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ABSTRAK

Satu siri baru kopolimer karbosilana bisfenol azina dengan kumpulan-kumpulan

pengganti yang berbeza (penderma- dan/atau penarik-elektron) (Pa1-Pa6) telah berjaya

disintesis melalui tindak balas polikondensasi menggunakan bis(klorometil)

dimetilsilana. Berat molekul purata-nombor kopolimer adalah antara 2322 dan 9805,

dan indeks polisebaran antara 1.04 dan 2.1. Monomer menunjukkan keterlarutan yang

baik dalam DMSO dan DMF dan kopolimer mempamerkan keterlarutan yang sangat

baik dalam pelarut organik umum (THF , CHCl3 dan DMF) tetapi tidak larut dalam

pelarut yang mengandungi kumpulan hidroksil (CH3OH dan C2H5OH). Semua

kopolimer menunjukkan kestabilan terma yang baik dengan suhu pada kehilangan berat

10% yang lebih tinggi daripada 265.96°C di bawah nitrogen. Kopolimer mempamerkan

penyerapan UV-vis yang kuat dalam DMF cair dengan λmaks pada 318-351 nm dan

keputusan foto-pendarcahayaan menunjukkan foto-pendarcahayaan sederhana di

kawasan biru dengan λmaks pada 416-422 nm. Daripada pengukuran voltammetri siklik

(CV) jurang jalur elektrokimia (Eg) yang dikira berada di bawah 2.00 eV. Pengaruh

kumpulan pengganti terhadap berat molekul dan semua sifat fizikal telah dikaji. Selepas

polikarbosilana baru berasaskan monomer bisfenol azina berkonjugat penuh berjaya

disintesis, polikarbosilana baru yang berkonjugasi lebih tinggi telah disintesis (Pb1-

Pb7) berasaskan bes bis-Schiff 1,4-fenilena dan 1,5-naftalena. Berat molekul purata-

nombor kopolimer adalah antara 2401 dan 7414, dan indeks polisebaran antara 1.21 and

2.04. Kopolimer mempamerkan keterlarutan yang baik dalam pelarut organik umum
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(THF, CHCl3 dan DMF) dan keterlarutan separa dalam pelarut yang mengandungi

kumpulan hidroksil (CH3OH dan C2H5OH). Semua kopolimer menunjukkan kestabilan

terma lebih tinggi berbanding dengan kopolimer karbosilana yang mengandungi azina

dengan suhu pada kehilangan berat 10%  yang lebih tinggi daripada 324°C di bawah

nitrogen. Kopolimer mempamerkan penyerapan UV-vis kuat dalam DMF cair, di mana

kopolimer yang mengandungi 1,4-fenilena muncul sebagai dua puncak pada λmaks pada

287-365 nm dan kopolimer yang mengandungi 1,5-naftalena muncul sebagai tiga

puncak pada λmaks 273-363 nm. Keputusan foto-pendarcahayaan menunjukkan

pendarcahayaan sederhana di kawasan biru dengan λmaks pada 416-429 nm. HOMO dan

LUMO telah disiasat untuk kopolimer ini untuk menganggarkan jurang jalurnya. Jurang

jalur elektrokimia (Eg) yang dikira berada antara 2.23-2.54 eV. Di samping itu, dua siri

baru dimer homolog bersimetri, N,N-bis(4-alkoksi-benzilidena)-1,5-naftalenadiimina

yang dikumpulkan sebagai siri (c) dan N,N-bis(3-metoksi-4-alkoksi-benzilidena)-1,5-

naftalenadiimina yang dikumpulkan sebagai siri (d) dengan kumpulan alkil hujung

sama sekata tetapi berbeza panjangnya iaitu dari butil hingga oktadekil telah disintesis

dan dicirikan. Sifat mesomorfik sebatian ini telah disiasat melalui pengimbasan

pembezaan kalorimetri dan mikroskopi polarisasi optik. Suatu kelakuan fasa-peralihan

yang pelbagai diperhatikan bagi anggota siri (c) yang boleh dikaitkan dengan

konformasi molekul yang mungkin. Sebatian dengan panjang rantai dalam lingkungan

C6H13 hingga C12H33 menunjukkan fasa smektik C manakala C14H29 dan C16H33

mempamerkan fasa smektik dan nematik. Dimer yang mengandungi moieti butil dan
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oktadekil tidak mempamerkan sifat mesogenik. Manakala, siri (d) tidak menunjukkan

sebarang fasa hablur cecair disebabkan oleh pengaruh kumpulan metoksi pada molekul.

Semua sebatian dalam siri (c) mempunyai kestabilan termal yang tinggi dan tidak

menunjukkan penguraian ketara di bawah 400ºC dalam keadaan nitrogen. Keputusan

UV-vis menunjukkan puncak kuat pada 281-283 nm dan puncak lemah pada 362-363

nm dan puncak pendarfluor sebatian yang terhasil adalah dalam kawasan merah pada

516-518 nm. Struktur kimia sebatian yang disintesis telah disahkan melalui FT-IR, 1H,

13C NMR , 2D NMR dan kristalografi X-Ray.
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ABSTRACT

A series of new carbosilane bisphenol azine copolymers with different substituted

groups (electron-donating and/or withdrawing) (Pa1-Pa6) were successfully

synthesized by polycondensation reaction using bis(chloromethyl) dimethylsilane. The

number-average molecular weights of the copolymers were between 2322 and 9805,

and the polydispersity index between 1.04 and 2.10. The monomers showed good

solubility in DMSO and DMF except for a5 and a6 which required high temperature to

dissolve and the copolymers exhibited excellent solubility in common organic solvents

(THF, CHCl3 and DMF) but insoluble in hydroxyl-group containing solvents (CH3OH

and C2H5OH).  All the copolymers showed good thermal stabilities with their

temperatures at 10% weight loss being higher than 265.96°C under nitrogen. The

copolymers exhibited strong UV-vis absorptions in dilute DMF with λmax at 318-351 nm

and photoluminescence results showed a medium photoluminescence in the blue region

with λmax at 416-422 nm. From cyclic voltammetry (CV) measurements the

electrochemical band gaps (Eg) calculated were below 2.00 eV. The influence of the

substitution groups on the molecular weight and all the physical properties was studied.

After successfully synthesized the new polycarbosilanes based on the full conjugated

bisphenol azine monomers, newly higher conjugation of polycarbosilanes were

synthesised (Pb1-Pb7) based on 1,4-phenylene and 1,5-naphthalene bis-Schiff base.

The number-average molecular weights of the copolymers were between 2401 and

7414, and the polydispersity index between 1.21 and 2.04. The copolymers exhibited
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excellent solubility in common organic solvents (THF, CHCl3 and DMF) and partially

dissolving in hydroxyl-group containing solvents (CH3OH and C2H5OH).  All the

copolymers showed higher thermal stabilities compared to the carbosilane copolymers

containing azines with their temperatures at 10% weight loss being higher than 324°C

under nitrogen. The copolymers exhibited strong UV-vis absorptions in dilute DMF,

where the copolymers containing 1,4-phenylene appeared as two peaks at λmax 287-365

nm and the copolymers containing 1,5-naphthalene appeared as three peaks at  λmax 273-

363 nm. Photoluminescent results showed a medium photoluminescence in the blue

region with λmax at 416-429 nm. The HOMO and LUMO were investigated for these

copolymers to estimate the band gaps. In addition, two new series of homologous

symmetrical dimers N,N-bis(4-alkoxy- benzylidene)-1,5-naphthalenediimine grouped as

series (c) and N,N-bis (3-methoxy-4-alkoxy- benzylidene)-1,5-naphthalenediimine

grouped as series (d) with different lengths of terminal alkyl groups of even parity

ranging from butyl to octadecyl were synthesized and characterized. The mesomorphic

properties of these compounds were investigated via differential scanning calorimetry

and optical polarizing microscopy. A diversed phase-transition behavior was observed

for the members of series (c) which could be attributed to the possible molecular

conformations. Compounds with chain length in a range of C6H13 to C12H33 showed

smectic C phase while C14H29 and C16H33 displayed smectic and nematic phase. The

dimers containing butyl and octadecyl moiety did not display mesogenic properties.

Meanwhile, series (d) did not exhibit any liquid crystalline phase due to the effect of
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methoxy group on molecule. All of the compounds in the first series (c1-c8) have high

thermal stability and did not show significant decomposition below 400ºC in nitrogen

atmosphere. UV-Vis results showed strong peak at 281-283 nm and weak peak at 362–

363 nm and fluorescent peak of the resultant compound was in the red region at 516-

518 nm. The chemical structures of synthesized compounds were confirmed by FT-IR,

1H, 13C NMR, 2D NMR and X-Ray crystallography.
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CHAPTER 1 : INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The development in science and synthesis of new materials are equally significant,

thus continuously we need new materials for development. In addition, the advancement

of technology requires design and synthesis of new materials. Significant progress in all

fields of technology depends almost entirely on the rate at which useful new materials

can be synthesized and designed. Polymer material is one major of the classical areas in

the field of materials science. This field is very important because of their broad

application in modern life such as medicine, electronics technology, elastomers, films,

structural materials and the wide range of fibre.

Polymers are very-long-chain macromolecules made by linking together smaller

compounds, called monomers, through covalent bonds. The long-chain character of the

polymer makes these materials different compared to other small molecules. This

character allows the chain to become entangled in the solid state or in solution or for

specific macromolecular structures, to become lined up in regular arrays in the solid

state. The characteristics of these materials give rise to solid state materials properties,

such as elasticity, strength, film forming, or fiber-forming qualities properties, that are

not found in the system of small molecules.

Polymers can be classified into two large categories, biopolymers and synthetic

polymers. Biopolymers are polymers that occur naturally in organisms, examples are

DNA, RNA, proteins, and polysaccharides. Synthetic polymers are materials that can be

prepared in laboratory with specific properties which is very important in commercial

products in today’s economy.

Silicon-containing polymers are one of the important synthetic polymers which have

wide spectrum applications. In fact, the significance of pure grade silicon compound is
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important for the entire electronic industry, especially for computers, etc. as we could

say we are living in a "Silicon Age" in comparison to the "Bronze Age" or the "Ceramic

Age" of the past. Silicon–based materials, consisting of backbones and surface-capped

atoms or pendants, have been considered in the field of both chemistry and physics. In

the former, the focus has been on inorganic silicon materials (amorphous silicon,

crystalline silicon, nanoparticales and porous silicon). Nitrogen containing silicon

namely silicon nitride has become a progressively important industrial product[1] and

organic silicon materials such as polyorganosilanes, polysilanes, oligosilicones,

polysilylenes and cyclosilanes are shown to exhibit interesting physical properties[2].

There are many types of polymers containing silicon depending on the atom that is

attached directly to the silicon atom as shown in Figure1.1, i.e. polysiloxanes or

silicones 1, polycarbosilanes or poly(silylene methylenes) 2, polysilazanes 3,

polysilanes 4, polysilynes 5, poly(silylene ethenes) 6, poly(silylene ethynes) 7,

poly(silylene butadiyenes) 8, poly(silylene phenylenes) 9, and poly(silylenehete-

roarylenes) 10[3]. These materials have unique optoelectronic properties which are

attributed to the conjugation occurring along the silicon main chain; hence, they are

extremely sensitive to the polymer conformation and to the substituent attached to the

polymer backbone.
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Figure 1.1: Basic structures of organosilicon polymers[3]

Currently, there is a growing interest in oligomers and polymers whose backbone is

composed of an alternating arrangement of an organosilane unit and a π -conjugated

unit. Their unique properties ascribed to the interaction between the σ -orbital of the

oligosilane units and the π -orbital (σ -π conjugation), and also to π -donation from the

silicon units to the π –systems can lead to their potential use as highly functionalized

materials such as photoresists, organic semiconductors in their doped states, and heat-

resistant materials[4]. Furthermore, it has been demonstrated that the substitution of

silicon into a π-electron system in these compounds enhances the luminescent

properties[5] and thus, several attempts have been made to prepare Si- π alternating

polymers, which constitute a new class of organic photo and electroluminescent

materials as mention in this chapter.

On the other hand, polymers having extended π-conjugated units are usable as

excellent hole-transporting materials in multi-layered light emitting devices. In those

polymers, the electron-donating organosilanylene units would elevate the HOMO

energy levels of the π-conjugated units to enhance hole affinity of the polymers. Also,

polymers with highly conjugated chains occupy significant position in the development
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of new materials in the last few years because of their broad variety of properties and

applications. Many works have been reported on high conjugated systems of type

polyphenylene vinylenes, polyphenylene, polyactetylene, polyaniline, polypyrrole, or

polythiophene[6-11].

1.2 Types of silicon-containing polymers

There have been considerable interests in the chemistry of silicon-containing

polymers that can use as functional materials. To date, several types of

containing-silicone polymers have been synthesized and studied depending on the atom

that has been attached directly to the silicon atom in the backbone of the polymers. Each

of these polymers has certain physical properties and applications. In this chapter, we

will describe some of the most important types of these polymers.

1.2.1 Polysiloxane

Polysiloxanes or (silicones) contain silicon atom attach to the oxygen atom (Si-

O) in the main chain. Currently, siloxane polymers are the most important and unique

materials among inorganic and semi-inorganic polymers due to their unique physical

and chemical properties. The unique properties of polysiloxane arise from the unusual

features of the backbone. For instance, the unsubstituted O atom and the substituted Si

atom differ greatly in size, giving the polymer a very irregular cross section. This

influences the way the chains are packed in the bulk, amorphous state, which in turn,

gives the polymer the unusual equation-of-state properties (such as compressibilities).

In addition, the chemical characteristics and the nature of the bonding of typical side

groups between these atoms give the chains a very low surface free energy and

consequently, unusual and desirable surface properties. For this reason polysiloxanes

are used as waterproofing garments, mould-release agents and biomedical materials.

Furthermore, siloxane backbones display a number of remarkable configurational
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characteristics due to the bond angles around the O atom being much larger than those

around the Si atom, which makes the planar all trans form of the chain approximate a

series of closed polygons[12]. A broad range of applications for polysiloxanes have

been studied because the polymers have good thermal, oxidative, biological and

chemical stabilities and are commercially readily available[13]. For example, highly

thermal stability[14] of these polymers make them very important for their use in high

temperature applications such as heat transfer agents and high performance

elastomers[12]. Taking advantage of the inertness of siloxane polymer, polysiloxanes

have been developed for many medical applications such as artificial organ, prostheses,

vitreous substitutes in the eyes, tubing and catheters, and object for facial

reconstruction[15-19], as well as contact lenses, artificial skin, and drug-delivery system

utilize their high permeability [20-22]. Beside, polysiloxanes have many non-medical

applications which include electrical insulator, anti-foaming agent, adhesive, protective

coating, microlithographic[23-27] and liquid crystal materials[28]. Figure 1.2 shows the

general structure of polysiloxane.

Si

R

R

OHO Si

R

R

O Si

R

R

OH

n

R= Organic moiety

Figure 1.2 : Structure of polysiloxane

.
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(a) (b)

Figure 1.3 : (a) Siloxane polymer used in tubing and catheters for medical applications[19]

(b) An electronic circuit board being given a protective polysiloxane coating[29].

1.2.2 Polysiloles

Polysiloles are a relatively new type of silicon-containing polymers consisting of

a five-membered silacycle in their back bone which may structurally be viewed as

cyclopentadiene derivative with its carbon bridge replaced by a silicon atom, hence the

name silacyclopentadiene[30]. This type of silicon-containing polymer has recently

received a lot of interest because of the unique aspects of their synthesis and reaction

chemistry as well as the novel photophysical and electronic properties such as high

fluorescent efficiency[31], strong electron affinity[32], thermal stability[30], chemical

stability and photostability, as well the relatively small energy band gap between their

LUMO and HOMO level and the predictable unusual electronic behavior due to the

orbital interaction between the σ*-orbital of the silole silicon atom and the π*-orbital  of

the pentadiene fregment[32, 33]. These novel properties make siloles ideal candidates

for components in light emitting devices[34, 35]. Siloles have also been investigated as

chemical sensors for nitroaromatic and other types of explosives[36].

In 1999, Honglea Shon et al.[37] prepared the first compound of polysilole

homopolymer whereby silicon in atom in the polymer chain is also part of silole ring.
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This polymer was easily obtained by reduction of 1,1-diclorotetraphenylsilole with

lithium, sodium or potassium in THF, as shown in Figure 1.4, to get the polysilole of a

moderate molecular weight, Mn=5500 with polydispersity= 1.1.

Si
Cl Cl

Ph4 1. 2 M, THF

2. MeOH

M= Li, Na,K

Si

MeO OMe

Ph4

n

n=15

Figure 1.4 : Synthesis of polysiloles

1.2.3 Polysilanes

Polysilanes are polymers based on inorganic elements which contain Si-Si

catenation in the backbone thus allowing extensive electron delocalization to take place.

This delocalization of the sigma-electrons in the Si-Si moiety in the main chain leads to

unique physical properties such as conductivity, strong electronic absorption,

electroluminescence, photoconductivity, photosensitivity, and so on, which are crucial

for many technological applications of polysilanes[12, 38, 39]. Furthermore, the nature

of the organic groups attached to silicon atoms in the main chain plays a very important

role in determining the properties of this type of polymer. Polysilanes have a broad

applications such as photoconducting[40], photoinitiators, precursors to silicon carbide,

photoresists for microelectronics[12], electrical conducting[41] and nonlinear optical

materials[42].

The first clear description of a polymeric product involving catenated silicon

atom was described in a classic paper by Burkhard in 1949[43]. He prepared

poly(dimethylsilane) [Me2Si]n by combining 450 g of sodium metal with 700 g of

Me2SiCl2 and one liter of benzene, sealed them in an autoclave and heated the mixture

Univ
ers

ity
 of

 M
ala

ya



8

(200°C) under high pressure to produce the polysilane polymer. Figure 1.5 shows the

preparation of polysilanes polymer.

Me2SiCl + 2Na
200°C

benzene

Si

Me

Me

n

+ 2NaCl

Figure 1.5 : Synthesis of polysilanes[43]

1.2.4 Polysilazines

Polysilazines are an important class of silicon-containing polymers that contain

silicon and nitrogen atom on their main chain. Since each silicon atom is bound to two

separate nitrogen atoms and each nitrogen atom bound to two silicon atoms, both rings

and chains of the formula [R1R2Si-NR3]n occur. There are two common designs of

these types of polymers which is dependent on R in the formula; if all substituents R are

H atoms the polymer is called polyperhydridosilazane, perhydropolysilazanes or

inorganic polysilazane with formula [H2Si-NH]n. If all the substituents R bound to

silicon atom are hydrocarbons, the polymer will be polyorganosilazanes or

polycarbosilazines[43]. The most important application for polysilazanes are for use in

ceramic materials, where the polysilazanes have been shown to be very good polymeric

precursors (after pyroloyzed) to silicon nitride or SiNC ceramic material due to the

toughness, strength, good stability to aggressive chemicals, and high thermal stability of

these materials[44, 45].

The first synthesis of polyorganosilazane was described in 1964 by Kruger and

Rochow[46]. Chlorosilane was reacted with ammonia in a dry organic solvent at high

temperatures with catalyst to yield high molecular weight polymer. In 1974, Varbeek

and Winter[47, 48] prepared a complex oligomer, as shown in Figure 1.6, by reacting

methylamine or ammonia with methyltrichlorosilane. This species could be melt-spun
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to form preceramic fibers which, when cross-linked, pyrolyzed to amorphous silico-

carbo-nitride fibers.

N

Si

NH3C

Si

N

Si

H3C

H3C

CH3

N

N

CH3

Si

CH3

N

CH3

CH3

CH3CH3

n

Figure 1.6: Complex oligomer of polysilazane[47]

1.2.5 Polysilynes

Polysilylnes are relatively new class of silicon-containing polymers which in

each silicon is bonded via silicon–silicon bond to the main chain, and attach to one R

substituent ([RSi]n R=Alkyl) to yield silicon-based network backbone polymers. These

materials have been recently studied and investigated because of their σ–conjugated

three-dimensional network backbone which displays many physical and chemical

properties such as optical, electronic and preceramic[49-51]. They have also been

studied as low band-gap energy semiconducting silicon-based materials[52], photo-

patternable thin-film waveguide[53, 54], photoresists for 193 nm photolithography[55],

models for luminescent properties of amorphous silicon[56]. Polysilynes have also been

studied as precursors for silicon-based ceramics, such as silicon carbide[57], amorphous

silicon films[58], silica, and mixture of these three[59].

1.2.6 Polysilylacetylenes

Polysilyacetylenes are polymers that consist of the acetylene and silicon-

containing unit in the backbone. These types of acetylenes containing silicon polymers

have been the subject of intensive research interest in the recent years[60]. In the

particular, types that contain π-conjugated silyacetylene systems functionalized with
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phenylene, biphenylene anthrylene or oligothienylene bridges together with Si residues

in the backbone have been extensively investigated with regards to their applications in

electro- and optical devices[61, 62]. They have been shown to display unique electric

and optical properties such as semiconducting properties in their doped state, high hole-

transporting for electrolumenicence, photoresists and red shifted UV absorptions[60, 63,

64]. Additionally, they have also been studied for enhancing the thermal stability of the

polymers[65, 66], and Homrighausen and Keller have successfully synthesized high

temperature elastomers of these polymers[67].

M. Yan et al[68] in 2006 had synthesized various novel polymers that contain

diacetylene moieties and nitrogen atoms in the main chain by amminolysis and

condensation of the corresponding α’,ω’-dichlorodiorganosilylenediacetylene oligmers

as shown in Figure 1.7. The synthesized polysilylacetylene showed high thermal

stability and excellent properties due to the conjugated silicon-containing polymer

besides exhibiting good optical and electrical properties. The presence of nitrogen atom

in the polymer main chain also enhances the other properties of these polymers such as

solubility, flexibility and processability. Due to their highly heat-resistant and

processable light-weight, polysilylacetylenes show high potential for applications in the

aerospace and microelectronic[67].
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C C

Cl

Cl

Cl

C C

Cl

Cl

Cl

n-BuLi

CC CLiLiC
Me3SiCl

CC CC SiMe3Me3Si

RR'SiCl2

CC CC SiSi

R

R'

Cl

R

R'

Cl

n

NH3
CC CC SiSi

R

R'

R

R'

NH

n m

a: R=R'=Me, b: R=Me R'=Ph, c:R:R'=Ph, n=1-6, m=1-6

Figure 1.7: Synthesis of polysilylacetylene[68]

1.2.6 Polycarbosilanes

Carbosilane chemistry (as an inherent part of organometallic chemistry) is one

of the most rapidly developing fields of science. These polymers are a wide class of

silicon-containing polymers in which silicon atom is attached to carbon atom in the

main chain of the polymer. In nature, there are many well-known polymeric and

inorganic compounds containing silicon. However, since Kipping’s pioneer work at the

beginning of the 20th century, researchers have oriented their focus on materials

containing silicon and carbon in the main chain of the polymers, rather than on purely

organic or inorganic polymers. Recently, carbosilane copolymers have garnered the

interest of researchers due to their enhanced material properties, which cannot be

attained by inorganic polymers based on silicon alone or organic polymers based on

carbon alone. The uniqueness of polycarbosilanes has centered on their high thermal

stability, good electrical resistance, low surface tension, release and lubricating
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properties, high hydrophobicity, low glass transition, and low toxicity for natural

environment[69, 70].

In 1975, Yajima et al. prepared the most important member of this family by the

thermolysis of poly(dimethylsilane), [Me2Si]n at 450°C under argon atmosphere to yield

[(H)(CH3)SiCH2]n. Figure 1.8 displays the synthesis of polycarbosilane from

polysilanes. The significance of this polymer come from the fact that it can be spun into

fibers, cross-linked by heating in air at around 300°C and transformed by pyrolysis at

1200°C under nitrogen to silicon carbide fibers impregnated with silicon carbide

crystallites[71-75]. This pioneering work has in fact inspired much of the research on

polycarbosilanes.

450°C Si

H

CH3

CH2Si

CH3

CH3

n n

Polysilane Polycarbosilane

Si

CH3

CH3

Cl Cl
Na,toluene

methanol N2

1200°C

N2

SiC

Silicon
carbide

Figure 1.8 : Synthesis of poly carbosilane[71]

Interrante et al. in 1990’s developed an elegant synthetic route for polymers

containing alternate R2Si and CH2 units. These polymers are called poly-

(silylenemethylene)s or polysilaethylenes. The new route to prepare these polymers was

by using a platinum (H2PtCl6)-catalyzed ring-opening polymerization of the four-

membered 1,3-disilacyclobutanes. These monomeric inorganic rings can be formed in

many ways. Thus, the reduction of Cl(OEt)2SiCH2Cl with magnesium produce an

alkoxydisilacyclobutane as intermediate product and then converted to the

corresponding tetrachloro derivative by treatment with acetylchloride. The chlorine

atoms on the silicon can be replaced by alkyl moieties by the corresponding Grignard

reagent. These disilacyclobutanes have been found to be ideal substrate for ring-opening
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polymerization[76]. Figure 1.9 shows the preparation of disilacyclobutanes by using

Grignard reagent.

Cl(OEt)2SiCH2Cl
Mg

Si Si

EtO

EtO

OEt

OEt

FeCl3

CH3COCl

SiSi

Cl

Cl

Cl

Cl

SiSi

R

R

R

R

RMgX

Figure 1.9 : Synthesis of disilacyclobutanes[76]

Tetrachlorodisilacyclobutane can be ring-opened to produce the polymeric

[Cl2SiCH2]n derivative. By reducing this polymer with LiAlH4 can afford [H2SiCH2]n

with a high molecular weight of approximately 80,000 as illustrated in Figure 1.10.

SiSi

Cl

Cl

Cl

Cl

H2PtCl6
Si

Cl

Cl

CH2

n

Si

H

H

CH2

n

LiAlH4

Figure 1.10 : Synthesis of polycarbosilane with high molecular weight[76]

Lienhard et al. in 1997 successfully prepared monosilicon analog of

polydifluorosilylenemethylene (PDFSM), [F2SiCH2]n, by a different method. This

R=alkyl group
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polymer was prepared by the ring opening polymerization (ROP) of disilacyclobutanes.

Two different approaches, both involving ROP of a disilacyclobutane monomer were

used. In the first approach, the 1,1,3,3-tetraethoxydisilacyclobutane was polymerized

directly by ROP using a platinum complex as a catalyst to afford the linear polymer

polydiethoxysilylenemethylene followed by reaction with excess BF3.Et2O to afford

PDFMS with high molecular weight of about 22000/5800 (Mw/Mn). Figure 1.11 displays

the synthesis of polycarbosilane by the first approach of ring opening polymerization.

Si Si

EtO

EtO

OEt

OEt

H2PtCl6
Si

OEt

OEt

H2
C

n

BF3.Et2O
Si

F

F

H2
C

n

Figure 1.11: Synthesis of poly carbosilane by the ring opening polymerization

method[77]

The second approach simply reversed the order of these fluorination and ROP

reactions beginning with the same tetraethoxydisilacyclobutane as starting material. In

this approach, solvent and neat BF3.Et2O as the flurinating agent were employed for the

first reaction to produce 1,1,3,3-tetrafluoro-1,3-disilacyclobutane (TFDSCB) in very

good yield (70%). The pure TFDSCB was then subjected to polymerization process at

120°C by using a platinum complex catalyst in a hydrocarbon solvent[77].

In 2000, Sacarescu G. et al. [78] synthesized a new class of polycarboslilane

containing anthracene moiety with good yield and good molecular weight through the

coupling reaction of dimethyldichlorosilanes, methylphenyl-dichlorosilanes, methyldi-

chlorosilanes with dichlorodihydrodisilaanthracene using sodium dispersion in toluene

and equimolar reactants ratios as shown in Figure 1.12. In the first stage, in the presence

of a large access of sodium organometallic derivative, the coupling reactions have led to

dichlorodihydroanthracene oligosilanes with low molecular weights. In the second

Univ
ers

ity
 of

 M
ala

ya



15

stage, the disproportionation reactions in the presence of the remaining organometallic

compound and in an inert atmosphere and room temperature, have led to substituted

polycarbosilanes with increasing molecular weights. The molecular weight and the

organic moieties content in polycarbosilanes were strongly dependent on the amount of

the organometallic derivative in the reaction mixture.

+ Na

Na

Na

Na

Na

R=CH3, (I), H (II), C6H5 (III)

Na Na + SiCl

CH3

CH3

Cl
Si

CH3

R
Si Cl

n

n=2...3

Na Na

Si

CH3

R

Si Si

H3C

R

CH3

Rn m

Figure 1.12 : Synthesis of polycarbosilane containing anthracene moiety[78]
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1.3 Schiff base containing polymers

Polymers containing Schiff base are a class of polymer family which has been

less reviewed and are known as polyimines (PIs). The polymers are synthesized by

polycondensation reaction between hydrazine or diamine with diketone or dialdehyde to

obtain one of the following structures (1a-d), Figure 1.13.

R1, R2 and R3 can be:

R1 R2 R3 Polymer
n=1 Aryl or alkyl H 1a

Aryl or alkyl Aryl or alkyl H 1b
n=1 Aryl or alkyl Aryl or alkyl 1c

Aryl or alkyl Aryl or alkyl Aryl or alkyl 1d

Figure 1.13 : General structure of Schiff base

These polymers are also known as polyazines (PAZs, 1a) or polyazomethines

(PAMs, 1b) when hydrazine and diamines, respectively, are used in reactions with

dialdehyde compounds and polyketazines (1c) or polyketamines (1d) when diketones

are used as dicarbonyl compounds in reaction with hydrazine or diamines. Schiff bases

with aryl substituents are more readily synthesized and more stable than those

containing aliphatic aldehyde which is relatively unstable and readily polymerizable.

The reason of the stability of aryl containing azomethine is due to the effective

conjugation of the aryl moiety which makes these compounds more stable. Due to

variation in their structures and molecular properties these types of compounds have

been widely investigated. The unique combination of an unsaturated carbon-nitrogen

double bond and the formation of pseudoaromatic rings (six-membered rings with the

presence of double bonds) enables this intramolecular bond to be exceptionally strong
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in some cases[79, 80]. The intramolecular hydrogen bonds are useful model systems

due to their thermodynamic and structural stabilities, which allow study of proton

transfer depending on temperature or solvent polarity[81]. Furthermore, proton transfer

process is important in the mechanisms of various chemical reactions, including enzyme

catalysis[82, 83], photochromic[84] and thermochromic[85] properties of Schiff bases

and also the mechanism of proton transport in biological systems[86]. Investigations of

such hydrogen bonds and related molecular features are interesting for understanding of

various biologically and technically relevant properties at the microscopic level.

Generally, Schiff base materials have attracted much interest as they are found

to have potential in biological and pharmaceutical applications such as anticancer[87],

HIV-1[88], antioxidants[89], antimicrobial[90-92], antiparasitic[93], antibacterial and

antifungal[94]. Furthermore, in industrial field, these compounds exhibited wide

physical properties like liquid crystal [95-98] for liquid crystal displays,  good thermal

stability for use as solid stationary phase in gas chromatography[99], pigments and

dyes, catalysts, as hole transport materials for organic electronic devices[100],

intermediates in organic synthesis and as polymer stabilizers[101]. In modern

technology, it is used for the preparation of nonlinear optical (NLO) materials[102].

Schiff base polymers date back to 1923, where Adams et al.[103] synthesized

the first polymer containing Schiff base by a polycondensation reaction between

benzidine and di-anisidine with isophthaldehyde and terephthaldehyde. Many

researchers had tried to synthesize Schiff base polymers. In 1935 Steingkopf and

Eger[104] reacted hydrazine with terephthaldehyde and isophthaldehyde in the molten

state to yield an infusible and insoluble product. In 1950s Marval and Hill[105] tried the

synthesis of PIs by solution polycondensation of aromatic dialdehydes with o-

phenylenediamine and hydrazine by using different solvents such as acetic acid,

benzene and dimethylacetamide as reaction media. However, this polymerization
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n
N n

N
N

n

process failed as the product precipitated out of the reaction media very rapidly, leading

to very low molecular weight polymer; which was insoluble in all solvents except in

concentrated sulfuric acid. In late 1960s and early 1970s, PIs started to be the subject of

a systematic study beginning with the pioneering work of D’Alelio et al.[106, 107] as a

result of the strong interest in thermally stable polymers for aircraft applications. They

synthesized many polyazomethines in various reaction schemes, including the melt

polymerization of aromatic diamines with aromatic dialdehydes and the amine with

carbonyl. In the last few years, classes of these polymers have been developed. For

example, aromatic PAMs, Figure 1.14 (a), are used as isoelectronic with poly(p-

phenylenevinylene) and, Figure 1.14 (b), are used as electroluminescent[108, 109]

polymer while PAZ, Figure 1.14 (c), synthesized from hydrazine and glyoxal, is a

nitrogen containing analog of polyacetylene, in which the latter is considered as the

most known conducting organic polymer[110]. However, unlike polyacetylene which is

unstable, PAZ is thermally stable and is not oxidized in air.

(a) (b)

(c)

Figure 1.14 : (a) Polyazomethines, (b) Poly(p-phenelynevinylene), (c) Polyazines[110].
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OO

O

O
,

NO2

N N

1.3.1 Synthesis of Schiff base polymers

1.3.1.1 Polymerization of Schiff base compounds by polycondensation

reaction.

Polymers containing Schiff base have been synthesized by polycondensation

reaction of dicarbonyl and diamine materials and their derivatives. Table 1.1 displays

some structures of the main diamine and dicarbonyl materials that can be used for

preparing of PAMs.

Table 1.1: Some dicarbonyl and diamine compounds used for synthesis of polyimines

Dicarbonyl NH2-R-NH2 References

1.

N ,

,

OH

, [111, 112]

2. [113, 114]

3.

O

O

R1

R2

R1,R2= CH3, OCH3

R1=H, R2= Cl, OH, CH3

N ,

R

N

R= H, Cl, CH3, OCH3

[114-116]

4.

,
[116]

N

OO

Univ
ers

ity
 of

 M
ala

ya



20

5.

O

O

R

R

R=CH3

OMe

MeO

[117, 118]

6.

HO OH

R
O

R
O

R=CH3, Ph

[119]

Generally, polycondensation reaction can be achieved by using a suitable

solvent with catalyst as well can be performed by the melt but by using the melt

polycondensation of such monomers is difficult to control where side reactions will be

obtained and consequently produce undesirable yields.

Low yields of Schiff base polymers were obtained by solution polycondensation

reaction using methanol, ethanol or water as solvent and Lewis acid as catalyst due to

establishment of equilibrium. To overcome this problem, use of other solvents such as

toluene and benzene have been suggested, which will allow the removal of the water

formed as a result of polycondensation reaction by azeotropic distillation. The

condensation reaction will be accelerated by azeotropic distillation of water, leading to

higher yields, yet it will not influence the degree of polycondensation. The low yield is

because Schiff base containing polymers precipitate out of the solution during the

reaction of polycondensation as the structure of the polymers have a rigid backbone

chain in the reaction media resulting in low solubility of the polymers[120].

Better yields of Schiff base polymers can be obtained when polar aprotic

solvents such as N,N-dimethylacetamide (DMAc),tetrahydrofuran (THF), N,N
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dimethyl- formamide (DMF), dimethylsulfoxide (DMSO), N-methylpyrrolidone

(NMP), or hexamethylphosphoramide (HMPA), or protic solvents, such as m-cersol or

p-chlorophenol are used, due to the high solubility of the polymer in these polar

solvents[120]. In addition, higher molecular weight polymers can be obtained from

polycondensation reaction by adding lithium chloride or calcium chloride, as these salts

can enhance the solubility of the growing macromolecular chain in the

polycondensation system and maintain it in solution until higher polycondensation

degree is obtained. Furthermore, the ability of calcium chloride as a dehydrating agent

eliminates water in the polycondensation reaction by absorbing it; and thus accordingly

resulting in the equilibrium favouring the formation of the polymer[120]. Phosphorous

pentoxide can also be employed as dehydrating agent for this type of reaction.

The polycondensation reaction uses a few drops of acid as catalyst such as

sulphuric acid (H2SO4), hydrochloric acid (HCl), glacial acetic acid (CH3COOH) and p-

toluenesulfonic acid. In addition, salt can be utilized as catalyst such as zinc chloride

(ZnCl2) but it may leave traces which make the salt acts as a dopant. In addition, there

are some cases of polycondensation performed without any catalyst. In this research,

ammonia solution was used as catalyst to prepare the azines monomers and few drops

of glacial acetic acid to prepare the Schiff base containing 1,5-naphthalene monomers.

No catalyst was used in the case of Schiff base containing 1,4-phenylene[120].

The first step of polycondensation starts by attacking the nucleophilic amine

group on the carbonyl bond resulting in dehydration of the tetrahedral intermediate.

Therefore, the electrophilicity of the carbonyl and the nucleophilicity of diamine are

important in terms of rate of reaction. As a general rule, the reactivity of diamine

derivative compounds decreases in the same order as their basicity: hydrazine >

aliphatic diamine > aromatic diamine, whereas in the case of bis-carbonyl compounds
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the order is: dialdehyde > diketone > quinone[120]. A highly exothermic reaction is

obtained from the polycondensation reaction of aromatic dialdehydes with aliphatic

diamines, which proceeds rapidly in solution to high conversions[121, 122], whereas in

the case of polycondensation of quinines more particular conditions are required.

1.3.1.2 Polymerization of Schiff base monomers by chemical and electro-

chemical oxidation

There is another method for the synthesis of Schiff base polymers by chemical

or electrochemical oxidation from monomers containing aryl groups derived from

naphthalene, furan, thiophene, pyrrole, etc… connected by azine or imine linkages in

the backbone[123-127]. This type of reaction involves a single electron transfer

oxidation of the aromatic rings to the cation-radical followed by their coupling at the

radical sites with elimination of two protons. Through the chemical and electrochemical

processing oxidation will be realized. The best advantage of generating the active

species by electrochemical polymerization is by controlling the rate of initiation and the

active centers concentration. In fact, this type of polymerization is fast, simple and

possible to be performed under potentiostatic, galvanostatic, and cyclic voltammetric

conditions.

Numerous inorganic oxidants have been used for the polymerization of

monomers containing Schiff base groups such as: (NH4)2S2O8, FeCl3 hydrate

(FeCl3.6H2O), FeCl3 anhydrous, Cu(ClO4)2, etc. The first two oxidants can polymerized

monomer containing pyrrole only as they possess low oxidation potential (≈ 0.8 against

Ag/Ag+ electrode), whereas thiophene (1.6 eV) derivatives require stronger

oxidants[128]. The syntheses of these monomers have been performed by using

catalyzed condensation of an aromatic, aliphatic, as well heteroaromatic dialdehyde

with aliphatic or aromatic diamine[129]. Figure 1.15 presents some examples of Schiff
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base monomers, which have been used in polymerization by chemical and

electrochemical oxidations involving cation-radical.

X
H

N R N

H
X

X= S, O, NH

R is :
O

, , ,

CH2 (CH2)n

1)

2)

N CH R CH N

R is:

, ,

Figure 1.15: The structures of the Schiff base monomers used in polymerization by

chemical and electrochemical oxidation[129].

1.3.2 Some properties of Schiff base containing polymer

1.3.2.1 Thermal properties

All Schiff base containing polymers show a significant thermal stability. Even

non-conjugated polymers synthesized from terephthaldehyde and aliphatic diamines

have high thermal stabilities of about 250oC in air and 300oC in nitrogen[107]. Fully

conjugated Schiff base containing polymers are yellow to orange to red to brown to

black colored products, with thermal stabilities up to 430–480oC in air and 500–550oC

in nitrogen. They are also resistant to radiation and their stability is shown to be
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independent of dose rate and nature of the ionizing radiation. The first step of

decomposition for the polyazomethine is nitrogen elimination followed by formation of

stable polyenes, which subsequently decomposes[106].

1.3.2.2 Mechanical properties

Aromatic polyazomehines are rigid rod molecules with high anisotropy in their

optical, electrical, and thermomechanical properties. Melt spinning of their thermotropic

mesophases having a spontaneous alignment of the molecules in the flow direction led

to high-strength and high stiffness fibers[130]. The properties can be further improved

by thermal annealing in a relaxed state at temperatures near, but below the flow

temperature as a result of the PIs tendency to increase molecular weight and

crystallinity[130]. These fibers have been used for reinforcement of thermoplastic

polymers (polyamides, polycarbonates, polyacrylates, etc.)[131-133]. The rigid rod

segment of the polyimine can also be introduced in the matrix of a thermoplastic

polymer by in situ polycondensation of aromatic dialdehyde and diamine where

molecular composites and blends with high-strength properties have been

obtained[134]. The presence of imine hard segment in a soft polymer chain introduces

liquid crystalline behavior and improves mechanical properties of the resultant

segmented copolymer.

Semiflexible polyimines containing hydroxyl groups in the ortho position of the

imine bond can be coordinated with metal ions the main effect of this coordination

result an increase of the mechanical properties and intermolecular cohesive forces of the

fibers[135].
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1.4 Motivation

In the research work, we attempt to develop and synthesize new materials that

have properties combining those of different classical materials. In particular, one of the

most promising approaches to the development of new materials that combine the

advantage of organic compounds (bisphenol Schiff bases) that contain full conjugated

structure with those of inorganic (silicon) is to devise copolymer that have a backbone

of inorganic atoms to which are attached to the organic moiety. The effect of substituted

groups (electron-withdrawing and donating) attached with aromatic ring on molecular

weight and properties of polymer were studied, together with their thermal stability,

optical and electrochemical properties. In addition, liquid crystal properties were

investigated for some of bisphenol bis-Schiff base monomers by reacted with

bromoalkyl to produce symmetrical dimers and confirmed by deferential scanning

calorimetry (DSC) and optical polarized microscopy (OPM). The obtained materials

were characterized using FT-IR, 1H-NMR, 13C NMR, X-Ray single crystal and GPC

analyses. TGA technique was used to determine the stabilities of thermal degradation.

Optical properties were determined by using UV-vis spectra and the fluorescence

spectra of the copolymers were measured to determine the maximal emission

intensities. The HOMO-LUMO levels and electrochemical band gap values were

studied by using Circle voltammetry (CV) technique.

1.5 Objectives of this research thesis

The scope of this work covers the synthesis and characterization aspects of the

full conjugated azine monomers, monomers containing Schiff base group and

copolymers containing silicon moiety besides Schiff base group thus far unreported in

the literature. In addition, a newly symmetrical dimers based on bis phenol bis-Schiff

bases containing 1,5-naphthalene were synthesized, characterized and studied their

liquid crystal properties. The research objectives can be summarized as follows:
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1. To synthesize full conjugated azine monomers derived from condensation

reaction of hydrazine sulfate with different types of 4-hydroxybenzaldehyde and

its derivatives.

2. To synthesize full conjugated bis-Schiff base monomers derived from

condensation reaction of 1,4-phenylene diamine and 1,5-naphthalenediamine

with 4-hydraxybenzaldehyde and its derivative to form higher conjugated

monomers.

3. To copolymerize the synthesized monomers with bis(chloromethyl)

dimethylsilane by polycondensation reaction using Williamson’s reaction to

yield copolymers containing silicon in the main backbone and good molecular

weight.

4. To study the influence of electron-donating and electron-withdrawing

substituted groups attached to the phenyl ring on molecular weight, optical and

electrochemical properties.

5. To synthesize two series of symmetrical dimers containing 1,5-naphthalene

moiety and investigate the properties of liquid crystal.

6. To characterize the monomers, copolymers and symmetrical dimers synthesized

structurally by several analytical techniques such as:

 Fourier transform infrared spectroscopy (FT-IR)

 Nuclear magnetic resonance spectroscopy (FT-NMR)

 single crystal x-ray crystallography

 Gel permeation chromatography (GPC)

7. To investigate the thermal stability, liquid crystal properties, opto and electro

chemical properties of the synthesized compounds by several types of

techniques such as:

 Differential scanning calorimetry (DSC)
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 Optical polarized microscopy (OPM)

 Thermal gravimetric analysis (TGA)

 UV-Vis and fluorescence spectroscopy

 Cyclic voltammetry (CV)
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CHAPTER 2 : EXPERIMENTAL

2.1 Materials

The chemicals used for the synthesize work were: 4-hydroxybenzaldehyde

(Acros, 99%), Vanillin (Acros, 97%), hydrazinium sulfate (Merck, 99%), 3-ethoxy-4-

hydroxybenzaldehyde (Merck, 97%), 3,5-dimethoxy-4-hydroxy-benzaldehyde (Sigma

Aldrich, 97%), 3-nitro-4-hydroxybenzaldehyde (Merck, 95%), 4-hydroxy-3-methoxy-5-

nitrobenzaldehyde (Merck, 99%), p-phenylenediamine (Acros, 99%), 1,5

nephthalenediamine (Merck, 95%), bis(chloromethyl)dimethylsilane (Sigma-Aldrich,

97%), Potassium carbonate (K2CO3) (Riendemenn Schmit Chemicals), 1-bromoalkane

(1-bromobutane, 1-bromohexane, 1-bromoctane, 1-bromodecane, 1-bromododecane, 1-

bromotetradecane, 1-bromohexadecane and 1-bromooctadecane) (Merck, 95%), sodium

sulfate (Riendemenn Schmit Chemicals, 99%). Purities of materials were examined by

using a thin layer chromatography (Silica gel TLC) plate's (Merck) and the spot located

with UV light and iodine vapor. All the chemicals were used directly from the freshly

opened bottles without further purification, except for p-phenylenediamine and 1,5-

naphthalenediamine which were recrystallized from toluene and dried under reduced

pressure prior to use.

Ethanol (95%), absolute ethanol (99.8%), N,N-dimethylformamide (DMF), ethyl

acetate, acetonitrile, glacial acetic acid, acetone, tetrahydrofuran (THF), methanol, and

Deuterated NMR solvents used were of reagent-grade and purchased from Sigma

Aldrich, Riendemann schimidt chemicals, Acros and Merck. DMF was distilled and

keep under molecular sieve prior to use.
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2.2 Synthesis of monomers

In this research, several polymerizable monomers with different types of

substituent groups were synthesized. The procedure, synthetic route and chemical

structure as characterized by FT-IR, 1H NMR, 13C NMR are listed below for all the

monomers.

2.2.1 Synthesis of azine monomers (a1-a6)

The azine monomers were synthesized according to literature[136, 137], with

some modifications. In a 250 mL two-necked reaction flask equipped with a magnetic

stirrer, a solution of 19.7 mmol of hydrazine sulphate in 10 mL water and 1.3 mL of

concentrated ammonium solution were stirred until a clear solution was obtained. To

this solution, 9.8 mmol of aldehyde in 10 mL of ethanol was added dropwise and the

mixture stirred for 3 h at ambient temperature. A solid product filtered, dried and

crystallized from suitable solvent to obtain the yellow crystals.

Synthesis of 4,4’-hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)diphenol

(a1)[138]

C
H

NNC
H

HO OH1

23

4

5 6

7

1.65 g of hydrazine sulphate with 3 g of 4-hydroxybenzaldehyde was reacted

according to the general synthesis of azine. The yellow solid product was purified by

crystallization from ethanol. Mp: 284-285°C, yield 81.3%. IR, υ, 3481.4 (OH), 3045

(Car-H), 1618 (C=N), 1586-1505 (C-C). 1H NMR, δ (ppm, DMSO-d6, 400 MHz): 6.84

(d, 4H, J = 8.5, H2,6), 7.67 (d, 4H, J = 8.8, H3,5), 8.54 (s, 2H, H7), 10.06 (s, 2H, OH), 13C

NMR, δ (ppm, DMSO-d6, 100 MHz): 116.3 (4C, C2,6), 125.63 (2C, C4), 130.66 (4C,

C3,5), 160.8 (2C, C1), 160.96 (2C, C7).
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Synthesis of 4,4’-hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)bis(2-

methoxyphenol) (a2)

C
H

NNC
H

HO OH1

23

4

5 6

7

OO

1.28 g of hydrazine sulphate with 3 g of 4-hydroxy-3-methoxybenzaldehyde was

reacted according to general synthesis of azines[139]. The yellow solid product was

purified by crystallization from ethanol. Mp: 178°C [136]; obtained 175-176°C, yield

82%. IR, υ, 3479 (OH),3070 (Car-H), 2919.6 (C-Halph), 1624(C=N), 1512-1600 (C-C)

and 1257 (-OCH3) cm-1, 1H NMR, δ (ppm, DMSO-d6, 400 MHz): 3.80 (s, 6H, O-CH3),

6.86 (d, 2H, J = 7.76, H6), 7.23 (dd, 2H, J = 8.24;1.8, H5), 7.43 (s, 2H, H3), 8.55 (s, 2H,

H7), 9.67 (s, 2H, -OH), 13C NMR, δ (ppm, DMSO-d6, 100 MHz): 56 (2C, OCH3), 110.3

(2C, C3), 116.2 (2C, C6), 124.9 (2C, C5), 126.6 (2C, C4), 148.5 (2C, C2), 150.4 (2C, C1),

161.1 (2C, C7).

Synthesis of 4,4’-(1E,1'E)-hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)bis(2-

ethoxyphenol) (a3)

C
H

NNC
H

HO OH1

23

4

5 6

7

OO

1.17 g of hydrazine sulphate with 3 g of 4-hydroxy-3-ethoxybenzaldehyde

was reacted according to general synthesis of azines. The product was pale yellow solid

precipitate, which was purified by crystallization from THF and recrystallized from

acetonitrile to obtain a single crystal. Mp: 204-205°C, yield 80.3%. IR, υ, 3617.5 (OH)

3034 (Car-H), 2928-2876.6 (C-Halph), 1628 (C=N), 1597-1509 (C-C) and 1267 (O-CH3)

cm-1, 1H NMR, δ (ppm, DMSO-d6, 400 MHz): 1.33 (t, 6H, J = 6.9 x(2) O-CH2CH3),
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4.03 (q, 4H, J = 7x(3) O-CH2), 6.85 (d, 2H, J = 8.1, H6), 7.21 (dd, 2H, J = 8.2; 1.7, H5),

7.40 (d, 2H, J = 1.8, H3), 8.52 (s, 2H, H7), 9.58 (s, 2H, OH), 13C NMR, δ (ppm, DMSO-

d6, 100 MHz): 15.2 (2C, O-CH2CH3), 64 (2C, OCH2), 111.9 (2C, C3), 116.3 (2C, C6),

123.8 (2C, C5), 126.1 (2C, C4), 147.6 (2C, C2), 150.6 (2C, C1), 161.2 (2C, C7).

Synthesis of 4,4’-(1E,1'E)hydrazine-1,2-diylidenebis(methan-1-y1-1-ylidene)bis

(2.5 -dimethoxyphenol) (a4)

C
H

NNC
H

HO OH1

23

4

5 6

7

OO

OO

3 g of 4-hydroxy-2,5 dimethoxybenzaldehyde with 1.08 g of hydrazine sulphate

were reacted according to general synthesis of azine. The resultant was a yellow solid

product, purified by crystallization from ethanol and recrystallized by acetonitrile to

obtain single crystal. Mp: 214-215 °C, yield 78.8%. IR, υ, 3480 (OH), 3012 (Car-H),

2936 (C-Haliph), 1621 (C=N), 1588-1498 (C-C) and 1219.3 (O-CH3) cm-1, 1H NMR, δ

(ppm, DMSO-d6, 400 MHz): 3.79 (s, 12H, -OCH3), 7.12 (s, 4H, H3,5), 8.55 (s, 2H, H7),

9.02 (s, 2H, OH), 13C NMR, δ (ppm, DMSO-d6, 100 MHz): 56.56 (4C, OCH3), 106.36

(4C, C3,5), 124.8 (2C, C4), 139.4 (2C, C2,6), 148.6 (4C, C1), 161.4 (2C, C7).
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Synthesis 4,4’-(1E,1'E)-hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)bis(2-

nitrophenol) (a5)

C
H

NNC
H

HO OH1

23

4

5 6

7

NO2O2N

2 g of 4-hydroxy-3-nitrobenzaldehyde with 0.76 g of hydrazine sulphate were

reacted according to general procedure of azine. The yellow solid product was purified

by crystallization from ethanol. Mp: 257-258°C, yield 80.1%. IR, υ, 3570.3(OH), 3074

(Car-H), 1620 (C=N) and 1571-1488 (C-C) and 1251 (OCH3) cm-1. 1H NMR, δ (ppm,

DMSO-d6, 400 MHz): 7.30 (d, 2H, J = 8.8, H6), 8.11 (dd, 2H, J = 8.8, 2.2, H5), 8.42 (d,

2H, J = 2.2, H3), 8.75 (s, 2H, H7).
13C NMR, δ (ppm, DMSO-d6, 100 MHz): 120.3 (2C,

C6), 125.64 (2C, C3), 126.34 (2C, C4), 134.43 (2C, C5), 137.61 (2C, C2), 150.4 (2C, C1),

161 (2C, C7).

Synthesis of 2,2’-dinitro-5,5’-dimethoxy-4,4’-[hydrazinediylidenebis(methanyl-

ylidene)] diphenol (a6)

C
H

NNC
H

HO OH1

23

4

5 6

7

OO

NO2O2N

2 g of 4-hydroxy-3-nitrobenzaldehyde with 0.66 g of hydrazine sulphate were

reacted as according to procedure of azine. The yellow solid product was purified by

crystallization from ethanol. Mp: 269-270°C, yield 72.9%. IR, υ, 3561(OH), 3083 (Car-

H), 2953-2833 (C-Halph), 1625 (C=N), 1598-1504 (C-C) and 1253 (O-CH3) cm-1. 1H

NMR, δ (ppm, DMSO-d6, 400 MHz): 3.91 (s, 6H, OCH3), 7.66 (d, 2H, J=1.2, H3), 7.92

(d, 2H, J=1.7, H5), 8.65 (s, 2H, H7).
13C NMR, δ (ppm, DMSO-d6, 100 MHz): 75.11
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(2C, OCH3), 112.98 (2C, C3), 118.87 (2C, C5), 124.24 (2C, C4), 137.59 (2C, C6), 146.7

(2C, C2), 150.68 (2C, C1), 160.51 (2C, C7).

2.2.2 Synthesis of bisphenol bis-Schiff base monomers containing 1, 4-phenylene

(b1-b4)

A minimum methanolic solution of p-phenylenediamine (9.2 mmol) was added

dropwise to a stirred 30 mL methanolic solution of 4-hydroxybenzaldehyde and its

derivative (19.7 mmol). The reaction mixture was then refluxed at 80°C for 4 h. The

resultant product was filtered, washed with distilled water and crystallized twice from

methanol. Thereafter the solid products were dried in oven.

Synthesis of 4,4’-(1,4-phenylenebis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)

diphenol. (b1)

8

9

1

23

4

5 6

7
NN C

H
H
C OHHO

9

4-hydroxybenzaldehyde (2 g) with p-phenylenediamine (0.9 g) were reacted

according to procedure of Schiff base containing 1,4-phenylene. The yellow solid

product was purified by crystallization from methanol. Mp: 275-277°C, yield 79.3%.

IR, υ, 3489 (OH), 3067 (Car-H), 1618 (C=N), 1505-1525 (C=Car) cm-1, 1H NMR, δ

(ppm, DMSO-d6, 400 MHz): 6.88 (d, 4H, J=8.2, H2,6), 7.25 (s, 4H, H9), 7.77 (d, 4H,

J=8.2, H3,5), 8.50 (s, 2H, H7), 10.13 (s, 2H, OH), 13C NMR, δ (ppm, DMSO-d6, 100

MHz): 116.19 (4C, C2,6), 122.33 (4C, C9), 128.15 (2C, C4), 131.16 (4C, C3,5), 149.82

(2C, C8), 159.71 (2C, C1), 161.08 (2C, C7).
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Synthesis of 4,4’-(1,4-phenylenebis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)

bis(2-methoxyphenol) (b2)

8

9

1

23

4

5 6

7
NN C

H
H
C OHHO

OO

1.08 g of p-phenylenediamine with 3 g of 4-hydroxy-3-methoxybenzaldehyde

was reacted according to general synthesis of Schiff base containing 1, 4-phenylene.

The resultant was a yellow solid product which was purified by crystallization from

methanol. Mp: 198-19°C, yield 79.3, IR, υ, 3528 (OH), 3058 (Car-H), 2934-2848 (C-

Halph), 1619 (C=N), 1508-1593 (C-Car) and 1273 (O-CH3) cm-1, 1H NMR, δ (ppm,

DMSO-d6, 400 MHz): 3.48 (s, 6H, -OCH3), 6.90 (d, 2H, J= 8.1, H6), 7.27 (s, 4H, H9),

7.33 (d, 2H, J= 8.1, H5), 7.53 (s, 2H, H3), 8.50 (s, 2H, H7), 9.76 (s, 2H, -OH), 13C NMR,

δ (ppm, DMSO-d6, 100 MHz): 56.06 (2C, -OCH3), 110.84 (2C, C3), 115.81 (2C, C6),

122.59 (4C, C9), 124.62 (2C, C5), 128.5 (2C, C4), 148.5 (2C, C8), 149.76 (2C, C2),

150.67 (2C, C1), 159.9 (2C, C7).

Synthesis of 4,4’-(1,4-phenylenebis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)

bis (2-ethoxyphenol) (b3)

8

9

1

23

4

5 6

7
NN C

H
H
C OHHO

OO

0.64 g of p-phenylenediamine with 2 g of 4-hydroxy-3-ethoxybenzaldehyde was

reacted according to general synthesis of Schiff base containing 1,4-phenylene. The

product was a yellow solid product which was purified by crystallization from ethyl

acetate. Mp: 172-173°C, yield 79.3%, IR, υ, 3579 (OH), 3043 (Car-H), 2944-2861 (C-

Halph), 1624 (C=N), 1505-1585 (C-Car) and 1267 (O-CH3) cm-1. 1H NMR, δ (ppm,
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DMSO-d6, 400 MHz): 1.36 (t, 6H, J=7, -OCH2-CH3), 4.08 (q, 4H, J=6.8, O-CH2), 6.90

(d, 2H, J=8.3, H6), 7.25 (s, 4H, H9), 7.34 (d, 2H, J=9.1, H5), 7.50 (s, 2H, H3), 8.48 (s,

2H, H7), 9.66 (s, 2H, -OH), 13C NMR, δ (ppm, DMSO-d6, 100 MHz): 15.25 (2C, -

OCH2CH3), 64.36 (2C, -OCH2), 112.18 (2C, C3), 115.89 (2C, C6), 122.35 (4C, C9),

124.44 (2C, C5), 128.54 (2C, C4), 147.6 (2C, C8),149.76 (2C, C2), 150.89 (2C, C1),

159.94 (2C, C7).

Synthesis of 4,4’-(1,4-phenylenebis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)

bis (2-5methoxyphenol) (b4)

1

23

4

5 6

7
NN C

H
H
C OHHO

OO

OO

8

9

0.6 g of p-phenylenediamine with 2 g of 4-hydroxy-3,5-dimethoxybenzaldehyde

was reacted according to general synthesis of Schiff base containing 1,4-phenylene. The

product was a brown solid product which was purified by crystallization from methanol.

Mp: 215-216°C, yield 72.2%. IR, υ, 3519 (OH), 3031 (Car-H), 2921-2869 (C-Halph),

1622 (C=N), 1502-1579 (C-Car) and 1254 (O-CH3) cm-1. 1H NMR, δ (ppm, DMSO-d6,

400 MHz): 3.81 (s, 12H, -OCH3), 7.21 (s, 4H, H3,5), 7.25 (s, 4H, H9), 8.48 (s, 2H, H7),

9.06 (s, 2H, -OH), 13C NMR, δ (ppm, DMSO-d6, 100 MHz): 56.56 (4C, OCH3), 106.72

(4C, C3,5), 122.37 (4C, C9), 127.24 (2C, C4), 139.69 (2C, C8), 148.6 (4C, C2,6), 149.75

(2C, C1), 161.4 (2C, C7).

2.2.3 Synthesis of bisphenol bis-Schiff base monomers containing 1,5-

naphthalene (b5-b8)

A minimum methanolic solution of 1,5-naphthalenediamine (0.64 g, 4x10-3 mol)

was added dropwise to a stirred 30 mL methanolic solution containing 5 drops of glacial

acetic acid and 4-hydroxybenzaldehyde (1 g, 8x10-3 mol). The reaction mixture was
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refluxed at 90°C for 6 h. The resultant product was filtered, washed with distilled water

and crystallized twice from methanol. Thereafter the product was dried in oven.

Synthesis of 4,4’-(naphthalene-1,5-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-

ylidene)bis(2methoxyphenol) (b5)

1

23

4

5 6

7
N C

H
OH

ON
H
CHO

O

8

910

11

12

3 g of 4-hydroxy-3-methoxybenzaldehyde with 1.56 g of 1,5-naphthalene-

diamine were reacted according to general synthesis of bisphenol containing 1,5-

naphthalene. The greenish yellow solid product was purified by crystallization from

methanol. Mp: 195-197°C, yield 76.4, IR, υ, 3456 (OH), 3014 (Car-H), 2939-2851 (C-

Halph), 1624 (C=N), 1522-1579 (C-Car) and 1258 (O-CH3) cm-1. 1H NMR, δ (ppm,

DMSO-d6, 400 MHz): 4.89 (s, 6H, OCH3), 6.94 (d, 2H, J=8.2, H6), 7.17 (d, 2H, J=7.0,

H5), 7.44(d, 2H, J=8.1, H9), 7.5 (t, 2H, J=7.8, H10), 7.68 (s, 2H, H3), 8.14 (d, 2H, J=8.2,

H11), 8.53 (s, 2H, H7), 9.82 (s, 2H, -OH), 13C NMR, δ (ppm, DMSO-d6, 100 MHz):

55.67 (2C,-OCH3), 110.9 (2C, C3), 113.55 (2C, C9), 115.57 (2C, C6), 1.21 ( 2C, C5)

124.37 (2C, C11), 126.1 (2C, C10) 128.2 (2C, C12), 129.1 (2C, C4), 148.2 (2C, C8), 148.9

(2C, C2), 150.5 (2C, C1), 161.2 (2C, C7).
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Synthesis of 4,4’-(naphthalene-1,5-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-

ylidene)bis(3 ethoxyphenol) (b6)

1

23

4

5 6

7
N C

H
OH

ON
H
CHO

O

8

910

11

12

3 g of 4-hydroxy-3-ethoxybenzaldehyde with 1.41 g of 1,5-naphthalenediamine

were reacted according to general synthesis of bisphenol containing 1,5-naphthalene.

The product was a yellow solid product which was purified by crystallization from

ethanol. Mp: 207-208°C, yield 81.4%. IR, υ, 3412 (OH), 3054 (Car-H), 2979-2875 (C-

Halph), 1632 (C=N), 1511-1600 (C-Car) and 1267 (O-CH3) cm-1. 1H NMR, δ (ppm,

DMSO-d6, 400 MHz): 1.38 (t, 6H, J=7, -OCH2CH3), 4.14 (q, 4H, J=6.8, OCH2), 6.95

(d, 2H, J=8.1, H6), 7.17 (d, 2H, J=7.3, H5), 7.44 (d, 2H, J=8.1, H9) 7.5 (t, 2H, J=7.8,

H10), 7.65 (s, 2H, H3), 8.12 (d, 2H, J=8.3, H11), 8.52 (s, 2H, H7), 9.75 (s, 2H, -OH), 13C

NMR, δ (ppm, DMSO-d6, 100 MHz): 15.26 (2C, OCH2CH3), 64.44 (2C, -OCH2),

112.61 (2C, C3), 113.95 (2C, C9), 116.05 (2C, C6), 1.21.39 (2C, C5) 124.64 (2C, C11),

126.52 (2C, C10) 128.63 (2C, C12), 129.54 (2C, C4), 147.76 (2C, C8), 149.31 (2C, C2),

151.1 (2C, C1), 161 (2C, C7).

Univ
ers

ity
 of

 M
ala

ya



38

Synthesis of 4,4’-(naphthalene-1,5-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-

ylidene)bis(2,5 dimethoxyphenol) (b7)

1

23

4

5 6

7
N C

H
OH

O

O

N
H
CHO

O

O
8

910

11

12

3 g of 4-hydroxy-3,5-dimethoxybenzaldehyde with 1.29 g of 1,5-

naphthalenediamine were reacted according to general synthesis of bisphenol containing

1,5-naphthalene. The product was a yellowish green solid product which purified by

crystallization from methanol. Mp: 281-282 C, yield 76.2%. IR, υ, 3389 (OH), 3066

(Car-H), 2961-2851 (C-Halph), 1618 (C=N), 1506-1590 (C-Car) and 1269 (O-CH3) cm-1.

1H NMR, δ (ppm, DMSO-d6, 400 MHz): 3.85 (s, 12H, OCH3), 7.18 (d, 2H, J=7.3, H9),

7.37 (s, 4H, H3,5), 7.43 (d, 2H, J=8.1, H9), 7.52 (t, 2H, J= 7.8, H10), 8.14 (d, 2H, J=8.3,

H11), 8.54 (s, 2H, H7), 9.18 (s, 2H, OH), 13C NMR, δ (ppm, DMSO-d6, 100 MHz):

56.63 (4C, -OCH3), 107 (4C, C3,5), 114 (2C, C9), 121.46 (2C, C11), 126.5 (2C, C10), 128

(2C, C12), 129 (2C, C4), 139.9 (2C, C8), 148.6 (4C, C2,6), 149.2 (2C, C1), 161.2 (2C, C7).

Synthesis of 4,4’-(naphthalene-1,5-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-

ylidene)diphenol (b8)

1
23

4

5 6

7
N C

H
OH

N
H
CHO

8

910

11
12

3 g of 4-hydroxybenzaldehyde with 1.92 g of 1,5-naphthalenediamine were

reacted according to general synthesis of bisphenol containing 1,5-naphthalene. Yellow

solid, Mp: 267-268°C, yield 83.3%. IR, υ, 3423 (OH), 3036 (Car-H), 2965-2889 (C-
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Halph), 1626 (C=N), 1513-1592 (C-Car) and 1261 (O-CH3) cm-1. 1H NMR, δ (ppm,

DMSO-d6, 400 MHz): 6.95 (d, 4H, J=8.5, H2), 7.20 (d, 2H, J=6.8, H9), 7.51 (t, 2H,

J=7.8x(2), H10), 7.92 (d, 4H, J=8.5, H3), 8.14 (d, 2H, J=8.5, H11), 8.58 (s, 2H, H7), 10.20

(s, 2H, -OH), 13C NMR, δ (ppm, DMSO-d6, 100 MHz): 113.90 (2C, C9), 116.28 (4C,

C2), 121.34 (2C, C11), 126.51 (2C, C4), 128.26 (2C, C10), 129.58 (2C, C12), 131.46 (4C,

C3), 149.31 (2C, C8), 160.77 (2C, C1), 161.34 (2C, C7).

2.3 Synthesis of copolymers

A 100 mL three-neck round-bottomed flask, equipped with a condenser, a

septum, nitrogen inlet-outlet and magnetic stirrer, was charged under nitrogen with

bisphenol (3.33 mmol) dissolved in 20 mL of dried DMF containing anhydrous K2CO3,

(6.81 mmol). The solution of monomers and solvent will be N2 purged for 20 min prior

to the start of the reaction. The solution was stirred and heated at 40°C for 30 min.

When the reaction is ready to be started, bis(chloromethyl)dimethylsilane (3.3 mmol)

was introduced with a syringe through a septum dropwise within 30 min. After

refluxing for 24 h under stirring at 80°C, another batch of bis(chloromethyl)-

dimethylsilane (1.65 mmol) was added dropwise under the same conditions for another

24 h. After cooling, the resulting solution was extracted with CHCl3; the organic layer

was washed with brine for three times and dried under MgSO4 or Na2SO4. The excess

solvent was evaporated under reduced pressure thereafter the residue was dried under

vacuum for 24 h. The resultant product was a glassy solid compound.Univ
ers

ity
 of

 M
ala

ya



40

Synthesis of copolymer, Pa1

C
H

NNC
H

O O1

23

4

5 6

7 H2
C Si

CH3

CH2 ClH

CH3

n

The resultant product was a glassy yellow transparent compound: yield 51.91%,

IR, υ, 3449 (OH), 3020 (Car-H), 2936-2851 (C-Haliph), 1619 (C=N), 1566-1509 (C-C),

1259 (OCH2), 1248 (OCH3) and 849 (Si-CH3) cm-1. 1H NMR, δ (ppm, CDCl3, 400

MHz): -0.1-0.38 (6H, Si-CH3), 3.34-3.41 (2H, OCH2Si), 6.9-7.38 (8H, Har), 8.4 (2H,

H7).
13C NMR, δ (ppm, CDCl3, 100 MHz) -1.6-3.92 (2C, SiCH3), 61.1 (1C, OCH2Si),

116.9 (4C, C2,6), 126.1 (2C, C4), 131.23 (2C, C3,5), 159.54 (2C, C1), 161 (2C, C7).

Synthesis of copolymer, Pa2

C
H

NNC
H

O O1

23

4

5 6

7

OO

H2
C Si

CH3

CH2 ClH

CH3

n

The resultant product was a glassy yellow transparent compound: yield 69.21%,

IR, υ, 3460 (OH), 3003 (Car-H), 2955-2831 (C-Haliph), 1622.7 (C=N), 1597-1503 (C-C),

1271 (OCH2), 1251 (OCH3) and 830 (Si-CH3) cm-1. 1H NMR, δ (ppm, acetone-d6, 400

MHz): -0.20-0.05 (6H, Si-CH3), 3.34-3.67 (8H, OCH2Si & OCH3×(2)), 6.63-7.26 (6H,

Har), 8.13-8.29 (2H, H7).
13C NMR, δ (ppm, DMSO-d6, 100 MHz): -5.42-1.52 (2C,

SiCH3), 55.91-56.28 (2C, OCH3), 59.76 (1C, OCH2Si), 109.64-110.18 (2C, C3), 111.96-

112.59 (2C, C6), 123.99 (2C, C5), 127.02-127.27 (2C, C4), 149.53 (2C, C2), 153.81 (2C,

C1), 161.24 (2C, C7).
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Synthesis of copolymer, Pa3

C
H

NNC
H

O O1

23

4

5 6

7

OO

H2
C Si

CH3

CH2 ClH

CH3

n

The obtained product was a glassy yellow transparent compound: yield 71.3%,

IR, υ, 3584.6 (OH), 3004 (Car-H), 2994-2890 (C-Haliph), 1622 (C=N), 1597-1502 (C-C)

1282 (OCH2), 1249 (O-CH3) 796 (SiCH3) cm-1. 1H NMR, δ (ppm, CDCl3, 400 MHz):

-0.28-0.03 (6H, SiCH3), 1.08 (6H, OCH2CH3), 1.34 (2H, SiCH2Cl), 3.55 (2H,

OCH2Si), 3.73-3.84 (4H, OCH2CH3), 6.67-7.15 (6H, Har), 8.22(2H, H7).
13C NMR, δ

(ppm, CDCl3, 100 MHz): -4.97-1.71 (2C, CH3Si), 15.83 (2C, OCH2CH3), 60.71(1C,

OCH2Si), 65.66 (2C, OCH2CH3), 112.49 (2C, C3), 113.05 (2C, C6), 124.76-124.88 (2C,

C5), 128.15-128.73 (2C, C4), 150.26 (2C, C2), 155.22 (2C, C1), 162.39 (2C, C7).

Syntesis of copolymer, Pa4

C
H

NNC
H

O O1

23

4

5 6

7

OO

H2
C Si

CH3

CH2 ClH

CH3

nOO

The obtained product was glassy yellow transparent compound, yield 68.6%, IR,

υ, 3477 (OH), 3009 (Car-H), 2928- 2865 (C-Haliph), 1619 (C=N), 1581-1498 (C-C), 1268

(OCH2), 1249 (O-CH3) 822 (SiCH3) cm-1, 1H NMR, δ (ppm, DMSO-d6, 400 MHz):

-0.25-0.07 (m, 6H, CH3Si), 3.61-3.68 (m,14H, OCH2Si & OCH3 (x4)), 6.98 (sbr, 4H,

H3,5), 8.44 (sbr, 2H, H7),
13C NMR, δ (ppm, DMSO-d6, 100 MHz): -6.10-0.94 (2C,

CH3Si), 55.93 (4C, OCH3), 65.82 (1C, OCH2Si), 105.75-106.88 (4C, C3,5), 128.98 (2C,

C4), 142.41 (2C, C2,6), 153.17 (4C, C1), 161.46 (2C, C7).
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Synthesis of copolymer, Pa5

C
H

NNC
H

O O1

23

4

5 6

7

NO2O2N

H2
C Si

CH3

CH2 ClH

CH3

n

The product was orange in color: yield 68.6%, IR, υ, 3564 (OH), 3062 (Car-H),

2951-2887 (C-Haliph), 1613 (C=N), 1564-1493 (C-C), 1278 (OCH2), 1251 (O-CH3), 817

(SiCH3) cm-1. 1H NMR, δ (ppm, CDCl3, 400 MHz): 0.05-0.32 (6H, SiCH3), 3.96 (2H,

OCH2Si), 7.09-8.27 (6H, Har), 8.50-5.52 (2H, H7). 13C NMR, δ (ppm, CDCl3, 100

MHz): -6.13-1.10 (2C, SiCH3), 56.91 (1C, OCH2Si), 113.81 (2C, C6), 125.68 (2C, C3),

126.75 (2C, C4), 134.04 (2C, C5), 140 (2C, C2), 154.93 (2C, C1), 159.85 (2C, C7).

Synthesis of copolymer, Pa6

C
H

NNC
H

O O1

23

4

5 6

7

OO

H2
C Si

CH3

CH2 ClH

CH3

nNO2O2N

The product was glassy red color, yield 59.6%, IR, υ, 3561 (OH), 3083 (Car-H),

2953-2833 (C-Haliph), 1625 (C=N), 1598-1504 (C-C) 1272 (OCH2), 1253 (O-CH3) 784

(SiCH3) cm-1, 1H NMR, δ (ppm, CDCl3, 400 MHz): 0.07-0.22 (6H, SiCH3), 3.93-4.03

(8H, OCH3 & OCH2Si), 7.20-7.61 (4H, Har), 8.47 (2H, H7),
13C NMR, δ (ppm, CDCl3,

100 MHz): -7.17-0.0 (2C, SiCH3), 55.52 (2C, OCH3), 66.07 (1C, OCH2Si), 112.54 (2C,

C3), 116.57 (2C, C5), 128.33 (2C, C4), 143.56 (2C, C6), 153.44 (2C, C2), 159.01 (2C,

C1), 164.01 (2C, C7).
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Synthesis of copolymers, Pb1

8

9

1

23

4

5 6

7
NN C

H
H
C OO H2C Si

CH3

CH2 Cl

CH3

n

H

The resultant product was a glassy yellow transparent compound, yield 49.32%,

IR, υ, 3456 (OH), 3008 (Car-H), 1621 (C=N), 1566-1509 (C-C), 1272 (OCH2), 1258

(OCH3) cm-1. 1H NMR, δ (ppm, CDCl3, 400 MHz): 0.29-0.43 (6H, Si-CH3), 3.49-3.61

(2H, OCH2Si), 6.84 -7.61 (12H, Har), 8.42 (2H, H7).
13C NMR, δ (ppm, CDCl3, 100

MHz): -0.9-4.46 (2C, SiCH3), 59.6 (1C, OCH2Si), 115.15 (4C, C2,6), 119.1 (4C, C9),

125.8 (2C, C4), 131.68 (2C, C3,5), 140.21 (2C, C8), 160.21 (2C, C1), 162.69 (2C, C7).

Synthesis of copolymer, Pb2

8

9

1

23
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5 6
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H
C OO H2C Si

CH3

CH2 Cl

CH3

n

H

OO

The obtained product was a glassy brown compound, yield 61.41%, IR, υ, 3568

(OH), 3043 (Car-H), 2961-2849 (C-Haliph), 1623 (C=N), 1591-1519 (C-C), 1268

(OCH2), 1254 (O-CH3) cm-1, 1H NMR, δ (ppm, CDCl3, 400 MHz): 0.04-0.26 (6H, Si-

CH3), 3.78-3.81 (2H, OCH2Si), 3.84 (6H, & OCH3 (2)), 6.59-7.55 (10H, Har), 8.42 (2H,

H7), 9.37(2H, OH), 13C NMR, δ (ppm, acetone-d6, 100 MHz): -6.68-0.62 (2C, SiCH3),

55.22-55.61 (2C, OCH3), 59.42 (1C, OCH2Si), 110.22 (2C, C3), 112.22 (2C, C6), 121.88

(4C, C9), 124.12(2C, C5), 129.86 (2C, C4), 149.94 (2C, C8), 151.84 (2C, C2), 154.21

(2C, C1), 158.86 (2C, C7).
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Synthesis of copolymer, Pb3

8

9

1

23
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7
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H
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CH3

CH2 Cl

CH3

n

H

OO

The obtained product was a dark brown compound, yield 64.11%, IR, υ, 3562

(OH), 3079 (Car-H), 2939-2863 (C-Haliph), 1623 (C=N), 1598-1504 (C-C), 1267

(OCH2), 1244 (O-CH3) cm-1, 1H NMR, δ (ppm, CDCl3, 400 MHz): -0.28-0.04 (6H, Si-

CH3), 1.07 (6H, OCH2CH3), 3.57-3.74 (m, 6H, OCH2Si & OCH2CH3 (×2)), 6.34-7.20

(m, 10H, Har), 8.00- 8.03 (2H, H7),
13C NMR, δ (ppm, CDCl3, 100 MHz): 0.86  - 1.18

(2C, SiCH3), 15.03 (2C, OCH2CH3), 59.89 (2C, OCH2CH3), 64.75 (1C, OCH2Si),

111.53 (2C, C3), 115.68 (2C, C6), 121.89 (4C, C9), 124.42 (2C, C5), 129.53 (2C, C4),

148.89 (2C, C8), 149.40 (2C, C2), 154.42 (2C, C1), 159.37 (2C, C7).

Synthesis of copolymer, Pb4

8

9

1

23

4

5 6

7
NN C

H
H
C OO H2C Si

CH3

CH2 Cl

CH3

n

H

OO

OO

The obtained product was a dark brown compound, yield 59.5%, IR, υ, 3559

(OH), 3079 (Car-H), 2948-2849 (C-Haliph), 1623 (C=N), 1589-1518 (C-C), 1269

(OCH2), 1248 (O-CH3) cm-1, 1H NMR, δ (ppm, CDCl3, 400 MHz): 0.02-0.26 (6H,

SiCH3), 3.69-3.98 (14H, OCH2Si & OCH3 (×4)), 7.03-7.19 (8H, Har), 8.3 (2H, H7),
13C

NMR, δ (ppm, CDCl3, 100 MHz): -0.87-1.14 (2C, SiCH3), 56.26 (4C, OCH3), 66.83-

68.42 (1C, OCH2Si), 105.88-107.08 (2C, C3,5), 122.39 (4C, C9), 131.37 (2C, C4),

146.17 (2C, C8), 153.68 (4C, C2), 153.86 (2C, C1), 159.50 (2C, C7).
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Synthesis of copolymer, Pb5
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The obtained product was a dark brown compound, yield 56.2%, IR, υ, 3566

(OH), 3069 (Car-H), 2933-2859 (C-Haliph), 1622 (C=N), 1588-1519 (C-C), 1266

(OCH2), 1247 (O-CH3) cm-1, 1H NMR, δ (ppm, acetone-d6, 400 MHz): 0.01-0.31 (6H,

CH3Si), 3.89 (6H, OCH3), 3.95 (2H, OCH2Si), 6.39-7.43 (8H, Har) , 7.61-7.71 (m, 2H,

H3), 8.14 (d, 2H, H11), 8.36 (m, 2H, H7),
13C NMR, δ (ppm, acetone-d6, 100 MHz):

-3.92-1.03 (2C, SiCH3), 59.92(2C, OCH2CH3), 64.84 (1C, OCH2Si), 108.65-114.20

(6C, C3,6,9), 119.64 (2C, C5), 123.54-126.59 (6C, C10,11,12), 131.12 (2C, C4), 149.54 (2C,

C8), 149.15 (2C, C2), 157.25 (2C, C1), 160.01 (2C, C7).

Synthesis of copolymer, Pb6

1

23

4

5 6

7
N C

H
O
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H
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H2C Si

CH3

CH2 Cl

CH3

n

H

The obtained product was a brownish black compound, yield 57.01%, IR, υ,

3569 (OH), 3059 (Car-H), 2943-2861 (C-Haliph), 1620 (C=N), 1579-1504 (C-C), 1271

(OCH2), 1239 (O-CH3) cm-1, 1H NMR, δ (ppm, CDCl3, 400 MHz): -029-0.09 (6H,

CH3Si), 0.91-1.05 (6H, OCH2CH3) 3.38-3.88 (6H, OCH2Si & OCH2CH3 (x2)), 6.24-

8.18 (12H, Har),
13C NMR, δ (ppm, acetone-d6, 100 MHz): -6.30-1.03 (2C, SiCH3),

14.76 (2C, OCH2CH3), 59.92 (2C, OCH2CH3), 64.54-64.84 (1C, OCH2Si), 108.77-
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113.80 (6C, C3,6,9), 119.64 (2C, C5), 124.41-126.64 (6C, C10,11,12), 130.78 (2C, C4),

149.72 (2C, C8), 149.86 (2C, C2), 157.28 (2C, C1), 159.91 (2C, C7).

Synthesis of copolymer, Pb7
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n

H

O

O

The obtained product was a brownish black compound, yield 51.6%, IR, υ, 3559

(OH), 3061 (Car-H), 2941-2853 (C-Haliph), 1622 (C=N), 1589-1523 (C-C), 1268

(OCH2), 1251 (O-CH3) cm-1, 1H NMR, δ (ppm, CDCl3, 400 MHz): -0.22-0.06 (6H,

SiCH3), 3.63 (12H, OCH3 (x4)), 3.76 (2H, OCH2Si), 6.76 (2H, H9), 6.91-6.96 (4H,

H3,5), 7.16 (2H, H8), 7.88 (2H, H11), 8.12 (2H, H7),
13C NMR, δ (ppm, CDCl3, 100

MHz): -5.95-1.18 (2C, SiCH3), 56.37 (4C, OCH3), 66.88 (1C, OCH2Si), 106.00-106.35

(4C, C3,5), 113.63 (2C, C9), 121 (2C, C11), 125.97 (2C, C10), 129.33 (2C, C12), 131.53

(2C, C4), 143.72 (2C, C8), 149.24 (2C, C2,6), 153.74 (2C, C1), 160.26 (2C, C7).

2.4 Characterization methods and instrumentation

The synthesized monomers, copolymers and symmetrical dimers were

characterized and confirmed by using instruments as described in the following section.

2.4.1 Fourier Transform Infrared Spectroscopy (FTIR)

Infrared spectroscopy is one of the most important techniques for study and

identifying types of chemical bonds (functional groups) that are either inorganic or

organic by producing an infrared absorption spectrum that is like a molecular

“fingerprint”. It is also possible to apply it in the chemical study of polymers, spills,

coatings and contaminants[140].

Univ
ers

ity
 of

 M
ala

ya



47

The FT-IR was determined by a Spotlight 400 PerkinElmer spectrometer at

room temperature with 16 scans using attenuated total reflectance (ATR) technique. The

region of the wavelength was recorded from 650-4000 cm-1. Background effects due to

atmospheric water and carbon dioxide were subtracted.

2.4.2 Nuclear Magnetic Resonance Spectroscopy (1H NMR, 13C NMR and 2D

NMR)

Nuclear Magnetic Resonance spectroscopy (NMR) has become the most

excellent analytical technique for identifying and determining the structure of

compounds[141]. Of all the spectroscopic methods, it is the only one for which a full

analysis and interpretation of the entire spectrum is normally estimated. Although larger

amounts of sample are needed compared to mass spectroscopy, NMR is non-

destructive, and with modern instruments good data may be obtained from samples

weighing less than a milligram.

The proton nuclear magnetic resonance 1H NMR and 13C NMR spectra were

recorded with a Lambda 400 MHz spectrometer, a JEOL-ECA 100 MHz spectrometer

and AVN 600 MHz spectrometer. Samples were dissolved in suitable solvent to obtain

a clear solution. Commonly used solvents include dimethyl sulfuoxide-d6 (DMSO-d6),

chloroform-d1 (CDCl3) and acetone-d6. Concentrations were maintained at 2.5% (w/v)

and 15% (w/v) for the 1H NMR and 13C NMR analyses respectively. Tetramethylsilane

(TMS) was used as standard for chemical shift at 0 ppm, and the deuterated solvents

(CDCl3) display typical peaks at 7.26 ppm and 1.7 ppm for 1H NMR and 77.0 ppm for

13C NMR. In addition, the (DMSO-d6) peaks appear at 3.34 ppm and 2.4 for 1H NMR

and 40.6 ppm for 13C NMR. Acetone-d6 peaks are observed at 2.17 ppm for 1H NMR

and 29.9 ppm for 13C NMR.
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2.4.3 Thin Layer Chromatography (TLC)

TLC was used to examine and purifies the sample as well as monitoring the

progress of the reaction by using aluminium-backed silica-gel plates under short-wave

ultra violet light or iodine vapours. Initially the sample was dissolved in an appropriate

solvent and placed at 0.5 cm from bottom of the TLC plate. Mixture of hexane and ethyl

acetate was prepared with a ratio of 3:1 respectively which acted as the mobile phase.

The TLC evaporation chamber was lined with a folded piece of filter paper to create

uniform and saturated atmosphere of solvent vapour. In addition, this can be used to

avoid evaporation of solvent. The moving of the solvent was monitored until

approximately 0.5 cm from the top of TLC plate, followed by removing the TLC plate

and examined by using short-wave ultra violet light which usually shows only one spot

if the compound is pure.

2.4.4 Gel Permeation Chromatography (GPC)

Molecular weight distribution is one of the basic characteristic of polymers

because it can significantly affect the properties of polymers such as thermal stability

and other mechanical and physical properties. The average molecular weights and

polydispersities (PDI) of polymers were measured by gel permeation chromatography

GPC also called size exclusion chromatography (SEC)[142]. GPC analysis was

conducted using a Waters 2414 refractive index detector coupled with a Waters 717

plus Autosampler and Waters 600 Controller. Polystyrene (PS) standards were used as

reference and (THF) as the eluent, at a flow rate of 1 cm3/min at room temperature. A

weight of 5 mg of the sample was dissolved in 5 mL of THF followed by filtration

through a Waters GHP Acrodisc that has a minispike diameter of 13 mm and a pore size

of 0.45 μm (to avoid any undissolved particulates pass through the column) into small

vial of about 1 mL capacity. Running time for each sample was 55 minutes and the
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volume of injection was 100 μl for each vial. The calibration curves of GPC are shown

in appendix.

2.4.5 Thermogravimetric Analysis (TGA)

TGA is one of an important technique for determining thermal stability of

polymers. The most widely used TGA technique is based on continuous measurement

of weight on a very sensitive balance called a thermobalance (a sensitive balance) as

sample temperature is increased in air or in an inert atmosphere. Data are recorded as a

thermogram of weight versus temperature[142].

In this research, thermal stability of the synthesized copolymers were obtained

using a PerkinElmer Pyris-Diamond TG/DTA thermobalance under a steady flow of

nitrogen atmosphere at a heating rate of 20°C/min starting from 50°C to 900°C. The

sample weight used was between 5-10 mg for all the materials. The processing of the

data was performed using the instrument’s built in Pyris v9.1.0.0203 software.

2.4.6 Differential Scanning Calorimetry (DSC)

DSC is an accurate analytical technique that allows determination of glass

transition temperature (Tg) and analyses the enthalpy changes of the sample. Tg is

defined as a change in the heat capacity as the polymer matrix passes from the glassy

state to the rubbery state. The polymer sample and an inert reference are heated in a

nitrogen atmosphere and thermal transitions in the sample are measured and detected.

In this study, thermal transition temperature of the synthesized materials was

performed using a PerkinElmer DSC instrument in nitrogen atmosphere and calibrated

with an indium standard. The scan rate and temperature for both heating and cooling

were set accordingly for the various samples. The nitrogen flow during heating and

cooling was 3 mL/minutes. 5-10 mg of samples were weighed accurately and

transferred to a 45 μL aluminium crucible. The crucible was pressed tightly with a cover
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by using the sealing press. The same empty crucible was utilized as a reference and then

placed into the compartment of the DSC instruments. After the scanning was

completed, the sample was removed from the compartment and preceded to another

sample. The processing of the data was performed using the instrument’s built in Pyris

v9.1.0.0203 software.

2.4.7 Polarised Optical Microscopy (POM)

The liquid crystalline behaviour was performed by polarised optical microscopy

(OPM) using Metller Toledo FP82HT hot stage (Mettler Toledo Inc, Switzeland)

viewed with an Olympus BX51 microscope fitted with crossed polarizing filters. The

images were obtained by an Olympus camera that was connected to a microscope, and

the magnification factors of the images were 10 and 20. The image was obtained by

using a microscope with a small amount of sample covered with a small glass slip. The

sample was heated on a hot stage until isotropic temperature (clear point) at a rate of

3°C/min. When the sample was melted the glass cover was pressed gently by a wooden

stick to obtain a thin film of the sample followed by cooling at 3°C/min before the

mesophase image was obtained with good texture.

2.4.8 X-Ray Crystallography

X-ray crystallography is a technique used for studying and determining the

atomic and molecular structure of a crystal, in which the atoms cause a beam of X-ray

to diffract into many specific directions. Three dimensional pictures of the density of

electrons within the crystal were obtained by measuring the intensities and angles of

these diffracted beams. From the electron density, it is possible to determine the mean

positions of the atoms in the crystal.

The crystal structure determination was carried out on a Bruker Smart APEXII

CCD area detector diffractometer equipped with graphite mono-chromatised Mo-Kα
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(λ=0.71073 Å) radiation.  The program APEX2 (Bruker 2009) was used for collecting

frames of data, indexing of reflections and determination of lattice parameters, SAINT

(Bruker 2009) for absorption correction, and SHELXS97 and SHELXL97 (Sheldrick

2008) for structural solution.

2.4.9 Ultraviolet-Visible (UV-Visble) and Photoluminescence Spectroscopies

Ultraviolet-visible absorption spectroscopy is used to study the changes in

electronic energy level within the molecule arising due to transfer of electron from π- or

non-bonding orbitals as well detection and quantitative measurement of chromophores

that undergo n-π* or π-π* transitions. Due to its sensitivity, UV-vis spectroscopy has

been particularly useful in identifying and analysing in polymeric materials. In addition,

UV-vis provides information on π-electron systems, conjugated unsaturations, aromatic

compounds and conjugated non-bonding electron systems[143].

UV-vis absorption measurement was performed on a Cary 60 UV-VIS

spectrophotometer at room temperature. The copolymer solution of concentration

1x10-6 M in DMF was prepared and distilled DMF was used as a blank and placed in

clear quartz cuvettes. The sample was scanned at 200 nm to 800 nm with medium scan

rate. Fluorescence spectra were obtained through a Cary Eclipse spectrophotometer and

the copolymer was also measured from 200 nm to 600 nm.

2.4.10 Electrochemical measurement

The electrochemical properties were measured using a potentiostat/galvanostat

(AUTOLAB/PGSTAT 302N) which was run by general purpose Electrochemical

system software (GPES). The experiments were achieved in a 0.1 M

tetrabutylammonium perchlorate (Bu4NCLO4) (TBAP) as a supporting electrolyte in an

anhydrous acetonitrile (CH3CN) using a thin film coated on an indium-tin-oxide (ITO)

glass substrate as working electrode at room temperature. The cyclic voltammetric
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curves were referenced to an AgCl/Ag reference electrode and the scan rate was 50

mV/s in a potential range of -2.0 V to +2.0 V.
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CHAPTER 3 : CARBOSILANE COPOLYMERS BASED ON

BISPHENOL AZINE MONOMERS

3.1 Introduction

As mentioned in Chapter 1, silicon containing polymer and Schiff base

containing polymer have a wide spectrum applications and many interesting physical

properties. In this chapter, the syntheses of new copolymers that have combined silicon

moiety together with full conjugated structure of bisphenol containing bis-Schiff base

monomers are presented. Some of their physical properties which could elucidate the

application of these new copolymers are also described.

3.2 Results and discussion

New polycarbosilanes was successfully synthesized based on full conjugation

bisphenol azine monomers with different substituted groups. The synthesized materials

were characterized and identified by FTIR, 1H NMR, 13C NMR, 2D NMR, X-ray

crystallography, and GPC for the synthesized copolymers.

3.2.1 Synthesis route of bisphenol azine monomers (a1-a6)

Full conjugation bisphenol azine monomers were successfully synthesized with

different substitutents groups at ortho position of the phenol group. These monomers

were synthesized through the condensation reaction of 4-hydroxybenzaldehyde and

their substituted derivatives with hydrazine sulphate in the presence of concentrated

ammonium solution as a catalyst to produce high yield. The synthetic route of bisphenol

azine monomers is illustrated in Figure 3.1. The substituted groups, yields, melting

points and the molecular formulae of the synthesized monomers are tabulated in Table

3.1.
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CHOHO

R2

R1

+ NH2NH2. H2SO4

aq. EtOH/NH4OH
r.t , 3 h

OH

R1

R2

NN
R1

HO

R2

2

Figure 3.1 : General synthetic route of bisphenol azine monomer

Table 3.1 : Details of the synthesized bisphenol azine monomers

The monomers showed good solubility in DMF and DMSO at room temperature

except for (a5) and (a6) which require high temperature due to the presence of NO2

moiety[144].

3.2.2 Characterizations of the azine monomers

The synthesized monomers (a1-a6) were characterized by FTIR, 1H NMR, 13C

NMR. 2D NMR (HSQC and HMBC) was used for further identification of compound

(a2). Three single crystals of compounds a3, a4 and a5 were analysed by X-ray

crystallography. The results were in agreement with the proposed structures.

Monomer R1 R2 Yield (%) Mp. (°C) Molecular

Formula

a1 H H 81.3 284-285 C14H12N2O2

a2 H OCH3 82.9 175-176 C16H16N2O4

a3 H OCH2CH3 80.4 204-205 C18H20N2O4

a4 OCH3 OCH3 78.8 214-215 C18H20N2O6

a5 H NO2 71.1 257-258 C14H10N4O6

a6 OCH3 NO2 72.9 269-270 C16H14N4O6

Univ
ers

ity
 of

 M
ala

ya



55

3.2.2.1 Fourier transform infrared (FTIR)

The aromatic compounds display significant characteristic infrared bands in five

regions of the mid-infrared spectrum. The C-H stretching bands or aromatic materials

exist in the frequencies 3100-3000 cm-1 range, so making them easy to distinguish from

those produced by aliphatic C-H moieties which appear in the frequencies between

2850-2950 cm-1. A series of  over tone and weak combination bands as well as the

pattern of the overtone bands reflects the substitution pattern of the aromatic ring which

appear in the frequencies of 2000-1700 cm-1. Skeletal vibrations, representing C=C

stretching, absorb in the frequencies of 1600-1430 cm-1 range. In-plane bending and

out-of plane bending for C-H bending bands appear in the frequencies range of 1257-

1000 cm-1 and 900-690 cm-1 respectively. The bands of the out-of-plane bending

vibrations of benzene ring are strong and characteristic of the number of hydrogen

atoms in the aromatic compounds, and hence can be used to give the substitution

pattern[145].

The main infrared bands and their assignments for the synthesized azine

monomers (a1-a6) are tabulated in Table 3.2. There are similarities in the IR spectra of

the azine monomers, except for some slight variations in the shifts and intensities of

vibration peaks due to different substituted groups attached to the benzene ring. The O-

H stretching bands of the bisphenol monomers appear within the frequencies of 3476-

3617 cm-1 with observed weak absorption bands for all monomers which is attributed to

the presence of strong intramolecular hydrogen boding O-H…N. The characteristic

frequencies appeared in the spectra of all monomers in the range of 3012-3083 cm-1

assignable to C-H stretching band and the characteristic frequencies presented in the

range of 2913-2952 cm-1 are assignable to C-H aliphatic stretching band. Strong

intensity absorption peaks appeared in the frequencies of 1618-1628 cm-1 region

assignable to Schiff base moiety(C=N)[146, 147]. On the other hand, the ether moiety
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absorbed strongly in the frequencies range of 1251-1275 cm-1. With disappearance of

the carbonyl group of the aldehyde and the amine of hydrazinium sulphate which

appeared in the frequencies of 1720-1800 cm-1, and appearance of a new peaks due to

formation of imine group at 1618-1628 cm-1 as well the other expected peaks such as

OH at 3479-3617 cm-1 confirm the proposed structure. Figure 3.2 shows the FTIR of

monomer a2 which is typical for all the monomers.

Table 3.2 : Some of the important FT-IR spectra data of azine monomers

Monomer νO-H νC-Har νC-Haliph νC=N νC=Car νO-C

a1 3481 3045 - 1618 1586-1505 -

a2 3479 3070 2919 1624 1512-1600 1257

a3 3617 3034 1929 1628 1509-1597 1275

a4 3480 3012 2936 1621 1494-1588 1254

a5 3570 3074 - 1620 1488-1571 1251

a6 3561 3083 2953 1625 1598-1504 1253

ν= stretching , aliph= aliphatic, ar= aromatic

Figure 3.2 : FTIR spectrum of monomer a2
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3.2.2.2 1H NMR

The structures and purities of all the synthesized azine monomers (a1-a6) were

confirmed by 1H NMR analysis. The 1H NMR spectrum and structure of (a3) azine

monomer with its molecular structure are shown in Figure 3.3. The results are tabulated

in Table 3.3.

The 1H NMR spectra shows the disappearance of the aldehyde, (CHO) and

amino group (NH2) in all monomers. Beside, a new sharp singlet peak at the region of

8.52-8.75 ppm with an integration equivalent to two protons corresponding to the

azomethine group (C=N) is exhibited by all the monomers[148, 149]. The H3 shows

doublet peaks in the region of 6.76-8.42 ppm with a coupling constant range of 1.3-1.6

MHz that could be attributed to 1,3 splitting [150], except for monomers (a2) and (a4)

which give singlet peak. Double doublets are observed for H5 due to two protons in the

region of 7.12-8.11 ppm with a coupling constants of 8.2-8.8 MHz and 1.7-2.2MHz

which are attributed to 1,2 and 1,3 splitting [150]. In the region of 6.84-7.30 ppm, the

doublet signals for two protons are assigned for H6 proton. The signals observed in the

region of 3.79-4.02 ppm correspond to methoxy group protons attached to

benzene[151]. For (a3) monomers, a quartet peak in the region of 4.02 ppm and a

tertiary peak in the region of 1.33 ppm due to O-CH2 and O-CH2CH3 group respectively

are displayed. A singlet peak in the range of 9.02-10.06 ppm attributed to proton of

(OH) group is shown by some compounds only. The difficulty in observing this peak in

the other compounds could be because of the replacement of most of the hydrogen

atoms of OH by deuterium of DMSO solvent as well formation of strong intramolecular

hydrogen boding O-H…N.
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Figure 3.3 : 1H NMR spectrum of monomer a3

Table 3.3: 1H NMR data of azine monomers (a1-a6)

Type of proton Chemical shift (ppm)

O-CH3 3.79- 4.02

CH2CH3 1.33

Ar-H 2thposition 6.84

Ar-H 3th position 6.76-8.42

Ar-H 5th position 7.12-8.11

Ar-H 6th position 6.84-7.30

C=N 7th position 8.52-8.75

Ar-OH 1th position 9.02-10.06

3.2.2.3 13C NMR

The most significant peak of 13C NMR is observed at 160.96-161.4 ppm which

is attributed to the azomethine (C=N) carbon atom of azine monomer[152]. The C1

which is attached to OH phenol is observed down field in the region of 148.6-160.8

ppm. In addition, C2 appears in a broad shift range of shifting within the region of

116.3-148.5 ppm depending on the substituted moieties that is attached with this carbon.

For example, when the substituted group is NO2 the C1 will appear in the region of 137

ppm while when the moiety is OCH3 the shifting will be toward low field in the region

1H- EXP 59-14-3-2012-1.JDF
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of 146-148 ppm. The C3 carbon gives signal in the region of 106.36-130.66 ppm and C4

carbon gives signal in the region of 124.24-126.34 ppm while C5 carbon is assignable in

the region of 106.36-143.34 ppm. Figure 3.4 displays 13C NMR spectrum of monomers

(a3) and Table 3.4 shows 13C NMR results of the bisphenol azine monomers (a1-a6).

Figure 3.4 :13C NMR spectrum of monomer a3

Table 3.4: 13C NMR data of bisphenol azine monomers (a1-a6)

Type of carbon Chemical shift (ppm)

OCH2, O-CH3 56 -75.11

CH3 15.2

Ar-C 2thposition 116.3-148.5

Ar-C 3th position 106.36-130.66

Ar-C 5th position 106.36-143.34

Ar-C 6th position 116.2-139.4

Ar-C 4th position 124.24-126.34

C=N 7th position 160-160.96

Ar-OH 1th position 148.6-160.8
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3.2.2.4 The 2DNMR

There are three peaks in 13C NMR spectra of monomers in the range of 145-160

ppm which are attributed to C1-OH, C2-OR and C=N. These three peaks are difficult to

distinguish due to the similarity of their shifts. To overcome on this problem 2DNMR

(HMQC and HMBC) was utilized to resolve this confusion. Monomer (a2) was used as

an example to illustrate this problem.

As shown in Figure 3.5, the HMQC spectra exhibited the correlation between H7

and C7 and confirmed that the peak at 161 ppm belongs to C7 (CH=N). The HMQC also

demonstrated the correlation between H3 and C3 at 6.85-110 ppm. The correlation

between H5-C5 at 7.23-124 and that H6-C6 are shown in Figure 3.6.

Figure 3.5: HMQC expansion region of monomer a2
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Distinguishing between C1 (C-OH) and C2 (C-OCH3) was also a problem as their

peaks appeared very close to each other due to the similarity in their electronegativities.

Thus, the HMBC was used to resolve the confusion between these groups where the

HMBC will show the strong correlation through the long distance coupling J3 and also

the weak correlation through J2.

The correlation of OCH3 proton with carbon at 148 ppm as J3 and the correlation

of OH proton with C6 and carbon at 148 ppm as J3 clarify that the carbon at 148 ppm

belongs to C2 and the carbon at 150 ppm belongs to C1. The other correlations are

depicted in Figure 3.6.

Figure 3.6 : The HMBC spectrum of monomers a2
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3.2.2.5 X-ray crystallography

The molecular structure of compounds a3, a4 and a5 were characterized by X-

ray crystallography where the monomer a4 (C18H20N2O4) is centrosymmetric around the

central azine bond [N1—N1i = 1.416 (2) Å; symmetry operation i: -x + 2, -y + 1, -z + 1],

with the E configuration around the N1=C1 bond [1.284 (1) Å]. In the crystal structure

of the title compound in Figure 3.7, the molecules are linked together by O–H···N

hydrogen bonds [O2—H2···N1ii = 2.7782 (12) Å; symmetry operation ii: 3/2 - x, 1/2 +

y, 1/2 + z] resulting in the formation of a two-dimensional supramolecular network

which propagated parallel to the bc plane. C—H···pi interaction is also present; C8—

H8b···Cg1iii = 2.71 Å where Cg1 is the centroid of the ring C2 - C7, [symmetry code:

(iii) -1 + x, y, z]. In contrast to the title compound, the methoxy substituted

analogue[153] consists of two asymmetric units with the presence of additional

intermolecular O—H..O hydrogen bonds with the adjacent asymmetric unit[154].

Figure 3.7 : The molecular structure of 4,4′-(1E,1′E)-1,2-diylidenebis(methan-1-yl-1-ylidene)
bis(2-ethoxyphenol) showing 50% probability displacement ellipsoids. Hydrogen
atoms are drawn as spheres of arbitrary radius.
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Figure 3.8 : A view of the two-dimensional supramolecular network in the title compound
showing the O—H•••N hydrogen bonds (in red dotted lines)

The X-ray structures of (a4) and (a5) are given in Figures 3.9 and 3.10,

respectively. The two compounds are isostructural in which the overall structure is

centrosymmetric with the mid-point of the central N-N bond located on an inversion

centre. The configuration around the C=N bond is E. All the molecules are

approximately planar (excluding the hydrogen atoms and the methoxy and nitro

substituents), with a small r.m.s deviation from planarity of 0.0229 and 0.0446. In the

crystal structure of (a4), the presence of a water molecule in the crystal structure gives

rise to extensive hydrogen bonding interactions between the hydroxyl substituent and

the methoxy substituents with the water molecule (Table 3.5). On the other hand, in the

absence of water molecule in the crystal structure of (a5), hydrogen bonding

interactions are only confined to the hydroxyl and nitro substituents (Table 3.6).
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Figure 3.9 : Ellipsoidal plot of the molecular structure of a4 with 50% probability.

Figure 3.10 : Ellipsoidal plot of the molecular structure of a5 with 50% probability.
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Table 3.5 : Crystal data and structure refinement for a4 and a5

Compound code (a4) (a5)

Empirical formula C18 H24 N2 O8 C14 H10 N2 O4

Formula weight 396.39 270.24
Temperature 100(2) K 100(2) K
Crystal system, space group monoclinic, C2/c monoclinic, P2(1)/c
Unit cell dimensions a = 29.588(5) Å a = 6.8666(2) Å

b = 4.6103(9) Å b = 12.0354(4) Å
c = 14.009(3) Å c = 8.2270(3) Å
 = 90o  = 90o

 = 91.512(12)o 94.381(2)o

 = 90o  = 90o

Volume 1910.3(6) Å3 677.91(4) Å3

Z, Calculated density 4,  1.378 Mg/m3 2,  1.324 Mg/m3

Absorption coefficient 0.109 mm-1 0.099 mm-1

F(000) 840 280
Crystal size 0.23 x 0.30 x 0.07 mm 0.20 x 0.18 x 0.10 mm
Theta range for data collection 2.75 to 26.00o 2.98 to 27.50o

Limiting indices -36<=h<=36, 8<=h<=8,
-5<=k<=5, -15<=k<=15,

-17<=l<=17 -10<=l<=10
Reflections collected / unique 7645 / 1882 6261 / 1552

[R(int) = 0.0359] [R(int) = 0.0232]
Completeness to theta = 26.00 99.9 % 99.9 %
Data / restraints / parameters 1882 / 0 / 138 1552 / 0 / 108
Goodness-of-fit on F2 1.063 1.063
Final R indices [I>2sigma(I)] R1 = 0.0349, R1 = 0.0367,

wR2 = 0.0943 wR2 = 0.0952
R indices (all data) R1 = 0.0416, R1 = 0.0425,

wR2 = 0.1004 wR2 = 0.0992
Largest diff. peak and hole 0.254 and -0.220 e. Å-3 0.356 and -0.480 e.A-3

Table 3.6 : Hydrogen bonds for a4 and a5 [Å and deg.]

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

Monomer (a4)

O(3)-H(3O)...O(4)#2 0.84 1.81 2.6131(14) 159.0
O(4)-H(4B)...O(3)#2 0.88(2) 1.99(2) 2.8680(15) 178(2)
O(4)-H(4A)...O(1) 0.88(2) 2.33(2) 3.0084(15) 134.2(18)
O(4)-H(4A)...O(3) 0.88(2) 2.20(2) 3.0098(15) 154.0(18)

Monomer (a5)

O(3)-H(3O)...O(1) 0.82(2) 1.89(2) 2.6068(15) 145(2)
O(3)-H(3O)...O(1)#3 0.82(2) 2.36(2) 2.9762(14) 133(2)
O(3)-H(3O)...N(1) 0.82(2) 2.48(2) 2.9259(15) 115.7(18)
____________________________________________________________________________

Symmetry transformations used to generate equivalent atoms:
#1 -x,-y+1,-z #2 -x+1,-y+1,-z+2     #3 -x+1/2,y+1/2,-z+3/2
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3.2.2 Carbosilane bisphenol azine copolymers (Pa1-Pa6)

A new carbosilane bisphenol azine copolymers (Pa1-Pa6) were synthesized

through the polycondensation reaction of bis(chloromethyl)dimethylsilane and the

synthesized monomers (a1-a6) in presence of dry K2CO3 as proton acceptor. The

synthetic route of copolymers is illustrated in Figure 3.11. The etherification process

occurs by adding two batches of bis(chloromethyl)dimethylsilane to enhance the

molecular weight of the copolymers where by adding two batch of

bis(chloromethyl)dimethylsilane will increase the molecular weight to double. The

synthesized copolymers are subjected to Williamson etherification (details are described

in Section 3.2.3).

Figure 3.11 : Synthetic route of copolymers (Pa1-Pa6)

From our investigation, DMF is found to be the best solvent in the

polymerization process. It gave good Mw at low temperatures and faster reaction.

Furthermore, this solvent was able to ensure good homogeneity of the reaction medium
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and an easier separation of the final product. Other solvents such as acetone, acetonitrile

and pyridine did not give the same results. For example, the Mw for polymerization of

a2 in DMF was 6870 whereas; the polymerization of the same monomer for 72-96 h in

acetone, acetonitrile and pyridine gave Mw of 3400, 3674 and 4225 respectively. As

such, all the monomers were polymerized by using DMF as solvent.

All the copolymers are observed to become gummy at high temperature and it

will be glassy-like below 100oC. Figure 3.12 shows a few selected samples of the azine

copolymers. The copolymers exhibited excellent solubility in common organic solvents

(THF, CHCl3 and DMF) but insoluble in hydroxyl-group containing solvents (methanol

and ethanol).

Figure 3.12 : (a) Pa2 (b) Pa4 (c) Pa6

3.2.3 Mechanism of Williamson etherification

Williamson etherification is a SN2 reaction between an alkyl halide R-X and a

phenoxide Ar-O- ion to yield an ether, Ar-O-R. In planning the Williamson ether

synthesis, it is essential to use a combination of reactants that maximizes nucleophilic

substitution and minimizes any competing β-elimination[155]. Yields of Williamson

reaction depend usually on the halide that is attached to alkyl or aryl group, where the

highest yield is obtained when the halide displaces a methyl or a primary carbon and the

yield is low in a displacement from secondary halides due to the competing of β-

(c) (b) (a)
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elimination. For tertiary halides the etherification fails to be carried out as β-elimination

by an E2 mechanism is an exclusive reaction[155].

The first step of Williamson’s reaction starts with deprotonated of an phenyl

hydroxide by the addition of base, usually potassium hydroxide or K2CO3. In the second

step, a primary alkyl halide is added and SN2 reaction occurs in which the phenoxide

undergoes the nucleophilic attack to displace the halide.

The Schiff base monomers are subjected to Williamson etherification with the

suitable chloroalkylsilane in the presence of K2CO3. The proposed mechanism for

Williamson etherification is shown in Figure 3.13.
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Figure 3.13 : Mechanism of the Williamson etherification of copolymers

3.2.4 Characterization of copolymers

The synthesized carbosilane copolymers (Pa1-Pa6) were characterized by FTIR,

1H NMR, 13C NMR and GPC to study the molecular weight of these copolymers. The

results are in agreement with the proposed structures.

3.2.4.1 FTIR

Polycarbosilanes are the result of etherification between bisphenol azine

monomers and bis-halidmethyl silane in presence of K2CO3. The FTIR spectra of the

polycarbosilanes showed same characteristic bands as the monomers since the
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functional moieties are similar for copolymers and monomers except for the appearance

of a new absorption band at 1282-1268 cm-1 which is attributed to O-CH2Si group as

well another new absorption band of the Si-CH3 group in the range of 780-810 cm-1.

Figure 3.14 shows the spectrum of copolymer Pa3.

Figure 3.14 : FTIR spectrum of copolymer Pa3

3.2.4.2 1H NMR

The 1H NMR spectral analysis presents the structural particularities of the

synthesized copolymers. By comparing with the monomer peaks, all the copolymers

showed similar shift range with the monomers with obvious distortion peaks due to the

repeating units in the main chain of the copolymers. New broad peaks appearing

between 0.17-1.31 ppm (6H) can be assigned to the methyl protons of the Si-CH3 while

the protons of the O-CH2Si group showed a chemical shift at 3.3-3.7 ppm (2H) which is

considered the best indicator to confirm the copolymer. Furthermore, all copolymers

showed small peak in the ranges of 0.82-1.18 ppm and 9.56-9.85 ppm, which are most

possibly attributed to terminal group SiCH2Cl and OH phenol, respectively. Figure 3.15

displays 1H NMR spectrum of copolymer Pa2.
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Figure 3.15 : 1H NMR spectrum of copolymer Pa2

3.2.4.3 13C NMR

The 13C NMR spectral analysis further confirms the presumed structures. By

comparing with the monomer peaks, all the copolymers showed similar shift range with

the monomers with obvious distortion peaks of some compounds due to the repeating

units of monomers in the main chain of the copolymers. The best identification for

formation of the copolymers was appearance a new peak in the region of -7.17-1.71

associated to Si-CH3 beside another new peak in range of 59.7-66.07 ppm which is

attributed to OCH2-Si. A small peak that appears at the range 19.3-28.84 ppm supports

the 1H NMR for SiCH2Cl. Figure 3.16 shows the 13C NMR spectrum of copolymer Pa3.
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3

Figure 3.16: 13C NMR spectrum of copolymer Pa3

3.2.4.4 Gel permeation chromatography (GPC)

GPC analyses for all the polycarbosilanes, their colours and yields are

summarized in Table 3.7. The number average molecular weights (Mn) of the

copolymers are from 2322 to 9805 and the degrees of polymerization (DP) are from

7-23. All the copolymers show narrow molecular weight distribution (PDI). Figure 3.17

shows the raw GPC chromatogram of copolymer Pa3

Table 3.7: Percentage yield and characteristics of the synthesized copolymers

No. Yield (%) Color Mw Poly

dispersity

Degree of

polymerization

Pa1 51.91 Yellow 2322 1.47 7

Pa2 76.1 Yellow 7836 1.2 20

Pa3 69.7 Yellow 9805 2.1 23

Pa4 74.6 Brown 8528 1.39 19

Pa5 73.6 Red 3600 1.04 8

Pa6 72.8 Red 4763 1.31 12
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Figure 3.17 : Raw GPC chromotpgram of copolymer Pa3

The molecular weights of the copolymers containing substituted group O-R

(Pa2, Pa3 and Pa4) are higher than those of (Pa5) and (Pa6) containing the nitro group

as well the copolymer (Pa1), which has the lowest molecular weight of 2322 Da. These

differences of molecular weights may be due to the effect of the withdrawing or

donating group by resonance and inductive effects. This concept leads us to suggest that

the substituent at ortho position plays an important role in increasing or decreasing the

molecular weight of the copolymers. The inductive and resonance withdrawing groups

such as NO2 in Pa5 and Pa6 show lower molecular weight than the donating group as in

Pa2, Pa3 and Pa4. These differences could be due to the increase in the electron drift

from electron-donating group through π-bond of benzene ring causing the phenoxide to

become electron rich while in Pa5 and Pa6 the electron will be attracted away from

phenoxide ion as NO2 is electron-withdrawing group and thus subsequently the

phenoxide group becomes electron poor. Figure 3.18 displays the suggested mechanism

whereby the substituted group of monomer a2 contains OCH3 is an electron-donating

group.
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Figure 3.18 : The sugesting mechanism of donating substituent group of copolymer Pa2

Likewise, unsubstituted copolymer Pa1 exhibits the lowest molecular weight, as

a result of the high conjugation present in the monomer. Figure 3.19 displays the

suggesting mechanism for Pa1. The mechanism shows the long term resonance of the

electrons which reduce the negative charge on phenoxide group.
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Figure 3.19 : The sugesting mechanism of copolymer Pa1

3.3 Physical properties

In this section some of physical properties such as thermal stability, optical and

electrochemical properties were investigated where the results of these properties could

lead to the best copolymer for selected applications.

3.3.1 Thermal properties

Typical TGA thermograms of copolymers are depicted in Figure 3.20 and the

detailed thermal data are summarised in Table 3.8.

The polycarbosilane structure displays good thermal stability and a single

decomposition step. Temperatures at 10% weight loss are recorded in the range of

258.6-344.4°C, while major weight loss of about 50% in the region of 323.6-490.9°C.

The values temperature of copolymers containing substituted groups in the benzene ring
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are higher than this without substituted group (Pa1) due to higher bond energy values of

this group leading to high stability of the copolymers[156]. This may be explained by

invoking bond energy values. The residual weight remaining at 700°C is around 17.7-

40.7%. Enhancement of thermal stability observed in these polycarbosilane may be

attributed to the delocalization characteristic of the azine linkage and the silicon

moieties on the main chain. As a result of high decomposition temperature, these

polymers have good thermal properties for industrial processing and for possible use in

organic LEDs[157].

In addition, the glass transition temperatures (Tg) of the copolymers Pa1-Pa6

were achieved by DSC under nitrogen atmosphere. No detectable phase transition is

observed. The undetectable phase transition for the other copolymers with different

substituted groups may lie in the rigidity of the main chains and carbonosilane moieties.

Table 3.8 : Thermal properties of copolymers

Copolymer Temperature (°C) corresponding to Char yield (%)

at 700°COnset 10% Wt loss 50% Wt loss DTp

Pa1 276.23 258.6 323.66 276.57 17.7

Pa2 393.13 330.4 422.5 354 32

Pa3 383.67 344.4 477.1 351.5 18.5

Pa4 316.68 302.5 490.9 332.59 40.7

Pa5 306.04 301.4 413.4 311.47 40.1

Pa6 335.8 283.86 370.6 327 25.05Univ
ers

ity
 of
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Figure 3.20 : TGA curves of copolymer (Pa2) with its derivative

3.3.2 Optical properties

Fundamental photophysical properties of the new polycarbosilanes were

investigated by UV-vis and fluorescence spectroscopies. Figure 3.21 shows the UV-vis

absorption of the selected copolymers (Pa1, Pa3 and Pa5) in solution (1x10-6 M in

DMF) at room temperature and their detailed photophysical data are summarized in

Table 3.9.

From the UV-vis spectra, all the copolymers containing bisphenol azine exhibit

single clear absorption peak, i.e. single absorbance maximum band in the range of 318-

352 nm corresponding to π- π* and n- π* transitions of the aromatic ring and the

azomethine group [158], as well as from the conjugation of the aromatic ring and the

nonbonding electrons (O-CH3, OH, N=C). In Pa2, Pa3 and Pa4 longer wavelength

absorption maximum (344.7-351.3 nm) is observed due to the effect of electron-

donating substituents (OCH3 and OCH2CH3) which increase the density of electron at

the azomethine group, decrease the n-π* transition energy and produce bathochromic

shifts of the long wavelength absorption maximum. In Pa5 and Pa6 the electron-
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withdrawing substituent (NO2) decreases the electron density at the azomethine group,

and increases the n- π* transition energy to produce hypsochromic shifts as report by

Valentić N. et al[159].

Figure 3.21 : UV-Vis absorption spectral traces of the selected copolymers (Pa1, Pa3,
and Pa5)

Figure 3.22 depicts photoluminescence spectra of selected copolymers Pa1, Pa3

and Pa4 in DMF (1 x10-6 M) and the emission spectra of copolymers are identical due

to the similarity of the main chain unit. The fluorescence emission maxima of

copolymers are the range of 415-422 nm which may be categorized as blue emission.

The PL emission maxima which are bathochromically shifted may be ascribed to the

electronic effect that lowers the HOMO energy level and reduces the energy gap[38].
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Figure 3.22 : Photoluminescence emission spectral of copolymers Pa1, Pa3 and Pa4

Table 3.9 : UV-Vis Absorption and PL emission spectral data of copolymers

Copolymer Absorption UV-vis, λabs,

max (nm)

PL λabs, max (nm)

Pa1 331.8 416

Pa2 350.9 422

Pa3 351.3 420

Pa4 344.7 416

Pa5 318.6 418

Pa6 321.6 419

3.3.3 Electrochemical properties

Cyclic voltammetry (CV) analysis on the resulting polycarbosilane was carried

out to evaluate electrochemical properties as well as to estimate the HOMO and LUMO

energy levels, which are important for determining the band gaps.

The experiments were achieved in a 0.1 M tetrabutylammonium perchlorate

(TBAP) as a supporting electrolyte in an anhydrous acetonitrile (CH3CN) using a thin

film coated on an indium-tin-oxide (ITO) glass substrate as working electrode at room

temperature. The CV curves were referenced to an AgCl/Ag reference electrode and the
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scan rate was 50 mV s-1 in a potential range of -2.0 V to +2.0 V. Figure 3.23 shows a

CV curve of the copolymer Pa2 which is typical for all the copolymers, all the

copolymers showed irreversible redox processes with onset oxidation (p-doping) and

reduction (n-doping). The oxidation (p-doping) started at 0.84, 0.91, 0.89, 0.93, 1.11

and 1.03 V for compounds Pa1-Pa6 respectively. On sweeping the thin film

cathodically, the reduction processes n-doping started at -0.53, -0.61, -0.66, -0.64, -0.88

and -0.74 V for the compounds Pa1-Pa6 respectively.

The highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) energy levels as well as the electrochemical energy gaps (Eg)

of the corresponding copolymers can be determined using the oxidation onset (Eonset)

following the equations:

LUMO = -Ered - 4.71 eV and HOMO = -Eox - 4.71 eV

Thus Eg= -(EHOMO – ELUMO) Equation 3.1

where Ered and Eox are the onset potentials for reduction and oxidation relative to the

Ag/Ag+ reference electrode [160]. The HOMO energy levels of the copolymers were

calculated to be -5.69, -5.61, -5.60, -5.61, -5.82 and -5.74 eV while; the LUMO energy

levels were estimated to be -4.01, -4.10, -4.05, -4.07, -3.83 and -3.97 for (Pa1-Pa6)

respectively. The results as summarised in Table 3.10 show that the synthesized

copolymers containing NO2 substituted group has the lowest HOMO energy value

among all the copolymers (Pa1-Pa6). The presence of electron-withdrawing group

(NO2) may play an important role to lower the HOMO energy level. This observation

on electrochemical behaviour of the copolymers (Pa1-Pa6) can be well explained on the

basis of their structure-property relationship. It is a well-recognised matter that an

electron-withdrawing substituent attached with a conjugated molecular system can

decrease π-electron density of the conjugated molecular system. As a result, the
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molecule will be stabilised and it is necessary to apply higher potential to oxidize the

molecule. This results in a shift of the HOMO energy level to lower energy[161], while

copolymers containing electron-donating group (Pa2, Pa3 and Pa4) possess lower

oxidation range and subsequently have less band gap values. This is due to the

increment of electron density of the aromatic ring as reported by Kaya and

Kamaci[162]. The electron-donating group may extend the conjugation of the

copolymers, hence lowers the energy levels between HOMO and LUMO. Similar

observation has been reported by Liu G. et al[163] where they observed that the band

gaps of diarylethenes containing an electron-donating group were less than those of

diarylethenes containing an electron-withdrawing group.

The results, as summarised in Table 3.10, show that the synthesized copolymers

have electrochemical band gap of less than 2.00 eV The HOMO energy level of the

copolymers (Pa1-Pa6) is comparable with the most widely used hole-transporting

material 4,4’-bis(1-naphthylphenylamino)biphenyl (NBP)[164]. As a result of this

property, they can potentially be applied in heterojunction solar cells and organic light

emitting diodes[165-167].

Table 3.10 : Electrochemical data of the copolymers

Copolymer Ered
a(V) Eox

a V ELUMO
b(eV) EHOMO

b(eV) Eg
c(eV)

Pa1 -0.53 0.98 -4.01 -5.69 1.68

Pa2 -0.61 0.91 -4.10 -5.61 1.51

Pa3 -0.66 0 89 -4.05 -5.60 1.55

Pa4 -0.64 0. 3 -4.07 -5.61 1.54

Pa5 -0.88 1.11 -3.83 -5.82 1.99

Pa6 -0.74 1.03 -3.97 -5.74 1.77

a Onset oxidation (p-doping) and reduction (n-doping) potentials versus Ag/Ag+.
b Estimated from the onset oxidation and reduction potentials by using EHOMO = -Eox- 4.71 eV and
ELUMO = -Ered- 4.71eV [168].
c Electrochemical band gaps determined using Eg = -(EHOMO - ELUMO).
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Figure 3.23: Cyclic voltammogram of Pa2 in CH3CN at scan rate 50 mV s-1
.
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CHAPTER 4 : CARBOSILANE COPOLYMERS BASED ON

BISPHENOL BIS-SCHIFF BASE MONOMERS

4.1 Introduction

After successfully synthesized new polycarbosilane based on bisphenol azine

monomers in the main backbone as mentioned earlier in Chapter 3, in this chapter

synthesis of a new series of copolymers that containing silicon moiety with higher

conjugated structure of bisphenol containing bis-Schiff base monomers is presented.

The study of some of their physical properties which shed light into the applications of

these new copolymers is also discussed.

4.2 Results and discussion

In Chapter 3, we prepared the carbosilane copolymers based on full conjugated

bisphenol azine monomers and study some of their properties. In this chapter, the azine

was replaced by 1,4-phenylene and 1,5-naphthalene moieties, where seven monomers

with higher conjugation and different substituted groups were synthesized and

successfully polymerized with bis(chloromethyl) dimethylsilane by Williamson reaction

in the presence of low equivalent of K2CO3 and DMF as reaction media. The

synthesized materials were characterized and identified by FTIR, 1H NMR, 13C NMR as

well as the GPC was utilized to measure the molecular weight of synthesized

copolymers.

4.2.1 Synthetic route of bisphenol bis-Schiff base monomers (Schiff base

formation)

The Schiff base formation mechanism is another variation on the theme of

nucleophilic addition to the carbonyl group. In this type of reaction, the amine will be

the nucleophile. Mechanistically, the formation of Schiff base is shown in Figure 4.1.
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The mechanism of Schiff base starts by reacting the amine with the carbonyl

group to produce a compound called carbinolamine. The carbinolamine is unstable and

loses water by either acid or base catalysed pathways, followed by acid catalysed

dehydration. In fact, the carbinolamine dehydration is the rate-determining step of

formation of Schiff base and for this reason the reaction is catalysed by acids. However,

the concentration of acid cannot be too high because amines are basic compounds. In

case of protonation of amine, the amine becomes non-nucleophilic which makes the

equilibrium being pulled to the left and prevents formation of the carbinolamine.

Therefore, mildly acidic pH is preferred for the synthesis of Schiff base compounds

which is usually between pH4 and pH5[169].

Figure 4.1 : Reaction mechanism of Schiff base

The dehydration of carbinolamines is also catalysed by base. This reaction is

somewhat analogous to the E2 elimination of alkyl halides except that it is not a

concerted reaction. It proceeds in two steps through an anionic intermediate.

4.2.1.1 Synthesis of Schiff base monomers containing 1,4-phenylene

Schiff base monomers were prepared by condensation reaction of 4-hydroxy

benzaladehyde and its derivatives with 1,4-diaminophenylene in hot methanolic

solution as illustrated in Figure 4.2 to yield the Schiff base monomers  containing

different substituted groups. The monomers gave good yield and very good solubility in
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DMF and DMSO at room temperature. Table 4.1 shows the substituted groups, yields,

melting points and formulae of monomers (b1-b4)

O
HO

R2

R1

+ H2N NH2

MeOH
4 h reflux
80 °C

N
HO

R2

R1
N

R2

OH

2

R1

Figure 4.2 : Synthetic route of Schiff base monomers containing 1,4-phenylene group

Table 4.1 : Details of the synthesized bisphenol bis-Schiff base monomers containing
1,4-phenylene group

4.2.1.2 Characterization of Schiff base monomers containing 1,4-phenylene

4.2.1.2.1 FTIR

The FTIR spectra displayed the first impression for the synthesized monomers

(b1-b4) regarding the nature of functional moieties attached to the monomers. The main

IR bands and their assignments are tabulated in Table 4.2. There are similarities in the

Monomers. R1 R2 Yield (%) Mp. (°C) Formula

b1 H H 275-277 82.9 C20H16N2O2

b2 H OCH3 198-199 84.6 C22H20N2O4

b3 H OCH2CH3 172-176 80.1 C24H24N2O4

b4 OCH3 OCH3 215-216 79.41 C24H24N2O6
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IR spectra of the monomers (b1-b4), except for some slight variations in the shifts and

intensities of vibration peaks due to the different substituted groups attached to the

benzene ring.  The O-H stretching bands of bisphenol monomers appear within the

frequencies of 3489-3579 cm-1. The characteristics frequencies of all monomers that

appeared in the range of 3031-3067 cm-1 are assignable to C-H stretching band and the

characteristics frequencies in the range of 2921-2944 cm-1 are assignable to C-H

aliphatic stretching band. Strong intensity absorption peaks in the frequencies of 1618-

1624 cm-1 region are assignable to the imine group (C=N). On the other hand, the ether

group absorbs strongly in the frequencies range of 1254-1273 cm-1. With disappearance

of the carbonyl group of 4-hydroxybenzaldehyde and their derivatives and the amine of

1,4-phenylenediamine in the frequencies of 1720-1800 cm-1 and two sharp N-H

stretching peaks in the frequencies of 3350 cm-1 respectively, and appearance of a new

peak due to formation of imine group at 1618-1624 cm-1 as well the other expected peak

such as OH at 3617-3479 cm-1 confirm that the IR spectra are in agreement with the

proposed structure.

Table 4.2 : Some of the important FTIR spectra data of monomers

Monomer νO-H νC-Har νC-Haliph νC=N νC=Car νO-C

b1 3489 3067 - 1618 1525-1505 1258

b2 3528 3058 2934 1619 1508-1593 1273

b3 3579 3043 2944 1624 1505-1585 1267

b4 3519 3031 2921 1622 1502-1579 1254

ν= stretching, aliph= aliphatic, ar= aromatic

4.2.1.2.2 1H NMR

The structures and purities of the synthesized Schiff base monomers (b1-b4)

are confirmed by using 1H NMR analysis techniques. The 1H NMR spectrum and
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structure of b2 Schiff base monomer with its numbering are shown in Figure 4.4. The

data for all monomers are tabulated in Table 4.3.

Similar to azine monomers, no protons of the aldehyde, CHO and amino, NH2

are observed in all of the compounds, instead appearance of a sharp singlet peak in the

region of 8.48-8.50 ppm with an integration equivalent to two protons corresponding to

the azomethine proton H7. The H3 proton shows singlet peak at the region of 7.21-7.77

ppm. For H5 a doublet for the two protons at the range of 7.21-7.77 ppm with a coupling

constant of 8.1 MHz is observed. In the region of 6.88-6.90 ppm, the doublet signal for

two protons are assigned to the H6 proton with coupling constant of 8.1 MHz. High

intensity sharp peak that appears in the region of 7.25-7.27 ppm is attributed to 4

protons of phenyl ring. The signal observed in the region of 3.48-3.81 ppm correspond

to methoxy group protons attached to aromatic ring[151]. A singlet peak in the range of

9.06-10.13 ppm is attributed to proton of OH group. All the monomers showed similar

1H NMR spectral properties as described for monomer b2 with slight differences due to

the different group that is attached to the aromatic group (Chapter 2, Section 2.2).

Table 4.3: 1H NMR data of monomers (b1-b4)

Type of proton Chemical shift (ppm)

O-CH3 3.48-3.81

CH2CH3 1.36

Ph-H 9th position 7.25-7.27

Ar-H 2thposition 6.88

Ar-H 3th position 7.21-7.77

Ar-H 5th position 7.21-7.77

Ar-H 6th position 6.88-6.90

C=N (7th position) 8.48-8.50

Ar-OH (1th position) 9.06-10.13
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OH
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Figure 4.3 : 1H NMR spectrum of monomer b2

4.2.1.2.3 13 C NMR

The 13C NMR results correspond well with the 1H NMR results and thus confirm

the proposed structure. The 13C NMR spectrum of b2 monomer and its structure are

shown in Figure 4.5. The data for all monomers (b1-b4) are tabulated in Table 4.4.

The most significant peak of 13C NMR for bis-Schiff base monomers containing

1,4-phenylene is observed in the region of 159.9-161.4 ppm which is attributed to the

azomethine (C=N) carbon atom. The C1 group which is attached to OH phenol appears

down field in the region of 149.75-159.71 ppm. In addition, C2 appear in the region of

148.6-149.8 ppm due to the de-shielding effect of the methoxy group that is attached to

the benzene ring. In case of compound b1 the C2 appears down field in the region of

106.72 ppm where there is no substituted group at this position for this compound.  The

peak attributable to the C8 carbon is observed in the region of 139.69-149.82 ppm. C4

and C5 are assignable in the regions of 127.24-128.54 and 106.72-131.16 ppm

respectively. High intensity peak appearing in the region of 122.33-122.59 ppm is

attributed to C9 which contains 4 carbon atoms of the phenyl group. The peaks in the

range of 116.19-148.6 ppm and 106.72-131.16 ppm consist of carbons C6 and C3

respectively. The intense peak in the region of 56.06-69.36 ppm is due to the methoxy
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group (OCH3) attached to the benzene ring. All the monomers showed similar 13C NMR

spectral properties as described for monomer b2 with some differences due to the

different group that is attached to the aromatic group (Chapter 2, Section 2.2).

Table 4.4 : 13C NMR data of monomers (b1-b4)

Type of carbon Chemical shift (ppm)

OCH2, O-CH3 56.06-69.36

CH3 15.25

Ph-C 9th position 122.33-122.59

Ar-C 2thposition 148.6-149.82

Ar-C 3th position 106.72-131.16

Ar-C 5th position 106.72-131.16

Ar-C 6th position 116.19-148.6

Ar-C (4th position) 127.24-128.54

Ph-N (8th position) 139.69-149.82

C=N (7th position) 159.90-161.4

Ar-OH (1th position) 149.75-159.71

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
Chemical Shift (ppm)

1
2

3
4

5 67 8

  9

OCH3

DMSO

Figure 4.4 : 13C NMR spectrum of monomer b2
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4.2.1.3 Synthesis of bis-Schiff base monomers containing 1,5-naphthalene

Another four compounds of bisphenol Schiff base monomers by using 1,5-

naphthalenediamine (b5-b8) were synthesized by condensation reaction with 4-

hydroxybenzaldehyde and its derivatives. In this synthesis some drops of glacial acetic

acid were utilized as catalyst and methanol was using as solvent under 90°C for 6 h

refluxing. Figure 4.6 displays the synthetic route of the monomers containing the

naphthalene group. All the monomers formed showed good yield and good solubility in

DMSO and DMF. Table 4.5 shows the substituted groups, yields, melting points and

formula of monomers (b5-b8).

O

H
HO

R2

R1

+ NH2

HO

R2

R1
N

R2

OH

2

R1

H2N

N

MeOH
some drops of
glacial acetic acid
6 h reflux
90°C

Figure 4.5 : Synthetic route of bis-Schiff base monomers containing 1,5-naphthaleneUniv
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Table 4.5 : Details of the synthesized bisphenol bis-Schiff base monomers containing
1,5-naphthalene group

4.2.1.4 Characterization of Schiff base containing 1,5-naphthalene

4.2.1.4.1 FTIR

The main infrared bands for the synthesized monomers (b4-b8) and their

assignments are tabulated in Table 4.6. There are similarities in the IR spectra of the

monomers (b5-b8), except for some slight variations in the shifts and intensities of

vibration peaks due to different substituted groups attached to the benzene ring.

The O-H stretching bands of bisphenol monomers appear within the frequencies of

3398-3456 cm-1. The characteristics frequencies of all the monomers that appeared in

the range of 3014-3066 cm-1 are assignable to C-H stretching band and the

characteristics frequencies in the range of 2939-2979 cm-1 are assignable to C-H

aliphatic stretching band. Strong intensity absorption peaks in the frequencies of 1618-

1632 cm-1 region are assignable to the imine group (C=N). The ether group absorbs

strongly in the range of 1258-1269 cm-1. With disappearance of the carbonyl group of 4-

hydroxybenzaldehyde and the amine of 1,5-naphthalinediamine in the frequencies of

1720-1800cm-1 and two sharp N-H stretching peaks in the frequencies of 3350 cm-1

respectively, and appearance of a new peak due to formation of imine group at 1618-

1632 cm-1 as well the other expected peak such as OH at 3389-3456 cm-1 confirm that

the IR spectra are in agreement with the proposed structure.

Code No. R1 R2 Yield (%) Mp. (°C) Formula

b5 H OCH3 76.4 195-197 C26H22N2O4

b6 H OCH2CH3 81.4 207-208 C28H26N2O4

b7 OCH3 OCH3 76.2 281-282 C28H26N2O6

b8 H H 83.3 267-268 C24H18N2O2
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Table 4.6 : Some of the important FTIR spectra data of monomers

Monomer νO-H νC-Har νC-Haliph νC=N νC=Car νO-C

b5 3456 3014 2939 1624 1522-1579 1258

b6 3412 3054 2979 1632 1511-1600 1267

b7 3389 3066 2961 1618 1506-1590 1269

b8 3423 3036 - 1626 1513-1592 1261

ν= stretching, aliph= aliphatic, ar= aromatic

4.2.1.4.2 1H NMR

The 1H NMR spectrum and structure of the bisphenol bis-Schiff base monomer

b5 are shown in Figure 4.7. The data for all monomers are tabulated in Table 4.7.

Disappearance the protons of aldehyde, CHO and amino, NH2 and appearance a

sharp singlet peak in the region of 8.52-8.58 ppm with an integration equivalent to two

protons corresponding to the imine proton H7 confirm the formation of bisphenol Schiff

base compound. Besides, the doublet peak that appears in the region of 8.12-8.14 ppm

with coupling constant of 8.2 MHz is attributed to H11. The H3 proton shows singlet

peak in the region of 7.37-7.68 ppm. The triplet peak appears in the region of 7.50-7.52

ppm and doublet peak appears in the region of 7.43-7.44 ppm, attributed to H10 and H9

respectively. For H5 the doublet is observed for the two protons in the range of 7.17-

7.37 ppm with coupling constants of 8.1 MHz. In the region of 6.94-6.95 ppm, the

doublet signal for two protons is assigned to the H6 proton with coupling constant of 8.1

MHz. The signal observed in the region of 3.85-4.89 ppm corresponds to the methoxy

protons attached to the aromatic ring. A singlet peak in the range of 9.18-9.82 ppm is

attributed to the proton of OH group. All the other monomers showed similar 1H NMR

spectral properties as described for monomer b5 with some differences due to the

different group that is attached to the aromatic group (Chapter 2, Section 2.3).

Univ
ers

ity
 of

 M
ala

ya



92

N

N

HO

OH

O

O 1
23

4

5 6

78
910

11
12

Table 4.7 : 1H NMR data of monomers (b5-b8)

Type of proton Chemical shift (ppm)

O-CH2, O-CH3 3.85-4.89

CH2CH3 1.38

Ar-H 3th position 7.37-7.68

Ar-H 5th position 7.17-7.37

Ar-H 6th position 6.94-6.95

Naph-H 9th position 7.43-7.44

Naph-H 10th position 7.50-7.52

Naph-H 11th position 8.12-8.14

C=N 7th position 8.52-8.58

Ar-OH 1th position 9.18-9.82

10 9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

OH

7

OCH3

6
511

3

10,9
DMSO

Figure 4.6 : 1H NMR specrum of compound b5

4.2.1.4.3 13C NMR

The 13C NMR spectrum and structure of the bisphenol bis-Schiff base

monomer b5 are shown in Figure 4.8. The data for all monomers (b5-b8) are tabulated

in Table 4.8. The most significant peak of 13C NMR for bisphenol bis-Schiff base

monomers containing 1,5-naphthalene is observed in the region of 161.0-161.2 ppm

which is attributed to the azomethine (C=N) carbon atom. The C1 which is attached to
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OH phenol appears down field in the region of 149.2-150.1 ppm. In addition, C2

appears in the region of 148.6-149.31 ppm. The peak attributable to the C8 carbon is

observed in the region of 139.9-148.2 ppm. The peak that appears in the region of

129.0-129.1 ppm is assignable to C4. The peaks in the region of 128.0-128.63 ppm and

the region of 126.1-126.52 ppm represent to C12 and C10 respectively. Five peaks in the

range of 110.9-124.37 ppm are attributed to C3, C9, C5 C6 and C11. For compound b5,

position C6 is shifted down field due to it being attached to OCH3 which contains atom

with high electronegativety. The intense peak in the region of 55.67-64.44 ppm is due to

methoxy group (OCH3) attached to the benzene ring. All the other monomers containing

1,5-naphthalene showed similar 13C NMR spectral properties as those described for

monomer b5 with some differences due to the different group that is attached to the

aromatic group (Chapter 2, Section 2.3).

4Table 4.8 : 13C NMR data of monomers (b5-b8)

Type of carbon Chemical shift (ppm)

O-CH2, O-CH3 56.63-64.44

CH2CH3 15.26

Ar-C 3th position 107-112.61

Ar-C 5th position 107-121

Ar-C 6th position 115.57-148.6

Ar-C 4th position 129-129.1

Naph-C 8th position 139.9-148.2

Naph-C 9th position 113.55-114

Naph-C 10th position 126.1-126.52

Naph-C 11th position 121.46-124.64

Naph-C 12th position 128-128.63

Ar-C 2th position 148.6-149.31

C=N 7th position 161-161.2

Ar-OH 1th position 149.2-150.1
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Figure 4.7 : 13C NMR spectrum of monomer b5

4.2.2 Carbonosilane bisphenol bis-Schiff base copolymers

A new series of polycarbosilane containing bisphenol bis-Schiff base (Pb1-Pb7)

were synthesized through the polycondensation reaction of bis(chloromethyl)

dimethylsilane and the synthesized Schiff monomers (b1-b7). The same synthetic route

as that of polycarbosilane containing bisphenol azine was utilized to synthesize the new

copolymers except for some modifications as illustrated in Figure 4.8. The etherification

took longer time and a higher temperature compared to the polycarbosilane containing

bisphenol azine. Table 4.9 shows the substituted groups and the yield of the

copolymers.
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(A)

(Pb1-Pb7)

Figure 4.8 : Synthetic route of copolymers (Pb1-Pb7)

Table 4.9 : Details of the synthesized copolymers containing bisphenol bis-Schiff base

monomers (Pb1-Pb7)

The polymerization of polycarbosilane based on bisphenol bis-Schiff base

proves that DMF is the best solvent as results in higher molecular weight. The synthetic

route employed is similar to that for polycarbosilane based on azine monomers but in

this reaction more time and higher temperature were needed. This may be due to the

long term resonance arising from the higher conjugation and leading to less

concentration of phenoxide ion on the Schiff base monomers. Using other solvents as

Copolymer R1 R2 R Yield (%)

Pb1 H H 1,4-phenylene 49.32

Pb2 H OCH3 1,4-phenylene 61.4

Pb3 H OCH2CH3 1,4-phenylene 64.11

Pb4 OCH3 OCH3 1,4-phenylene 59.5

Pb5 H OCH3 1,5-naphthalene 56.2

Pb6 H OCH2CH3 1,5-naphthalene 57.01

Pb7 OCH3 OCH3 1,5-naphthalene 51.6
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reaction media such as acetone, acetonitrile and pyridine did not display the same

results that obtained using DMF. For example, the Mw for polymerization of Pb7 in

DMF was 7192 whereas, the polymerizations of the same monomers in acetone,

acetonitrile and pyridine showed Mw = 2951, 4423 and 5.384 respectively.

Figure 4.9 shows the different samples of the polycarbosilane containing

bisphenol bis-Schiff base. By comparing with the polycarbosilane containing azine,

these copolymers have slightly lower solubility in common organic solvents (THF,

CHCl3 and DMF) and it is partially soluble in hydroxyl group containing solvents

(methanol and ethanol).

Figure 4.9 : (a) Pb2 copolymer (b) Pb4 copolymer (c) Pb7 copolymer

4.2.3 Characterization of copolymers

The synthesized carbosilane copolymers (Pb1-Pb7) were characterized by

FTIR, 1H NMR, 13C NMR and GPC to study the molecular weight of these copolymers.

The results are in agreement with the proposed structures

4.2.3.1 FTIR

The FTIR spectra of the polycarbosilanes containing bisphenol bis-Schiff base

showed same characteristic bands as the monomers (b1-b7) since the functional

moieties are similar for copolymers and monomers except for the appearance of a new

a b c
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absorption band in the range of 1289-1272 cm-1 which is attributed to O-CH2Si group as

well another new absorption band of the Si-CH3 group in the range of 777-822 cm-1.

4.2.3.2 1H NMR

The 1H NMR spectral analysis (Figure 4.10) presents the structural

particularities of the synthesized copolymer Pb2. By comparing with the monomer

peaks, all the copolymers showed similar shifts as those shown by the monomers with

obvious distortion peaks due to the repeating units in the main chain of the copolymers.

New broad peaks appearing in the range of 0.04-0.26 ppm (6H) can be assigned to the

methyl protons of the Si-CH3 while the protons of the O-CH2Si group showed a

chemical shift in the range of 3.79-3.89 ppm (2H) which is considered the best indicator

to confirm the formation of copolymer. While, the monomer displayed high intense OH

group, this peak almost disappeared in the copolymer or appeared only in very small

peak which is attributed to terminal group of phenol. All copolymers showed small peak

in the range of 0.82-1.18 ppm which is most possibly be attributed to terminal group

SiCH2Cl.

9 8 7 6 5 4 3 2 1 0
Chemical Shift (ppm)

9

7

OH

6
5

3

OCH3

OCH2Si

TMS

SiCH3
aceton-D

H2O in aceton

Figure 4.10: 1H NMR spectrum of copolymer Pb2
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4.2.3.3 13C NMR

The 13C NMR spectral analysis further confirms the presumed structures. By

comparing with the monomer peaks, all the copolymers showed similar shift range with

the monomers with obvious distortion peaks of some compounds due to the repeating

units of monomers in the main chain of the copolymers. Figure 4.11 shows the 13C

NMR spectrum of Schiff base copolymer Pb2 with its molecular structure. The best

identification for formation the copolymer is appearance of a new peak in the region of

-6.68-0.62 ppm associated to Si-CH3 beside another new peak in the range of 59.42-

66.83 ppm which is attributed to OCH2-Si. A small peak that appears in the range of

19.3- 28.84 ppm supports the 1H NMR for SiCH2Cl.

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
Chemical Shift (ppm)

SiCH3

OCH3, OCH2

9

7
1

2 3
4

5
6

8

aceton-D

Figure 4.11 : 13C NMR spectrum of copolymer Pb2

4.2.3.4 Gel permeation chromatography (GPC)

GPC analyses for all the polycarbosilanes containing bisphenol bis-Schiff base,

percentages, colours and yields are summarized in Table 4.10. The number average

molecular weights (Mn) of the copolymers vary from 2401 to 7414 and the degrees of

polymerization (DP) range from 5-13, where Pb1 displays the lowest molecular weight,

and is agreeable with the result obtained from polycarbosilane containing azine as
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discussed earlier in Chapter 3. All the copolymers show narrow molecular weight

distribution (PDI) between 1.21-2.04.

Table 4.10 : Yields, colors and characteristics of the synthesized copolymers

4.3 Physical properties

4.3.1 Thermal degradation properties of copolymers

Figure 4.12 display the TGA thermogram of copolymer Pb3 and its derivative

which is typically similar for all the other copolymers and the detailed thermal data of

the synthesized copolymers are summarized in Table 4.11.

From both Figure 4.13 and Table 4.11, it can be observed that onset

decomposition temperatures of all the copolymers are more than 356°C which confirm

that the polycarbosilanes containing bisphenol bis-Schiff base display very good

thermal stability. From the derivative curve of Pb3, the decomposition is shown to

occur through a single decomposition step. Temperatures at 10% weight loss are

recorded in the range of 324-367°C, while the major weight loss of about 50% in the

region of 423-672°C. Obviously, (Table 4.11) for copolymers containing naphthalene

moiety, the major weight loss (50%) occurred at very high temperature compared to the

copolymers containing bisphenol azine (Pa1-Pa6) and bisphenol bis-Schiff base (Pb1-

Pb4). The copolymers containing naphthalene lost their weight over 623.48°C but those

Copolymer Yield

(%)

Color Mol. Wt. Poly

dispersity

Degree of

polymerization

Pb1 49.32 Dark brown 2401 1.46 5

Pb2 61.41 Dark brown 6501 1.29 13

Pb3 64.11 Dark brown 7298 1.3 14

Pb4 59.5 Dark brown 6303 1.21 11

Pb5 56.2 Dark brown 6100 1.62 11

Pb6 57.01 Dark brown 7414 1.92 13

Pb7 51.6 Dark brown 7192 2.04 12
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containing azine and phenylene over than 330°C and 431°C, respectively. This is due to

the fact that compounds containing high aromatic content possess high thermal stability

and high heat resistance[170, 171]. The residual weight remaining at 700°C was around

31.84-52.61%. Enhancement of thermal stability observed in these polycarbosilane may

be attributed to the delocalization characteristic of the Schiff base linkage and the

silicon moieties on the main chain.

In addition, the glass transition temperatures (Tg) of the copolymers (Pb1-Pb7)

were achieved by DSC under nitrogen atmosphere. No detectable phase transition was

observed in all copolymers. The undetectable phase transition for the copolymers with

different substituted groups may lie in the rigidity of the main chains and carbonosilane

moieties. As a result of high temperature and one stage decomposition, these

copolymers have good thermal properties for industrial processing or for possible use in

devices [157].

Table 4.11 : Thermal properties of copolymers (Pb1-Pb7)

Copolymers Temperature (°C) corresponding to Char yield (%)

at 700°COnset 10% Wt loss 50% Wt loss DTp

Pb1 368.26 324.23 431.18 381.69 31.84

Pb2 366.36 347.49 446.36 388.31 36.92

Pb3 376.82 354.55 452.72 391.38 44.31

Pb4 369.71 341.71 490.80 389.12 41.23

Pb5 367.36 367.80 672.51 376.72 52.61

Pb6 367.54 355.28 623.48 381.71 47.72

Pb7 356.06 348.37 655.28 358.70 46.06
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Figure 4.12 : TGA curves for copolymer (Pb3) at a heating rate of 10°C/min

4.3.2 Optical properties

The UV-vis and fluorescence spectroscopic properties were investigated for all

the polycarbosilanes containing bisphenol bis-Schiff base. Figure 4.14 shows the UV-

vis absorption emission spectra of the selected copolymers (Pb2 and Pb5) in dilute

chloroform solutions (1x10-6 M) at room temperature and their detailed photophysical

data are summarized in Table 4.12.

From the UV-vis spectra, the copolymers containing 1,4-phenylene moiety

(Pb1-Pb4) exhibit similar characteristics, where two absorption peaks are obtained; one

at higher energies in the range of 287-289 nm and the other absorbance peak at the

lower energies in the region of 348-365 nm. The synthesized copolymers containing

1,5-naphthalene moiety in the main chain (Pb5-Pb7) also display similar absorption

peaks, where three absorption peaks are obtained; first peak at higher energies with the

maximum located in the range of 273-276 nm and second absorbance peak appeared in

the region of 312-315 nm and the third appeared at in lowest energies the region of 360-

363 nm. According to Jaffe et al. [172], the absorption peak at around 270 nm is

attributed to a σ→π* transition, while the absorption peak that appear at around 310 nm
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results from a n→π*transition. The absorption peak at around 365 nm is attributed to π

→ π* transition.

Figure 4.13 : UV-vis absorption spectral traces of the copolymers Pb2 and Pb5

Figure 4.15 depicts PL spectra of selected copolymers, Pb2, Pb5 and Pb6, in

CHCl3 (1 x10-6 M) upon excitation of the copolymers at 375 nm Table 4.12 displays the

PL data of all the synthesized copolymers. The emission spectra of all copolymers

showed similar pattern. The fluorescence emission maxima of copolymers are in the

range of 370-620 nm with emission maxima between 416-429 nm which may be

categorized as blue emission. The blue emission is due to the conjugation of bisphenol

bis-Schiff compounds, resulting in good π–electrons delocalization along bisphenol bis-

Schiff base which is a p- π conjugated system as mention in (Chapter 3, Section 3.2)
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Figure 4.14 : Photoluminescence emission spectral of copolymers Pb2, Pb5 and Pb6

Table 4.12 : UV-vis Absorption and photoluminescence emission spectral data of

copolymers.

Copolymers Absorption UV-vis, λabs,

max (nm)

PL λabs, max (nm)

Pb1 348, 287 422

Pb2 365, 289 426

Pb3 362, 289 428

Pb4 364, 288 429

Pb5 363, 315, 275 418

Pb6 361, 312, 273 416

Pb7 360, 313, 276 419

4.3.3 Electrochemical properties

The electrochemical properties of the polycarbosilane for the copolymers

containing bisphenol bis-Schiff base (Pb1-Pb7) was carried out by CV to estimate the

HOMO, LUMO and band gaps. Same procedures as that mentioned in Section 3.3.3

were achieved to study the electrochemical properties. Figure 4.15 shows a CV curve of

the copolymer Pb3 which is typical for all the copolymers containing bisphenol bis-
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Schiff base, all the copolymers showed irreversible redox processes with onset

oxidation (p-doping) and reduction (n-doping). The oxidation (p-doping) started at 1.12,

1.13, 1.16, 1.11, 1.24, 1.28 and 1.31 V for compounds Pb1-Pb7 respectively. On

sweeping the thin film cathodically, the reduction processes (n-doping) started at -1.21,

-1.28, -1.33, -1.31, -1.29, -1.21 and -1.23 V for the compounds Pb1-Pb7 respectively.

The highest occupied molecular orbital (HOMO) and lowest unoccupied

molecular orbital (LUMO) energy levels as well as the electrochemical energy gaps (Eg)

of the corresponding copolymers can be determined using Equations 3.1.The HOMO

energy levels of the copolymers were calculated to be -5.73, -5.84, -5.87, -5.82, -5.95, -

5.99 and -6.02 eV while; the LUMO energy levels were estimated to be -3.50, -3.43, -

3.38, -3.40, -3.42, -3.50 and -3.48 for (Pb1-Pb7) respectively.

The HUMO and LUMO energy values of polymers Pb1-Pb7 are in the range

-5.73 eV to -6.02 eV and -3.38eV to -3.50 respectively. These HOMO energy values are

significantly different from those of copolymers containing bisphenol azine Pa1-Pa6

(Table 3.10). These variations in electrochemical behaviour of copolymers Pb1-P7 may

be originated from the different molecular structure chain of copolymers where the

electrochemical properties of these copolymers may be influenced by the effective

conjugation length. Thus, electrochemical behaviours of conjugated polymers can be

tuned by varying the above mentioned properties. The presence of 1,4-phenylene and

1,5-naphthalene in the main chain of the copolymers lead to Pb1-Pb7 possess higher

length of conjugated than those of copolymers Pa1-Pa6. As a result, the effective

conjugation length will increase the oxidation potential of Pb1-Pb7 and the HOMO

energy levels will be shifted to a lower energy level.

The results, as summarized in Table 4.13, show that the synthesized copolymers

have electrochemical band gap between 2.23-2.54 eV. As a result of this property, the
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HOMO energy level of the copolymers (Pb1-Pb7) is comparable with the most widely

used hole-transporting material 4,4’-bis(1-naphthylphenylamino)biphenyl (NBP)[164].

Therefore, these copolymers candidate for using as organic light emitting diods

(OLEDs)[167].

Table 4.13 : Electrochemical results of the copolymers (Pb1-Pb7)

Copolymer Ered(V) Eox V ELUMO(eV) EHOMO(eV) Eg(eV)

Pb1 -1.21 1.12 -3.5 -5.73 2.23

Pb2 -1.28 1.13 -3.43 -5.84 2.41

Pb3 -1.33 1.16 -3.38 -5.87 2.49

Pb4 -1.31 1.11 -3.40 -5.82 2.42

Pb5 -1.29 1.24 -3.42 -5.95 2.53

Pb6 -1.21 1.28 -3.50 -5.99 2.49

Pb7 -1.23 1.31 -3.48 -6.02 2.54

Figure 4.15 : Cyclic voltammogram of Pb3 in CH3CN at scan rate 50 mV s-1
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CHAPTER 5 : LIQUID CRYSTAL OF SYMMETRICAL DIMERS

BASED ON BISPHENOL BIS-SCHIFF BASE

5.1 Introduction

In the solid crystal state, the order is usually both orientational and positional, in

that the molecules are constrained both to occupy specific sites in a lattice and to point

their molecular axes in specific directions. On the other hand, the liquid state diffuses

randomly throughout the container with the molecular axes tumbling wildly. When

exposed to heating or cooling, materials will pass from isotropic liquid to crystalline

solid and vice versa but some materials do not directly pass from these states such as N-

(4-methoxybenzylidene)-4-butylaniline (MBBA) but adopt an intermediate structure

which flows like a liquid but still possesses the anisotropic physical properties similar to

crystalline solids. This type of phase is termed liquid crystal phase, liquid crystalline

phase, mesophase or mesomorphic phase and the substances called mesomorphs, where

liquid crystal represents a state of aggregation that is intermediate between the

amorphous liquid and the crystalline solid and material flows like liquids yet possesses

some physical behaviours characteristic of solid crystals[173]. Figure 5.1 displays a

comparison of the ordering of the crystal, liquid crystal and liquid states.

Figure 5.1 : A comparison of the ordering of the crystal, liquid crystal and liquid states.

Crystal                          Liquid crystal                     Liquid

Temperature, mobility
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Liquid crystal has been enormously extended from chemical as well as structural

point of view during last two decades. In general, it is accepted that liquid crystals

represent a state of higher order than ordinary (isotropic) liquids. Liquid crystalline

materials (LCs), which were once just some naturally occurring curious and colourful

substances, have now grown to be a major class of technologically and scientifically

important materials, in particular as display devices, anisotropic networks,

semiconductor materials, organic light emitting diodes (OLEDs) and

photoconductors[174, 175]. The most technologically important liquid crystals are

thermotropic nematic liquid crystals which are usually composed of rigid rod-shaped

(calamitic) or disc-shaped (discotic)[176] and widely used as operating  fluid in liquid

crystal displays (LCDs). Furthermore, nematic liquid crystals (NLCs) based materials

are extremely attractive for photonic applications such as optical information

processing, dynamic holography, optical switching and phase conjugation due to their

large optical anisotropy, low driving voltage and large electro-optics effects [177-180].

In this chapter, the synthesis and characterization series of a symmetrical dimers

of bisphenol bis-Schiff base derivatised from 1,5-naphthalene monomers with different

aliphatic ends will be presented and the effect of attaching methoxy group adjacent to

the spacer will be investigated. The molecular structures of the titled compounds (c1-c8)

and (d1-d8) were confirmed through FT-IR, 1H NMR and 13C NMR. TGA was

performed to evaluate the thermal stability. Studies on the optical properties were

achieved through UV-Vis and PL (Photoluminescence) experiments. In order to

establish the liquid crystalline behaviour, Differential Scanning Calorimetry (DSC) (for

the determination of the phase transition temperatures and enthalpy values) and

polarising optical microscopy (POM) (for the texture observations and their changes)

have been used.
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5.2 Historical development of liquid crystals

The liquid crystalline state has been discovered more than 100 years ago when

Austrian botanist physiologist named Friedrich Reinitzer[181] examined the physico-

chemical properties of various derivatives of cholesterol which now belong to the class

of materials known as cholesteric liquid crystals. He found cholesteryl benzoate

changed to a cloudy liquid at 145.5°C and this material suddenly became clear when the

temperature rose to 178.5°C. When cooling down this material, violet-blue was

observed just before changing into an opaque liquid and finally become a white solid

crystal. Otto Lehmann, a German physicist[182] studied precisely this phenomena by

taking the samples from Reinitzer and investigated under polarizing microscope. He

concluded that cholesteryl benzoate in the temperature range of 145.5–178.5°C should

be a new state of matter which behaves as liquid and at the same time shows optical

behaviour like that of a crystal. In 1900 Lehmann called the new state of matter “liquid

crystal”[182]. This discovery represented the first recorded documentation of the liquid

crystal phase. Figure 5.2 displays the structure of cholesteryl benzoate with two distinct

melting points.

Crystal                Liquid Crystal              isotropic

145.5°C                         178.5 °C

5.5.2 : Structure of cholesteryl benzoate with two melting points
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The area of liquid crystals developed progressively more in the following

decades. In 1935, Danial Volander  had prepared many compounds that displayed liquid

crystalline state[183].

In the late 1940s, George William Gray started to investigate and study these

materials in England. Gray and his group succeeded in synthesizing many new materials

that showed the liquid crystalline state and gave clear study of how to design molecules

that display liquid crystal state. “Molecular structure and the properties of liquid

crystals” was the first book authored by him to explain the properties of the new state

and his book became a guidebook on the subject[184].

Hans Kelker and Scheurle in 1969 also synthesized successfully a new

compound, MBBA that showed nematic phase at room temperature, and was considered

as one of the most popular in liquid crystal research[185]. Figure 5.3 shows the

chemical structure of MBBA.

N O

Figure 5.3 : Molecular structure of MBBA

In 1970s, electro-optical liquid crystal display devices became well

recognized[186, 187]. George Gray synthesized cyanobiphenyls which are chemically

stable substances with low melting temperatures[184]. In beginning 1990, when LCDs

was already well established, a French physicist Pierre-Gills de Gennes turned his

intention to study liquid crystals, where he was rewarded the Nobel Prize in physics for

his finding on the fascinating analogies between superconductors and liquid crystals in

addition to magnetic materials[188]. His discovery has deeply influenced the modern
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development of liquid crystals science. Today, liquid crystals play a dominant role in

display technology.

5.3 Types of liquid crystals

Liquid crystalline phases can be obtained by heating or cooling which are called

thermotropic liquid crystals. Meanwhile those obtained by dissolving some substances

such as sodium or potassium salts in higher fatty acids into a certain amount of a proper

(isotropic) solvent such as water are called lyotropic liquid crystals and are dependent

on the concentration of an isotropic solvent. Lyotropic liquid crystals are generally

mixtures of two or more compounds, while many of the reported thermotropic liquid

crystals are single compounds. Some materials are able to form both thermotropic liquid

crystals and lyotropic liquid crystals which are called amphotropic.

The existence of thermotropic liquid crystals is dependent on temperature in

certain temperature intervals. Thermotropic liquid crystals which are stable at

temperatures above the melting point of the compound are called enantiotropic. Some

cases the liquid crystals state are only stable at temperatures below melting point and

can be obtained only with decreasing temperature; phase of this kind is called

monotropic[189]. Thermotropic liquid crystals are divided to two types based on

molecular mass. High molecular mass thermotropic liquid crystals consist of side chain

polymers and main chains polymer as well as low molecular mass thermotropic liquid

crystals that consist of oligomeric, monomeric and mesogenic substances. Low

molecular mass thermotropic liquid crystals are generally further classified to three basic

molecular shapes, being called calamitic for rod-like, discotic for disk-like and sanidic for

brick- or lath-like molecules. In this thesis only rod-like molecules will be discussed. Figure

5.4 displays the classification of liquid crystals.
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Figure 5.4 : Classification of liquid crystals

5.3.1 Calamitic liquid crystals

There are many types of liquid crystal phases which is dependent on the

molecular structure of materials. Calamitic mesogens or rod-like molecules are the most

important type of molecules that form the thermotropic liquid crystals consisting of

rigid cores, often incorporating phenyl and biphenyl groups, and two flexible endgroup

which are mostly alkyl or alkoxy chains[190]. The basic structure of typical calamatic

liquid crystals is shown in Figure 5.5. The rigid groups A, B normally consist of

aromatic rings such as benzene, naphthalene, biphenyl, terphenyl and cyclohexane. In

addition, heterocyclic compounds have been used as a core group such as pyridine[191]

and benzothiazole [192]. The linking group C connects the core groups A and B
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Y AB C

DE

X R1R2

together where this group plays a very important role for the rigidity of the liquid

crystal, contribution to the phase transition and physical properties. There are many

linking groups reported such as Schiff base (-C=N-)[193], azo (-N=N-)[194], ester (-

COO-)[195], and acetylene (-C≡ C-)[196]. Generally, the chemical stability of liquid

crystal depends much on the linking group where Schiff base linking group is less stable

than ester, azo and azoxy linking group but the latest three linking groups are quite

susceptible to temperature change, moisture and ultraviolet (UV) radiation[197].   The

side groups or sometimes called the flexible spacers are R1 and R2 linked directly to the

core or through other groups X and Y.

The liquid crystalline phases might not form based on the rigid core alone. Thus,

certain flexibility is required to ensure reasonably low melting points and to stabilize the

molecular alignment within the mesophase structure [198]. The flexibility spacers, R1

and R2, could be polar (e.g., CH3) or nonpolar (e.g., CN, F) to provide the flexibility of

the liquid crystal molecules. The flexibility allows one molecule to place itself easily

between other molecules when it moves around where the flexibility with rigidity of

molecules must be in balance in order to display the properties of liquid crystals[197]. E

and D are the lateral moieties which are involved in the modification of phase

morphology and the physical properties of materials. Common lateral groups are

alkoxy, alkyl, nitro, cyano and halides such as fluoro, chloro and OCF3.

Rigid core of the molecules

A and B: Core groups, C: Linking group, R1 and R2: Side groups, E and
D: Lateral groups

Figure 5.5 : Basic structure of typical calamitic liquid crystals
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There are three classes of calamitic liquid crystals: nematic, cholesteric and

smectic as well there are many sub-classifications of smectic liquid crystals in

accordance with the directional arrangement and positional of the molecules.

5.3.1.1. Nematic Phase

The nematic phase (N) is one of the most common and simplest liquid crystal

phases where the molecules maintain a preferred orientational direction as they diffuse

throughout the sample. This is the least ordered mesophase which have fluidity similar

to that of ordinary isotropic liquid state but the nematic phase can easily aligned by an

external magnetic or electric field. These alignment have the optical properties of

uniaxial crystals and this property is extremely useful in LCDs[199, 200]. Figure 5.6

shows the orientation of molecules where the orientation of molecules is parallel with

their axes. The long axes of the molecules point on the average in the same direction,

which is defined by a unit vector commonly known as ‘the director’ (n)[201].

Figure 5.6 : Texture and molecular arrangement of nematic liquid crystals

5.3.1.2 Smectic phase

The smectic phase (S) is usually found at lower temperatures than nematic

phase. In this phase, the arrangement of molecules will be in planar sheets. Within each

layer, the molecules are aligned, but they possess only one-dimensional translational
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order. The smectic phase is classified into many subclasses, each of which has slightly

different properties. The most common sub categories of these phases are the smectic A

(SA) phase and smectic C (SC) phase. These phases show orientational order like that as

in nematic phase but there is also positional order since the centres of mass of the

molecules are arranged in layers. If the director is perpendicular to the plane of the

layer, the phases is divided as smectic A but if the director is tilted at some angle

between 0 and 90°, the phase is called smectic C[173, 202, 203]. Figure 5.7 displays the

molecular arrangements of smectic A and smectic C.

Figure 5.7 : Molecular arrangements of (a) smectic A (b) smectic C

5.4 Structure-mesomorphic properties relationship

The mesomorphic behaviors depend directly on the design of chemical structure

of the molecules, where slight change in the architecture of the liquid crystal molecules

brings about considerable change in its mesomorphic properties. In this research, the

influence of some groups on the physical properties of liquid crystal molecules will be

discussed.

(a) (b)
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5.4.1 Influence of mesogenic core on mesomorphic properties

The core group is the most fundamental structural feature of a liquid crystal

material. The core unit can be defined as the rigid group that can be connected to any

lateral groups and any linking units. The liquid crystal phase is generated because of the

anisotropy of the polarisability resulting from the conjugated core unit and that the

higher the polarisability anisotropy the higher the liquid crystal stability[204].

Fornasieri et al. in 2003[205] had synthesized three series of thermotropic liquid

crystals and he studied the effect of the structure of the mesogenic core group and the

length of the hydrocarbon spacer on the mesomorphic properties. The structure consists

of a mesogenic core connected to a perflourinated chain through thioester linking group

and hydrocarbon chain containing a terminal double bond. A biphenyl (B1),

monophenyl (Ph1) and phenyl benzoate (PhB1) groups were used as the core unit

attached to a chain of hydrocarbon with different length to study their influence on the

liquid crystal behaviours as shown in Figure 5.8. The liquid crystal behaviour was

strongly reduced due to the effect of increasing of the hydrocarbon chain, while the

influence of increasing the number of aromatic rings in the core structure caused an

increase in the transition temperatures. In addition, the monophenyl allyoxy derivative

displayed interesting smectogenic property near room temperature. The compounds

containing biphenyl shifted the mesophase to the higher temperatures without any

change of temperature range, while the compounds containing phenyl benzoate moiety

stabilized the mesophase at wider range (181°C).Univ
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Figure 5.8 : The structures of thermotropic liquid crystals with core unit of (a)

monophenyl, (b) biphenyl and (c) phenyl benzoate[205].

5.4.2 Influence of terminal unit on mesomorphic properties

The branch of the chain displays an apparent influence on the liquid crystal

phase behaviour as it helps in introducing chirality into the molecule. However, phase

stability and the melting point are being reduced as a result of the disruption in the

molecular packing[206]. Besides, the formation of liquid crystal is influenced by the

position of the end chains as well. In addition, by increasing the terminal chain length,

the smectic tendency increases and subsequently eliminates the nematic phase as is

observed in this research (see Section 5.6.4). The reason for the appearance of the

smectic phase is due to the long chains becoming intertwined and attracted, which

facilitates the lamellar packing required for smectic phase generation[204, 207].

Matsunaga et al.[208] studied the effects of terminal substituents of 4-(4-X-

substituted benzylideneamino)phenyl-4-Y-substituted benzoates on mesomorphic

properties (Figure 5.9). X and Y were chosen from nitro, methoxy, chloro, bromo,

fluoro, methyl, trifluoromethyl and dimethylamino groups. They found that the order of

group (X or Y) efficiency in promoting the nematic-isotropic transition temperature is

(a)

(b)

(c)
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markedly affected by the nature of the group (X or Y) located at the other end. The

trifluoromethyl series gives N(CH3)2 > CH3O > CH3 > Cl = Br > NO2 > F whereas the

methoxy and methyl series gives NO2 > CH3O > N(CH3)2 > Cl = Br > CH3 > F > CF3,

suggesting that the dipole-dipole interaction contributes significantly to the stabilization

of the nematic phase.

CX
H

N O
C

O

Y

Figure 5.9 : Studied compound [208]

Very recently, Karim et al.[209] studied the effect of different substituents R (where

R= –H, –CH3, –OCH3, and –OC2H5) at the sixth position on benzothiazole chromophore

(Figure 5.10) on mesomorphic, thermal and optical properties. All synthesized compounds

showed mesomorphic behaviours and exhibited lamellar structure. The compound with –H

substituent revealed only smectic mesophase whereas the compounds with –CH3, –OCH3,

and –OC2H5 groups exhibited nematic and smectic mesophases. They thus concluded that

the formation of the mesophases was greatly influenced by the sixth position electron

pushing substituents on the benzothiazole ring as well as the terminal methacrylate group.

The optical study on these compounds showed that the compound with a methoxy

substituent exhibited higher fluorescent emission compared to other compounds.

N

S
N N O (CH2)6 O C

O

C

CH3

CH2

R

Figure 5.10 : Azo benzothiazole compound[209]
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5.4.3 Influence of linking unit on mesomorphic properties

Linking units are important to extend the length and polarisabillity anisotropy of

the molecular core of liquid crystal in order to improve the stability of liquid crystal

phase.

Prajapati et al. (2004) have studied the influence of different linking units on

mesomorphism[210]. Figure 5.11 shows that Compound 3 consists of azomethine (-

CH=N-) linking unit while Compound A has an ester (-COO-) linking unit. Compound

3 had been observed to have higher smectic phase as well higher thermal stability than

compound containing ester by 77°C and 34°C, respectively. Furthermore, the Schiff

base linking unit is coplanar as compared to the ester linking group which makes the

packing of the molecules to be more efficient. For this reason the thermal stability of

smectic phase of compound A is less than compound 3. In addition, linking unit

enhances most of the liquid crystalline properties whenever all the rings are fully

conjugated. This will enhance the longitudinal polarisability and extends the molecular

length[204], where the linking units such as azomethine or ethylene that contain double

bond can thus result in a high liquid crystal transition[210]. However, the ester linking

unit does not link the system through a multiple bond. Hence the thermal stability of

mesogenic of a system linked through Schiff base group is higher.

N
C6H13O

COOCH2CH2OCH3

Compound 3

O
C6H13O

COOCH2CH2OCH3

Compound A

O

Figure 5.11 : Synthesis of compounds containing azomethine and ester
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5.4.4 Influence of lateral unit on mesomorphic properties

Lateral group replaces the hydrogen atoms in positions 2, 3 and 4 of the phenyl

ring by any polar substituted groups such as cyano, chloro, hydroxy, methoxy and

fluoro groups. These groups can modify the physical properties of the liquid crystal,

where the lateral moiety broadens the molecules, thus reducing lateral attractions and

lowering the nematic and smectic phase stability.

5.5 Liquid crystals with Schiff bases

Schiff base materials have received much attention as liquid crystal after the

publication of Kelker’s work on MBBA in 1970[211-214]. This material contains Schiff

base as linking group and possesses a useful functional group due to convenience of its

low temperature of phase transition and its rich polymorphism. In addition, Schiff bases

are able to maintain the linearity of the molecular structure and provide a stepped core

structure and also have high thermal stability. For these reasons, Schiff bases have

received attention as  liquid crystal display devices such as STN-LCD (supertwisted

nematic LCD), TN-LCD (twisted nematic-LCD) and TFT-LCD (thin film transistor-

LCD) having improved electro-optical properties [215, 216].

Yeap, G.-Y, et al.[217] synthesized a series of symmetrical dimers N,N'– bis (3-

methoxy-4-alkoxybenzylidene)-1,2-phenylenediimine compounds with a different

length of symmetrical chains of alkyl (C4-C18) to investigate their liquid crystal

properties. Figure 5.12 shows that all the symmetrical dimers were nematogenic phase

except the dimers containing butyl and hexyl chains as well as the longest octadecyl

dimer in which the mesogenic properties were absent. Many studies were reported by

Yeap and co-workers on the compounds containing Schiff bases as liquid crystals [218-

221]. They also revealed that the compounds containing Schiff base linking groups were
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useful structural components for designing mesomorphism in two and three aromatic

rings liquid crystals.

NN

O O

OOR R

R= C4H9, C6H11, C8H17, C10H21, C12H25, C14H29, C16H33, C18H37

Figure 5.12 : Structure of symmetrical dimer containing bis-Schiff base linking

group[217].

In addition, a vast number of Schiff bases containing naphthalene moiety as

liquid crystal have been studied, where naphthalene moiety displays excellent

mesomorphism if the molecular structure is designed properly[126, 222-226]. Prajapati

et al. [227] synthesized homologous series of Schiff base cinnamates containing

naphthalene group and the liquid crystal properties were studied as well the influence of

an ethylene linking moiety on the mesomorphic properties. They found that all the

synthesized Schiff base compounds containing naphthalene of this homologous series

showed liquid crystal properties. The presence of naphthalene group at the terminal

position broadened the transition temperature of the mesophase due to high

polarizability of the molecule. Also, the existence of naphthalene group increased the

nematic liquid crystal phase range and decreased the smectic liquid crystal phase range

due to the packing influence. Figure 5.13 shows the synthesized Schiff base compounds

containing naphthalene.

C
H

COO NC
H

C
H

RO

R= -CnH2n+1, n=1 to 8, 10, 12, 14 and 16

Figure 5.13 : A series of Schiff base compound containing naphthalene group[227].
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5.6 Experimental

5.6.1 Synthesis of symmetrical dimers

The syntheses of the two symmetrical series (c1-c8) and (d1-d8) were

performed using the same procedure and the details as below. Figure 2.1 shows the

structures of the symmetrical dimers.

1

23

4

5 6

7
N C

H
O

N
H
CO

8

910

11

12

R'

R R1

R1

(c1-c8)

Sample

code

c1 c2 c3 c4 c5 c6 c7 c8

R1 H H H H H H H H

R=R’ C4H9 C6H13 C8H17 C10H21 C12H25 C14H29 C16H33 C18H37

1

23

4

5 6

7
N C

H
O

N
H
CO

8

910

11

12

R'

R R1

R1

(d1-d8)

Sample

code

d1 d2 d3 d4 d5 d6 d7 d8

R1 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3 OCH3

R=R’ C4H9 C6H13 C8H17 C10H21 C12H25 C14H29 C16H33 C18H37

Figure 5.14 : General structures of the symmetrical dimers of series (c) and (d)
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5.6.2 Synthesis of the symmetrical dimers containing 4,4’-(naphthalene 1,5-

diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene) diphenol (b8)

A new symmetrical dimers, N,N'-bis(4-alkoxybenzylidene)-1,5-naphthalene

diimines were synthesized by condensation reaction in a round bottomed flask by

dissolving compound 1 (1 g, 2x10-3 mol) in a N,N'-dimethylformamide (DMF) solution

containing K2CO3 (0.75 g, 5.4x10-3) as proton acceptor. The stirring solution was heated

up to 80oC. After 20 min, 1-bromoalkane (RBr, R= C4 to C18) (0.74 g, 4.6 x10-3mol)

was added dropwise and the mixture thus obtained was heated for 24 h before being

cooled down to room temperature. The obtained solution was then poured into 100 mL

of water, and the precipitate formed was filtered off and dried. The product was

recrystallized with ethyl acetate to yield yellow–brown solid product. DMF solvent had

been used to obtain good yield, shorter time and easier separation of the final product.

Synthesis of N,N-bis(4-butoxybenzylidene)naphthalene-1,5-diimine (c1)

Yellowish-brown, yield 79.8%, MP: 137-138˚C, IR, υ: 3071-3031 cm-1 (C-Har),

2922-2861 cm-1 (C-Haliph), 1620 cm-1 (C=N) and 1262 cm-1 (O-CH2),
1H NMR, δ (ppm,

CDCl3, 400 MHz): 0.83 (t, 6H, CH3), 1.41-1.79 (m, 8H, CH2), 3.99 (t, 4H, J=6.5 x(2),

O-CH2), 6.94 (d, 4H, J=8.8, H2,6), 7.00 (d, 2H, J=7.3, H9), 7.39 (t, 2H, J=7.8 x(2), H10),

7.88 (d, 4H, J=8.8, H3,5), 8.14 (d, 2H, J=8.5, H11), 8.40 (s, 2H, H7).
13C NMR, δ (ppm,

CDCl3, 100 MHz): 14.14 (2C, CH3), 22.71-29.32 (4C, Caliph), 68.21 (2C, O-CH2),

113.42 (2C, C9), 114.88 (4C, C2,6), 121.78 (2C, C11), 125.77 (2C, C4), 129.44 (2C, C10),

129.50 (2C, C12), 131.12 (4C, C3,5), 149.53 (2C, C8), 159.76 (2C, C1), 162.13 (2C, C7).

Synthesis of N,N-bis(4-(hexyloxy)benzylidene)naphthalene-1,5-diimine (c2)

Yellow solid, yield 83.3%, Mp: 133-134˚C, IR, υ: 3078-3025 cm-1 (C-Har), 2934-2858

cm-1 (C-Haliph), 1619 cm-1 (C=N) and 1261 cm-1 (O-CH2),
1H NMR, δ (ppm, CDCl3,

400 MHz): 0.85 (t, 6H, CH3), 1.28-1.79 (m, 16H, CH2), 3.97 (t, 4H, J=6.5x (2), O-CH2),
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6.94 (d, 4H, J=8.8, H2,6), 7.00 (d, 2H, J=7.3, H9), 7.39 (t, 2H, J=7.8x(2), H10), 7.88 (d,

4H, J=8.8, H3,5), 8.14 (d, 2H, J=8.5, H11), 8.40 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3,

100MHz): 14.14 (2C, CH3), 22.71-31.68 (8C, Caliph), 68.33 (2C, O-CH2), 113.4 (2C,

C9), 114.82 (4C, C2,6), 121.60 (2C, C11), 125.87 (2C, C4), 129.43 (2C, C10), 129.49 (2C,

C12), 130.75 (4C, C3,5), 149.51 (2C, C8), 159.74 (2C, C1), 162.03 (2C, C7).

Synthesis of N,N-bis(4-(octyloxy)benzylidene)naphthalene-1,5-diimine (c3)

Yellow crystal, yield 80.6%, Mp: 108-109°C, IR, υ: 3074-3041 cm-1 (C-Har), 2940-2852

cm-1 (C-Haliph), 1614 cm-1 (C=N) and 1235 cm-1 (O-CH2),
1H NMR, δ (ppm, CDCl3, 400

MHz): 0.84 (t, 6H, CH3), 1.23-1.79 (m, 24H, CH2), 3.97 (t, 4H, J=6.6x(2), O-CH2), 6.94

(d, 4H, J=8.8, H2,6), 6.99 (d, 2H, J=7.3, H9), 7.39 (t, 2H, J=7.8x(2), H10), 7.88 (d, 4H,

J=8.8, H3,5), 8.14 (d, 2H, J=8.5, H11), 8.41 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100

MHz): 14.21 (2C, CH3), 22.77-31.82 (12C, Caliph), 68.34 (2C, O-CH2), 113.41 (2C, C9),

114.82 (4C, C2,6), 121.60 (2C, C11), 125.87 (2C, C4), 129.43 (2C, C10) 129.50 (2C, C12),

130.75 (4C, C3,5), 149.51 (2C, C8), 159.75 (2C, C1), 162.03 (2C, C7).

N,N-bis(4-(decyloxy)benzylidene)naphthalene-1,5-diimine  (c4)

Yellow crystal, yield 87.66%, Mp: 98- 99°C, IR, υ: 3076-3028 cm-1 (C-Har), 2936-2843

cm-1 (C-Haliph), 1618 cm-1 (C=N) and 1252 cm-1 (O-CH2),
1H NMR, δ (ppm, CDCl3,

400 MHz): 0.88 (t, 6H, CH3), 1.28-1.85 (m, 32H, CH2), 4.03 (t, 4H, J=6.6x(2), O-CH2),

7.01 (d, 4H, J=8.8, H2,6), 7.06 (d, 2H, J=7.1, H9), 7.46 (t, 2H, J=8.3x(2), H10), 7.95 (d,

4H, J=8.8, H3,5), 8.21 (d, 2H, J=8.3, H11), 8.47 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3,

100 MHz): 14.24 (2C, CH3), 22.79-32.01 (16C, Caliph), 68.33 (2C, O-CH2), 113.42 (2C,

C9), 114.82 (4C, C2,6), 121.61 (2C, C11), 125.87 (2C, C4), 129.43 (2C, C10), 129.51 (2C,

C12), 130.75 (4C, C3,5), 149.51 (2C, C8), 159.74 (2C, C1), 162.03 (2C, C7).
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Synthesis of N,N-bis(4-(docecyloxy)benzylidene)naphthalene-1,5-diimine (c5)

Yellow crystal, yield 86.9%, Mp: 108-109°C, IR, υ: 3077-3025 cm-1 (C-Har), 2921-2854

cm-1 (C-Haliph), 1622 cm-1 (C=N) and 1251 cm-1 (O-CH2),
1H NMR, δ (ppm, CDCl3,

400 MHz): 0.81 (t, 6H, CH3), 1.20-1.79 (m, 40H, CH2), 3.97 (t, 4H, J=6.5x(2), O-CH2),

6.94 (d, 4H, J=8.8, H2,6), 7.00 (d, 2H, J= 7.1, H9), 7.39 (t, 2H, J=7.9x(2), H10), 7.88 (d,

4H, J=8.5, H3,5), 8.14 (d, 2H, J=8.3, H11), 8.40 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3,

100 MHz): 14.23 (2C, CH3), 22.80-32.02 (20C, Caliph), 68.35 (2C, O-CH3), 113.41 (2C,

C9), 114.82 (4C, C2,6), 121.60 (2C, C11), 125.86 (2C, C4), 129.43 (2C, C10), 129.49 (2C,

C12), 130.75 (4C, C3,5), 149.50 (2C, C8), 159.74 (2C, C1), 162.03 (2C, C7).

Synthesis of N,N-bis(4-(tetradecyloxy)benzylidene)naphthalene-1,5-diimine (c6)

Yellow shine solid, yield 84.5%, Mp: 107-108°C, IR, υ: 3063-3028 cm-1 (C-Har), 2905-

2835 cm-1 (C-Haliph), 1623 cm-1 (C=N) and 1248 cm-1 (O-CH2),
1H NMR, δ (ppm,

CDCl3, 400 MHz): 0.81 (t, 6H, CH3), 1.20-1.77 (m, 48H, CH2), 3.97 (t, 4H, J=6.6x(2),

O-CH2), 6.94 (d, 4H, J=8.5, H2,6), 7.00 (d, 2H, J=7.1, H9), 7.39 (t, 2H, J=7.9 x(2), H10),

7.89 (d, 4H, J=8.5, H3,5), 8.14 (d, 2H, J=8.3, H11), 8.41 (s, 2H, H7).
13C NMR, δ (ppm,

CDCl3, 100 MHz): 14.24 (2C, CH3), 22.79-32.02 (24C, Caliph), 68.34 (2C, O-CH2),

113.41 (2C, C9), 114.82 (4C, C2,6), 121.59 (2C, C11), 126.86 (2C, C4), 129.42 (2C, C10),

129.49 (2C, C12), 130.75 (4C, C3,5), 149.51 (2C, C8), 159.75 (2C, C1), 162.03 (2C, C7).

Synthesis of N,N-bis(4-(hexadecyloxy)benzylidene)naphthalene-1,5-diimine  (c7)

Yellow solid, yield 84.8%, Mp: 107-108°C, IR, υ: 3077-3033 cm-1 (C-Har), 2921-2845

cm-1 (C-Haliph), 1619 cm-1 (C=N) and 1244 cm-1 (O-CH2),
1H NMR, δ (ppm, CDCl3, 400

MHz): 0.82 (t, 6H, CH3), 1.21-1.79 (m, 56H,CH2), 3.97 (t, 4H, J=6.6x(2), O-CH2), 6.94

(d, 4H, J=8.8, H2,6), 7.01 (d, 2H, J=7.1, H9), 7.39 (t, 2H, J=7.8x(2), H10), 7.89 (d, 4H,
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J=8.6, H3,5), 8.14 (d, 2H, J=8.4, H11), 8.40 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100

MHz): 14.22 (2C, CH3), 22.79-32.02 (28C, Caliph), 68.33 (2C, O-CH2), 113.41 (2C, C9),

114.82 (4C, C2,6), 121.60 (2C, C11), 125.86 (2C, C4), 129.42 (2C, C10), 129.48 (2C, C12),

130.75 (4C, C3,5), 149.50 (2C, C8), 159.75 (2C, C1), 162.02 (2C, C7).

Synthesis of N,N-bis(4-(octadecyloxy)benzylidene)naphthalene-1,5-diimine  (c8)

Yellow solid, yield 85.4%, Mp: 106-107°C, IR, υ: 3081-3023 cm-1 (C-Har),

2922-2849 cm-1 (C-Haliph), 1621 cm-1 (C=N) and 1256 cm-1 (O-CH2),
1H NMR, δ (ppm,

CDCl3, 400 MHz): 0.82 (t, 6H, CH3), 1.22-1.81 (m, 64H ,CH2), 3.97 (t, 4H, J=6.7x(2),

O-CH2), 6.95 (d, 4H, J=8.7, H2,6), 7.00 (d, 2H, J=7.3, H9), 7.39 (t, 2H, J=7.9x(2), H10),

7.89 (d, 4H, J=8.5, H3,5), 8.15 (d, 2H, J=8.4, H11), 8.41 (s, 2H, H9).
13C NMR, δ (ppm,

CDCl3, 100 MHz): 14.22 (2C, CH3), 22.79-32.02 (32C, Caliph), 68.33 (2C, O-CH2),

113.41 (2C, C9), 114.82 (4C, C2,6), 121.59 (2C, C11), 125.86 (2C, C4), 129.43 (2C, C10),

129.48 (2C, C12), 130.74 (4C, C3,5), 149.51 (2C, C8), 159.75 (2C, C1), 162.02 (2C, C7).

5.6.3 Synthesis of the symmetrical dimers containing 4,4’-(naphthalene1,5-

diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2methoxyphenol)

(b5)

Same procedure was used to prepare another symmetrical series of dimers (d1-d8)

containing (b5) compound.

Synthesis of N,N-bis(4-butoxy-3-methoxybenzylidene)naphthalene-1,5-diimine (d1)

Yellow solid compound, yield 79.6%, Mp: 152-153°C, IR, υ: 3066-3023 cm-1 (C-Har),

2936-2884 cm-1 (C-Haliph), 1622 cm-1 (C=N), 1277 cm-1 (O-CH3) and 1262 cm-1 (O-

CH2),
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.83 (t, 6H, CH3), 1.46-1.86 (m, 8H, CH2),

3.94 (s, 6H, OCH3), 4.03 (t, 4H, J=6.8x (2), O-CH2), 6.88 (d, 2H, J=8.1, H6), 7.00 (d,

2H, J=7.3, H5), 7.3 (d, 2H, J=8.3, H9), 7.40 (t, 2H, J=7.9x(2), H10), 7.68 (s, 2H, H3),

8.14 (d, 2H, J=8.3, H11), 8.38 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.21
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(2C, CH3), 22.76-29.38 (4C, Caliph), 56.23 (2C, OCH3), 69.18 (2C, OCH2), 109.62 (2C,

C3), 111.87 (2C, C9), 113.56 (2C, C6), 121.35(2C, C5), 124.49 (2C, C11), 125.89 (2C,

C10), 129.44 (2C, C12), 129.28 (2C, C4), 149 (2C, C8), 149.26 (2C, C2), 152.03 (2C, C1),

160.3 (2C, C7).

Synthesis of N,N-bis(4-(hexyloxy)-3-methoxybenzylidene)naphthalene-1,5-diimine

(d2)

Yellow solid compound, yield 82.1%, Mp: 142-143°C, IR, υ: 3061-3026 cm-1 (C-Har),

2942-2868 cm-1 (C-Haliph), 1621 cm-1 (C=N), 1273 cm-1 (O-CH3) and 1267 cm-1 (O-

CH2),
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.8.28 (t, 6H, CH3), 1.42-1.89 (m, 12H,

CH2), 3.96 (s, 6H, OCH3), 4.01 (t, 4H, J=6.8x (2), O-CH2), 6.89 (d, 2H, J=8.1, H6), 6.99

(d, 2H, J=7.3, H5), 7.33 (d, 2H, J=8.3, H9), 7.41 (t, 2H, J=7.9x(2), H10), 7.69 (s, 2H, H3),

8.15 (d, 2H, J=8.3, H11), 8.40 (s, 2H, H7),
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.19

(2C, CH3), 22.66-29.67 (6C, Caliph), 56.28 (2C, OCH3), 69.26 (2C, OCH2), 109.63 (2C,

C3), 111.89 (2C, C9), 113.58 (2C, C6), 121.35(2C, C5), 124.48 (2C, C11), 125.90 (2C,

C10), 129.44 (2C, C12), 129.28 (2C, C4), 149 (2C, C8)149.27 (2C, C2), 152.02 (2C, C1),

160.2 (2C, C7).

Synthesis of N,N-bis(4-(octyloxy)-3-methoxybenzylidene)naphthalene-1,5-diimine

(d3)

Yellow solid compound, yield 82.9%, Mp: 128-129°C, IR, υ: 3059-3011 cm-1 (C-Har),

2946-2894 cm-1 (C-Haliph), 1622 cm-1 (C=N), 1272 cm-1 (O-CH3) and 1259 cm-1 (O-

CH2),
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.83 (t, 6H, CH3), 1.46-1.91 (m, 16H ,

CH2), 3.95 (s, 6H, OCH3), 4.04 (t, 4H, J=6.8x (2), O-CH2), 6.88 (d, 2H, J=8.1, H6), 7.00

(d, 2H, J=7.3, H5), 7.4 (d, 2H, J=8.3, H9), 7.41 (t, 2H, J=7.9x(2), H10), 7.69 (s, 2H, H3)

8.14 (d, 2H, J=8.3, H11), 8.38 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.21

(2C, CH3), 22.79-31.91 (8C, Caliph), 56.23 (2C, OCH3), 69.18 (2C, OCH2), 109.68 (2C,
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C3), 111.87 (2C, C9), 113.56 (2C, C6), 121.35(2C, C5), 124.49 (2C, C11), 125.89 (2C,

C10), 129.40 (2C, C12), 129.66 (2C, C4), 149.49 (2C, C8), 149.90 (2C, C2), 151.68 (2C,

C1), 160.06 (2C, C7).

Synthesis of N,N-bis(4-(decyloxy)-3-methoxybenzylidene)naphthalene-1,5-diimine

(d4)

Yellow solid compound, yield 86.1%, Mp: 122-123°C, IR, υ: 3067-3015 cm-1 (C-Har),

2948-2874 cm-1 (C-Haliph), 1621 cm-1 (C=N), 1274 cm-1 (O-CH3) and 1262 cm-1 (O-

CH2).
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.84 (t, 6H, CH3), 1.36-1.81 (m, 20H, CH2),

3.96 (s, 6H, OCH3), 4.07 (t, 4H, J=6.8x (2), O-CH2), 6.94 (d, 2H, J=8.1, H6), 7.04 (d,

2H, J=7.3, H5), 7.34 (d, 2H, J=8.3, H9), 7.43 (t, 2H, J=7.9x(2), H10), 7.70 (s, 2H, H3),

8.16 (d, 2H, J=8.3, H11), 8.40 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.22

(2C, CH3), 22.78-36.57 (10C, Caliph), 56.22 (2C, OCH3), 69.16 (2C, OCH2), 109.59 (2C,

C3), 111.85 (2C, C9), 113.57 (2C, C6), 121.58 (2C, C5), 124.51 (2C, C11), 125.90 (2C,

C10), 129.40 (2C, C12), 129.65 (2C, C4), 149.49 (2C, C8), 149.89 (2C, C2), 151.86 (2C,

C1), 160.07 (2C, C7).

Synthesis of N,N-bis(4-(dodecyloxy)-3-methoxybenzylidene)naphthalene-1,5-

diimine (d5)

Yellow solid compound, yield 81.2%, Mp: 118-119°C, IR, υ: 3071-3024 cm-1 (C-Har),

2958-2879 cm-1 (C-Haliph), 1620 cm-1 (C=N), 1271 cm-1 (O-CH3) and 1260 cm-1 (O-

CH2),
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.85 (t, 6H, CH3), 1.34-1.88 (m, 24H, CH2),

3.94 (s, 6H, OCH3), 4.05 (t, 4H, J=6.8x (2), O-CH2), 6.89 (d, 2H, J=7.9, H6), 7.03 (d,

2H, J=7.3, H5), 7.33 (d, 2H, J=8.3, H9), 7.42 (t, 2H, J=8.3x(2), H10), 7.69 (s, 2H, H3),

8.14 (d, 2H, J=8.3, H11), 8.39 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.21

(2C, CH3), 22.78-32.89 (12C, Caliph), 56.22 (2C, OCH3), 69.17 (2C, OCH2), 109.62 (2C,

C3), 111.86 (2C, C9), 113.57 (2C, C6), 121.58 (2C, C5), 124.50 (2C, C11), 125.90 (2C,
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C10), 129.40 (2C, C12), 129.65 (2C, C4), 149.49 (2C, C8), 149.90 (2C, C2), 151.86 (2C,

C1), 160.08 (2C, C7).

Synthesis of N,N-bis(4-(tetradecyloxy)-3-methoxybenzylidene)naphthalene-1,5-

diimine (d6)

Yellow solid compound, yield 84.01%, Mp: 117-118°C, IR, υ: 3075-3028 cm-1 (C-Har),

2960-2877 cm-1 (C-Haliph), 1619 cm-1 (C=N), 1269 cm-1 (O-CH3) and 1258 cm-1 (O-

CH2),
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.86 (t, 6H, CH3), 1.39-1.95 (m, 28H, CH2),

3.95 (s, 6H, OCH3), 4.13 (t, 4H, J=6.8x (2), O-CH2), 6.88 (d, 2H, J=8.3, H6), 7.03 (d,

2H, J=7.3, H5), 7.32 (d, 2H, J=8.3, H9), 7.42 (t, 2H, J=7.9x(2), H10), 7.68 (s, 2H, H3)

8.14 (d, 2H, J=7.9, H11), 8.38 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.22

(2C, CH3), 22.76-29.68 (14C, Caliph), 56.25 (2C, OCH3), 69.21 (2C, OCH2), 109.63 (2C,

C3), 111.89 (2C, C9), 113.59 (2C, C6), 121.37(2C, C5), 124.54 (2C, C11), 125.91 (2C,

C10), 129.46 (2C, C12), 129.28 (2C, C4), 149.69 (2C, C8), 149.86 (2C, C2), 152.33 (2C,

C1), 160.9 (2C, C7).

Synthesis of N,N-bis(4-(hexadecyloxy)-3-methoxybenzylidene)naphthalene-1,5-

diimine (d7)

Yellow solid compound, yield 83.9%, Mp: 117-118°C, IR, υ: 3078-3028 cm-1 (C-Har),

2966-2881 cm-1 (C-Haliph), 1622 cm-1 (C=N), 1268 cm-1 (O-CH3) and 1258 cm-1 (O-

CH2).
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.86 (t, 6H, CH3), 1.24-1.90 (m, 32H, CH2),

3.99 (s, 6H, OCH3), 4.10 (t, 4H, J=6.8x (2), O-CH2), 6.94 (d, 2H, J=8.3, H6), 7.05 (d,

2H, J=7.3, H5), 7.36 (d, 2H, J=7.8, H9), 7.47 (t, 2H, J=7.8x(2), H10), 7.73 (s, 2H, H3)

8.16 (d, 2H, J=8.3, H11), 8.44 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.20

(2C, CH3), 22.78-32.01 (16C, Caliph), 56.23 (2C, OCH3), 69.19 (2C, OCH2), 109.68 (2C,

C3), 111.90 (2C, C9), 113.54 (2C, C6), 121.58(2C, C5), 124.47 (2C, C11), 125.89 (2C,
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C10), 129.42 (2C, C12), 129.70 (2C, C4), 149.51 (2C, C8), 149.94 (2C, C2), 151.88 (2C,

C1), 160.04 (2C, C7).

Synthesis of N,N-bis(4-(octadecyloxy)-3-methoxybenzylidene)naphthalene-1,5-

diimine (d8)

Yellow solid compound, yield 82.8%, Mp: 112-113°C, IR, υ: 3077-3029 cm-1 (C-Har),

2966-2879 cm-1 (C-Haliph), 1621 cm-1 (C=N), 1275 cm-1 (O-CH3) and 1259 cm-1 (O-

CH2),
1H NMR, δ (ppm, CDCl3, 400 MHz): 0.87 (t, 6H, CH3), 1.39-2.01 (m, 36H ,

CH2), 3.96 (s, 6H, OCH3), 4.11 (t, 4H, J=6.9x (2), O-CH2), 6.91 (d, 2H, J=8.3, H6), 7.06

(d, 2H, J=7.8, H5), 7.39 (d, 2H, J=7.8, H9), 7.49 (t, 2H, J=7.9x(2), H10), 7.71 (s, 2H, H3),

8.18 (d, 2H, J=8.3, H11), 8.48 (s, 2H, H7).
13C NMR, δ (ppm, CDCl3, 100 MHz): 14.23

(2C, CH3), 22.76-32.96 (18C, Caliph), 56.23 (2C, OCH3), 69.19 (2C, OCH2), 109.86 (2C,

C3), 111.94 (2C, C9), 113.96 (2C, C6), 121.05 (2C, C5), 124.63 (2C, C11), 126.10 (2C,

C10), 129.89 (2C, C12), 129.28 (2C, C4), 149.64 (2C, C8), 149.89 (2C, C2), 151.87 (2C,

C1), 162.01 (2C, C7).

5.7 Results and discussion

A new symmetrical dimers N,N'-bis(4-alkoxybenzylidene)1,5-naphthalene-

diimine and N,N'-bis(3-methoxy-4-alkoxybenzylidene)1,5-naphthalenediimine with

high yield were synthesized through the condensation reaction of bisphenol bis-Schiff

base and 2 moles of bromoalkyl by using DMF as solvent and K2CO3 as catalyst. Figure

5.14 shows the synthetic route of symmetrical dimers. Spectroscopic methods (FT-IR,

1H NMR, and 13C NMR) have been employed to elucidate the structures of the target

compounds. The series (c1-c8) will be discussed in this research which is almost similar

to the series of (d1-d8). In the terms of solubility, the new series of symmetrical dimers

have good solubility with the most solvents such as CHCl3, acetone and DMF, whereas

the naphthalene monomers dissolve in DMSO only. Some physical properties were
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studied to investigate the thermal degradation and optical properties of series (c) as well

the mesophase properties and the influence of the structure were investigated for both

series.

O
OH

R1

NH2

NH2

+2

Methanolic solution
5 drops of glacial acetic acid
4 h, 90 °C

N

N

CH

CH

OH

OH

R1

R1

2 RBr
2 dry K2CO3
anhydrous DMF
80°C, 24 h

N

N

CH

CH

OR

OR'

R1

R1

Series (c) R1=H, R=R'= C4H9 (c1), C6H13 (c2), C8H17 (c3), C10H21 (c4), C12H25 (c5), C14H29 (c6),

C16H33 (c7), C18H37 (c8).

Series (d) R1=OCH3, R=R'= C4H9 (d1), C6H13 (d2), C8H17 (d3), C10H21 (d4), C12H25 (d5), C14H29

(d6), C16H33 (d7), C18H37 (d8).

Figure 5.15 : Synthetic route of symmetrical dimers

Univ
ers

ity
 of

 M
ala

ya



131

5.7.1 Characterization of the symmetrical dimers

5.7.1.1 FTIR

FTIR data showed that the diagnostic bands, which can be assigned to the

stretching of aliphatic groups, were present within the frequencies of 2835-2940 cm-1

with relative intensities ranging from weakest absorption for c1 to the strongest for c8.

This characteristic is in accordance with the length of symmetrical terminal alkyl groups

attached to the central core in which c1 is the shortest member having only terminal

butyl groups. The presence of the aromatic rings was inferred within the frequencies of

3081-3023 cm-1. The band appearing within the frequencies of 1614-1623 cm-1 can be

attributed to the stretching of azomethine moiety (CH=N). The strong absorption band

observed in the fingerprint region of 1235-1261 cm-1 is indicative of the C-O stretching

of the aromatic ether (Ar-O-R). The representative IR spectra of compound c2, c4 and

c6 are shown in Figure 5.16.

Figure 5.16: FT-IR spectra of the symmetrical dimers (a) c2, (b) c4 and (c) c6
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5.7.1.2 1H NMR

The molecular structure for all the compounds were further confirmed by high

resolution 1H and 13C spectroscopies.

From Table 5.1 the triplet peak that appeared at the region of δ = 0.81-0.88 ppm

was assigned to the six proton of methyl (-CH3) of the alkyl chain. The multiplet peak

owing to the presence of methylene protons was observed within the range of δ = 1.20-

1.85 ppm. For the longer homologous series (c1-c8), the presence of indistinguishable

overlapping multiplet was observed for methylene protons. The triplet peak that

appeared at region of 3.97-4.03 ppm was assigned to the methylene protons of ether

(Ar-O-CH2-). The peak that appeared as doublet at the region of 6.94-7.01 ppm is

attributed to the four aromatic protons of position 2th and 6th on the phenyl ring. The

doublet peak appeared at the region of 6.99-7.01 ppm was assigned to two protons of

naphthalene group for the position number 9th. The intense triplet peak at the region of

7.39-7.46 ppm is due to the two protons of the naphthalene moiety for the position 10th.

The peaks appeared at the region of 7.88-7.95 ppm are associated to the four protons for

the position 3th and 5th in phenyl ring. The peaks that appeared as doublet at the region

of 8.14-8.21 ppm is attributed to the two aromatic protons of position 11th of the

naphthalene group. A sharp singlet peak was observed at low field within the region of

8.40-8.47 ppm, which can be ascribed to the two protons of azomethine linking group,

in which the deshielding effect is caused by the inductive effect of N atom which

reduces the electron density on the adjacent C atom.

The new peak observed at the region of 0.81-1.85 ppm is due yo the flexible

chain of alkyl groups that are attached to the phenyl groups. The other new peak that

appeared at the region of 3.97-4.03 ppm represents the ether group (Ar-O-CH2) which is

the best indication for the confirmation of the target compounds. Figure 5.17 displays
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1H NMR spectra of b8 and Figure 5.18 shows 1H NMR spectra of the symmetrical

dimers of c2.

Table 5.1 : 1H NMR chemical shifts of dimers (c1-c8)

Type of proton Chemical shift (ppm)

CH3 0.81-0.88 (t)

-CH2- 1.20-1.85 (m)

OCH2 3.79-4.03 (t)

Ar-H (2th,6th position) 6.94-7.01 (d)

naph-H (9th position) 6.99-7.06 (d)

naph-H (10th position) 7.39-7.46 (t)

Ar-H (3th,5th position) 7.88-7.95 (d)

naph-H (11th position) 8.14-8.21 (d)

C=N (7th position) 8.40-8.47 (s)

Note: s=singlet, d=doublet, t=triplet, m=multiplet.
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Figure 5.17 : 1H NMR spectrum of monomer containing naphthalene b8
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Figure 5.18 : 1H NMR spectrum of dimer containing naphthalene c2

5.7.1.3. 13C NMR

The molecular structures of compounds c1-c8 were further substantiated by 13C

NMR spectroscopy. Table 5.2 shows the spectrum data of 13C NMR for series c1-c8.

The peak attributable to the methyl carbon (CH3) was observed at the region of 14.14-

14.24 ppm. The following peaks at the region of 22.71-32.08 ppm were assigned to the

methylene carbons of the symmetrical aliphatic groups, where the number of peaks and

the intensities increase with increasing methylene groups. The carbon of ether group

that is attached to the phenyl group (Ar-O-CH2) appeared in the region of 68.21-68.35

ppm. The phenyl and naphthalene carbons gave rise to different peak in the region of

113.40-159.67 ppm. The appearance of peak in the region of 162.02-162.13 ppm was

subsequently assigned to the azomethine carbon C7. A representative 13C NMR

spectrum and complete structural assignments of the monomer b8 and c2 are shown in

Figure 5.19 and 5.20 respectively. All the compounds in series d1-d8 showed 1H NMR

and 13C NMR of similar characteristic peaks as discussed for series c1-c8.
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Table 5.2 : 13C NMR chemical shifts of compounds (c1-c8)

Type of carbon Chemical shift (ppm)

CH3 14.14-14.24

-CH2- 22.71-32.08

OCH2 68.21-68.35

naph-C (9th position) 113.40-113.42

Ar-C (2th,6th position) 114.82-114.88

naph-C (11th position) 121.59-121.78

Ar-C (4th position) 125.77-125.87

naph-C (10th position) 129.42-129.44

naph-C (12th position) 129.48-129.50

Ar-C (3th,5th position) 130.74-131.12

Ar-C (1th position) 149.50-149.53

naph-C (8th position) 159.74-159.76

C=N (7th position) 162.02-162.13
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Figure 5.19 : 13C NMR spectrum of dimer containing naphthalene b8
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Figure 5.20 : 13C NMR spectrum of dimer containing naphthalene c2

5.7.2 Thermal degradation properties

The thermal stabilities of the compounds in series c in its various forms were

examined through TGA within a temperature range of 50-900°C under nitrogen

atmosphere at heating rate of 20°C/min. The detailed thermal data for all compounds

are summarized in Table 5.3.

All the compounds displayed excellent decomposition temperatures (Td)[228],

with decomposition temperatures (Td) of approximately 400ºC and the anaerobic char

yields at 900°C for all the compounds were in the range 2.4-15.8 wt%. The Td values at

10 wt% loss for the compounds occurred at 411-430°C which may attributed to the

decomposition of alkyl flexible chains. This process is followed by a rapid weight loss

of 80 wt% of the initial weight between 490-565°C due to the decomposition of rigid

mesogenic chains containing aryl and naphthalene groups.

The TGA thermograms of c2, c4, c6 and c7 are depicted in Figure 5.21 (a). All

the compounds exhibited a one-stage decomposition behaviour at elevated temperatures

as shown in Figure 5.21 (b). The high thermal stability obtained could be attributed to
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the rigidity and symmetry of the compounds[229]. Generally, compounds containing

naphthalene moiety improve the thermal stability due to the rigidity of this group[230].

Table 5.3 : Thermal analysis data of the symmetrical dimers (c1-c8).

Sample code 10% weight loss

temperature (°C)

80% weight loss

temperature (°C)

Char yield (%)

c1 420 549 15.3

c2 417 555 14.9

c3 430 565 15.8

c4 425 558 14.6

c5 422 551 8.1

c6 418 496 2.4

c7 424 490 8.5

c8 427 489 4.9

As a result of the excellent decomposition temperature, these

compounds show good thermal stability for industrial processing.

Decomposition of the compounds was almost complete at around 900°C with

no further weight loss observed after that.
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Figure 5.21 : (a) Thermograms of c2, c4, c6 and c7, (b) DTG of c2, c4, c6 and c7.

5.7.3 Optical properties

Fundamental photophysical properties of the new compounds were investigated

by UV-Vis and fluorescence spectroscopies. The results are summarized in a Table 5.4.

The dilute solutions of these compounds in THF exhibited strong absorption peaks in

the range of 281-283 nm and weak absorption in the range 362-363 nm, assignable to

the (n-π*) transition resulting from the conjugation between the aromatic rings and

nitrogen atoms and transition from the characteristic (π-π*) transitions of naphthalene
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chromophore. Figure 5.22 shows the UV-Vis absorption spectra for compounds c3, c5

and c7. Figure 5.23 shows that the compounds exhibited strong fluorescence emission

in a red shift region with a fluorescence maximum wavelength at 518-523 nm. Although

several different azomethines have been described in the literature, only a few

azomethines have been reported to exhibit fluorescence together with the liquid

crystalline properties[231, 232].

Table 5.4 : UV-vis absorption and PL emission spectral data of the symmetrical dimer

(c1-c8)

Sample code Absorption

λabs (nm)

PL emission

λmax (nm)

c1 283 , 362 516

c2 283 , 362 517

c3 283 , 362 518

c4 281 , 362 517

c5 281 , 363 517

c6 282 , 362 519

c7 283 , 363 518

c8 283 , 363 518
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Figure 5.22 : UV-Vis absorption spectra of compounds c3, c5 and c7.

Figure 5.23 : PL spectra of compounds c3, c5, and c7 in THF solution

5.7.4 Thermal behavior and textural observation

Two series of symmetrical dimers (c and d) had been synthesized in order to

investigate the liquid crystal properties and study the effect of a methoxy group at the

core adjacent to the spacer where the liquid crystal behaviour of these compounds are

determined by mesogenic group, the linking unit and the flexibility of the terminal

moiety.
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The thermal properties including the transition temperature and changes of

enthalpy (ΔH) were achieved by Differential Scanning Calorimetry analysis technique

for both series. Transition temperatures obtained from the DSC are in agreement with

the OPM results. Deviations are within ± 1°C. For the homologous series (c), two

different liquid crystal phases were observed i.e. the nematic and smectic C with

Schliren textures of both phases obtained upon heating and cooling as shown in Figure

5.26. The phase transition temperatures and corresponding enthalpy changes of all

compounds are tabulated in Table 5.5.

Table 5.5 : Phase transitions, Temperature and transition enthalpy changes for

compounds (c1–c8) and (d6 and d7)

Compounds Transition temperatures, °C (corresponding enthalpy
changes, kJ mol-1)

c1 Cr 268 (54) I

c2 Cr 134 (36) N 222 I (2)

c3 Cr 111 (58) N 198 I (2)

c4 Cr 102 (58) N 181 I (2)

c5 Cr 105 (70) SmC 119 N (1) 167 I (2)

c6 Cr 107 (97) SmC 133 N (1) 157 I (3)

d6 Cr 112 (101) I

c7 Cr 110 (45) SmC 137 N (2) 158 I (3)

d7 Cr 154 (111) I

c8 Cr 103 (73) I

Note: Cr, crystal; SmC, smectic C; N, nematic; I, isotropic.Univ
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Figure 5.24 : (a) The crystal texture on cooling taken at 79°C, (b) schlieren texture of
smectic C at 128°C while (c) is showing schlieren texture for nematic
phase on cooling at 158°C for compound c6.

During heating and cooling just one transition temperature was observed for

compound c1 which contains only a four carbon chain where this compound does not

show liquid crystalline behaviour. The absence of liquid crystalline behaviour may be

attributed to the presence of a strong intermolecular attraction among the short-chain

molecules leading to restricted thermal motion.

When the alkyl chain length is increased to six carbon atoms as represented in

compound c2, two transitions phase were observed during the heating process, where at

134°C is the first transition from crystal to liquid crystalline phase and followed by the

transition from liquid crystalline phase to isotropic phase at 222°C. Compounds c3, c4

and c5 showed similar peaks to compound (c2) during heating and cooling process (i.e.

(a) (b)

(c)
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two transition phase) with different range of temperatures. Figure 5.25 shows the two

transition phase of compound c4 from DSC thermogram.

Figure 5.25 : DSC trace of compound c4

As for heating cycle of compound c6, three peaks are obtained. A sharp peak is

observed at 110°C with change of enthalpy (45 kJ mol-1) indicating that the transition

phase is from crystal to nematic phase followed by small peak at 137°C with change of

enthalpy (1 kJ mol-1) indicating the transition phase is from smectic phase to nematic

phase and the last peak appeared at 158°C with change of enthalpy (3 kJ mol-1)

indicating the transition is from the nematic phase to isotropic phase. Smectic C is

suggested based on the molecular structure that we observed from OPM. Figure 5.26

shows the representative DSC thermogram of compound c6.
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Figure 5.26 : DSC trace of compound c6

Figure 5.27 displays the thermotropic behavior as a function of alkyl chain

length for series c, starting with C4H9 and ending with C18H36. In order to visualize the

effect of the methoxy group, two representatives for structure type d are also included,

i.e. compounds d6 and d7.

Figure 5.27 : Thermotropic behaviors as a function of alkyl chain length for series (c)

and (d).
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As shown in Figure 5.28 series (d), on the other hand, did not exhibit any

transition phase by DSC. Figure 5.28 displays the DSC trace of compound d6 where

just two peaks are observed in this compound during heating cycle and cooling cycle

which indicates that the phase transition is from crystal phase to isotropic phase in

heating cycle and vice versa in cooling cycle.

Figure 5.28 : DSC trace of compound d6

Based on the results we can conclude that the core of the compounds is very rigid,

leading to dense molecular packing, thus resulting in high melting points with large

enthalpy changes. Also, increasing chain length for the series c reduces the melting

temperature but decreases the clearing point.

Compound c1 having the shortest chain length (C4) does not exhibit liquid crystal

property. Earlier works on other symmetrical dimers[197], have shown that in

compounds of short-chain molecules, there exist strong intermolecular attractions which

lead to restricted thermal motion. This causes the molecules to be highly positioned

resulting in absence of liquid crystal property. A chain length of six carbon atoms,

however, provides sufficient flexibility of the compound to access the liquid crystalline
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state, which was identified as a nematic phase. Starting with a C12 chain length an

additional more ordered, smectic, mesophase emerges, where the smectic tendency

increases by increasing the terminal chain due to the long chains becoming intertwined

and attracted, which facilitates the lamellar packing required for smectic phase

generation and eventually eliminates the nematic phase [204]. The molecular structure

of the compounds suggests a tilted smectic C phase rather than the smectic A phase.

The OPM texture confirms this expectation. The two liquid crystal phases are obtained

from the series (i.e nematic and smectic) may be attributed to the fact that naphthalene

moiety displays rich mesomorphism[233]. From a chain length of C18 the liquid crystal

state disappears. The absence of liquid crystalline phase in c8 may be attributed to the

influence of increasing the alkyl length chain which weakened the rigidity of the long

molecular axis and for that reason the linearity of the molecule is affected.

Consequently, the molecules do not fit readily into the parallel molecular arrangement

liquid crystal phase due to the more significant bending conformation which leads to

decreasing in the phase stability and lower transition temperatures are observed in

compound c8[234].

Introducing the methoxy group causes the compounds to lose their liquid crystalline

behavior. In addition, they show higher melting points compared to the analog

compounds in series c. Moreover, the trend for melting temperatures for series c is

reverted, leading to rising melting temperatures with increasing chain length instead.

The methoxy groups, therefore, are considered as effective obstacles for liquid crystal

phases. The influence of methoxy moiety on ortho position of the aromatic ring causes a

disruption in the liquid crystal stability.

During the heating process for the compounds c1 to c8, it is important to observe

that the clearing points decrease gradually with increasing the length of alkyl chains.
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This observation agrees with previously reported homologous series of p,p-biphenylene

esters of p-alkoxy and p-carbalkoxybenzoic acids[235], as well as complies to the

homologous series of N,N-bis(3-methoxy-4-alkoxybenzylidene)-1,4-phenylene

diimine[217] in which the shortest chain homologue of the alkyl chains has the greatest

thermal stability. Generally, in this type of the compounds, the stability of the

mesophase will be influenced by at least four diversed ways[236]. First, the alkyl chain

will behave as a diluent, increasing the mean separation between molecules and so

likewise the separation between them which in turn reduces the anisotropy of the

intermolecular forces and subsequently results in lower stability of the mesophase.

Second, by increasing the length of the molecule will cause an increase in its

geometrical anisotropy. Third, by increasing the size of the polar terminal groups can

lead to reducing the attractions between the molecules. Fourth, the total polarizability

should increase with increasing the size of molecule. The first and third factors explain

that increasing the size of the alkyl chain leads to decrease in mesophase stability which

causes the liquid transition temperature to decrease with increasing size of the alkyl

chain.
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CHAPTER 6 : CONCLUSIONS AND SUGGESTION FOR

FUTURE STUDIES

6.1 Conclusions

A series of new polycarbosilanes containing bisphenol Schiff base monomers with

different substituted groups (electron-donating and/or withdrawing) and different

conjugation number was successfully synthesized by polycondensation reaction using

bis(chloromethyl) dimethylsilane. The purity and chemical structures of the prepared

monomers and copolymers have been identified by FTIR, 1H NMR, 13C NMR, 2D

NMR, X-ray chrystallography and GPC. All the results were in agreement with the

proposed structure. The monomers showed good solubility in DMSO and DMF and the

copolymers exhibited excellent solubility in common organic solvents (THF, CHCl3 and

DMF) but copolymers containing bisphenol azine were insoluble in hydroxyl-group

containing solvents (CH3OH and C2H5OH) while copolymers containing bisphenol bis-

Schiff base were partially soluble. The molecular weights of the copolymers as

measured by GPC were higher when synthesized by monomers containing electron-

donating group than monomers containing electron-withdrawing groups and monomers

without substituted groups were the less due to the long term resonance.

All the copolymers exhibited good thermal stability with one stage

decomposition which is really good for practical processing or for possible use in

devices. Copolymers containing 1,5-naphthalene in the main chain exhibited higher

thermal stability than those containing azine and 1,4-phenylene due to their high

aromatic content. Also, the copolymers containing substituted groups in the benzene

ring possess higher thermal degradation due to higher bond energy values of this group

leading to high stability of the copolymers. The char yields for all the copolymers at

700°C were between 17.7-52.61%.
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The optical properties of the synthesized polycarbosilane were investigated by

UV-vis and photoluminescence spectroscopies. All the copolymers containing bisphenol

azine exhibited single clear absorption peak in the range of 318-352 nm corresponding

to π- π* and n- π* transitions of the aromatic ring and the azomethine group as well as

from the conjugation of the aromatic ring and the nonbonding electrons (O-CH3, OH).

In Pa2, Pa3 and Pa4 longer wavelength absorption maximum (344.7-351.3 nm) is

observed due to the presence of electron-donating substituents (OCH3 and OCH2CH3)

which possess higher wavelength, where these groups increase the density of electron at

the azomethine group, decrease the n-π* transition energy and produce bathochromic

shifts of the long wavelength absorption maximum. For copolymers containing

electron-withdrawing substituent (Pa5 and Pa6), the bands are shifted to lower

wavelength (318-321 nm) due to decrease in electron density at the azomethine group,

and consequently increases the n-π* transition energy to produce hypsochromic shifts.

Absorption peaks for copolymers containing 1,4-phenylene and 1,5-naphthalene

appeared as two peaks in the region of 287-365 nm and three peaks in the region of

273-363 nm respectively. The fluorescence emission maxima of the all copolymers are

in the range of 370-620 nm with emission between 415-429 nm which may be

categorized as blue emission. The blue emission is due to the conjugation of bisphenol

Schiff base compounds, resulting in good π–electrons delocalization along bisphenol

Schiff base which is a p-π conjugated system.

From cyclic voltammetric studies the HOMO and LUMO energy levels of

copolymers Pa1-Pa6 were found to be in the range of -5.60 to -5.82 eV and -3.83 to -

4.10 eV respectively and the obtained HOMO-LUMO values were influenced by the

substituents groups located in the benzene ring. The synthesized copolymers containing

electron-withdrawing group have lower HOMO energy values, while copolymers

containing electron-donating groups have higher HOMO energy values. On the other
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hand, the HOMO and LUMO energy values of the copolymers Pb1-Pb7 were in the

range -5.73 eV to -6.02 eV and -3.38 eV to -3.50 respectively. The variations in

electrochemical behaviours of copolymers Pb1-Pb7 originated from the different

molecular structure chain of copolymers where the electrochemical properties of these

copolymers may be influenced by the effective conjugation length. The conjugation

lengths will increase the oxidation potential of Pb1-Pb7 and the HOMO energy levels

will be shifted to a lower energy level. The HOMO-LUMO energy levels of polymers

confirmed that the newly synthesized polycarbosilane are conjugated p-type polymers

and they could be potential candidate as hole-transporting materials in organic light

emitting diodes (OLED) and heterojunction solar cell.

Two new series of homologous symmetrical dimers N,N-bis(4-alkoxy- benzylidene)-

1,5-naphthalenediimine grouped as series c and N,N-bis(3-methoxy-4-alkoxy-

benzylidene)-1,5-naphthalenediimine grouped as series d with different lengths of

terminal alkyl groups of even parity ranging from butyl to octadecyl were synthesized

and characterized. The mesomorphic properties of these compounds were investigated

via differential scanning calorimetry and optical polarizing microscopy. A diversed

phase-transition behaviour was observed for the members of series c which could be

attributed to the possible molecular conformations. Compounds with chain length in a

range of C6H13 to C12H33 showed smectic C phase while C14H29 and C16H33 displayed

smectic and nematic phase. The dimers containing butyl and octadecyl moiety did not

display mesogenic properties. Meanwhile, series d did not exhibit any liquid crystalline

phase due to the effect of methoxy group on molecule. All of the compounds in the first

series (c1-c8) have high thermal stability and did not show significant decomposition

below 400ºC in nitrogen atmosphere. UV-vis results showed strong peak at 281-283 nm

and weak peak at 362–363 nm and fluorescence intensity of the resultant compound was

in the red region at 516-518 nm.
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6.2 Suggestion for further research

The copolymers synthesized by polycondensation in this work only possess low

molecular weights. Further investigation is required on the successful synthesized new

types of polysilane by reacting same monomers with propargyl bromide to obtain

diacetylene monomers followed by reacting with dichlorodimethylsilane by Gregnard

reaction to produce new copolymers of polysilylacetylene with high molecular weight

and narrow polydispersity. The logical continuation of this work would be to scale up

the production of the monomers and copolymers for various practical applications.

It is also interesting to synthesize new copolymers by adding dichlorodimethylsilane to

the synthesized monomers to prepare polysiloxane and explore the novel mesomorphic

and optical properties of the new copolymers.
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