the

surfactant rich phase, the higher extraction efficiency of the phenolic compounds.

Figure 4.11: Water content in the surfactant rich phase in the three CPE systems for the
phenolic compounds (a) 2,4−DCP; (b) 2,4,6−TCP; (c) 4−NP. Condition: 10.0 mg L-1 of
analyte concentration, pH 7.0, 0.5 (v/v %) DC193C, 10.0 mg L-1 of modifier (β−CD;
βCD−IL), 1.5 mol L-1 of Na2SO4 at 50ºC.
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Based on these results, the lowest percentage of water content in the surfactant

rich phase was obtained in the CPE−βCD system compared to the CPE system for the

hydrophobic 2,4−DCP and 2,4,6−TCP. However, in the CPE−βCD−IL system, the

percentage of water content in the surfactant rich phase slightly higher and almost

similar to the CPE−βCD system for 2,4−DCP and 2,4,6−TCP. In contrast to 4−NP, the

lowest percentage of water content in the surfactant rich phase was obtained in the

CPE−βCD−IL system than that of CPE and CPE−βCD systems. Meanwhile, the

percentage of water content in the surfactant rich phase in the CPE−βCD system was

higher than the CPE system for 4−NP. Once inclusion complex formed, the water

molecules exclude from the cavity of β−CD, and then the spaces remain for the water

molecules efficiently compressed in the surfactant rich phase.

The inclusion complex is favorable for hydrophobic 2,4−DCP and 2,4,6−TCP

and opposite to hydrophilic 4−NP. The lowest water content in the surfactant rich phase

was obtained in the CPE−βCD−IL system for 4−NP where IL improves the inclusion

complex between the hydrophilic species of 4−NP with β−CD. The water content in the

surfactant rich phase is correlated to the interaction mechanism as discussed in detail in

Section 4.1.6. According to Li et al. (2012), the different extraction capability might be

explained mainly from the inclusion effect and hydrogen bonding between solutes,

surfactant and modifier. The hydrophobicity of analytes also affect the extraction and

distribution between aqueous and surfactant rich phases in the three CPE systems for

the phenolic compounds. Aforementioned, the extraction of analyte increases with the

increases of analyte hydrophobicity as well as low the percentage of water content

obtained in the surfactant rich phase.
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4.2 Extraction behavior of 4−NP with DC193C surfactant and modifiers.

The cavity of β−CD was maintained even in the functionalized of β−CD with

the ionic liquid. Due to these, inclusion complex is a vital work to analyse the

complexes between the native and functionalized of β−CD, 4−NP and DC193C

surfactant. The evidence of the formation of inclusion complex can directly be obtained

from 1H NMR spectra. In addition, from 1H NMR, the information of the stoichiometry,

stability, and structure of the β−CD complexes can be obtained (Chen et al., 2006). In

this study, the inclusion complex between the native and functionalized of β−CD,

DC193C surfactant and 4−NP were investigated.

2D NOESY and 2D ROESY NMR spectroscopic technique can provide

supporting evidence for specific structures in cyclodextrin complexes. 2D NMR

spectroscopy has become a powerful method to study the conformation of β−CD and

derivatives and their complexes because one can conclude that two protons are closely

located in space (ca. 5Å) if an NOE correlation is detected between the relevant proton

signals in the NOESY or ROESY spectrum. Therefore, it is possible to estimate the

orientation of substituent or guest molecule in the β−CD cavity with the aid of the

assigned NOE correlations.

On the basis, 2D NOESY was performed to obtain further information about the

conformation of the host β−CD and their complexes (Chen et al., 2010). These

experiments give rise to the cross peaks between dipolar coupled spins (Neuhaus, 2000;

Sanders, 1993) and they are used to indicate the close proximately between atoms in the

two components of the complex. Therefore, the formation of an inclusion complex was

further proven by the 2D NOESY analysis since 2D NMR is a powerful toll for

investigating intermolecular interactions and to gain more information on the

conformation of the inclusion complex (Li et al., 2003). The main interactions of
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inclusion complex that take place between native or functionalized of β−CD, 4−NP and

DC193C surfactant in the extraction process can be supported by these findings. In

order to evaluate the geometry of inclusion complex of native or functionalized of

β−CD, 4−NP and DC193C surfactant, 1H NMR and 2D NOESY measurements

(DMSO−D6, 25ºC, 600 MHz) were performed on an AVN600 spectrometer. As for

2,4−DCP and 2,4,6−TCP, similar interaction was obtained, thus, only inclusion

complexes for 4−NP was reported in this study.

4.2.1 Extraction behavior of 4−NP and DC193C surfactant with β−CD.

The 1H NMR spectrum of native β−CD, 4−NP, DC193C and

βCD−DC193C−NP inclusion complex were shown in Figure 4.12 (a) – (d). The 1H

NMR chemical shifts ( ) of β−CD, 4−NP, DC193C surfactant and βCD−DC193C−NP

inclusion complex were listed in Table 4.2. Based on the result obtained in Table 4.2,

the proton of DC193C surfactant and 4−NP has an interaction with the inner of the

native of β−CD due to the changes of H5 proton signal. However, the proton of the

DC193C surfactant shows the higher shift compared to the proton of 4−NP.
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Figure 4.12: 1H NMR spectrum of the (a) β−CD (b) 4−NP (c) DC193C and (d)
βCD−DC193C−NP.
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Table 4.2: 1H NMR chemical shift (§) of β−CD, 4−NP, DC193C and βCD−DC
193C−NP.

Proton
β−CD 4−NP βCD−DC193C−NP

§ § § Δ§
H1 4.8167 4.8430 +0.0263
H2 3.3121 3.3400 +0.0279
H3 3.5984 3.5880 −0.0104
H4 3.3572 3.3630 +0.0058
H5 3.5541 3.5790 +0.0249
H6 3.6144 3.6210 +0.0066

Proton § § Δ§
Ha−np 6.9130 6.9270 +0.0140
Hb−np 8.1035 8.1190 +0.0155

Proton DC193C βCD−DC193C−NP

§ § Δ§
Ha−s 0.4320 0.4400 +0.0080
Hb−s 0.0305 0.0430 +0.0125
Hc−s 0.8262 0.8008 −0.0254
Hd−s 1.4791 1.4900 +0.0109
He−s 3.3182 3.3860 +0.0678
Hf−s 3.5580 3.5160 −0.0420
Hg−s 3.4037 3.4170 +0.0133

Values in bold refer to the highest chemical shift of that particular proton.

Thus, in order to further prove which one has accommodated into the cavity, 2D

NMR was carried out to indicate the interaction. It was found that the 2D NMR result

shows the strong interaction between β−CD with DC193C surfactant compared to 4−NP

(Figure 4.13). Therefore, we can conclude that may be because the binding of 4−NP

within the host of β−CD is not fixed or permanent but rather dynamic equilibrium as

reported by Singh et al. (Singh et al., 2002). The binding of guest molecules within the

host of β−CD is not fixed or permanent but rather is a dynamic equilibrium. Binding

strength depends on how well the ‘host−guest’ complex fits together and on specific

local interactions between surface atoms.
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Figure 4.13: Two−dimensional NOESY spectrum of the βCD−DC193C−NP complex
in DMSO−D6.

As shown in Figure 4.14, we have proposed that only DC193C surfactant enters

the β−CD’s cavity. According to Valero and Carrillo (2004), β−CD modifier has found

to form inclusion complexes with various polymers including PEGs with high

specificity to give stoichiometric compounds in crystalline states. In these complexes,

polymer chains were threaded into β−CD and recognized by the host. The formation of

the complexes is thought to be promoted by hydrogen bond formation between β−CD

(Valero and Carrillo, 2004).
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Figure 4.14: Schematic illustration of the complexation between molecular form of the
4−NP and DC193C with β−CD.

4.2.2 Extraction behavior of 4−NP and DC193C surfactant with βCD−IL.

In order to evaluate the geometry of inclusion formation of the βCD−IL, 4−NP

and DC193C surfactant the 1H NMR (Figure 4.15 (a) − (d)) measurement was carried

out. The protons of DC193C surfactant and 4−NP were found to be shifted upon the

formation of inclusion complex (βCD−IL−DC193C−NP) (Table 4.3). Besides, the

obvious upfield shifts of the protons on the inner cavity of the βCD−IL (H3, H5) were

observed and the results obtained indicate that DC193C surfactant or 4−NP has been

entered into the cavity of βCD−IL. It could be observed that in the 1H NMR spectrum of

the βCD−IL−DC193C−NP (Figure 4.15 (d)), the presence of proton signals belonging

to the βCD−IL, 4−NP and DC193C molecules which strongly suggests that the new

inclusion complex has been formed. In this study there are two guest compounds

(DC193C surfactant or 4−NP), thus, it is necessary to investigate further with the 2D

NMR in order to predict which one enters into the cavity of βCD−IL.
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Figure 4.15: 1H NMR spectrum of the (a) βCD−IL (b) 4−NP (c) DC193C and (d)
βCD−IL−DC193C−NP.
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Chemical shift (ppm)

‘Figure 4.15, continued’.
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Table 4.3: 1H NMR chemical shift (§) of βCD−IL, 4−NP, DC193C and
βCD−IL−DC193C−NP.

Proton

βCD−IL 4−NP βCD−IL−DC193C−NP

§ § § Δ§
H1 4.8167 4.8420 +0.0253
H2 3.3121 3.3046 −0.0075
H3 3.5984 3.5362 −0.0622
H4 3.3572 3.3791 +0.0219
H5 3.5541 3.4635 −0.0906
H6 3.6144 3.5941 −0.0170
H8 7.3930 7.3427 −0.0503
H9 7.0938 7.0808 −0.0130
H11 2.0694 2.0399 −0.0295
Ha 7.4556 7.4297 −0.0259
Hb 7.7251 7.7521 +0.0270
Hc 7.4755 7.4496 −0.0255
Hd 8.2060 8.1582 −0.0478
He 7.9312 7.9363 +0.0051
Hf 9.1747 9.2210 +0.0463
Hg 5.3365 5.3816 +0.0451

Proton
Ha−p 6.9130 6.8933 –0.0197
Hb−p 8.1035 8.0678 –0.0357

Proton
DC193C βCD−IL−DC193C−NP

§ § Δ§
Ha−s 0.4320 0.4743 +0.0423
Hb−s 0.0305 0.1462 +0.1157
Hc−s 0.8262 0.8999 +0.0737
Hd−s 1.4791 1.4233 −0.0558
He−s 3.3182 3.3046 −0.0136
Hf−s 3.5580 3.5941 +0.0361
Hg−s 3.4037 3.3791 −0.0246

Values in bold refer to the highest chemical shift of that particular proton.

Therefore, the formation of an inclusion complex was further proven by the

2D−NOESY analysis (Figure 4.16). The cross peaks in the spectra, indicated in SD3

originate from the interaction of the protons of DC193C surfactant, 4−NP and βCD−IL.

The cross peaks of the βCD−IL (H3, H5) and DC193C surfactant (Ha−s, Hb−s, Hc−s,

Hd−s) demonstrate strong intensity. Based on these results (2D NOESY spectra), we

can conclude that DC193C surfactant has been accommodated in the βCD−IL’s cavity
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and may be within less than 5 Å apart from H3 and H5 of βCD−IL. Furthermore, 2D

NOESY also shows interactions between the βCD−IL and 4−NP. The cross peak

(Ha−p, Hb−p) shows an interaction with the βCD−IL (H3, H5) and it also supports that

4−NP has been accommodated in the cavity of βCD−IL. Apart from that, the cross peak

around 6 − 8 ppm belonging to the βCD−IL and 4−NP shows that the present of the π –

π interaction and electrostatic attraction between the imidazolium rings and 4−NP.

Figure 4.16: Two−dimensional NOESY spectrum of the βCD−IL−DC193C−NP
complex in DMSO−d6.

Hence, the possible formations of the inclusion complex structure of molecular

form of 4−NP and DC193C with βCD−IL are shown in Figure 4.17 (a) and (b) and have

been proposed by taking account of the hydrogen bonding between DC193C and 4−NP,

π – π interaction, electrostatic attraction between the imidazolium ring of the βCD−IL

and 4−NP, as well as the inclusion complexes between the βCD−IL with DC193C

and/or βCD−IL with 4−NP.
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(a)

(b)

Figure 4.17 (a) and (b): Schematic illustration of the complexation between molecular
form of 4−NP and DC193C with βCD−IL.

4.3 Isotherm study.

4.3.1 Solubilization isotherm.

Solubilization isotherm is useful for understanding the mechanism of the

surfactant solubilization. Solubilization properties and equilibrium parameters,

commonly known as solubilization isotherm, describe how the surfactants interact with
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solute or solubilizate, and contribute towards a comprehensive understanding of the

nature of interaction. Isotherm study helps to provide knowledge about the optimum use

of surfactant. Thus, it is essential to establish the most appropriate correlation for the

equilibrium curve, in order to optimize the design of a solubilization isotherm system

for the removal of phenolic compounds from aqueous solutions. There are several

isotherm equations available for analyzing experimental solubilization equilibrium

parameters. However, the most common types of isotherms are the Langmuir and

Freundlich models (Nandi et al., 2009).

The Langmuir solubilization isotherm has been successfully applied to many

pollutant solubilization processes. It has also been the most widely used model to

describe the solubilization of a solute from an aqueous solution into surfactant. A basic

assumption of the Langmuir theory is that solubilization takes place at specific

homogeneous sites on the surface of the surfactant. It is then assumed that once a

solubilizate occupies a site, no further solubilization can take place at that site. The rate

of solubilization to the surface should be proportional to a driving force and area. The

driving force is the concentration in the solution, and the area is the amount of bare

surface of surfactant (Chen et al., 2009; Rawajfih and Nsour, 2006). The Langmuir type

solubilization isotherm model has been used to explain the solubilization of the three

phenolic compounds into the non−ionic surfactant of DC193C in the different CPE

systems due to its success in describing many solubilization processes. Eq. (2) gives the

expression of the well−known Langmuir model.

qe = mnCe

1 + nCe

(2)

where qe is the moles of phenolic compounds solubilized per mole of DC193C

surfactant at equilibrium (mol mol-1). Ce is the dilute phase equilibrium (mol L-1) of the
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phenolic compounds. The constant m and n are the Langmuir constants signifying the

solubilization capacity (mol mol-1) and energy of solubilization (L mol-1), respectively

(Purkait et al., 2006a, 2006b). The values of m and n in the three CPE systems can be

calculated by the regression analysis using experimental data for the phenolic

compounds.

4.3.2 Evaluating the values of m and n.

The Langmuir equation can be linearized into the following form;

1 =   1   +    1

qe m mnCe

(3)

A plot of 1/qe vs. 1/Ce gives a straight line with the slope 1/mn and intercepts 1/m from

Eq. (3).

Figures 4.18, 4.19 and 4.20 show the solubilization isotherm in the three CPE systems

for 2,4−DCP; 2,4,6−TCP and 4−NP, respectively, which is illustrated by plotting qe vs.

Ce. The slope and intercept of the linear form of the Langmuir model are used to

determine the values of m and n. The values of m and n in the three CPE systems were

calculated by plotting 1/qe vs. 1/Ce as shown in Figures 4.21 4.22 and 4.23 for

2,4−DCP; 2,4,6−TCP and 4−NP, respectively. The Langmuir model parameters and the

statistical fits of the solubilization data to this equation in the three CPE systems for the

phenolic compounds were given in Table 4.4.

The values of m and n vary with the temperature, which is a characteristic of

both the surfactant and solute. However, when the aqueous in the CPE is separated into

two phases at a fixed temperature, the solubilization capacity (m) and the energy of

solubilization (n) are constant. Aforementioned, the values of m and n can be calculated

from the slope and intercept of the linear form of Langmuir equation. As the values of
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m and n are taken into a developed Langmuir equation, the amount of surfactant

required for the removal of solute up to a desired level can be calculated (Jianwei Chen,

et al., 2009). According to the Rawajfih and Nsour (2006), the solubilization conforms

to the Langmuir model when the value of the correlation coefficient (R2) is greater than

0.89. Thus, the R2 values obtained are shown in Table 4.4 which was greater than 0.89

for the phenolic compounds in the three CPE systems, indicating that the isotherms

were consistent with the Langmuir model.

Table 4.4: The values of m and n with correlation coefficient (R2) in the different CPE
systems for the phenolic compounds are given below.

Analytes Parameters CPE CPE−βCD CPE−βCD−IL
m (mol mol-1) 3.33 x 10-3 7.70 x 10-3 7.09 x 10-3

2,4−DCP n (L mol-1) 5.67 x 103 4.03 x 103 4.38 x 103

R2 0.995 0.998 0.998
m (mol mol-1) 4.75 x 10-3 1.03 x 10-2 9.52 x 10-3

2,4,6−TCP n (L mol-1) 3.90 x 103 3.01 x103 3.27 x 103

R2 0.995 0.998 0.999
m (mol mol-1) 2.27 x 10-3 2.23 x 10-3 4.00 x 10-3

4−NP n (L mol-1) 7.00 x 103 7.03 x 103 4.44 x 103

R2 0.995 0.995 0.998

The solubilization isotherms in the three CPE systems for the phenolic

compounds exhibited Langmuir behavior which indicates monolayer coverage. The

solubilization capacity, which is a measure of the capacity of the surfactant to retain the

solute, suggests that DC193C surfactant would be effective as the surfactant of the

phenolic compounds in the three CPE systems. The solubilization capacity (m)

increased on the increasing solute molecule hydrophobicity according to the following

order; 4−NP < 2,4−DCP < 2,4,6−TCP in the three CPE systems. This tendency can be

observed in Table 4.4. The monolayer solubilization capacity was greater for the

chlorophenols than the nitrophenol due to the different phenolic compounds. The

trichlorinated phenol is more hydrophobic than the dichloronated phenol due to the

increasing numbers of chlorine atoms in the molecular structure. The octanol/water
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(o/w) partition coefficient (log Kow) of chlorophenols, which could be measured of

solvent hydrophobicity, increased with the degree of chlorination. The log Kow values

for 2,4,6−TCP and 2,4−DCP were 3.69 and 3.08 respectively. The strength of the

hydrogen bonds was stronger if there were more chlorine atoms attached to the phenyl

ring. The number of chlorine atoms for TCP and DCP was 3 and 2, respectively, so the

order of strength of hydrogen bonds was TCP > DCP (Li et al., 2012).

The solubilization capacity (m) of the CPE (3.33 x 10-3; 4.75 x 10-3) system was

lower than the CPE−βCD (7.70 x 10-3; 1.03 x 10-2) systems for 2,4−DCP and

2,4,6−TCP, respectively. Based on these results, the value of m in the CPE−βCD system

was higher than the m value in the CPE system for 2,4−DCP and 2,4,6−TCP. In

contrast, 4−NP showed no significant effect between the solubilization capacity (m) in

the CPE (2.27 x 10-3) and CPE−βCD (2.23 x 10-3) systems. Generally, host cyclodextrin

molecules possessed a greater inclusion affinity for more hydrophobic guest or solute

molecules (Li et al., 2009). Due to this, the modifier of β−CD play their role in enhance

the solubilization of hydrophobic solutes in the CPE system.

The solubilization capacity of 2,4−DCP and 2,4,6−TCP into the surfactant rich

phase enhance in the presence of β−CD modifier in the CPE−βCD compared to the CPE

system. Due to the proper size of 2,4−DCP and 2,4,6−TCP to fit into the β−CD’s cavity,

the solubilization capacity can be enhanced by expelling all water molecules will

exhibit the greatest interaction as well as the mechanism interaction between β−CD

modifier and DC193C surfactant. This “tightness of fit” trend may be explained by

examining the hydrophobic inclusion process, which is the primary binding interaction

involved between the hydrophobic solute molecule and β−CD in aqueous solutions. In

order for the hydrophobic solute to include within the β−CD cavity, water molecules

present within the cavity must be expelled (Li et al., 2009). The nucleophilic Cl and

hydroxyl atoms in 2,4−DCP and 2,4,6−TCP can form hydrogen bonding with hydroxyl
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atoms in the both of β−CD as well as βCD−IL modifier and DC193C surfactant. There

were large amount of 2,4−DCP and 2,4,6−TCP in interspace between the β−CD and/or

βCD−IL modifier and DC193C surfactant. Thus, 2,4−DCP and 2,4,6−TCP can be

solubilized tightly around β−CD and/or βCD−IL modifier to form columnar structure

(Li et al., 2009).

However, the presence of the β−CD modifier did not improve the extraction

performance of 4−NP in the CPE−βCD system. This is because of the 4−NP molecules

are not large enough to expel most (if not all) of the water molecules from the β−CD’s

cavity upon binding, the overall hydrophobic nature of the cavity environment is

decreased. The binding between the β−CD and the 4−NP molecules are not fixed or

permanent, but rather come in dynamic equilibrium. Furthermore, the electrophilic

property of oxygen in –NO2 of 4−NP leads nitrogen atom to difficulty form hydrogen

bonding with hydroxyl in the β−CD. Even though –OH in 4−NP may form hydrogen

bonding with hydroxyl in the β−CD, it is difficult to lead 4−NP to tightly solubilize

around the β−CD (Li et al., 2009). Thus, the solubilization capacity of 4−NP into the

β−CD’s cavity of modifier in the CPE−βCD system was lower than 2,4−DCP and

2,4,6−TCP.

In the CPE−βCD−IL system, the solubilization capacity decreases for the

2,4−DCP and 2,4,6−TCP. The values of m (7.09 x 10-3; 9.52 x 10-3) in the

CPE−βCD−IL system was lower than in the CPE−βCD system for 2,4−DCP and

2,4,6−TCP, respectively. It is obviously shows that the presence of IL did not improve

the solubilization of hydrophobic and larger solutes of 2,4−DCP and 2,4,6−TCP into the

surfactant rich phase. However, the solubilization capacity (4.00 x 10-3) of 4−NP has

been enhanced in the CPE−βCD−IL system.
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The functionalized of the β−CD often alters the binding properties of the native

β−CD by potentially introducing steric hindrance for cavity inclusion, extending the

depth of the hydrophobic cavity, or altering the number of sites available for hydrogen

bonding and dipole interactions (Flaherty et al., 2013). In addition, the solubilization

might be also explained to proceed via the inter−molecular hydrogen bonds between

–NH and/or –OH groups of the βCD−IL and –OH group of the phenolic compounds

(Li et al., 2012). The performance solubilization of 2,4−DCP and 2,4,6−TCP slightly

decrease in the presence of the functionalized β−CD with IL modifier due to the −
interaction as discussed in Section 4.1.6. As opposed to 4−NP, the binding performance

was improved in the CPE−βCD−IL system. This result indicates that in the presence of

IL functionalized to the β−CD, the cavity of β−CD already alters for better binding with

4−NP.

The values of energy of solubilization (n) were reversible to the values of

solubilization capacity (m) for the three phenolic compounds in the three CPE systems.

The values of n obtained in the CPE−βCD (4.03 x 103; 3.01 x 103) system were lowered

compared to the CPE (5.67 x 103; 3.90 x 103) system for the 2,4−DCP and 2,4,6−TCP,

respectively. However, there was no significant effect of the n values between the CPE

(7.00 x 103) and CPE−βCD (7.03 x 103) systems for 4−NP. The energy of

solubilization for 2,4−DCP and 2,4,6−TCP were slightly higher in the CPE−βCD−IL

system (4.38 x 103; 3.27 x 103) than in the CPE−βCD system. On the other hand, the

value of n was obviously decreases in the CPE−βCD−IL (4.44 x 103) system compared

to the CPE−βCD system for 4−NP. These results might be explained via the interaction

between solutes, modifier and surfactant as explain previously in the binding interaction

of m value. It can be concluded, the least binding interaction between the solutes,

modifier and surfactant, the more energy was required to solubilize solutes into the

surfactant rich phase.
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Figure 4.18: Solubilization isotherm of the 2,4−DCP over DC193C surfactant: (a) CPE
(b) CPE−βCD (c) CPE−βCD−IL.
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‘Figure 4.18, continued’.

Figure 4.19: Solubilization isotherm of 2,4,6−TCP over DC193C surfactant: (a) CPE
(b) CPE−βCD (c) CPE−βCD−IL.
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‘Figure 4.19, continued’.
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Figure 4.20: Solubilization isotherm of 4−NP over DC193C surfactant: (a) CPE (b)
CPE−βCD (c) CPE−βCD−IL.
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‘Figure 4.20, continued’.

Figure 4.21: Plotting 1/qe vs. 1/Ce for m and n calculations for 2,4−DCP: (a) CPE (b)
CPE−βCD (c) CPE−βCD−IL.
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‘Figure 4.21, continued’.
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Figure 4.22: Plotting 1/qe vs. 1/Ce for m and n calculations for 2,4,6−TCP: (a) CPE (b)
CPE−βCD (c) CPE−βCD−IL.
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‘Figure 4.22, continued’.

Figure 4.23: Plotting 1/qe vs. 1/Ce for m and n calculations for 4−NP: (a) CPE (b)
CPE−βCD (c) CPE−βCD−IL.
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‘Figure 4.23, continued’.
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4.3.3 Determination of surfactant concentration required and the solute amount
to a desired level.

A calculation procedure is outlined by using Eq. (4) to determine the amount

concentration of surfactant required for the extraction efficiency up to the desired level.

The amount of solubilization is defined as;

qe = Qd

Gs

(4)

where Qd and Gs are the amount of solute and surfactant in the surfactant rich phase,

respectively.

E = Qd

Qo

(5)

where E is the extraction efficiency and Qo is the feed amount of solute.

Ce = Qd (1− E)
Vd

(6)

where Vd is the volume of the dilute phase.

There are some assumptions have been made for determining the amount of the

DC193C surfactant required up to the extraction efficiency of 90 %. Here, the

assumptions; the surfactant concentration (CMC) in the aqueous phase can be neglected

in material balance due to its concentration too small compared to in the surfactant rich

phase which is thousand times. Thus, Gs can represent the amount of the surfactant used

in the feed (Go) (Chen et al., 2009; Wang et al., 2003); and Vd (volume of the dilute

phase) can approximate the volume of the initial solution before CPE (Vo) due to its

volume so large.  Based on these assumptions, the combining Eqs. (4) − (6) leads to:
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Go =    1    +          Vo

EQo m mnQo(1−E)

(7)

Go = Cos

Vo

(8)

Qo =  Co

Vo

(9)

where Cos and Co are the concentrations of the surfactant and solute in the feed,

respectively. Combining Eqs. (7) − (9) in turn, leads to:

Cos  =  ECo +         E

m mn(1−E)

(10)

Cos is function of Co. The values of m and n were calculated for the aforementioned

phenolic compounds in the three CPE systems. Therefore, using the concentration of the

phenolic compounds in the feed and a desired level of extraction efficiency (E), Eq. (10)

can be solved to obtain DC193C surfactant concentration required (Cos). Figure 4.24

(a), (b) and (c) shows the required DC193C surfactant concentrations in the three CPE

systems for the phenolic compounds at 50ºC in the CPE processes with the desired

extraction efficiency of 90 %.

As shown in Figure 4.24 (a), (b) and (c), more surfactant concentration was

required as the concentration of feed in the three CPE systems increased so the desired

extraction efficiency of 90% can be achieved. Generally, the solubilization behavior of

organic compounds on non−polar and moderately polar polymeric adsorbent in aqueous

solution is related to the hydrophobicity of solute; whereby the hydrophobic the solute,

the more readily it can be solubilized (Li et al., 2002). It can be related to Figure 4.24

(a), (b) and (c), the higher amount of DC193C surfactant was required for the
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hydrophilic 4−NP as compared to both hydrophobic compounds of 2,4−DCP and

2,4,6−TCP in the three CPE systems.

More DC193C surfactant was required in the CPE system for 2,4−DCP and

2,4,6−TCP compared to the CPE−βCD and CPE−βCD−IL systems. There were no

much difference in the amount of DC193C surfactant required between the CPE−βCD

and CPE−βCD−IL systems for 2,4−DCP and 2,4,6−TCP. Similarly there were no much

difference in the amount of DC193C surfactant required in the CPE and CPE−βCD

system for 4−NP. However, less amount of DC193C surfactant was required in the

CPE−βCD−IL system. By comparing the three CPE systems, it can be concluded that

more amount of DC193C surfactant was required for least interaction binding between

solute, DC193C surfactant and modifier in CPE process.

Figure 4.24: Variation of required surfactant concentration for different feed
concentration of the phenolic compounds (a) 2,4−DCP (b) 2,4,6−TCP and (c) 4−NP in
the different CPE systems with the desired extraction efficiency of 90 %.
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‘Figure 4.24, continued’.
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298 − 353 K was studied under optimum experimental conditions in the three CPE

systems for the phenolic compounds. The effect of the temperature on the extraction of

the phenolic compounds in the three CPE systems using the DC193C surfactant has

been discussed in Section 4.1.4. It is observed that the extraction efficiency increased

significantly with the temperature. The thermodynamic parameters of ΔGº, ΔHº and ΔSº

for this extraction process are determined using the following equations for the phenolic

compounds in the three CPE systems;

ΔGº = ΔHº − T ΔSº (11)

log (qe/Ce)  =   ΔSº     + ΔHº

2.303R 2.303RT

(12)

qe = Moles of phenol solubilized  = A

Moles of DC193C used X

(13)

Moles of phenol solubilized can be obtained from the mass balance,

A = VoCo − VdCe (14)

X = CsVo (15)

where qe is the mole of the phenolic compounds solubilized per mole of the DC193C

surfactant. Ce is the equilibrium concentration of the phenolic compounds (mol L-1)

after the completion of the two phases and T is the temperature in Kelvin. qe/Ce is called

the solubilization affinity. A is the moles of phenol solubilized onto DC193C surfactant.

Vo and Vd are the volumes of the feed solution and that of the aqueous phase after the

CPE. Co and respectively; Cs is the concentration of the surfactant in feed. The

thermodynamic parameters ΔGº, ΔHº and ΔSº are in the linear range of qe versus the Ce

plot that can be calculated by experimental data in the three CPE systems for the

phenolic compounds. Referring to the Eq. (11), the values of Gibbs free energy (ΔGº)
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can be calculated by knowing the enthalpy of solubilization (ΔHº) and the entropy of

solubilization (ΔSº). Eq. (12) has been used to calculate ΔHº and ΔSº that are obtained

from a plot of log (qe/Ce) versus 1/T (Purkait et al., 2009). The values of ΔGº, ΔHº and

ΔSº in the three CPE systems for the phenolic compounds were calculated at different

temperatures and reported systematically.

4.4.2 Variation of Gibbs free energy (ΔGº) during the CPE of the phenolic
compounds.

Figure 4.25 show the variation of ΔGº with different temperatures at constant

surfactant concentration and the phenolic compounds concentration in the three CPE

systems. It has been noted from the figure that the solubilization increases linearly with

the temperature in the three CPE systems for the phenolic compounds. This increase in

solubilization of the phenolic compounds with a rise in temperature can be explained on

the basis of thermodynamic parameters such as the change in standard free energy

(ΔGº), enthalpy (ΔHº) and entropy (ΔSº). The thermodynamic parameters were shown

in Table 4.5, 4.6 and 4.7 in the three CPE systems for 2,4−DCP, 2,4,6−TCP and 4−NP,

respectively.

The negative values of ΔGº for the phenolic compounds in the three CPE

systems indicate that of these compounds solubilization process was spontaneous and

thermodynamically favorable. The increase in the negative values of ΔGº with

temperature implies the greater driving force of solubilization which is confirmed by the

greater extent of the extraction of these phenolic compounds in the three CPE systems

with the increase in temperature.

The positive values of ΔHº indicate that the solubilizations of the phenolic

compounds in the three CPE systems were endothermic in nature. It has been supported

by the increasing of the phenolic compounds solubilization in the three CPE systems
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with the increasing solution temperature studied within 25ºC – 80ºC. Increasing the

temperature was known to indicate the rate of diffusion of the phenolic compounds

molecules across the external boundary layer of the surfactant, owing to the decrease in

the viscosity of the solution. The enhancement in the amount of solubilization might be

due to the chemical interaction between DC193C surfactant and also modifier with the

phenolic compounds molecules, creation of new binding sites or increased rate of

intraparticle diffusion of these molecules into the surfactant at higher temperature (Tan

et al., 2009). Purkait et al. (2009)., also noted similar observations and they suggested

that the increase in the amount of solubilization with increase in temperature, might be

due to the possibility of an increase in the numbers of binding sites for the solubilization

as well as an increase in the mobility of the solutes molecules (Purkait et al., 2009).

As discussed in Section 4.1.4, the operating temperature increases in the three

CPE systems as the extraction efficiency of the phenolic compounds increased. This is

due to high solubilization of these compounds with rising temperature. The effect of

temperature can be explained on the basis of hydrogen bonding. In aqueous solutions of

the phenolic compounds, there exists extensive hydrogen bonding between the phenolic

compounds molecules and the water resulting in appreciable solubility. These hydrogen

bonds get broken at higher temperature, and this would cause phenolic compounds to be

less soluble and therefore exhibit higher tendency to surfactant surface and get

solubilized rather than remaining in the solution. This would result in higher

solubilization at higher temperature (Jain et al., 2004).

Meanwhile, the positive ΔSº corresponds to a decrease in the degree of freedom

of the solubilized species and that reflects good affinity of the phenolic compounds in

the three CPE systems towards surfactant. The values of ΔGº, ΔHº and ΔSº increase

with the increased hydrophobicity of the phenolic compounds in the order; 4−NP <

2,4−DCP < 2,4,6−TCP in the three CPE systems. However, a different trend of order
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was observed in the three CPE systems for the phenolic compounds. The values of ΔGº,

ΔHº and ΔSº in the three CPE systems for 2,4−DCP and 2,4,6−TCP increase and are

stated as follows; CPE−βCD−IL ≈ CPE−βCD > CPE. Meanwhile, the values of ΔGº,

ΔHº and ΔSº increase in the three CPE systems as the following order; CPE−βCD−IL >

CPE−βCD ≈ CPE for 4−NP.

There must be a favorable net energetic driving force that pulls the guest into the

β−CD’s cavity to form inclusion complex (Del Valle, 2004). The thermodynamic

parameters such as the standard free energy (∆Gº), the standard enthalpy change (∆Hº),

and the standard entropy change (∆Sº) of the binding reaction are important to confirm

the force of interaction of phenolic compounds with β−CD modifier as well as the

βCD−IL modifier in the CPE system. Several interactions involved were hydrogen

bonding, − interaction, electrostatic attraction and inclusion complex between the

βCD−IL with substrates were proposed previously in Section 4.2. A different behavior

was observed for the phenolic compounds or DC193C surfactant complex with the

βCD−IL; where upon complexation both positive enthalpic changes and entropic values

were obtained, indicating that this inclusion is mainly entropically driven.

Apparently, when the phenolic compounds or DC193C surfactant was free in

solution, it seems to have a strong interaction with its solvent shell. Upon binding, this

solvent shell is broken up, leading to the partly unfavorable enthalpic change (Brewster

and Loftsson, 2007; Jullian et al., 2010). The positive values of ∆Hº indicate that

sorption process was endothermic. The apparent endothermic nature of the

solubilization may contradict the well−known criteria of the spontaneity of the

solubilization. In fact, the sorptions enthalpies solubilize do not enforce the reversible

reaction but are consumed in the dehydration of the β−CD’s cavity This is supported by

the positive value of ∆Sº that is related to the increased randomness of the system due to

the liberation of water from the β−CD cavities during the sorption (Li et al., 2010).
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Similar interaction occurred between the phenolic compounds or DC193C surfactant

complex with β−CD excludes electrostatic attraction.

Figure 4.25: Variation of Gibbs free energy change (ΔGº) with temperature at constant
(a) 2,4−DCP, (b) 2,4,6−TCP and (c) 4−NP species concentration in the three CPE
systems.
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‘Figure 4.25, continued’.

Table 4.5:
Thermodynamic parameters in the three CPE systems for 2,4−DCP at different
temperatures.

Systems Temperature (K) −ΔGº (J mol-1) ΔHº (J mol-1) ΔSº (J mol-1 K-1)
(x 103) (x103) (x 101)

298.15 6.90
303.15 7.08
313.15 7.44

CPE 323.15 7.80 3.83 3.60
333.15 8.16
343.15 8.52
353.15 8.88

298.15 7.88
303.15 8.18
313.15 8.78

CPE−βCD 323.15 9.37 9.85 5.95
333.15 9.96
343.15 10.56
353.15 11.15

298.15 7.83
303.15 8.13
313.15 8.72

CPE−βCD−IL 323.15 9.32 9.85 5.93
333.15 9.91
343.15 10.50
353.15 11.10
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Table 4.6:
Thermodynamic parameters in the three CPE systems for 2,4,6−TCP at different
temperatures.

Systems Temperature (K) −ΔGº (J mol-1) ΔHº (J mol-1) ΔSº (J mol-1 K-1)
(x 103) (x103) (x 101)

298.15 6.90
303.15 7.08
313.15 7.45

CPE 323.15 7.82 4.14 3.70
333.15 8.19
343.15 8.56
353.15 8.93

298.15 7.94
303.15 8.23
313.15 8.84

CPE−βCD 323.15 9.45 10.12 6.06
333.15 10.06
343.15 10.66
353.15 11.27

298.15 7.87
303.15 8.17
313.15 8.78

CPE−βCD−IL 323.15 9.38 10.12 6.03
333.15 9.98
343.15 10.59
353.15 11.19
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Table 4.7:
Thermodynamic parameters in the three CPE systems for 4−NP at different
temperatures.

Systems Temperature (K) −ΔGº (J mol-1) ΔHº (J mol-1) ΔSº (J mol-1 K-1)
(x 103) (x 103) (x 101)

298.15 6.49
303.15 6.66
313.15 7.00

CPE 323.15 7.34 3.69 3.41
333.15 7.68
343.15 8.02
353.15 8.37

298.15 6.38
303.15 6.54
313.15 6.88

CPE−βCD 323.15 7.22 3.69 3.38
333.15 7.56
343.15 7.90
353.15 8.23

298.15 7.34
303.15 7.61
313.15 8.14

CPE−βCD−IL 323.15 8.68 8.62 5.35
333.15 9.21
343.15 9.75
353.15 10.28
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CHAPTER 5

CONCLUSION

5.1 Conclusion.

The CPE technique combined with spectrophotometry offers several advantages

such as low cost and safer with good extraction efficiency. The three CPE systems

namely CPE, CPE−βCD and CPE−βCD−IL systems were successfully optimized for

removal of the phenolic compounds from aqueous solution.  Several parameters were

evaluated such as the effect of DC193C surfactant concentration and volume, pH,

β−CD and βCD−IL modifiers concentration and volume, equilibrium temperature and

time, concentration of salt and analyte, and water content. Our experimental results

indicate that high recoveries can be obtained at the optimized condition; 0.5 mL of 0.5

v/v% DC193C surfactant; 1.5 mol L-1 of Na2SO4; 50°C and 15 min incubation time; and

10 mg L-1, 100 µL of the β−CD and βCD−IL modifiers for the removal of the phenolic

compounds from aqueous in the three CPE systems.

In the CPE−βCD system, the results obtained has clearly shown the

enhancement of 2,4−DCP and 2,4,6−TCP extraction compared to the CPE system.

However, the extraction of 4−NP did not improve in the presence of β−CD modifier in

the CPE−βCD system. The size of the hydrophilic 4−NP was incompatible with the

β−CD’s cavity. Apart from that, the hydrophobic host of β−CD was favorable for

hydrophobic guest to form inclusion complex. Due to these properties, the hydrophobic

2,4−DCP and 2,4,6−TCP were favorable to form inclusion complex with β−CD. Hence,

the extraction efficiency of 2,4−DCP and 2,4,6−TCP can be enhanced in the presence of

the β−CD modifier.
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By adding the modifier of the βCD−IL to the CPE system, the −
interactions and electrostatic attraction may occur between the imidazolium ring and

aromatic ring of the phenolic compounds. A better extraction performance of the 4−NP

was attained in the presence of βCD−IL modifier as compared to the β−CD modifier.

Nevertheless, the βCD−IL modifier did not improve the extraction of 2,4−DCP and

2,4,6−TCP due to the weak − interactions. The − interactions were enhanced

with the increase of the number of nitro and chloro which are both in the

electron−withdrawing groups. Since nitro has stronger electron−withdrawing ability

than the chloro group, thus, the − interactions can be enhanced by reducing the

electron density of electrons, diminishing the repulsive electrostatic interactions

between the aromatic rings.

In the solubilization isotherm study, it was found that the experimental data of

the solubilization amounts and concentration solutes had fitted the Langmuir type

isotherm for the phenolic compounds in the three CPE systems. The straight line was

obtained for the Langmuir isotherm model which obeys the experimental equilibrium

data, indicates the disclosing homogeneous distribution in the active sites of non−ionic

DC193C surfactant for the phenolic compounds in the three CPE systems. The values of

monolayer solubilization capacity (m) of the DC193C surfactant with the phenolic

compounds were found in proportion to their hydrophobicity, according to the

following order; 4−NP < 2,4−DCP < 2,4,6−TCP in the three CPE systems. However,

the energy of solubilization (n) was reversible to the values of m for the phenolic

compounds in the three CPE systems. By comparing to the three CPE systems, the

values of m and n depend on the capability of the CPE systems to extract the solutes.

Based on the results, the extraction of the 2,4−DCP and 2,4,6−TCP can be enhanced in

the presence of the β−CD modifier. On the other hand, the extraction of 4−NP can only

be enhanced in the presence of the βCD−IL modifier. The phenolic compounds
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solubilize more into the surfactant rich phase if the extraction efficiency of phenolic

compounds is high.

Thermodynamic parameters such as the change in Gibbs free energy (∆G°),

change in enthalpy (∆H°) and change in entropy (∆S°) of the DC193C−phenolic

compounds were studied. The results showed that the process was feasible from the

thermodynamic studied. The spontaneity of the above phenolic compounds extraction

was governed by the negative value of ΔGº in the three CPE systems. The positive

values of ΔSº dictated that the solubilized phenolic compounds molecules were

organized in a more random fashion on the mantle of an aqueous hydrophilic chain in

the three CPE systems. The extraction processes were endothermic in nature, the fact

also proven by the positive value of ΔHº in the three CPE systems. The values of ΔGº,

ΔHº and ΔSº in the different systems for the 2,4−DCP and 2,4,6−TCP increases in this

order; CPE−βCD−IL ≈ CPE−βCD > CPE. Meanwhile the values of ΔGº, ΔHº and ΔSº

increases in the different systems in this order; CPE−βCD−IL > CPE−βCD ≈ CPE for

the 4−NP. However, the values of ΔGº, ΔHº and ΔSº increase with the increased

hydrophobicity of the phenolic compounds in the order; 4−NP < 2,4−DCP < 2,4,6−TCP

in the three CPE systems.

In conclusion, the extraction of phenolic compounds in the CPE system can be

enhanced by adding the modifiers depend on species. The hydrophobic of 2,4−DCP and

2,4,6−TCP extraction performance were enhanced in the presence of β−CD modifier.

However, the extraction performance did not improve when the βCD−IL modifier was

added. On the contrary, the βCD−IL modifier improves the performance of hydrophilic

4−NP compared to the native of β−CD modifier. Based on these findings, by adding the

βCD−IL modifier in the CPE system, the removal of organic pollutant from aqueous

solution can be enhanced due to their unique structure that can entrap hydrophobic as

well as hydrophilic organic pollutant. On the other hand, non−ionic DC193C surfactant
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has low water content which can enhance the extraction efficiency. In addition,

non−ionic DC193C surfactant and modifiers used in the CPE has made the micellar

extraction procedure simple, greener and economical as highly desired for removal

phenolic compounds from aqueous solution.

5.2 Future works.

A new method of dispersive cloud point micro−extraction (DCPME) termed

temperature controlled non−ionic surfactant will be developed based on dispersive

liquid−liquid micro−extraction (DLLME) for determination of organic pollutant in

biological and water samples. In this approach, βCD−IL modifier will be used as a

complexing agent and non−ionic of DC193C surfactant will be used as extraction and

dispersive solvent. This method is expected to be simple, inexpensive and has higher

enrichment factor. In addition, the method should be minimized in preparation time and

consumption of toxic organic solvent.
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h i g h l i g h t s

� The optimize method of the cloud
point extraction (CPE) has been
developed by using nonionic DC193C
surfactant and UV–Vis
spectrophotometer.
� Performance of nonionic DC193C

surfactant has been studied in detail
for several parameters that affected
the extraction efficiency.
� The different on the hydrophobicity

of phenolic compounds have been
studied.
� Application of the developed method

with environment water samples.
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a b s t r a c t

A greener method based on cloud point extraction was developed for removing phenol species including
2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and 4-nitrophenol (4-NP) in water sam-
ples by using the UV–Vis spectrophotometric method. The non-ionic surfactant DC193C was chosen as an
extraction solvent due to its low water content in a surfactant rich phase and it is well-known as an envi-
ronmentally-friendly solvent. The parameters affecting the extraction efficiency such as pH, temperature
and incubation time, concentration of surfactant and salt, amount of surfactant and water content were
evaluated and optimized. The proposed method was successfully applied for removing phenol species in
real water samples.

� 2013 Elsevier B.V. All rights reserved.

Introduction

Phenol and its derivatives such as 4-nitrophenol (4-NP), 2,4-
dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP)
are found in aquatic environment as a result of the common

availability of the by-products of many industrial processes [1,2].
These compounds are generated in the production of plastic, dyes, drugs,
pesticides, antioxidants and paper in the petrochemical industries.

Most of them are very toxic and have diverse effects on the taste
and odor of water at low concentration. Nowadays, phenol and its
compounds become particularly of interest and concern in accor-
dance to the US Environmental Protection Agency (EPA) and Euro-
pean Union which are included in their lists of aquatic
environment [3–5].Additionally, these compounds can persist un-
der a certain environmental condition, at ppm levels in ground
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water for a number of days or weeks depending on the tempera-
ture and pH [1]. Thus, many researchers are very concerned in
removing the phenol species rather than in determining them in
the water samples.

The most common methods that have been used in research
work for removing phenolic species in water samples are the mem-
brane separation process [6,7], oxidation [8,9], ozonation [10,11] as
well as the adsorption [12–14] on different adsorbents. In contrast,
a simple, fast, economical, greener, sensitive and selective analyti-
cal methods are required for removing phenol species from the
water sample [15]. Based on that, few researchers have discovered
recently about the principles and advantages of the cloud point
extraction (CPE) as the new extraction method. It is found that
the CPE methodology which is simple, cheap, highly efficient, and
has lower toxicity offers an alternative to a more conventional
extraction system [15–17].

Surfactants are amphiphilic molecules, having two distinct
structure moieties, a hydrophilic head and one or two hydrophobic
tails. This latter part is generally a hydrocarbon chain with differ-
ent numbers of carbon atoms. The hydrocarbon may be linear or
branched aliphatic chains and it may also contain aromatic rings
[18,19]. The hydrophobic tails can entrap and thus isolate the
hydrophobic substances. This ability has been extensively used in
the cloud point extraction [20]. At certain temperature, an aqueous
solution of the non-ionic surfactant micellar system becomes tur-
bid. This temperature is known as the cloud point temperature
(CPT) [21–23]. Above the cloud point temperature, the solution
separates in two phases: first off, the surfactant rich phase, which
has a small volume compared to the solution and which is also
called the coacervate phase while the other phase is the aqueous
phase containing surfactant concentration slightly above the criti-
cal micelle concentration (CMC) [24–26].

There are many potential advantages to replace the volatile or-
ganic compounds (VOCs) with water or various types of aqueous
solution. The most obvious are low cost, reduced flammability, re-
duced toxicity, and reduced environmental risk as a result dis-
charge of the supporting phase. Therefore, relatively few articles
have focused on the use of aqueous polyethylene glycols (PEGs)
solution. PEGs (also called dimethicone copolyols, silicone glycols,
and silicone surfactants) are one class of amphiphilic materials
having water soluble and a silicone soluble portion in one mole-
cule. DC193C fluid which is non-ionic surfactant based on silicone
PEGs copolymer [27].

PEGs have been recognized as an alternative approach to
replacing VOCs due to a number of advantages, e.g. non-toxic,
odorless, colorless, non-irritating and the fact that they do not
evaporate easily. In addition, PEGs are considered inert as they
are not reacting to other materials. They are also soluble in many
organic solvents. They have been an important and growing class
of raw materials used in the cosmetic, food and pharmaceutical
industries; their biocompatibility and safety to human and their
friendly nature to the environment have been proven for a long
time [28,29]. As reported by Chen (2005), even if the PEGs are dis-
charged to the environment; the environment would suffer from
no significant effect. Moreover, the US FDA has permitted this sur-
factant for internal consumption [27]. Therefore, due to the advan-
tages of DC193C surfactant, phenol species are more concerned in
removing them in the water samples compared to recover the non-
ionic surfactant of DC193C from water samples.

There are several types of surfactant that had been used as
extractant such as Triton X, Tergitol and PONPE series in CPE. Tri-
ton X-114 is well known for micelle formation compared to other
classes of non-ionic surfactant. However, its aromatic chromo-
phore has strong UV absorbance or fluorescence signals which be-
comes obstacles in UV and fluorescence detectors [26]. Therefore,
DC193C fluid non-ionic surfactant was used to overcome this

problem. Furthermore, it has more flexible polysiloxane chains
without any aromatic structure and becomes more compact
micelle structures which offer low water content in the surfactant
rich phase; thus, enhancing the extraction efficiency [30].

In the present work, the feasibility of employing the CPE as a
simple and effective method has been adopted to remove phenolic
species from water samples using DC193C as a non-ionic surfac-
tant. Several parameters used in the cloud point extraction method
of DC193C have been optimized such as the effect of pH, concen-
tration and amount of surfactant, equilibration temperature and
time, concentration of salt and analyte and water content. This is
the first attempt of DC193C surfactant used in the CPE for remov-
ing phenolic species from water samples by the spectrophotomet-
ric method. Due to this fact, DC193C has high flexible polysiloxane
chains with low cohesive energy, which offers more conformations
than the conventional surfactants, resulting in compact micelle
structures as well as low water content in the surfactant rich phase
[28,30]. Therefore, it was selected to be used in this study. Mean-
while, spectrophotometry was preferred because of its simplicity,
low cost and rapid analysis.

Experimental

Apparatus

A Shimadzu (Kyoto, Japan) Model UV-1650 UV–Vis spectropho-
tometer was used for the measurement of the phenolic com-
pounds. A wise bath� was used to be maintained at the desired
temperature. The pH values of the sample solutions were deter-
mined by pH meter (Hanna instrument). 15 ml calibrated centri-
fuge tubes were used (Copen, Malaysia).

Reagents

Dow Corning DC193C, also known as polyethyleneglycol (PEG)
silicone, was supplied by Dow Corning (Shanghai, China). Fig. 1
shows the chemical structure of the PEG. The values of x, y and
molecular weight of these compounds were available from the
manufactures. Fig. 2 shows the absorption of the UV–Vis spectra
for 4-Nitrophenol (molecular weight: 139.11, kmax: 318 nm),
2,4-dichlorophenol (molecular weight: 163, kmax: 285 nm) and
2,4,6-trichlorophenol (molecular weight: 197.45, kmax: 295 nm)
that were purchased from Aldrich. Standard stock solutions of
chlorophenols (1000 mg L�1) were prepared in methanol and
4-nitrophenol (1000 mg L�1) in distilled water. Working solutions
were prepared daily by an appropriate dilution of the stock solu-
tions. For all the experiments, surfactant and phenol compounds
were used without further purification. HCl and NaOH were used
for pH adjustment. Na2SO4 was prepared by dissolving an appro-
priate amount in distilled water.

Procedure

An aliquot of 1.0 mL of a sample or standard solution containing
the analyte (10 mg L�1), surfactant of DC193C (0.5 v/v%) and

Fig. 1. The structure of silicone surfactant (DC193C).
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1.5 mol L�1 of Na2SO4 at pH 7.0 were mixed in tapered glass tubes
and the phase separation was induced by heating the content in a
water bath at 50 �C for 15 min. The separation of the phases was
achieved by centrifugation for 2 min at 1500 rpm. On cooling in
an ice-bath for 5 min, the surfactant rich phases became viscous.
Then, the surfactant rich phase at the top layer could be separated
by using a syringe, thereby minimizing the possibility of cross-con-
tamination of analytes from the corresponding aqueous phase.
Subsequently, 2.0 mL of de-ionized water was added to the surfac-
tant rich phase in order to decrease its viscosity. It will also make
the final volume feasible to transfer into the optical cell for the
measurement each phenol species spectrophotometrically at the
respective absorption maxima against a reagent blank prepared
under similar conditions.

Water content
The water content of the surfactant rich phase after the extrac-

tion was measured by drying the surfactant rich phase at 353 K un-
til no mass was observed. The water content was obtained by
calculating the weight differences of the surfactant rich phase be-
fore and after drying. All the data given in this study were the aver-
age of triple measurements.

Analysis of water sample

Water samples were taken from two selected lakes in urban
areas in Kuala Lumpur which were Taman Jaya Lake and Taman
Titiwangsa Lake (Malaysia). Prior to the analysis, lake water sam-
ples were successively passed through filters by using 0.45 lm ny-
lon filter to remove the possible suspended particulate matter and
to be stored in the refrigerator at 4 �C before extraction. An appro-
priate amount of standard solutions at two different level concen-
trations (400 and 1200 lg L�1) of 2,4-DCP was added to the real
water sample for recovery test. The same procedure was carried
out for 2,4,6-TCP and 4-NP.

Results and discussion

Characterization of non-ionic DC193C surfactant

Most of the previous works involving the cloud point extraction
ultilized alkylphenyl poly(oxyethylene) ethers (PONPE-7.5 or Tri-
ton X-114) [26]. However, the silicone surfactant symbolized by
DC193C was employed in this study because of its possession of
several desirable features which make it particularly suitable for
use in a routine cloud point extraction work as mentioned below:

(i) The surfactant becoming commercially available in a highly
purified homogenous form.

(ii) It is not hazardous compared to other surfactant such as Tri-
ton X and most importantly.

(iii) No aromatic moiety to interfere with possible analyte UV
absorbance or fluorescence detection modes.

Parameters that optimize CPE

The main variables affecting the extraction process, such as pH,
concentration and amount of surfactant, equilibration temperature
and time, concentration of salt and analyte were optimized. The
extraction efficiency of the phenol species by surfactant from the
sample was calculated as [31];

Extraction efficiency; ð%Þ ¼ CsVs

CoVo
� 100

where Cs represents the phenol species concentration in the surfac-
tant rich phase of volume Vs; Co represents the phenol species con-
centration in the sample-surfactant mixture of volume Vo.

Effect of pH
In the cloud point extraction, the pH is the most crucial factor

regulating the partitioning of the target analytes in the micellar
phase for organic molecules. In this work, the effect of pH on the
efficiency of the extraction was studied within pH range from 2.0
to 9.0 and the results were obtained and latter shown in Fig. 3.

Fig. 3 illustrates the dependence of the extraction efficiencies
against pH that were obtained for 2,4-DCP (pKa 7.7), 2,4,6-TCP
(pKa 7.4) and 4-NP (pKa 7.2). It can be seen from Fig. 3, that the
maximum extraction efficiencies for the three phenol species were
achieved at pH 7.0, where the uncharged form of target analyte
prevails [19,32]. The extraction efficiencies of the three phenol spe-
cies were less in acidic pH and increased as the pH increased. The
three phenol species were protonated at lower pH (less than pKa

value) and their ionic characteristics increased, leading to less sol-
ubilization of the phenol species in the hydrophobic micelles due
to the interaction of the protons with polyethylene oxide. At higher
pH > 7 (above pKa value), the extraction efficiency for the three
phenol species decreases, and this may be because of the formation
of phenolate ion. According to Frankewich and Hinze (1994), the
ionic form of a neutral molecule formed upon the deprotonation
of a weak acid (or protonation of a weak base) normally does not
interact with, and bind, the micellar aggregate as strongly as does
its neutral form due to the non-dissociated type of non-ionic sur-
factant [33]. Therefore, pH 7.0 was selected as the optimal pH for
the three phenol species.

Fig. 2. The absorption of the UV–Vis spectra for individual phenol species at the
respective absorption maxima in the surfactant rich phase after CPE.
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Fig. 3. Effect of pH on the extraction efficiency. Conditions: 10 mg L�1 of phenol
species concentration, 0.5 (v/v%) DC193C, 1.5 mol L�1 Na2SO4 at 50 �C.
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Effect of DC193C concentration
It is desirable to use minimum amount of surfactant for maxi-

mum extraction of phenol species. The amount of DC193C not only
affected the extraction efficiency, but also the volume of the sur-
factant rich phase. A successful CPE should be maximizing the
extraction efficiency by minimizing the phase volume ratio
(Vs/Vo). The effect of DC193C concentrations on extraction
efficiency was evaluated in the range 0.1–0.8 (v/v%) for the three
phenol species. The plot of the extraction efficiency of the three
phenol species in the surfactant rich phase after CPE versus
DC193C concentration was demonstrated in Fig. 4. The extraction
efficiency and volume of the surfactant rich phase (Vs) increased
on the increasing DC193C concentration up to 0.5 (v/v%) and
remained constant up to 0.8 (v/v%) for the three phenol species.
An increase in the surfactant amounts also increases the volume
of the surfactant rich phase to maintain the material balance, as
the concentration surfactant in the dilute phase remains almost
constant. Therefore, by increasing DC193C concentration, the
number of hydrophobic micelles increased and caused responsive
increase of the extractability of DC193C [34]. The extract was
therefore more diluted when higher amounts of surfactants were
used, resulting in the loss of sensitivity with the increase of
DC193C concentration above 0.5 (v/v%), due to the increased
viscosity of the surfactant rich phase. At concentration below this
value, the extraction efficiency of the phenol species was low
because there are few molecules of the surfactant entrapping the
phenol species quantitatively. Thus, to fulfill the ‘‘environmentally
benign’’ extraction, a low concentration of DC193C, 0.5 (v/v%), was
selected for use in this experiment for three phenol species.

Effect of amount DC193C
Fig. 5 depict the effect of the variation of DC193C amount on the

percentage extractions of the three phenol species. Different vol-
umes of the DC193C (0.5 v/v%) ranging from 0.1 to 1.0 mL were
used in this study. As shown in Fig. 5, the percentage extractions
for the three phenol species increased by increasing the DC193C
amount up to 0.5 mL and suddenly decreased at higher amounts
of 0.5 v/v%. This is because of the fact that the analytical signal is
observed to deteriorate due to the increase in the final volume of
the surfactant. Therefore, 0.5 mL of 0.5 v/v%. DC193C was used as
the optimum amount for the three phenol species.

Effect of equilibrium temperature and time
It is desirable to have the lowest possible equilibration temper-

ature and shortest incubation time, which compromise the com-
pletion of the reaction and efficient separation of phase. In the

CPE process, the cloud point can alter with the increasing length
of the hydrocarbon and sometimes dramatically, in the presence
of acids or bases, salts and organic additives [35].

In this work, the temperature of the thermostatic bath was var-
ied from 25 �C to 80 �C (Fig. 6). It is found that the temperature of
50 �C was adequate for all phenols. As shown in Fig. 6, the extrac-
tion efficiencies were found to gradually increase when the tem-
perature increased from 25 �C to 50 �C and almost constant up to
80�C for the three phenol species. The temperature affects interac-
tions in both phases, decreasing the hydration of solutes i.e., phe-
nols and surfactant in the aqueous phase and surfactant rich
phase. Due to that, depending upon the experimental conditions,
an increase of the temperature can cause an increase or a decrease
of phenols recovery [36]. It is well known that, critical micelle con-
centration (CMC) decreases at higher temperature. Moreover, the
non-ionic surfactant becomes relatively more hydrophobic at high-
er temperature because of an equilibrium shift that favors the
dehydration of the ether oxygens. This leads to an increase in the
number of concentration of micelles. Therefore, the solubilization
capability of the micellar solution increases with temperature
leading to an increase in the phenol extractions. At an elevated
temperature, the interaction among the DC193C micelles increases
leading to the dehydration from the external layers of micelles
resulting in a decrease in the volume of surfactant rich phase vol-
ume (Vs) [37]. Unfortunately, for a thermally labile compound, the
lowest possible equilibration temperature should be used to avoid
unstable decomposition of the compound at an elevated tempera-
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ture [38]. Therefore, the equilibrium temperature at 50 �C was se-
lected as an operating temperature in this study for three phenol
species.

The dependence of the extraction efficiency upon the incuba-
tion time was also studied in the range of 5–30 min at 50 �C.
Fig. 7 displays that the incubation time of 15 min was sufficient
to complete the quantitative extraction of three phenol species.
The extraction efficiency declined as the incubation time exceeded
15 min, which was probably due to the stability of the phenol spe-
cies and the decreasing surfactant [39]. Hence, 15 min at 50 �C was
chosen as an incubation time for the three phenol species for the
CPE process.

Effect of ionic salt
The phase separation in the CPE was commonly induced by

heating the mixture containing the surfactant up to a temperature
above the cloud point. However, analyte that is sensitive to this
kind of approach, due to inherent volatility, and solution heating
might actually lead to analyte losses. In this sense, the salting-
out effect of salt was adopted as an alternative to induced phase
separation in the aqueous solutions of DC193C.

It has been reported that the addition of electrolytes may accel-
erate the separation of the two phases of the CPE procedure
[40,41]. This is because salt acts as ‘‘drying agent’’, causing the par-
tial dehydration to occur for both surfactant and phenols by the
breaking of hydrogen bonds with water molecules. This obviously
results in a significant reduction of the cloud point in a way that
phase separation already occurs at room temperature [42].

In this work, salts which were used in the CPE included NaCl,
Na2SO4, NaOH, K3PO4, KCl and KI. The effect of salting-out electro-
lytes is mainly due to the dehydration of the PEG chain by cation
and increasing water molecule self-association by anions. How-
ever, the CPE systems had different behavior against the salt type.
Na2SO4 can form the two-phase system when the concentration of
the salt is in the range of 0.5–2.0 mg L�1. However, the other salts
cannot form the two-phase system at concentration 62.0 mg L�1

such as NaCl, NaOH, K3PO4, KCl and KI. This phenomenon is prob-
ably a solvophobic one. The kosmotropic ions, e.g. SO2�

4 , OH�, Na+

and PO3�
4 , which exhibit a stronger interaction with water mole-

cule than water with itself are therefore capable of breaking
water–water hydrogen bonds and beneficial to the phase separa-
tion formation. However, the chaotropic ions, e.g. Cl�, K+, I� have
the opposite effect because of their exhibiting weaker interactions
with water than water itself and thus interfering little in the
hydrogen bonding of the surrounding water. The effect of the cat-
ion nature is usually smaller than that of the anion. According to

Ferreira and Teixeira (2010), the salting-out ability of the cations
follows the Hofmeister series (Na+ > K+) and can be related to the
ions from Gibbs’ free energy of hydration (DGhyd). Comparing the
cation DGhyd (�89.6 kcal.mol�1 for Na+ and �72.7 kcal mol�1 for
K+) it is possible to confirm that (Na+) is the most kosmotropic
ion. Kosmotropic ions have large negative DGhyd due to the result-
ing structured water lattice around the ion, and therefore the salt-
ing-out effect of Na+ is greater than K+ [43]. Therefore, Na2SO4 has
been chosen due to its ability to form the two phases of separation.

As shown in Fig. 8, the extraction efficiencies of the three phe-
nol species increase with the increasing Na2SO4 concentration
from 0.5 to 1.5 mol L�1 and become constant above 1.5 mol L�1.
After adding the concentration of salt up to 2.0 mol L�1, the con-
centration of salt becomes saturated, causing no changes on the
extraction efficiencies, compared to the concentration of salt at
1.5 mol L�1 for the three phenol species. This approach was com-
patible with the UV–visible detection even by adding salts under
saturated conditions to the surfactant solution [44]. In general sul-
fate ion (SO2�

4 ); as it is well established fact that anion has marked
influence compared to that of cation. It has a strong influence on
the structure of the water and the hydrogen bonding between
the real oxygen of polyethylene oxide (PEO) chain and water. The
following explanation for the PEO–sulfate ion interaction in water
can be given: The water surrounding the sulfate ion is polarized on
the ionic field, resulting in a low free energy, while the water in the
PEO hydration shell is in a high free energy state because of its
unfavorable entropy contribution. As a sulfate ion approaches the
PEO, the amount of the intervening water decreases, leading to a
repulsive force between the sulfate ion and PEO (since the PEO is
far less polarizable than water). This progressive dehydration of
PEO disrupts hydrogen bonds between the ether oxygen of the
copolymer molecules and water or transformation of a polar PEO
conformation to a non-polar gauge formed at higher salt concen-
tration [45]. Therefore, 1.5 mol L�1 was selected as an optimum
concentration of salt. It is fact that the addition of Na2SO4 electro-
lyte increased the size of the micelle and aggregation number, thus,
enhancing the analyte to be more soluble in the surfactant rich
phase so more water goes to the dilute phase due to the salting-
out effect. The added sulfate ions also decrease the self-association
of water molecules, the hydration of the PEO chain and the surfac-
tant solubility in water, causing decreases in the CPE [46]. It has
been mentioned that adding too much Na2SO4 is not always favor-
able. The addition of excessive Na2SO4 to the micellar solution will
lead to the very low CPT and, thus, render the formation of the un-
wanted and very viscous surfactant rich phase. The salting-out ef-
fect was also correlated with the water content in the surfactant
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rich phase. The more concentration of Na2SO4, it will contribute to
the occurrence of the dehydration process less water content in the
surfactant rich phase [47].

Effect of concentration analytes
Fig. 9 shows the extraction efficiency of phenol species versus

initial concentration of phenol species in the range of 2.0–
20.0 mg L�1. The extraction efficiencies decrease with the incre-
ment in the concentration of solute and it appears to be constant
from 16.0 mg L�1 to 20.0 mg L�1 for the three phenol species. As
shown in Fig. 9, both cholorophenols (2,4-DCP and 2,4,6-TCP)
had obtained 100% of extraction efficiencies at 2.0 mg L�1. Mean-
while, about 80% extraction efficiency was achieved for 4-NP at
2.0 mg L�1. At a constant operating temperature (50 �C), the con-
centration of surfactant in both the aqueous and rich surfactant
phases remains constant. Hence, the three phenol species solubili-
zation capacity of the surfactant micelles remains almost invariant
in both phases. Therefore, with further increase in phenol species
concentration this leads to the unsolubilized excess phenol species
and which were retained in the aqueous phase that account for a
decrease in the extraction efficiencies of the three phenol species
[18].

Interference study
In order to investigate the selectivity of the method, a 1 mL of

sample solution containing 10 mg L�1 of 2,4-DCP and 500 mg L�1

of Na+, K+, Cl�, Br�, CO2�
3 , OH�, I� and NO�2 was extracted under a

specific experimental condition. The same procedure was carried
out for 2,4,6-TCP and 4-NP. The results given in Table 1 reveal that
there is no significant interference by the diverse ions present at
moderate concentration.

Water content in surfactant rich phase
Water content in the surfactant rich phase is another factor to

be focused on, in improving the extraction efficiency. In fact, about
80 wt% water content is still present in the surfactant rich phase
after the CPE process; even the phase extraction process was
straightened by the high speed centrifugation operation. The high
water content in the surfactant rich phase has limited the perfor-
mance of the CPE to a large extent, which further causes the diffi-
culty in the distribution coefficient and extraction efficiency [30].
Fig. 10 shows the comparison of the percentage water content in
the surfactant rich phase between the CPE process with DC193C
and Triton X. Based on the result, Triton X obtained the higher per-
centage of water content in the surfactant rich phase compared to
DC193C after the CPE process for three phenol species. The per-

centage of water content in surfactant rich phase for DC193C were
about 58 wt% (2,4-DCP), 56 wt% (2,4,6-TCP) and 67 wt% (4-NP),
respectively. Meanwhile for Triton X, the percentage of the water
content in the surfactant rich phase was above 80 wt% for three
phenol species. Referring to the structure of DC193C (Fig. 1), more
conformation of the PEG dimethicone molecule was present in the
formation of micelles and surfactant rich phase during the CPE pro-
cess in order to make the arrangement of molecule more compact
due to the flexible long silicone chain structure. Thus, the spaces
remained for the water inside or among the micelles were effi-
ciently compressed compared to the structure of Triton X [30].
Therefore, the surfactant of DC193C was favorable for the excellent
performance of CPE.

Another factor that contributes to the specificity of the inter-
phase transfer in the micelle extraction system was the influence
of the analyte molecule structure and their hydrophobicity on its
distribution between the aqueous and the surfactant rich phase
[48]. As illustrated in Fig. 10, the surfactant rich phase has the
highest water content for the least hydrophobic 4-NP compared
to 2,4-DCP and 2,4,6-TCP which are more hydrophobic. The least
hydrophobic molecule of 4-NP has the potential to solute in the
aqueous phase that causes the spaces to remain for the water in-
side the micelles were not efficiently compressed. Meanwhile,
the surfactant rich phase becomes more hydrophobic when more
hydrophobic analytes for both chlorophenols are bound into the
micelle core. Trichlorophenol is more hydrophobic than dichloro-
phenol due to the increasing numbers of chlorine atoms in the
molecular structure. Thus, the solubilization increases in the
hydrophobic micelles instead of the aqueous phase. As a result,
the percentage of the water content in the surfactant rich phase
decreased on the increasing of molecule hydrophobicity according
to the following order;

2;4;6-TCP > 2;4-DCP > 4-NP
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Fig. 9. Effect of concentration analytes on the extraction efficiency. Conditions: pH
7.0, 0.5 (v/v%) DC193C, 1.5 mol L�1 Na2SO4 at 50 �C.

Table 1
Interference study.

Ions Concentration (mg L�1) Extraction efficiency (%)

2,4-DCP 2,4,6-TCP 4-NP

Na+ 500 80 81 65
K+ 500 80 81 61
Cl� 500 80 80 63
Br� 500 83 84 61

CO2�
3

500 80 80 68

OH� 500 80 80 63
I� 500 83 83 62
NO�2 500 81 81 60

0 

20

40

60

80

100

2,4-DCP 2,4,6-TCP 4-NP

W
at

er
 c

on
te

nt
 / 

w
t%

Analytes

DC 193 C

Triton X

Fig. 10. Water content in the surfactant rich phase obtained by the CPE process
with DC193C and Triton X at 0.5 (v/v%) surfactant concentration.
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In addition, the concentration of non-ionic DC193C surfactant is
also one of the factors that affect the percentage of water content
in the surfactant rich phase as shown in Fig. 11. The percentage
of water content decreases as the concentration of DC193C in-
creases from 0.1 to 0.5 v/v% and almost constantly up to 0.8 v/v%
for the three phenol species studied. This is due to the increasing
number of hydrophobic micelles which results in the extraction
efficiency of three phenol species [46]. This finding has been sup-
ported by the results obtained as shown in Fig. 4. From this, we
can conclude that the lowest percentage water content in the sur-
factant rich phase, the higher the extraction efficiency in the phe-
nol species.

Method validation

Under the optimized conditions, the calibration graphs were
constructed by plotting the absorbance signal against the concen-
trations of each analyte subjected according to the general proce-

dure for the CPE. The measurement of each analyte
spectrophotometrically at the respective absorption maxima
against a reagent blank prepared under similar conditions. The cal-
ibration data are summarized in Table 2.

Application real samples

The calibration graphs in the range 0.4–2.0 mg L�1 were con-
structed by plotting the absorbance signal against the concentra-
tion of each phenol species subjected according to the general
procedure under the optimized conditions. The developed method
has been applied to evaluate its feasibility by spiking each phenol
to the water sample.

The results were summarized in Table 3 and the recoveries for
all phenol species were calculated to be in the range of 69–97%.
Therefore, the method can be considered as a reliable method for
the removal of phenol species in water samples.

Conclusion

The CPE technique offers several advantages such as the fact
that its cost is low, it is sensitive, selective and it provides safety
with good extraction efficiency. To the best of our knowledge, this
is the first report on the use of non-ionic surfactant of DC193C in
the CPE that is applied for the removal of the three phenol species
(2,4-DCP, 2,4,6-TCP, 4-NP) in aqueous samples. Experimental re-
sults show that high recoveries can be obtained at the optimized
parameters: DC193C, 0.5 mL of 0.5 v/v%; for Na2SO4, 1.5 mol L�1;
equilibration temperature, 50 �C and incubation time, 15 min for
three phenols. Furthermore, the non-ionic DC193C surfactant in
the CPE has a great potential to be explored for removing the or-
ganic pollutant in the water samples based on their unique struc-
ture molecules that could entrap hydrophobic and as well as
hydrophilic substances. Besides, it has low water content which
enhances the extraction efficiency. In addition, a non-ionic surfac-
tant of DC193C used in the CPE makes the micellar extraction pro-
cedure simple, greener and economical as highly desired for the
removal technique.

Acknowledgements

Authors would like to seize this opportunity to express their
gratitude to University Malaya for the Postgraduate Research Grant
(IPPP grant, PV040/2012A) and Fundamental Research Grant
Scheme (FRGS grant, FP015–2013A) University of Malaya. The
authors also acknowledge the Advance Medical and Dental Insti-
tute, University of Science Malaysia (IPPT) and MOHE for providing
fellowship to one of the authors-cum-researchers, Mrs. Nur
Nadhirah Mohamad Zain.

References

[1] D. Martínez, E. Pocurull, R.M. Marcé, M. Calull, Journal of Chromatography A
734 (1996) 367.

[2] S. Shen, Z. Chang, H. Liu, Journal of Separation and Purification Technology 49
(2006) 217.

[3] D. Cha, N. Qiang, Journal of Filtration and Separation 49 (2012) 38.
[4] I. Rodrı́guez, M.P. Llompart, R. Cela, Journal of Chromatography A 885 (2000)

291.
[5] V. Kavitha, K. Palanivelu, Journal of Photochemistry and Photobiology A:

Chemistry 170 (2005) 83.
[6] Y. Park, A.H.P. Skelland, L.J. Forney, Jae-Hong Kim, Journal of Water Research 40

(2006) 1763.
[7] E. Erhan, B. Keskinler, G. Akay, O.F. Algur, Journal of Membrane Science 206

(2002) 361.
[8] M. Wagner, J. Nicell, Journal of Water Science & Technology 43 (2001) 253.
[9] S. Alcántara, A. Velasco, A. Muñoz, I. Cid, S. Revah, E.R. Flores, Journal of

Environmental Science & Technology 38 (2004) 918.

0 

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

W
at

er
 c

on
te

nt
 /w

t%

DC193C (v/v%)

2,4-DCP 

2,4,6-TCP

4-NP

Fig. 11. Water content in the surfactant rich phase obtained by the CPE process
with DC193C at different surfactant concentration.

Table 2
Method validation of the spectrophotometric of the phenol species using the CPE
procedure.

Analytes Linear range (mg L�1) Correlation coefficient, R2 % RSD, n = 3

2,4-DCP 0.4–2.0 0.997 0.15–1.40
2,4,6-TCP 0.4–2.0 0.993 0.16–0.60
4-NP 0.4–2.0 0.998 0.05–0.42

Table 3
Recoveries of the three phenol species in spiked water samples.

Analyte Samplea Correlation
coefficient, R2

Spiking
(mg L�1)

Recovery (%
mean ± RSD, n = 3)

2,4-
DCP

1 0.4 91 ± 1.5

0.997 1.2 88 ± 2.4
2 0.4 91 ± 2.8

1.2 85 ± 2.2

2,4,6-
TCP

1 0.4 96 ± 1.3

0.993 1.2 86 ± 1.7
2 0.4 97 ± 2.3

1.2 87 ± 1.4

4-NP 1 0.4 77 ± 1.8
0.998 1.2 69 ± 1.1

2 0.4 81 ± 1.6
1.2 70 ± 1.3

a Samples 1, 2 from lakes water.

N.N.M. Zain et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118 (2014) 1121–1128 1127



Author's personal copy

[10] M.O. Buffle, U. von Gunten, Journal of Environmental Science & Technology 40
(2006) 3057.

[11] N.A.S. Amin, J. Akhtar, H.K. Rai, Journal of Chemical Engineering 158 (2010)
520.

[12] Y. Ku, K.C. Lee, Journal of Hazardous Materials 80 (2000) 59.
[13] Y. Lin, Y. Shi, M. Jiang, Y. Jin, Y. Peng, B. Lu, K. Dai, Environmental Pollution 153

(2008) 483.
[14] I. Abay, A. Denizli, E. Biskin, B. Salih, Chemosphere 61 (2005) 1263.
[15] M.F. Nazar, S.S. Shah, J. Eastoe, A.M. Khan, A. Shah, Journal of Colloid and

Interface Science 363 (2011) 490.
[16] J.L. Manzoori, G.K. Nezhad, Analytica Chimica Acta 484 (2003) 155.
[17] M.K. Purkait, S. Banerjee, S. Mewara, S. DasGupta, S. De, Water Research 39

(2005) 3885.
[18] A. Arunagiri, P. Kalaichelvi, S. Cherukuri, A. Vijayan, International Journal 3

(2012).
[19] E.K. Paleologos, D.L. Giokas, M.I. Karayannis, TrAC Trends in Analytical

Chemistry 24 (2005) 426.
[20] E.K. Paleologos, A.G. Vlessidis, M.I. Karayannis, N.P. Evmiridis, Analytica

Chimica Acta 477 (2003) 223.
[21] S.R. Sirimanne, J.R. Barr, D.G. Patterson, Analytical Chemistry 68 (1996) 1556.
[22] S.A. Kulichenko, V.O. Doroschuk, S.O. Lelyushok, Talanta 59 (2003) 767.
[23] A. Safavi, H. Abdollahi, M.R. Hormozi Nezhad, R. Kamali, Spectrochimica Acta

Part A: Molecular and Biomolecular Spectroscopy 60 (2004) 2897.
[24] M.O. Luconi, M.F. Silva, R.A. Olsina, L.P. Fernández, Talanta 51 (2000) 123.
[25] E.K. Paleologos, S.D. Chytiri, I.N. Savvaidis, M.G. Kontominas, Journal of

Chromatography A 1010 (2003) 217.
[26] D. Bai, J. Li, S.B. Chen, B.H. Chen, Environmental Science & Technology 35

(2001) 3936.
[27] J. Chen, S.K. Spear, J.G. Huddleston, R.D. Rogers, Journal of Green Chemistry 7

(2005) 64.
[28] B. Yao, L. Yang, Q. Hu, A. Shigendo, Chinese Journal of Chemical Engineering 15

(2007) 468.
[29] O. Annunziata, N. Asherie, A. Lomakin, J. Pande, O. Ogun, G.B. Benedek,

Proceedings of the National Academy of Sciences 99 (2002) 14165.

[30] B. Yao, L. Yang, Journal of Colloid and Interface Science 319 (2008) 316.
[31] A. Chatzilazarou, E. Katsoyannos, O. Gortzi, S. Lalas, Y. Paraskevopoulos, E.

Dourtoglou, J. Tsaknis, Journal of the Air & Waste Management Association 60
(2010) 454.

[32] M.H. Mashhadizadeh, L. Jafari, Journal of the Iranian Chemical Society 7 (2010)
678.

[33] R.P. Frankewich, W.L. Hinze, Analytical Chemistry 66 (1994) 944.
[34] M.K. Purkait, S.S. Vijay, S. DasGupta, S. De, Journal of Dyes and Pigments 63

(2004) 151.
[35] F.H. Quina, W.L. Hinze, Industrial & Engineering Chemistry Research 38 (1999)

4150.
[36] E. Tatara, K. Materna, A. Schaadt, H.J. Bart, J. Syzmanowski, Environmental

Science & Technology 39 (2005) 3110.
[37] M.K. Purkait, S. DasGupta, S. De, Journal of Hazardous Materials 137 (2006)

827.
[38] D.L. Giokas, Q. Zhu, Q. Pan, Journal of Chromatography A 1251 (2012) 33.
[39] S. Wen, X. Zhu, Y. Wei, S. Wu, Food Analytical Methods 6 (2013) 506.
[40] W. Wei, X.B. Yin, X.W. He, Journal of Chromatography A 1202 (2008) 212.
[41] L. Wang, G.B. Jiang, Y.Q. Cai, B. He, Y.W. Wang, D.Z. Shen, Journal of

Environmental Sciences 19 (2007) 874.
[42] I.M. Dittert, T.A. Maranhão, O.L.G. Borges, M.A. Vieira, B. Welz, A.J. Curtius,

Talanta 72 (2007) 1786.
[43] L.A. Ferreira, J.A. Teixeira, Journal of Chemical & Engineering Data 56 (2010)

133.
[44] C.M. Santana, Z.S. Ferrera, M.E.T. Padrón, J.J.S. Rodríguez, Molecules 14 (2009)

298.
[45] Y. Kadam, K. Singh, D.G. Marangoni, J.H. Ma, V.K. Aswal, P. Bahadur, Journal of

Colloids and Surfaces A: Physicochemical and Engineering Aspects 369 (2010)
121.

[46] M.S. El-Shahawi, A. Hamza, A.A.A. Sibaai, A.S. Bashammakh, H.M.A. Saidi,
Journal of Industrial and Engineering Chemistry 19 (2013) 529.

[47] H.I. Ulusoy, R. Gürkan, S. Ulusoy, Talanta 88 (2012) 516.
[48] V.O. Doroschuk, S.A. Kulichenko, S.O. Lelyushok, Journal of Colloid and

Interface Science 291 (2005) 251.

1128 N.N.M. Zain et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118 (2014) 1121–1128



This article was downloaded by: [Universiti Sains Malaysia], [NUR NADHIRAH MOHAMAD ZAIN]
On: 15 December 2014, At: 16:52
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

Desalination and Water Treatment
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tdwt20

Study of removal of phenol species by adsorption
on non-ionic silicon surfactant after cloud point
extraction methodology
N.N.M. Zainab, N.K. Abu Bakara & S. Mohamada

a Faculty of Science, Department of Chemistry, Universiti Malaya, 50603 Kuala Lumpur,
Malaysia, Tel. +60 379674263; Fax: +60 379674163, Tel. +60 379676751; Fax: +60 379674193
b Integrative Medicine Cluster (IMC), Advanced Medical & Dental Institute (AMDI), Universiti
Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
Published online: 11 Dec 2014.

To cite this article: N.N.M. Zain, N.K. Abu Bakar & S. Mohamad (2014): Study of removal of phenol species by adsorption
on non-ionic silicon surfactant after cloud point extraction methodology, Desalination and Water Treatment, DOI:
10.1080/19443994.2014.987176

To link to this article:  http://dx.doi.org/10.1080/19443994.2014.987176

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/19443994.2014.987176&domain=pdf&date_stamp=2014-12-11
http://www.tandfonline.com/loi/tdwt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/19443994.2014.987176
http://dx.doi.org/10.1080/19443994.2014.987176
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Study of removal of phenol species by adsorption on non-ionic silicon
surfactant after cloud point extraction methodology

N.N.M. Zaina,b,*, N.K. Abu Bakara, S. Mohamada

aFaculty of Science, Department of Chemistry, Universiti Malaya, 50603 Kuala Lumpur, Malaysia, Tel. +60 379674263;
Fax: +60 379674163; emails: irah_kap@yahoo.com (N.N.M. Zain), kartini@um.edu.my (N.K. Abu Bakar), Tel. +60 379676751;
Fax: +60 379674193; email: sharifah@um.edu.my (S. Mohamad)
bIntegrative Medicine Cluster (IMC), Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala
Batas, Pulau Pinang, Malaysia

Received 14 May 2014; Accepted 7 November 2014

ABSTRACT

In the present study, CPE was carried out to extract phenol species from aqueous solution
using the non-ionic silicone surfactant of DC193C. The non-ionic silicone surfactant of
DC193C was chosen because of it is well known as an environmentally friendly solvent.
The adsorption mechanism between the non-ionic silicone surfactant of DC193C and phenol
species was studied. Our results indicate that, the adsorption of the phenol species from
aqueous solution on the DC193C surfactant was in proportion to their hydrophobicities,
according to the following order; 4-NP < 2,4-DCP < 2,4,6-TCP. The data of the equilibrium
concentration and amount of adsorption in the CPE system for the three phenols species fol-
low the Langmuir-type isotherm. On some assumptions, a developed Langmuir isotherm
was used to calculate the feed surfactant concentration required for the removal of the three
phenol species up to the extraction efficiency of 90%. The developed correlations may be
useful to design a cloud point extractor of a desired efficiency. Thermodynamic parameters
including the Gibbs free energy (ΔG˚), enthalpy (ΔH˚), and entropy (ΔS˚) were also calcu-
lated. These parameters indicated that the adsorption of the three phenol species solubilized
into the non-ionic DC193C surfactant is feasible, spontaneous, and endothermic in the
temperature ranging from 298 to 353 K.

Keywords: Non-ionic surfactant DC193C; Adsorption; Cloud point extraction; Phenol species;
Langmuir isotherm; Spectrophotometry

1. Introduction

Phenol and phenolic derivatives belong to a group
of common environmental contaminants. They are
widely distributed in natural waters because of their
wide use in many industrial processes such as the
manufacture of plastics, dyes, drugs, and pesticides

[1–3]. Phenolic compounds are main pollutants in
surface waters or groundwater, thus, they are consid-
ered as priority pollutants due to their toxicity and
possible accumulate in the environment. They give an
unpleasant taste and odor to drinking water and can
exert negative effects on different biological processes.
The presence of these compounds at low concentration
can be an obstacle to the use (and/or) reuse of water.
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Toxicity generally increases with the degree of chlori-
nation and it has been reported that the OH group
plays an important role in the toxicity of chlorophe-
nols to fish [4,5]. Due to their toxicity and adverse
effect upon human and biota, the United States Envi-
ronmental Protection Agency, has classified them as
priority pollutants. The maximum allowed concentra-
tion of phenols in water is 0.1 mg L−1 [6–8]. Therefore,
the removal of phenolic pollutants from aqueous solu-
tion is necessary for environment protection and has
been investigated by various physical, chemical, and
biological methods.

The toxicity of phenols, even at a trace level,
attracts the environmental scientists to develop suit-
able technologies for their removal from aqueous solu-
tion. The various techniques that proved effective for
phenols removal from aqueous solution are membrane
separation process [9,10], biological degradation
[11,12], chemical oxidation [13,14], and adsorption
[15–17]. Among these techniques, adsorption is a most
versatile and superior method for the removal of toxic
pollutant. Adsorption process is known to be cost-effi-
cient, easy, and effective at moderate and low concen-
trations, rapid, and reproducible for the removal of
pollutant, and works without the addition of chemi-
cals or UV radiation. These are the major advantages
of adsorption technique [18].

As the temperature of an aqueous non-ionic surfac-
tant solution is increased or some additives are added,
the solution turns cloudy and phase separation occurs.
The solution may separate into a surfactant-rich phase
(coacervate phase) and a dilute phase. A solute that
originally exists will unevenly partition itself into
those two phases. The temperature at which phase
separation occurs is known as cloud point [19–21].
This technique is known as cloud point extraction
(CPE). CPE has been recognized as an alternative
approach to the conventional liquid–liquid extraction
due to a number of advantages, i.e. low cost, environ-
mental safeties, short analysis time, high capacity, and
high recovery for a wide variety of pollutants [22–24].
Recently, great attention has been attracted for its
great potential in separation of biological material,
removal of toxic solutes from polluted water [25].
Micelles of such well-known non-ionic surfactants
have a non-polar core (hydrophobic tail) and extended
polar layer (hydrophilic head), where both extractants
and extracted complexes can be solubilized. It is
important to study the mechanism of interaction
between the surfactant and solute for obtaining a more
suitable, efficient, cheap type of surfactant. The CPE is
proposed to be a process of interaction between solute
and micelles of surfactant, where the interaction can

be treated as an adsorption of solute on the surface of
the micelles or some other sites within micelles. The
micelles of surfactant are the adsorption center. The
micelles of surfactant have the ability to adsorb an
analyte inside their central core or outer palisade
layers; this can be suggested by the monolayer cover-
age of the solute on the surface of the micelle. There-
fore, this type of adsorption can be expressed by
Langmuir isotherm [26].

Despite the drawbacks associated with the use of
non-ionic surfactants with an aromatic moiety in their
structure (i.e. Triton X-100 and PONPE series), they
have been the most frequently employed in CPE
schemes. They feature high background absorbances
in the ultraviolet region or fluorescence detection
modes that might interfere when handling with these
instruments. In addition, a high temperature is
required for two liquid phase formations that prevent
them to be used in the extraction of thermally labile
analyte. Therefore, non-ionic silicone surfactant of
DC193C extraction has been proposed to overcome
some of the above-described limitations [27]. The
DC193C fluid which is the non-ionic silicone surfac-
tant is based on polyethylene glycols (PEGs) and is
also called silicone surfactant [28]. PEGs offer several
advantages, i.e. the fact that they are non-toxic, odor-
less, colorless, non-irritating, and that they do not
evaporate easily. Moreover, PEGs are considered inert
as they are not reacting to other materials. They are
also soluble in many organic solvents. Due to their
advantages, they have been an important and growing
class of raw materials used in the cosmetic, food, and
pharmaceutical industries; their biocompatibility and
safety to human and their friendly nature to the envi-
ronment have been proven for a long time [29,30]. As
reported by Chen et al. [26], even if the PEGs are dis-
charged to the environment, the environment would
suffer from no significant effects. Therefore, the US
FDA has permitted this surfactant for internal con-
sumption [28].

In our previous work, the surfactant-rich phase
technique has been adopted to extract the phenol spe-
cies using the non-ionic silicone surfactant of DC193C.
The effects of different operating parameters, i.e. pH,
concentration of non-ionic surfactant, temperature,
incubation time, concentration of salt and analytes,
interference study, and water content on the extraction
of the phenol species have been studied in detail [31].
From the experimental data, a solubilisation isotherm
is developed to quantify the amount of phenols solu-
bilisation. The thermodynamic parameters are also
developed to establish the possible mechanism of
phase separation. The performance of the non-ionic
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silicone surfactant of DC193C is investigated to extract
different phenols from the aqueous solution. To the
best of our knowledge, this is the first report on the
use of the non-ionic silicone surfactant of DC193C in
the CPE that is applied for the removal of the three
phenol species (2,4-DCP, 2,4,6-TCP, 4-NP) in aqueous
samples for the adsorption study. In this work, the
adsorption behavior of the three phenol species on the
non-ionic silicone surfactant of DC193C was studied
at fixed surfactant concentration. The equilibrium data
is tested with Langmuir isotherm model. The amount
of surfactant required for the removal of solute up to
a desired level can be calculated using values of m
and n that were calculated using the linear model of
Langmuir isotherm. Thermodynamic parameters such
as enthalpy (ΔH˚), entropy (ΔS˚), and Gibbs free
energy (ΔG˚) are calculated to know the nature of
adsorption. This fundamental study will be helpful for
further application for removing pollutants in aqueous
solution using non-ionic silicone surfactant of
DC193C.

2. Experimental

2.1. Chemical and reagent

Dow Corning DC193C, also known as PEG sili-
cone, was supplied by Dow Corning (Shanghai,
China). Fig. 1 shows the chemical structure of the
PEG. The values of x, y, and molecular weight of these
compounds were available from the manufacturers.
The 4-nitrophenol (molecular weight: 139.11 g/mol,
λmax: 318 nm), 2,4-dichlorophenol (molecular weight:
163 g/mol, λmax: 285 nm), and 2,4,6-trichlorophenol
(molecular weight: 197.45 g/mol, λmax: 295 nm) were
purchased from Aldrich. Standard stock solutions of
chlorophenols (1,000 mg L−1) were prepared in
methanol and 4-nitrophenol (1,000 mg L−1) in distilled
water. Working solutions were prepared daily by an
appropriate dilution of the stock solutions. For all the
experiments, surfactant and phenol species were used
without further purification. HCl and NaOH were
used for pH adjustment. Na2SO4 was prepared by

having it dissolved in an appropriate amount in
distilled water.

2.1.1. Apparatus

A Shimadzu (Kyoto, Japan) Model UV-1650
UV–vis spectrophotometer was used for the measure-
ment of the phenol species. A wise bath® was used,
maintained at the desired temperature. The pH values
of the sample solutions were determined by the pH
meter (Hanna instrument). Fifteen-milliliter calibrated
centrifuge tubes were used (Copen, Malaysia).

2.1.2. CPE procedure

An aliquot of 1.0 mL of standard solution contain-
ing the analyte (10 mg L−1), non-ionic surfactant of
DC193C (0.16 mol L−1) and 1.5 mol L−1 of Na2SO4 at
pH 7.0 was mixed in tapered glass tubes and the
phase separation was induced by heating the content
in a water bath at 50˚C for 15 min. The different con-
centrations of the phenol species were in the range of
2.0–20.0 mg L−1 for the isotherm study. Meanwhile,
the experiment was conducted at varying tempera-
tures from 25 to 80˚C for the thermodynamic study.
The separation of the phases was achieved by centrifu-
gation for 2 min at 1,500 rpm. On cooling in an ice-
bath for 5 min, the surfactant-rich phases had become
viscous. Then, the surfactant-rich phase at the top
layer could be separated using a syringe, thereby min-
imizing the possibility of cross-contamination of ana-
lytes from the corresponding aqueous phase.
Subsequently, 2.0 mL of de-ionized water was added
to the surfactant-rich phase and aqueous phase in
order to decrease its viscosity. It will also make the
final volume feasible to be transferred into the optical
cell for the measurement of each phenol species in the
surfactant-rich phase and aqueous phase spectropho-
tometrically at the respective absorption maxima
against a reagent blank prepared under similar condi-
tions. The extraction efficiency of the phenol species
by surfactant from the sample was calculated as
Eq. (1) [32];

Extraction efficiency% ¼ CsVs

CoVo
� 100

¼ CoVo � CwVw

CoVo
� 100 (1)

where Co represents the phenol species concentration
in the initial sample of volume Vo, Cw represents the
phenol species concentration in the aqueous phase of
volume Vw, and Cs, represents the phenol concentra-
tion in the surfactant-rich phase of volume Vs.Fig. 1. Structure of silicone surfactant (DC193C).
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3. Results and discussion

3.1. Effect of pH

In the CPE, the pH is the most crucial factor regu-
lating the partitioning of the target analytes in the
micellar phase for organic molecules. In this work, the
effect of pH on the efficiency of the extraction was
studied within pH range from 2.0 to 9.0 and the
results were obtained and are shown in Fig. 2.

Fig. 2 illustrates the dependence of the extraction
efficiencies against pH that were obtained for 2,4-DCP
(pKa 7.7), 2,4,6-TCP (pKa 7.4), and 4-NP (pKa 7.2). It can
be seen from Fig. 2 that the maximum extraction effi-
ciencies for the three phenol species were achieved at
pH 7.0, where the uncharged form of target analyte
prevails [33,34]. The extraction efficiencies of the three
phenol species were less in acidic pH and increased as
the pH increased. The three phenol species were pro-
tonated at lower pH (less than pKa value) and their
ionic characteristics increased, leading to less solubili-
zation of the phenol species in the hydrophobic
micelles due to the interaction of the protons with poly-
ethylene oxide. At higher pH > 7 (above pKa value),
the extraction efficiency for the three phenol species
decreases, and this may be because of the formation of
phenolate ion. According to Frankewich and Hinze
[35], the ionic form of a neutral molecule formed upon
the deprotonation of a weak acid (or protonation of a
weak base) normally does not interact with, and binds
the micellar aggregate as strongly as does its neutral
form due to the non-dissociated type of non-ionic
surfactant [35]. Therefore, pH 7.0 was selected as the
optimal pH for the three phenol species.

3.2. Effect of electrolyte concentration

The phase separation in the CPE was commonly
induced by heating the mixture containing the surfac-

tant up to a temperature above the cloud point. How-
ever, analyte that is sensitive to this kind of approach,
due to inherent volatility, and solution heating might
actually lead to analyte losses. In this sense, the salt-
ing-out effect of salt was adopted as an alternative to
induce phase separation in the aqueous solutions of
DC193C. It has been reported that the addition of elec-
trolytes may accelerate the separation of the two
phases of the CPE procedure [36,37]. This is because
salt acts as “drying agent,” causing the partial dehy-
dration to occur for both surfactant and phenols by
the breaking of hydrogen bonds with water molecules.
This obviously results in a significant reduction of the
cloud point in a way that phase separation already
occurs at room temperature [38].

In this work, salts which were used in the CPE
included NaCl, Na2SO4, K3PO4, KCl, and KI. The
effect of salting-out electrolytes is mainly due to the
dehydration of the PEG chain by cation and increasing
water molecule self-association by anions. However,
the CPE systems had different behaviors against the
salt type. Na2SO4 can form the two-phase system
when the concentration of the salt is in the range of
0.5–2.0 mg L−1. However, the other salts cannot form
the two-phase system at concentration ≤2.0 mg L−1

such as NaCl, K3PO4, KCl, and KI. This phenomenon
is probably a solvophobic one. The kosmotropic ions,
e.g. SO2�

4 , Na+, and PO3�
4 , which exhibit a stronger

interaction with water molecule than water with itself
are therefore capable of breaking water–water hydro-
gen bonds and beneficial to the phase separation for-
mation. However, the chaotropic ions, e.g. Cl−, K+,
and I− have the opposite effect because of their exhib-
iting weaker interactions with water than water itself
and thus interfering little in the hydrogen bonding of
the surrounding water. The effect of the cation nature
is usually smaller than that of the anion. According to
Ferreira and Teixeira [39], the salting-out ability of the
cations follows the Hofmeister series (Na+ > K+) and
can be related to the ions from Gibbs’ free energy of
hydration (ΔGhyd). Comparing the cation ΔGhyd

(−89.6 kcal.mol−1 for Na+ and −72.7 kcal.mol−1 for K+),
it is possible to confirm that (Na+) is the most kosmo-
tropic ion. Kosmotropic ions have large negative
ΔGhyd due to the resulting structured water lattice
around the ion, and therefore the salting-out effect of
Na+ is greater than K+ [39]. Therefore, Na2SO4 has
been chosen due to its ability to form the two phases
of separation.

As shown in Fig. 3, the extraction efficiencies of
the three phenol species increase with the increasing
Na2SO4 concentration from 0.5 to 1.5 mol L−1 and
become constant above 1.5 mol L−1. After increasing
the concentration of salt up to 2.0 mol L−1, the

Fig. 2. Effect of pH on the extraction efficiency. Conditions:
10 mg L−1 of phenol species concentration, 0.5 (v/v%)
DC193C, 1.5 mol L−1 Na2SO4 at 50˚C.
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concentration of salt becomes saturated, causing no
changes on the extraction efficiencies, compared to the
concentration of salt at 1.5 mol L−1 for the three
phenol species. This approach was compatible with
the UV–visible detection even by adding salts under
saturated conditions to the surfactant solution [40].
Therefore, 1.5 mol L−1 was selected as an optimum
concentration of salt. It is fact that the addition of
Na2SO4 electrolyte increased the size of the micelle
and aggregation number, thus, enhancing the analyte
to be more soluble in the surfactant-rich phase so
more water goes to the dilute phase due to the
salting-out effect [41].

3.3. Solubilization isotherm

Adsorption isotherms are useful for understanding
the mechanism of the adsorption. Adsorption proper-
ties and equilibrium parameters, commonly known as
adsorption isotherms, describe how the adsorbate
interacts with adsorbents, and contributes toward a
comprehensive understanding of the nature of
interaction. Isotherms study helps to provide informa-
tion about the optimum use of adsorbents. Thus, in
order to optimize the design of an adsorption system
for the removal of phenol species from aqueous solu-
tions, it is essential to establish the most appropriate
correlation for the equilibrium curve. There are several
isotherm equations available for analyzing experimen-
tal sorption equilibrium parameters. However, the
most common types of isotherms are the Langmuir
and Freundlich models [42]. The Langmuir sorption
isotherm has been successfully applied to many pollu-
tant sorption processes. It has also been the most
widely used model to describe the sorption of a solute
from an aqueous solution. A basic assumption of the
Langmuir theory is that sorption takes place at specific
homogeneous sites on the surface of the sorbent. It is

then assumed that once a sorbate molecule occupies a
site, no further sorption can take place at that site. The
rate of sorption to the surface should be proportional to
a driving force and area. The driving force is the con-
centration in the solution, and the area is the amount of
bare surface [4,26]. The Langmuir-type adsorption iso-
therm model has been used to explain the solubilization
of the three phenol species in the DC193C surfactant for
the CPE system due to its success in describing many
adsorption processes. Eq. (2) gives the expression of the
well-known Langmuir model.

qe ¼ mnCe

1þ nCe
(2)

where qe is the moles of phenol species solubilized per
mole of the DC193C surfactant at equilibrium (mol -
mol−1). Ce is the dilute-phase equilibrium (mol L−1) of
the phenol species. The constants m and n are the
Langmuir constants, m signifies he solubilization
capacity (mol mol−1), and n is related to the energy of
solubilization (L mol−1).

The constants m and n are the Langmuir constants
signifying the solubilization capacity (mol mol−1) and
energy of solubilization (L mol−1), respectively [43,44].
Values of m and n for each phenol species can be cal-
culated by the regression analysis using experimental
data. Fig. 4(a), (b), and (c) show, the solubilization iso-
therm of 2, 4-DCP, 2, 4, 6-TCP, and 4-NP, respectively,
which is illustrated by plotting 1/qe vs. 1/Ce. The
equilibrium data for the sorption of 2,4-DCP, 2,4,6-
TCP, and 4-NP over the entire concentration range
were fitted to the Langmuir isotherm. A linear plot
was obtained when 1/qe was plotted against 1/Ce

over the entire concentration range as shown in
Fig. 5(a)–(c). The Langmuir model parameters and the
statistical fits of the sorption data to this equation are
given in Table 1.

3.4. Evaluating the values of m and n

The Langmuir equation can be linearized into the
following form;

1

qe
¼ 1

m
þ 1

mnCe
(3)

where qe is the moles of phenol species solubilized per
mole of the DC193C surfactant at equilibrium
(mol mol−1), Ce is the equilibrium concentration
(mol L−1) of the phenolic species, and m and n are
constants representing the maximum adsorption
capacity and energy, respectively.

Fig. 3. Effect of concentration salt on the extraction effi-
ciency. Conditions: 10 mg L−1 of phenol species concentra-
tion, pH 7.0, 0.5 (v/v%) DC193C at 50˚C.
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A plot of 1/qe vs. 1/Ce gives a straight line with
the slope 1/mn and intercepts 1/m from Eq. (3).

The slope and intercept of the linear form of the
Langmuir model are used to determine the values of
m and n. The values of m and n for the three phenol
species were calculated by plotting 1/qe vs. 1/Ce as
shown in Fig. 5(a)–(c). The values of m and n for the
three phenol species at constant temperature (i.e.
50˚C) were tabulated in Table 1.

The adsorption ability of micelle is presented by
the adsorption capacity (m) and the energy of adsorp-
tion (n). The values of m and n vary with the tempera-
ture, which is a characteristic of both the surfactant
and solute. However, when a CPE system is separated
into two phases at a fixed temperature, the adsorption

capacity (m) and the energy of adsorption (n) are
constant. Values of m and n can be calculated from
the slope and intercept of the linear form of Langmuir
equation. As the values of m and n are taken into a
developed Langmuir equation, the amount of surfac-
tant required for the removal of solute up to a desired
level can be calculated [26]. The equilibrium data for
the sorption of 2,4-DCP, 2,4,6-TCP, and 4-NP over the
entire concentration range were fitted to the Langmuir
sorption. A linear plot was obtained when 1/qe was
plotted against Ce over the entire concentration range.
The Langmuir model parameters and the statistical fits
of the sorption data to this equation are given in
Table 1. According to the Rawajfih and Nsour [4], the
adsorption conforms to the Langmuir model when the

Fig. 4. Solubilization isotherm of the three phenol species
over the DC193C surfactant: (a) DC193C-DCP, (b)
DC193C-TCP, and (c) DC193C-NP.

Fig. 5. Plotting 1/qe vs. 1/Ce for m and n calculations: (a)
2,4-DCP, (b) 2,4,6-TCP, and (c) 4-NP.
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value of the correlation coefficient (R2) is greater than
0.89. The R2 values obtained are shown in Table 1,
which were greater than 0.89 for the three phenol spe-
cies, indicating that the isotherms were consistent with
the Langmuir model [4].

The adsorption isotherms of the three phenol spe-
cies exhibited Langmuir behavior which indicates
monolayer coverage. The adsorption capacity, m (mol -
mol−1), which is a measure of the capacity of the
adsorbent to retain the adsorbed solute, suggests that
phenols-DC193C surfactant would be effective as an
adsorbent of the phenol species. The adsorption capac-
ity (m) increased on the increasing molecule hydro-
phobicity according to the following order; 4-NP (2.27
× 10−3) < 2,4-DCP (3.33 × 10−3) < 2,4,6-TCP (4.75 ×
10−3) mol mol−1. Due to the different phenols, the
monolayer adsorption capacity was greater for chlori-
nated phenols than nitrophenol. Tri-chlorinated phe-
nol is more hydrophobic than di-chloronated phenol
due to the increasing numbers of chlorine atoms in
the molecular structure. According to Purkait et al.
[24], for the non-ionic surfactant, the core is sur-
rounded by a mantle of aqueous hydrophilic chains,
and the solubilization may occur in both core and the
mantle. The relative amount of solubilization in these
two regions of non-ionic micelles depends on the ionic
character of the solubilizate. Non-ionic surfactant
appears relatively more hydrophobic at higher tem-
perature, due to an equilibrium shift that favors dehy-
dration of the ether oxygens. As the cloud point is
approached, the solubilization of non-polar solubiliz-
ates increases, which may be due to an increase in the
aggregation number of the micelles. For polar solu-
bilizates, solubilization decreases owing to dehydra-
tion of the polyethylene chains accompanied by even
tighter coiling. These observations demonstrate that
non-polar species are solubilized in the core of
micelles, while polar solubilizates are located on the
mantle [45]. In concentrated aqueous surfactant solu-
tion, the loci of solubilization for a particular type of
solubilizate with high polarity (i.e. 4-NP) are solubi-
lized mainly in the outer region of the micellar struc-
tures, whereas non-polar solubilizates (i.e. 2,4-DCP

and 2,4,6-TCP) are contained in the inner portions.
Meanwhile, the values of energy of adsorption (n)
were reversible to the values of adsorption capacity
(m) for the three phenol species. The least hydropho-
bic species 4-NP has the highest energy of adsorption
compared to 2,4-DCP and 2,4,6-TCP which are more
hydrophobic species due to the fact that more energy
was required for the former to solubilize into hydro-
phobic surfactant micelle.

3.5. Determination of thermodynamic parameters

At certain temperature, an aqueous solution of the
non-ionic surfactant micellar system becomes turbid.
This temperature is known as the cloud point temper-
ature (CPT). Above the CPT, in the aqueous solution
of non-ionic surfactant, the solute molecules are dis-
tributed between the two phases. Thus, the influence
of temperature in the range 298–353 K was studied
under optimum experimental conditions [41]. The
effect of the temperature on the extraction of phenol
species using the non-ionic DC193C surfactant has
been discussed in the previous study [31]. It is
observed that the solubilization capacity increased sig-
nificantly with the temperature. The thermodynamic
parameters of ΔG˚, ΔH˚, and ΔS˚ for this extraction
process are determined using the following equations;

DG� ¼ DH� � TDS� (4)

log qe=Ceð Þ ¼ DS�

2:303R
þ DH�

2:303R
(5)

qe ¼ Moles of phenol solubilized

Moles of DC193C used
¼ A

X
(6)

Moles of phenols solubilized can be obtained from the
mass balance,

A ¼ VoCo � VdCe (7)

Table 1
The values of m and n with correlation coefficient (R2) for the three phenol species are given below

2,4-DCP 2,4,6-TCP 4-NP

m (mol mol−1) 3.33 × 10−3 4.75 × 10−3 2.27 × 10−3

n (L mol−1) 5.67 × 103 3.90 × 103 7.00 × 103

Correlation coefficient (R2) 0.995 0.995 0.995
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X ¼ CsVo (8)

where qe is the mole of phenol species solubilized per
mole of non-ionic DC193C surfactant. Ce is the equilib-
rium concentration of phenol species (mol L−1) after
the completion of two phases, and T is the tempera-
ture in Kelvin. qe/Ce is called the solubilization affin-
ity. A is the moles of phenols solubilized onto the
non-ionic surfactant of DC193C. Vo and Vd are the
volumes of the feed solution and that of the aqueous
phase after the CPE. Co and, respectively; Cs are the
concentrations of the surfactant in feed. The thermo-
dynamic parameters ΔG˚, ΔH˚, and ΔS˚ are in the lin-
ear range of qe vs. the Ce plot that can be calculated
by experimental data. Referring to the Eq. (4), the val-
ues of Gibbs free energy can be calculated (ΔG˚) by
knowing the enthalpy of solubilization (ΔH˚) and the
entropy of solubilization (ΔS˚). Eq. (5) has been used
to calculate ΔH˚ and ΔS˚ that are obtained from a plot
of log (qe/Ce) vs. 1/T [45]. The values of ΔG˚, ΔH˚,
and ΔS˚ for the three phenol species were calculated
at different temperatures and reported systematically.

3.6. Variation of Gibbs free energy (ΔG˚) during CPE of
phenol species

Fig. 6 shows the variation of ΔG˚ with different
temperatures at constant surfactant concentration and
the three phenol species concentration. It has been
noted from the figure that the adsorption increases lin-
early with the temperature. This increase in adsorp-
tion with a rise in temperature can be explained on
the basis of thermodynamic parameters such as the
change in standard free energy (ΔG˚), enthalpy (ΔH˚),
and entropy (ΔS˚). The thermodynamic parameters are
shown in Table 2. The negative values of ΔG˚ for the
three phenol species indicate that the phenol species

solubilization process is spontaneous and thermody-
namically favorable. The increase in the negative val-
ues of ΔG˚ with temperature implies the greater
driving force of solubilization which is confirmed by
the greater extent of the phenol species extraction with
the increase in temperature. The positive values of
ΔH˚ indicate that the solubilizations of phenols are
endothermic in nature for the three phenol species.
The endothermic nature is also indicated by the
increase in the amount of solubilization with tempera-
ture [45]. It is already discussed in previous studies
[31] that when the operating temperature increases,
the extraction efficiency of the three phenol species
increased because of high solubilization of phenol spe-
cies with rising temperature. The effect of temperature
can be explained on the basis of hydrogen bonding. In
aqueous solutions of phenols, there exists extensive
hydrogen bonding between the phenol molecules and
the water resulting in appreciable solubility. These
hydrogen bonds get broken at higher temperature,
and this would cause phenols to be less soluble and
therefore exhibit higher tendency to surfactant surface
and get adsorbed rather than remaining in the solu-
tion. This would result in higher adsorption at higher
temperature [46]. Meanwhile, the positive ΔS˚ corre-
sponds to a decrease in the degree of freedom of the
adsorbed species and that reflects good affinity of phe-
nol species towards surfactant for the three phenol
species. The values of ΔH˚ and ΔS˚ increase with the
increased hydrophobicity of phenol species in the
order; 4-NP< 2,4-DCP< 2,4,6-TCP.

3.7. Determination of surfactant concentration required and
the solute amount to a desired level

A calculation procedure is outlined using Eq. (3) to
determine the amount of the concentration of surfac-
tant required for the extraction efficiency up to the
desired level. The derivation of Eqs. (9–15), as accord-
ing to Purkait et al. [43], is as follows [43];

The amount of adsorption is defined as;

qe ¼ Qd

Gs
(9)

where Qd and Gs are the amount of solute and surfac-
tant in the surfactant-rich phase, respectively.

E ¼ Qd

Qo
(10)

where E is the extraction efficiency and Qo is the feed
amount of solute.

Fig. 6. Variation of Gibbs free energy change (ΔG˚) with
temperature at constant phenol species concentration for
the three phenol compounds.
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Ce ¼ Qdð1� EÞ
Vd

(11)

where Vd is the volume of the dilute phase.
There are some assumptions that have been made

for determining the amount concentration of the
DC193C non-ionic silicone surfactant required up to
the extraction efficiency of 90%. Here, the assump-
tions; the surfactant concentration (CMC) in the aque-
ous phase can be neglected in material balance due to
it is too small compared to in coacervate phase is
thousand times. Thus, Gs can represent the amount of
the surfactant used in the feed (Go) [25,26]; and Vd

(volume of the dilute phase) can approximate the vol-
ume of the initial solution before CPE (Vo) because it
is very large. Based on these assumptions, combining
Eqs. (9–11) leads to:

Go

EQo
¼ 1

m
þ Vo

mnQoð1� EÞ (12)

Go

Vo
¼ Cos (13)

Qo

Vo
¼ Co (14)

where Cos and Co are the concentrations of the surfac-
tant and solute in the feed, respectively. Combining
Eqs. (12–14), in turn, leads to:

Cos ¼ ECo

m
þ E

mnð1� EÞ (15)

Cos is the function of Co. The values of m and n were
calculated for the three aforementioned phenol spe-
cies. Therefore, using the concentration of the phenol
species in the feed and a desired level of extraction
efficiency (E), Eq. (15) can be solved to obtain DC193C
surfactant concentration required (Cos). Fig. 5 shows
the required DC193C surfactant concentrations for the
three phenol species at 50˚C in the CPE processes with
the desired extraction efficiency of 90%.

As shown in Fig. 7, the required surfactant concen-
tration increased with the increasing concentration of
feed for the three phenol compounds to achieve the
desired extraction efficiency of 90%. The different con-
centrations of DC193C were required in order to
achieve extraction efficiency up to 90% for the three
phenol compounds at varying initial concentrations of
the phenol species. Generally, the adsorption behavior
of organic compounds on non-polar and moderately
polar polymeric adsorbent in aqueous solution is
related to the hydrophobic properties of solute;
whereby the more hydrophobic the solute, the more

Table 2
Thermodynamic parameters for the CPE of the three phenol species at different temperatures

Phenol species Temperature (K) −ΔG˚ (J mol−1) (×103) ΔH˚ (J mol−1) (×103) ΔS˚ (J mol−1 K−1) (×101)

2,4-DCP 298 6.90
303 7.08
313 7.44
323 7.80 3.83 3.60
333 8.16
343 8.52
353 8.88

2,4,6-TCP 298 6.90
303 7.08
313 7.45
323 7.82 4.14 3.70
333 8.19
343 8.56
353 8.93

4-NP 298 6.49
303 6.66
313 7.00
323 7.34 3.69 3.41
333 7.68
343 8.02
353 8.37
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readily it can be adsorbed [47]. It can be related to
Fig. 7, where the amount of DC193C non-ionic surfac-
tant was required more for polar compound (4-NP)
compared to both non-polar compounds (2,4-DCP and
2,4,6-TCP).

4. Conclusions

The CPE technique combined with spectrophotom-
etry offers several advantages such as the fact that its
cost is low, it is sensitive, selective, and it provides
safety with good extraction efficiency. Experimental
results show that high recoveries can be obtained at
the optimized parameters: DC193C, 0.5 mL of 0.5 v/v
%; for Na2SO4, 1.5 mol L−1, equilibration temperature,
50˚C, and incubation time, 15 min for the three phe-
nols at pH 7 as reported in previous works [31]. It is
found that the experimental data of the adsorption
amounts and concentration solute have fitted the
Langmuir-type isotherm for the three phenol species.
In this study, the straight line obtained for the Lang-
muir isotherm model which obeys the experimental
equilibrium data, indicates the disclosing homoge-
neous distribution in the active sites of non-ionic
DC193C silicone surfactant for the three phenol spe-
cies. The monolayer adsorption capacity of non-ionic
DC193C silicone surfactant was found to be 3.33 ×
10−3 mol mol−1 (2,4-DCP); 4.75 × 10−3 mol mol−1 (2,4,6-
TCP), and 2.27 × 10−3 mol mol−1 (4-NP) from Lang-
muir model equations. Our results further indicate
that the adsorption of the phenol species from aque-
ous solution was in proportion to their hydrophobici-
ties, according to the following order; 4-NP < 2,4-
DCP < 2,4,6-TCP. Thermodynamic parameters such as
the change in Gibbs free energy (ΔG˚), change in
enthalpy (ΔH˚) and change in entropy (ΔS˚) of the
CPE of DC193C-phenol species were also studied. It is

found that the process is feasible from thermodynamic
studies. The spontaneity of the above phenol species
extraction is governed by the negative value of ΔG˚.
The positive values of ΔS˚ dictate that the solubilized
phenol species molecules are organized in a more ran-
dom fashion on the mantle of an aqueous hydrophilic
chain. The extraction processes are endothermic in
nature, the fact also proven by the positive value of
ΔH˚. The non-ionic DC193C silicone surfactant in the
CPE has a great potential to be explored for removing
the organic pollutant in the water samples based on
their unique structure molecules that could entrap
hydrophobic and as well as hydrophilic substances.
Furthermore, a non-ionic silicone surfactant of
DC193C used in the CPE makes the micellar extraction
procedure simple, greener, and economical and
explains its high desirability for adsorption studies. In
addition, it is compatible with UV–vis due to its struc-
ture without any aromatic structure that could not
influence UV and fluorescence signals.
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INTRODUCTION

Industrial sectors play an important role in the growth of

the world economy by providing services and products that

improve the quality of people's lifestyle. However, the rapid

industrialization generates huge amounts of wastes which

greatly affect the environment. The increasing amounts of

industrial wastes require a larger space of landfill and expensive

treatment for disposal. This causes a detrimental pollution

effect on the soil, water and air1. One of the industries that

generate quite large amounts of industrial waste is the pulp

and paper production. This industry produces large amount of

sludge as a result from their wastewater treatment plant. The

primary method of disposal for paper mill sludge is mainly

through land application and land filling2. Land filling costs

are rising because of stringent regulation, taxes and declining

capacity. With landfill space becoming scarce and expensive,

sludge are being burned or incinerated to reduce their volume

and to recover part of the energy that they contain3. Expensive

treatment of land disposal necessitates other means of treatment

which is more economical and other alternatives used of these

waste for beneficial application.
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Phosphate ions have been removed from aqueous solution by paper mill sludge. The influences of experimental conditions such as pH,

amount of adsorbent, initial concentration of phosphate, adsorption isotherm and adsorption kinetics of paper mill sludge were studied.

The adsorption of phosphate was more efficient in the basic pH region (pH 12). Pseudo second-order model fits better than the pseudo

first-order model for adsorption kinetic data and indicates the adsorption process is based on chemisorptions. The calculated activation

energy (Ea) is 37.01 J/mol which further suggests that the sorption of phosphate by paper mill sludge was based on chemical adsorption.

Consequently, the equilibrium isotherm data were fitted well to Langmuir isotherm with maximum adsorption capacity of 12.65 mg/g.

From the study, it showed that paper mill sludge has the potential to be utilized as a cost effective and high capability adsorbent for

removal of phosphate from aqueous solutions.

Keywords: Paper mill sludge, Phosphate, Removal, Kinetics, Adsorption.

A recent alternative method to overcome this problem is

by utilization of the industrial waste for other valuable appli-

cations. This alternative method allows the industrial sector to

reduce the cost of disposal and at the same time reduces the

cost of the manufacturing process, enhances the efficiency of

resource utilization and most importantly reduces the negative

impacts on the environment and human health. Utilization of

waste material for other valuable applications will balance the

increasing demands of limited natural resources by providing

alternative resources and reduces the dependency on natural

resources1.

Paper mill sludge is mainly composed of organic matter

which is added to the paper or pulp whereas inorganic compounds

(mainly calcium carbonate, kaolinite and talc) are used as fillers

and coating4. Some studies had been done using material conta-

ining calcium such as fly ash and calcite to remove phosphate

from waste water5. In view of the fact that the calcium content

in the paper mill sludge is high, hence we investigated the

efficiency of paper mill sludge as adsorbent for removal of

phosphate from aqueous solution. Phosphate wastes are usually

being discharged into rivers causing harmful effects to the

environment and human health6. The excess of phosphate will
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cause eutrophication which will lead to imbalance to an eco-

system. Recently, phosphate is treated using chemical,

biological and physical treatment processes which have their

own advantages and disadvantages. However, these processes

are expensive. In addition, employing environmental friendly

methods for treatment is emphasized much more these days.

The utilization of paper mill sludge as adsorbent for phosphate

removal could help in this regard, in addition to re-using of

these waste materials, which can be an advantage.

Considering the environmental problems from both solid

waste of paper mill sludge and phosphate contamination, the

removal of phosphate using paper mill sludge will be a good

solution for both problems. Most researchers studied the removal

of phosphate by modification of paper mill sludge before using

it for phosphate removal7-10. Nevertheless, in this study, raw

paper mill sludge was used for phosphate adsorption without

any modification. The use of paper mill sludge as an adsorbent

was studied and optimized under different controlling para-

meters including the effects of pH, initial concentration of

phosphate, dosage of paper mill sludge and the contact time.

The adsorption kinetics and adsorption isotherm of phosphate

were also investigated.

EXPERIMENTAL

Functional groups of adsorbent were investigated using

the fourier transform infrared spectrometry (FTIR). The spectra

were recorded on a Perkin Elmer FTIR RX1 Spectrophoto-

meter at ambient temperature using a KBr disk method. Quali-

tative analysis of calcite using X-ray diffraction (XRD) was

carried out by using XRD Siemens D5000 diffraction with

CuKα radiation (λ = 0.15406 nm).

Artificial orthophosphate standard solutions were used

throughout the adsorption test. A stock solution of 1000 mg/L

in orthophosphate was prepared by dissolving a certain amount

of chemically pure sodium dihydrogen orthophosphate in

ultrapure water. An aliquot of the stock solution was further

diluted with ultrapure water to prepare the desired experimental

concentrations. All standards are daily prepared to avoid

possible precipitation of phosphate species. IC effluent was

prepared using sodium bicarbonate and sodium carbonate in

the ratio of 8:1. The effluent was daily prepared to maintain

effluent quality and condition for phosphate quantification.

Sampling of paper mill sludge: Paper mill sludge sample

was collected from Union Paper Industries Sdn. Bhd. in

Bentong, Pahang, Malaysia. The paper mill sludge was collec-

ted randomly and packed in plastic bags before keeping it in

the freezer prior to experimental steps.

Preparation of adsorbent material: Paper mill sludge

was first crushed mechanically with a jaw crusher then it was

dried in an oven at 110 °C for 24 h and then crushed again.

Samples were sieved and stored in the desiccators.

Adsorption measurement: The batch experiment was

carried out with a defined amount of adsorbent sample in a

100 mL bottle sample. A defined volume of the phosphate

concentration was prepared from a stock solution by adding

ultra pure water. The pH of the phosphate solution was then

adjusted to the desired value and added to the bottle container.

The mixture was stirred at 200 rpm for a defined period. After

a certain period of stirring, filtering process was applied to

separate solid from liquid. The supernatant was then subjected

to ion chromatography for analysis. The amount of phosphate

adsorbed per unit mass of the adsorbent (Qe) was calculated

as follows:

W

V)C–C(
Q eo

e = (1)

The percentage of adsorbate adsorbed on the polymer

(removal efficiency, R (%)) was calculated by the following

equation:

100
C

C–C
%R

o

eo ×= (2)

where, Co and Ce are the intial and equilibrium concentration

of solutions (mg/L), respectively. V (L) is the volume of the

solution and W (g) is the mass of dry adsorbent used.

RESULTS AND DISCUSSION

To ascertain the presence of functional groups in the paper

mill sludge, FT-IR spectra was employed. Fig. 1 shows the

FTIR spectrum of paper mill sludge. The observed features

between 3500-3000 cm-1 and the band around 2900-2800 cm-1

could be attributed to OH group of cellulose and the CH2 groups,

respectively. The bond at 1630 cm-1 was mainly assigned to

the O-H group. This O-H group is the characteristic of the

deformation vibration of O-H group. The presence of CaCO3

leads to a broad band at 1416 cm-1 indicates the abundance of

calcite in the paper mill sludge. Meanwhile an absorption band

at 1161 cm-1 and 1107 cm-1 could be attributed to the C-O-C

bond while the band 1031 cm-1 is the vibration of glucose unit

ring involving stretching of C-O and O-H. Finally, the absorp-

tion band at 872 cm-1 corresponds to the C-O-C bond11.
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Fig. 1. FTIR spectrum of paper mill sludge

The XRD pattern of paper mill sludge (Fig. 2) shows the

main crystalline constituent is calcite. The most intense peak

of calcite is at 2θ ≈ 30º. XRD result confirmed the abundance

of CaCO3 in the paper mill sludge. The abundance of calcite

in paper mill sludge is important for phosphate adsorption from

water solution since its presence will enhance the reaction of

calcium phosphate precipitation5.
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Fig. 2. XRD pattern of calcite in the paper mill sludge

Adsorption properties of adsorbent

Effect of pH on phosphate removal by paper mill sludge:

The pH of the system is an important parameter in adsorption

studies. The protonation reaction of phosphate is reported

elsewhere5. It is stated that increasing of pH produces more

negative charge to the phosphate species. H2PO4
– and HPO4

2-

species are present in the pH region 5-10. The concentration

of H2PO4
– species is higher for acidic pH while HPO4

2- species

is higher in pH region 7-10. For pH between 10 and 12, HPO4
2-

predominates, the PO4
3-, but when the pH is higher than 12.5,

the concentration of PO4
3- becomes more significant. In this

work, the effect of pH was examined in the pH region between

7 and 12. The relationship between the initial pH of the solution

with the adsorption capacity of phosphate is shown in Fig. 3.

The adsorption capacity was increased from 0.56 to 2.21 mg/g

with increasing initial pH from 7 to 12. Higher content of

calcite in paper mill sludge enables it to interact with phosphate

species. With the increase of pH, the deprotonation reaction

of phosphate obtained more negative charges which enhance

the electrostatic interaction between phosphate species and

calcite in the paper mill sludge5. Therefore, pH 12 was selected

as the optimum pH for phosphate removal from solutions. The

adsorption process could be possibly described by the follo-

wing reaction:

Ca2+ + H2PO4
– → CaH2PO4

+

Ca2+ + HPO4
2– → CaHPO4

Ca2+ + PO4
3–    → CaPO4

–
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Fig. 3. Adsorption capacity of phosphate removal by paper mill sludge at

various pH conditions

Effect of adsorbent dosage of paper mill sludge on

phosphate removal: The effect of the adsorbent dosage was

determined at pH 12 with shaking time of 0.5 h at room

temperature and 100 mg/L of initial phosphate concentration

by varying the mass of adsorbent. Fig. 4 showed that the

percentage of phosphate removal increased rapidly from 46

to 85 % with increasing the adsorbent mass from 0.2 to 1 g.

However, the adsorption capacity decreased from 4.27 to 1.62

mg/g, respectively. The phosphate removal was greater with

the increase in paper mill sludge due to the increase in surface

area and adsorption sites available for adsorption. The decline

in adsorption capacity is basically due to the site remaining

unsaturated during the adsorption process12. The amount of

paper sludge for further adsorption experiments was selected

as 0.5 g because the phosphate removal and adsorption capacity

were found to be optimum at 71 % and 2.7 mg/g, respectively.
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Fig. 4. Effect of adsorbent dosage of paper mill sludge on the adsorption

capacity and percentage removal of phosphate

Effect of initial concentration of phosphate on adsorp-

tion: The adsorption experiments were performed to study

the effect of initial phosphate concentration by varying it from

50 to 300 mg/L while maintaining the amount of paper mill

sludge (0.5 g). Fig. 5 shows that with the increase in phosphate

concentration, the percentage of removal decreased from 95

to 83 % and adsorption capacity increased from 2.07 to 9.97

mg/g. The decrease in percentage removal can be explained

by the fact that the adsorbent had a limited number of active

sites which would become saturated above a certain concen-

tration. The increasing phosphate concentration in paper mill

sludge influences supersaturating and decreases the efficiency

of the precipitating system13. The greater value in adsorption

capacity was experienced with the increase in phosphate con-

centration due to the utilization of more active sites available

in the paper mill sludge for the adsorption at higher concen-

tration14.

Kinetics of phosphate adsorption by paper mill sludge:

The rate of phosphate adsorption by paper mill sludge was

measured as a function of shaking time at three different tempe-

ratures (30, 45 and 70 °C). The adsorption process of phosphate

was rapid at the initial stage and slowed when approaching

equilibrium (Fig. 6). The equilibrium time for phosphate

adsorption can be considered at 24 h and becoming stable af

ter longer reaction times. The kinetics results indicated that

the sorption process was increased with the increase in the

solution temperature from 30 to 70 °C.
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The kinetics of removal of phosphate is explicitly explained

in the literature using pseudo first-order, second-order kinetics

models15,16, Elovich17 and intraparticle diffusion model18. The

mechanism for the removal of phosphate may involve the follo-

wing four steps19: (1) migration of the sorbate from the bulk

of the solution to the surface of the sample; (2) diffusion of

the sorbate through the boundary layer to the surface of the

sorbent; (3) adsorption of the sorbate at an active site on the

surface of the sample; (4) intraparticle diffusion of the sorbate

into interior pores of the sorbent particles. The boundary layer

resistance will be affected by the rate of adsorption with an

increase in the contact time, which will reduce the resistance

and increase the mobility of the sorbate during adsorption.

Since the uptake of sorbates at the active sites of samples is a

rapid process, the rate of adsorption is governed mainly by

either the rate of liquid phase mass transfer or the rate of

intraparticle mass transfer. Hence in this work, the sorption

rates were analyzed using a pseudo first-order model (eqn. 3),

a pseudo second-order model (eqn. 4), Elovich model (eqn.

5) and intraparticle diffusion kinetic model (eqn. 6) as

following:

303.2

tk
–Qlog)Q–Q(log 1

ete = (3)

e
2

e2t Q

t1

Qk

1

Q

t
+= (4)

Qt = 1/β ln (αβ) + 1/β ln t (5)

Qt = k3t
0.5 + Q0 (6)

where Qe, Q(t) and Q0 (mg/g) are, respectively, the amounts

of sorption at equilibrium, the time t and the saturated state

and k1 (1/min), k2 (g/mg min)) and k3 (mg/(min1/2 g)) are the

rate constants for pseudo first-order, pseudo second-order and

intraparticle diffusion, respectively α (mg/g min-1) represent

initial sorption rate while β (g/mg) is related to the extended

of surface coverage and activation energy. The resulting

sorption rate constants are listed in (Table-1). The correlation

coefficients data for pseudo second-order model (Fig. 8) fits

better than first-order kinetic model (Fig. 7) and Elovich model

(Fig. 9) as shown in Table-1 for the all studied temperature

with R2 value > 0.99. The calculated Qe values (Table-1) were

similar with the experimental values which indicate that the

sorption system follows the second-order kinetic model and

further confirms that the adsorption process is based on chemi-

sorptions. The resulting phosphate sorption rate constants (k2)

for the pseudo second-order model at various temperature are

clearly different, following the increasing order from 6.18,

8.17 and 30.22 for 30 , 45 and 70 °C, respectively and this

indicates that the adsorption process is endothermic. It can be

explained by the availability of more active sites of adsorbent

at higher temperatures.
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Pseudo first-order, pseudo second-order models and

Elovich models cannot identify the diffusion mechanism. In

order to understand the mechanism of adsorption process and

to determine the rate controlling step which is mainly depends

on either surface or pore diffusion, intraparticle diffusion model

were used18. Weber and Morris model is adopted in this study,

since this is a widely used intraparticle diffusion model. A

plot of Qt vs. t1/2 (square root of time) should be straight line if

the sorption process follows intraparticle diffusion meanwhile

if these lines pass through the origin then intraparticle diffusion

would be the sole controlling step. When the plots do not pass

through the origin indicates some degree of boundary layer

control and proves that intrapacticle diffusion is not only rate

limiting step while other processes might control the rate of

adsorption, all of which may be operating simultaneously20.

Fig. 10 represents a plot of linear form of intraparticle diffusion

model. The result shows that the intercept did not pass through

origin and correlation coefficient values (R2) less than 0.99

(Table-1), suggesting that intraparticle diffusion was involved

in the sorption process, but it was not the rate controlling step.

The rate constant, k depends strongly on temperature, T.

It is due to the increase in collisions which result in number of

molecules having energy that exceeds the activation energy.

Consequently, this will lead to rapid increase in k value. The k

(T) data for many reactions can fit in the Arrhenius equation

as below;

RT

E
–Alnkln a= (7)

slope -Ea/R and intercepts ln A (Fig. 11). The magnitude of

activation energy gives an idea about the type of adsorption

whether it is physical or chemical21. According to the Arrhenius
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Fig. 10. Intraparticle diffusion plot for sorption of phosphate by paper mill sludge

equation, low activation energy shows a fast reaction as

obtained in this study (Ea = 37.01 J/mol). The positive activation

energy indicates that the sorption of phosphate by paper mill

sludge was a chemical adsorption.
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Fig. 11.  Arrhenius plot for adsorption of phosphate by paper mill sludge

Adsorption isotherm of phosphate by paper mill

sludge: The sorption isotherm of phosphate by paper mill

sludge was measured by shaking it for 24 h at different initial

concentrations at pH 12 at room temperature. In this study,

the isotherm data were analyzed using four different kinds of

isotherm models namely Langmuir, Freundlich, D-R (Dubinin-

Radushkevich) and Temkin.

Langmuir isotherm model: The Langmuir isotherm sug-

gests that sorption takes place on a homogeneous surface to

obtain maximum adsorption capacity. No further adsorption

process will occur if the site is occupied by a solute. The lin-

ear form of the Langmuir isotherm equation can be represented

by the following equation22:

TABLE-1 
KINETIC PARAMETER FOR ADSORPTION OF PHOSPHATE ONTO PAPER MILL SLUDGE AT VARIOUS TEMPERATURES 

Temp. Qe (Exp)  First order   Second order  

°C mg/g k1 × 10-3 Qe (mg/g) R2 k2 × 10-3 Qe (mg/g) R2 

70 3.81 11 1.08 0.874 30.22 3.85 0.999 

45 3.74 2 1.4 0.969 8.17 3.77 0.998 

30 3.61 1 1.64 0.991 6.18 3.51 0.996 

  Intraparticle diffusion        Elovich  

  k3 Qo (mg/g) R2 α β R2 

70  0.078 2.573 0.838 5.988 1244.36 0.908 

45  0.021 2.239 0.953 11.236 9.71E+08 0.957 

30  0.041 1.816 0.982 3.096 129.51 0.79 
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where Ce (mg/L) is the equilibrium concentration of the adsor-

bate, Co (mg/L) is the initial adsorbate concentration, qe (mg/g)

is the adsorption capacity at equilibrium, Qm (mg/g) and b (L/mg)

are Langmuir constant related to maximum adsorption capacity

and rate of adsorption, respectively obtained from the slope

and intercept of the plot of Ce/qe and Ce (Fig. 12). Furthermore,

dimensionless separation factor (RL) can be calculated to

determine the adsorption process is favorable or unfavorable

as shown in Table-2 using the following equation;

o

L
bC1

1
R

+
= (9)
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Fig. 12. Langmuir plot for solution of phosphate by paper mill sludge at

room temperature

TABLE-2 
PROCESS NATURE OF SEPARATION FACTOR 

RL value Types of process 

RL > 1 Unfavorable 

RL = 1 Linear 

0 < RL < 1 Favorable 

RL = 0 Irreversible 

 
Freundlinch isotherm model: The Freundlich isotherm

assume heterogeneous system with different energy of active

sites and reversible adsorption, which is not restricted to mono-

layer formations23. The Freundlich constant can be obtained

from a plot of log qe vs. log Ce (Fig. 13). The linear form of

Freundlich isotherm as shown below;

log qe = log KF + 
n

1
log Ce (10)

where KF ((mg/g) (L/mg)1/n) indicates the relative adsorption

capacity of the adsorbent related to bond energy and n is the

heterogeneity factor representing the deviation from linearity

of adsorption. Larger value of KF indicates the greater adsor-

ption capacity while n values indicate the favorability of the

adsorption process. If n is above unity, then the adsorption

process is favorable.

Dubinin Raduskevich (D-R) isotherm model: The D-R

isotherm analysis widely used in order to determine high degree

of rectangularity24. The linear form of D-R isotherm equation

is as follows:
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Fig. 13. Freundlich plot for solution of phosphate by paper mill sludge at

room temperature

ln qe = ln qm-βε2 (11)

where β (mol2/kJ2) represent adsorption energy constant

obtained from slope of straight-line plot of ln qe vs. ε2 (Fig.

14) and ε, the polanyi potential, can be calculated using

following equation;

ε = RT ln [1 + 1/Ce] (12)

where R is the universal gas constant in kJ/(mol K) and T is

the temperature in Kelvin. The mean free energy, E (kJ/mol)

(Table-4) can be obtained by the following equation;

E (kJ/mol) = (2β-0.5) (13)
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0
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 q

e y = 2.261x + 2.0417

R  = 0.8663
2
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Fig. 14. D-R plot for solution of phosphate by paper mill sludge at room

temperature

Temkin isotherm model: Another model for the analysis

of indirect adsorbent/adsorbate interactions on adsorption

isotherms is Temkin model25. Apart from that, this isotherm

assumes that the heat of adsorption of all the molecules in the

layer would decreases linearly with coverage and the

adsorption is characterized by a uniform distribution of binding

energies, up to some maximum binding energy. The linear

form of Temkin isotherm equation is as follows:

qe = β ln KT + β ln Ce (14)

where β = RT/bT. A plot of qe vs. ln Ce (Fig. 15), constant KT

and bT can be found from intercept and slope. KT (L/mg)

represent Temkin constant related to the equilibrium binding

energy while bT (J/mol) is Temkin constant related to the heat

of adsorption as shown in Table-4.
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TABLE-3  
RL VALUE AT DIFFERENT INITIAL 
CONCENTRATION OF PHOSPHATE 

No 
Initial Phosphate 

concentration (mg/L) 
RL value 

1 60 0.8364 

2 80 0.7769 

3 100 0.7414 

4 200 0.369 

5 300 0.2111 

 
Referring to Table-4, Langmuir isotherm model fitted well

with the highest R2 = 0.9987 compared to the other three isotherm

models. The maximum capacity at equilibrium, Qm was 12.65

mg/g while b which denotes adsorption energy was 0.077 L/mg.

The high correlation coefficient confirmed that monolayer

adsorption of phosphate onto the paper mill sludge surface.

The RL values which were in the range of 0.83 and 0.21 as

shown in Table-3 indicated that the adsorption process were

favorable under studied condition. Temkin and Freundlich

isotherm models also showed relatively good agreement with

the R2 = 0.9985 and R2 = 0.9845, respectively.

The value of KT and bT of the Temkin isotherm was reported

as 1.934 L/mg and 6.734 kJ/mol which explains equilibrium

binding energy and the heat of adsorption, respectively. Mean-

while Freundlich constant for adsorption capacity, KF was

1.393 mg/g. The nf value (indicator for adsorption intensity)

calculated from the Freundlich model was 1.905 which in the

range of 1 < n < 10, indicating favorable adsorption. This

adsorptive behaviour implied that the adsorption also took

place on a heterogeneous surface. Hence, it can be concluded

that adsorption of phosphate by paper mill sludge followed

multisorption process where both monolayer and bilayer

adsorption present simultaneously in the surfaces of the sorbent

but the former adsorption more predominant.

The applicability of the isotherm models to the adsorption

behaviours can be judged by using the correlation coefficient

(R2) values. The R2 values of Freundlich and Temkin isotherms

were higher than the Dubinin-Radushkevich isotherm

(R2 = 0.8663) but lower compared to Langmuir model. The

adsorption equilibrium data fitted the isotherm models in the

order of: Langmuir > Temkin > Freundlich> Dubinin-

Radushkevich.

TABLE-4 
ISOTHERM CONSTANTS AND REGRESSION DATA FOR 
ADSORPTION OF PHOSPHATE ON PAPER MILL SLUDGE 

No. Isotherm model Isotherm constant R2 

Qm (mg/g) 12.65 0.9987 1 Langmuir  

b (L/mg) 0.077   

Kf ((mg/g) 
(L/mg) 1/n) 

1.393 0.9845 2 Freundlich  

nf 1.905   

KT (L/mg) 1.934 0.9985 3 Temkin 

  bT (kJ/mol) 6.734   

Qm (mg/g) 7.704 0.8663 

k (mol2kJ2) 2.261  

4 Dubinin-
Radushkevich 

  E (kJ/mol) 0.470   

 
Comparison of maximum adsorption capacity (Qm) of

phosphate for some low cost adsorbent: Finally, the perfor-

mance of paper mill sludge was compared with some other

low cost adsorbent as shown in Table-5. The obtained binding

capacity clearly indicated that paper mill sludge is an effective

adsorbent for phosphate removal from water.

TABLE-5 
REPORTED ADSORPTION CAPACITIES (Qm) OF 

PHOSPHATE FOR SOME LOW-COST ADSORBENTS 

No Adsorbent 
Qm 

(mg/g) 
Ref. 

1 Geothite 0.286 26 

2 Natural zeolite 6.42 27 

3 Na-Natural zeolite 2.15 28 

4 Synthetic iron oxide coated sand 2.19 29 

5 Coated crushed brick 1.75 30 

6 Naturally iron oxide coated sand 0.88 30 

7 Iron-hydroxide eggshell 14.49 6 

8 Iron oxide tailing 8.21 30 

9 Paper mill sludge 12.65 Present study 

 
Conclusion

The raw paper mill sludge has the potential to be used as

a low cost adsorbent for removal of phosphate from aqueous

solutions effectively at pH 12. The pseudo second-order model

fits better than the pseudo first-order model for adsorption

kinetic data and indicates the adsorption process is based on

chemisorptions. The adsorption capacity for phosphate was

increased with increasing temperature and indicates that the

process was endothermic. The calculated Ea is 37.01 J/mol

further suggests that the sorption of phosphate by paper mill

sludge was based on chemical adsorption. Intraparticle

diffusion was involved in the adsorption process but it is not a

rate determining step. The equilibrium data were fitted well to

Langmuir isotherm with maximum adsorption capacity of

12.65 mg/g.
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