LIST OF FIGURES

Figure 2.1. Synthetic antenna allows energy from photons to be shuttled to the reaction centre without any destructive annihilation 7
Figure 2.2. Electron mobility in a PV cell 8
Figure 2.3. Photovoltaic cells, modules, panels and arrays 8
Figure 2.4. Type of silicon cells: (a) monocrystalline, (b) polycrystalline, (c) thin film 9
Figure 2.5. Diagram of a p-type and n-type of PV cell 10
Figure 2.6. Synthetic light-harvesting compound 11
Figure 2.7. Semiconductor band 12
Figure 2.8. Direct and indirect bandgap 13
Figure 2.9. HOMO and LUMO gap 15
Figure 2.10. Method of bandgap calculation from absorption spectrum 16
Figure 2.11. UV-vis spectrum of TiO_2 17
Figure 2.12. Jablonski energy diagram 18
Figure 2.13. Photoluminescence spectrum of Pb nanopowder 19
Figure 2.14. Cyclic voltammogram 20
Figure 2.15. CV of Cu(II) in the presence of ascorbic acid 21
Figure 2.16. CV of copper(II) acetate 22
Figure 2.17. Cyclic voltammogram of cage C_60 23
Figure 2.18. Fluorescence lifetime decay profile 25
Figure 2.19. Fluorescence decay profile of fluorescein dye in H_2O 27
Figure 2.20. Block diagram of an N_2/Dye Laser-based stroboscopic system 27
Figure 2.21. DSSC system 29
Figure 2.22. Dyes: (a) N3; (b) N719; and (c) black dye 31
Figure 2.23. Dye Z-907 31
Figure 2.24. Structural formula of (a) 1,10-phenanthroline, (b) 2,2’6,2”-terpyridine, (c) porphine, and (d) phthalocyanine 32
Figure 2.25. Crystal field splitting of d orbital in octahedral complexes 33
Figure 2.26. Spin rule: (a) spin allowed, (b) spin forbidden 35
Figure 2.27. Geometries of complexes: (a) octahedral; (b) tetrahedral 35
Figure 2.28. CT transitions: (a) LMCT, (b) MLCT 36
Figure 2.29. Absorption spectra of [Fe(bipy)_3](BF_4)_2 and [Ru(bipy)_3](BF_4)_2 complexes 37
Figure 2.30. High spin and low spin electronic configuration for iron(II) complexes 38
Figure 2.31. (a) Absorption spectra of high spin and low spin, (b) Tanabe Sugano diagram of d^5 38
Figure 2.32. Magnetism: (a) ferromagnetic, (b) antiferromagnetic 39
Figure 2.33. Structural formula of [Fe^{II}(4,4’-dicarboxylic acid-2,2’-bipyridine)_2(CN)_2] 41
Figure 2.34 Qualitative depiction of the relative differences in t_{2g} and π^* orbitals for $[\text{FeII}(4,4'$-dicarboxylic acid-$2,2'$-bipyridine)$_2$(CN)$_2]$ 42

Figure 2.35 Schiff base reaction 42

Figure 2.36 Copper(II) complex with Schiff base containing pyrrole ring 43

Figure 2.37 CV of copper(II) complex with Schiff base containing pyrrole ring 44

Figure 2.38 $[N,N$-(3,4-benzophenon)-3,5-Bu'$ _2$salicylaldimine] 45

Figure 2.39 CV of Cu(II) and Ni(II) complexes 46

Figure 2.40 cis-$[\text{Co(en)}$_2PVPCl$]_2 \cdot n\text{H}_2\text{O}$ 48

Figure 2.41 Poly(vinyl alcohol)(PVA)-Cu(II) complex 48

Figure 2.42 Poly(copper phthalocyanine) 49

Figure 2.43 Polymer complexes of 2-acrylamidophenol (AP) with Cu(II), Ni(II), and Co(II) 49

Figure 2.44 $[\text{Cu}_4\text{O(L)}(\mu$_2$\text{O}_2\text{CCH}_3)$$_2$(pabh)$_2$]_n \cdot 3n\text{H}_2\text{O}$ 50

Figure 2.45 Rigid organic ligands used in the coordination polymer 51

Figure 2.46 Coordination polymer with Schiff base ligand
 (a) ligand 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene, (b) Co(II) complex 51

Figure 2.47 Polymeric square pyramidal Cu(II) complex;
 (a) $[\text{Cu}_2(\mu$_2$\text{O}_2\text{CCH}_3)$$_2$(pabh)$_2$], (b) $[\text{Cu}_2(\mu$_2$\text{O}_2\text{CCH}_3)$$_2$(pamh)$_2$] 52

Figure 2.48 A polymeric cobalt(II) complex 52

Figure 2.49 Conjugated polymers containing metal complexes
 (M = Cu(II), Ni(II), Co(II), and Fe(II)) 53

Figure 2.50 The characteristic orientational order of the liquid crystal state compared to a solid and a liquid 54

Figure 2.51 Cholesteryl benzoate molecule 55

Figure 2.52 Self-organization of anisometric molecules in liquid-crystal phases 56

Figure 2.53 Types of liquid crystal 56

Figure 2.54 Hexabenzocorone 58

Figure 2.55 Supramoleculars disc-shaped 59

Figure 2.56 Chemical structure of p-type (a-c) and n-type (d-f) discotics 60

Figure 2.57 Perylene dye 60

Figure 2.58 Schematic diagram of bilayer PV cell 61

Figure 4.1 ^1H-NMR spectrum for H_2L1 84

Figure 4.2 FTIR spectrum of H_2L1 85

Figure 4.3 Proposed structure of Complex 1 86

Figure 4.4 FTIR spectrum of Complex 1 86

Figure 4.5 UV-vis spectrum of Complex 1 87

Figure 4.6 Fluorescence spectrum of Complex 1 88

Figure 4.7 Fluorescence decay of Complex 1 ($\lambda_{ex} = 273$ nm) 89
Figure 4.8 Fluorescence spectrum of Complex 1 ($\lambda_{ex} = 403$ nm) 89
Figure 4.9 CV of Complex 1 90
Figure 4.10 TGA of Complex 1 92
Figure 4.11 Proposed structure of Complex 2 93
Figure 4.12 FTIR spectrum of Complex 2 93
Figure 4.13 The UV-vis spectrum of Complex 2 94
Figure 4.14 Fluorescence spectrum of Complex 2 ($\lambda_{ex} = 273$ nm) 95
Figure 4.15 Fluorescence decay of Complex 2 ($\lambda_{ex} = 273$ nm) 95
Figure 4.16 Fluorescence spectrum of Complex 2 ($\lambda_{ex} = 412$ nm) 96
Figure 4.17 CV of Complex 2 96
Figure 4.18 TGA of Complex 2 97
Figure 4.19 Proposed structure of Complex 3 98
Figure 4.20 FTIR spectrum of Complex 3 98
Figure 4.21 UV-vis spectrum of Complex 3 99
Figure 4.22 Fluorescence spectrum of Complex 3 ($\lambda_{ex} = 282$ nm) 100
Figure 4.23 Fluorescence decay of Complex 3 100
Figure 4.24 Fluorescence spectrum of Complex 3 ($\lambda_{ex} = 410$ nm) 101
Figure 4.25 CV of Complex 3 101
Figure 4.26 TGA of Complex 3 102
Figure 4.27 Proposed structure of Complex 4 (lattice H$_2$O molecule is not shown) 103
Figure 4.28 The experimental and simulated IR spectra of Complex 4 104
Figure 4.29 Molecule model of Complex 4 (H atoms are removed for clarity) 104
Figure 4.30 UV-vis spectrum of Complex 4 105
Figure 4.31 Fluorescence spectrum of Complex 4 ($\lambda_{ex} = 267$ nm) 105
Figure 4.32 Fluorescence decay of Complex 4 106
Figure 4.33 Fluorescence spectrum of Complex 4 ($\lambda_{ex} = 700$ nm) 106
Figure 4.34 CV of Complex 4 107
Figure 4.35 Plot of $\chi_M T$ versus T for Complex 4 on cooling from 300 K to 2 K 108
Figure 4.36 TGA of Complex 4 108
Figure 4.37 Proposed structural formula for [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] 109
Figure 4.38 FTIR spectrum of [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] 110
Figure 4.39 UV-vis spectrum of [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] 111
Figure 4.40 Fluorescence spectrum of [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] ($\lambda_{ex} = 253$ nm) 111
Figure 4.41 Fluorescence decay of [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] 112
Figure 4.42 Fluorescence spectrum of [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] ($\lambda_{ex} = 387$ nm) 112
Figure 4.43 CV for [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] 113
Figure 4.44 TGA of [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] 114
Figure 4.45 DSC for [Cu$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_4$] 114
Figure 4.46 Photomicrographs of [Cu₂(CH₃(CH₂)₄COO)₄] 115
Figure 4.47 Proposed structure of Complex 5 115
Figure 4.48 FTIR spectrum of Complex 5 116
Figure 4.49 UV-vis spectrum of Complex 5 116
Figure 4.50 Fluorescence spectrum of Complex 5 (λ_{ex} = 275 nm) 117
Figure 4.51 Fluorescence decay of Complex 5 117
Figure 4.52 Fluorescence spectrum of Complex 5 (λ_{ex} = 400 nm) 118
Figure 4.53 CV of Complex 5 119
Figure 4.54 TGA of Complex 5 120
Figure 4.55 DSC of Complex 5 120
Figure 4.56 Photomicrographs of Complex 5 121
Figure 4.57 Proposed structural formula for [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O 121
Figure 4.58 FTIR spectrum of [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O 122
Figure 4.59 UV-vis spectrum of [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O 122
Figure 4.60 Fluorescence spectrum of [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O (λ_{ex} = 252 nm) 123
Figure 4.61 Fluorescence decay of [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O 123
Figure 4.62 Fluorescence spectrum of [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O (λ_{ex} = 472 nm) 124
Figure 4.63 CV for [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O 124
Figure 4.64 TGA of [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O 125
Figure 4.65 DSC for [Ni(CH₃(CH₂)₄COO)₂(H₂O)₂].3H₂O 126
Figure 4.66 Proposed structure of Complex 6 127
Figure 4.67 FTIR spectrum of Complex 6 127
Figure 4.68 UV-vis spectrum of Complex 6 128
Figure 4.69 Fluorescence spectrum of Complex 6 (λ_{ex} = 268 nm) 128
Figure 4.70 Fluorescence decay of Complex 6 129
Figure 4.71 Fluorescence spectrum of Complex 6 129
Figure 4.72 CV of Complex 6 130
Figure 4.73 TGA of Complex 6 131
Figure 4.74 DSC of Complex 6 131
Figure 4.75 Photomicrographs of Complex 6 132
Figure 4.76 FTIR spectrum of [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] 133
Figure 4.77 UV-vis spectrum of [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] 133
Figure 4.78 Fluorescence spectrum of [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] (λ_{ex} = 252 nm) 134
Figure 4.79 Fluorescence decay of [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] 134
Figure 4.80 Fluorescence spectrum of [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] (λ_{ex} = 470 nm) 135
Figure 4.81 CV for [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] 135
Figure 4.82 TGA of [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] 136
Figure 4.83 DSC for [Co(CH₃(CH₂)₄COO)₂(H₂O)₂] 137
Figure 4.84 Proposed structure of Complex 7 137
Figure 4.85 FTIR spectrum of Complex 7 138
Figure 4.86 UV-vis spectrum of Complex 7 138
Figure 4.87 Fluorescence spectrum of Complex 7 (λ_{ex} = 270 nm) 139
Figure 4.88 Fluorescence decay of Complex 7 139
Figure 4.89 Fluorescence spectrum of Complex 7 (λ_{max} = 433 nm) 140
Figure 4.90 CV of Complex 7 141
Figure 4.91 TGA of Complex 7 142
Figure 4.92 DSC of Complex 7 142
Figure 4.93 Photomicrographs of Complex 7 143
Figure 4.94 FTIR spectrum of [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] 144
Figure 4.95 UV-vis spectrum of [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] 144
Figure 4.96 Fluorescence spectrum of [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] (λ_{ex} = 253 nm) 145
Figure 4.97 Fluorescence decay of [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] 145
Figure 4.98 Fluorescence spectrum of [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] (λ_{ex} = 841 nm) 146
Figure 4.99 CV for [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] 146
Figure 4.100 TGA of [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] 147
Figure 4.101 DSC for [Fe(CH₃(CH₂)₄COO)₂(H₂O)₂] 148
Figure 4.102 Proposed structure of Complex 8 148
Figure 4.103 FTIR spectrum of Complex 8 149
Figure 4.104 UV-vis spectrum of Complex 8 149
Figure 4.105 Fluorescence spectrum of Complex 8 (λ_{ex} = 271 nm) 150
Figure 4.106 Fluorescence decay of Complex 8 150
Figure 4.107 Fluorescence spectrum of Complex 8 (λ_{ex} = 773 nm) 151
Figure 4.108 CV of Complex 8 152
Figure 4.109 TGA of Complex 8 153
Figure 4.110 DSC of Complex 8 153
Figure 4.111 The photomicrographs of Complex 8 154
Figure 4.112 Absorption and fluorescence process 155
Figure 4.113 Photoluminescence of intraligand transition in Complex 1 156
Figure 4.114 ¹H-NMR spectrum for L₂.2C₂H₅OH 158
Figure 4.115 FTIR spectrum of L₂.2C₂H₅OH 159
Figure 4.116 FTIR spectrum of Complex 9 160
Figure 4.117 UV-vis spectrum of Complex 9 161
Figure 4.118 Fluorescence spectrum of Complex 9 (λ_{ex} = 247 nm) 161
Figure 4.119 Fluorescence decay of Complex 9 162
Figure 4.120 Fluorescence spectrum of Complex 9 ($\lambda_{ex} = 701$ nm)
Figure 4.121 CV of Complex 9
Figure 4.122 TGA of Complex 9
Figure 4.123 FTIR spectrum of Complex 10
Figure 4.124 UV-vis spectrum of Complex 10
Figure 4.125 Fluorescence spectrum of Complex 10 ($\lambda_{ex} = 306$ nm)
Figure 4.126 Fluorescence decay of Complex 10
Figure 4.127 Fluorescence spectrum of Complex 10 ($\lambda_{ex} = 451$ nm)
Figure 4.128 CV of Complex 10
Figure 4.129 TGA of Complex 10
Figure 4.130 FTIR spectrum of Complex 11
Figure 4.131 UV-vis spectrum of Complex 11
Figure 4.132 Fluorescence spectrum of Complex 11 ($\lambda_{ex} = 271$ nm)
Figure 4.133 Fluorescence decay of Complex 11
Figure 4.134 Fluorescence spectrum of Complex 11 ($\lambda_{ex} = 504$ nm)
Figure 4.135 CV of Complex 11
Figure 4.136 TGA of Complex 11
Figure 4.137 FTIR spectrum of Complex 12
Figure 4.138 UV-vis spectrum of Complex 12
Figure 4.139 Fluorescence spectrum of Complex 12 ($\lambda_{ex} = 235$ nm)
Figure 4.140 Fluorescence decay of Complex 12
Figure 4.141 Fluorescence spectrum of Complex 12 ($\lambda_{ex} = 253$ nm)
Figure 4.142 CV of Complex 12
Figure 4.143 TGA of Complex 12
Figure 4.144 FTIR spectrum of Complex 13
Figure 4.145 UV-vis spectrum of Complex 13
Figure 4.146 Fluorescence spectrum of Complex 13 ($\lambda_{ex} = 265$ nm)
Figure 4.147 Fluorescence decay of Complex 13
Figure 4.148 Fluorescence spectrum of Complex 13 ($\lambda_{ex} = 657$ nm)
Figure 4.149 CV of Complex 13
Figure 4.150 TGA of Complex 13
Figure 4.151 DSC of Complex 13
Figure 4.152 FTIR spectrum of Complex 14
Figure 4.153 UV-vis spectrum of Complex 14
Figure 4.154 Fluorescence spectrum of Complex 14 ($\lambda_{ex} = 261$ nm)
Figure 4.155 Fluorescence decay of Complex 14
Figure 4.156 Fluorescence spectrum of Complex 14 ($\lambda_{ex} = 398$ nm)
Figure 4.157 CV of Complex 14
Figure 4.158 TGA of Complex 14
Figure 4.159 DSC of Complex 14
Figure 4.160 The photomicrographs of Complex 14
Figure 4.161 FTIR spectrum of Complex 15
Figure 4.162 UV-vis spectrum of Complex 15
Figure 4.163 Fluorescence spectrum of Complex 15 (λ_{ex} = 249 nm)
Figure 4.164 Fluorescence decay of Complex 15
Figure 4.165 Fluorescence spectrum of Complex 15
Figure 4.166 CV of Complex 15
Figure 4.167 TGA of Complex 15
Figure 4.168 DSC of Complex 15
Figure 4.169 FTIR spectrum of Complex 16
Figure 4.170 UV-vis spectrum of Complex 16
Figure 4.171 Fluorescence spectrum of Complex 16 (λ_{ex} = 313 nm)
Figure 4.172 Fluorescence decay of Complex 16
Figure 4.173 Fluorescence spectrum of Complex 16 (λ_{ex} = 863 nm)
Figure 4.174 CV of Complex 16
Figure 4.175 TGA of Complex 16
Figure 4.176 DSC of Complex 16
Figure 4.177 The photomicrographs of Complex 16
Figure 4.178 ^1H-NMR spectrum for L₃·H₂O
Figure 4.179 FTIR spectrum of L₃·H₂O
Figure 4.180 FTIR spectrum of Complex 17
Figure 4.181 UV-vis spectrum of Complex 17
Figure 4.182 Fluorescence spectrum of Complex 17 (λ_{ex} = 253 nm)
Figure 4.183 Fluorescence decay of Complex 17
Figure 4.184 Fluorescence spectrum of Complex 17 (λ_{ex} = 769 nm)
Figure 4.185 CV of Complex 17
Figure 4.186 TGA of Complex 17
Figure 4.187 FTIR spectrum of Complex 18
Figure 4.188 UV-vis spectrum of Complex 18
Figure 4.189 Fluorescence spectrum of Complex 18 (λ_{ex} = 258 nm)
Figure 4.190 Fluorescence decay of Complex 18
Figure 4.191 Fluorescence spectrum of Complex 18 (λ_{ex} = 418 nm)
Figure 4.192 CV of Complex 18
Figure 4.193 TGA of Complex 18
Figure 4.194 FTIR spectrum of Complex 19
Figure 4.195 UV-vis spectrum of Complex 19
Figure 4.196 Fluorescence spectrum of Complex 19 ($\lambda_{ex} = 263$ nm) 215
Figure 4.197 Fluorescence decay of Complex 19 215
Figure 4.198 Fluorescence spectrum of Complex 19 ($\lambda_{ex} = 561$ nm) 216
Figure 4.199 CV of Complex 19 216
Figure 4.200 TGA of Complex 19 217
Figure 4.201 FTIR spectrum of Complex 20 218
Figure 4.202 UV-vis spectrum of Complex 20 219
Figure 4.203 Fluorescence spectrum of Complex 20 ($\lambda_{ex} = 241$ nm) 219
Figure 4.204 Fluorescence decay of Complex 20 220
Figure 4.205 Fluorescence spectrum of Complex 20 ($\lambda_{ex} = 831$ nm) 220
Figure 4.206 CV of Complex 20 221
Figure 4.207 TGA of Complex 20 222
Figure 4.208 FTIR spectrum of Complex 21 223
Figure 4.209 UV-vis spectrum of Complex 21 223
Figure 4.210 Fluorescence spectrum of Complex 21 ($\lambda_{ex} = 249$ nm) 224
Figure 4.211 Fluorescence decay of Complex 21 224
Figure 4.212 Fluorescence spectrum of Complex 21 ($\lambda_{ex} = 650$ nm) 225
Figure 4.213 CV of Complex 21 226
Figure 4.214 TGA of Complex 21 227
Figure 4.215 DSC of Complex 21 227
Figure 4.216 The photomicrographs of Complex 21 228
Figure 4.217 FTIR spectrum of Complex 22 229
Figure 4.218 UV-vis spectrum of Complex 22 229
Figure 4.219 Fluorescence spectrum of Complex 22 ($\lambda_{ex} = 248$ nm) 230
Figure 4.220 Fluorescence decay of Complex 22 230
Figure 4.221 Fluorescence spectrum of Complex 22 ($\lambda_{ex} = 400$ nm) 231
Figure 4.222 CV of Complex 22 231
Figure 4.223 TGA of Complex 22 232
Figure 4.224 DSC of Complex 22 233
Figure 4.225 The photomicrographs of Complex 22 233
Figure 4.226 FTIR spectrum of Complex 23 234
Figure 4.227 UV-vis spectrum of Complex 23 235
Figure 4.228 Fluorescence spectrum of Complex 23 ($\lambda_{ex} = 241$ nm) 236
Figure 4.229 Fluorescence decay of Complex 23 236
Figure 4.230 Fluorescence spectrum of Complex 23 ($\lambda_{ex} = 399$ nm) 237
Figure 4.231 CV of Complex 23 237
Figure 4.232 TGA of Complex 23 238
Figure 4.233 DSC of Complex 23 239
Figure 4.234 The photomicrographs of Complex 23 at 80 °C
Figure 4.235 FTIR spectrum of Complex 24
Figure 4.236 UV-vis spectrum of Complex 24
Figure 4.237 Fluorescence spectrum of Complex 24 (\(\lambda_{ex} = 263\) nm)
Figure 4.238 Fluorescence decay of Complex 24
Figure 4.239 Fluorescence spectrum of Complex 24 (\(\lambda_{ex} = 894\) nm)
Figure 4.240 CV of Complex 24
Figure 4.241 TGA of Complex 24
Figure 4.242 DSC of Complex 24
Figure 4.243 The photomicrographs of Complex 24
Figure 4.244 \(^1\)H-NMR spectrum for L4
Figure 4.245 FTIR spectrum of L4
Figure 4.246 FTIR spectrum of Complex 25
Figure 4.247 UV-vis spectrum of Complex 25
Figure 4.248 Fluorescence spectrum of Complex 25 (\(\lambda_{ex} = 252\) nm)
Figure 4.249 Fluorescence decay of Complex 25
Figure 4.250 Fluorescence spectrum of Complex 25 (\(\lambda_{ex} = 677\) nm)
Figure 4.251 CV of Complex 25
Figure 4.252 TGA of Complex 25
Figure 4.253 FTIR spectrum of Complex 26
Figure 4.254 UV-vis spectrum of Complex 26
Figure 4.255 Fluorescence spectrum of Complex 26 (\(\lambda_{ex} = 246\) nm)
Figure 4.256 Fluorescence decay of Complex 26
Figure 4.257 Fluorescence spectrum of Complex 26 (\(\lambda_{ex} = 382\) nm)
Figure 4.258 CV of Complex 26
Figure 4.259 TGA of Complex 26
Figure 4.260 FTIR spectrum of Complex 27
Figure 4.261 UV-vis spectrum of Complex 27
Figure 4.262 Fluorescence spectrum of Complex 27 (\(\lambda_{ex} = 247\) nm)
Figure 4.263 Fluorescence decay of Complex 27
Figure 4.264 Fluorescence spectrum of Complex 27 (\(\lambda_{ex} = 432\) nm)
Figure 4.265 CV of Complex 27
Figure 4.266 TGA of Complex 27
Figure 4.267 FTIR spectrum of Complex 28
Figure 4.268 UV-vis spectrum of Complex 28
Figure 4.269 Fluorescence spectrum of Complex 28 (\(\lambda_{ex} = 247\) nm)
Figure 4.270 Fluorescence decay of Complex 28
Figure 4.271 Fluorescence spectrum of Complex 28
Figure 4.272 CV of Complex 28
Figure 4.273 TGA of Complex 28
Figure 4.274 FTIR spectrum of Complex 29
Figure 4.275 UV-vis spectrum of Complex 29
Figure 4.276 Fluorescence spectrum of Complex 29 ($\lambda_{ex} = 250$ nm)
Figure 4.277 Fluorescence decay of Complex 29
Figure 4.278 Fluorescence spectrum of Complex 29 ($\lambda_{ex} = 700$ nm)
Figure 4.279 CV of Complex 29
Figure 4.280 TGA of Complex 29
Figure 4.281 DSC of Complex 29
Figure 4.282 The photomicrographs of Complex 29
Figure 4.283 FTIR spectrum of Complex 30
Figure 4.284 UV-vis spectrum of Complex 30
Figure 4.285 Fluorescence spectrum of Complex 30 ($\lambda_{ex} = 250$ nm)
Figure 4.286 Fluorescence decay of Complex 30
Figure 4.287 Fluorescence spectrum of Complex 30
Figure 4.288 CV of Complex 30
Figure 4.289 TGA of Complex 30
Figure 4.290 DSC of Complex 30
Figure 4.291 The photomicrograph of Complex 30
Figure 4.292 FTIR spectrum of Complex 31
Figure 4.293 UV-vis spectrum of Complex 31
Figure 4.294 Fluorescence spectrum of Complex 31 ($\lambda_{ex} = 254$ nm)
Figure 4.295 Fluorescence decay of Complex 31
Figure 4.296 Fluorescence spectrum of Complex 31 ($\lambda_{ex} = 540$ nm)
Figure 4.297 CV of Complex 31
Figure 4.298 TGA of Complex 31
Figure 4.299 DSC of Complex 31
Figure 4.300 FTIR spectrum of Complex 32
Figure 4.301 UV-vis spectrum of Complex 32
Figure 4.302 Fluorescence spectrum of Complex 32 ($\lambda_{ex} = 267$ nm)
Figure 4.303 Fluorescence decay of Complex 32
Figure 4.304 Fluorescence spectrum of Complex 32 ($\lambda_{ex} = 855$ nm)
Figure 4.305 CV of Complex 32
Figure 4.306 TGA of Complex 32
Figure 4.307 DSC of Complex 32
Figure 4.308 The photomicrograph of Complex 32
Figure 5.1 A conjugated ligand