COMPARATIVE BIOCHEMICAL CHARACTERIZATION OF
DROSOPHILA MELANOGASTER EPSILON CLASS GLUTATHIONE
S-TRANSFERASE, DmGSTE6 AND DmGSTE7

VENNOBAAHSHINI A/P VENU

DISSERTATION SUBMITTED IN FULFILMENT OF THE
REQUIREMENT FOR THE DEGREE OF
MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCES
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2015
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: VENNObAAHSHINI A/P VENU I.C/Passport No: 860608-43-6700

Registration/Matrix No: SGR110083

Name of Degree: MASTER OF SCIENCE

Title of Project Paper/Research Report/Dissertation/Thesis “COMPARATIVE BIOCHEMICAL CHARACTERIZATION OF DROSOPHILA MELANOGASTER EPSILON CLASS GLUTATHIONE S-TRANSFERASE, DmGSTE6 AND DmGSTE7”

Field of Study: BIOLOGY & BIOCHEMISTRY

I do solemnly and sincerely declare that:

1) I am the sole author/writer of this Work;
2) This Work is original;
3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
4) I do not have any actual knowledge nor ought I reasonably to know that the making of this work constitutes an infringement of any copyright work;
5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature

Date

Subscribed and solemnly declared before,

Witness’s Signature

Date

Name: DR ZAZALI ALIAS

Designation:
ABSTRACT

The study compares the biochemical behavior of two epsilon class Glutathione S-Transferase (GSTs) genes from Drosophila melanogaster, namely gste6 and gste7. Both GSTs were cloned, expressed and homogenously purified using a combination of anionic exchange chromatography and GSH-affinity matrix. Bioinformatics analysis indicated that both shared 83% and 69% amino acid sequence similarity and identity respectively. Each GSTE6 shared 79% and 77% similarity and GSTE7 has 77% similarity towards GST6A and GST6B of Musca domestica, respectively which are known to participate in resistance towards insecticides. The expressed recombinant proteins were tested for their activity towards 12 model substrates. Based on the pattern of activity toward these substrates, these GST isozymes exhibited overlapping but similar substrate specificities. The isozymes were only active towards 1-chloro-2, 4-dinitrobenzene (CDNB), 1, 2-dichloro-4-nitrobenzene (DCNB) and p-nitrobenzyl chloride (p-NBC). GSTE6 possesses greater catalytic efficiency (K_{cat}/K_m) towards substrate CDNB but GSTE7 possesses greater catalytic efficiency (K_{cat}/K_m) towards substrate DCNB and p-NBC. Thin layer chromatography analysis showed the isozymes were not able to conjugate 13 tested insecticides. The inhibition kinetics of natural products and dyes towards both GSTs in vitro revealed that phenol red dye possessed inhibition effects only on GSTE6 while rose bengal and cardiogreen dye inhibit excellently both GSTE6 and GSTE7. Interestingly, methylene blue dye and trans-chalcone have been showed to stimulate GSTE7 activity towards CDNB.
Kajian ini membandingkan tingkah-laku biokimia dua kelas epsilon gen Glutathione S-Transferase (GSTs) daripada Drosophila melanogaster, iaitu gste6 dan gste7. Kedua-dua GST ini telah diklon, diexpressi dan ditulenkan menggunakan gabungan kromatografi pertukaran anion dan GSH-affiniti matriks. Analisa bioinformatik menunjukkan bahawa kedua-dua gen masing-masing mempunyai persamaan dan pengenalan dalam urutan asid amino dan identiti sebanyak 83% dan 69 %. GSTE6 masing-masing mempunyai persamaan sebanyak 79% dan 77% manakala GSTE7 masing-masing mempunyai 77 % persamaan dengan GST6A dan GST6B daripada Musca domestica yang dikenali terlibat dalam kerintangan terhadap racun serangga. Protein rekombinanasi ini masing-masing telah diuji untuk aktiviti mereka terhadap 13 model substrat. Berdasarkan corak aktiviti ke arah substrat berkenaan, GSTE6 dan GSTE7 ini mempamerkan urutan bertindan tetapi sama spesifikasi substrat. GSTE6 dan GSTE7 aktif ke arah 1-chloro-2, 4-dinitrobenzene (CDNB), 1, 2- dichloro-4-nitrobenzene (DCNB) dan p-nitrobenzyl klorida (p-NBC). GSTE6 mempunyai kecekapan pemangkin yang lebih besar (K_{cat}/K_{m}) terhadap CDNB substrat manakala GSTE7 pula mempunyai kecekapan pemangkin yang lebih besar (K_{cat}/K_{m}) terhadap substrat DCNB dan p-NBC. Analisis kromatografi menunjukkan GSTE6 dan GSTE7 tidak dapat mengkonjugasikan 13 racun serangga yang diuji. Analisa kinetik perencatan dengan produk asli dan pewarna terhadap GSTE6 dan GSTE7 menunjukkan bahawa pewarna fenol merah memiliki kesan perencatan yang sangat baik hanya pada GSTE6 manakala pewarna ‘rose bengal’ dan ‘cardiogreen’ berjaya merencat kedua-dua GSTE6 dan GSTE7. Menariknya, pewarna metilena biru dan trans-chalcone telah menunjukkan untuk merangsang GSTE7 aktiviti terhadap CDNB.
ACKNOWLEDGEMENTS

I would like to thank all people who have helped and inspired me during my years of MSc.

First and foremost, my utmost gratitude to my supervisor, Dr. Zazali Alias, whose sincerity and encouragement I will never forget. Dr. Zazali helped me as I hurdle all the obstacles in the completion of this research work.

I was delighted to interact with Dr. Normawati Zahari during our meetings. She has shared valuable insights in the relevance of the study.

I am heartily thankful to my lab-mate Tanusya Murali and Kithalakhmi for teaching me all the experimental molecular and proteomic techniques from the start of this project. I would also like to thank other members of the lab for their support and valuable input especially Siti Nasuha, Chin Chee Soon and Tan Yong Hao.

A special thanks to Shevin Rizal for helping and guiding me on performing circular dichorism analysis.

Thanks to University Malaya for their scholarship and Postgraduate Research Fund (PPP), Grant PV034/2012A for supporting me financially during my research.

Many thanks due to third year lab staffs for technical help during my work there.

Last but not the least, million thanks to my family especially my mum and dad, whose decision to allow me to pursue my dream to complete M.Sc. Thanks to my brother Prem Ganes and my dearest friend, Audra Shaleena for their encouragement during the stumbling phase of my research.
TABLE OF CONTENTS

LIST OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ORIGINAL LITERARY WORK DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTERS

1 **INTRODUCTION** 1-2

1.1 General Introduction 1

1.2 Introduction 1

2 **LITERATURE REVIEW** 3-25

2.1 Glutathione- Dependent Enzymes 3

2.2 Glutathione S-Transferases (GSTs, E.C.2.5.1.18) 5

 2.2.1 Membrane Associated microsomal GSTs (MGST) 5

 2.2.2 Cytosolic GSTs 6
2.3 Structure of GSTs 8
 2.3.1 General Structure of GSTs 8
 2.3.2 Structure of Epsilon Class GSTs 9
2.4 Mechanism of Action of GSTs 10
 2.4.1 Conjugation of Exogenous Toxins 10
2.5 GSTs in Insects 11
 2.5.1 GSTs and Insecticides Resistance 13
 2.5.2 Epsilon Class GSTs 13
 2.5.2.1 gste6 and gste7 16
2.6 Drosophila melanogaster 16
 2.6.1 Characterization and Classification of GSTs of 18
 Drosophila melanogaster
 2.6.2 Expression of GSTs in Drosophila melanogaster 20
2.7 Research Statement 25
2.8 Objectives 25

3 MATERIALS AND METHODS 26-57
3.1 Materials 26
 3.1.1 Insects 26
 3.1.2 Chemicals and Disposables 26
 3.1.3 Buffers 30
 3.1.4 Instrumentations 31
 3.1.5 Plasmid Constructs Used 32-33
3.2 Methods

3.2.1 Purification of Total DNA from Animal Tissue 34

3.2.2 Polymerase Chain Reaction (PCR) 35

3.2.2.1 Oligonucleotide primers of gste6 and gste7 35
for TOPO Cloning

3.2.2.2 Oligonucleotide primers of gste6 and gste7 35
for Restriction Enzyme Cloning

3.2.3 PCR Amplification Product 36

3.2.4 Agarose Gel Electrophoresis 37

3.2.5 Agarose DNA Extraction (Gel Purification) 38

3.2.6 TOPO Cloning Reaction 39

3.2.6.1 TOPO Cloning Reaction Transformation 39

3.2.6.2 Positive Clone Analysis 40

3.2.7 Restriction Enzyme Cloning 40

3.2.7.1 Restriction Enzyme Digestion 40

3.2.7.2 Ligation 42

3.2.7.3 Transformation with E.coli BL21 (DE3) 42

pLysS

3.2.8 Plasmid DNA Extraction 43

3.2.8.1 Plasmid DNA Analysis 44

3.2.9 Cell Culturing and Lysis 45

3.2.10 Protein Purification 45

3.2.11 SDS- Polyacrylamide Gel (PAGE) 47

3.2.12 Bradford Assay 48
3.2.13 Assay for the GSTs

3.2.13.1 1-Chloro-2, 4-dinitrobenzene (CDNB) 49
3.2.12.2 1, 2-Dichloro-4-nitrobenzene (DCNB) 49
3.2.13.3 p-Nitrobenzyl Chloride (p-NBC) 50
3.2.13.4 Sulfobromophthalein (BSP) 50
3.1.13.5 Ethacrynic acid (EA) 51
3.2.13.6 $trans$-4-phenyl-3-buten-2-one (PBO) 51
3.2.13.7 Hexa-2, 4-dienal 52
3.2.13.8 $trans,trans$-Hepta-2,4-dienal 52
3.2.13.9 $trans$-Oct-2-enal 53
3.2.13.10 $trans$-Hex-2-enal 53
3.2.13.11 Cumene hydroperoxide (Cu H$_2$O$_2$) 54
3.2.13.12 Hydrogen peroxide (H$_2$O$_2$) 54

3.2.14 The Effect of Substrate Concentration and Determination of K_m and V_{max} 55

3.2.15 Secondary Structure Analysis by Circular Dichroism (CD) 56

3.2.16 Thin Layer Chromatography of Pesticides 56

3.2.17 Inhibition of Glutathione S-Transferases 57
4 RESULTS

4.1 DNA Extraction

4.2 Polymerase Chain Reaction (PCR)

4.2.1 PCR Gel Image for TOPO Cloning

4.2.2 PCR Gel Image for Restriction Enzyme Cloning

4.3 Cloning of the PCR Product

4.3.1 TOPO Cloning

4.3.1.1 Positive Clone Analysis

4.3.1.2 Plasmid Purification of gste6

4.3.1.3 PCR using Plasmid as Template

4.3.1.4 Sequencing Results

4.3.2 Restriction Enzyme Cloning

4.3.2.1 PCR Products and pET-30a (+) Vector

Enzyme Digestion

4.3.2.2 Ligation and Transformation with E.coli

BL21 (DE3) pLysS

4.3.2.3 Plasmid Purification

4.3.2.3.1 Plasmid Purification of gste6

4.3.2.3.2 Plasmid Purification of gste7

4.3.2.4 PCR using Plasmid as Template

4.3.2.5 Sequencing Results

4.3.2.6 Silent Mutation on Extracted Genome
4.4 Purification of Recombinant Enzyme

4.4.1 Purification of Recombinant of GSTE6

4.4.1.1 GSTrap™ HP with 10 mM GSH at pH 7.4

4.4.1.2 HiTrap Q HP™ with 1 M NaCl at pH 7.4

4.4.1.3 HiTrap™ Q HP followed by BSP-SG with 2 mM BSP at pH 7.4

4.4.2 Purification of Recombinant of GSTE7

4.4.2.1 HiTrap Q HP™ with 1 M NaCl at pH 7.4

4.4.2.2 HiTrap™ CM FF with 1 M NaCl at pH 7.4

4.4.2.3 HiTrap™ Q HP followed by BSP-SG with 2 mM BSP at pH 7.4

4.4.2.4 Optimized HiTrap™ Q HP followed by BSP-SG with 2 mM BSP at pH 7.4

4.5 Substrate Specificities

4.6 Kinetic Parameters of GSTE6 and GSTE7

4.7 Secondary Structure Analysis by Circular Dichroism (CD)

4.8 Thin Layer Chromatography of Pesticides

4.9 Effect of Natural Products and Dyes on GSTE6 and GSTE7 Enzyme

4.10 DNA and Protein Analysis
<table>
<thead>
<tr>
<th>5</th>
<th>DISCUSSION</th>
<th>108-120</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>DNA and Protein Bioinformatics</td>
<td>108</td>
</tr>
<tr>
<td>5.2</td>
<td>Phylogenetics of Epsilon class GSTs</td>
<td>109</td>
</tr>
<tr>
<td>5.3</td>
<td>Cloning and Expression of Drosophila melanogaster</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Epsilon class E6 and E7</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Protein Purification of Drosophila melanogaster</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Epsilon Class E6 and E7</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Biochemical Characterization of Drosophila melanogaster</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Epsilon class E6 and E7</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Role of Drosophila melanogaster Epsilon class E6 and E7</td>
<td>118</td>
</tr>
<tr>
<td>5.7</td>
<td>Future Studies</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSION</td>
<td>121-122</td>
</tr>
<tr>
<td>7</td>
<td>REFERENCES</td>
<td>123-131</td>
</tr>
<tr>
<td>8</td>
<td>APPENDICES</td>
<td>132-149</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 A summary of Drosophila melanogaster Epsilon class GSTs from Fly base and Genbank databases</td>
<td>19</td>
</tr>
<tr>
<td>3.1 List of primers for gste6 and gste7 for TOPO cloning</td>
<td>35</td>
</tr>
<tr>
<td>3.2 List of primers for gste6 and gste7 for restriction enzyme cloning</td>
<td>35</td>
</tr>
<tr>
<td>3.3 Parameter set for TOPO cloning PCR reaction</td>
<td>36</td>
</tr>
<tr>
<td>3.4 Parameter set for restriction enzyme cloning PCR reaction</td>
<td>37</td>
</tr>
<tr>
<td>3.5 Summary of columns and buffers used for both GSTE6 and GSTE7</td>
<td>46</td>
</tr>
<tr>
<td>3.6 SDS-PAGE gel formulations</td>
<td>47</td>
</tr>
<tr>
<td>3.7 Inhibition of glutathione s-transferase assay components</td>
<td>57</td>
</tr>
<tr>
<td>4.1 Substrates specificity of recombinant GSTE6 and GSTE7</td>
<td>92</td>
</tr>
<tr>
<td>4.2 Kinetics parameters of recombinant GSTE6 and GSTE7</td>
<td>95</td>
</tr>
<tr>
<td>4.3 Effect of selected compounds on recombinant GSTE6 and GSTE7</td>
<td>100</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Chemical structure of glutathione</td>
</tr>
<tr>
<td>2.2</td>
<td>Glutathione conjugation to a generic electrophilic xenobiotic (RX) by GST</td>
</tr>
<tr>
<td>2.3</td>
<td>Ribbon diagram of Anopheles gambiae GST Epsilon-2 structure</td>
</tr>
<tr>
<td>2.4</td>
<td>Phylogenetics tree of insect GST classes</td>
</tr>
<tr>
<td>2.5</td>
<td>Unrooted cladogram of the Delta/Epsilon-GST superclass</td>
</tr>
<tr>
<td>2.6</td>
<td>Model substrates used in the study of GSTs</td>
</tr>
<tr>
<td>2.7</td>
<td>Detoxification of Herbicides and Insecticides</td>
</tr>
<tr>
<td>3.1</td>
<td>A sketch showing the pBAD/Thio-TOPO vector and the multiple cloning site region</td>
</tr>
<tr>
<td>3.2</td>
<td>A sketch showing the pET-30a (+) vector and the multiple cloning site region</td>
</tr>
<tr>
<td>4.1</td>
<td>Amino acids of protein and gene sequence of gste6 aligned with forward and reverse primers of TOPO cloning and restriction enzyme cloning respectively</td>
</tr>
<tr>
<td>4.2</td>
<td>Amino acids of protein and gene sequence of gste7 aligned with forward and reverse primers of TOPO cloning and restriction enzyme cloning respectively</td>
</tr>
<tr>
<td>4.3</td>
<td>The gste6 amplicon image on 1% (w/v) agarose gel electrophoresis</td>
</tr>
<tr>
<td>4.4</td>
<td>The gste7 amplicon image on 1% (w/v) agarose gel electrophoresis</td>
</tr>
</tbody>
</table>
4.5 The gste6 and gste7 amplicon image on 1% (w/v) agarose gel electrophoresis

4.6 Purified plasmids of gste6 from 7 random colonies image on 1% (w/v) agarose gel electrophoresis

4.7 PCR performed using extracted gste6 plasmid as template image on 1% (w/v) agarose gel electrophoresis

4.8 Blast search tool results of the recombinant gste6

4.9 Expansion of Sequence ID: AE013599.4, featuring gste6

4.10 Digested and undigested pET-30a (+) vector and PCR products of gste6 and gste7 image on 1% (w/v) agarose gel electrophoresis

4.11 Purified plasmids of gste6 from 6 random colonies image on 1% (w/v) agarose gel electrophoresis

4.12 Purified plasmids of gste7 from 7 random colonies image on 1% (w/v) agarose gel electrophoresis

4.13 PCR performed using extracted gste6 plasmid as template image on 1% (w/v) agarose gel electrophoresis

4.14 PCR performed using extracted gste7 plasmid as template image on 1% (w/v) agarose gel electrophoresis

4.15 Blast search tool results of the recombinant gste6

4.16 Expansion of Sequence ID: AE013599.4, featuring gste6

4.17 Blast search tool results of the recombinant gste7

4.18 Expansion of Sequence ID: AE013599.4, featuring gste7

4.19 Silent mutation on base at position 439 of gste6 gene

4.20 Silent mutation on base at position 223, 463, 481, 517 and 527 of gste7 gene
4.21 SDS-PAGE of purification of GSTE6 using Glutathione Sepharose 83
4.22 SDS-PAGE of purification of GSTE6 using Q Sepharose 84
4.23 SDS-PAGE of purification of GSTE6 using BSP-SG 85
4.24 SDS-PAGE of purification of GSTE7 using Q Sepharose 86
4.25 SDS-PAGE of purification of GSTE7 using CM Sepharose 87
4.26 SDS-PAGE of purification of GSTE7 using BSP-SG 88
4.27 Optimized SDS-PAGE of purification of GSTE6 and GSTE7 90
4.28 Circular dichroism spectra of the recombinant GSTE6 and GSTE7 96
4.29 Chromatographic analysis of purified GSTE6 (A) and GSTE7 (B) containing glutathione plus with 1-chloro-2, 4-dinitrobenzene (CDNB) as co-substrates. 97
4.30 Epsilon class Drosophila GST genes are located on chromosomes 2R 102
4.31 Complete amino acid alignment of Drosophila Epsilon class GSTs and Musca domestica 6A and 6B 103-104
4.32 Matrix table of percentage amino acid identities for the sequences aligned of Drosophila Epsilon class GSTs and Musca domestica 6A and 6B 105
4.33 Predicted protein interactions and co-expression association score among closely related class of GST proteins using STRING 9.05 database 106
4.34 Predicted functional partners in various organisms using STRING 9.05 databases 107
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>Ammonium Persulphate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BSP</td>
<td>Sulfobromophthalein</td>
</tr>
<tr>
<td>CD</td>
<td>Circular Dichroism</td>
</tr>
<tr>
<td>CDNB</td>
<td>1-chloro-2, 4-dinitrobenzene</td>
</tr>
<tr>
<td>CuH₂O₂</td>
<td>Cumene Hydroperoxide</td>
</tr>
<tr>
<td>DCNB</td>
<td>1, 2-dichloro-4-nitrobenzene</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EA</td>
<td>Ethacrynic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPNP</td>
<td>1, 2-epoxy-3-nitrophenoxyp propane</td>
</tr>
<tr>
<td>G-site</td>
<td>Glutathione binding site</td>
</tr>
<tr>
<td>GSH</td>
<td>Reduced glutathione</td>
</tr>
<tr>
<td>GSSG</td>
<td>Oxidized glutathione</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S- transferases</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione reductase</td>
</tr>
<tr>
<td>HED</td>
<td>2-hydroxyethyl disulfide</td>
</tr>
<tr>
<td>H-site</td>
<td>Hydrophobic binding site</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kDA</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>k_{cat}</td>
<td>Catalytic constant</td>
</tr>
<tr>
<td>k_{cat}/K_m</td>
<td>Catalytic efficiency</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis-Menten constant</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>MAPEG</td>
<td>Membrane Associated Proteins in Eicosanoid and</td>
</tr>
<tr>
<td></td>
<td>Glutathione metabolism</td>
</tr>
<tr>
<td>MgCl$_2$</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MGST</td>
<td>Membrane associated microsomal GSTs</td>
</tr>
<tr>
<td>MWCO</td>
<td>Molecular weight cut off</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Milimole</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>PBO</td>
<td>trans-4-phenyl-3-buten-2-one</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PEITC</td>
<td>Phenethyl isothiocyanate</td>
</tr>
<tr>
<td>PGA2</td>
<td>Prostaglandin A2</td>
</tr>
<tr>
<td>PhB</td>
<td>Phenobarbital</td>
</tr>
<tr>
<td>p-NBC</td>
<td>p-Nitrobenzyl chloride</td>
</tr>
<tr>
<td>pmol</td>
<td>Picomole</td>
</tr>
<tr>
<td>PQ</td>
<td>1,1-dimethyl-4,4'-bipyridilium</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulphate</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Ser</td>
<td>Serine</td>
</tr>
<tr>
<td>SOC</td>
<td>Super optimal broth</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris/Borate/EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N', N'-tetramethylenediamine</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum velocity</td>
</tr>
<tr>
<td>4-HNE</td>
<td>4-hydroxynonenal</td>
</tr>
<tr>
<td>5(S)-HpETE</td>
<td>5 -hydroperoxyeicosatetraenoi</td>
</tr>
<tr>
<td>μL</td>
<td>Microliter</td>
</tr>
<tr>
<td>μg</td>
<td>Microgram</td>
</tr>
<tr>
<td>μM</td>
<td>Micromole</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

The introduction to this thesis will review literature concerning glutathione s-transferases (GSTs) from a broad point of view but with an emphasis on their properties, functions, structure and expressions. The focus will be on the occurrence of GSTs in insects and the understanding of their role in insecticide, pesticides, herbicides and other various carcinogen resistances. The intention of this study will be to establish the relationship of particular isoforms of the GSTs namely Epsilon Class GSTs subunits 6-6 and 7-7 to response to toxins and other challenges. Drosophila melanogaster has been used as a model to study a number of the expressed products of the GST genes in relation to responses to different environmental conditions. The availability of the entire genome sequence of Drosophila melanogaster has made it possible to study the multiple isoforms of GST in the model.

1.2 Introduction

Insect are major vectors of transmissible diseases and pests of major crops. They are perpetually exposed to sundry exogenous compounds such as insecticides, pesticides, herbicides, toxicants, mutagens, carcinogens and other naturally occurring toxics such as plant and fungal toxins and reactive oxygen species, such as the hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) and superoxide radical. Thus, it is vital to develop an efficacious insecticide as insecticides resistance becoming persisting quandary around the world. Insecticide resistance across sundry species has been attributed to up regulation of enzymes associated with xenobiotic
detoxification and metabolism. For example in *Drosophila melanogaster*, up regulation of several different cytochrome P-450s and glutathione s-transferases has been associated with diverse xenobiotic detoxification and metabolism.

The glutathione s-transferases (GSTs: E.C. 2.5.1.18) are a super-family of enzymes with a broad range of substrates and catalytic activities. They emanate from a diverse family of enzymes that is found ubiquitously in virtually all living things such as mammals, yeast, insects, plants, helminthes and bacteria (Sheehan *et al.*, 2001). GSTs play roles in metabolism, conveyance, cell mediation against oxidative stress and most importantly xenobiotic compounds detoxification (Enayati *et al.*, 2005).
CHAPTER 2

LITERATURE REVIEW

2.1 Glutathione-Dependent Enzymes

A non-protein thiol and most plenteous low relative molecular mass sulfhydryl compound which found intra-cellularly in all mammalian tissue is commonly referred as Glutathione (GSH, \(\gamma \)-glutamylcysteinylglycine), largely occurring at high (0.1 to 10 mM) concentrations. Figure 2.1 shows the tripeptide conferring the sequence of glutamic acid; cysteine and glycine. GSH is a crystalline solid with a melting point of 192-195 °C and relative molecular mass of 307.33. It dissolves promptly in water. It's composed of two peptide bonds, two carboxylic acid groups (pK\(_{\text{COOH}}\) = 3.53 and 2.12), one amino group (pK\(_{\text{NHE}^+}\) = 8.66) and a thiol group (pH\(_{\text{SH}}\) = 9.66). At the time of evolution, glutathione has become adapted to perform numerous functions. Glutathione alone ready to give a first line of defense against varied reactive oxygen species, it detoxifies xenobiotics, synthesize leukotrienes and prostaglandin, maintain proteins and membrane structures and regulates numerous enzyme activities. Additionally, glutathione act as a cofactor or a substrate for various enzymes. This functional diversity is due to the properties of the thiol group. In order to keep relatively constant and stable intracellular condition, glutathione supplies thiol groups to stop protein thiols from oxidizing into disulfides. It is involved in reactions such as protein and nucleic acids synthesis, free radicals and peroxides detoxification. The ionized (thiolate) act as nucleophile to respond towards electrophilic compounds and to avert them from reacting with biomolecules such as proteins and DNA (Meister, 1988).
A variety of enzymes utilize glutathione during a variety of biotransformation (Fukami, 1984). Glutathione reductase (GR) promotes the reduction of GSSG (oxidized glutathione) utilizing NADPH as a reductant. GR is very consequential in maintaining the highest cellular reduction potential. Selenium-dependent glutathione peroxidase is another type of GSH-requiring enzyme that initiates the reduction of peroxides exploiting GSH as the reducing agent (Krohne-Ehrich et al., 1977).

![Glutathione structure](image1)

Figure 2.1: Chemical structure of glutathione (Adapted from Anne, 2013)

![Glutathione conjugation](image2)

Figure 2.2: Glutathione conjugation to a generic electrophilic xenobiotic (RX) by GST (Adapted from Townsend and Tew, 2003)
2.2 Glutathione S-Transferases (GSTs, E.C.2.5.1.18)

One of the most popular classes of detoxification enzymes that constitute randomly in all living organisms are the glutathione s-transferases (GSTs). GSTs conjugate the thiol groups of reduced glutathione (GSH) towards the negative charge center of lipid soluble compounds (xenobiotics) to make it water soluble and excrete out easily. The breakthrough of GSTs dated as early 1960s, bearing on the revelation of cytosolic extracts of rat liver catalyzes the conjugation of glutathione to arylhalides (Booth et al., 1961; Combes and Stakelum, 1961). These enzymes have extensive distribution in nature and are found rampantly in almost all living things including plants, animals and even bacteria (Hayes and Pulford, 1995). These renowned GSTs in animals are often divided into two defined super families: the membrane-bound microsomal GSTs and the cytosolic or soluble GSTs.

2.2.1 Membrane Associated Microsomal GSTs (MGST)

The microsomal GSTs belong to the family of membrane-bound enzymes or MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione metabolism). Microsomal GSTs are structurally different from the soluble cytosolic GSTs (Jakobsson et al., 1999). To date, six members of the family are identified that includes: prostaglandin E synthase, 5-lipoxygnase-activating protein, microsomal GST1, 2, and 3 and leukotriene C4 synthase (Jakobsson et al., 1999). Microsomal GST1, microsomal GST2 and 3, are familiar to be detoxification enzymes, (Morgenstern et al., 1982) due to their GST activity which helps to conjugate glutathione to 1-chloro-2, 4-dinitrobenzene (CDNB). The MAPEG enzyme family thus participates both in the endogenous metabolism of physiologically important leukotrienes and prostaglandins besides concerned in the detoxification of extremely active lipophilic compounds of exogenous and endogenous origin (Jakobsson et al., 1999).
2.2.2 Cytosolic GSTs

The soluble GSTs or conjointly referred as cytosolic GSTs. They are subdivided into categories based upon sequence identity where the identities at certain intervals for a category are more than 50% (Mannervik et al., 1985). The soluble GSTs exist as either homodimeric or heterodimeric proteins. They are shaped by two polypeptide chains or subunits of approximately 25 kDa in size respectively (Armstrong, 1997). Each subunit can be folded into two domains. They are known as the N-terminal (extreme 5´) and C-terminal (extreme 3´) joined by a variable linker region. The N-terminal domain (1 – 80 residues) looks alike as thioredoxin domain (arranged in βαβαββα motifs) which found in all GST structures (Sheehan et al., 2001). This domain consists mostly of active or G-sites, which is the specific binding site of endogenous tripeptide GSH (γ-L-glutamyl-L-cysteinylglycine) widely known as glutathione (Che-Mendoza et al., 2009). The larger C-terminal domain consists of a variable number of alpha helices, and includes largely the electrophile-binding site and it is the residues of the hydrophobic H-site or the substrate binding site. It’s less specific, thus enables GSTs to react to a wide range of xenobiotics (Dirr et al., 1994). The abundant level of diversity towards this region confers partly the specificity of the GSTs for a broad range of electrophilic substrates (Mannervik and Danielson, 1988).

Cytosolic GSTs are found ubiquitously in all aerobic organisms with almost 10 members in each species. This number includes 15-20 different mammalian GSTs, 40-60 GSTs in plants, 10 -15 GSTs in bacteria and over 10 in insects (Frova, 2006). The GSTs are grouped into different classes based on several criteria including amino acid/ nucleotide sequence identity, physical structure of the gene (example intron number and position) and immunoreactivity properties as they are widely distributed throughout taxa, kingdom with same organism specific (Frova, 2006). Complete genome sequence data for some species
with over 40 GST genes has been discovered. To date, there are seven mammalian classes of cytosolic GSTs namely Alpha, Mu, Pi, Kappa, Theta, Omega, Sigma and Zeta, and a microsomal class, Delta and Epsilon classes in insects, Sigma class in arthropods, cephalopods and human, Phi and Tau classes in plants, Zeta and Theta classes in plants, insects and bacteria as well as animals.

The nomenclature for GST had been designed with the name of the Greek letters; Alpha, Mu, Phi, Theta, etc., abbreviated in Roman capitals; A, M, P, and T and so on. Class members are represented by Arabic numerals and native dimeric protein structures are named according to their subunit composition (Mannervik et al., 2005). For example, GSTE6-6 is a homodimer of *Drosophila melanogaster* GST which consist of two sub-units 6 in the Epsilon class.

GSTs are expressed in sex, age, tissue, organ, species, and tumor-specific patterns of expression and their composition differ significantly (Hayes and Pulford, 1995). For an example the Alpha class is plentiful in human liver, kidney and testis, while the Pi class is predominant in lung, brain, erythrocytes and skin (Sherratt and Hayes, 2002). Besides that, the regulation of each individual isoenzyme expression seems to be different in every tissue and cell type. GSTs have a broad and overlapping specificity. Among the reactions catalyzed by GSTs are substitutions of halogens in halogenohydrocarbon, addition to double bonds, cleavage of epoxides and reduction of organic peroxides. 1-chloro-2,4-dinitrobenzene (CDNB) is the most typical substrate used to assay GSTs besides 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EA), 1,2-epoxy-3-nitrophenoxypropane (EPNP) and sulfobromophthalein (BSP).
Insect cytosolic GSTs were initially assigned to a particular class based on their amino acid sequence homology and immunological properties (Beall et al., 1992; Fournier et al., 1992; Toung et al., 1990). Classes that possess GST include those having an identity of over 40% of the amino acid sequence and other properties such as immunological character, tertiary structure, their ability to form heterodimers and chromosomal location (Ding et al., 2003; Hemingway et al., 2004; Ranson and Hemingway, 2005).

GSTs play important roles in the development of resistance to a variety of exogenous xenobiotics, such as chemotherapeutic drugs (Hayes and Pulford, 1995), chemical carcinogens (Coles and Ketterer, 1990), herbicides (Edwards et al., 2000) and insecticides (Clark, 1989; Yu, 1996).

2.3 Structure of GSTs

2.3.1 General Structure of GSTs

Each monomer of GST comprise of two definite domains that is N-terminal sub-domain, which uses the thioredoxin fold, and a C-terminal all-helical sub-domain connected by a variable linker region. The N-terminal domain encompass four beta sheets and three flanking alpha helices which adopts a conformation like thioredoxin domain found in many proteins binds GSH or cysteine (Sheehan et al., 2001). The glutathione molecule binds in a cleft between N and C-terminal zone. The catalytically vital residues are proposed to reside within the N-terminal domain. Although each subunit has a kinetically independent active site, their quaternary structure is important for their functional activity (Danielson and Mannervik, 1985). Cytosolic GST super-family members can be divided into two prominent sub-groups based on identifiable sequence or structural elements and active site architecture (Atkinson and Babbitt, 2009; Armstrong, 2012). These sub-groups are
classified as Y-type and S/C-type based on conservation of a key active site residue. The S/C-type sub-group includes the beta, omega, phi, tau, theta, and zeta classes which utilize a serine residue to activate GSH while the Y-type sub-group includes the alpha, mu, pi, and sigma classes utilize tyrosine residue in interaction with GSH.

2.3.2 Structure of Epsilon Class GSTs

The N-domain is colored in magenta and C-domain in blue. The linker between two domains is colored in green. The bound GSH molecule from agGSTE2-GSH complex is shown in spheres with carbon atoms in green, oxygen atoms in red, nitrogen atoms in blue, and sulfur atom in gold. All secondary-structure elements are labeled with H for α-helix and B for β-strand.

Figure 2.3: Ribbon diagram of *Anopheles gambiae* GST Epsilon-2 structure (Adapted from Wang *et al.*, 2008)
2.4 Mechanism of Action of GSTs

2.4.1 Conjugation of Exogenous Toxins

GSTs play important roles in the protection of macromolecules from attack by reactive electrophiles. While retaining a high specificity toward the thiol substrate glutathione, each class of GSTs exhibit overlapping but defined hydrophobic substrate and ligand binding specificities (Winayanuwattikun and Albert, 2005). Danielson and Mannervik, (1985) reported that, the cytosolic isoenzymes have two active sites per dimer and it behaves independently of one another. A review by Chasseaud, (1979) listed xenobiotics that could be conjugated by GSTs includes halogenonitrobenzenes, organophosphorous compounds, steroids, α-β-unsaturated carbonyl compounds, aryl halides epoxides, quinines, isothiocynates and arylnitro compounds.

The catalytic strategy of GST are divided into few steps, which involve binding of substrates to the enzyme active site in the beginning followed by activation of GSH, by thiol deprotonation and nucleophilic attack by the thiolate at the electrophilic center, finally product formation and product release (Winayanuwattikun and Albert, 2005). The conjugations catalyzed by the GSTs occur between the nucleophilic GST and the compounds possessing a sufficiently electrophilic centre. The GSTs function by decreasing the pKa of GSH from 9.0 to between 6.0 and 6.9, thereby allowing its deportation and the formation of a more reactive thiolate anion (active site residue). This thiolate anion stabilized by interaction between mammalian GSH classes (Phi, Mu, Alpha and Sigma) and a tyrosine residue in the N-terminal, serine and cysteine residue respectively in Theta and Omega classes in mammals and serine residue in insects Delta and Epsilon classes (Tyr-8 for Pi, Tyr-9 for Alpha, Tyr-6 for Mu, and Ser-9 for Delta class) (Sheehan et al., 2001;
Winayanuwattikun and Albert, 2005). This active site residue proposed to be highly conserved within GST classes but differs between classes (Che Mendoza et al., 2009). This GSH conjugation happens in mammals, birds, reptiles, amphibians, fish, insects and other vertebrates (Boyland and Chasseaud, 1969) and it is the first step of mercapturic acid formation that is one of the metabolic pathways for detoxification of xenobiotics in vivo. The glutathione conjugates which are water soluble and generally non-toxic may be converted to the corresponding cysteine conjugate following sequential removal of glutamate and glycine. The cysteine conjugate is either N-acetylated to be excreted as a mercapturic acid or cleaved to a mercaptan which can be further metabolized to be excreted as a glucuronide (Boyland and Chasseaud, 1969).

2.5 GSTs in Insects

In insects, GSTs genes were classified into two groups, class I and class II GSTs (Fournier et al., 1992). According to Chelvanayagam et al., (2001), an insect-specific Class I GST is now referred as a Delta class GST. This includes those from Drosophila melanogaster; gstd1 to gstd10 (Chelvanayagam et al., 2001), Musca Domestica; mdgst1 to mdgst5 (Zhou et al., 2007), Anopheles gambiae; aggstd1 to aggstd6 (Ranson et al., 1997) and Lucilia cuprina; lcgstd1 (Wilce et al., 1995). Class II is now defined to consist primarily of Sigma class GSTs as identified in Drosophila melanogaster, gsts1, Anopheles gambiae; aggsts1 and Manduca sexta; msgsts1 (Che Mendoza et al., 2009). Ranson et al., (2001) proposed a third class of insect’s GST (Class III) that comprised GSTs now classified as the Epsilon class in Drosophila melanogaster; gste1 to gste10 and the aggst3-1 and aggst3-2 of Anopheles gambiae. In most of the species, the Omega GSTs including A. gambiae appear to be enciphering by a single gene; however five putative Omega GSTs have been identified in D. melanogaster (Ding et al., 2003). Omega GSTs has also been identified in the Silk
Moth, *Bombyx mori* (Yamamoto *et al.*, 2009a). Two Theta GST genes have been identified in *A. gambiae* (Ding *et al.*, 2003) and five putative Theta GSTs have been identified in *A. aegypti* (Lumjuan *et al.*, 2007). The Zeta GSTs has been identified in Silk Moth, *Bombyx mori* (Yamamoto *et al.*, 2009b) and a single Zeta GST gene was found in *A. gambiae* (Ding *et al.*, 2003). The Xi and Iota GSTs have so far been found uniquely in mosquitoes of *A. aegypti* and clear orthologs of these GSTs were found in *A. gambiae* (Lumjuan *et al.*, 2007).

![Phylogenetics tree of insect GST classes](image)

Ag = *Anopheles gambiae*, *Ad* = *Anopheles dirus*, *Ac* = *Aedes aegypti*, *Dm* = *Drosophila melanogaster*, *Bm* = *Bombyx mori*, *Md* = *Musca domestica*, *Bg* = *Blattella germanica*, *Lc* = *Lucilia cuprina*, *Nl* = *Nilaparvata lugens*.

Figure 2.4: Phylogenetics tree of insect GST classes. Phylogenetic tree of different GST classes demonstrating the relationships of the various insect GSTs to one another (Adapted from Ramavati, 2010)
2.5.1 GSTs and Insecticides Resistance

The majority of studies on insects GSTs have been focused on their role in conferring insecticides resistance. Wilson, (2001) pointed out the importance of genetic and biochemical mechanisms in *Drosophila* in encountering toxins and thus developing resistance. Elevated GSTs activity has been linked with resistance towards all major classes of insecticides (Enayati *et al*., 2005). Che-Mendoza *et al*., (2009) demonstrated that, resistance are described by increase in the amount of one or more GST enzymes, either due to outcome of gene amplification or mainly through increases in transcriptional rate, instead of qualitative changes in individual enzymes.

2.5.2 Epsilon Class GSTs

Insect GSTs can be categorized into six classes but it is the Delta and Epsilon class that is most commonly associated with resistance (Tang and Tu, 1994; Ranson *et al*., 2001; Ding *et al*., 2003). An aggregate of GST expansions mainly resides in the Delta and Epsilon subclasses which are insect specific (Friedman, 2011). Figure 2.5 shows a close relationship between the Delta and Epsilon class GST as evidence as they share a common branch not shared with other subclasses. According to Friedman, (2011), Epsilon class GSTs are said to be evolved from the Delta subclass between times when Hymenoptera and Coleoptera originated as a lineage and only confined to the dipterans (*Culex, Drosophila, Aedes, Anopheles*), a coleopteran, and a lepidopteran through recent species event of tandem and segmental gene duplication. Niranjan *et al*., (2011) reported that an intron at position 218 (tyrosine (y)/phenylalanine (f)) is highly conserved between Delta-and Epsilon-members which also supports the evidence of Delta and Epsilon classes could have shared a common ancestor during their evolution. Several studies also reported that,
Epsilon classes in *Dipteran* organisms, is to confer insecticide resistance and their catalytic diversity would likely promote their role in detoxification (Enayati *et al.*, 2005; Kettermann, *et al.*, 2011 and Saisawang, *et al.*, 2011). It has been reported that, homo-dimers of one *Ae. aegypti* epsilon class GST enzyme, GSTE2 is very efficient at metabolizing DDT. The enzyme expression was elevated in a DDT and pyrethroid resistant population from Thailand (Lumjuan *et al.*, 2005). Lumjuan *et al.*, (2011) provide evidence that the epsilon class GSTs enzyme, GSTE2 and GSTE7 are involved in conferring resistance to the pyrethroid deltamethrin in the *Ae. Aegypti* strain. The expression of the epsilon class GSTs, *slgste2* and *slgste3* genes in *Spodoptera litura* a Lepidoptera detoxifies carbaryl, DDT, RH5992, malathion and deltamethrin which is a synthetic chemical insecticides (Deng *et al.*, 2009). DDT is likely to be converted to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl) ethylene] which is break down product through an elimination reaction triggered by the nucleophilic attack of the thiolate group of GS on the β-hydrogen of DDT through molecular modeling (Wang *et al.*, 2008). Moreover, Wei *et al.*, (2001) demonstrated that housefly isozymes (MdGST6A and MdGST6B) belonging to the epsilon class function as key enzymes in the detoxification of insecticides such as methyl parathion and lindane. In addition, a quantitative PCR assay showed five of the eight Epsilon GSTs enzyme (namely GSTE1, GSTE2, GSTE3, GSTE4, and GSTE7) expressed at significantly greater levels in the DDT resistant strain of *Anopheles dirus* (Charoensilp *et al.*, 2006).
The topology is based on a 75% condensed tree obtained by bootstrap analysis. The branches are colored by “Cluster”. Species abbreviations occur before the gene name and the cluster names are as follows: Aa = Aedes aegypti, Ag = Anopheles gambiae, Cp = Culex quinquefasciatus, Dm = Drosophila melanogaster, Bm = Bombyx mori, Tc = Tribolium castaneum, Am = Apis mellifera, Nv = Nasonia vitripennis, Ap = Acyrthosiphon pisum, Ph = Pediculus humanus

Figure 2.5: Unrooted cladogram of the Delta/Epsilon-GST superclass (Adapted from Friedman, 2011)
2.5.2.1 gste6 and gste7

A recent study on the *Drosophila* systems approach to xenobiotic metabolism revealed that the *gste6* is found most abundant in the hindgut of the adult and larvae whereas *gste7* mostly found abundant in the tubule of the adult and larvae (Yang *et al.*, 2007). A comprehensive microarray-based atlas of adult gene expression in multiple *Drosophila* tissues available (http://flyatlas.org) reported that, *gste6* expressed in adult crop, midgut, tubule, hindgut, ovary and larval hindgut while *gste7* expressed in adult crop, midgut, tubule, hindgut, virgin spermatheca and larval midgut, hindgut and fat body. Several lines of evidence have also suggested that the tubule may be the dominant tissue for xenobiotic mechanism in adult *Drosophila*. According to Alias and Clark, (2007), the protein expression of GSTE6 and GSTE7 significantly increased by more than 50% upon exposure to PQ (1, 1-dimethyl-4, 4'-bipyridilium) and PhB (Phenobarbital). Besides that, acute insecticides exposure of methyl parathion results in significant increase in protein expressions; GSTE6 (100%) and GSTE7 (72%) (Alias and Clark, 2010).

2.6 *Drosophila melanogaster*

Drosophila melanogaster is a small, ordinary insect that colonize unripe and rotted fruit. It has been in use to study genetics and behavioral studies for over a century. Geneticists have been using *Drosophila* ever since due to its short generation time, small size, and ease of culture. It has been widely used for various types of study because of its known genome and many genes have been identified found from gene bank and flybase since its first publication in year 2000. Classification of *Drosophila melanogaster* as below;
Kingdom: Animalia

Phylum: Arthropoda

Class: Insecta

Order: Diptera

Family: Drosophilidae

Genus: Drosophila

Subgenus: Sophophora

Species group: melanogaster group

Species subgroup: melanogaster subgroup

Species complex: melanogaster complex

Species: Drosophila melanogaster

(Geiger, 2002)
2.6.1 Characterization and Classification of GSTs of *Drosophila melanogaster*

Difference in age profiles, subcellular distribution and substrate selectivity, lead to the presence of multiple forms of GSTs in *Drosophila melanogaster*. Some isoforms of Delta, Epsilon, Sigma and Omega *Drosophila* GSTs have been reported previously for various aspects. Delta and Epsilon classes have more than ten members each respectively. Omega class has four genes one of which is alternatively spliced so Omega class yields five proteins. Theta class has four genes that encode five proteins. Zeta class has two genes one of which encodes three spliced products for a total of four Zeta enzymes (Saisawang *et al*., 2011).

The *Drosophila* GST genes are located on chromosomes 2, 3 and X. Sawicki *et al*., (2003) has previously reported that the Delta class cluster contained ten genes, *gstd1* to *gstd10*. Recently, a newly identified Delta GST has been reported, *gstd11* (CG17639). The *gstd11* gene has 2 annotated transcripts which referred to as variant a and b. Phylogenetic analysis also supports inclusion of this gene in Delta class. In addition the *gstd11* gene is only 2.5 kb from the Delta cluster of 7 genes. All eleven Delta GST genes span approximately 20 kb on chromosome arm 3R as the Zeta genes are approximately 3000 kb away from the Delta cluster. There are two Zeta GST genes sequentially located with a 1 kb distance (Saisawang *et al*., 2011).

Four proteins previously identified as unknown Epsilon class proteins are also classified in addition to the ten Epsilon members that have been previously reported by Sawicki *et al*., (2003). These new proteins are denoted as GSTE11-11 to GSTE14-14; CG5224, CG16936, CG11784 and CG4688, respectively. *gste1* to *gste10* genes form a tight cluster whereas the remaining Epsilon genes are dispersed along the chromosome (Saisawang *et al*., 2011).
This suggests that these paralogous GSTs initially originated from a series of tandem duplication events. The gene duplication events in the *Drosophila* lineage gave rise to differentially expressed GST isoforms and generated diverse members with differing functionality.

Table 2.1: A summary of *Drosophila melanogaster* Epsilon class GSTs from Flybase and Genbank databases (Adapted from Saisawang *et al.*, 2011)

<table>
<thead>
<tr>
<th>GSTs</th>
<th>Fly base No.</th>
<th>Genebank accession No.</th>
<th>Nucleotide Base pairs</th>
<th>Protein</th>
<th>Amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epsilon class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSTE1-1</td>
<td>CG5164</td>
<td>NM_137479.2</td>
<td>675</td>
<td>NP_611323</td>
<td>224</td>
</tr>
<tr>
<td>GSTE2-2</td>
<td>CG17523</td>
<td>NM_137480.2</td>
<td>666</td>
<td>NP_611324</td>
<td>221</td>
</tr>
<tr>
<td>GSTE3-3</td>
<td>CG17524</td>
<td>NM_137481.2</td>
<td>663</td>
<td>NP_611325</td>
<td>220</td>
</tr>
<tr>
<td>GSTE4-4</td>
<td>CG17525</td>
<td>NM_137482.1</td>
<td>669</td>
<td>NP_611326</td>
<td>222</td>
</tr>
<tr>
<td>GSTE5-5</td>
<td>CG17527</td>
<td>NM_137483.1</td>
<td>669</td>
<td>NP_611327.1</td>
<td>222</td>
</tr>
<tr>
<td>GSTE6-6</td>
<td>CG17530</td>
<td>NM_137484.2</td>
<td>669</td>
<td>NP_611328.1</td>
<td>222</td>
</tr>
<tr>
<td>GSTE7-7</td>
<td>CG17531</td>
<td>NM_137485.2</td>
<td>672</td>
<td>NP_611329.1</td>
<td>223</td>
</tr>
<tr>
<td>GSTE8-8</td>
<td>CG17533</td>
<td>NM_137486.3</td>
<td>669</td>
<td>NP_611330.2</td>
<td>222</td>
</tr>
<tr>
<td>GSTE9-9</td>
<td>CG17534</td>
<td>NM_166279.2</td>
<td>666</td>
<td>NP_725784.1</td>
<td>221</td>
</tr>
<tr>
<td>GSTE10-10</td>
<td>CG17522</td>
<td>NM_137478.1</td>
<td>723</td>
<td>NP_611322.1</td>
<td>240</td>
</tr>
<tr>
<td>GSTE11-11</td>
<td>CG5224</td>
<td>NM_137495.2</td>
<td>678</td>
<td>NP_611339.1</td>
<td>225</td>
</tr>
<tr>
<td>GSTE12-12</td>
<td>CG16936</td>
<td>NM_138120.1</td>
<td>672</td>
<td>NP_611964.1</td>
<td>223</td>
</tr>
<tr>
<td>GSTE13-13</td>
<td>CG11784</td>
<td>NM_136613.2</td>
<td>681</td>
<td>NP_610457.1</td>
<td>226</td>
</tr>
<tr>
<td>GSTE14-14</td>
<td>CG4688</td>
<td>NM_137011.2</td>
<td>699</td>
<td>NP_610855.1</td>
<td>232</td>
</tr>
</tbody>
</table>
2.6.2 Expression of GSTs in *Drosophila melanogaster*

The most commonly used substrate to study GSTs is 1-chloro-2, 4-dinitrobenzene (CDNB). CDNB conjugates with GSH and gives S-(2, 4-dinitrophenyl) glutathione, which possesses an absorbance spectrum sufficiently different from that of CDNB to allow a simple spectrophotometric assay at 340 nm (Clark *et al.*, 1973). For some years, the efficiency of cytosolic GSTs in using certain substrates and their sensitivity to some inhibitors were parameters for determining the class of GSTs. For examples, ethacrynic acid (EA, Pi class), cumene hydroperoxides (CuH$_2$O$_2$, Alpha class), 1,2-epoxy-3-(p-nitrophenoxy) propane (EPNP, Theta class), dehydro ascorbic acid (DHA, Omega class) trans-4-phenyl-3-buten-2-one (PBO, Mu class), and 1,2-dichloro-4-nitrobenzene (DCNB, Mu and Epsilon classes) are still used as class markers (Hayes *et al.*, 2005; Ketterer, 1986; Kim *et al.*, 2006; Danielson and Mannervik, 1985; Wang *et al.*, 1991). Some of the substrates used for the study of GSTs are shown in Figure 2.6. All Delta-class GSTs except for GSTD3-3 isolated from adult *Drosophila*, conferred CDNB conjugating activity on lysates of bacterial cells in which they were expressed. In contrast, GSTD3-3 and GSTE1-1 had no activity with CDNB but were able to conjugate 4-HNE in crude bacterial lysates (Sawacki *et al.*, 2003). GSTS1-1 isolated from adult *Drosophila* or expressed in *Escherichia coli* is essentially inactive toward the commonly used synthetic substrate 1-chloro-2, 4-dinitrobenzene (CDNB), but has fairly high glutathione-conjugating activity for 4-hydroxynonenal (4-HNE) (Singh *et al.*, 2001). According to Saisawang *et al.*, (2011) GSTs enzymes isolated from *Drosophila* S2 embryonic cell line; GSTD3-3, GSTT4-4 and four Zeta GSTs displayed no activity toward GSH and CDNB substrate. Theta class is known to have negligible or no activity against CDNB substrate but GSTT2-2, unlike the other *Drosophila* Theta class GSTs indicating a lower affinity for GSH substrate. Apart from that, GSTE4-4
and GSTE11-11 showed very low affinity for GSH, in contrast to the high affinity for CDNB. Nevertheless GSTE11-11 was appeared to possess the highest catalytic efficiency to CDNB. Omega and Zeta class GSTs seems to be unable to conjugate CDNB substrate. In *Drosophila*, Delta and Epsilon classes are mostly able to conjugate 4-hydroxynonenal (4-HNE), adrenochrome, phenethyl isothiocyanate (PEITC), prostaglandin A2 (PGA2), and 5-hydroperoxyeicosatetraenoic acid (5(S)-HpETE). 2-hydroxyethyl disulfide (HED) is a synthetic compound thought to be a specific substrate for Omega class. Omega class and several members of Delta and Epsilon class GSTs also show activity for HED. GSTO2a-2a is the only enzyme in the class that has activity for adrenochrome whereas GSTO2b-2b was the only Omega enzyme to show activity for PEITC. *Drosophila melanogaster* GSTs shows that these proteins possess broad overlapping substrate specificity which also implies functional redundancy. However, Saisawang *et al.*, (2011) suggested that the enzymatic function of a GST does not correlate with the criteria for classification. A study done by Alias and Clark, (2010), an acute exposure of insecticide methyl parathion to adult *Drosophila* resulted in a significant increase in GSTD1, GSTE6 and GSTE7 expression. Reaction between GSTs and 1-chloro-2, 4-dinitrobenzene (CDNB) was observed in many kinds of developmental stages of *Drosophila melanogaster*. Studies have demonstrated for the first time the induction of glutathione transferases by oxadiazolone and detected kinetic heterogeneity among the enzyme from different stages (Hunaiti *et al.*, 1995). GSTs ability to detoxify pesticides and herbicides such as DDT, chlorpyrifos, atrazine, lindane, tetrachlorvinphos, alachlor, diazinon, and methyl parathion shown in Figure 2.7.
(1) 1-chloro-2, 4-dinitrobenzene; (2) Bromosulfophthalein; (3) 1, 2-dichloro-4-nitrobenzene; (4) Ethacrynic acid; (5) 1, 2-epoxy-3-(p-nitrophenoxy) propane; (6) 1-menaphthyl sulphate; (7) p-nitrobenzyl chloride (8) cumene hydroperoxide.

Figure 2.6: Model substrates used in the study of GSTs (Hayes and Pulford, 1995)
(1) alachlor; (2) atrazine; (3) DDT; (4) lindane; (5) methyl parathion.

Figure 2.7: Detoxification of Herbicides and Insecticides (Hayes and Pulford, 1995; Wilson and Clark, 1996; Alias and Clark, 2010)
2.7 Research Statement

The GST super-family has diverse paramount roles in the mundane functions of cells in additament to the pristinely toxicological roles as described above. This suggests that, being as its role in defense mechanisms and because of their critical metabolic role, some GSTs being constitutes sites of susceptibility to chemical attack and might represent incipient targets for chemical control. Hence, the detailed study of GSTs is very utilizable to determine their role in development, physiology and insecticide resistance in any pest species. In the present investigation, gene cloning, protein expression coupled with purification methods has been applied to study species *D. melanogaster* gene, *dmgste*6 and *dmgste*7. The underlying aim of this research is to undertake the first molecular study of *D. melanogaster* gene, *dmgste*6 and *dmgste*7 GSTs, their preliminary expression and purification, their possible paramount in insecticide metabolism and therefore to investigate its potential role in *D. melanogaster* metabolism. This can be broken down to three major objectives as follows;

2.8 Objectives

1. To isolate, clone, and express GSTs E6 and E7
2. To purify recombinant protein GSTE6 and GSTE7
3. To characterize recombinant protein GSTE6 and GSTE7
CHAPTER 3

MATERIALS AND METHODS

3.1 Materials

3.1.1 Insects

The adult flies of *D. melanogaster*, laboratory strain were obtained from Genetic department, University Malaya in the year 2012. The adult flies were reared on oats and glucose based diet as described in Appendix A at room temperature. Only 5 days post emerged flies were used for the experiments. All were stored at -20°C.

All reagents were of analytical grade purity or equivalent unless otherwise stated.

3.1.2 Chemicals and Disposables

SYSTEM CHEM AR

Chloroform, Methanol, Ortho-Phosphoric acid, Ethanol, Ammonium Sulphate, Sodium dihydrogen phosphate, Sodium Chloride, Potassium Chloride, Sodium hydroxide, Acetone, Acetic acid, 1-Chloro-2,4-dinitrobenzene (CDNB),1,2-Dichloro-4-nitrobenzene (DCNB), Ethylenediaminetetraacetic acid (EDTA), glycerol, sodium hydroxide (NaOH) and butan-1-ol

PROMEGA

Agarose L.E analytical grade, Blue/Orange Loading Dye 6X and Tris-base
GENET BIO

HS Prime Taq Premix (2X)

MAESTROGEN

AccuRuler 1 kb DNA RTU Ladder

COSMO GENETECH

SP-Taq DNA Polymerase, *EcoRI* enzyme, *NdeI* enzyme, *XhoI* enzyme and T4 Ligase Kit

BIORON

Sets of dNTPs

SIGMA ALRICH

RIEDEL-DE HAËN

Clodinafop-propargly and Fenonoxaprop-ethyl
FERMENTAS

Nucleases free water

NOVAGEN

pET-30a (+) plasmid DNA and Competent cell (E.coli BL21 (DE3) pLyss; E. coli BL21 Star™ (DE3) pLysS)

INVITROGEN

Competent cells (E.coli TOP10), Super optimal broth (SOC) medium, pBAD/TOPO® ThioFusion™ Expression Kit and Bench mark protein ladder

CALBIOCHEM

Kanamycin Sulphate

PRODANISA

Luria Bertani Agar and Luria Bertani broth

GOLD BIO.COM

Isopropyl β-D-thiogalactopyranoside (IPTG)

BIORAD LABORATORIES

30% Acrylamide/bis-acrylamide (29:1), 1.5M Tris-HCL pH 8.8, 0.5M Tris-HCL pH 6.8, Ammonium Persulphate (APS), N, N, N', N'-tetramethylenediamine (TEMED) and SDS Running buffer
SARTORIUS

Vivaspin 20: 10,000 MWCO

R&M CHEMICALS

Methylene Blue

FLUKA ANALYTICAL

Propoxur and Isoproturon

QIAGEN

DNeasy Blood & Tissue Kit

ANALYTIK JENA BIO SOLUTION

InnuPrep Double Gel Extraction Kit and innuPrep Plasmid Rapid Kit

MERCKS

TLC Silica gel 60 F_{254}, Mercaptoethanol and Hydrogen peroxide

FIRST BASE

TBE buffer (10X)

DUCHEFA BIOCHEMIE

Ampicilin sodium
BIO BASIC

TE buffer

WHATMAN

Whatman #1 filter paper

PESTICIDES

(A gift from Professor Dato' Dr. Mohd Sofian Azirun, Faculty of Science, University Malaya)

Temophos, Malathion, DDT, Fenthion, Fenitrothion, Permetrin, Bromophos and Chlopyrifos.

3.1.3 Buffers

- TBE buffer (0.09 M Tris Borate and 2 mM EDTA, pH 8.0)
- TE buffer (Tris Buffer and EDTA disodium salt, pH 8.0)
- Buffer A (0.1 M Sodium Phosphate, pH 6.8)
- Buffer B (0.1 M Tris, pH 9.0)
- Buffer C (0.1 M Sodium Phosphate, pH 7.5)
- Buffer D (0.25 M Sodium Phosphate, pH 7.0)
- SDS reducing buffer [0.5 M Tris-HCl pH 6.8, glycerol, 10% (w/v) SDS and 0.5% (w/v) Bromophenol Blue and β- Mercaptoethanol (prior to use)]
- Tris/Glycine/SDS running buffer (25 mM Tris, 192 mM Glycine and 0.1% (w/v) SDS, pH 8.3)
3.1.4 Instrumentations

- Polymerase Chain Reaction Thermal cycle (Biorad)
- Gel Electrophoresis Tank (Biorad)
- Thermal Mixing Block (Biocher)
- Gel Image UV Transilluminator (Alpha Innotech)
- Thermal Shaking Incubator (Wisbath)
- Sonicator (Roop Ultrasonic Powersonic 603)
- Orbital Shaker (Protech)
- Microwave oven (Pensonic)
- Fume Hood (Sastec)
- PCR work station (ISC Bioexpress)
- Mini Centrifuge (MSC)
- Vortex (Labnet International)
- Hot plate (Heidolph)
- Centrifuge Machine (Eppendorf)
- Amersham Bioscience AKTA FPLC™
- Spectrophotometer (Jasco V630)
- pH Meter (Hanna Instruments)
- Nanodrop 2000 Spectrophotometer (Thermo Scientific)
- CD Spectrometer (J-815 Jasco)
- Freeze Dryer (Labconco)
3.1.5 Plasmid constructs used

Figure 3.1: A sketch showing the pBAD/Thio-TOPO vector and the multiple cloning site region (Invitrogen)
Figure 3.2: A sketch showing the pET-30a (+) vector and the multiple cloning site region (Novagen)
3.2 Methods

3.2.1 Purification of Total DNA from Animal Tissue

Total DNA was purified using DNeasy Blood & Tissue Kit according to the manufacturer’s instructions. About 40-50 mg of frozen thawed adult *Drosophila melanogaster* was placed in 1.5 mL microcentrifuge tube. A total of 180 µL Buffer ATL was added. The tissue samples were disrupted using homogenizer or a bead mill. Then, 20 µL Proteinase-K was added and mix thoroughly by vortexing and incubated at 56°C until the tissue samples were completely lysed. The samples were occasionally vortex during incubation to disperse the sample. The samples were vortex for 15 seconds. A total of 200 µL Buffer AL was added and vortex. About 200 µL of ethanol (96%-100%) was added and vortex until white precipitate forms. The mixture was pipette (including any precipitate) into the DNase Mini spin column which was placed in a 2 mL collection tube. The tube was centrifuged at > 6000 x g (8000 rpm) for 1 minute. The flow though and the collection tube was discarded. The DNase Mini spin column which was placed in a new 2 mL collection tube. 500 µL of Buffer AW1 was added. The same steps were repeated with 500 µL Buffer AW2 and followed by 200 µL of Buffer AE. The tube was incubated at room temperature for 1 minute and centrifuged again at > 6000 x g (8000 rpm) for 1 minute to eluted the DNA genomic template. The DNA purity and concentration was quantified using Nanodrop (Thermo Scientific).
3.2.2 Polymerase Chain Reaction (PCR)

3.2.2.1 Oligonucleotide primers of gste6 and gste7 for TOPO Cloning

Oligonucleotide primers used in this study as tabulated in Table 3.1 below.

Table 3.1: List of primers for gste6 and gste7 for TOPO cloning

<table>
<thead>
<tr>
<th></th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTE6</td>
<td>5'-ATG GTG AAA TTG ACT TTA TAC G -3'</td>
<td>5'-TGC TTC GAA TGT GAA ATT GGT C - 3'</td>
</tr>
<tr>
<td>GSTE7</td>
<td>5'-ATG CCC AAA TTG ATA CTG TAC G-3’</td>
<td>5'-ATT CGA TGC GAA AGT GAA ATT A- 3’</td>
</tr>
</tbody>
</table>

The forward primer followed by initiation codon ATG (bold) and reverse primer.

3.2.2.2 Oligonucleotide primers of gste6 and gste7 for Restriction Enzyme Cloning

Oligonucleotide primers used in this study as tabulated in Table 3.2 below.

Table 3.2: List of primers for gste6 and gste7 for restriction enzyme cloning

<table>
<thead>
<tr>
<th></th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTE6</td>
<td>5’ GGAATTC CATATG gtgaattgacctttatac 3’</td>
<td>5’ CG GAATTC tcatgettegaatgtgaa 3’</td>
</tr>
<tr>
<td>GSTE7</td>
<td>5’ GGAATTC CATATG cccaaattgatactgac 3’</td>
<td>5’ CCG CTCGAG ttaattcgtgcagaagt 3’</td>
</tr>
</tbody>
</table>

Ndel restriction site (bold) and EcoRI for GSTE6 and Xhol for GSTE7 restriction site (underlined) respectively.
3.2.3 PCR Amplification Product

PCR were carried out to amplify both \textit{gste6} and \textit{gste7} genes. For TOPO cloning; 2 \(\mu \)L of 100 ng of DNA template, forward and reverse primer 1 \(\mu \)L each at final concentration of 0.5\(\mu \)M, 10 \(\mu \)L of HS Prime Taq Premix (2X) were added up in total of 20 \(\mu \)L with sterile distilled water. For negative control everything added was similar except 100 ng of DNA template was replaced with distilled water. For restriction enzyme cloning; 1 \(\mu \)L of 100 ng of DNA template, 5 \(\mu \)L of 10X buffer, forward and reverse primer 1 \(\mu \)L each at final concentration of 100 pmol, 5 \(\mu \)L of dNTPs, 0.5 \(\mu \)L of SP-Taq DNA Polymerase were added up in total of 50 \(\mu \)L with nuclease free water. For negative control everything added was similar except 100 ng of DNA template was replaced with nuclease free water. The PCR mixture was placed in a thermal cycle as and the DNA was amplified with hot start using the following cycling parameters respectively as tabulated in Table 3.3 and Table 3.4 below. The PCR components and cycling parameters was optimized few times for optimized band and without primer-dimer.

Table 3.3: Parameter set for TOPO cloning PCR reaction

<table>
<thead>
<tr>
<th>Steps</th>
<th>Time</th>
<th>Temperature</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Denaturation</td>
<td>3 minutes</td>
<td>95°C</td>
<td>1 X</td>
</tr>
<tr>
<td>Denaturation</td>
<td>30 seconds</td>
<td>95°C</td>
<td>32 X</td>
</tr>
<tr>
<td>Annealing</td>
<td>30 seconds</td>
<td>60°C</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>1 minutes</td>
<td>72°C</td>
<td></td>
</tr>
<tr>
<td>Final Extension</td>
<td>7 minutes</td>
<td>72°C</td>
<td>1 X</td>
</tr>
<tr>
<td>Storage</td>
<td>Infinite</td>
<td>4°C</td>
<td>1 X</td>
</tr>
</tbody>
</table>
Table 3.4: Parameter set for restriction enzyme cloning PCR reaction

<table>
<thead>
<tr>
<th>Steps</th>
<th>Time</th>
<th>Temperature</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Denaturation</td>
<td>5 minutes</td>
<td>95°C</td>
<td>1 X</td>
</tr>
<tr>
<td>Denaturation</td>
<td>60 seconds</td>
<td>95°C</td>
<td>25 X</td>
</tr>
<tr>
<td>Annealing</td>
<td>60 seconds</td>
<td>55°C</td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>90 seconds</td>
<td>72°C</td>
<td></td>
</tr>
<tr>
<td>Final Extension</td>
<td>7 minutes</td>
<td>72°C</td>
<td>1 X</td>
</tr>
<tr>
<td>Storage</td>
<td>Infinite</td>
<td>4°C</td>
<td>1 X</td>
</tr>
</tbody>
</table>

3.2.4 Agarose Gel Electrophoresis

The PCR product was analyzed by agarose gel electrophoresis to obtain correct size of amplified PCR product. A total of 1% (w/v) of analytical grade agarose was weighed and dissolved in 100 mL of 50X TBE buffer in a 300 mL schott bottle. The agarose was placed in microwave oven until it completely dissolved. The melted agarose was left for 45 minutes for it to cool down and poured into electrophoresis gel chamber. Gel comb (1.5 mm) were carefully placed into the gel and waited for 30 to 45 minutes until it solidified. The solidified gel was placed inside the gel electrophoresis tank and filled until the gel was completely immersed with 50X TBE buffer. A total of 2 µL of 1 Kb DNA ladder and 20 µL samples (restriction enzyme cloning PCR products) mixed with 4 µL of Blue/Orange Loading Dye 6X loaded into the gel wells respectively. No loading dye used for TOPO cloning PCR product because HS Prime Taq Premix (2X) contains loading dye. Blue/Orange Loading Dye 6X loading dye/buffer gives colour and density to the sample to facilitate loading into the wells. The dye is negatively charged in neutral buffers and thus moves in the same direction as the DNA during electrophoresis. The tank covered and connected to power source. The gel was run at 60 V for 70 minutes. The gel was then stained for ethidium bromide (0.5 mg/mL) for an hour and de-staining for 10 minutes in distilled water. The gel was then viewed under ultraviolet light (302 nm wavelength) inside a gel imager (Alpha Innotech). The gel image were captured and saved.
3.2.5 Agarose DNA Extractions (Gel Purification)

The DNA fragment at correct size were excised from the agarose gel with a sharp knife/ or scalpel which is not more than 300 mg. The DNA was extracted using InnuPrep Double Kit according to the manufacturer’s instructions. The gel slice was then transferred into 1.5 mL centrifuge tube and 650 µL of gel solubilizer solution was added. The gel was incubated for 10 minutes at 50°C water bath until the gel fully dissolved. Then, 50 µL of binding optimizer was added and mixed well by vortex. The whole sample was applied into spin filter (green) located inside 2 mL receiver tube. The sample then was centrifuged at 12, 000 rpm for 1 minute. The filtrate was discarded and 700 µL of washing solution LS was added and centrifuged at 12 000 rpm for 1 minute. The filtrate was again discarded. The spin column sample was centrifuged at maximum speed for 2 minutes to remove all the ethanol. The spin filter was then placed into 1.5 mL elution tube. A total of 20 µL of elution buffer (pre-warmed to 50°C) was added. The sample was incubated at room temperature for 1 minute. The sample centrifuged at 8000 rpm for 1 minute. The elution was collected and stored in -20°C freezer.
3.2.6 TOPO Cloning Reaction

TOPO cloning reaction was performed using pBAD/TOPO® ThioFusion™ Expression Kit according to the manufacturer’s instructions. Two μL of fresh PCR product of gste6 were added into a PCR tube followed by 1μL of salt solution (at final concentration of 200 mM NaCl, 10 mM MgCl\textsubscript{2}), double sterile water was added to a total volume of 5 μL and finally 1μL of TOPO vector was added. The reaction was mixed gently and incubated for 5 minutes at room temperature. The reaction was placed on ice or kept in -20°C overnight and proceed to One Shot TOP10 Chemical Transformation.

3.2.6.1 TOPO Cloning Reaction Transformation

Two μL of the TOPO® Cloning reaction was added into a vial of One Shot® TOP10 Chemically Competent E. coli and mixed gently without pipetting up and down. The vial were incubated on ice for 5 minutes and then heat-shocked the cells for 30 seconds at 42°C without shaking. The vial then was immediately transferred into ice. Two hundred fifty μL of room temperature SOC medium was added. The vial was capped tightly and shaken horizontally (200 rpm) at 37°C for an hour. A total of 25–200 μL from each transformation was spread on a pre-warmed selective ampicillin plate (100 μg/mL) and incubated overnight at 37°C. pBAD/Thio vector was used as a positive control and cells without vector as a negative control.
3.2.6.2 Positive Clone Analysis

The clones were directly analyzed for positive transformants using colony PCR method using the Trx Forward and pBAD Reverse sequencing primers as PCR primers. A PCR cocktail consisting of 10 μL HS Prime Taq Premix (2X) and 1 μL primer each was prepared for a 20 μL reaction volume with distilled water. The reaction multiplied by the number of colonies to be analyzed. Ten colonies were picked and resuspended them individually in 20 μL of the PCR cocktail. The reactions were incubated for 10 minutes at 94°C to lyse the cells and inactivate nucleases. The mixtures was amplified for 30 cycles with following cycling parameters (94°C for 1 minute, 55°C for 1 minute, and 72°C for 1 minute). Finally, the mixtures were incubated at 72°C for 10 minutes for the final extension and hold at 4°C. The clones were then analyzed by 1% (w/v) agarose gel electrophoresis for presence of correct band size. Clones were further analyzed by plasmid DNA analysis as described in 3.2.8.

3.2.7 Restriction Enzyme Cloning

3.2.7.1 Restriction Enzyme Digestion

Two different restriction enzymes were used which chosen based on the map of the cloning vector. NdeI, EcoRI and XhoI enzyme were chose because it includes 6X Histidine tagging to the gene of interest which will assist with purification procedure later. The following components are added as following schema in ice: For gste6; 26 μL of fresh PCR product, 3.5 μL of 10X buffer, 0.5 μL of each EcoRI and NdeI restriction enzyme and 4.5 μL of nucleases free water which total volume was 35 μL. For gste7; 26 μL of fresh PCR product, 3.5 μL of 10X buffer, 3.5 μL of 10X BSA, 0.5 μL of each NdeI and XhoI restriction enzyme and 1 μL of nucleases free water which total volume was 35 μL. The components
were mixed gently and spun down. The mix then incubated at 37°C in a heat block for overnight.

For digestion of pET 30a(+) the following component were added as following schema in ice: For gste6; 26 μL of pET 30a(+), 3.5 μL of 10X buffer, 0.5 μL EcoRI restriction enzyme and 1 μL of nuclease free water which total volume was 35 μL. The components were mixed gently and spun down. The mix then incubated at 37°C in a heat block for 2 hours. The mixture is then enzyme inactivated by incubation at 65°C for 20 minutes. The 35 μL mixtures was added with 4 μL of 10X buffer, 0.5 μL of NdeI restriction enzyme and 0.5 μL of nuclease free water which total volume was 40 μL. The components were mixed gently and spun down. The mix then incubated at 37°C in a heat block for overnight.

An aliquot of both PCR product and vector of the reaction mixture loaded directly on 1% (w/v) gel. For each 30 μL sample, 6 μL of loading dye (Blue/Orange Loading Dye 6X) were mixed and loaded into gel well to obtain purified product.
3.2.7.2 Ligation

Ligation was done using the T4 DNA Ligase kit. Digested PCR product, pET-30a (+) plasmid DNA, T4 Ligase Kit thawed and placed on ice. The ligation mixture was prepared by following procedure: For GSTE6; 1 μL of 10X T4 Ligase Buffer, 4 μL (38.9 ng/µL) of digested PCR product, 4 μL (21.4 ng/µL) of digested pET-30a (+), 1 μL of T4 Ligase enzyme in total volume of 20 μL. For GSTE7; 1 μL of 10X T4 Ligase Buffer, 5 μL (22.6 ng/µL) of digested PCR product, 3 μL (71.5 ng/µL) of digested pET-30a (+), 1 μL of T4 Ligase enzyme in total volume of 20 μL. The components were mixed gently and spun down. The mix then incubated at room temperature for 3 hours. The ligation mixture mixed with 4 μL loading dye (Blue/Orange Loading Dye 6X) was loaded directly into 1% (w/v) gel well to obtain correct band size and purified ligation product.

3.2.7.3 Transformation with *E.coli* BL21 (DE3) pLysS

A vial of competent cell (50 μL) was thawed on ice. Fifty ng or 5 μL of ligated DNA was added to the transformation reaction and swirled gently. For the control transformation reaction, 1 μL of the pUC18 control plasmid was added to a separate 50 μL aliquot of the competent cells and swirled gently. The reactions were incubated on ice for 30 minutes. Each transformation reaction was heat-pulse in a 42°C water bath for 45 seconds. The reactions were incubated on ice for 2 minute. A total of 250 μL of preheated (42°C) Super Optimal broth with Catabolite repression (SOC) medium were added to each transformation reactions respectively and incubated the reactions at 37°C for 1 hour and 30 minutes with shaking at 225–250 rpm. Using a sterile spreader, 50-100 μL of the cells was spread and transformed with the experimental DNA onto LB agar plates with 30 μg/mL of Kanamycin. For the pUC18 control transformation, 200 μL of the reaction was spread onto
an LB–ampicillin (100 μg/mL) agar plate. The plates were incubated at 37°C for 16-18 hours. The transformants was sub-cloned, streaked on new selective plates and cultured in 5 mL LB broth for plasmid extraction. Some was stored in glycerol stock at -80°C for long term storage.

3.2.8 Plasmid DNA Extraction

Double Pure Rapid Plasmid extraction kit from Analytikjena Biosolution was used to extract the plasmid DNA according to the manufacturer’s instructions to confirm of positive clones. A single colony from a freshly streaked selective plate was picked and inoculated in a starter culture of 5 mL LB medium containing (100 ug/mL Ampicilin for TOPO clones) or (30 μg/mL Kanamycin for restriction enzyme digested clones). The culture incubated for approximately 18 hours at 37°C with vigorous shaking (300 rpm). The bacterial cells were harvested by centrifugation at 13, 000 rpm for 1 minute at room temperature. The pellet stored at -20°C or suspended in 0.2 mL of resuspension buffer by vortex/ pipetting until no clumps remain. 0.2 mL of lysis buffer was added and mixed by vigorously inverting the sealed tube 4-6 times and incubated at room temp (~15-25°C) for 2 minutes. 0.3 mL of neutralizing buffer was added and mixed by vigorously inverting the sealed tube 4-6 times (~15-25°C) for 5 minutes. The sample was transferred into prefilter (vanilla) spin column located on collection tube and centrifuged at maximum speed (10 000 -13 000 rpm) for 1 minute. The flow-through was transferred into new tube with spin column (Orange) and centrifuged at 13, 000 rpm for 1 minute. The flow through was discarded and 0.65 mL of Washing Solution A was added into the spin column and centrifuged at 13,000 rpm for 1 minute. The flow through was discarded again and 0.7 mL of washing solution B was added. The spin column was centrifuged at 13, 000 rpm for 1 minute and the flow through with the collection tube was discarded. The spin column was
placed into new receiver tube and 10-30 μL of elution buffer P was added directly on the center of the spin column. The spin column was incubated at room temperature for 1 minute before centrifuge at 13,000 rpm for 1 minute to collect the plasmid DNA. The same procedure was repeated for few colonies. The plasmids were then analyzed by 1% (w/v) agarose gel electrophoresis for presence of correct band size. A total of 2 μL of plasmid DNA with 1 μL of loading dye mixed and loaded into gel to check for correct insert with plasmid size.

3.2.8.1 Plasmid DNA Analysis

The plasmid DNA with correct size was used as template in a PCR reaction to check for presence of desired gene inside the plasmid. For TOPO cloning; A PCR consisting of 10 μL HS Prime Taq Premix (2X), 1 μL of each primers was prepared for a 20 μL reaction volume with distilled water. For Restriction enzyme cloning; a PCR consist of component used in PCR reaction described in section 3.2.3 was used. For negative control everything added was similar except plasmid DNA was replaced with distilled water or nuclease free water. The mixtures were amplified for 30 cycles with described PCR cycling parameters as follows; (95°C for 5 minute, 95°C for 30 seconds, 60°C (TOPO cloning reaction) and 55°C (Restriction cloning reaction) for 30 seconds, and 72°C for 60 seconds). Finally, the mixtures incubated at 72°C for 5 minutes for the final extension and hold at 4°C. The PCR of plasmids DNA were then analyzed by 1% (w/v) agarose gel electrophoresis for presence of correct band size. A total of 20 μL of plasmid DNA PCR was loaded into agarose gel electrophoresis gel to check for correct insert with plasmid size. PCR products and plasmid DNA which shows correct insert with plasmid size were sent out for full plasmid sequencing.
3.2.9 Cell Culturing and Lysis

A total of 1g of LB broth powder was dissolved in 50 mL of distilled water in a conical flask and sterilized by autoclaving. The flask was cooled to 37°C and kanamycin was added to a final concentration of 30 µg/mL. Single positive bacteria colony was transferred into the broth flask and placed in a shaking incubator of 200 rpm at 37°C overnight. Ten mL of fresh overnight culture were transferred into new 400 mL LB broth and placed in shaking incubator at 37°C for 5 hours. IPTG was added to the final concentration of 1 mM into the culture flask and continued shaking at 37°C for an additional of 4 hours.

The bacteria culture was then centrifuged at 6,000 rpm for 15 minutes at 4°C. The cell pellet was then resuspended with 5 mL binding buffer. A total of 100 uL of lysozymes (10 mg/mL) was added and the tube was inverted gently for 5-10 minutes. The crude lysate was centrifuged at 10,000 rpm for 1 hour at 4°C to remove the cell debris. The supernatant was transferred to a clean eppendof tube without disturbing the cell pellet and kept in ice prior to analysis.

3.2.10 Protein Purification

Crude lysate of the bacterial lysis was subjected to ion exchange and affinity chromatography using several columns. Protein purification was carried out using Amersham Bioscience AKTA FPLC™ connected to a fraction collector. Each column was equilibrated with 30 mL of binding buffer to ensure proper column equilibration. Five mL of crude lysate was injected, allowing the sample to flow through the column followed by 20 mL of binding buffer to wash out all the unbound proteins completely. The bound proteins were eluted out using elution buffer as specified. Elute from the low to highest peak were collected to determine absorbance range which the protein in eluted out. For
columns such as bromosulfophthalein (BSP), additional washing with 1 M NaCl was required to remove the non-specific protein binding followed by protein elution using elution buffer as stated below (Table 3.5).

Table 3.5: Summary of columns and buffers used for both GSTE6 and GSTE7

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Column</th>
<th>Binding buffer</th>
<th>Elution buffer</th>
<th>Washing buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSTE6</td>
<td>GSTrap™ HP</td>
<td>25 mM Sodium Phosphate buffer, pH 7.4</td>
<td>10 mM GSH, pH 7.4</td>
<td>NIL</td>
</tr>
<tr>
<td></td>
<td>HiTrap™ Q HP</td>
<td>25 mM Sodium Phosphate buffer, pH 7.4</td>
<td>1 M Sodium Chloride, pH 7.4</td>
<td>NIL</td>
</tr>
<tr>
<td></td>
<td>HiTrap™ Q HP followed by BSP-SG and Hi-Trap Desalting(G-25)</td>
<td>25 mM Sodium Phosphate buffer, pH 7.4</td>
<td>2 mM BSP, pH 7.4</td>
<td>1 M NaCl, pH 7.4</td>
</tr>
<tr>
<td>GSTE7</td>
<td>HiTrap™ Q HP</td>
<td>25 mM Sodium Phosphate buffer, pH 7.4</td>
<td>1 M Sodium Chloride, pH 7.4</td>
<td>NIL</td>
</tr>
<tr>
<td></td>
<td>HiTrap™ CM FF</td>
<td>25 mM Sodium Phosphate buffer, pH 8.0</td>
<td>0.5 M Sodium Chloride, pH 8.0</td>
<td>NIL</td>
</tr>
<tr>
<td></td>
<td>HiTrap™ Q HP followed by BSP-SG and Hi-Trap Desalting(G-25)</td>
<td>25 mM Sodium Phosphate buffer, pH 7.4</td>
<td>2 mM BSP, pH 7.4</td>
<td>1 M NaCl, pH 7.4</td>
</tr>
</tbody>
</table>
3.2.11 SDS- Polyacrylamide Gel (PAGE)

The polyacrylamide gel casting was performed using Bio-Rad Mini PROTEAN II System (Bio-Rad Laboratories, USA) following the manufacturer’s instructions. SDS-PAGE gel formulation was as described in the Table 3.6 below. The resolving gel (lower part) was prepared and allowed to polymerize for 30 minutes to an hour before overlaid with distilled water. The overlaid distilled water was poured away and replaced with the stacking gel. A comb was placed on top of the stacking gel to form wells. After polymerization, the comb was removed and the stacking gel was washed with distilled water to remove the unpolymerized acrylamide solution.

Table 3.6: SDS-PAGE gel formulations

<table>
<thead>
<tr>
<th>Components</th>
<th>Stacking Gel (4%)</th>
<th>Resolving Gel (12%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deionized H2O</td>
<td>15 mL</td>
<td>3.4 mL</td>
</tr>
<tr>
<td>30% Acrylamide/bis-acrylamide (29:1)</td>
<td>3.3 mL</td>
<td>4.0 mL</td>
</tr>
<tr>
<td>1.5 M Tris (pH 8.8)</td>
<td>-</td>
<td>2.5 mL</td>
</tr>
<tr>
<td>0.5 M Tris HCl (pH 6.8)</td>
<td>6.3 mL</td>
<td>-</td>
</tr>
<tr>
<td>10% (w/v) SDS</td>
<td>0.25 mL</td>
<td>0.1 mL</td>
</tr>
<tr>
<td>10% (w/v) Ammonium Persulphate</td>
<td>0.125 mL</td>
<td>0.05 mL</td>
</tr>
<tr>
<td>TEMED</td>
<td>0.005 mL</td>
<td>0.005 mL</td>
</tr>
</tbody>
</table>

The electrophoresis apparatus were assembled following the instruction for Bio-Rad Mini PROTEAN ® II System. The collected elute was concentrated for 15-30 minutes using vivaspin 20: 10,000 MWCO (Sartorius). Sample was then diluted with SDS reducing buffer (at least 1:2) and heated at 95°C for 4 minutes. Sample and protein standard marker were loaded into wells. Electrophoresis was performed in descending directions, with running buffer 1X Tris- glycine running buffer (25 mM Tris, 192 mM Glycine and 0.1% (w/v) SDS at pH 8.3) with a constant voltage of 120 volts until the bromophenol marker reaches the bottom edge of the gel tank which will take approximately 60-90 minutes. As soon as it
finished running, the apparatus was disassembled and the gel was stained in Commasie staining solution [(5% (w/v)) Commasie Brilliant Blue, 85% H₂PO₄, Ammonium Sulphate] and left overnight. The gel washed with 20% (v/v) methanol until its clear enough to view the bands. The band viewed under visible white light.

3.2.12 Bradford Assay

A total of 100 mg Coomasie Brilliant Blue G-250 was dissolved in 50 mL 95% ethanol and 100 mL of 85% (w/v) phosphoric acid was added to the mixture. The solution was then diluted by topping up to 1 liter once the dye has completely dissolved. The mixture was filtered using Whatman #1 filter paper (Spector, 1978). The filtrate, Bradford solution was wrapped in aluminum foil and stored in dark as it is light sensitive.

Standard (BSA) ranging from 20-100 µg was prepared in 100 µL volume. Five mL Bradford reagent was added and mixed well using vortex. The mixture was incubated for 30 minutes in the dark. Absorbance was measured at 595 nm (Bradford, 1976).
3.2.13 Assay for GSTs

3.2.13.1 1-Chloro-2, 4-dinitrobenzene (CDNB)

A total of 2.85 mL Buffer A, 0.05 mL 60 mM GSH (freshly prepared) (0.0553g in 3 mL buffer A), 0.05 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. At the end, 0.05 mL of 60 mM (0.2430 g in 20 mL ethanol) CDNB was added (which makes the total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the CDNB (1-chloro-2, 4-nitrobenzene, a universal GST substrate) was measured by monitoring the increase in absorbance at 340 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Habig et al., (1974) at 25°C and was measured for 10 minutes. Molar absorption coefficient ξ_m is 9600 1.mol$^{-1}$.cm$^{-1}$.

3.2.13.2 1, 2-Dichloro-4-nitrobenzene (DCNB)

A total of 2.80 mL Buffer B, 0.05 mL 240 mM GSH (freshly prepared) (0.2212 g in 3 mL buffer B) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer B for negative control. Finally, 0.05 mL 24 mM (0.092 g in 20 mL ethanol) DCNB was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the DCNB (1, 2-Dichloro-4-nitrobenzene) was measured by monitoring the increase in absorbance at 344 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Habig et al.,
(1974) at 25°C and measured for 20 minutes. Molar absorption coefficient ξ_m is 8400 1.mol$^{-1}$.cm$^{-1}$.

3.2.13.3 p-Nitrobenzyl Chloride (p-NBC)

A total of 2.60 mL Buffer A, 0.25 mL 60 mM GSH (freshly prepared) (0.0553g in 3 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. At the end, 0.05 mL 60 mM (0.2058 g in 20 mL ethanol) p-NBC was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the p-NBC was measured by monitoring the increase in absorbance at 310 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Habig *et al.*, (1974) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_m is 1900 1.mol$^{-1}$.cm$^{-1}$.

3.2.13.4 Sulfochromphthalein (BSP)

A total of 2.60 mL Buffer C, 0.25 mL 60 mM GSH (freshly prepared) (0.0553g in 3 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer C for negative control. Finally, 0.05 mL 2 mM (0.0334 g in 20 mL ethanol) BSP was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the BSP was measured by monitoring the increase in absorbance at 330 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Habig *et al.*, (1974) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_m is 4500 1.mol$^{-1}$.cm$^{-1}$
3.1.13.5 Ethacrynic acid (EA)

A total of 2.8 mL Buffer A, 0.05 mL 15 mM GSH (freshly prepared) (0.0138 g in 3 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. Finally, 0.05 mL 12 mM (0.0727 g in 20 mL in ethanol) EA was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the EA was measured by monitoring the increase in absorbance at 270 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Habig *et al.*, (1974) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_m is 5000 1.mol$^{-1}$.cm$^{-1}$.

3.2.13.6 *trans*-4-phenyl-3-butene-2-one (PBO)

A total of 2.8 mL Buffer A, 0.05 mL 15 mM GSH (freshly prepared) (0.0138 g in 3 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. Finally, 0.05 mL 3 mM (0.0876 g in 20 mL ethanol) PBO was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the PBO was measured by monitoring the increase in absorbance at 290 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Habig *et al.*, (1974) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_m is -24800 1.mol$^{-1}$.cm$^{-1}$.
3.2.13.7 Hexa-2, 4-dienal

A total of 2.8 mL Buffer A, 0.05 mL 150mM GSH (freshly prepared) (0.0461 g in 1 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. Finally, 0.05 mL 3 mM (34.8 µL in 100 mL buffer A) Hexa-2,4-dienal was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the substrate was measured by monitoring the change of absorbance at 280 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Brophy et al., (1989) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_{m}, is -34200 l.mol$^{-1}$.cm$^{-1}$.

3.2.13.8 trans, trans -Hepta-2, 4-dienal.

A total of 2.8 mL Buffer A, 0.05 mL 150 mM GSH (freshly prepared) (0.0461 g in 1 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. Finally, 0.05 mL 3 mM (41.6 µL in 100 mL buffer A) trans,trans-Hepta-2,4-dienal was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the substrate was measured by monitoring the change in absorbance at 280 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Brophy et al., (1989) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_{m}, is -30300 l.mol$^{-1}$.cm$^{-1}$.
3.2.13.9 trans-Oct-2-enal

A total of 2.8 mL Buffer A, 0.05 mL 60 mM GSH (freshly prepared) (0.0553 g in 3 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. Finally, 0.05 mL 3 mM (47.6 µL in 100 mL buffer A) trans-Oct-2-enal was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the substrate was measured by monitoring the change in absorbance at 225 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Brophy et al., (1989) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_{m} is -22000 l.mol$^{-1}$.cm$^{-1}$.

3.2.13.10 trans-Hex-2-enal

A total of 2.8 mL Buffer A, 0.05 mL 60 mM GSH (freshly prepared) (0.0553 g in 3 mL buffer A) and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer A for negative control. Finally, 0.05 mL 3 mM (48.4 µL in 100 mL buffer A) trans-Hex-2-enal was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the substrate was measured by monitoring the change in absorbance at 225 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Brophy et al., (1989) at 25°C and measured for 10 minutes. Molar absorption coefficient ξ_{m} is -24000 l.mol$^{-1}$.cm$^{-1}$.
3.2.13.11 Cumene hydroperoxides (CuH₂O₂)

A total of 2.7 mL Buffer D, 0.05 mL 10 mM GSH (freshly prepared), 0.05 mL 6µM Glutathione Reductase, 0.05 mL 2.5 mM NADPH and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer D for negative control. Finally, 0.05 mL 3 mM cumene hydroperoxide was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the substrate was measured by monitoring the change in absorbance at 366 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Paglia and Valentine, (1967) at 25°C and measured for 20 minutes. Molar absorption coefficient ξm of NADPH is 6220 l.mol⁻¹.cm⁻¹.

3.2.13.12 Hydrogen peroxide (H₂O₂)

A total of 2.7 mL Buffer D, 0.05 mL 10 mM GSH (freshly prepared), 0.05 mL 6µM Glutathione Reductase, 0.05 mL 2.5 mM NADPH and 0.10 mL sample were added into a cuvette accordingly. The sample was replaced with buffer D for negative control. Finally, 0.05 mL 3 mM hydrogen peroxide was added (total volume of 3 mL) and mixed well. Enzyme activity conjugating GSH to the substrate was measured by monitoring the change in absorbance at 366 nm over time using Jasco V630 spectrophotometer. This standard GST assay was performed according to Paglia and Valentine, (1967) at 25°C and measured for 20 minutes. Molar absorption coefficient ξm of NADPH is 6220 l.mol⁻¹.cm⁻¹.
3.2.14 The Effect of Substrate Concentration and Determination of Km and Vmax

The kinetic parameters of K_m and V_{max} values for GSTE6 and GSTE7 were determined by fixing GSH at saturating concentration and changing the concentration of second substrate. An appropriate substrate dilution was chosen that allows the whole set of different substrate concentrations to be measured within the initial rate period showing a linear reaction slope. The K_m value and the maximum reaction velocity V_{max} were calculated by means of the nonlinear least-squares regression and fitting the acquired data to the Michaelis-Menten equation with the program GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com. The values obtained were again used to construct Michaelis-Menten and Lineweaver-Burk plot to determine the K_m and V_{max} values. The catalytic constant k_{cat} and the catalytic efficiency (k_{cat}/K_m) were calculated by using the molecular weight calculated from the amino acid composition.

K_m value for CDNB was determined by using 1-150 mM stock solution of CDNB and 60 mM GSH at which GSTE6 and GSTE7 was saturated under assay conditions as described in 3.2.13.1.

K_m value for DCNB was determined by using 1-100 mM stock solution of DCNB and 24 mM GSH at which GSTE6 and GSTE7 was saturated under assay conditions as described in 3.2.13.2.

K_m value for p-NBC was determined by using 1-100 mM stock solution of p-NBC and 60 mM GSH at which GSTE6 and GSTE7 was saturated under assay conditions as described in 3.2.13.3.
3.2.15 Secondary Structure Analysis by Circular Dichroism (CD)

The protein concentration of the recombinant GSTs was adjusted to 0.2 mg/mL for GSTE6 and GSTE7 respectively in 0.1 M sodium phosphate buffer at pH 6.5. The recombinant protein of GSTE6 and GSTE7 was filtered before proceeding with circular dichroism (CD) spectra determination. The circular dichroism (CD) spectra were determined at 25 °C on a Jasco J-815 Circular Dichroism Spectrometer using a 1 mm path length Hellma quartz cuvette. The CD spectra were scanned from 250 to 200 nm with the scanning speed 50 nm per minutes. Background CD spectrum of 0.1 M Sodium phosphate buffer was automatically subtracted from each sample analysis.

3.2.16 Thin Layer Chromatography of Pesticides

Thin layer chromatography (TLC) was used to determine the presence of chemically synthesized S-glutathionylated pesticide conjugates. Each assay was prepared according to method described in 3.2.13.1 replacing CDNB (positive control) with pesticides temophos, malathion, DDT, fenthion, fenitrothion, permethrin, bromophos, chlopyrifos, clodinafop-propargyl, fenoxaprop-ethyl, propoxur, isoprofuron and methyl parathion. Control reaction was prepared replacing sample with buffer A. Of each reaction preparation, 8 µL were independently applied to a Merck 10 x 8 cm silica gel 60 F254 TLC aluminium sheet with control reaction was run alongside each reaction mix. The TLC plate was developed for 2 hours in butan-1-ol: acetic acid: distilled water (12:3:5). The glutathione-conjugates were visualised with conjugated reaction products staining positive after applied with 0.25% (w/v) ninhydrin in acetone (Rogers et al., 1999).
3.2.17 Inhibition of Glutathione S-Transferases

Natural products and dyes were used to study the effect of the compound on CDNB activity against GSTE6 and GSTE7. Various concentration ranges of natural products and dyes were tested to generate inhibition or stimulation curves from which IC\textsubscript{50}/EC\textsubscript{50} values could be determined, the IC\textsubscript{50} value being the concentration required for 50% inhibition of enzyme activity while EC\textsubscript{50} value being the concentration of a compound that gives half-maximal response. The IC\textsubscript{50} or EC\textsubscript{50} value was determined by plotting sigmoidal concentration response curves of enzyme activity vs. log natural product or dyes concentrations using program GraphPad Prism version 6.00 for Windows, GraphPad Software, La Jolla California USA, www.graphpad.com. Each experiment was independently repeated at least 3 times.

The response value for CDNB was determined using the following assay composition (Table 3.7). Both protein sample, GSTE6 and GSTE7 was saturated under assay conditions as described in 3.2.13.1.

Table 3.7: Inhibition of glutathione s-transferase assay components

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>Stock solution of Inhibitors (mM)</th>
<th>Stock solution of GSH (mM)</th>
<th>Stock solution of CDNB (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triphenyltin acetate</td>
<td>0-100</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Tetradecanedioic acid</td>
<td>0-100</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Sebacic acid</td>
<td>0-100</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>trans-chalcone</td>
<td>0-100</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Cardiogreen</td>
<td>0-3</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Rose Bengal</td>
<td>0-3</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Methylene blue</td>
<td>0-100</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Crystal violet</td>
<td>0-10</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Phenol red</td>
<td>0-10</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Cibacron blue</td>
<td>0-10</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
CHAPTER 4

RESULTS

4.1 DNA Extraction

The gste6 and gste7 is an epsilon class GST gene contains no intron. Thus, DNA instead of RNA was extracted from Drosophila melanogaster. The concentration of DNA extracted was quantified using the absorbance readings of the nanodrop (Thermo Scientific). Absorbance was read at 260 nm and 280 nm. An A$_{260}$ of 1.0 corresponds to a concentration of 50 µg/mL for DNA. Purity of nucleotide can be evaluated by ratio of Absorbance$_{260nm}$/Absorbance$_{280nm}$ as a range of 0.5 to 1 is considered pure DNA.

4.2 Polymerase Chain Reaction (PCR)

PCR reaction was performed according to the conditions mentioned in material and methods section. Gene sequence for gste6 and gste7 was obtained from http://flybase.org/. Primers were designed and used to amplify the gene. Amino acids of protein, gene sequence and primer sequences used are as below:

Figure 4.1 shows amino acids of protein and gene sequence of gste6 with respective primers for TOPO and restriction enzyme cloning. Both the start codon (ATG) and stop codon (TAG) is in bold case in the beginning and ending of the gene sequence. The forward primer (pink) and reverse primer (green) without stop codon was used in TOPO cloning reaction. The forward primer (blue) includes the restriction site for NdeI (underlined) and aligned at the beginning of the sequence while the reverse primer (purple) includes the restriction site for EcoRI (underlined) and aligned at the ending was used in restriction enzyme cloning reaction.
Figure 4.1: Amino acids of protein and gene sequence of gste6 aligned with forward and reverse primers of TOPO cloning and restriction enzyme cloning respectively
Figure 4.2 shows amino acids of protein and gene sequence of *gste7* with respective primers for TOPO and restriction enzyme cloning. Both the start codon (ATG) and stop codon (TAG) is in bold case in the beginning and ending of the gene sequence. The forward primer (pink) and reverse primer (green) without stop codon was used in TOPO cloning reaction. The forward primer (blue) includes the restriction site for *NdeI* (underlined) and aligned at the beginning of the sequence while the reverse primer (purple) includes the restriction site for *XhoI* (underlined) and aligned at the ending was used in restriction enzyme cloning reaction.
223 Amino acids

MPKLILYGLEASPPVRAVLTLAALEVPYEFVEVFNYFRAKDENFSEEFLKKNPQHTVPTLE
DDGHYIWDSHAIAYLVSKYGTKDSLYPKDLLQRAVDQRLHFSGVIFANALRSITKPLFAGKQTMIPKERYDAIIIEYDFLEKFLAGNDYVAGNQLTADFSIISTVSSLEVFKVD
TTKYPRIAAWFKRLQLPYYEEANGNGARTFESFIREYNFTFASN

Theoretical pI/MW: 6.12/ 25,510.1 Da

672 bp Gene and primers

5′-ATG CCC AAA TTG ATA CTG TAC G-3′

5′ GGAAATTCCATATG cccaaattgatactgac 3′

5′-ATGCCAATGATCTGTAACGGCTCTGGAGGCCAAGTGACCAGTTCGTCGTCCGGT
CAAAATTGACCTTGGCTGGCTGGTGCTCCTACGAAATTCGAGGAGGTAACACTC
GGGCCAGGAAAACCTTCTCTGAGAGTTCTGAAAGAAAGATCCACACAGCACACGGTG
GCCACGTTGGAGGAGCATGGACATTATATCTGAGACTCACATGCCATAATTGCGCT
ATCTGTCGACTCCAAATACGAGCAACGGCAGATGCTCTCCTAAGAAGATCTCTTCTCCAG
CGTGCTGTCGAGTCTGGCAGATGGCATTCTCCTGGAGGAGATCTTCTCGCTAATATGC
ACTGAGAAGCATTCAACACCACCTTTCCCGGTGAAGCAACAGTCAGGTGATCCCAAG
GAGCTTACGATGCCATTTGAGGCTCTATGCTCTTCTTCGGGAGGAAATGCCTTCTGG
AAATGACTACAGTCCGGCAATCAGGCTTACGAGATGGCGACTTTAGATCTCATATCA
ACGTGTCCTCCGGAGCTCTGTAATAGTGACACAGGAAATATATCGGGATTGAATATTCTGG
CGCTGATGGTTCAAGAGACTCCAAAAGCTGCCCTACTACGAGGAGGCCAACGGCA
ATGGTGCTGTCATTTGAGTCTCTTCTCAAGAGATGTAATTCTGACCCGCTACTGGCAGGAGGA
GATACAGTGGCTTTTCTCTTCAGAGATGTAATTCTGACCCGCTACTGGCAGGAGGA
GATACAGTGGCTTTTCTCTTCAGAGATGTAATTCTGACCCGCTACTGGCAGGAGGA

Figure 4.2: Amino acids of protein and gene sequence of gste7 aligned with forward and reverse primers of TOPO cloning and restriction enzyme cloning respectively
4.2.1 PCR Gel Image for TOPO Cloning

Figure 4.3 above shows the gel image of amplified *gste6* gene, a single band in between 500 bp and 750 bp (lane 3) whereas no band was observed on lane 2 which was the negative control where everything added was similar except template was replaced with distilled water.

Figure 4.3: The *gste6* amplicon image on 1% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2: Control with distilled water and Lane 3: PCR product of *gste6*
Figure 4.4 above shows the gel image of amplified *gste7* gene, a single band in between 500 bp and 750 bp (lane 3) whereas no band was observed on lane 2 which was the negative control where everything added was similar except template was replaced with distilled water.

Figure 4.4: The *gste7* amplicon image on 1% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2: Control with distilled water and Lane 3: PCR product of *gste7*
4.2.2 PCR Gel Image for Restriction Enzyme Cloning

Figure 4.5 above shows the gel image of amplified \textit{gste6} and \textit{gste7} gene, a single band in between 500 bp and 750 bp (lane 2 and lane 3) whereas no band was observed on lane 4 and lane 5 which was the negative control where everything added was similar except template was replaced with nucleases free water.

![PCR Gel Image for Restriction Enzyme Cloning](image)

Figure 4.5: The \textit{gste6} and \textit{gste7} amplicon image on 1\% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2: PCR product of \textit{gste6}; Lane 3: PCR product of \textit{gste7}; Lane 4: Control of \textit{gste6} with nucleases free water and Lane 5: Control of \textit{gste7} with nucleases free water.
4.3 Cloning of the PCR product

4.3.1 TOPO Cloning

pBAD/TOPO® ThioFusion™ Expression Kit (Invitrogen) was used as it provides a highly efficient, 5-minute, one-step cloning strategy ("TOPO® Cloning") for the direct insertion of Taq polymerase-amplified PCR products into a plasmid vector for soluble and simplified protein purification in *E. coli*. Taq polymerase which has a non-template-dependent terminal transferase activity adds a single deoxyadenosine (A) to the 3´ ends of PCR products. The linearized vector supplied in the kit has single; overhanging 3´ deoxythymidine (T) residues therefore allows PCR inserts to ligate efficiently with the vector. Figure 3.1 shows the features of pBAD/Thio-TOPO® and the point of insertion of the PCR product.

4.3.1.1 Positive Clone Analysis

The positive clone analysis for *gste6* done using Trx Forward and pBAD Reverse sequencing primers as PCR primers resulting in either with absence of bands or bands at incorrect size (gel image not shown), therefore clones that give positive results from plasmid purification analysis and PCR analyzed using the purified plasmid as template was sent out for full sequencing.
4.3.1.2 Plasmid Purification of \textit{gste6}

Figure 4.6 shows 7 random colonies were picked from the transformation plate of \textit{gste6} gene. The clones were cultured in LB broth containing 100 μg/mL ampicillin at final concentration. Plasmid was purified from all 7 cultures and was loaded into 1% (w/v) agarose gel. Figure shows the gel image of purified plasmids from 7 random colonies, only clones at lane 4, 5 and 8 at expected correct size where the band was in the range of 5000 bp to 6000 bp. The size of a ligated plasmid was expected at the range of 6000 bp.

![Image of agarose gel electrophoresis](image_url)

Figure 4.6: Purified plasmids of \textit{gste6} from 7 random colonies image on 1% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2-8: Purified plasmid of \textit{gste6}; Lane 2, 3, 6 and 7: Purified plasmid with insert at incorrect size (~8000 bp) and Lane 4, 5 and 8: Purified plasmid with insert at correct size (~6000 bp)
4.3.1.3 PCR using Plasmid as Template.

PCR was performed to further confirm that the ligated was correct for *gste6*. The purified plasmid with correct size was used as a template to perform PCR to reconfirm that the ligated product is *gste6*. It is then loaded on a 1% (w/v) agarose gel. Figure 4.7 shows 2 distinct bands only on lane 2 with upper band between the ranges of 5000 bp-6000 bp and lower band at between 500 bp -750 bp proved that the ligated product was *gste6*.

![Image of agarose gel electrophoresis](image)

Figure 4.7: PCR performed using extracted *gste6* plasmid as template image on 1% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2: PCR with plasmid DNA as template and Lane 3: PCR without template replaced with distilled water.
4.3.1.4 Sequencing Results

The purified plasmids containing TOPO gste6 gene was sent for sequencing to First Base Laboratories for identification. Results obtained were analyzed using Basic Local Alignment Search Tool (BLAST) from http://blast.ncbi.nlm.nih.gov/. Figure 4.8 shows the BLAST search tool results that revealed only 75% similarity with the *Drosophila melanogaster* chromosome 2R, complete sequence which denotes the glutathione S-transferase, E6 (Figure 4.9). Thus, TOPO cloning method was not used to clone gste7.

![Blast search tool results of the recombinant gste6](http://blast.ncbi.nlm.nih.gov/)

Figure 4.8: Blast search tool results of the recombinant *gste6*
Figure 4.9: Expansion of Sequence ID: AE013599.4, featuring gste6
(http://blast.ncbi.nlm.nih.gov/)
4.3.2 Restriction Enzyme Cloning

PCR product was extracted from the agarose gel and digested with \textit{NdeI} and \textit{EcoRI} for \textit{gste6} while with \textit{NdeI} and \textit{XhoI} for \textit{gste7}. The list of cutters and non-cutters (restriction enzymes) for both \textit{gste6} and \textit{gste7} gene sequence was obtained from www.restrictionmapper.org. It was then matched with the cutters and non-cutters of pET-30a (+). The cloning vector used was pET-30a (+), and digested with the same restriction enzymes. The restriction sites for \textit{NdeI}, \textit{EcoRI} and \textit{XhoI} were located at the multiple cloning sites of the pET-30a (+) plasmid DNA as shown in Figure 3.2.

4.3.2.1 PCR Products and pET-30a (+) Vector Enzyme Digestion

The purified PCR product of \textit{gste6}, \textit{gste7} gene and pET-30a (+) vector was then subjected to double digest. \textit{NdeI} and \textit{EcoRI} for \textit{gste6} while with \textit{NdeI} and \textit{XhoI} for \textit{gste7}. The digested product was loaded into 1\% (w/v) agarose gel. Figure 4.10 shows the gel image of the digested product. There were 3 bands at lane 2, 3 and 4 at the range of 5000 bp-6000 bp in size which indicates the undigested and digested pET-30a (+) vector. Typically, uncut vector (supercoiled) will appear to migrate differently (in distance) in comparison to the same vector when linearized (digested). The band at lane 5 and 6 was noticed in between 700 bp and 1000 bp in size which was the digested \textit{gste6} and \textit{gste7} PCR product.
Figure 4.10: Digested and undigested pET-30a (+) vector and PCR products of gste6 and gste7 image on 1% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2: pET30a (+) uncut; Lane 3: pET30a (+) EcoRI, NdeI digestion; Lane 4: pET30a (+) NdeI, XhoI digestion; Lane 5: gste6 EcoRI, NdeI digestion and Lane 6: gste7 NdeI, XhoI digestion

4.3.2.2 Ligation and Transformation with *E.coli* BL21 (DE3) pLysS

Double digested with *NdeI* and *EcoRI* PCR product of gste6 and vector was ligated while double digested with *NdeI* and *XhoI* PCR product of gste7 and vector was ligated respectively. The ligation mixture was loaded into 1% (w/v) agarose gel to obtain purified ligated product. Gel image showed very faint band of ligated product respectively (gel image not shown), thus the ligation mixture was directly used for transformation with *E.coli* BL21 (DE3) pLysS on LB agar plate containing 30 µg/mL kanamycin.
4.3.2.3 Plasmid Purification

4.3.2.3.1 Plasmid Purification of gste6

Six random colonies were picked from the transformation plate of gste6 gene. The clones were cultured in LB broth containing 30 µg/mL kanamycin. Plasmid was purified from all 6 cultures and was loaded into 1% (w/v) agarose gel. Figure 4.11 shows the gel image of purified plasmids from 6 random colonies all at correct expected size where the band was in the range of 5000 bp to 6000 bp. The size of a ligated plasmid was expected at the range of 6000 bp.

Figure 4.11: Purified plasmids of gste6 from 6 random colonies image on 1% agarose gel electrophoresis. Lane 1: 1 kb DNA ladder and Lane 2-7: Purified plasmid of gste6
4.3.2.3.2 Plasmid Purification of \textit{gste7}

Six random colonies were picked from the transformation plate of \textit{gste7} gene. The clones were cultured in LB broth containing 30 µg/mL kanamycin. Plasmid was purified from all 7 cultures and was loaded into 1% (w/v) agarose gel. Figure 4.12 shows the gel image of purified plasmids from 7 random colonies all at correct expected size where the band was in the range of 5000 bp to 6000 bp. The size of a ligated plasmid was expected at the range of 6000 bp.

![Image of agarose gel with size markers](image)

Figure 4.12: Purified plasmids of \textit{gste7} from 7 random colonies image on 1% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder and Lane 2-8: Purified plasmid of \textit{gste7}
4.3.2.4 PCR using Plasmid as Template.

PCR was performed to further confirm that the ligation product was correct for \textit{gste6}. The purified plasmid with correct size was used as a template to perform PCR to reconfirm that the ligated product is \textit{gste6}. It is then loaded on 1\% (w/v) agarose gel. Figure 4.13 shows bands on lane 2 between the ranges of 500 bp -750 bp proved that the ligated product was \textit{gste6}.

![Image of agarose gel electrophoresis](image)

Figure 4.13: PCR performed using extracted \textit{gste6} plasmid as template image on 1\% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2: PCR with plasmid DNA as template and Lane 3: PCR without template replaced with nuclease free water.
PCR was performed to further confirm that the ligation product was correct for *gste7*. The purified plasmid with correct size was used as a template to perform PCR to reconfirm that the ligated product is *gste7*. It is then loaded on a 1% (w/v) agarose gel. Figure 4.14 shows 2 distinct bands on lane 2 with upper band between the ranges of 5000 bp- 6000 bp and lower band at between 500 bp -750 bp proved that the ligated product was *gste7*.

Figure 4.14: PCR performed using extracted *gste7* plasmid as template image on 1% (w/v) agarose gel electrophoresis. Lane 1: 1 kb DNA ladder; Lane 2: PCR with plasmid DNA as template and Lane 3: PCR without template replaced with nuclease free water.
4.3.2.5 Sequencing Results

The purified plasmid containing gste6 and gste7 gene were sent for sequencing to COSMO GENETECH CO., LTD for full sequencing and identification. Results obtained were analyzed using Basic Local Alignment Search Tool (BLAST) from http://blast.ncbi.nlm.nih.gov/. Figure 4.15 and Figure 4.17 respectively shows the BLAST search tool results that revealed only 99% similarity with the *Drosophila melanogaster* chromosome 2R, complete sequence which denotes the glutathione S-transferase, E6 and E7 respectively (Figure 4.16 and Figure 4.18).

Figure 4.15: Blast search tool results of the recombinant gste6 (http://blast.ncbi.nlm.nih.gov/)
Figure 4.16: Expansion of Sequence ID: AE013599.4, featuring *gst*6

Figure 4.17: Blast search tool results of the recombinant gste7
Figure 4.18: Expansion of Sequence ID: AE013599.4, featuring gste7

4.3.2.6 Silent Mutation on Extracted Genome

The PCR products of \textit{gste6} and \textit{gste7} amplified was sequenced. The results showed there was silent mutation on base at position 439 in \textit{gste6} gene resulted change of the amino acid sequence of a protein from GGC to GGT which both encodes for glycine (Figure 4.19).

Silent mutation at position 223,463,481,517 and 527 in \textit{gste7} gene which all resulted changes of the amino acid sequence of a protein but do not result in radically different properties of the changed amino acids. Silent mutation at position 223 resulted change in amino acid sequence from GAA to GAG which both encodes for glutamic acid. Silent mutation at position 463 resulted change in amino acid sequence from TTC to TTT which both encodes for phenylalanine. Silent mutation at position 481 resulted change in amino acid sequence from ACC to ACG which both encodes for threonine. Silent mutation at position 517 resulted change in amino acid sequence from GTC to GTT which both encodes valine and finally silent mutation at position 527 resulted changes in amino acid sequence from CTG to TTG which both encodes leucine (Figure 4.20).
Figure 4.19: Silent mutation on bases at position 439 of gste6 gene

Figure 4.20: Silent mutation on bases at position 223, 463, 481, 517 and 527 of gste7 gene
4.4 Purification of Recombinant Enzyme

The recombinant GSTE6 and GSTE7 proteins were purified using multiple matrices. A total of three columns were used in order to purify GSTE6 GST and GSTE7 GST respectively. Eluted protein was concentrated using Vivaspin 20: MW10000 (Sartorius stedim) at 6000 rpm for 15-30 minutes depending on the volume and purity of the protein and was analyzed on 12% (w/v) SDS-PAGE stained with Coomasie Brilliant Blue G250.
4.4.1 Purification of Recombinant of GSTE6

4.4.1.1 GSTrap™ HP with 10 mM GSH at pH 7.4

Figure 4.21 shows the SDS-PAGE gel image purified using GSTrap™ HP. The protein was eluted with 10 mM of reduced glutathione (GSH) in phosphate buffer at pH 7.4. Purification resulted in some amount of desired protein was eluted out as unbound protein (lane 3 and lane 4). The unbound protein had high level of activity against CDNB. The bound protein was eluted out with 100% of 10 mM GSH. The concentrated protein sample resulted in 2 lighter bands at lane 5 and shows little activity against CDNB.

Figure 4.21: SDS-PAGE of purification of GSTE6 using Glutathione Sepharose. Lane 1: Protein Ladder; Lane 2: Bacteria crude lysate; Lane 3: First 10 mL Flow through fraction (void); Lane 4: Second 10 mL Flow through fraction (void) and Lane 4: Elution with 10 mM GSH at pH 7.4
4.4.1.2 HiTrap Q HP™ with 1 M NaCl at pH 7.4

Figure 4.22 shows the SDS-PAGE gel image purified using HiTrap Q Sepharose matrix. The protein was eluted with 1 mM of sodium chloride salt at pH 7.4. Purification resulted in larger amount of desired protein was eluted out as unbound protein at lane 3. The unbound protein had high level of activity against CDNB. The bound protein was eluted out with 100% of 1 mM sodium chloride salt. The concentrated protein sample resulted in multiple non-specific bands at lane 4 and shows little activity against CDNB.

![SDS-PAGE gel image](image)

Figure 4.22: SDS-PAGE of purification of GSTE6 using Q Sepharose. Lane 1: Protein Ladder; Lane 2: Bacteria crude lysate; Lane 3: Flow through fraction (void) and Lane 4: Elution with 1 M NaCl at pH 7.4
4.4.1.3 HiTrap™ Q HP followed by BSP-SG with 2 mM BSP at pH 7.4

Figure 4.23 shows the SDS-PAGE gel image purified using HiTrap Q Sepharose matrix followed by Bromosulfophthalein-GSH matrix. The unbound protein eluted out from HiTrap Q Sepharose matrix (lane 3) was subjected to purification using Bromosulfophthalein-GSH matrix. The flow through from HiTrap Q Sepharose matrix was injected into the Bromosulfophthalein-GSH matrix. The column was washed with 1 M of sodium chloride, pH 7.4 to remove any non-specific protein binding (lane 6). The desired protein was eluted with 2 mM BSP in phosphate buffer at pH 7.4. The concentrated protein sample resulted in one prominent thick band at approximately 25 kDa with few non-specific bands at lane 7 and shows high activity against CDNB.

Figure 4.23: SDS-PAGE of purification of GSTE6 using BSP-SG. Lane 1: Protein Ladder; Lane 2: Bacteria crude lysate; Lane 3: Flow through fraction of HiTrap™ Q HP (void); Lane 4: Elution with 1 M NaCl at pH 7.4; Lane 5: Flow through fraction of BSP-SG (void); Lane 6: Washing with 1 M NaCl at pH 7.4 and Lane 7: Elution with 2 mM BSP at pH 7.4
4.4.2 Purification of Recombinant of GSTE7

4.4.2.1 HiTrap Q HP™ with 1 M NaCl at pH 7.4

Figure 4.24 shows the SDS-Page gel image purified using HiTrap Q Sepharose matrix. The protein was eluted with 1 M of sodium chloride salt at pH 7.4. Purification resulted in larger amount of desired protein was eluted out as unbound protein at lane 3. The unbound protein had high level of activity against CDNB. The bound protein was eluted out with 100% of 1 M sodium chloride salt. The concentrated protein sample resulted in multiple non-specific bands at lane 4 and shows little activity against CDNB.

Figure 4.24: SDS-PAGE of purification of GSTE7 using Q Sepharose. Lane 1: Protein Ladder; Lane 2: Bacteria crude lysate; Lane 3: Flow through fraction (void) and Lane 4: Elution with 1 M NaCl at pH 7.4
4.4.2.2 HiTrap™ CM FF with 1 M NaCl at pH 7.4

Figure 4.25 shows the SDS-Page gel image purified using HiTrap CM Sepharose matrix. The protein was eluted with 1 mM of sodium chloride salt at pH 7.4. Purification resulted in larger amount of desired protein was eluted out as unbound protein at lane 3. The unbound protein had high level of activity against CDNB. The bound protein was eluted out with 100% of 1 M sodium chloride salt. The concentrated protein sample resulted in no bands at lane 4 and no activity was detected against CDNB.

![SDS-PAGE gel image](image)

Figure 4.25: SDS-PAGE of purification of GSTE7 using CM Sepharose. Lane 1: Protein Ladder; Lane 2: Bacteria crude lysate; Lane 3: Flow through fraction (void) and Lane 4: Elution with 1 M NaCl at pH 7.4
4.4.2.3 HiTrap™ Q HP followed by BSP-SG with 2 mM BSP at pH 7.4

Figure 4.26 shows the SDS-Page gel image purified using HiTrap Q Sepharose matrix followed by Bromosulfophthalein-GSH matrix. The unbound protein eluted out from HiTrap Q Sepharose matrix (lane 3) was subjected to purification using Bromosulfophthalein-GSH matrix. The flow through from HiTrap Q Sepharose matrix was injected into the Bromosulfophthalein-GSH matrix. The column was washed with 1 M of sodium chloride, pH 7.4 to remove any non-specific protein binding (lane 6). The desired protein was eluted with 2 mM BSP in phosphate buffer at pH 7.4. The concentrated protein sample resulted in one prominent thick band at approximately 25 kDa with few non-specific bands at lane 7 and shows high activity against CDNB.

Figure 4.26: SDS-PAGE of purification of GSTE7 using BSP-SG. Lane 1: Protein Ladder; Lane 2: Bacteria crude lysate; Lane 3: Flow through fraction of HiTrap™ Q HP (void); Lane 4: Elution with 1 M NaCl at pH 7.4; Lane 5: Flow through fraction of BSP-SG (void); Lane 6: Washing with 1 M NaCl at pH 7.4 and Lane 7: Elution with 2 mM BSP at pH 7.4
4.4.2.4 Optimized HiTrap™ Q HP followed by BSP-SG with 2 mM BSP at pH 7.4

Figure 4.27 shows the optimized SDS-Page gel image of GSTE6 and GSTE7 purified using HiTrap Q Sepharose matrix followed by Bromosulfophthalein-GSH matrix. The unbound protein eluted out from HiTrap Q Sepharose matrix was subjected to purification using Bromosulfophthalein-GSH matrix. The flow through from HiTrap Q Sepharose matrix was injected into the Bromosulfophthalein-GSH matrix. The column was washed with 1 M of sodium chloride at pH 7.4 to remove any non-specific protein binding. The desired protein was eluted with 2 mM BSP in phosphate buffer at pH 7.4. An example of the purification spectrum using Bromosulfophthalein-GSH matrix showed in Appendix E. The eluted sample was concentrated with using Vivaspin 20: MW10000. The concentrated sample was diluted 1:4 with sample buffer. The gel image shows distinct band at lane 2 and lane 3 at approximately 25 kDa.
Figure 4.27: Optimized SDS-PAGE of purification of GSTE6 and GSTE7 using BSP-SG. Lane 1: Protein Ladder; Lane 2: Diluted elution of purified GSTE6 with 2 mM BSP at pH 7.4 and Lane 3: Diluted elution of purified GSTE7 with 2 mM BSP at pH 7.4.
4.5 Substrate Specificities

The purified recombinant protein of GSTE6 and GSTE7 respectively was used to determine the substrate specificities against substrates as listed in the Table 4.1 below. The results data shows both recombinant proteins active towards CDNB, DCNB and p-NBC only. No activity was detected against trans-Hex-2-enal, Hexa-2,4-dienal, trans-Oct-2-enal, trans-4-Phenyl-butene-2-one,trans, trans,trans-Hepta-2,4-dienal, Ethacrynic acid, bromosulfophthalein, cumene hydroperoxide and hydrogen peroxide. For recombinant protein of GSTE6, CDNB (80.67±4.43 nmol/mL/mg) was the best substrate followed by DCNB (18.11±1.04 nmol/mL/mg) and finally p-NBC (3.67±0.58 nmol/mL/mg) but as for the recombinant protein of GSTE7 CDNB (740.33±15.04 nmol/mL/mg) was the best substrate followed by p-NBC (249.67±9.61 nmol/mL/mg) and lastly DCNB (37.05±2.11 nmol/mL/mg).
Table 4.1: Substrates specificity of recombinant GSTE6 and GSTE7

<table>
<thead>
<tr>
<th>Substrates</th>
<th>Specific activity (nmol/mL/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GSTE6</td>
</tr>
<tr>
<td>1-Chloro-2, 4-dinitrobenzene (CDNB)</td>
<td>80.67±4.43</td>
</tr>
<tr>
<td>1, 2-Dichloro-4-nitrobenzene (DCNB)</td>
<td>18.11±1.04</td>
</tr>
<tr>
<td>trans-Hex-2-enal</td>
<td>ND</td>
</tr>
<tr>
<td>Hexa-2, 4-dienal</td>
<td>ND</td>
</tr>
<tr>
<td>trans-Oct-2-enal</td>
<td>ND</td>
</tr>
<tr>
<td>trans-4-Phenyl-butene-2-one</td>
<td>ND</td>
</tr>
<tr>
<td>trans, trans-Hepta-2, 4-dienal</td>
<td>ND</td>
</tr>
<tr>
<td>Ethacrynic acid</td>
<td>ND</td>
</tr>
<tr>
<td>p-Nitrobenzyl chloride (p-NBC)</td>
<td>3.67±0.58</td>
</tr>
<tr>
<td>Bromosulfophthalein (BSP)</td>
<td>ND</td>
</tr>
<tr>
<td>Cumene hydrogen peroxide</td>
<td>ND</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Means±SD of three experiments, each with triplicate determinations. *ND denotes not detected.
4.6 Kinetic Parameters of GSTE6 and GSTE7

To measure the activity of recombinant protein of GSTE6 and GSTE7 respectively, CDNB, DCNB and p-NBC was used as a substrate. The conversion of CDNB, DCNB and p-NBC to glutathione substrate conjugate was measured according to 3.2.13.1, 3.2.13.2 and 3.2.13.3 respectively. Different substrate range was used for each substrate accordingly for kinetic analysis. Michaelis-Menten kinetic analysis was then used to determine the affinity of the substrate (K_m) and the catalytic rate (K_{cat}) for each recombinant protein. The plot was formed using the Michaelis-Menten rate equation. It shows the quantitative relationship between the initial velocity (V_0), the maximum velocity (V_{max}), and the initial substrate concentration [S]. All these points are related through Michaelis constant K_m, which is equal to $V_0 = \frac{1}{2} V_{max}$. A large K_m means that a high concentration of substrate was needed to achieve V_{max} and a small one required a small amount of substrate and it has high affinity for the substrate (strong binding). K_{cat} is the maximum number of substrate molecules converted to product on a single enzyme molecule per second (“turnover number”). The K_{cat}/ K_m ratio describes the overall enzyme efficiency. High K_{cat}/ K_m ratio indicates that the product turnover rate is higher than the substrate concentration, which means it is an efficient enzyme. Some of the Michaelis Menten plot generated using GraphPad Prism showed Appendix F.
Recombinant GSTE6 enzyme had a $V_{\text{max}} = 0.52 \pm 0.024$ nmol/min, $K_m = 0.024 \pm 0.001$ mM, $K_{\text{cat}} = 0.13 \text{ min}^{-1}$ and $K_{\text{cat}} / K_m = 5.25 \text{ min}^{-1}\text{mM}^{-1}$ for CDNB. For DCNB, it had a $V_{\text{max}} = 0.029 \pm 0.008$ nmol/min, $K_m = 0.17 \pm 0.001$ mM, $K_{\text{cat}} = 0.007 \text{ min}^{-1}$ and $K_{\text{cat}} / K_m = 0.042 \text{ min}^{-1}\text{mM}^{-1}$. As for p-NBC the enzyme had $V_{\text{max}} = 0.21 \pm 0.013$ nmol/min, $K_m = 0.28 \pm 0.005$ mM, $K_{\text{cat}} = 0.051 \text{ min}^{-1}$ and $K_{\text{cat}} / K_m = 0.18 \text{ min}^{-1}\text{mM}^{-1}$.

Recombinant GSTE7 enzyme had a $V_{\text{max}} = 0.83 \pm 0.028$ nmol/min, $K_m = 0.14 \pm 0.009$ mM, $K_{\text{cat}} = 0.086 \text{ min}^{-1}$ and $K_{\text{cat}} / K_m = 0.62 \text{ min}^{-1}\text{mM}^{-1}$ for CDNB. For DCNB, it had a $V_{\text{max}} = 0.30 \pm 0.033$ nmol/min, $K_m = 0.42 \pm 0.002$ mM, $K_{\text{cat}} = 0.043 \text{ min}^{-1}$ and $K_{\text{cat}} / K_m = 0.10 \text{ min}^{-1}\text{mM}^{-1}$. As for p-NBC the enzyme had $V_{\text{max}} = 1.31 \pm 0.051$ nmol/min, $K_m = 0.060 \pm 0.002$ mM, $K_{\text{cat}} = 0.14 \text{ min}^{-1}$ and $K_{\text{cat}} / K_m = 2.25 \text{ min}^{-1}\text{mM}^{-1}$.

The comparison of the initial-rate enzyme kinetics between GSTE6 and GSTE7 enzyme for CDNB showed that GSTE6 have enzyme higher affinity, catalytic efficiency and catalytic rate. As for DCNB, GSTE7 has higher catalytic rate and catalytic efficiency with similar enzyme affinity. Finally for p-NBC, GSTE7 has higher enzyme affinity, catalytic rate and catalytic efficiency compared to GSTE6.
Table 4.2: Kinetics parameters of recombinant GSTE6 and GSTE7

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CDNB (GSTE6)</th>
<th>DCNB (GSTE6)</th>
<th>p-NBC (GSTE6)</th>
<th>CDNB (GSTE7)</th>
<th>DCNB (GSTE7)</th>
<th>p-NBC (GSTE7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{max} (µmol/min)</td>
<td>0.52±0.024</td>
<td>0.83±0.028</td>
<td>0.30±0.033</td>
<td>0.29±0.007</td>
<td>0.82±0.029</td>
<td>0.12±0.005</td>
</tr>
<tr>
<td>K_{m} (mM)</td>
<td>0.024±0.001</td>
<td>0.14±0.009</td>
<td>0.42±0.002</td>
<td>0.17±0.001</td>
<td>0.07±0.001</td>
<td>0.06±0.002</td>
</tr>
<tr>
<td>K_{cat} (min$^{-1}$)</td>
<td>0.13</td>
<td>0.086</td>
<td>0.043</td>
<td>0.007</td>
<td>0.042</td>
<td>0.018</td>
</tr>
<tr>
<td>$K_{\text{cat}}/K_{\text{m}}$ (min$^{-1}$mM$^{-1}$)</td>
<td>5.25</td>
<td>0.62</td>
<td>0.10</td>
<td>0.18</td>
<td>2.25</td>
<td></td>
</tr>
</tbody>
</table>

GSTs were characterized for kinetic parameters using CDNB, DCNB and p-NBC as substrates. The data are mean ± standard error of at least three independent experiments.
4.7 Secondary Structure Analysis by Circular Dichroism (CD)

The CD spectra of the recombinant protein of GSTE6 and GSTE7 were scanned from 190 to 250 nm at a concentration of 0.2 mg/mL for both GSTE6 and GSTE7 respectively. The spectra profiles are shown in Figure 4.28. Both recombinant proteins were active towards CDNB conjugation, has similarities in the CD spectra as well measurable enzymatic activities suggest that the recombinant GST were properly folded. The spectra profile indicates that the both recombinant protein is an alpha helix rich protein. The CD profile shows difference in peak positions and peak intensities between recombinant protein GSTE6 and GSTE7.

![CD spectra of GSTE6 and GSTE7](image)

Figure 4.28: Circular dichroism spectra of the recombinant GSTE6 and GSTE7
4.8 Thin Layer Chromatography of Pesticides

Figure 4.29 shows conjugate reaction product of glutathione (GSH) and CDNB (positive control) with purified GSTE6 and GSTE7 enzyme respectively. Independent chromatographic analysis of purified GSTE6 and GSTE7 containing glutathione mixed with pesticides temophos, malathion, DDT, fenthion, fenitrothion, permethrin, bromophos, chlorpyrifos, clodinafop-Propargyl, fenoxaprop-ethyl, propoxur, isoproturon and methyl parathion respectively showed negative results with absence of conjugation reactions.

Figure 4.29: Chromatographic analysis of purified GSTE6 (A) and GSTE7 (B) containing glutathione plus with 1-chloro-2, 4,-dinitrobenzene (CDNB) as co-substrates. Lane 1: GSH, CDNB and Buffer A; Lane 2: Sample, GSH and Buffer A; Lane 3: Sample, CDNB and Buffer A and Lane 4: Sample, CDNB, GSH and Buffer A. Conjugate reaction products using co-substrates CDNB are indicated by arrows.
4.9 Effect of Natural Products and Dyes on GSTE6 and GSTE7 Enzyme

The effect of the natural products and dyes towards GSTE6 and GSTE7 using the CDNB conjugation assay was studies and the data are tabulated in Table 4.3. To measure the effect of natural products and dyes on recombinant protein of GSTE6 and GSTE7 respectively, triphenyltin acetate, tetradecanedioic acid, sebacic acid, *trans*-chalcone, cardiogreen, crystal violet, methylene blue, rose bengal, phenol red and cibacron blue was used. Different substrate range was used for each compound accordingly for kinetic analysis. Nonlinear regression analysis using log (concentration) response curves analysis was then used to determine the IC$_{50}$ or EC$_{50}$ for each recombinant protein. Some of the non-linear regression plot generated using the GraphPad prism showed in Appendix G and Appendix H.

By this experiment, the strength of inhibition was rose bengal > cardiogreen > phenol red > crystal violet > tetradecanedioic acid > methylene blue > cibacron blue > *trans*-chalcone for GSTE6 and rose bengal > cardiogreen > phenol red > crystal violet > cibacron blue > tetradecanedioic acid for GSTE7. For both GSTE6 and GSTE7, triphenyltin acetate results in endpoint saturation with smallest amount. No measurable activity was detected. Sebacic acid in the other hand does not impose any effect on the CDNB activity. For GSTE6, rose bengal, cardio green and phenol red dyes exhibited effectively inhibition resulting in IC$_{50}$ ranging from 3-7 nM while crystal violet, tetradecanedioic acid, methylene blue, cibacron blue and *trans*-chalcone inhibited with IC$_{50}$ ranging from 30-90 nM.
For GSTE7, rose bengal and cardiogreen dyes exhibited effectively inhibition resulting in IC$_{50}$ ranging from 1-9 nM while phenol red, crystal violet, cibacron blue and tetradecanedioic acid inhibited with IC$_{50}$ ranging from 30-500 nM. Interestingly, methylene blue and trans-chalcone showed to stimulate GSTE7 activity towards CDNB with EC$_{50}$ ranging from 1 x 105 – 3 x 105 nM. The statistical value had goodness of fit R2 value above 95%.
Table 4.3: Effect of selected compounds on recombinant GSTE6 and GSTE7

<table>
<thead>
<tr>
<th>Compound</th>
<th>Compound concentration range (mM)</th>
<th>GSTE6 IC$_{50}$ (nM)</th>
<th>GSTE7 IC$_{50}$ (nM)</th>
<th>GSTE7 EC$_{50}$ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triphenyltin acetate</td>
<td>0-100</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Tetradecanedioic acid</td>
<td>0-100</td>
<td>57.82</td>
<td>588.71</td>
<td></td>
</tr>
<tr>
<td>Sebacic acid</td>
<td>0-100</td>
<td>NE</td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>trans-chalcone</td>
<td>0-100</td>
<td>86.79</td>
<td></td>
<td>2.958 x 105</td>
</tr>
<tr>
<td>Cardiogreen</td>
<td>0-3</td>
<td>4.21</td>
<td>9.22</td>
<td></td>
</tr>
<tr>
<td>Crystal Violet</td>
<td>0-10</td>
<td>32.24</td>
<td>50.59</td>
<td></td>
</tr>
<tr>
<td>Methylene Blue</td>
<td>0-100</td>
<td>76.66</td>
<td></td>
<td>1.747 x 105</td>
</tr>
<tr>
<td>Rose Bengal</td>
<td>0-3</td>
<td>3.68</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Phenol Red</td>
<td>0-10</td>
<td>7.29</td>
<td>30.36</td>
<td></td>
</tr>
<tr>
<td>Cibacron blue</td>
<td>0-10</td>
<td>82.64</td>
<td>210.56</td>
<td></td>
</tr>
</tbody>
</table>

The data are mean value of at least three independent experiments. The statistical value had goodness of fit R2 value above 95%.

*NA denotes not activity. *NE denotes not effect.
4.10 DNA and Protein Analysis

The *Drosophila* GST genes are located on chromosome 2, 3 and X. Figure 4.30 showed location of Epsilon class GSTs on chromosome 2R in *Drosophila melanogaster*. The *gste*1 to *gste*10 genes form a tight cluster whereas the remaining Epsilon genes are dispersed along the chromosome.

The alignment of the Epsilon class GSTs protein sequences of *Drosophila* with *Musca domestica* Epsilon class 6A and 6B is shown in Figure 4.31. All Epsilon class proteins of *Drosophila* together with Epsilon class GST of *Musca Domestica* could be brought into close alignment with few exceptional namely GSTE10 and GSTE14 being the most divergent sequence while GSTE12 variant A being the most convergent. The identities of all pairs of the Epsilon-class sequences of *Drosophila* and *Musca domestica* Epsilon class 6A and 6B are presented in Figure 4.32. GSTE6 were closely identical with GSTE5 (75%) while GSTE7 were closely identical to GSTE8 (71%). GSTE6 and GSTE7 were 69% identical. In comparison with *Musca domestica* Epsilon class 6A and 6B, GSTE6 identical 62% and 59% respectively while GSTE7 identical 61% respectively. Both GSTE6 and GSTE7 show more less 40% identity with other *Drosophila* Epsilon class proteins.

Figure 4.33 showed GSTE6 interaction with GSTE7, GSTE5 and Hsp 23 (Heat shock protein) (Giot *et al.*, 2003; Guruharsha *et al.*, 2011). Interestingly, GSTE8 also shows interaction with Hsp 23, Hsp22, Hsp 27, Hsc70Cb and Hsp68. It also showed to be interacting with Ref (2) p. GSTE6 strongly co-expressed with GSTE7, GSTE8, GSTE5, GSTE3, GSTE9 and GSTD1 while GSTE7 strongly co-expressed with GSTE6, GSTE8, GSTE3 and GSTE9 (Jensen *et al.*, 2009).
Figure 4.34 showed predicted functional partners in various organisms. GSTE6 and GSTE7 showed 100% conserved in *Drosophila* genus and almost 30-50% conserved in *Aedes aegyti, Culex quinquefasciatus, Anopheles gambiae, Nasonia vitripennis, Apis mellifera, Tribolium castaneum, Pediculus humanus* and *Ixodes scapularis*. The genes showed less than 20% conserved in other organism ranging from bacteria to Achaea.

Two genes are alternatively spliced (indicated by subscript letters). The genes are shown as arrows indicating direction of transcription.

Figure 4.30: Epsilon class *Drosophila* GST genes are located on chromosomes 2R (Adapted from Saisawang et al., 2011).
GSTE12 with four variant while GSTE13 with two variant. Sequences were aligned using CLUSTAL W (BioEdit version 7.2.0 software). Identical amino acids with 100% threshold (as defined by the BLOSUM62 matrix) are shaded in different colours each representing different amino acids.

Figure 4.31: Complete amino acid alignment of Drosophila Epsilon class GSTs and Musca domestica 6A and 6B.
Box in green indicated percentage amino acid identities between GSTE6 and GSTE7. Box in blue indicated highest percentage amino acid identities with respect to GSTE6 and GSTE7 respectively. Sequences identities matrix was prepared using BioEdit version 7.2.0 software.

Figure 4.32: Matrix table of percentage amino acid identities for the sequences aligned of *Drosophila* Epsilon class GSTs and *Musca domestica* 6A and 6B.
Figure 4.33: Predicted protein interactions and co-expression association score among closely related class of GST proteins using STRING 9.05 database from http://string-db.org/ (Jensen et al., 2009) supported by Giot et al., (2003) and Guruharsha et al., (2011).
Figure 4.34: Predicted functional partners in various organisms using STRING 9.05 database from http://string-db.org/ (Jensen et al., 2009).
CHAPTER 5

DISCUSSION

5.1 DNA and Protein Bioinformatics

The *Drosophila* GST genes are located on chromosome 2, 3 and X. Saisawang et al., (2011) reported existence of additional four Epsilon class protein denoted GSTE11-GSTE14 besides ten Epsilon members that has been previously reported by Sawicki et al., (2003). Saisawang et al., (2011) analysis reported gste1 to gste10 genes form a tight cluster whereas the remaining Epsilon genes are dispersed along the chromosome (Figure 4.30). It has been previously reported that the coding sequences of the Epsilon class GSTs contain no introns (Sawicki et al., 2003) and they can be conceptually translated. The alignment of the Epsilon class GSTs protein sequences of *Drosophila* with *Musca domestica* Epsilon class 6A and 6B is shown in Figure 4.31. All Epsilon class proteins of *Drosophila* together with Epsilon class GST of *Musca Domestica* could be brought into close alignment with few exceptional namely GSTE10 and GSTE14 being the most divergent sequence because of a C-terminal extension of approximately 16 and 7 amino acids respectively while GSTE12 variant A with approximately 24 amino acids truncated. The identities of all pairs of the Epsilon-class amino acid sequences of *Drosophila* and *Musca domestica* Epsilon class 6A and 6B are presented in Figure 4.32. GSTE6 are closely identical with GSTE5 (75%) while GSTE7 were closely identical to GSTE8 (71%). GSTE6 and GSTE7 were 83% similar and 69% identical. In comparison with *Musca domestica* Epsilon class 6A and 6B, GSTE6 79% and 77% similar and also 62% and 59% identical respectively while GSTE7 77% similar and also 61% identical respectively. Both GSTE6 and GSTE7 shows lesser than 40% identity with other *Drosophila* Epsilon class proteins. The sequence
homology within the clusters, together with the physical proximity of all Epsilon genes on chromosome 2 (Figure 4.30), suggests that the cluster was probably formed by repeated duplication events without subsequent rearrangement of an Epsilon ancestral gene (Sawicki et al., 2003)

5.2 Phylogenetics of Epsilon Class GSTs

Phylogenies studies done by Friedman, (2011) proved by evidence that Delta and Epsilon subclasses share a common branch and not with other subclasses. Examination of Delta-Epsilon taxonomic distribution suggested Delta class older in origin than Epsilon class GSTs. Freidman, (2011) also suggested that the Epsilon-GSTs evolved from the Delta subclass. This event took place between the times when Hymenoptera and Coleoptera was originated as a lineage. Therefore, both genes were present in all Drosophila genuses and distributed in organism ranging from bacteria, eukaryotes to Achaea (Figure 4.34).

5.3 Cloning and Expression of Drosophila melanogaster Epsilon class E6 and E7

Saisawang et al., (2011) demonstrates that every isoform of GSTs appears to be expressed in the late embryonic stages of Drosophila melanogaster. The occurrence that GSTs genes are expressed in embryos implies differential gene regulation. It suggests that those GST isoforms may have various functions other than detoxification. In general, GST expression occurs in response to a variety of environmental stimuli, in a tissue or developmental-specific manner.

In this study, gste6 and gste7 which express in adult Drosophila melanogaster genome (Table 2.1) serves as template was amplified by the conventional polymerase chain reaction due to absence of introns in the coding sequences (Sawicki et al., 2003). The term intron
refers to both the DNA sequence within a gene and the corresponding sequence in RNA transcripts which will be removed by RNA splicing while the final RNA product of a gene is being generated. It also known as a non-coding sequences. The DNA coding sequences obtained from genome database from http://www.ncbi.nlm.nih.gov as well as the vector sequences of pBAD/Thio-TOPO (Figure 3.1) and pET-30a (+) (Figure 3.2) was studied for its number of base pairs, enzyme cutters and non-cutters enables to design suitable primers for each gene. The full-length coding sequence of GSTE6 contains 669 bp translated to give 222 amino acid while GSTE7 contains 672 bp translated to give 223 amino acids which is the same length with genome database (http://www.ncbi.nlm.nih.gov) (Figure 4.1 and Figure 4.2).

In the beginning of the project pBAD/TOPO® ThioFusion™ Expression Kit was chosen as it provides a highly efficient, 5-minute, one-step cloning strategy ("TOPO® Cloning") for the direct insertion of Taq polymerase-amplified PCR products into a plasmid vector for soluble, regulated expression and simplified protein purification in E. coli. The kit does not need any ligase, post-PCR procedures, or PCR primers containing specific sequences (described in pBAD/TOPO® ThioFusion™ Expression Kit user manual) (http://www.lifetechnologies.com/order/catalog/product/K37001) and it was been widely used for cloning and expression of many genes (Moulis et al., 2006; Fabre et al., 2005; Koukiekolo et al., 2005; Cheng et al., 2005; Que Xuchu et al., 2002). The primers were designed according to the manufacturer’s instructions. The forward PCR primer was designed to ensure that protein is in frame with the N-terminal leader peptide in order clone in frame with thioredoxin as HP-thioredoxin acts as a translation leader to facilitate high-level expression and in some cases, solubility. The reverse PCR primer was designed to remove the native stop codon in the gene of interest and preserve the reading frame through...
the C-terminal tag in order to include the V5 epitope and polyhistidine region to assist with purification procedure. The polymerase chain reaction was successful and as a starter the \textit{gste6} and \textit{gste7} gene was able to be amplified to give the PCR product in between 500 bp and 750 bp (Figure 4.3 and Figure 4.4).

The PCR product for TOPO cloning was ligated into pBAD/Thio-TOPO®, and transformed the recombinant vector into chemically competent TOP10 One Shot® \textit{E. coli} on LB-ampicillin plate. The recombinant genes were successfully cloned and purified. Figure 4.6 showed the gel image of purified plasmids of \textit{gste6}. The sequencing result of plasmid at correct size obtained was analyzed using Basic Local Alignment Search Tool (BLAST). Figure 4.8 showed the BLAST search tool results that revealed only 75% similarity with the \textit{Drosophila melanogaster} chromosome 2R, complete sequence which denotes the glutathione S-transferase, E6 (Figure 4.8 and Figure 4.9). Repeated attempt to clone the gene using pBAD/Thio-TOPO® was no success. Therefore, restriction enzyme cloning method was employed to use vector pET-30a (+).

pET-30a (+) expression vector was chosen as it was used previous work in cloning and expression of \textit{Drosophila melanogaster} delta and Epsilon class GSTs (Sawicki \textit{et al.}, 2003). The primers for restriction enzyme cloning initially was designed to include \textit{Nde1} and \textit{EcoR1} for \textit{gste6} while \textit{Nde1} and \textit{Xho1} for \textit{gste7} because it includes 6X Histidine tagging to the gene of interest which will assist with purification procedure. The polymerase chain reaction was successful and the genes were able to be amplified to give the PCR product in between 500 bp and 750 bp in size (Figure 4.5).

The PCR product for restriction enzyme cloning was ligated pET-30a (+) and transformed the recombinant vector into chemically competent \textit{E.coli} BL21 (DE3) pLysS and BL21
Star™ (DE3) pLysS *E. coli* on LB-kanamycin plate. Chemically competent *E. coli* BL21 (DE3) pLysS was chosen as it was widely used to express GST recombinants (Saisawang *et al.*, 2011; Wongtrakul *et al.*, 2010; Lumjuan *et al.*, 2005; Sawicki *et al.*, 2003) and only chemically competent *E. coli* BL21 (DE3) pLysS successfully transformed both genes. The recombinant genes were successfully cloned and purified. Figure 4.11 and Figure 4.12 showed the gel image of purified plasmids of both *gste6* and *gste7*. The sequencing result of plasmid at correct size obtained was analyzed using Basic Local Alignment Search Tool (BLAST). Figure 4.15 and Figure 4.17 showed the BLAST search tool results that revealed 99% similarity with the *Drosophila melanogaster* chromosome 2R, complete sequence which denotes the glutathione S-transferase, E6 and E7 respectively (Figure 4.16 and Figure 4.18). Sequencing results obtained for the PCR products (Figure 4.19) showed the recombinant protein contained one amino acid changes from the wild type at position 439 in *gste6* gene resulted change of the amino acid sequence of a protein from GGC to GGT which both encodes for glycine and found to be single base changes from pyrimidine changed to be pyrimidine. Amino acid changes at position 223,463,481,517 and 527 in *gste7* all resulted change of the amino acid sequence of a protein but do not result in radically different properties of the changed amino acids (Figure 4.20) as it was single base changes such as purine changed to be purine and pyrimidine changed to be purine. Unfortunately, the change between purine and pyrimidine suggests an error of recombinant cloning. However, it was not clear that this single mutation affect any catalytic function of the enzyme. Amino acid changes within these enzymes were caused from either purine changed to be purine or pyrimidine changed to be pyrimidine that causes variation of similar nucleotide are a common incident that can be performed by expression host. Interestingly, this implies the *E. coli* BL21 (DE3) pLysS expression host may prefer
those amino acid variations or it may be a real isoform occurring in the *Drosophila* cells.

5.4 **Protein Purification of *Drosophila melanogaster* Epsilon Class E6 and E7**

The recombinant GSTE6 and GSTE7 were tried to be purified using multiple matrices. A total three columns were used in order to purify GSTE6 and GSTE7 respectively which include GSTrap™ HP, HiTrap Q HP, HiTrap™ CM FF and Bromosulfophthalein-GSH matrix (Table 3.5). Purification with HiTrap Q Sepharose matrix showed that almost all desired protein were eluted out as unbound protein therefore, the unbound proteins were purified using BSP/GSH-agarose matrix. The proteins were highly expressed and isolated using BSP/GSH-agarose matrix which has been shown to capture a number of Epsilon-class GSTs from *D.melanogaster* (Alias and Clark, 2007; Alias and Clark, 2010). Both isoforms were heterologously expressed and purified to apparent high homogeneity. Both were expressed as soluble forms and expressed differently under the same conditions. High expression levels were observed with both clones. The subunit size of GSTE6 and GSTE7 are predicted to be 25.015 kDa and 25.51 kDa respectively based on their amino acid compositions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of purified enzymes was approximately 25 kDa respectively which corresponds to the calculated molecular mass (Figure 4.27) and were in agreement with data previously reported by Saisawang *et al.*, (2011).
5.5 Biochemical Characterization of Drosophila melanogaster Epsilon class E6 and E7

In the present study, substrate specificity of these isozymes were determined using 12 model substrates belonging to halogenated compounds, α, β-unsaturated carbonyl compounds, peroxide and organic compound. trans-Hex-2-enal, a plant derived green leaf aldehyde was known to stimulate olfactory system (Rogers et al., 1999). trans-Oct-2-enal, trans-Hex-2-enal, Hexa-2, 4-dienal, trans, trans-hepta-2, 4-dienal are toxic α, β-unsaturated carbonyl allelochemicals are commonly presented in corn, wheat, and oats (Yu, 2002). Peroxides such as hydrogen peroxides and organic hydroperoxide such as cumene hydroperoxide generates cytotoxic product during microsomal lipid peroxidation which causes membrane destruction and DNA damage (Yu, 2002). Table 4.1 showed that the pattern of specific activity toward these substrates was almost similar between GSTE6 and GSTE7. Both isozymes only react towards CDNB, DCNB and p-NBC. Among those tested, CDNB was the best substrate for both genes with 80.67±4.43 and 740.33±15.04 nmol/mL/mg respectively followed by DCNB 18.11±1.04 nmol/mL/mg and p-NBC 3.67±0.58 nmol/mL/mg for GSTE6 while p-NBC 249.67±9.61 nmol/mL/mg followed by DCNB 37.05±2.11 nmol/mL/mg for GSTE7. Wongtrakul et al., (2010) and Wang et al., (1991) reported that only Epsilon class GSTs able to accept and react with DCNB supports our data. It was suggested that the detoxification capability of GSTs against insecticides is correlated to its catalytic activity with DCNB rather than CDNB (Wei et al., 2001).

The different properties of these two enzymes were further exemplified by a comparison of the kinetic properties (Table 4.2). The comparison of the initial-rate enzyme kinetics between GSTE6 and GSTE7 enzyme for CDNB showed that GSTE6 have higher affinity ($K_m = 0.024 \pm 0.001$ mM for GSTE6 and $K_m = 0.14 \pm 0.009$ mM for GSTE7), catalytic
efficiency ($K_{cat}/K_m = 5.25 \text{ min}^{-1}\text{mM}^{-1}$ for GSTE6 and $K_{cat}/K_m = 0.62 \text{ min}^{-1}\text{mM}^{-1}$ for GSTE7) and catalytic rate ($K_{cat} = 0.13 \text{ min}^{-1}$ for GSTE6 and $K_{cat} = 0.086 \text{ min}^{-1}$ for GSTE7). As for DCNB, GSTE7 has higher catalytic rate ($K_{cat} = 0.007 \text{ min}^{-1}$ for GSTE6 and $K_{cat} = 0.043 \text{ min}^{-1}$ for GSTE7) and catalytic efficiency ($K_{cat}/K_m = 0.042 \text{ min}^{-1}\text{mM}^{-1}$ for GSTE6 and $K_{cat}/K_m = 0.10 \text{ min}^{-1}\text{mM}^{-1}$ for GSTE7) with similar enzyme affinity ($K_m = 0.17 \pm 0.001 \text{ mM}$ for GSTE6 and $K_m = 0.42 \pm 0.002 \text{ mM}$ for GSTE7). Finally for p-NBC, GSTE7 has higher enzyme affinity, catalytic rate and catalytic efficiency ($K_m = 0.060 \pm 0.002 \text{ mM}$, $K_{cat} = 0.14 \text{ min}^{-1}$ and $K_{cat}/K_m = 2.25 \text{ min}^{-1}\text{mM}^{-1}$) compared to GSTE6 ($K_m = 0.28 \pm 0.005 \text{ mM}$, $K_{cat} = 0.051 \text{ min}^{-1}$ and $K_{cat}/K_m = 0.18 \text{ min}^{-1}\text{mM}^{-1}$). GSTE6 is a more efficient enzyme at turning over CDNB supported by pervious study done by Saisawang et al., (2003) while GSTE7 is a more efficient enzyme at turning over DCNB and p-NBC.

The CD profiles are shown in Figure 4.28. Similarities in the CD spectra between GSTE6 and GSTE7 as well as their measurable substrate specificity activities in vivo and in vitro strongly suggest that the recombinants GST Es are properly folded. The profiles of their CD spectra indicated that the secondary structures of these recombinant GSTs have high α-helical contents. The CD profiles also revealed substantial differences in peak positions and peak intensities between GSTE6 and GSTE7. GSTE6 seems to be less stable than GSTE7. These differences indicated that GSTE6 and GSTE7 have considerable variations in their secondary structural organization. Such variations in structure may form the basis of differences in their corresponding substrate specificities and in catalytic efficiency (Tang and Tu, 1994) although both originated from same cluster and located next to each other on the genomic DNA (Figure 4.30). Thin layer chromatography of insecticides showed the isozymes do not able to conjugate 12 tested insecticides (Figure 4.29). Temophos, malathion, DDT, fenthion, fenitrothion, permethrin, bromophos, chlorpyrifos, clodinafop-
Propargyl, fenoxaprop-ethyl, propoxur, isoproturon and methly parathion were used in this test. Temophos, malathion, DDT, fenthion, fenitrothion, permethrin, bromophos, chlorpyrifos, propoxur, isoproturon and methly parathion are known as insecticides from family of either organophosphate or organochloride while clodinafop- Propargyl and fenoxaprop-ethyl are known as herbicides widely used in agricultural work. The test suggests both recombinant GSTE6 and GSTE7 does not react or involves in detoxification of insecticides and herbicides.

The effect of few natural products and dyes on the recombinant isozymes was tabulated in Table 4.3. By this experiment, the strength of inhibition is rose bengal > cardiogreen > phenol red > crystal violet > tetradecanedioic acid > methylene blue > cibacron blue > trans-chalcone for GSTE6 and rose bengal > cardiogreen > phenol red > crystal violet > cibacron blue > tetradecanedioic acid for GSTE7. Phenol red, cardio green and rose bengal dyes exhibited effectively inhibition resulting in IC50 ranging from 3-7 nM on GSTE6 and as for GSTE7 cardio green and rose bengal dyes exhibited effectively inhibition resulting in IC50 ranging from 1-9 nM. Interestingly, trans-chalcone and methylene blue showed to stimulate GSTE6 activity towards CDNB with EC50 ranging from 1 x 10^-5 - 3 x 10^-5 nM. The potency of xanthene food dye, rose bengal being the most effective inhibitors among the rest with IC50 of 0.003 and 0.001 μM on GSTE6 and GSTE7 respectively has been observed in earlier experiment with Drug-Metabolizing Enzymes namely cytochrome P450 and UDP-glucuronosyltransferase, where IC50 on micromolar inhibitor level were determined (21.2 and 15 μM) respectively (Mizutani, 2008). Another study by Uesugi et al., (2006) also reported rose bengal strongly inhibited human UDP-glucuronosyltransferase (UGT1A6) activity with IC50 of 0.015 mM. The author added phenyl-xanthene dyes, such as rose bengal (RB) are known as light-enhancing reagents
(catalytic light reaction) by the generation of 1O$_2$ a superoxide anion on the dyes. Chalcone are open chain flavonoids that are widely biosynthesized in plants. A study by Batovska and Todorova, (2010) revealed the pharmacological properties of natural and synthetic chalcones as antioxidant, cytotoxic, anticancer, antimicrobial, antiprotozoal, antiulcer, antihistaminic and anti-inflammatory activities but mechanism of action of trans-chalcone as an inhibitor to GSTE6 while as a stimulator for GSTE7 is remaining unclear. Studies done using methylene blue showed methylene blue inhibits the ability of the purified Hsp90/Hsp70-based chaperone machinery to enable ligand binding by the glucocorticoid receptor (Wang et al., 2010) and acts as nitric oxide synthase inhibitor (Mayer et al., 1993).

Armstrong, (1997) reported that, certain haloalka (e) nes including ethylene bromide and methylene chloride forms a highly reactive episulfonium ion intermediates that catalyze GST activation reactions. But, its action as an inhibitor to GSTE6 while as a stimulator for GSTE7 is remaining unclear. Basic triphenylmethane dyes such as crystal violet have been shown to inhibit glutathione S-transferases from both insect sources (Balabaskaran and Smith, 1970) and from rat liver (Debnam et al., 1993). The mode of inhibition of crystal violet appeared to involve competition by the free dye with the electrophilic substrate (Glanville and Clark, 1997).

The inhibition of glutathione transferase can have both positive and negative effects. As for the negative site, the inhibition of the enzyme may lead to toxic consequences because it causes the detoxification activity of the enzyme to be decreased. Incapable to detoxify the electrophilic compound harms the DNA, proteins and lipids hence results in various diseases such as cancers and neurodegenerative disorders. On the positive site, inhibition of the detoxification enzyme prevents resistance problems occurs in cancer therapy as the
compounds can be used to inhibit GST activity and also developed as adjuvant in cancer treatment (Rachel et al., 2003).

5.6 Role of *Drosophila melanogaster* Epsilon class E6 and E7

Protein interaction studies done by Giot et al., (2003) and Guruharsha et al., (2011) reported that GSTE6 showed interaction with GSTE7, GSTE5 and Hsp 23 (Heat shock protein). Interestingly, GSTE8 also showed interaction with Hsp 23. The studies indicated GSTE8 mainly interacts with heat shock proteins, heat shock factors, heat shock cognates and those proteins known to be a stress inducible protein such as Hsp22, Hsp 27, Hsc70Cb and Hsp68. It also involved in folding and unfolding of other functional proteins. It also showed to be interacting with Ref (2) p that associates with pre-mRNA 3’ end processing complex that eventually associated with mRNA maturation. GSTE6 strongly co-expressed with GSTE7, GSTE8, GSTE5, GSTE3, GSTE9 and GSTD1 while GSTE7 strongly co-expressed with GSTE6, GSTE8, GSTE3 and GSTE9 (Jensen et al., 2009) (Figure 4.33). These give insights of possible role of a selective protein to be the key regulator of sets of genes.

The role of GSTE6 and GSTE7 enzyme in detoxification process remains unclear. Literature review above reported that Epsilon class GSTs involved in detoxification process but current findings does not show any promising evidence its involvement in detoxification. According to studies done by Yang et al., (2007), gste6 found abundant in hindgut while gste7 found abundant in Malpighian tubules. A comprehensive microarray-based atlas of adult gene expression in multiple *Drosophila* tissues available (http://flyatlas.org) reported that, gste6 expressed in adult crop, midgut, tubule, hindgut, ovary and larval hindgut while gste7 expressed in adult crop, midgut, tubule, hindgut,
virgin spermatheca and larval midgut, hindgut and fat body. Drnevich et al., (2004) in his study reported that, gste6 together gste5, gste1 and gste8 and few other genes were expressed thus play a role in male reproductive fitness and success. Li et al., (2008) has identified the potential DNA transcription factor binding motifs (TFBMs) of cytochrome P450s, GSTs and carboxylesterases expressed in the Drosophila melanogaster third instar larval midguts. gste6 reported to have GRE-like, Fox-like, NF-kappaB-like and E47-like TFBMs while gste7 reported to have GRE-like and E47-like TFBMs. The four mentioned TFBMs are known to have mammalian function and were observed to be linked to the oxidative stress response (Li et al., 2008). The author reported GSTE6 and GSTE7 enzyme responded different levels of dietary hydrogen peroxide. However, the author concluded that there is no solid evidence to prove if some or all of the potential TFBMs are functional or response of the midgut-associated GSTs to the oxidative stress, dietary H$_2$O$_2$. They may simply be associated with these genes with limited or no role in response to this oxidative stressor. gste7 gene in another study appeared to be involved in activation of survival program through immune deficiency (IMD) pathway as it reported expressed in strongly infected airway epithelium of Drosophila melanogaster (Wagner, et al., 2009). IMD pathway is appearing to be the only functional NF-kappaB activating pathway in epithelial cells. Exposure of Drosophila to toxins evokes coordinated response by the Malpighian tubules, involving both alterations in detoxification pathways as well as enhanced transport through DHR96, the Drosophila ortholog of the vertebrate PXR/CAR family of nuclear receptors (Chahine and Donnell, 2010).

In the other hand, studies by Willoughby et al., (2006) stated that in insects either two distinct receptors have evolved the ability to regulate a very similar set of genes. More than one receptor pathway exists to regulate similar sets of genes. This suggests the possibilities
of induction of *gste6* and *gste7* together with other genes. Apart from that, basal expression and induction was detected in the key metabolic tissues, namely sections of the midgut, and the malpighian tubules. However, difference in the expression of both *gste6* and *gste7* gene and its inability to detoxify possibly due to cis-regulatory elements controlling the expression of genes may not be acting independently whereby the substrate models may be acting solely to increase the transcriptional output of the tissue-specific modules (Willoughby *et al*., 2006) and the fact that these two genes are found sequentially on the chromosome may support a model of coordinated regulation (Lumjuan *et al*., 2011).

5.7 Future Studies

The results presented in this thesis have shown that it may not be possible to unravel the complex functions of the *Drosophila melanogaster* Epsilon class E6 and E7 enzyme in its contribution to either insecticide resistance or oxidative stress. However, what is needed is to carry out these experiments on larger numbers of field strains or using the laboratory susceptible and resistant strains and correlates GSTE6 and GSTE7 enzymes with resistance using other various insecticides and other xenobiotics as substrates besides used in this project. Apart from that, more physiological putative substrates needed to be tested in order to study its physiological role in details. In addition, structure elucidation based on X-ray crystallography of these genes will shed light on their special structural features. Determination of the three dimensional structure of both genes allows to determine either the genes plays a role in detoxification process or it only recognizes a much narrower group of electrophilic compounds. There is still a considerable need for future research in relation to the findings presented in this thesis on how GST-mediated resistance is either coordinately regulated to involve different members from multiple groups of glutathione transferases or it acts independently.
CHAPTER 6

CONCLUSION

Drosophila melanogaster Epsilon class E6 and E7 gene was successfully cloned, purified and biochemically characterized. The recombinant proteins were readily purified using the combination of both anionic chromatography and BSP-GSH affinity column. Although both genes have significant identity in amino acid sequence conservation which indicates they are in the same class, each enzyme displayed unique biochemical characteristics. This suggests that different residue in the enzyme active site plays a role in enzymatic specificity of each isoform.

Besides that, availability of both genes in database allows cloning of individual gene for determination of its physiological function with various substrates. The data shows both isoforms specifically conjugate common substrates such as CDNB, DCBN and p-NBC with different catalytic activity. This gives us insights of physiological function network of each gene in *Drosophila* cells differ tremendously. However, the recombinant proteins do not show any promising results neither with physiological substrates nor with pesticides doubts the possibility of involvement in either as detoxification process or prevents oxidative stress in the cells. It was suggested that the detoxification capability of GSTs against insecticides is correlated to its catalytic activity with DCNB rather than CDNB thus the recombinant proteins may only be involved in normal defense mechanism in cells.

In addition, the recombinant proteins showed to be inhibited significantly by naturally occurring product and various dyes suggest it can help to inhibit the detoxification activity of the GST isoenzymes in cancerous cells as a whole with exceptional to GSTE7 which found to be stimulated by *trans*-chalcone and methylene blue. Moreover, stimulation of
only GSTE7 activity upon addition of methylene blue dye and trans-chalcone influences us to concern the possible cause that could lead to this difference. Moreover, future findings needed to be included on how GST-mediated resistance is either coordinately regulated to involve different members from multiple groups of glutathione s-transferases or it acts independently.
REFERENCES

Sherratt, P.J., and Hayes, J.D. (2002). Glutathione S Transferases. In C. Ioannides (Eds.), Enzyme systems that metabolize drugs and other xenobiotics. (pp. 320-352). United Kingdom, UK: John Wiley & Sons Ltd.

APPENDIX A- *Drosophila* Media Preparation

The *Drosophila* media was prepared by adding 10 g of oats, 3 g of white sugar, 6 g of brown sugar, 1 g of agar, 1.5 g of yeast into a beaker. 100 mL of tap water was poured into the beaker and heated on hot plate until it boils. The hot plate was turned off and 1.5 mL propionic and acetic acid mix (75:25) was added accordingly. The mixed media was poured into 4-5 plastic bottles. The bottles was left to cool down before transferring flies and stumped with a sponge.
APPENDIX B- Buffer, Stock and Media Solution Preparation

Eluting Buffer- 25mM Sodium Phosphate Buffer, pH 7.4

A total of 3 g of NaH$_2$PO$_4$ was dissolved in approximately 900 mL of distilled water. The pH of the solution was adjusted to 7.25 at 20°C and the volume was made up to 1000 mL, filtered and stored 4°C.

Buffer A- 0.1M Sodium Phosphate Buffer, pH 6.5

A total of 12 g of NaH$_2$PO$_4$ was dissolved in approximately 900 mL of distilled water. The pH of the solution was adjusted to 6.5 at 20°C and the volume was made up to 1000 mL, filtered and stored 4°C.

Buffer B- 0.1M Tris Buffer, pH 9.0

A total of 12.114 g of Tris base was dissolved in approximately 900 mL of distilled water. The pH of the solution was adjusted to 9.0 at 20°C and the volume was made up to 1000 mL, filtered and stored 4°C.

Buffer C- 0.1M Sodium Phosphate Buffer, pH 7.5

A total of 12 g of NaH$_2$PO$_4$ was dissolved in approximately 900 mL of distilled water. The pH of the solution was adjusted to 7.5 at 20°C and the volume was made up to 1000 mL, filtered and stored 4°C.
Buffer D- 0.25 M Sodium Phosphate Buffer, pH 7.0

A total of 30 g of NaH$_2$PO$_4$ was dissolved in approximately 900 mL of distilled water. The pH of the solution was adjusted to 7.0 at 20ºC and the volume was made up to 1000 mL, filtered and stored 4ºC.

IPTG Stock Solution (100 mM)

A total of 238.3 mg isopropyl β-β-thiogalactopyranoside was dissolved in 10 mL Ω-cm water, filtered-sterilized and store in -20ºC.

Ampicilin Stock Solution (100 mg/mL)

A total of 5 g Ampicilin sodium salt was dissolved in 50 mL Ω-cm water, filtered-sterilized and store in 4ºC.

Kanamycin Stock Solution (30 mg/mL)

A total of 1.5 g kanamycin monosulfate salt was dissolved in 50 mL Ω-cm water, filtered-sterilized and store in 4ºC.

LB (Luria Bertani) agar plates (1000 mL = approx. 40 plates)

For 1000 mL, 40 g was dissolved in 950 mL distilled water. The solution was mix well and dissolved by heating with frequent agitation. The solution was sterilized in autoclave at 121ºC for 15 minutes, cooled to 45-50ºC, mixed well and dispensed into plates.
LB (Luria Bertani) Broth

For 1000 mL, 20 g was dissolved in 950 mL distilled water. The solution was mix well and dissolved by heating with frequent agitation. The solution was sterilized in autoclave at 121°C for 15 minutes, cooled to 45-50°C, mixed well and dispensed into 100 mL flask.
APPENDIX C - Laemmli Discontinuous SDS Polyacrylamide Gel Electrophoresis

Acrylamide/Bis (30% T, 2.67% C)

A total of 146.0 g of acrylamide and 4.0 g of N, N’-methylene-bis Acrylamide was mixed in MΩ-cm water. The resulting solution was made to 500 mL, filtered and stored 4°C.

1.5M Tris-HCl, pH8.8

A total of 54.45 g of Tris base was dissolved in 60 mL MΩ-cm water and the pH was adjusted to 8.8 with HCl. The solution was made up to 300 mL with 18.3 MΩ-cm water and stored at 4°C.

0.5M Tris-HCl, pH6.8

A total of 6 g of Tris base was dissolved in 60 mL MΩ-cm water and the pH was adjusted to 6.8 with HCl. The solution was made up to 100 mL with 18.3 MΩ-cm water and stored at 4°C.

10% (w/v) SDS

A total of 10 g of SDS was dissolved in 50 mL MΩ-cm water with gentle shaking. The volume was made up to 100 mL.
SDS Sample Buffer

The buffer consist of 62.5 mM Tris-HCl, pH 6.8, 20% glycerol, 2% SDS and 5% β-mercaptoethanol. To prepare a buffer solution of 2 mL of 0.5 M Tris-HCl, pH 6.8, 0.4 mL glycerol, 0.4 mL 10% SDS, 0.1 mL of 0.5% (w/v) bromophenol blue and 0.75 mL of MΩ-cm water were mixed. To prepare sample in sample buffer, the sample was diluted at 1.4 ratio. The sample was heated at 95ºC for 4 minutes.

Electrophoresis (Running) buffer (1X 25mM Tris, 192 mM Glycine and 0.15 (w/v) SDS, pH 8.3).

Stock of Bio-Rad 10X Tris/ Glycine/SDS buffer was used and diluted to the final concentration according to the manufacturer instruction. Or else a running buffer was prepared by dissolving 15.1 g Tris, 5.0 g SDS and 72.1 g glycine in 5 L. The pH of the buffer was not adjusted.

Stacking Gel (0.125 M Tris-HCl, pH 6.8)

To prepare 10 mL of 4% gel: 1.33 mL 30% Acrylamide/Bis, 2.5 mL 0.5 M Tris-HCl, pH 6.8, 0.1 mL 10% SDS, 6.1 mL MΩ-cm water, 0.01 mL TEMED and 0.05 mL 10% APS was mixed gently and poured into the electrophoresis plates. All the ingredients except TEMED and APS were combined and degassed under vacuum for at least 15 minutes. The polymerization was initiated by addition of TEMED and APS followed by gentle swirling for complete mixing.
Resolving Gel (0.375 M Tris-HCl, pH 8.8)

To prepare 10 mL of 12% gel: 4.0 mL 30% Acrylamide/Bis, 2.5 mL 1.5 M Tris-HCl, pH 8.8, 0.1 mL 10% SDS, 3.35 mL MΩ-cm water, 0.005 mL TEMED and 0.05 mL 10% APS was mixed gently and poured into the electrophoresis plates. All the ingredients except TEMED and APS were combined and degassed under vacuum for at least 15 minutes. The polymerization was initiated by addition of TEMED and APS followed by gentle swirling for complete mixing.
APPENDIX D- Formulas

Catalytic activity = \((\Delta A \times V \times 1000)/(\varepsilon \times \upsilon \times \Delta d)\) (μmol/min or Units)

\(\Delta A\) is absorbance change; \(\varepsilon\) is L x mmol\(^{-1}\) x cm\(^{-1}\); \(V\) is assay volume in L; \(\upsilon\) is of sample volume; \(\Delta d\) in cm; \(t\) in min

Specific activity = \((\Delta A \times V)/(\varepsilon \times \upsilon \times \Delta d \times 1000 \times C \text{ protein})\) (μmol/min/mg or Units/mg)

\(\Delta A\) is absorbance change; \(\varepsilon\) is L x mmol\(^{-1}\) x cm\(^{-1}\); \(V\) is assay volume in L; \(\upsilon\) is of sample volume; \(d\) in cm; \(t\) in min; \(C\) is protein concentration in mg/l)
Figure E1: Purification spectrum of recombinant proteins using Bromosulfophthalein-GSH matrix.
APPENDIX F- The Effects of Substrate Concentration

Figure F1: The Effect of Substrate (CDNB) Concentrations on GSTE6 isozyme activity.

The data shown are means±SEM error bars from three independent experiments.
Figure F2: The Effect of Substrate (p-NBC) Concentrations on GSTE6 isozyme activity.

The data shown are means±SEM error bars from three independent experiments.
Figure F3: The Effect of Substrate (CDNB) Concentrations on GSTE7 isozyme activity.

The data shown are means±SEM error bars from three independent experiments.
APPENDIX G- The Effects of Inhibitors

Figure G1: The Effect of Cibacron blue dye concentrations on GSTE6 CDNB isozyme activity. Data points represent average of at least three independent experiments.
Figure G2: The Effect of Crystal Violet dye concentrations on GSTE6 CDNB isozyme activity. Data points represent average of at least three independent experiments.
Figure G3: The Effect of Cibacron blue dye concentrations on GSTE7 CDNB isozyme activity. Data points represent average of at least three independent experiments.
Figure G4: The Effect of Tetradecanedioic acid concentrations on GSTE7 CDNB isozyme activity. Data points represent average of at least three independent experiments.
APPENDIX H- The Effects of Agonist

Figure H1: The Effect of trans-chalcone concentrations on GSTE7 CDNB isozyme activity.

Data points represent average of at least three independent experiments.
Figure H2: The Effect of Methylene Blue dye concentrations on GSTE7 CDNB isozyme activity. Data points represent average of at least three independent experiments.