ACKNOWLEDGEMENT

Alhamdulillah, first and foremost thank you Allah SWT for giving me health and many kind of wealth in finishing this research.

I cannot express enough thanks to my supervisor, Assoc. Prof. Dr. Norbani Abdullah for her guidance, support and encouragement. I offer my sincere appreciation to Prof. M. A. Halcrow and his research team in the School of Chemistry, University of Leeds, United Kingdom for their abundance help and learning opportunities provided during my short training. Your warm welcome will not to be forgotten.

This project could not be accomplished without the support and invaluable assistance from my dearie lab mates of Inorganic Chemistry Research Laboratory and all staffs in Chemistry Department as well as in Faculty of Science, University of Malaya.

I would also like to acknowledge the Fundamental Sciences of Self Assembly (FS2A), High Impact Research Grant (UM.C/625/1/HIR/MOHE/05) and Postgraduate Research Grant (PG023-2013A),

Finally, to my caring and supportive family, especially to my parents, Mohd Nor and Hamizah: my deepest gratitude. Thank you for your love, patience and comfort.

ABSTRACT

This research was focussed on Co(II) and Fe(II) complexes, designed to be thermally stable, magnetic with spin-crossover (SCO) behaviour, and exhibit mesomorphisms. A total of 14 mononuclear octahedral complexes of general formula $[M(L^n)_2]X_2$, where M = Co(II), Fe(II), $L^n =$ Schiff bases formed from the condensation reaction between 2,6-pyridinedicarboxaldehyde and linear chain 1-aminoalkanes (C_nH_{2n+1}NH₂, n = 6, 8, 10, 12, 14, 16), and $X = BF_4$, ClO₄, PF₆, were successfully prepared by the one-pot method.

The structures of these complexes were deduced from CHN microanalyses, ESImass spectrometry, FTIR spectroscopy and UV-vis spectroscopy. Their magnetic properties were determined at room temperature by the Gouy method, and for selected complexes at variable temperatures using the SQUID magnetometer. Finally their thermal and mesomorphic properties by thermogravimetry (TGA), differential scanning calorimetry (DSC), and polarising optical microscopy (POM) were measured. Two complexes, specifically $[Co(L^{12})_2](BF_4)_2$ and $[Fe(L^6)_2](ClO_4)_2$, were single crystals.

At room temperature, all Co(II) complexes with C_6 - C_{10} alkyl chain were a mixture of low spin (LS) and high spin (HS), while complexes with C_{12} - C_{16} alkyl chain were mainly HS. The HS Co(II) complexes showed normal SCO behaviour in the solid state with $T_{1/2}$ at almost room temperature. Complexes with larger anions (ClO₄ and PF₆) contained lower percentages of HS Co(II).

All Fe(II) complexes were mainly LS (89 - 99%) at room temperature. There were no correlation between anionic sizes and percentage of LS in these complexes.

The decomposition temperatures of these complexes were in the range of 97 °C – 246 °C. Complexes with BF_4^- ion and long alkyl chains (C₁₂-C₁₆) were mesomorphic with columnar (*Col*) mesophase.

ABSTRAK

Penyelidikan ini berfokuskan kompleks Co(II) dan Fe(II), yang direka bentuk supaya stabil secara terma, magnetik dengan kelakuan pindahan spin (SCO), dan menunjukkan mesomorfisme. Sejumlah 14 kompleks mononukleus oktahedron dengan formula umum $[M(L^n)_2]X_2$, iaitu M = Co(II), Fe(II), L^n = bes Schiff yang terbentuk daripada tindak balas kondensasi antara 2,6-piridinadikarboksaldehid dan 1-aminoalkana rantai linear (C_nH_{2n+1}NH₂, *n* = 6, 8, 10, 12, 14, 16), dan *X* = BF₄, ClO₄, PF₆, berjaya disediakan melalui kaedah satu pot.

Struktur kompleks dideduksikan daripada mikroanalisis CHN, spektrometri ESIjisim, spektroskopi FTIR dan spektroskopi UV-vis, sifat magnet ditentukan pada suhu bilik melalui kaedah Gouy, dan untuk kompleks terpilih pada suhu pelbagai menggunakan magnetometer SQUID, dan akhir sekali sifat terma dan mesomorfik melalui termogravimetri (TGA), kalorimeter pembeza imbasan (DSC), dan mikroskopi pengutuban optik (POM). Dua kompleks, iaitu $[Co(L^{12})_2](BF_4)_2$ dan $[Fe(L^6)_2](ClO_4)_2$, adalah hablur tunggal.

Pada suhu bilik, semua kompleks Co(II) dengan rantai alkil C₆-C₁₀ adalah satu campuran spin rendah (LS) dan spin tinggi (HS), manakala kompleks dengan rantai alkil C₁₂-C₁₆ adalah HS. Kompleks Co(II) HS menunjukkan kelakuan SCO pada keadaan pepejal dengan $T_{\frac{1}{2}}$ pada hampir suhu bilik. Kompleks dengan anion yang lebih besar (ClO₄ dan PF₆) mengandungi peratus Co(II) HS yang lebih rendah.

Semua kompleks Fe(II) adalah kebanyakannya LS (89 – 99%) pada suhu bilik. Tidak terdapat hubungkait antara saiz anion dengan peratus LS dalam semua kompleks ini.

Suhu penguraian kompleks ini adalah dalam julat 97 °C – 246 °C. Kompleks dengan ion BF_4^- dan rantai alkil panjang (C₁₂-C₁₆) adalah mesomorfik dengan mesofasa turus (*Col*).

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
ABSTRACT	iii
ABSTRAK	iv
TABLE OF CONTENTS	V
LIST OF FIGURES	Х
LIST OF TABLES	XV
LIST OF SCHEMES	xvii
CHAPTER 1 INTRODUCTION	1
References	3
CHAPTER 2 THEORY AND LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Complexes of Schiff Bases	4
2.2.1 Metal(II) complexes of N_3 -Schiff bases	6
2.3 Spin crossover	16
2.4 Metallomesogens	24
2.5 Metallomesogenic-Spin Crossover Complexes	26
References	29
CHAPTER 3 EXPERIMENTAL	31
3.1 Introduction	31
3.2 Chemicals	33
3.3 Syntheses	34
3.3.1 $[Co(L^6)_2](BF_4)_2$. $\frac{1}{2}H_2O$ (Complex 1)	34
3.3.2 $[Co(L^8)_2](BF_4)_2.H_2O$ (Complex 2)	34
3.3.3 $[Co(L^{10})_2](BF_4)_2$. ^{1/2} H_2O (Complex 3)	34
$3.3.4 [Co(L^{12})_2](BF_4)_2 (Complex 4)$	34

v

3.3.5 $[Co(L^{14})_2](BF_4)_2.H_2O$ (Complex 5)	35
3.3.6 $[Co(L^{16})_2](BF_4)_2.H_2O$ (Complex 6)	35
3.3.7 $[Co(L^{12})_2](ClO_4)_2$ (Complex 7)	35
3.3.8 $[Co(L^{16})_2](ClO_4)_2$ (Complex 8)	35
3.3.9 $[Co(L^6)_2](PF_6)_2$ (Complex 9)	35
3.3.10 $[Fe(L^6)_2](BF_4)_2$ (Complex 10)	36
$3.3.11 [Fe(L^{12})_2](BF_4)_2.H_2O (Complex 11)$	36
3.3.12 [$Fe(L^{16})_2$](BF_4) ₂ (Complex 12)	36
3.3.13 [$Fe(L^6)_2$](ClO_4) ₂ (Complex 13)	36
$3.3.14 [Fe(L^6)_2](PF_6)_2 (Complex 14)$	36
3.4 Instrumental Analyses	37
3.4.1 Elemental analysis	37
3.4.2 Electrospray ionization mass spectroscopy	37
3.4.3 Fourier transform infrared spectroscopy	37
3.4.4 UV-vis spectroscopy	38
3.4.5 X-ray crystallography	38
3.4.6 Room temperature magnetic susceptibility	38
3.4.7 Variable temperature magnetic susceptibility	39
3.4.8 Variable temperature UV-vis spectroscopy	39
3.4.9 Thermogravimetry	39
3.4.10 Differential scanning calorimetry	39
3.4.11 Polarizing optical microscopy	40
CHAPTER 4 RESULTS AND DISCUSSION	41
4.1 Introduction	41
4.2 $[Co(L^n)_2](BF_4)_2$	41
4.2.1 $[Co(L^6)_2](BF_4)_2$. $\frac{1}{2}H_2O$	41

vi

	(a) Deduction of structural formula	41
	(b) Spin-crossover behaviour	44
	(c) Thermal and mesomorphic properties	46
	4.2.2 $[Co(L^8)](BF_4)_2.H_2O$	48
	(a) Deduction of structural formula	49
	(b) Spin-crossover behaviour	51
	(c) Thermal and mesomorphic properties	52
	4.2.3 $[Co(L^{10})](BF_4)_2$, $\frac{1}{2}H_2O$	53
	(a) Deduction of structural formula	53
	(b) Spin-crossover behaviour	56
	(c) Thermal and mesomorphic properties	57
	4.2.4 $[Co(L^{12})_2](BF_4)_2$	58
	(a) Deduction of structural formula	58
	(b) Spin-crossover behaviour	61
	(c) Thermal and mesomorphic properties	64
	$4.2.5 \ [Co(L^{14})_2](BF_4)_2.H_2O$	67
	(a) Deduction of structural formula	67
	(b) Spin-crossover behaviour	69
	(c) Thermal and mesomorphic properties	70
	4.2.6 $[Co(L^{16})_2](BF_4)_2.H_2O$	73
	(a) Deduction of structural formula	73
	(b) Spin-crossover behaviour	75
	(c) Thermal and mesomorphic properties	79
	4.2.7 Summary	82
4	I.3 $[Co(L^n)_2](ClO_4)_2$	84
	4.3.1 $[Co(L^{12})_2](ClO_4)_2$	84

(a) Deduction of structural formula	84
(b) Spin-crossover behaviour	87
(c) Thermal and mesomorphic properties	88
$4.3.2 \ [Co(L^{16})_2](ClO_4)_2$	90
(a) Deduction of structural formula	90
(b) Spin-crossover behaviour	92
(c) Thermal properties	93
4.3.3 Summary	96
$\operatorname{Co}(L^{\delta})_2]X_2$	96
4.4.1 $[Co(L^6)_2](PF_6)_2$	96
(a) Deduction of structural formula	96
(b) Spin-crossover behaviour	98
(c) Thermal properties	99
(c) Thermal properties 4.4.3 Summary	99 100
(c) Thermal properties 4.4.3 Summary [Fe(L ⁿ) ₂](BF ₄) ₂	99 100 101
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ 	 99 100 101 102
(c) Thermal properties 4.4.3 Summary $[Fe(L^n)_2](BF_4)_2$ 4.5.1 $[Fe(L^6)_2](BF_4)_2$ (a) Deduction of structural formula	99100101102102
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour 	 99 100 101 102 102 104
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 	 99 100 101 102 102 104 105
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.2 [Fe(L¹²)₂](BF₄)₂.H₂O 	 99 100 101 102 102 104 105 108
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.2 [Fe(L¹²)₂](BF₄)₂.H₂O (a) Deduction of structural formula 	 99 100 101 102 102 104 105 108 108
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.2 [Fe(L¹²)₂](BF₄)₂.H₂O (a) Deduction of structural formula (b) Spin-crossover behaviour 	 99 100 101 102 102 104 105 108 110
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.2 [Fe(L¹²)₂](BF₄)₂.H₂O (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties (c) Thermal and mesomorphic properties 	 99 100 101 102 102 104 105 108 108 110 111
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.2 [Fe(L¹²)₂](BF₄)₂.H₂O (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.3 [Fe(L¹⁶)₂](BF₄)₂ 	 99 100 101 102 102 104 105 108 108 110 111 113
 (c) Thermal properties 4.4.3 Summary [Fe(Lⁿ)₂](BF₄)₂ 4.5.1 [Fe(L⁶)₂](BF₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.2 [Fe(L¹²)₂](BF₄)₂.H₂O (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.5.3 [Fe(L¹⁶)₂](BF₄)₂ (a) Deduction of structural formula 	 99 100 101 102 102 104 105 108 108 110 111 113 113
	 (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal and mesomorphic properties 4.3.2 [Co(L¹⁶)₂](ClO₄)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour (c) Thermal properties 4.3.3 Summary Co(L⁶)₂]X₂ 4.4.1 [Co(L⁶)₂](PF₆)₂ (a) Deduction of structural formula (b) Spin-crossover behaviour

(c) Thermal and mesomorphic properties	115
4.5.4 Summary	119
4.6 $[Fe(L^6)_2]X_2$	121
4.6.1 $[Fe(L^6)_2](ClO_4)_2$	121
(a) Deduction of structural formula	121
(b) Spin-crossover behaviour	126
(c) Thermal and mesomorphic properties	126
4.6.2 $[Fe(L^6)_2](PF_6)_2$	127
(a) Deduction of structural formula	127
(b) Spin-crossover behaviour	129
(c) Thermal properties	130
4.6.3 Summary	131
References	132
CHAPTER 5 CONCLUSION AND SUGGESTIONS FOR FUTURE	
WORKS	133
5.1 Conclusions	133
5.2 Suggestions for Future Works	134
References	135
Appendices	

LIST OF FIGURES

Figure 2.1	Structural formula of ligand L^n	4
Figure 2.2	ORTEP drawing of <i>trans</i> -[Zn(H ₂ O) ₄ L ₂](NO ₃) ₂ .2MeOH	5
Figure 2.3	Proposed structure for [CoL ²]	6
Figure 2.4	Crystal structure of [Fe(3-bpp) ₂][BF ₄] ₂ .3(C ₂ H ₅) ₂ O	6
Figure 2.5	ESI-MS for [Co(bzimpy) ₂]	9
Figure 2.6	d-electrons splitting of an octahedral complex	11
Figure 2.7	(a) Spin allowed for Cu(II) (d^9) ; and (b) spin-forbidden transitions for Mn(II) (d^5)	11
Figure 2.8	Colour wheel	12
Figure 2.9	Electronic arrangements in octahedral complexes for metal ions with d^1 , d^2 and d^3 configurations	14
Figure 2.10	Electronic arrangements in octahedral complexes for metal ions with $d^4 - d^7$ configurations	15
Figure 2.11	SCO for Co(II) complexes	17
Figure 2.12	SCO for Fe(II) complexes	17
Figure 2.13	An ideal SCO behaviour	18
Figure 2.14	Molecular structure of L^2	19
Figure 2.15	Variable-temperature magnetic susceptibility data of $[Fe(L^2Me)_2]_2(BF_4)_2$ (\diamond) and $[Fe(L^2Me)_2]_2(ClO_4)_2$ (\bullet)	19
Figure 2.16	ORTEP drawing of $[Fe(i4tz)_6]^{2+}$	20
Figure 2.17	Variation of anionic size on SCO behavior	21
Figure 2.18	Effect of hydration/dehydration on SCO behavior, hydrated (\bullet) and non-hydrated (\circ)	22
Figure 2.19	The µ _{eff} vs T curves for bis(N- <i>R</i> -2,6- pyridinedicarboxaldimine)cobalt(II)hexafluorophosphate: (A) as solutions in acetone; and (B) as solids	22
Figure 2.20	$[FeL_2][BF_4]_2.2H_2O (L = 2,6-di{5-methylpyrazol-3-yl}pyridine)$	23
Figure 2.21	Schematic representation of five discotic phases: (a) nematic, (b) columnar, (c) discotic hexagonal, (d) discotic rectangular, and (e) discotic tetragonal from [28]	25
Figure 2.22	Photomicrographs of: (a) nematic; (b) columnar hexagonal; (c) columnar rectangular; and (d) tetragonal micelle mesophase	25

х

Figure 2.23	Molecular structure of $[Co(C_{16}-terpy)_2]^{2+}$	26
Figure 2.24	Texture of $[Co(C_{16}$ -terpy) ₃](BF ₄) ₂ under POM: (a) SmE at 390 K; (b) SmC at 490 K; and (c) SmA at 520 K	27
Figure 2.25	Crystal structure of [Fe(C ₁₆ -terpy) ₂](BF ₄) ₂	28
Figure 2.26	D_{L2} phase of $[Fe(C_{16}\text{-terpy})_3](BF_4)_2$ at 520 K	28
Figure 4.1	The proposed structural formula of $[Co(L^6)_2]^{2+}$	42
Figure 4.2	The ESI-MS spectrum of Complex 1	43
Figure 4.3	FTIR spectrum of Complex 1	43
Figure 4.4	UV-vis spectrum of Complex 1	44
Figure 4.5	Temperature-dependence ϵ_{max} values for Complex 1 at 650 nm	45
Figure 4.6	TGA of Complex 1	46
Figure 4.7	DSC of Complex 1 : (a) first cycle; (b) second cycle. Endothermic peak up	47
Figure 4.8	Photomicrographs of Complex 1 on: (a) heating at 70.0 $^{\circ}$ C; (b) heating at 79.0 $^{\circ}$ C; and (c) cooling at 50.0 $^{\circ}$ C	48
Figure 4.9	ESI-MS spectrum of Complex 2	50
Figure 4.10	FTIR spectrum of Complex 2	50
Figure 4.11	UV-visible spectrum of Complex 2	51
Figure 4.12	Temperature-dependence ϵ_{max} values for Complex 2 at 684 nm	52
Figure 4.13	TGA of Complex 2	53
Figure 4.14	ESI-MS spectrum of Complex 3	54
Figure 4.15	FTIR spectrum of Complex 3	55
Figure 4.16	UV-visible spectrum of Complex 3	55
Figure 4.17	Temperature-dependence of ϵ_{max} values for Complex 3 at 664 nm	56
Figure 4.18	TGA of Complex 3	57
Figure 4.19	ESI-MS spectrum of Complex 4	58
Figure 4.20	FTIR spectrum of Complex 4	59
Figure 4.21	UV-visible spectrum of Complex 4	59
Figure 4.22	Molecular structure of Complex 4 , showing displacement ellipsoids	60

Figure 4.23	The packing pattern of Complex 4 , viewed along the crystallographic <i>b</i> -direction	60
Figure 4.24	Plots of $\chi_M T$ vs. <i>T</i> for Complex 4 : (a) first cycle (372 K to 4 K); and (b) second cycle (385 K to 4 K)	62
Figure 4.25	Temperature dependence of ϵ_{max} for Complex 4 at 820 nm	64
Figure 4.26	TGA trace of Complex 4	65
Figure 4.27	DSC of Complex 4. Endothermic peak up	65
Figure 4.28	Photomicrographs of Complex 4 on cooling from I at: (a) 140 °C; (b) 115 °C; and (c) room temperature	66
Figure 4.29	Molecular structure of bis[1-(3',4',5'-trioctyloxyphenyl)-3-(3"- methyl-4"-octyl-oxyphenyl)propane-1,3-diketonate]copper(II), $M = Cu, X = CH_3$	66
Figure 4.30	ESI-MS spectrum of Complex 5	68
Figure 4.31	FTIR spectrum of Complex 5	68
Figure 4.32	UV-visible spectrum of Complex 5	69
Figure 4.33	Temperature dependence of ϵ_{max} for Complex 5 at 756 nm	70
Figure 4.34	TGA trace of Complex 5	71
Figure 4.35	DSC of Complex 5 : (a) first cycle; (b) second cycle. Endothermic peak up	72
Figure 4.36	Photomicrographs of Complex 5 on: (a) heating at 145 °C; (b) cooling at 131 °C; and (c) cooling at 117 °C	73
Figure 4.37	ESI-MS spectrum of Complex 6	74
Figure 4.38	FTIR spectrum of Complex 6	75
Figure 4.39	UV-visible spectrum of Complex 6	75
Figure 4.40	Plots of $\chi_M T$ vs. <i>T</i> for Complex 6 : (a) first cycle (300 K to 5 K); (b) second cycle (370 K to 156 K); and (c) third cycle (370 K to 317 K)	78
Figure 4.41	Temperature dependence of ϵ_{max} for Complex 6 at 795 nm	79
Figure 4.42	TGA thermograph of Complex 6	80
Figure 4.43	DSC of Complex 6 : (a) first cycle; (b) second cycle. Endothermic peak up	81
Figure 4.44	Photomicrographs of Complex 6 on: (a) first heating at 154 °C; and (b) second heating at 150 °C	82
Figure 4.45	ESI-MS of Complex 7	85

Figure 4.46	FTIR spectrum of Complex 7	86
Figure 4.47	UV-visible spectrum of Complex 7	86
Figure 4.48	Temperature dependence of ϵ_{max} for Complex 7 at 766 nm	88
Figure 4.49	TGA of Complex 7	89
Figure 4.50	DSC of Complex 7	89
Figure 4.51	ESI-MS of Complex 8	91
Figure 4.52	FTIR spectrum of Complex 8	91
Figure 4.53	UV-visible spectrum of Complex 8	92
Figure 4.54	Temperature dependence of ϵ_{max} for Complex 8 at 790 nm	93
Figure 4.55	TGA of Complex 8	94
Figure 4.56	DSC of Complex 8 : (a) first cycle; (b) second cycle. Endothermic peak up	95
Figure 4.57	ESI-MS of Complex 9	97
Figure 4.58	FTIR spectrum of Complex 9	98
Figure 4.59	UV-visible spectrum of Complex 9	98
Figure 4.60	Temperature dependence of ϵ_{max} for Complex 9 at 643 nm	99
Figure 4.61	TGA trace of Complex 9	100
Figure 4.62	ESI-MS spectrum of Complex 10	103
Figure 4.63	FTIR spectrum of Complex 10	103
Figure 4.64	UV-visible spectrum of Complex 10	104
Figure 4.65	Temperature-dependence of ϵ_{max} values for Complex 10 at 722 nm	105
Figure 4.66	TGA trace of Complex 10	106
Figure 4.67	DSC of Complex 10 : (a) first cycle; (b) second cycle. Endothermic peak up	107
Figure 4.68	Photomicrographs of Complex 10 on cooling at: (a) 154 $^{\rm o}{\rm C}$; and (b) 44 $^{\rm o}{\rm C}$	108
Figure 4.69	FTIR spectrum of Complex 11	109
Figure 4.70	UV-visible spectrum of Complex 11	109
Figure 4.71	Temperature-dependence of ϵ_{max} values for Complex 11 at 723 nm	110
Figure 4.72	TGA of Complex 11	111

Figure 4.73	DSC of Complex 11 . Endothermic peak up	112
Figure 4.74	Photomicrographs of Complex 11 at (a) 129 °C, (b) 125 °C and (c) 111 °C	112
Figure 4.75	FTIR spectrum of Complex 12	114
Figure 4.76	UV-visible spectrum of Complex 12	114
Figure 4.77	Temperature-dependence of ϵ_{max} values for Complex 12 at 715 nm	115
Figure 4.78	TGA trace of Complex 12	116
Figure 4.79	DSC of Complex 12 : (a) first cycle; (b) second cycle. Endothermic peak up	117
Figure 4.80	Photomicrographs of Complex 12 on: (a) heating at 125 °C; (b) cooling at 110 °C; (c) maintain at 124 °C; (d) heating at 127 °C; (e) cooling at 124 °C (f) cooling at 106 °C	119
Figure 4.81	ESI-MS of Complex 13	122
Figure 4.82	FTIR spectrum for Complex 13	122
Figure 4.83	UV-visible spectrum of Complex 13	123
Figure 4.84	An ORTEP presentations of Complex 13	124
Figure 4.85	The packing pattern of Complex 13 , viewed along the crystallographic <i>c</i> -direction rotated 90° at z-axis	124
Figure 4.86	Temperature-dependence of ϵ_{max} values for Complex 13 at 722 nm	126
Figure 4.87	ESI-MS of Complex 14	128
Figure 4.88	FTIR spectrum of Complex 14	128
Figure 4.89	UV-visible spectrum of Complex 14	129
Figure 4.90	Temperature-dependence of ϵ_{max} values for Complex 15 at 718 nm	130
Figure 4.91	TGA trace of Complex 14	131

LIST OF TABLES

Table 2.1	Phase transition temperatures and enthalpy changes for $Co(C_{16}$ -terpy) ₃](BF ₄) ₂	27
Table 2.2	Phase transition and enthalpy changes of $[Fe(C_{16}-terpy)_2](BF_4)_2$	28
Table 3.1	Cobalt(II) complexes	32
Table 3.2	Iron(II) complexes	32
Table 4.1	Elemental analytical data for Complex 1	42
Table 4.2	DSC data for Complex 1	48
Table 4.3	Elemental analytical data for Complex 2	49
Table 4.4	Elemental analytical data for Complex 3	54
Table 4.5	Elemental analytical data for Complex 4	58
Table 4.6	Crystallography and refinement details of Complex 4	61
Table 4.7	Selected bond lengths (Å) for Complex 4	61
Table 4.8	Elemental analytical data for Complex 5	67
Table 4.9	Elemental analytical data for Complex 6	74
Table 4.10	DSC data for Complex 6	80
Table 4.11	Summary for Complexes 1-3	83
Table 4.12	Summary for Complexes 4-5	83
Table 4.13	Elemental analytical data for Complex 7	84
Table 4.14	Elemental analytical data for Complex 8	90
Table 4.15	DSC data for Complex 8	94
Table 4.16	Summary for Complex 7 in comparison with Complex 8	96
Table 4.17	Elemental analytical data for Complex 9	97
Table 4.18	Summary for Complex 9 in comparison with Complex 1	101
Table 4.19	Elemental analytical data for Complex 10	102
Table 4.20	DSC data for Complex 10	106
Table 4.21	Elemental analytical data for Complex 11	108
Table 4.22	Elemental analytical data for Complex 12	113

Table 4.23	DSC data for Complex 12 (M = mesophase)	118
Table 4.24	Summary for Complexes 10-12	120
Table 4.25	Elemental analytical data for Complex 13	121
Table 4.26	Crystallography and refinement details of Complex 13	125
Table 4.27	Selected bond lengths [Å] of Complex 13	125
Table 4.28	Elemental analytical data for Complex 14	127
Table 4.29	Summary for Complexes 13 and 14	131
Table 5.1	Chemical formulae of Co(II) complexes	133
Table 5.2	Chemical formulae of Fe(II) complexes	133

LIST OF SCHEMES

Scheme 2.1	General reaction for the formation of a Schiff base	3
Scheme 2.2	General scheme graph of ESI-MS	8
Scheme 3.1	General synthetic path for Complex 1-14, R was C_nH_{2n+1} and X were BF ₄ , ClO ₄ and PF ₆	31