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Abstract

Let R be an associative ring with identity. Let Id(R) and U(R) denote the

set of idempotents and the set of units in R, respectively. An element x 2 R is

said to be weakly clean if x can be written in the form x = u+ e or x = u� e for

some u 2 U(R) and e 2 Id(R). If x is represented uniquely in this form, whether

x = u+ e or x = u� e, then x is said to be uniquely weakly clean. We say that

x 2 R is pseudo weakly clean if x can be written in the form x = u+e+(1�e)rx

or x = u � e + (1 � e)rx for some u 2 U(R), e 2 Id(R) and r 2 R. For any

positive integer n, an element x 2 R is n-weakly clean if x = u1 + · · ·+ u
n

+ e or

x = u1 + · · ·+ u
n

� e for some u1, . . . , un

2 U(R) and e 2 Id(R). The ring R is

said to be weakly clean (uniquely weakly clean, pseudo weakly clean, n-weakly

clean) if all of its elements are weakly clean (uniquely weakly clean, pseudo

weakly clean, n-weakly clean). Let g(x) be a polynomial in Z(R)[x] where Z(R)

denotes the centre of R. An element r 2 R is g(x)-clean if r = u + s for some

u 2 U(R) and s 2 R such that g(s) = 0 in R. The ring R is said to be g(x)-clean

if all of its elements are g(x)-clean. In this dissertation we investigate weakly

clean and related rings. We determine some characterisations and properties of

weakly clean, pseudo weakly clean, uniquely weakly clean, n-weakly clean and

g(x)-clean rings for certain types of g(x) 2 Z(R)[x]. Some generalisations of

results on clean and related rings are also obtained.
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Abstrak

Biar R suatu gelanggang dengan identiti. Biar Id(R) dan U(R) menandakan

set semua idempoten dan set semua unit dalam R, masing-masing. Unsur x 2 R

dikatakan bersih secara lemah jika x boleh ditulis dalam bentuk x = u+ e atau

x = u � e bagi sesuatu u 2 U(R) dan e 2 Id(R). Jika perwakilan x dalam

bentuk tersebut adalah unik, sama ada x = u + e atau x = u � e, maka x

dikatakan bersih secara lemah berunik. Kita katakan bahawa x 2 R adalah

bersih secara lemah pseudo jika x boleh ditulis dalam bentuk x = u + e +

(1 � e)rx atau x = u � e + (1 � e)rx bagi sesuatu u 2 U(R), e 2 Id(R) dan

r 2 R. Bagi sebarang integer positif n, sesuatu unsur x 2 R adalah bersih

secara n-lemah jika x = u1 + · · · + u
n

+ e atau x = u1 + · · · + u
n

� e bagi

sesuatu u1, . . . , un

2 U(R) dan e 2 Id(R). Gelanggang R dikatakan bersih

secara lemah (bersih secara lemah berunik, bersih secara lemah pseudo, bersih

secara n-lemah) jika semua unsurnya adalah bersih secara lemah (bersih secara

lemah berunik, bersih secara lemah pseudo, bersih secara n-lemah). Biar g(x)

suatu polinomial dalam Z(R)[x] yang mana Z(R) menandakan pusat bagi R.

Unsur r 2 R adalah g(x)-bersih jika r = u + s bagi sesuatu u 2 U(R) dan

s 2 R dengan g(s) = 0 dalam R. Gelanggang R dikatakan g(x)-bersih jika

semua unsur dalamnya adalah g(x)-bersih. Dalam disertasi ini, kita mengkaji

gelanggang bersih secara lemah dan gelanggang berkaitan. Kita menentukan

beberapa cirian dan sifat bagi gelanggang bersih secara lemah, bersih secara

lemah pseudo, bersih secara lemah berunik, bersih secara n-lemah dan g(x)-

bersih bagi jenis tertentu g(x) 2 Z(R)[x]. Beberapa pengitlakan hasil untuk

gelanggang bersih dan gelanggang berkaitan juga diperolehi.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

This dissertation is mainly concerned with weakly clean and related rings. All

rings considered in this dissertation are associative with identity unless stated

otherwise and all modules are unitary. For any ring R, by an R-module M

we mean a right R-module and we sometimes write M as M
R

. Given the ring

R, let Z(R) denote the centre of R, N(R) the set of nilpotent elements in R,

J(R) the Jacobson radical of R, U(R) the set of units in R and Id(R) the set

of idempotents in R. The notation M
n

(R) as usual denotes the ring of n ⇥ n

matrices over R (n � 1). In the remainder of this chapter, we shall give some

background on some of the rings studied in this dissertation. We also discuss

how clean rings are related to some other rings.

1.1.1 Clean and strongly clean rings

Let R be a ring. An element x 2 R is clean if x = u + e for some u 2 U(R)

and e 2 Id(R). The ring R is a clean ring if all of its elements are clean. Clean

rings were first introduced by Nicholson [50] as a class of exchange rings. An

element x 2 R is called exchange if there exists an idempotent e 2 xR such that

1 � e 2 (1 � x)R. The ring R is said to be exchange if all of its elements are

1



exchange.

Nicholson [50, Proposition 1.8] observed an interesting relation between ele-

ments in R:

x is clean in R ) f � x 2 R(x� x2) for some f 2 = f 2 R. (1.1)

An element x 2 R satisfying the condition on the right-hand side of (1.1) is said

to be suitable. The ring R is said to be suitable if all of its elements are suitable.

Consequently, every clean ring is suitable. In [9], Camillo, et al have shown that

every ring can be embedded in a clean ring. This implies that an investigation

of clean rings can lead to information on other rings. In a later paper, Burgess

and Raphael [7, Theorem 2.1] showed that every ring can be embedded as an

essential ring extension of a clean ring; thus adding importance to the study of

clean rings.

The ring R is semiperfect if R/J(R) is Artinian and every idempotent in

R/J(R) can be lifted to an idempotent of R. It has been shown in [11, Theorem

9] and [32, Corollary 4] that every semiperfect ring is clean. Let n be a positive

integer. The ring R is said to be n-good if every element of R can be written

as a sum of n units in R (see [34]). Camillo and Yu [11, Proposition 10] have

shown that if R is a clean ring with 2 2 U(R), then every element of R is the

sum of a unit and a square root of 1. It follows that clean rings with 2 invertible

are 2-good.

The ring R is said to be semipotent if every right (equivalently, left) ideal

T * J(R) contains a nonzero idempotent (see [52]). Han and Nicholson [32,

Proposition 1] proved that every clean ring is semipotent. In [32], Han and

Nicholson proved that if e 2 Id(R) and the corner rings eRe and (1� e)R(1� e)

2



are clean, then R is also clean. This implies that the matrix ring M
n

(R) over a

clean ring is clean. However, corner rings of clean rings need not be clean. This

has been shown by Ster [58] by constructing a non-clean corner ring of a clean

ring.

There have been several other results relating matrices to clean rings. In [32],

Han and Nicholson have stated that by using induction, it can be shown that for

each integer n � 1, a ring R is clean if and only if the ring of all n ⇥ n upper

triangular matrices over R is clean. Khurana and Lam in [39] showed that for a

commutative ring R, if a 2 R is clean, then for any b 2 R, A =

✓
a b
0 0

◆
is clean

in M2(R). In [70, Theorem 2.9], Yang and Zhou showed that for a commutative

local ring R with 2 2 U(R), the matrix ringM
t

(R) is clean if and only ifM
t

(RC2)

is clean, where C2 is the cyclic group of order 2 and t � 2.

An element x 2 R is strongly clean if x = u + e for some u 2 U(R) and

e 2 Id(R) with eu = ue. The ring R is strongly clean if all of its elements are

strongly clean. Strongly clean rings were first introduced by Nicholson in [51]

as a natural generalisation of strongly ⇡-regular rings. The ring R is said to be

strongly ⇡-regular if for each x 2 R there exist a positive integer n, depending

on x, and an element y 2 R such that xn = xn+1y and xy = yx. Nicholson in

[51, Theorem 1] showed that every strongly ⇡-regular ring is strongly clean but

the converse is not necessarily true.

“Is the centre of a clean ring also clean?” This problem was raised in a

survey paper by Nicholson and Zhou [54]. Note that the centre of a regular

ring is regular, as shown by Goodearl in [31]. In [36, Example 2.7], Hong, Kim

and Lee gave an example to show that the centre of an exchange ring need not

be exchange. However, in the same paper it was shown that the centre of an

3



abelian exchange ring is exchange (see [36, Corollary 2.6]). (A ring R is said to

be abelian if all of its idempotents are central.) Since clean rings are exchange,

it is of interest to know whether the centre of a clean ring is necessarily clean.

Burgess and Raphael answered this in the negative in [7, Proposition 2.5]. Note,

however, that a non-clean ring may have a clean centre. For example, in [36,

Proposition 2.5], Hong, Kim and Lee proved that the centre of an exchange ring

is clean, although it is known by [11] that an exchange ring need not be clean.

In the following we show that the centre of a strongly ⇡-regular ring is strongly

⇡-regular; hence, strongly clean and therefore, clean.

Proposition 1.1.1. The centre of a strongly ⇡-regular ring is strongly ⇡-regular.

Proof. Let R be a strongly ⇡-regular ring and let x 2 Z(R). Then there exist

a positive integer n and an element y 2 R such that xn = xn+1y and xy = yx.

Let z = xnyn+1. Then xn = xn+1y = xn+2y2 = · · · = x2nyn = x2n+1yn+1 =

xn+1xnyn+1 = xn+1z and xz = zx. For any r 2 R, zr = (xnyn+1)r = yn+1rxn =

yn+1rx2n+1yn+1 = x2n+1yn+1ryn+1 = xnryn+1 = rxnyn+1 = rz. Hence z 2 Z(R)

and it follows that Z(R) is strongly ⇡-regular.

1.1.2 Weakly clean rings

Let R be a ring. An element x 2 R is weakly clean if x = u+ e or x = u� e for

some u 2 U(R) and e 2 Id(R). The ring R is weakly clean if all of its elements

are weakly clean. Clearly, R is weakly clean if for any x 2 R, either x or �x is

clean. Weakly clean rings first appeared in Ahn’s Ph.D. thesis [1]. Further work

on these rings can be found in [2] where weakly clean analogues of several results

on clean rings were obtained. It is also shown in [2] that if R is a weakly clean

4



ring with no nontrivial idempotents, then R has exactly two maximal ideals and

2 2 U(R).

An element x 2 R is called weakly exchange if there exists an idempotent

e 2 xR such that 1 � e 2 (1 � x)R or 1 � e 2 (1 + x)R. The ring R is

said to be weakly exchange if all of its elements are weakly exchange. It is

clear that exchange elements are weakly exchange. In [22], Chin and Qua found

an element-wise characterisation of abelian weakly clean rings. By checking

carefully the proof of [22, Theorem 2.1], it follows that weakly clean elements

are weakly exchange. A ring R is said to be NLI if for any x 2 N(R) and y 2 R,

xy � yx 2 N(R). In [63], Wei has proven that NLI weakly exchange rings are

weakly clean. In particular, if R is an abelian ring, then R is weakly clean if and

only if R is weakly exchange (by [63, Corollary 2.3]).

1.1.3 Uniquely clean rings and uniquely strongly clean
rings

Let R be a ring. An element x 2 R is uniquely clean if x = u + e for some

u 2 U(R) and e 2 Id(R) and this representation is unique. The ring R is

uniquely clean if all of its elements are uniquely clean. Uniquely clean rings

were first considered by Anderson and Camillo [3] for the commutative case.

In the non-commutative case, uniquely clean rings first appeared in a paper by

Nicholson and Zhou [53]. The ring R is said to be local if R has a unique maximal

right ideal. Nicholson and Zhou [53, Theorem 15] showed that a local ring R is

uniquely clean if and only if R/J(R) ⇠= Z2. In [53, Lemma 4], Nicholson and

Zhou also proved that every idempotent in a uniquely clean ring is central; thus

a uniquely clean ring is strongly clean. Another consequence of this result is that

5



a uniquely clean ring is directly finite, where the ring R is said to be directly

finite if for any a, b 2 R, ab = 1 implies that ba = 1.

The ring R is said to be a Boolean ring if x2 = x for all x 2 R. R is said to

be a left (respectively, right) quasi-duo ring if every maximal left (respectively,

right) ideal of R is two-sided. In [53, Theorem 20], Nicholson and Zhou proved

that R is uniquely clean if and only if R/J(R) is Boolean and idempotents lift

uniquely modulo J(R). In particular, R is Boolean if R is uniquely clean and

J(R) = {0}. In [53, Proposition 23], Nicholson and Zhou also proved that every

uniquely clean ring is left and right quasi-duo.

An element x in a ring R is said to be nil clean if x can be written as the

sum of an idempotent and a nilpotent element of R. The ring R is said to be nil

clean if every element in R is nil clean (see [28]). In [27], Danchev and McGovern

have shown that if R is nil clean, then it is uniquely clean and therefore clean.

The converse is not true by considering the ring R = Z(2), where Z(2) is the

localization of the integers at the prime 2.

An element x in the ring R is said to be uniquely strongly clean if x = u+ e

uniquely for some u 2 U(R) and e 2 Id(R) with eu = ue. That is, if x =

u1 + e1 = u2 + e2 for some u1, u2 2 U(R) and e1, e2 2 Id(R) with e
i

u
i

= u
i

e
i

(i = 1, 2), then u1 = u2 and e1 = e2. The ring R is uniquely strongly clean if

all of its elements are uniquely strongly clean. The notion of uniquely strongly

clean rings first appeared in a paper by Wang and Chen [60]. Further work on

these rings can be found in a paper by Chen, Wang and Zhou [18].

In [18, Example 4], Chen, Wang and Zhou showed that uniquely clean rings

are uniquely strongly clean and the converse holds when idempotents are central.

In [18, Example 8], Chen, Wang and Zhou also gave an example of a ring that

6



is uniquely strongly clean but not uniquely clean and in [18, Corollary 7], they

showed that a strongly clean ring is not necessarily uniquely strongly clean.

1.1.4 Pseudo clean rings

Let R be a ring. An element x 2 R is said to be pseudo clean if there exist

e 2 Id(R) and u 2 U(R) such that x� e� u 2 (1� e)Rx. The ring R is pseudo

clean if all of its elements are pseudo clean. Clearly, every clean ring is pseudo

clean. Pseudo clean rings were first introduced by Ster in [58] as a subclass of

exchange rings. In the same paper, Ster also constructed an example of a non-

clean pseudo clean ring (see [58, Example 3.1]). By using the same example,

Ster also showed that corners of clean rings need not be clean. Further work on

pseudo clean rings can be found in [59]. In [59], Ster also considered the notion

of pseudo clean in non-unital rings and gave an example of a non-pseudo clean

exchange ring.

1.1.5 n-clean rings

Let R be a ring. Given a positive integer n, an element x 2 R is said to be

n-clean if x = u1 + · · · + u
n

+ e for some u1, . . . , un

2 U(R) and e 2 Id(R).

The ring R is said to be n-clean if each of its elements is n-clean. The notion of

n-cleanness first appeared in [67].

In [68], Xiao and Tong obtained the following result which tells us that being

clean implies being n-clean for any positive integer n.

Proposition 1.1.2. [68, Lemma 2.1] Let R be a ring and let n,m be positive

integers with n < m. If R is n-clean, then R is also m-clean.

In [67, Corollary 2.12], Xiao and Tong showed that the ring of square matrices

7



over an n-clean ring is n-clean. They also showed that for each integer t � 2,

the ring UT
t

(R) (respectively, LT
t

(R)) of all t ⇥ t upper (respectively, lower)

triangular matrices over the ring R is n-clean if and only if R is n-clean.

1.1.6 g(x)-clean rings

Let R be a ring and let g(x) be a polynomial in Z(R)[x]. In [61], an element r 2 R

is called g(x)-clean if r = u+ s for some u 2 U(R) and s 2 R such that g(s) = 0.

R is said to be g(x)-clean if every element of R is g(x)-clean. In the same paper,

Wang and Chen [61] proved that if g1(x) = (x� a)(x� b) with a, b 2 Z(R), then

R is g1(x)-clean if and only if R is clean and b � a is a unit (see [61, Theorem

2.1]). Now let g1(x) = (x� a)(x� b) and g2(x) 2 (x� a)(x� b)Z(R)[x], where

a, b 2 Z(R) and b� a 2 U(R). By [61, Remark 2.3], R is clean if and only if R

is g1(x)-clean, and in this case, R is also g2(x)-clean. On the other hand, if R is

g2(x)-clean for any g2(x) 2 (x� a)(x� b)Z(R)[x], then R is clean.

In [29], Fan and Yang investigated g(x)-clean rings where g(x) = xn � x

with n 2 N. They showed that (xn � x)-clean rings are 2-clean (hence, m-clean

for m � 2) ([29, Proposition 4.5]). In the same paper, Fan and Yang gave an

example to show that the polynomial ring over a g(x)-clean ring is not necessarily

g(x)-clean. However, the formal power series ring over a g(x)-clean ring is g(x)-

clean.

The ring R is said to be strongly g(x)-clean if every element r 2 R can be

written as r = u + s for some u 2 U(R) and s 2 R such that g(s) = 0, and

us = su. The ring R is said to be (n, g(x))-clean if every element r 2 R can be

written as r = u1 + · · ·+ u
n

+ s for some u1, . . . , un

2 U(R) and s 2 R such that

g(s) = 0. If every element r 2 R can be written as r = u+s or r = u�s for some

8



u 2 U(R) and s 2 R such that g(s) = 0, then R is said to be weakly g(x)-clean.

The definitions of strongly g(x)-clean, (n, g(x))-clean and weakly g(x)-clean rings

can in fact be found in [30], [33] and [4], respectively. These papers also contain

results which are analogous to those on g(x)-clean rings obtained by Fan and

Yang in [29].

1.1.7 Some other related rings

Let R be a ring. An element x 2 R is said to be quasiregular if 1 � x is a unit

in R. Nilpotent elements are clearly quasiregular. We first note some examples

of clean elements which have been stated in [48].

Example 1.1.1. Units, idempotents, quasiregular elements and nilpotent ele-

ments in a ring are clean.

By the example above, it follows that units, idempotents, quasiregular ele-

ments and nilpotent elements in a ring are weakly clean. The ring R is said to be

a division ring if every non-zero element in R has a multiplicative inverse (that

is, for any x 2 R with x 6= 0, there exists an element y 2 R with xy = yx = 1).

It follows by Example 1.1.1 that division rings, Boolean rings and local rings are

clean (hence, weakly clean).

A ring R is said to be semisimple if R is Artinian and J(R) = {0}. It is

well known that every semisimple ring is isomorphic to a finite direct product

of full matrix rings over division rings. Since every division ring is clean and

a full matrix ring over a clean ring is clean (by [32, Theorem]), we have that

semisimple rings are clean.

Proposition 1.1.3. A ring R is local if and only if it is clean and has no

nontrivial idempotents.

9



Proof. ()): Let R be a local ring and let x 2 R. If x 2 J(R), then x � 1 =

�(1 � x) 2 U(R). Thus, x = 1 + (x � 1). Hence, x is clean. If x /2 J(R), then

x 2 U(R) and we have x = 0+ x. It follows that x is clean. Since x is arbitrary,

this shows that R is clean. Next, if e2 = e 2 R, then e(e � 1) = 0. Since e or

1� e is a unit, hence, e = 0 or e = 1.

((): Let R be a clean ring with no nontrivial idempotents. Suppose that x 2 R

and x is not a unit. Since R is clean and the only idempotents in R are 0 and 1,

so x = 1+u for some unit u 2 R. It follows that 1�x = �u 2 U(R). Therefore,

R is a local ring.

As a consequence of Proposition 1.1.3, we have the following:

Corollary 1.1.1. Local rings are strongly clean.

Strongly clean rings are however not necessarily local. For example, let R =

UT2(Z3), the ring of 2 ⇥ 2 upper triangular matrices over Z3. By [17, Theorem

3.9 ], R is strongly clean. Since R contains the nontrivial idempotent

✓
1 0
0 0

◆
, it

follows by Proposition 1.1.3 that R is not a local ring.

Note that a commutative ring R is said to be quasilocal if it has a unique

maximal ideal. By Proposition 1.1.3, quasilocal rings are clean (hence, weakly

clean). This fact has also been proven in [3, Proposition 2(1)].

Let R be a ring. A right R-module M
R

is said to have the exchange prop-

erty if for any right R-module A
R

and any two decompositions of A
R

, A
R

=

M 0
R

L
N

R

=
L

i2I Ai

with M 0
R

⇠= M
R

, there exist submodules A0
i

✓ A
i

such that

A
R

= M 0
R

L�L
i2I A

0
i

�
. If this condition is satisfied whenever the index set I is

finite, then the right R-module M
R

is said to have the finite exchange property.

The ring R is said to be an exchange ring if the right regular module R
R

has
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the finite exchange property and this definition is left-right symmetric. In [50],

Nicholson has shown that R is an exchange ring if and only if idempotents can

be lifted modulo every left (right) ideal of R if and only if R is suitable. Hence,

every clean ring is an exchange ring. An exchange ring with all idempotents

central is a clean ring (by [50, Proposition 1.8]).

The ring R is strongly exchange if for every x 2 R, there exist e 2 Id(R)

and a, b 2 R such that e = ax = xa and 1 � e = b(1 � x) = (1 � x)b. In [19,

Theorem 2.2], Chen has shown that strongly exchange rings are strongly clean;

hence, clean.

Proposition 1.1.4. An exchange ring with no nontrivial idempotents is local.

Proof. Suppose that R is an exchange ring with no nontrivial idempotents.

Hence R is clean by [13, Corollary 2.2]. It follows by Proposition 1.1.3 that R is

local.

An element x in the ring R is said to be right uniquely exchange if there exists

a unique e 2 Id(R) such that e 2 xR and 1 � e 2 (1� x)R. The ring R is said

to be right uniquely exchange if all of its elements are right uniquely exchange.

It has been shown by Lee and Zhou [41, Example 8] that every uniquely clean

ring is a right uniquely exchange ring. They also showed that the converse is not

necessarily true (see [41, Example 9]).

The ring R is said to be von Neumann regular (or just regular) if for any

element x 2 R, there exists y 2 R such that x = xyx. In [3, Theorem 10],

Anderson and Camillo have shown that a commutative regular ring is clean.

The ring R is said to be strongly regular if for every x 2 R, there exists y 2 R

such that x = x2y and xy = yx. It is known that a ring is strongly regular if and

11



only if it is regular and abelian. It is clear that strongly regular rings are strongly

⇡-regular. The ring R is said to be unit regular if for every element x 2 R, there

exists a unit u 2 R such that x = xux. It is known that every strongly regular

ring is unit regular (see [31]). Camillo and Khurana in [8, Theorem 1] have

proved that every unit regular ring is clean (hence, weakly clean). Conversely, a

weakly clean ring is unit regular if for any element x, x = u+ e or x = u� e in

R, xR \ eR = {0}, where u 2 U(R) and e 2 Id(R) (see [22, Theorem 2.2]).

Let S be a subset of the ring R. If for any sequence of elements {a1, a2, a3, . . . }

✓ S, there exists an integer n � 1 such that a
n

. . . a3a2a1 = 0 (a1a2a3 . . . an = 0),

then S is right (left) T -nilpotent. The ring R is said to be right (respectively,

left) perfect if R/J(R) is semisimple and J(R) is right (respectively, left) T -

nilpotent. A perfect ring is a ring which is both left and right perfect. Nicholson

has stated that left (right) perfect rings are strongly clean in [51, Corollary], but

the converse is not necessarily true.

The ring R is said to be right (respectively, left) topologically boolean if for

every pair of distinct maximal right (respectively, left) ideals of R there is an

idempotent in exactly one of them (see [21], or see [25] for the commutative

case). In [47, Theorem 1.7], McGovern has shown that a commutative ring is

clean if and only if it is topologically boolean. This was later extended by Chin

[21, Theorem 3.1] who showed that an abelian ring is clean if and only if it is

right (left) topologically boolean. A commutative ring R is said to be a pm-ring

if every prime ideal of R is contained in a unique maximal ideal of R. In [3,

Corollary 4], Anderson and Camillo showed that a commutative clean ring is a

pm-ring.

We illustrate the relations between clean and other rings discussed above in

12



Figure 1. Some of the rings mentioned in Figure 1 will be defined in subsequent

chapters.
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1.2 Thesis organisation

Let R be a ring. We give here a brief description of the succeeding chapters in

this dissertation. In Chapter 2 we present some characterisations and properties

of weakly clean rings. We also study centres of weakly clean rings and obtain

some su�cient conditions for the centre of a weakly clean ring to be weakly clean.

We also provide an example to show that the centre of a weakly clean ring is

not necessarily weakly clean. In the last section of the chapter, we consider the

notion of strongly weakly clean rings and determine some of their properties.

In Chapter 3 we study uniquely weakly clean rings. We obtain some proper-

ties and characterisations of uniquely weakly clean rings. We also extend some

known results on uniquely clean group rings to uniquely weakly clean group rings.

In Chapter 4 we investigate n-weakly clean rings, where n is a positive integer.

We extend some results on n-clean rings and weakly clean rings to n-weakly clean

rings. We also give some necessary or su�cient conditions for a group ring to

be n-weakly clean. In the last section of the chapter, we consider the n-weakly

clean condition on matrices.

In Chapter 5 we define pseudo weakly clean rings. This class of rings contains

the pseudo clean rings and we generalise some known results on pseudo clean

rings to pseudo weakly clean rings. We also consider the pseudo weakly clean

condition in non-unital rings.

In Chapter 6 we study g(x)-clean rings where g(x) 2 Z(R)[x] and obtain some

of their properties. We also define c-topologically boolean rings and show, via

set-theoretic topology, that among conditions equivalent to R being an x(x� c)-

clean ring where c 2 U(R)\Z(R) is that R is right (left) c-topologically boolean.

14



Finally, in the last chapter, we give a summary of some basic properties of

clean, weakly clean, pseudo weakly clean, uniquely weakly clean and n-weakly

clean (n � 2) rings.
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Chapter 2

Weakly Clean Rings

2.1 Introduction

Let R be a ring. An element x 2 R is weakly clean if x = u+ e or x = u� e for

some unit u and idempotent e in R. In other words, the element x 2 R is weakly

clean if either x or �x is clean. The ring R is weakly clean if all of its elements

are weakly clean. Weakly clean rings first appeared in Ahn’s Ph.D. thesis [1].

Further work on these rings can be found in [2] where weakly clean analogues

of several results on clean rings were obtained. Clearly, clean rings are weakly

clean but the converse is not necessarily true, as shown in the following example.

Example 2.1.1. Let R = Z(3) \ Z(5) = {a

b

2 Q | 3 - b, 5 - b}. It is clear that

R has no nontrivial idempotents. Let x 2 R. Then x = a

b

for some a, b 2 Z

where b 6= 0, 3 - b and 5 - b. If a

b

is a unit, then x = a

b

= a

b

+ 0 which is clean;

hence, weakly clean. If a

b

is not a unit, then it can be shown by some elementary

number theory that either a

b

� 1 or a

b

+ 1 is a unit. Therefore, x can be written

as the sum or the di↵erence of a unit and an idempotent as follows:

x =

(�
a

b

� 1
�
+ 1, if a

b

� 1 is a unit;�
a

b

+ 1
�
� 1, if a

b

+ 1 is a unit.

Thus, x 2 R is weakly clean. However, note that 3
8 2 R is not clean in R since

3
8 = 3

8 + 0 = �5
8 + 1 but 3

8 ,
5
8 are not units in R.
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Another example of a weakly clean ring is a nil clean ring. An element x in a

ring R is said to be nil clean if x can be written as the sum of an idempotent and

a nilpotent element of R. The ring R is said to be nil clean if every element in R

is nil clean. Note that a nil clean element is weakly clean. Indeed, if x 2 R is nil

clean, then x = e + z for some e 2 Id(R) and z 2 N(R). Let n be the smallest

positive integer such that zn = 0. Then (1+z)(1�z+z2�z3+· · ·+(�1)n�1zn�1) =

1, that is, 1 + z 2 U(R). Thus, x = e+ z = (1 + z)� (1� e) is weakly clean in

R.

In this chapter, we first present some characterisations of weakly clean rings in

Section 2.2. In Section 2.3, we investigate some further properties of weakly clean

rings. Among the questions that will be addressed in this section is whether the

centre of a weakly clean ring is weakly clean. In Section 2.4, we define strongly

weakly clean rings and obtain some properties of these rings.

2.2 Some characterisations of weakly clean rings

We begin with an element-wise characterisation of weakly clean rings.

Proposition 2.2.1. Let R be a weakly clean ring. Then for any x 2 R there

exists e 2 Id(R) such that e 2 xR and 1� e 2 (1� x)R or 1� e 2 (1 + x)R.

Proof. Let x 2 R. Then x = u + f or x = u � f for some idempotent f and

unit u in R. Set e = u(1� f)u�1. Then e 2 Id(R). For x = u+ f , we have

(x� e)u = (u+ f � u(1� f)u�1)u = u2 + fu� u+ uf

= x2 � x.

Therefore,

e = x� (x2 � x)u�1 = x(1� (x� 1)u�1) 2 xR
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and

1� e = (1� x) + (x2 � x)u�1 = (1� x)(1� xu�1) 2 (1� x)R.

For x = u� f ,

(x+ e)u = (u� f + u(1� f)u�1)u = u2 � fu+ u� uf

= x2 + x.

We thus have

e = (x2 + x)u�1 � x = x((x+ 1)u�1 � 1) 2 xR

and

1� e = (1 + x)� (x2 + x)u�1 = (1 + x)(1� xu�1) 2 (1 + x)R.

We next show that the converse of Proposition 2.2.1 also holds if R is an

abelian ring. This result has in fact been proven in [22] but we provide a proof

here for the sake of completeness.

Theorem 2.2.1. Let R be an abelian ring. Then R is weakly clean if and only

if for any x 2 R there exists e 2 Id(R) such that e 2 xR and 1 � e 2 (1 � x)R

or 1� e 2 (1 + x)R.

Proof. ()): This follows by Proposition 2.2.1.

((): Let x 2 R and let e2 = e 2 xR with 1� e 2 (1� x)R or 1� e 2 (1 + x)R.

Then e = xa0 for some a0 2 R and we have a0xa0 = a0e = ea0 = xa0
2
. Let a = a0e.

Note that ae = (a0e)e = a0e = a and axa = (a0e)x(a0e) = (a0xa0)e = (xa0
2
)e =

(xa0)a0e = ea0e = a0e = a. Since (ax)2 = (axa)x = ax, (xa)2 = x(axa) = xa and

idempotents are central in R, then

ax = (axa)x = a(xa)x = (xa)ax = xa(ax) = x(ax)a = xa.
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Suppose first that 1� e 2 (1� x)R. Then 1� e = (1� x)b0 for some b0 2 R. By

letting b = b0(1�e), we have b(1�e) = b, 1�e = (1�x)b and b(1�x) = (1�x)b.

Note that a� b is the inverse of x� (1� e) because

(a� b)(x� (1� e)) = ax� a(1� e)� bx+ b(1� e)

= xa� a+ ae� bx+ b

= e� a+ a+ b(1� x)

= e+ (1� x)b

= e+ (1� e)

= 1

= (x� (1� e))(a� b).

Therefore, x = (x� (1� e)) + (1� e) is clean; hence, weakly clean.

Now suppose that 1 � e 2 (1 + x)R. Then 1 � e = (1 + x)c0 for some c0

in R. By letting c = c0(1 � e), we have c(1 � e) = c, 1 � e = (1 + x)c and

c(1 + x) = (1 + x)c. Note that a+ c is the inverse of x+ (1� e) because

(a+ c)(x+ (1� e)) = ax+ a(1� e) + cx+ c(1� e)

= xa+ a� ae+ cx+ c = e+ a� a+ c(1 + x)

= e+ (1 + x)c = e+ (1� e)

= 1

= (x+ (1� e))(a+ c).

It follows that x = (x+ (1� e))� (1� e) is weakly clean.

We now extend [20, Theorem 3.9] on clean elements to weakly clean elements.

Proposition 2.2.2. Let R be a ring and let x 2 R. Then the following state-

ments are equivalent:
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(a) x is weakly clean.

(b) There exist e 2 Id(R) and u 2 U(R) such that e = uxe and 1 � e =

u(x� 1)(1� e) or 1� e = u(x+ 1)(1� e).

(c) There exist e 2 Id(R) and u 2 U(R) such that e = exu and 1 � e =

(1� e)(x� 1)u or 1� e = (1� e)(x+ 1)u.

Proof. (a) ) (b): Let x be weakly clean in R. Then x = v + f or x = v � f

for some v 2 U(R) and f 2 Id(R). It follows that xf = vf + f or xf = vf � f .

If xf = vf + f , then (x � 1)f = vf . Hence, f = v�1(x � 1)f . Similarly, if

xf = vf � f , then (x+ 1)f = vf and thus, f = v�1(x+ 1)f . Let e = 1� f and

u = v�1. Then

1� e =

⇢
u(x� 1)(1� e) if x = v + f,
u(x+ 1)(1� e) if x = v � f.

(2.1)

For x = v + f , we have xf = vf + f and therefore, xf = vf + (x � v). It

follows that x(1� f) = v(1� f) and hence, 1� f = v�1x(1� f). Similarly, for

x = v � f , we have xf = vf � f and hence, xf = vf + (x � v). It follows that

x(1� f) = v(1� f). Thus, 1� f = v�1x(1� f), that is, e = uxe.

(b) ) (a): Suppose that there exist e 2 Id(R) and u 2 U(R) such that e = uxe

and 1� e = u(x� 1)(1� e) or 1� e = u(x+1)(1� e). If 1� e = u(x� 1)(1� e),

then we have 1 � e = ux � uxe � u + ue = ux � e � u + ue. It follows that

ux = 1+u�ue; hence, x = u�1+(1�e). Thus, x is clean (hence, weakly clean).

For 1� e = u(x+1)(1� e), we have 1� e = ux�uxe+u�ue = ux� e+u�ue.

It follows that ux = 1 � u + ue, hence, x = u�1 � (1 � e). Thus, x is weakly

clean.

(a) , (c): This may be proven using arguments similar to those in the proof of

(a) , (b).

20



Let R be a ring. In [63], Wei defined R to be weakly Abel if eR(1�e) ✓ J(R)

for each e 2 Id(R). It was also noted in [63] that a weakly Abel weakly exchange

ring is weakly clean. In [64], Wei defined the ring R to be generalized weakly

symmetric (GWS) if for any x, y, z 2 R, xyz = 0 implies yxz 2 N(R). By the

proof of Theorem 2.13(a) in [64], it is known that GWS rings are weakly Abel.

A GWS ring which is weakly exchange is therefore weakly clean. The ring R

is said to be 2-primal if N(R) = P (R) where P (R) denotes the prime radical

of R (see [5]). We say that R is NI if N(R) forms an ideal of R (see [42]). If

MN(R) ✓ M for each maximal left ideal M of R, then R is said to be left NQD

(see [65]). By [63, Proposition 2.5], 2-primal and NI-rings are left NQD.

By Theorem 2.2.1, [63, Theorem 2.2] and [63, Corollary 2.4], we have the

following corollary.

Corollary 2.2.1. Let R be a weakly exchange ring. If R satisfies any one of the

following, then R is weakly clean:

(a) R is abelian.

(b) R is GWS.

(c) R is weakly-abel.

(d) R is left quasi-duo.

(e) R is 2-primal.

(f) R is NI.

(g) R is left NQD.

We end this section with another characterisation of weakly clean elements.
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Proposition 2.2.3. Let R be a ring and let x 2 R. Then x is weakly clean in

R if and only if there exist an idempotent f 2 R and a unit v 2 R such that

vx = fv + 1 or vx+ fv = 1.

Proof. Let x 2 R be weakly clean. Then x = u + e or x = u � e for some

u 2 U(R) and e 2 Id(R) . Suppose that x = u+ e. Then by multiplying u�1 on

the left of both sides of the equation, we get u�1x = 1+ u�1e = 1+ (u�1eu)u�1.

Thus, vx = fv + 1 where v = u�1 2 U(R) and f = u�1eu 2 Id(R). Now

suppose that x = u� e. Then by multiplying u�1 on the left of both sides of the

equation, we get u�1x = 1� u�1e = 1� (u�1eu)u�1. Hence, vx+ fv = 1 where

v = u�1 2 U(R) and f = u�1eu 2 Id(R).

Conversely, suppose that there exist an idempotent f 2 Id(R) and a unit

v 2 U(R) such that vx = fv + 1 or vx + fv = 1. If vx = fv + 1, then we have

x = v�1+v�1fv, where v�1 is a unit and v�1fv is an idempotent. If vx+fv = 1,

then we have x = v�1 � v�1fv, where v�1 is a unit and v�1fv is an idempotent.

Hence, x is weakly clean.

2.3 Some properties of weakly clean rings

We have seen in Example 2.1.1 that a weakly clean ring is not necessarily clean.

However, a weakly clean ring is n-clean for n � 2 as shown in the following:

Proposition 2.3.1. A weakly clean ring is n-clean for n � 2.

Proof. Let R be a weakly clean ring and let x 2 R. Then x = u + e or

x = u � e for some u 2 U(R) and e 2 Id(R). If x = u + e, then we may write

x = u + (2e � 1) + (1 � e) which implies that x is 2-clean. If x = u � e, then
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x = u + (�1) + (1 � e) is also 2-clean. Since x is arbitrary, it follows that R is

2-clean and hence, by Proposition 1.1.2, R is n-clean for n � 2.

Let k be a positive integer. A ring R is said to be k-good if every element in

R can be written as a sum of k units in R (see [34]). In the following proposition

we show that weakly clean rings with 2 invertible are either 2-good or 3-good.

Proposition 2.3.2. Let R be a ring in which 2 is invertible. Then R is weakly

clean if and only if for every element x 2 R, x = u + z or x = �2 + u � z for

some u, z 2 U(R) where z is a square root of 1.

Proof. Let R be weakly clean. Then for x 2 R, we have 2�1(x + 1) = v + e

or 2�1(x + 1) = v � e for some v 2 U(R) and e 2 Id(R). It follows that

x = 2v + (2e � 1) or x = 2v � 2e � 1 = 2v � 2 � (2e � 1). Let u = 2v and

z = 2e � 1. Then u, z 2 U(R) and z2 = 1, as required. Conversely, for x 2 R,

we have 2x � 1 = u + z or 2x � 1 = �2 + u � z for some u, z 2 U(R) with

z2 = 1. For 2x�1 = u+z, we have x = 2�1u+2�1(z+1), where (2�1(z+1))2 =

2�1(z+1) 2 Id(R) and 2�1u 2 U(R). Thus, x is clean (hence, weakly clean). For

2x�1 = �2+u�z, we have x = �1+2�1u+2�1(1�z) = 2�1u�(1�2�1(1�z))

where 2�1u 2 U(R). We note that (2�1(1 � z))2 = 2�1(1 � z) 2 Id(R), thus

1� 2�1(1� z) 2 Id(R). It follows that x is weakly clean.

For weakly clean rings where both 2 and 3 are invertible, we have the follow-

ing:

Proposition 2.3.3. Let R be a weakly clean ring with 2, 3 2 U(R). Then R is

2-good.

Proof. Let x 2 R. Then x+1
2 = u + e or x+1

2 = u � e for some unit u and

idempotent e 2 R. If x+1
2 = u + e, then x = 2u + (2e� 1) where (2e� 1)2 = 1.
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If x+1
2 = u� e, then x = 2u� (1+ 2e) where (1+ 2e)(1� 2

3e) = 1, that is, 1 + 2e

is a unit. In both cases, x is 2-good.

Proposition 2.3.4. Let R be a weakly clean ring with 2 2 U(R). Then R is

3-good.

Proof. Let x 2 R. Since R is weakly clean ring, we have x = u+ e or x = u� e

for some u 2 U(R) and e 2 Id(R). If x = u + e, then we may also write

x = u + (1 + e) + (�1) where 1 + e is a unit because (1 + e)(1 � 1
2e) = 1. If

x = u� e, then we have x = u+ (�(1 + e)) + 1 where �(1 + e) is a unit because

�(1 + e)(�1 + 1
2e) = 1. Thus, x is 3-good.

In [2, Theorem 1.9], Ahn and Anderson have shown that polynomial rings

are never weakly clean. In the same paper, it was also proven that power series

rings over commutative weakly clean rings are weakly clean. We next state two

more basic properties of weakly clean rings which have been proven by Ahn and

Anderson in [2].

Proposition 2.3.5. [2, Lemma 1.2] If R is weakly clean, then so is every ho-

momorphic image of R.

Proposition 2.3.6. [2, Theorem 1.7] Let {R
i

} be a family of commutative rings.

Then the direct product
Q

R
i

of rings is weakly clean if and only if each R
i

is

weakly clean and at most one is not a clean ring.

Let R be a ring and let I be an ideal of R with I ✓ J(R). It is known that R

is clean if and only if R/I is clean and idempotents can be lifted modulo I (see

[32]). It is natural to consider the corresponding lifting idempotent property for

weakly clean rings. We first note the following two propositions:
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Proposition 2.3.7. Let R be a ring, let x 2 R and let I be an ideal of R. The

following conditions are equivalent:

(a) If x2 � x 2 I and x = u + e for some u 2 U(R) and e 2 Id(R), then there

exists f 2 = f 2 Id(R) such that f � x 2 I.

(b) If x2 + x 2 I and x = u � e for some u 2 U(R) and e 2 Id(R), then there

exists f 2 = f 2 Id(R) such that f + x 2 I.

Proof. (a) ) (b): Assume (a). Let x 2 R such that x2 + x 2 I and x = u� e

for some u 2 U(R) and e 2 Id(R). Then (�x)2 � (�x) = x2 + x 2 I and

�x = (�u)+e. By the assumption (a), it follows that there exists f 2 = f 2 Id(R)

such that f � (�x) 2 I, that is, f + x 2 I. Thus, (b) holds.

(b) ) (a): Assume (b). Let x 2 R such that x2 � x 2 I and x = u+ e for some

u 2 U(R) and e 2 Id(R). Then (�x)2+(�x) = x2�x 2 I and (�x) = (�u)�e.

By the assumption (b), it follows that there exists f 2 = f 2 Id(R) such that

f + (�x) 2 I, that is, f � x 2 I. Thus, (a) holds.

By using arguments similar to those in Proposition 2.3.7, we also have the

following:

Proposition 2.3.8. Let R be a ring, let x 2 R and let I be an ideal of R. The

following conditions are equivalent:

(a) If x2 � x 2 I and x = u � e for some u 2 U(R) and e 2 Id(R), then there

exists f 2 = f 2 Id(R) such that f � x 2 I.

(b) If x2 + x 2 I and x = u + e for some u 2 U(R) and e 2 Id(R), then there

exists f 2 = f 2 Id(R) such that f + x 2 I.
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Now, for weakly clean rings we have the following:

Proposition 2.3.9. Let R be a weakly clean ring, let x 2 R and let I be an ideal

of R. If x2 � x 2 I and x = u+ e for some u 2 U(R) and e 2 Id(R), then there

exists f 2 = f 2 Id(R) such that x�f 2 I. Moreover, if x2+x 2 I and x = u�e

for some u 2 U(R) and e 2 Id(R), then there exists f 02 = f 0 2 Id(R) such that

x+ f 0 2 I.

Proof. For the first assertion, let f = u(1� e)u�1. Then f 2 = f and (x� f)u =

(x�u(1�e)u�1)u = eu+ue+u2�u = (u+e)2� (u+e) = x2�x 2 I. It follows

that x � f 2 I. The second assertion follows from the first and Proposition

2.3.7.

Proposition 2.3.10. Let R be a ring and let I be an ideal of R such that I ✓

J(R). Then R is weakly clean if and only if R/I is weakly clean and for any

x = u+ e 2 R such that x2 � x 2 I where u 2 U(R) and e 2 Id(R), there exists

f 2 = f 2 R such that x� f 2 I.

Proof. ()): Assume that R is weakly clean. Then so is R/I, being a ho-

momorphic image of R. Let x = u + e 2 R such that x2 � x 2 I where

u 2 U(R) and e 2 Id(R). By Proposition 2.3.9, we readily have that there exists

f 2 = f 2 Id(R) such that x� f 2 I.

((): For the converse, let x 2 R. Then x + I 2 R/I and since R/I is weakly

clean, we have that x+I = u+e+I or x+I = u�e+I for some u+I 2 U(R/I) and

e+I 2 Id(R/I). Now since e2�e 2 I and e = (2e�1)+(1�e) where 2e�1 2 U(R)

and 1�e 2 Id(R), it follows by the assumption that there exists f 2 = f 2 R such

that e�f 2 I. We thus have that (x�f)�u 2 I ✓ J(R) or (x+f)�u 2 I ✓ J(R),
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that is, x� f + J(R) 2 U(R/J(R)) or x+ f + J(R) 2 U(R/J(R)). Hence, x� f

or x+f is a unit in R. It follows that x = v+f or x = v�f for some v 2 U(R).

Thus, x is weakly clean.

In [58], it was shown that corners of clean rings need not be clean. We now

consider corners of weakly clean rings. It is clear that if R is an abelian weakly

clean ring, then so is eRe for any e 2 Id(R). On the other hand, being weakly

clean in a corner of the ring R implies being weakly clean in R, as shown in the

following:

Proposition 2.3.11. Let R be a ring and let e 2 Id(R). If x 2 eRe is weakly

clean in eRe, then x 2 eRe is weakly clean in R.

Proof. Suppose that x 2 eRe is weakly clean in eRe. Then x = v + f or

x = v � f , where f 2 = f 2 eRe and v 2 eRe such that vw = e = wv for

some w 2 eRe. For x = v + f , let u = v � (1 � e). Then u is a unit in R

with u�1 = w � (1 � e). Hence, x � u = x � (v � (1 � e)) = f + (1 � e), an

idempotent in R. For x = v � f , let u = v + (1� e). Then u is a unit in R with

u�1 = w+(1�e). Hence, x�u = x�(v+(1�e)) = �f�(1�e) = �(f+(1�e)),

where f + (1� e) is an idempotent in R. Thus, x is weakly clean in R.

By Proposition 2.3.11 and the fact that corners of abelian weakly clean rings

are weakly clean, we have the following:

Corollary 2.3.1. Let R be an abelian ring and let e 2 Id(R). Then x 2 eRe is

weakly clean in R if and only if x 2 eRe is weakly clean in eRe.

We next investigate some conditions for a weakly clean ring to be clean. First

we state the following result by Danchev [26, Proposition 2.6].
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Proposition 2.3.12. [26, Proposition 2.6] Suppose that R is a ring with 2 2

J(R). Then R is weakly clean if and only if R is clean.

Proposition 2.3.13. Let R be a weakly clean ring and let M and N be a pair of

distinct maximal right ideals of R. If 2 2 M or N , then there is an idempotent

in exactly one of M or N .

Proof. Without loss of generality, we assume that 2 2 N . Let a 2 M \N . Then

N+aR = R and hence, 1�ax 2 N for some x 2 R. Let r = ax. Then 1�r 2 N

and r 2 M \ N . Since 2 2 N , we have (1 + r) + N = (1 � r) + N = N and

hence, 1 + r 2 N . Since R is weakly clean, there exist an idempotent e and a

unit u in R such that r = u + e or r = u � e. If e 2 M , then u = r � e 2 M

or u = r + e 2 M . It follows that M = R; a contradiction. Thus e /2 M . If

e /2 N , then 1 � e 2 N and hence, u + N = r � e + N = r � 1 + N = N or

u+N = r+e+N = r+1+N = N . But this implies that u 2 N ; a contradiction.

Thus, we have that e is an idempotent belonging to N only.

By Proposition 2.3.12 (or Proposition 2.3.13) and the fact that being clean is

equivalent to being topologically boolean in commutative rings, we readily have

the following:

Proposition 2.3.14. Let R be a commutative ring with char R = 2. The fol-

lowing are equivalent:

(a) R is clean.

(b) R is weakly clean.

(c) R is topologically boolean.
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Corollary 2.3.2. Let R be a weakly clean ring such that R has a maximal right

ideal M with 2 2 M . If R has no nontrivial idempotents, then R is clean.

Proof. Suppose that R has another maximal right ideal M 0. By Proposition

2.3.13, there exists e2 = e 2 R such that e 2 M , e /2 M 0. Since R has no

nontrivial idempotents, e = 0 or 1. If e = 0, then e 2 M 0; a contradiction. If

e = 1, then 1 2 M and hence, M = R; a contradiction. Therefore, R has exactly

one maximal right ideal which implies that R is local; hence clean.

Is the centre of a weakly clean ring also weakly clean? The corresponding

question for clean rings has been raised in a survey paper by Nicholson and

Zhou [54] and answered in the negative in [7, Proposition 2.5]. In the following

we investigate some conditions under which the centre of a weakly clean ring is

weakly clean and show that, in general, the centre of a weakly clean ring is not

necessarily weakly clean.

First we note some of the obvious. A subring of a weakly clean ring need not

be weakly clean. For example, the ring of rational numbers Q is clean (hence,

weakly clean) but the ring of integers Z which is a subring of Q is not weakly

clean. A proper ideal I of a weakly clean ring R is never weakly clean; otherwise,

I would contain a unit which contradicts the fact that I is proper.

We first consider some conditions under which the centre of a weakly clean

ring is weakly clean. The next four lemmas are well-known, but we give a proof

here for the sake of completeness.

Lemma 2.3.1. Let R be a ring and let e 2 Id(R). Suppose that ex = 0 if and

only if xe = 0 for all x 2 R. Then e 2 Z(R).

Proof. Let x 2 R. Note that e(x�ex) = 0 and (x�xe)e = 0. By the hypothesis,
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(x� ex)e = 0 and e(x� xe) = 0. Hence, xe = exe = ex. Thus, e 2 Z(R).

An element x 2 R is said to be anti-commutative if xy = �yx for all y 2 R.

Lemma 2.3.2. Let R be a ring and let e be an anti-commutative idempotent in

R. Then e 2 Z(R).

Proof. Since e 2 Id(R) is anti-commutative, we have ex = �xe for any x 2 R.

In particular, if ex = 0, then xe = �ex = 0 and vice versa. It follows by Lemma

2.3.1 that e 2 Z(R).

Lemma 2.3.3. Let R be a ring. If N(R) ✓ Z(R), then R is abelian.

Proof. Let e be an idempotent of R. Then for any x 2 R,

(ex� exe)2 = exex� exexe� exe(ex) + (exe)(exe) = 0,

hence ex�exe 2 N(R). SinceN(R) ✓ Z(R), we have e(ex�exe) = (ex�exe)e =

0, that is, ex = exe. Similarly, xe = exe for any x 2 R. Thus, ex = xe for any

x 2 R and hence, e 2 Z(R).

It is obvious that if the idempotents in a ring R are central and R is weakly

clean, then the centre Z(R) is also weakly clean. In the following proposition, we

obtain other conditions for the centre of a weakly clean ring to be weakly clean.

Proposition 2.3.15. Let R be a weakly clean ring. Then the centre Z(R) of R

is weakly clean if any one of the following conditions is satisfied:

(a) For all e 2 Id(R) and x 2 R, ex = 0 if and only if xe = 0.

(b) For all e 2 Id(R), e is anti-commutative.

(c) N(R) ✓ Z(R).
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(d) The idempotents in R commute with one another.

(e) R has no zero divisors.

Proof. (a) Assume that (a) holds. Then by Lemma 2.3.1, we know that the

idempotents in R are central. It thus follows that Z(R) is weakly clean.

(b) Assume that e is anti-commutative for all e 2 Id(R). Then it follows by

Lemma 2.3.2 that e 2 Z(R) for all e 2 Id(R). Hence, Z(R) is weakly clean.

(c) Assume that (c) holds. Then by Lemma 2.3.3 we know that the idempotents

in R are central. Thus, as in parts (a) and (b), we have that Z(R) is weakly

clean.

(d) Let e 2 Id(R). Note that for any x 2 R, we have (e + ex(1 � e))2 =

e2 + ex(1 � e) + ex(1 � e)e + ex(1 � e)ex(1 � e) = e + ex(1 � e) and similarly,

(e + (1 � e)xe)2 = e + (1 � e)xe. Thus, e + ex(1 � e) and e + (1 � e)xe are

idempotents for all x in R. Since idempotents in R commute with one another,

so e(e + ex(1 � e)) = (e + ex(1 � e))e and e(e + (1 � e)xe) = (e + (1 � e)xe)e.

Expanding these and simplifying, we have that ex = exe and xe = exe for any

x 2 R. Hence, ex = xe for all x 2 R which shows that every idempotent in R is

central. It thus follows that Z(R) is weakly clean.

(e) Suppose that R has no zero divisors. Then Id(R) = {0, 1} ✓ Z(R) and thus,

Z(R) is weakly clean.

Lemma 2.3.4. Let R be a ring. If U(R) ✓ Z(R), then N(R) ✓ Z(R) and R is

abelian.

Proof. We first show that N(R) ✓ Z(R). Let x 2 N(R). Then xn = 0 for some

n 2 N and we have

(1� x)(1 + x+ · · ·+ xn�1) = 1 = (1 + x+ · · ·+ xn�1)(1� x),
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that is, 1� x 2 U(R) ✓ Z(R). It follows that for any y 2 R, (1� x)y = y(1� x)

from which we have xy = yx. Hence, x 2 Z(R). By Lemma 2.3.3, it follows that

R is abelian.

Proposition 2.3.16. Any weakly clean ring with commuting units is commuta-

tive.

Proof. If R is a weakly clean ring with U(R) ✓ Z(R), then by Lemma 2.3.4,

Id(R) ✓ Z(R). Then since every x 2 R can be written as x = u+ e or x = u� e

for some u 2 U(R) and e 2 Id(R), it follows that R is commutative.

In [7, Theorem 2.1], Burgess and Raphael showed that every ring can be

embedded as an essential ring extension of a clean ring. By using an example in

[7], we will show that the centre of a weakly clean ring is not necessarily weakly

clean.

A ring R is a right (respectively, left) Kasch ring if every simple right (re-

spectively, left) R-module can be embedded in R
R

(respectively,
R

R). The ring

R is called a Kasch ring if it is both right and left Kasch.

Lemma 2.3.5. A ring which is its own complete ring of quotients is not neces-

sarily weakly clean.

Proof. Let S be a commutative ring which is not weakly clean and let M be

the direct sum of a copy of each simple S-module. Then the trivial extension

R = S�M is a Kasch ring ([40, Proposition 8.30]), hence, its own complete ring

of quotients. Since S is a homomorphic image of R and S is not weakly clean, it

follows that R is also not weakly clean.

For a ring R, let Q
max

(R) denote the complete ring of quotients of R.
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Proposition 2.3.17. The centre of a weakly clean ring is not necessarily weakly

clean.

Proof. By taking S = Z in Lemma 2.3.5, we have that the extension R =

S �M is a Kasch ring and therefore, Q
max

(R) = R is not weakly clean. By [7,

Proposition 2.4], Q
max

(R) is the centre of a clean (hence, weakly clean) ring. This

shows that the centre of a weakly clean ring is not necessarily weakly clean.

2.4 Strongly weakly clean rings

Let R be a ring. An element x 2 R is strongly weakly clean if x = u + e or

x = u� e for some u 2 U(R) and e 2 Id(R) such that ue = eu . The ring R is

said to be strongly weakly clean if all of its elements are strongly weakly clean.

Clearly, if x 2 R is strongly weakly clean, then either x or �x is strongly clean.

In [19], Chen used the notion of strongly exchange rings to show that corners

of strongly clean rings are strongly clean. Here, we give another (more elemen-

tary) proof of this result and use it to deduce that corners of strongly weakly

clean rings are strongly weakly clean.

Let R be a ring and let x 2 R. The left annihilator of x in R is ann
l

(x) =

{r 2 R|rx = 0} whereas the right annihilator is ann
r

(x) = {r 2 R|xr = 0}.

Proposition 2.4.1. Let R be a ring and let x 2 R be strongly clean. If x = u+e

for some u 2 U(R), e 2 Id(R) with ue = eu, then ann
l

(x) ✓ Re and ann
r

(x) ✓

eR.

Proof. Let r 2 ann
l

(x). Then 0 = rx = r(u+ e), that is, ru = �re and hence,

r = �reu�1 = �ru�1e 2 Re. Thus, ann
l

(x) ✓ Re. Similarly, it may be shown

that ann
r

(x) ✓ eR.
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The following lemma is also well-known but we give a proof here for the sake

of completeness.

Lemma 2.4.1. Let R be a ring and let e 2 Id(R). Then ann
l

(1� e) = Re and

ann
r

(1� e) = eR.

Proof. Since e(1 � e) = 0 = (1 � e)e, the inclusions Re ✓ ann
l

(1 � e) and

eR ✓ ann
r

(1� e) clearly hold. For the reverse inclusion, if x 2 ann
l

(1� e), then

0 = x(1 � e), that is, x = xe 2 Re. Hence, ann
l

(1 � e) ✓ Re and the equality

ann
l

(1�e) = Re thus follows. Similarly, it may be shown that ann
r

(1�e) ✓ eR

and therefore, ann
r

(1� e) = eR.

Theorem 2.4.1. Let R be a ring and let e 2 Id(R). Then x 2 eRe is strongly

clean in R if and only if x 2 eRe is strongly clean in eRe.

Proof. ((): This follows readily by [51, Proposition 3].

()): Let x 2 eRe be strongly clean in R. Then x = u + f for some u 2 U(R)

and f 2 Id(R) such that uf = fu. Since x 2 eRe, it is clear that (1� e)x = 0 =

x(1�e), that is, 1�e 2 ann
l

(x)\ann
r

(x). By Proposition 2.4.1 and Lemma 2.4.1,

we have that ann
l

(x) ✓ Rf = ann
l

(1 � f) and ann
r

(x) ✓ fR = ann
r

(1 � f).

Thus, 1�e 2 ann
l

(1�f)\ann
r

(1�f) and hence, (1�e)(1�f) = 0 = (1�f)(1�e),

that is, ef = fe. Then since (1� e)x = 0 = x(1� e) and x = u+ f , we also have

that eu = ue. Note that x = exe = eue + efe where eue 2 U(eRe), (efe)2 =

(ef)2 = ef = efe 2 Id(eRe) and (eue)(efe) = eufe = efue = (efe)(eue). Thus

x is strongly clean in eRe.

An immediate consequence of Theorem 2.4.1 is that corner rings of strongly

clean rings are strongly clean. Other than Chen [19], this fact on strongly clean
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rings has in fact been proven earlier by Sánchez Campos in her unpublished

manuscript [55] (see also [71]). We also have the following corollary:

Corollary 2.4.1. Let R be a strongly weakly clean ring. Then so is eRe for any

e 2 Id(R).

Proof. Let x 2 eRe. Since R is strongly weakly clean, we have that either x or

�x is strongly clean in R. By Theorem 2.4.1, either x or �x is strongly clean in

eRe. It follows that x is strongly weakly clean in eRe.

Remark. There exists a ring R with x 2 R and e 2 Id(R) such that x is strongly

weakly clean in R but exe is not strongly weakly clean in eRe. An example is

given as follows:

Example 2.4.1. Let R = M2(Z), the ring of 2 ⇥ 2 matrices over Z. Let x =
✓
2 3
1 3

◆
2 R and let e =

✓
1 1
0 0

◆
2 Id(R). Then x =

✓
1 3
1 2

◆
+

✓
1 0
0 1

◆
where

✓
1 3
1 2

◆
2 U(R) with

✓
1 3
1 2

◆�1

=

✓
�2 3
1 �1

◆
. It follows that x is strongly

clean (hence, strongly weakly clean) in R. Note that eRe =

⇢✓
c c
0 0

◆
| c 2 Z

�
.

Consider the ring isomorphism eRe ⇠= Z with

✓
c c
0 0

◆
7�! c. Since U(Z) =

{�1, 1} and Id(Z) = {0, 1}, it is easy to check that 3 is not strongly weakly

clean in Z. It follows that exe =
✓
3 3
0 0

◆
is not strongly weakly clean in eRe.

Proposition 2.4.2. Let R be a ring in which 2 is invertible. Then R is strongly

weakly clean if and only if for every element x 2 R, x = u+ z or x = �2+u� z

for some u, z 2 U(R) where z is a square root of 1 such that uz = zu.

Proof. Let R be strongly weakly clean. Then for x 2 R, we have 2�1(x + 1) =

v + e or 2�1(x + 1) = v � e for some v 2 U(R), e 2 Id(R) with ve = ev.

It follows that x = 2v + (2e � 1) or x = 2v � 2e � 1 = �2 + 2v � (2e � 1).
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Let u = 2v and z = 2e � 1. Then u, z 2 U(R), z2 = 1 and uz = zu, as

required. Conversely, for x 2 R, we have 2x� 1 = u+ z or 2x� 1 = �2 + u� z

for some u, z 2 U(R) with z2 = 1 and uz = zu. For 2x � 1 = u + z, we have

x = 2�1u+2�1(z+1), where (2�1(z+1))2 = 2�1(z+1) 2 Id(R) and 2�1u 2 U(R).

Since uz = zu, it follows that (2�1u)(2�1(z+1)) = (2�1(z+1))(2�1u). Thus, x is

strongly clean (hence, strongly weakly clean). For 2x� 1 = �2+ u� z, we have

x = �1 + 2�1u+ 2�1(1� z) = 2�1u� (1� 2�1(1� z)) where 2�1u 2 U(R). We

note that (2�1(1� z))2 = 2�1(1� z) 2 Id(R), thus 1�2�1(1� z) 2 Id(R). Since

uz = zu, we therefore have that (2�1u)(1� 2�1(1� z)) = (1� 2�1(1� z))(2�1u).

It follows that x is strongly weakly clean.

In [51], Nicholson asked whether every semiperfect ring is strongly clean and

whether the matrix ring of a strongly clean ring is strongly clean. Wang and

Chen (in [60]) answered both questions in the negative. It is natural to ask

whether every semiperfect ring is strongly weakly clean and whether the matrix

ring of a strongly weakly clean ring is strongly weakly clean. To answer these,

we use the same example as in [60, Example 1].

Example 2.4.2. Let R = {m/n 2 Q | n is odd }. Then M2(R) is a semiperfect

ring but it is not strongly weakly clean. Indeed, since R is a commutative local

ring, it follows that R is semiperfect and strongly clean (hence, strongly weakly

clean). Since semiperfect rings are Morita invariant, we have that M2(R) is

semiperfect. By direct computation, all nontrivial idempotents in the matrix ring

M2(R) have the form

✓
a b
c 1� a

◆
, where a, b, c 2 R and bc = a� a2. Consider

✓
8 6
3 7

◆
2 M2(R). Note that

✓
8 6
3 7

◆
,

✓
7 6
3 6

◆
and

✓
9 6
3 8

◆
are not units in

M2(R). It follows that

✓
8 6
3 7

◆
±
✓
0 0
0 0

◆
/2 U(M2(R)) and

✓
8 6
3 7

◆
±
✓
1 0
0 1

◆
/2
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U(M2(R)). We can write

✓
8 6
3 7

◆
=

✓
8� a 6� b
3� c 6 + a

◆
+

✓
a b
c 1� a

◆

or
✓
8 6
3 7

◆
=

✓
8 + a 6 + b
3 + c 8� a

◆
�
✓
a b
c 1� a

◆

where a, b, c 2 R and bc = a� a2. We first consider

✓
8 6
3 7

◆
=

✓
8 + a 6 + b
3 + c 8� a

◆
�
✓
a b
c 1� a

◆
.

Suppose that

✓
8 + a 6 + b
3 + c 8� a

◆✓
a b
c 1� a

◆
=

✓
a b
c 1� a

◆✓
8 + a 6 + b
3 + c 8� a

◆
.

Then

✓
(8 + a)a+ (6 + b)c (8 + a)b+ (6 + b)(1� a)
(3 + c)a+ (8� a)c (3 + c)b+ (8� a)(1� a)

◆

=

✓
a(8 + a) + b(3 + c) a(6 + b) + b(8� a)

c(8 + a) + (1� a)(3 + c) c(6 + b) + (1� a)(8� a)

◆
.

By comparing the (1, 1)-entry and the (2, 1)-entry on both sides, we obtain b = 2c

and 6a = 3 + c, respectively. By substituting, b = 2c and 6a = 3 + c into the

equation bc = a� a2, we have 73a2 � 73a+ 18 = 0 which has no solutions in R.

By using similar arguments for the case

✓
8 6
3 7

◆
=

✓
8� a 6� b
3� c 6 + a

◆
+

✓
a b
c 1� a

◆
,

we will obtain the same equation 73a2 � 73a+ 18 = 0 which has no solutions in

R. Hence, M2(R) is not strongly weakly clean.

A ring R is said to be uniquely p-semipotent if every non-trivial principal right

ideal I of R contains a unique non-zero idempotent (see [35]). Equivalently, a
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ring R is said to be uniquely p-semipotent if for every non-zero and non-right

invertible a 2 R, there exists a unique non-zero idempotent e 2 R such that

e 2 aR. We next extend Proposition 7 in [35] on strongly clean rings to strongly

weakly clean rings.

Proposition 2.4.3. Let R be a uniquely p-semipotent, strongly weakly clean ring

and let xR be a non-trivial principal right ideal of R where x = u + (1 � e) or

x = u � (1 � e) with 0 6= e 2 Id(R) and u 2 U(R) as a strongly weakly clean

expression of x. Then x is a (von Neumann) regular element of R.

Proof. Since x has a strongly weakly clean expression of the form x = u+(1�e)

or x = u� (1� e) where 0 6= e 2 Id(R) and u 2 U(R), it follows that xe = ue =

eu = ex. Hence, xeu�1 = e and therefore,

e 2 xR. (2.2)

Next we need to show that x 2 eR. It is clear that

x(1� e)R ✓ xR. (2.3)

We show that x(1�e) = 0. Suppose to the contrary that x(1�e) 6= 0. It is clear

that x(1� e)R is a non-trivial principal right ideal of R where e 6= 0. Since R is

uniquely p-semipotent, so x(1 � e)R contains a unique non-zero idempotent f .

But by (2.2) and (2.3), we have that f = e and therefore e = x(1� e)r for some

r 2 R. Since xe = ex, we then have that e = e2 = ex(1� e)r = xe(1� e)r = 0;

a contradiction. Therefore, x(1� e) = 0 and hence,

x = xe = ex. (2.4)

Let s = eu�1. We have shown above that e = xs. Then by (2.4), we have that

xsx = ex = x. Hence, x is a regular element of R.
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Remarks. In a search of the literature, we recently came across a paper on

very clean rings by Chen, Ungor and Halicioglu [15]. In the paper, the authors

defined an element a in the ring R to be very clean provided that there exists an

idempotent e 2 Id(R) such that ae = ea and either a � e or a + e is invertible.

The ring R is said to be very clean in case every element in R is very clean.

This definition of very clean rings clearly coincides with that of strongly weakly

clean rings in this section. The results in this section are however di↵erent from

those in [15]. The purpose of [15] was to explore very clean matrices over local

rings. As a consequence of the results in [15], we have several concrete examples

of strongly weakly clean rings which we list below.

Examples of strongly weakly clean rings:

(a) Let R be a commutative ring with exactly two maximal ideals and suppose

that 1/2 2 R. Then R is strongly weakly clean (by [15, Lemma 2.3]).

(b) Let p, q 6= 2 be prime numbers. If (p, q) = 1, then the ring Z(p) \ Z(q) is

strongly weakly clean but not strongly clean (by [15, Lemma 2.4]).

(c) The 2 ⇥ 2 upper triangular matrix ring over Z(3) \ Z(5) is strongly weakly

clean but not strongly clean (by [15, Theorem 2.5]).
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Chapter 3

Uniquely Weakly Clean Rings

3.1 Introduction

Let R be a ring. We say that a weakly clean element x 2 R is uniquely weakly

clean if the following hold:

(a) If x = u + e for some u 2 U(R) and e 2 Id(R), then this representation is

unique.

(b) If x = u � e for some u 2 U(R) and e 2 Id(R), then this representation is

unique.

In other words, x 2 R is not uniquely weakly clean if x = u + e = v + f

for some distinct units u, v 2 R and some distinct idempotents e, f 2 R or if

x = u�e = v�f for some distinct units u, v 2 R and some distinct idempotents

e, f 2 R. For example, the ring R = Z(3) \Z(5) is weakly clean but not uniquely

weakly clean. Indeed, the element 7
4 2 R can be written as 7

4 = 11
4 � 1 = 7

4 � 0

where 11
4 ,

7
4 are units in R. The ring R is said to be uniquely weakly clean if all

of its elements are uniquely weakly clean. Uniquely weakly clean rings do exist.

For example, every Boolean ring is uniquely weakly clean.

In this chapter, we obtain some properties and characterisations of uniquely

weakly clean rings in Sections 3.2 and 3.3, respectively. In Section 3.4, we extend
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some known results on uniquely clean group rings to uniquely weakly clean group

rings.

3.2 Some properties of uniquely weakly clean

rings

We begin with a result which shows that uniquely weakly clean elements are not

obscure and can be found easily in non-reduced commutative rings.

Proposition 3.2.1. Every central nilpotent element in a ring is uniquely weakly

clean.

Proof. LetR be a ring and let x be a central nilpotent element inR. Then xn = 0

for some positive integer n. It follows that �(x� 1)(xn�1 + xn�2 + · · ·+ 1) = 1

and (x + 1)(xn�1 � xn�2 + xn�3 � · · · + (�1)n�2x + (�1)n�1) = (�1)n�1. That

is, x� 1 and x+1 are units in R. Then since x = (x� 1)+ 1 = (x+1)� 1, so x

is weakly clean. Now suppose that x = (x� 1) + 1 = u+ e where u 2 U(R) and

e 2 Id(R). Since x is central, xu = ux and we thus have eu = ue. Then

0 = xn = (u+ e)n

= un +

✓
n

1

◆
eun�1 + · · ·+

✓
n

n� 1

◆
en�1u+ en.

Hence, un = er for some r 2 R. It follows that eun = e2r = er = un, that is,

(1 � e)un = 0. Since u is a unit, so is un and hence, e = 1. We thus have that

x = (x� 1)+1 uniquely. Similarly, if x = (x+1)� 1 = u� e for some u 2 U(R)

and e 2 Id(R), then it may be shown that e = 1 and hence, x = (x + 1) � 1

uniquely.

We next show that uniquely weakly clean rings are abelian.
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Proposition 3.2.2. Every idempotent in a uniquely weakly clean ring is central.

Proof. Let R be a uniquely weakly clean ring and let e 2 Id(R). For any

r 2 R, we have that e + (er � ere) is an idempotent. Moreover, 1 + (er � ere)

and 1 � (er � ere) are units since they are inverses of one another. Note that

1 + [e + (er � ere)] = [1 + (er � ere)] + e. Since R is uniquely weakly clean,

the preceding equality implies that e + (er � ere) = e. It follows that er = ere.

Similarly, it may be shown that re = ere. Thus, er = re and hence, e is central

in R.

As a consequence of Proposition 3.2.2, we have the following:

Corollary 3.2.1. The centre of a uniquely weakly clean ring is uniquely weakly

clean.

Proposition 3.2.3. Every uniquely weakly clean ring is directly finite.

Proof. Let R be a ring and let a, b 2 R such that ab = 1. Then ba is an

idempotent (hence, central by Proposition 3.2.2). Thus ba = ba(ab) = a(ba)b =

1.

Proposition 3.2.4. Let R1, . . . , Rn

be rings. Then the direct product R =

Q
n

i=1 Ri

is uniquely weakly clean if and only if each R
i

is uniquely weakly clean.

Proof. ()): Assume that R =
Q

n

i=1 Ri

is uniquely weakly clean. Then each

R
i

, being a homomorphic image of R, is weakly clean (by Proposition 2.3.5).

Suppose that R
i

is not uniquely weakly clean for some i 2 {1, . . . , n}. Then

there exists x
i

2 R
i

such that x
i

= u
i1+e

i2 = u
i2+e

i2 or xi

= u
i1�e

i2 = u
i2�e

i2
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for some u
i1, ui2 2 U(R

i

) and e
i1, ei2 2 Id(R

i

) where u
i1 6= u

i2 and e
i1 6= e

i2. Let

r = (r1, . . . , rn) 2 R such that

r
k

=

⇢
1, if k 6= i,
x
i

, if k = i.

Then

r = (1, . . . , 1, x
i

, 1, . . . , 1)

= (1, . . . , 1, u
i1, 1, . . . , 1) + (0, . . . , 0, e

i1, 0, . . . , 0)

= (1, . . . , 1, u
i2, 1, . . . , 1) + (0, . . . , 0, e

i2, 0, . . . , 0)

or

r = (1, . . . , 1, x
i

, 1, . . . , 1)

= (1, . . . , 1, u
i1, 1, . . . , 1)� (0, . . . , 0, e

i1, 0, . . . , 0)

= (1, . . . , 1, u
i2, 1, . . . , 1)� (0, . . . , 0, e

i2, 0, . . . , 0),

which implies that r is not uniquely weakly clean; a contradiction.

((): Assume that R1, . . . , Rn

are uniquely weakly clean. Suppose that R =

Q
n

i=1 Ri

is not uniquely weakly clean. Then there exists x = (x1, . . . , xn

) 2 R

such that

x = (u11, . . . , u1n) + (e11, . . . , e1n)

= (u21, . . . , u2n) + (e21, . . . , e2n)

or

x = (u11, . . . , u1n)� (e11, . . . , e1n)

= (u21, . . . , u2n)� (e21, . . . , e2n)
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for some (u
i1, . . . , uin

) 2 U(R) and (e
i1, . . . , ein) 2 Id(R) (i = 1, 2) where

(u11, . . . , u1n) 6= (u21, . . . , u2n) and (e11, . . . , e1n) 6= (e21, . . . , e2n). This implies

that there exists some k 2 {1, . . . , n} such that x
k

is not uniquely weakly clean;

a contradiction. Hence, R must be uniquely weakly clean.

By Propositions 3.2.4 and 3.2.2, we obtain the following which tells us that

corners of uniquely weakly clean rings are uniquely weakly clean.

Corollary 3.2.2. Let R be a uniquely weakly clean ring and let e 2 Id(R). Then

eRe is uniquely weakly clean.

The next two results generalise Lemma 4.2 and Theorem 4.3, respectively, in

[1].

Lemma 3.2.1. Let R be an abelian ring. If e, f 2 Id(R) and e � f 2 J(R) or

e+ f 2 J(R), then e = f .

Proof. If e� f 2 J(R), then e(1� f) = (e� f)(1� f) 2 J(R). Similarly, if we

assume that e+f 2 J(R), then e(1�f) = (e+f)(1�f) 2 J(R). It is clear that

e(1�f) is an idempotent. Since J(R) has no non-zero idempotents, it follows that

e(1� f) = 0; hence, e = ef . Similarly, since (1� e)f = �(1� e)(e� f) 2 J(R)

or (1� e)f = (1� e)(e+ f) 2 J(R), we have that f = ef . Hence, e = f .

Theorem 3.2.1. Let R be a commutative ring with R/M ⇠= Z2 for each maximal

ideal M of R.

(a) If x 2 R has a representation in the form x = u + e where u 2 U(R) and

e 2 Id(R), then this representation is unique.

(b) If x 2 R has a representation in the form x = u � e where u 2 U(R) and

e 2 Id(R), then this representation is unique.
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Then a weakly clean ring R with R/M ⇠= Z2 for each maximal ideal M of R is a

uniquely weakly clean ring.

Proof. (a) Suppose that x = u1 + e1 = u2 + e2 for some u1, u2 2 U(R) and

e1, e2 2 Id(R). Let M be a maximal ideal of R. Then x + M 2 R/M and

x+M = u1 + e1 +M = u2 + e2 +M . Since R/M ⇠= Z2 and u1 +M,u2 +M are

units in R/M , so u1+M = u2+M . It follows that e1+M = e2+M and hence,

e1 � e2 2 M . Since M is arbitrary, we have that e1 � e2 2 J(R). It then follows

by Lemma 3.2.1 that e1 = e2. Thus, u1 = u2 and hence, the representation is

unique for x = u+ e.

(b) Suppose that x = u1�e1 = u2�e2 for some u1, u2 2 U(R) and e1, e2 2 Id(R).

Let M be a maximal ideal of R. Then x + M = u1 � e1 + M = u2 � e2 + M .

Since R/M ⇠= Z2 and u1+M,u2+M are units in R/M , so u1+M = u2+M . It

follows that e1 +M = e2 +M and hence, e1 � e2 2 M . Since M is arbitrary, we

have that e1 � e2 2 J(R). Then it follows by Lemma 3.2.1 that e1 = e2. Thus,

u1 = u2 and hence, the representation is unique for x = u� e.

A straightforward consequence of Theorem 3.2.1 is the following:

Corollary 3.2.3. A commutative weakly clean ring R with R/M ⇠= Z2 for each

maximal ideal M of R is uniquely weakly clean.

3.3 Some characterisations of uniquely weakly

clean rings

Let R be a ring and let V =
R

V
R

be an R-R-bimodule which is a general ring

(possibly with no unity) in which (vw)r = v(wr), (vr)w = v(rw) and (rv)w =

r(vw) hold for all v, w 2 V and r 2 R. Then the ideal extension I(R;V ) of R by
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V is defined to be the additive abelian group I(R;V ) = R�V with multiplication

(r, v)(s, w) = (rs, rw+ vs+ vw). Note that if S is a ring and S = R�A, where

R is a subring of S and A is an ideal of R, then S ⇠= I(R;A).

We next extend Proposition 7 in [53] to the following.

Proposition 3.3.1. An ideal extension S = I(R;V ) is uniquely weakly clean if

the following conditions are satisfied:

(a) R is uniquely weakly clean.

(b) If e 2 Id(R) then ev = ve for all v 2 V .

(c) If v 2 V then v + w + vw = 0 for some w 2 V .

Proof. Assume that (a), (b) and (c) are satisfied. Let s = (r, v) 2 S. Since R

is weakly clean, we may write r = u + e or r = u � e for some u 2 U(R) and

e 2 Id(R). Then s = (u, v) + (e, 0) or s = (u, v) � (e, 0), where (e, 0) 2 Id(S).

Next, we show that (u, v) 2 U(S). Since (0, V ) = {(0, v) | v 2 V } ✓ J(S) (by

(c)), we have that (1, u�1v) = (1, 0) + (0, u�1v) 2 U(S). It follows that (u, v) =

(u, 0)(1, u�1v) 2 U(S). Hence, s is weakly clean. Before proving uniqueness,

we first show that Id(S) = {(e, 0) | e 2 Id(R)}. Clearly, (e, 0) 2 Id(S) for

any e 2 Id(R). Now let (e, x) 2 Id(S). Then (e, x)2 = (e, x) which gives us

e2 = e and x = 2ex + x2 (by using (b)). Multiplying e and x on both sides

of x = 2ex + x2, we have ex + ex2 = 0 and x2 = 2ex2 + x3, respectively. By

substituting x2 = 2ex2 + x3 into x = 2ex + x2 and noting that ex + ex2 = 0,

we have x = x3. It follows that x2 is an idempotent in V . By using (c), we

have �x2 + y � x2y = 0 for some y 2 V . By taking w = �y, it follows that

x2+w = x2w. Multiplying the last equation by x2, we have that x4+x2w = x4w.
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Then since x2 is an idempotent in V , it follows from the last equation that x2 = 0.

Hence, x = x3 = 0.

Now for uniqueness, suppose that (u, v) + (e, 0) = (u0, v0) + (e0, 0) where

(u, v), (u0, v0) 2 U(S) and (e, 0), (e0, 0) 2 Id(S). Then u + e = u0 + e0 and

v = v0. Since R is uniquely weakly clean, we have u = u0 and e = e0. It follows

that (u, v) = (u0, v0) and (e, 0) = (e0, 0). Similarly, it may be shown that if

(u, v) � (e, 0) = (u0, v0) � (e0, 0) where (u, v), (u0, v0) 2 U(S) and (e, 0), (e0, 0) 2

Id(S), then (u, v) = (u0, v0) and (e, 0) = (e0, 0).

By Proposition 3.3.1, we are able to give a noncommutative example of a

uniquely weakly clean ring as follows:

Example 3.3.1. Let R be a uniquely weakly clean ring and let S = {(a
ij

) 2

UT3(R) | a11 = a22 = a33} where UT3(R) denotes the ring of 3 ⇥ 3 upper

triangular matrices over R. Then S is uniquely weakly clean and is noncommu-

tative. Indeed, by taking V = {(a
ij

) 2 UT3(R) | a11 = a22 = a33 = 0}, we have

S ⇠= I(R;V ). Since R is uniquely weakly clean, condition (a) in Proposition 3.3.1

holds. Condition (b) holds because idempotents in R are central (by Proposition

3.2.2), and the idempotents in S are diagonal matrices. Since V is an upper tri-

angular matrix with diagonal entries 0, it can be proven that I3�MVN 2 U(S)

for any M,N 2 S where I3 denotes the identity matrix in S. Thus, condition

(c) holds. By applying Proposition 3.3.1, S is uniquely weakly clean.

Let R be a ring and let ↵ : R ! R be a ring endomorphism. Let R[[x,↵]]

denote the ring of skew formal power series over R. That is, all formal power

series in x with coe�cients from R with multiplication defined by xr = ↵(r)x

for all r 2 R. In particular, R[[x]] = R[[x, 1
R

]] is the ring of formal power series
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over R.

Proposition 3.3.2. Let R be a ring and let ↵ : R ! R be a ring endomorphism.

Then R[[x,↵]] is uniquely weakly clean if and only if R is uniquely weakly clean

and e = ↵(e) for all e 2 Id(R).

Proof. ()): Note that R[[x,↵]] ⇠= I(R; (x)) where (x) is the ideal of R generated

by x. Thus if R[[x,↵]] is uniquely weakly clean, then it follows by Proposition

3.3.1 that R is uniquely weakly clean. Since ex = xe = ↵(e)x, we thus have that

e = ↵(e) for all e 2 Id(R).

((): Assume that R is uniquely weakly clean and e = ↵(e) for all e 2 Id(R).

Condition (a) in Proposition 3.3.1 then clearly holds. Condition (c) in Propo-

sition 3.3.1 holds because (x) ✓ J(R[[x,↵]]). From the assumption, we have

that for any e 2 Id(R), ↵k(e) = e for each k � 1. Since R is uniquely weakly

clean, it follows by Proposition 3.2.2 that e is central. Hence, (axk)e = a(xke) =

a(↵k(e)xk) = e(axk) for all a 2 R and k � 1. Therefore, ev = ve for all v 2 (x),

that is, condition (b) in Proposition 3.3.1 holds. We then have by Proposition

3.3.1 that R[[x,↵]] ⇠= I(R; (x)) is uniquely weakly clean.

By taking ↵ = 1
R

in Proposition 3.3.2, we have the following result.

Corollary 3.3.1. Let R be a ring. The formal power series ring R[[x]] is uniquely

weakly clean if and only if R is uniquely weakly clean.

3.4 Uniquely weakly clean group rings

In this section, we investigate conditions which are necessary for a group ring

to be uniquely weakly clean. For a positive integer k, let C
k

denote the cyclic

group of order k.
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Proposition 3.4.1. Let R be a ring and let G be a group. If RG contains

Z2C2n+1 as a subring, then RG is not uniquely weakly clean.

Proof. Let x be a generator of the cyclic group C2n+1. Then x+ x2 + · · ·+ x2n

is an idempotent in Z2C2n+1. In particular, if n = 1, we have that x + x2 is an

idempotent in Z2C3 and it is clear that x2 is a unit in Z2C3. Note that x2 in Z2C3

can be written as x2 = x+ (x+ x2) = x2 + 0. That is, x2 can be written as the

sum of a unit and an idempotent in two di↵erent ways. Thus, x is not uniquely

weakly clean and hence, Z2C3 is not uniquely weakly clean. Now suppose that

n � 2. Note that in Z2C2n+1,

(1 + x+ x2 + · · ·+ x2n�2)(x+ x2 + x4 + · · ·+ x2n) = 1

if n � 2 is even and

(1 + x+ x2 + · · ·+ x2n�2)(1 + x3 + x5 + · · ·+ x2n�1) = 1

if n � 3 is odd. Therefore, 1 + x + x2 + · · · + x2n�2 is a unit in Z2C2n+1 and

hence, so is x + x2 + x3 + · · · + x2n�1 = x(1 + x + x2 + · · · + x2n�2). Note that

x2n = (x + x2 + · · · + x2n�1) + (x + x2 + · · · + x2n�1 + x2n) = x2n + 0, that is,

x2n can be written as the sum of a unit and an idempotent in two di↵erent ways

in Z2C2n+1. Thus, x2n is not uniquely weakly clean and hence, Z2C2n+1 is not

uniquely weakly clean. It follows that RG would also not be uniquely weakly

clean if it contains Z2C2n+1 as a subring.

By Proposition 3.4.1 we see that Z2Cm

is not uniquely weakly clean when m

is divisible by some odd prime p. The same cannot be said when m is a power

of 2, as shown in the following:

49



Proposition 3.4.2. The group algebra Z2C2k is uniquely weakly clean for all

integer k � 0.

Proof. Let � : Z2C2k ! Z2 be the augmentation map. Then ↵ 2 U(Z2C2k) if

and only if �(↵) = 1. Indeed, the necessity part of this is clear. For the converse,

if �(↵) = 1, then 1 � ↵ 2 Ker � = �, the augmentation ideal of Z2C2k . Since

� = J(Z2C2k) by [24, Proposition 16 (iv)], it follows that 1� ↵ 2 J(Z2C2k) and

hence, ↵ 2 U(Z2C2k). Let x denote a generator of C2k . We thus have that

U(Z2C2k) = {↵ = a0 + a1x+ · · ·+ a2k�1x
2k�1 | a0, a1, . . . a2k�1 2 Z2, �(↵) = 1}.

Hence,

|U(Z2C2k)| =
✓
2k

1

◆
+

✓
2k

3

◆
+ · · ·+

✓
2k

2k � 1

◆
= 22

k�1.

Now let e 2 Id(Z2C2k), e 6= 1. Then �(e) = 0 and hence, e 2 � which is nil by [24,

Proposition 16 (ii)]. Thus e = 0 and we therefore have that Id(Z2C2k) = {0, 1}.

Note that 1 + u /2 U(Z2C2k) for any u 2 U(Z2C2k) because �(1 + u) = 0. Thus

U(Z2C2k) and {1 + u | u 2 U(Z2C2k)} are mutually disjoint. We thus have that

U(Z2C2k) + Id(Z2C2k) = Z2C2k which implies that Z2C2k is weakly clean. Since

|U(Z2C2k)||Id(Z2C2k)| = 22
k
= |Z2C2k |, it follows that Z2C2k must be uniquely

weakly clean.
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Chapter 4

Some Results on n-Weakly Clean
Rings

4.1 Introduction

Let R be a ring. An element x 2 R is said to be n-weakly clean if x = u1+ · · ·+

u
n

+ e or x = u1 + · · · + u
n

� e for some units u1, . . . , un

2 R and idempotent

e 2 R. In other words, the element x 2 R is n-weakly clean if either x or �x

is n-clean. The ring R is said to be n-weakly clean if all of its elements are

n-weakly clean. Clearly, n-clean rings are n-weakly clean and weakly clean rings

are 1-weakly clean.

In this chapter we extend some results on n-clean rings and weakly clean rings

to n-weakly clean rings. We first obtain some properties of n-weakly clean rings

in Section 4.2. In Section 4.3, we determine some conditions which are necessary

or su�cient for a group ring to be n-weakly clean. Finally, in Section 4.4, we

obtain some conditions for a matrix over a commutative ring to be n-weakly

clean.
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4.2 Some properties of n-weakly clean rings

We begin with the following result which shows that being weakly clean implies

being n-weakly clean for any positive integer n.

Proposition 4.2.1. Let R be a ring and let n be a positive integer. If x 2 R is

n-weakly clean, then x is (n+ 1)-weakly clean.

Proof. Let x 2 R be n-weakly clean. Then x or �x is n-clean in R. By

Proposition 1.1.2, x or �x is (n+ 1)-clean. Thus, x is (n+ 1)-weakly clean.

By Proposition 4.2.1 and by induction, we obtain the following analogue of

Proposition 1.1.2 for n-weakly clean rings.

Corollary 4.2.1. Let m,n be positive integers with n < m. If R is an n-weakly

clean ring, then R is m-weakly clean.

Recall that a ring R is called an (S, n)-ring if every element in R can be

written as a sum of no more than n units of R. Clearly, an (S, n)-ring is n-

weakly clean.

It is known that homomorphic images of n-clean rings are n-clean (see [67]).

For n-weakly clean rings we have the following:

Proposition 4.2.2. Let n be a positive integer. Then every homomorphic image

of an n-weakly clean ring is n-weakly clean.

Proof. LetR be an n-weakly clean ring and let � : R ! S be a ring epimorphism.

Let y 2 S. Then y = �(x) for some x 2 R. Since R is n-weakly clean, then

x = u1 + · · · + u
n

+ e or x = u1 + · · · + u
n

� e for some u1, . . . , un

2 U(R) and

e 2 Id(R). Since � is an epimorphism, we then have that �(u1), . . . ,�(un

) 2
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U(S), �(e) 2 Id(S) and y = �(x) = �(u1) + · · · + �(u
n

) + �(e) or y = �(x) =

�(u1) + · · · + �(u
n

) � �(e). That is, y is n-weakly clean in S. It follows that

�(R) = S is n-weakly clean.

We now consider direct products. For n-clean rings, we have the following:

Proposition 4.2.3. Let n be a positive integer. The direct product ring R =

Q
i2I Ri

is n-clean if and only if each R
i

is n-clean.

Proof. Suppose that R =
Q

i2I Ri

is an n-clean ring. Then each R
i

is a homo-

morphic image of R (via the natural projection ⇡
i

: R ! R
i

) and hence, each R
i

is

n-clean. Conversely, suppose that each R
i

is an n-clean ring. Let x = (x
i

) 2 R.

Then for each i, x
i

= u
i1 + · · · + u

in

+ e
i

for some u
i1, . . . , uin

2 U(R
i

) and

e
i

2 Id(R
i

). Thus, x = (x
i

) = (u
i1) + · · · + (u

in

) + (e
i

) with (u
ij

) 2 U(R) for

j = 1, . . . , n and (e
i

) 2 Id(R). Hence, x is n-clean.

For direct products involving n-weakly clean rings, we obtain the following:

Proposition 4.2.4. Let n be a positive integer. The direct product ring R =

Q
k2I Rk

is n-weakly clean if and only if each R
k

is n-weakly clean and at most

one R
k

is not an n-clean ring.

In order to prove Proposition 4.2.4, we first prove the following equivalence:

Proposition 4.2.5. Let R be a ring. Then the following conditions are equiva-

lent:

(a) R is an n-clean ring.

(b) Every element x 2 R has the form x = u1 + · · ·+ u
n

� e where u1, . . . , un

2

U(R) and e 2 Id(R).
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(c) Every element x 2 R has the form x = u1 + · · ·+ u
n

+ e where u1, . . . , un

2

U(R) [ {0} and e 2 Id(R).

(d) Every element x 2 R has the form x = u1 + · · ·+ u
n

� e where u1, . . . , un

2

U(R) [ {0} and e 2 Id(R).

Proof. (a) ) (b): Let x 2 R. Since R is n-clean, we have �x = v1+ · · ·+v
n

+ e

for some v1, . . . , vn 2 U(R) and e 2 Id(R). Hence, x = u1 + · · · + u
n

� e where

u
i

= �v
i

2 U(R) for i = 1, . . . , n.

(b) ) (a): Let x 2 R. Then �x = u1 + · · ·+ u
n

� e for some u1, . . . , un

2 U(R)

and e 2 Id(R). It follows that x = (�u1) + · · ·+ (�u
n

) + e which shows that x

is n-clean.

(c) , (d): This is similar to (a) , (b).

(a) ) (c): This is clear by the definition of n-clean.

(c) ) (a): Let x 2 R and suppose that x = u1 + u2 + · · · + u
n

+ e where

u
i

2 U(R) [ {0} and e 2 Id(R). If u
i

6= 0 for some i 2 {1, . . . , n}, then we have

by Proposition 1.1.2 that x is n-clean. If u1 = · · · = u
n

= 0, then x = e and since

e = �(1�2e)+ (1� e) where �(1�2e) 2 U(R) and 1� e 2 Id(R), we have that

x is clean. It follows by Proposition 4.2.1 and induction that x is n-clean.

Proof of Proposition 4.2.4. ()): Suppose that R =
Q

k2I Rk

is n-weakly

clean. Then it follows that each R
k

, being a homomorphic image of R, is n-

weakly clean (by Proposition 4.2.2). Suppose that R
i

and R
j

(i 6= j) are not

n-clean. Since R
i

is not n-clean, then by Proposition 4.2.5, there exists x
i

2 R
i

such that x
i

6= u1 + · · · + u
n

� e for any u1, . . . , un

2 U(R) and any e 2 Id(R).

But since R
i

is n-weakly clean, we must have x
i

= u1i + · · · + u
ni + e

i

for

some u1i , . . . , uni 2 U(R
i

) and e
i

2 Id(R
i

). Now since R
j

is not n-clean but
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is n-weakly clean, there is an x
j

2 R
j

such that x
j

= u1j + · · · + u
nj � e

j

for

some u1j , . . . , unj 2 U(R
j

) and e
j

2 Id(R
j

) but x
j

6= u1 + · · · + u
n

+ e for any

u1, . . . , un

2 U(R
j

) and e 2 Id(R
j

). Let y = (y
k

) 2 R such that

y
k

=

(
x
k

, k 2 {i, j},
0, k /2 {i, j}.

Then y 6= u1 + · · · + u
n

± e for any u1, . . . , un

2 U(R) and e 2 Id(R), which

contradicts the assumption that R is n-weakly clean. Hence, we can only have

at most one R
i

which is not n-clean.

((): If every R
i

is n-clean, then it follows by Proposition 4.2.3 that R =
Q

k2I Rk

is also n-clean; hence, n-weakly clean. Suppose that R
i0 is n-weakly clean but not

n-clean and all the other R
i

’s are n-clean. Let x = (x
i

) 2 R =
Q

k2I Rk

. Then for

x
i0 2 R

i0 , we may write x
i0 = u1i0

+ · · ·+u
ni0

+ e
i0 or xi0 = u1i0

+ · · ·+u
ni0

� e
i0

where u1i0
, . . . , u

ni0
2 U(R

i0) and e
i0 2 Id(R

i0). If x
i0 = u1i0

+ · · · + u
ni0

+ e
i0 ,

then for i 6= i0, since R
i

is n-clean, we may let x
i

= u1i + · · · + u
ni + e

i

where

u1i , . . . , uni 2 U(R
i

) and e
i

2 Id(R
i

). On the other hand, if x
i0 = u1i0

+ · · · +

u
ni0

� e
i0 , then for i 6= i0, since Ri

is n-clean, it follows by Proposition 4.2.5 that

we may let x
i

= u1i + · · ·+ u
ni � e

i

where u1i , . . . , uni 2 U(R
i

) and e
i

2 Id(R
i

).

Hence, x = u1 + · · · + u
n

+ e or x = u1 + · · · + u
n

� e where u
i

= (u
ij) 2 U(R)

and e = (e
j

) 2 Id(R) (i = 1, . . . , n). Thus, x is n-weakly clean. This completes

the proof.

Polynomial rings over n-weakly clean rings are not necessarily n-weakly clean

(n � 1). For example, the ring Z2 is weakly clean but the polynomial ring Z2[x] is

not weakly clean. However, there are examples of polynomial rings over n-weakly

clean rings which are n-weakly clean for n � 2.
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Example 4.2.1. Let F be a field and let R = M2(F) Then R[x] ⇠= M2(F[x]). By

[34, Theorem 11], R[x] is a 2-good ring (hence, 2-weakly clean ring). However,

R[x] is not weakly clean.

Following [68], a ring R is said to satisfy (SI) if for all a, b 2 R, ab = 0 implies

that aRb = 0. We first note some lemmas from [68].

Lemma 4.2.1. [68, Lemma 3.5] If R is a ring satisfying (SI) and f(x) = a0 +

a1x + · · · + a
n

xn 2 R[x], then f(x) 2 U(R[x]) if and only if a0 2 U(R) and

a1, . . . , an 2 N(R).

Lemma 4.2.2. [68, Lemma 3.6] Let R be an abelian ring. Then Id(R[x]) =

Id(R).

Since a ring satisfying (SI) is abelian, we have the following by Lemma 4.2.2.

Corollary 4.2.2. If R is a ring satisfying (SI), then Id(R[x]) = Id(R).

Proposition 4.2.6. If R is a ring satisfying (SI), then the polynomial ring R[x]

is not n-weakly clean for any positive integer n.

Proof. Let R be a ring satisfying (SI). Then by Corollary 4.2.2 and Lemma

4.2.1, we have Id(R[x]) = Id(R) and U(R[x]) = {r0 + r1x + · · · + r
m

xm 2

R[x] | r0 2 U(R), r1, . . . , rm 2 N(R)}. If x 2 R[x] were n-weakly clean for

some positive integer n, then x =
P

n

i=1(ui

+ r
i1x + · · · + r

imix
mi) + f or x =

P
n

i=1(ui

+ r
i1x + · · · + r

imix
mi) � f , where f 2 Id(R), u1, . . . , un

2 U(R) and

each r
il

2 N(R) ✓ J(R) (1  l  m
i

, 1  i  n). By comparing the coe�cients

of x, it follows that 1 =
P

n

i=1 ril 2 J(R), which is a contradiction. Thus, R[x] is

not n-weakly clean for any positive integer n.
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A ring R is called left (respectively, right) duo if every left (respectively, right)

ideal of R is a two-sided ideal. By [44], we have that every left (right) duo ring

satisfies (SI). A ring R is called reversible if for all a, b 2 R, ab = 0 implies

ba = 0. In general, if R is a reversible ring, then R satisfies (SI) (see [43]). By

Proposition 4.2.6, we readily have the following corollary.

Corollary 4.2.3. Let R be a ring. If R is left (right) duo or reversible, then the

polynomial ring R[x] is not n-weakly clean for any positive integer n.

Formal power series rings over commutative n-weakly clean rings are however

n-weakly clean, as shown in the following:

Proposition 4.2.7. Let R be a commutative ring and let n be a positive integer.

Then the formal power series ring R[[x]] is n-weakly clean if and only if R is

n-weakly clean.

Proof. Suppose that R[[x]] is n-weakly clean. Then it follows by the isomor-

phism R ⇠= R[[x]]/(x) and Proposition 4.2.2 that R is an n-weakly clean ring.

Conversely, suppose that R is n-weakly clean. Let y =
P1

i=0 rix
i 2 R[[x]]. Since

R is n-weakly clean, we have that r0 = u1+ · · ·+u
n

+ e or r0 = u1+ · · ·+u
n

� e,

where u1, . . . , un

2 U(R) and e 2 Id(R). Then y = e + (u1 + r1x + r2x
2 +

. . . ) + u2 + · · · + u
n

or y = �e + (u1 + r1x + r2x
2 + . . . ) + u2 + · · · + u

n

.

Note that e 2 Id(R) ✓ Id(R[[x]]), u1 + r1x + r2x
2 + · · · 2 U(R[[x]]) and

u
i

2 U(R) ✓ U(R[[x]]) (i = 2, . . . , n). Thus, R[[x]] is an n-weakly clean ring.

We next show that being n-weakly clean in a corner of the ring R implies

being n-weakly clean in R.
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Theorem 4.2.1. Let R be a ring and let e be an idempotent in R. For any

positive integer n, if x 2 eRe is n-weakly clean in eRe, then x is n-weakly clean

in R.

Proof. Suppose that x = v1 + · · · + v
n

+ f or x = v1 + · · · + v
n

� f , where

f 2 = f 2 eRe and v
i

2 eRe such that v
i

w
i

= e = w
i

v
i

for some w
i

2 eRe

(i = 1, . . . , n). For n even, let

u
i

=

(
v
i

+ (1� e), i = 1, . . . , n2 ,

v
i

� (1� e), i = n

2 + 1, . . . , n.

Then u1, . . . , un

are units in R with

u
i

�1 =

(
w

i

+ (1� e), i = 1, . . . , n2 ,

w
i

� (1� e), i = n

2 + 1, . . . , n.

Hence, x � (u1 + · · · + un
2
) � (un

2+1 + · · · + u
n

) = f or x � (u1 + · · · + un
2
) �

(un
2+1 + · · ·+ u

n

) = �f in R. That is, x is n-weakly clean in R.

For n odd and x = v1 + · · ·+ v
n

+ f , let

u
i

=

(
v
i

� (1� e), i = 1, . . . , n+1
2 ,

v
i

+ (1� e), i = n+3
2 , . . . , n.

Then u1, . . . , un

are units in R with

u
i

�1 =

(
w

i

� (1� e), i = 1, . . . , n+1
2 ,

w
i

+ (1� e), i = n+3
2 , . . . , n.

Hence, x�(u1+· · ·+un+1
2
)�(un+3

2
+· · ·+u

n

) = x�(v1+· · ·+v
n

)+1�e = f+(1�e),

an idempotent in R. For n odd and x = v1 + · · ·+ v
n

� f , let

u
i

=

(
v
i

+ (1� e), i = 1, . . . , n+1
2 ,

v
i

� (1� e), i = n+3
2 , . . . , n.

Then u1, . . . , un

are units in R with

u
i

�1 =

(
w

i

+ (1� e), i = 1, . . . , n+1
2 ,

w
i

� (1� e), i = n+3
2 , . . . , n.
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Hence, x� (u1 + · · ·+ un+1
2
)� (un+3

2
+ · · ·+ u

n

) = x� (v1 + · · ·+ v
n

)� (1� e) =

�f � (1� e) = �(f + (1� e)) , where f + (1� e) is an idempotent in R. This

shows that x is also n-weakly clean in R when n is odd. This completes the

proof.

As a consequence of Theorem 4.2.1, we show in the following that the product

of an n-weakly clean element and an idempotent in an abelian ring is also n-

weakly clean.

Proposition 4.2.8. Let R be an abelian ring and let n be a positive integer. Let

x 2 R and let e 2 Id(R). Then xe is n-weakly clean in R if x is n-weakly clean

in R.

Proof. If x is n-weakly clean in R, then x = u1+· · ·+u
n

+f or x = u1+· · ·+u
n

�f

for some u1, . . . , un

2 U(R) and f 2 Id(R). Then xe = u1e + · · · + u
n

e + fe

or xe = u1e + · · · + u
n

e � fe. Clearly, u1e, . . . , un

e are units in eRe and fe is

an idempotent in eRe. Hence, xe is n-weakly clean in eRe. It then follows by

Theorem 4.2.1 that xe is n-weakly clean in R.

By referring to Example 4.1 in [68], we next give an example to show that

corner rings of n-weakly clean rings are not necessarily n-weakly clean. The

example also shows that the converse of Theorem 4.2.1 is not necessarily true.

Example 4.2.2. (see [68, Example 4.1]). Let T = F[x], where F is a field. By

Corollary 4.2.3, T is not an n-weakly clean ring for any positive integer. Let

R = M2(T ). Then R is a 2-good ring by [34, Theorem 11] and hence, n-weakly

clean for n � 2. Now let e =

✓
1 0
0 0

◆
, a =

✓
↵ �
� �

◆
2 R. Then eae =

✓
↵ 0
0 0

◆
.

We thus see that eRe is isomorphic to the ring T and hence, eRe is not n-weakly

clean for any integer n � 2. This shows that for any integer n > 1, there exist an
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n-weakly clean ring R and an idempotent e 2 R such that eRe is not n-weakly

clean.

Finally, we see how lifting of idempotents modulo an ideal of a ring determines

whether the ring is n-weakly clean.

Proposition 4.2.9. Let R be a ring and let n be a positive integer. Let I be an

ideal of R such that I ✓ J(R). If R/I is n-weakly clean and idempotents can be

lifted modulo I, then R is n-weakly clean.

Proof. Let x 2 R. Then x̄ = x + I 2 R/I. Since R/I is n-weakly clean,

x̄ = ū1 + · · · + ū
n

+ ē or x̄ = ū1 + · · · + ū
n

� ē, where ū
i

= u
i

+ I 2 U(R/I)

for i = 1, . . . , n and ē = e + I 2 Id(R/I). Since idempotents can be lifted

modulo I, we may assume that e2 = e 2 R. Since ū
i

2 U(R/I), there exists

v̄
i

= v
i

+ I 2 U(R/I) such that ū
i

v̄
i

= 1 + I = v̄
i

ū
i

for i = 1, . . . , n. Therefore,

1 � u
i

v
i

, 1 � v
i

u
i

2 I ✓ J(R) for every i = 1, . . . , n. It follows that u
i

has a

right inverse and a left inverse in R for every i = 1, . . . , n. Thus, u
i

2 U(R) for

i = 1, . . . , n. We then have x = u1 + · · ·+ u
n

+ r+ e or x = u1 + · · ·+ u
n

+ s� e

for some r, s 2 I ✓ J(R). Since J(R) ✓ {a 2 R | a + b is a unit in R for every

unit b 2 R}, so u
n

+ r and u
n

+ s are units in R. It follows that x is n-weakly

clean.

A right (respectively, left) ideal of a ring is said to be a right (respectively,

left) nil ideal if each of its elements is nilpotent. We say that N is a nil ideal if it

is both a left and right nil ideal. It is well known that idempotents lift modulo

every nil ideal of a ring. Since every nil ideal of a ring R is contained in its

Jacobson radical, we thus have the following corollary of Proposition 4.2.9.
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Corollary 4.2.4. Let N be a nil ideal of a ring R. If R/N is n-weakly clean,

then R is n-weakly clean.

4.3 Some results on n-weakly clean group rings

We first consider some cases where a group ring is isomorphic (as a ring) to a

direct product of copies of the coe�cient ring.

Proposition 4.3.1. Let R be a ring and let 2 be a unit in R. Then R is n-clean

if and only if RC2 is n-weakly clean.

Proof. Let C2 = hx | x2 = 1i and define � : RC2 ! R ⇥ R by �(a + bx) =

(a+ b, a� b) where a, b 2 R. Then � is a ring homomorphism. Since 2 is a unit

in R, we have that � is bijective. Therefore, RC2
⇠= R ⇥ R. If R is n-clean, it

follows by Proposition 4.2.3 that RC2
⇠= R⇥R is n-clean; hence n-weakly clean.

Conversely, if RC2 is n-weakly clean, then it follows by Proposition 4.2.2 that

R⇥R is n-weakly clean. Therefore, R is n-clean by Proposition 4.2.4.

Proposition 4.3.2. Let R be a ring and let 2 be a unit in R. For any positive

integer n, R is n-clean if and only if RC2 is n-clean.

Proof. As in the proof of Proposition 4.3.1, it may be shown that RC2
⇠= R⇥R.

It then follows by Proposition 4.2.3 that R is n-clean if and only if RC2 is n-

clean.

By Propositions 4.3.1 and 4.3.2 we have the following:

Corollary 4.3.1. Let R be a ring and let 2 be a unit in R. Then for any positive

integer n, the following are equivalent:
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(a) R is n-clean.

(b) RC2 is n-weakly clean.

(c) RC2 is n-clean.

Corollary 4.3.1 may be extended as follows:

Proposition 4.3.3. Let R be a ring and let 2 be a unit in R. Then for any

positive integers k and n, the following are equivalent:

(a) R is n-clean.

(b) RC
(k)
2 is n-weakly clean.

(c) RC
(k)
2 is n-clean.

Proof. (a) ) (c): Assume (a). By the isomorphism RC
(i)
2

⇠= (RC
(i�1)
2 )C2 for

i = 1, 2, . . . and by induction, it su�ces to show that RC2 is n-clean. But this

follows readily by Corollary 4.3.1.

(c) ) (b): This is clear.

(b) ) (a): Assume (b). By the isomorphism RC
(i)
2

⇠= (RC
(i�1)
2 )C2, we have

that RC
(i�1)
2 is a homomorphic image of RC

(i)
2 for i = 1, 2, . . . . In particular,

RC2 = RC
(1)
2 is a homomorphic image of RC

(k)
2 . Since RC

(k)
2 is n-weakly clean,

so is RC2 by Proposition 4.2.2 and hence, by Corollary 4.3.1, R is n-clean.

Proposition 4.3.4. Let R be a ring and let 2 be a unit in R. Then M
n

(R) is

n-clean if and only if M
n

(RC2) is n-weakly clean.

Proof. Since 2 2 U(R), it follows from the proof of Proposition 4.3.1 that RC2
⇠=

R ⇥ R. Therefore, M
n

(RC2) ⇠= M
n

(R ⇥ R) ⇠= M
n

(R) ⇥ M
n

(R). Now suppose
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that M
n

(R) is n-clean. By Proposition 4.2.3, it follows that M
n

(R)⇥M
n

(R) is n-

clean and thus, so is M
n

(RC2). Hence, Mn

(RC2) is n-weakly clean. Conversely,

if M
n

(RC2) is n-weakly clean, then so is M
n

(R) ⇥M
n

(R) by Proposition 4.2.2.

It then follows by Proposition 4.2.4 that M
n

(R) is n-clean.

We next show that if a group ring is n-weakly clean locally, then it is n-weakly

clean.

Proposition 4.3.5. Let R be a ring and let G be a group. If RG is n-weakly

clean locally, then RG is n-weakly clean.

Proof. Let x 2 RG. Then x = x1g1 + · · · + x
n

g
n

for some x
i

2 R and g
i

2 G

(i = 1, . . . , n). Let S
x

be the support group of x. Then S
x

is finitely generated.

It follows by the hypothesis that RS
x

is n-weakly clean. Therefore, x 2 RS
x

is

n-weakly clean in RS
x

and hence, n-weakly clean in RG.

We now obtain some necessary conditions for a commutative group ring to

be n-weakly clean.

Theorem 4.3.1. Let R be a commutative ring and let G be an abelian group.

For any positive integer n, if RG is n-weakly clean, then R is n-weakly clean and

G is locally finite.

Proof. Since RG/� ⇠= R where � is the augmentation ideal of RG, it follows

readily by Proposition 4.2.2 that R is n-weakly clean. Suppose that G is not

locally finite. Then G is not torsion; hence, G/t(G) is nontrivial and torsion-free,

where t(G) is the torsion subgroup of G. Since R(G/t(G)) ⇠= RG/R (t(G)) is a

homomorphic image of RG and RG is n-weakly clean, it follows by Proposition

4.2.2 that R (G/t(G)) is n-weakly clean. We may therefore assume that G is
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torsion-free. If G has rank greater than 1, then G has a torsion-free quotient

G0 of rank 1. But since RG0 is also n-weakly clean, we can assume that G is of

rank 1. Thus, G is isomorphic to a subgroup of (Q,+). Since R is commutative,

then R/M is a field where M is a maximal ideal of R. Furthermore, (R/M)G is

n-weakly clean because (R/M)G ⇠= RG/MG is a homomorphic image of RG by

Proposition 4.2.2. Hence, we can assume that R is a field. Since G is torsion-free,

there exists an element g 2 G such that g�1 6= g. Now since g+ · · ·+ gn + g�1 +

· · ·+ g�n is n-weakly clean in RG, there exists a finitely generated subgroup G1

of G such that g 2 G1 and g + · · · + gn + g�1 + · · · + g�n is n-weakly clean in

RG1. From above, G1 is isomorphic to a finitely generated subgroup of (Q,+).

Since every finitely generated subgroup of (Q,+) is cyclic, so is G1, and we can

write G1 = hhi. Thus, g = hk, g�1 = h�k for some k 2 N. Note that there is a

natural isomorphism Rhhi ⇠= R[x, x�1] with hk + · · ·+ hnk + h�k + · · ·+ h�nk $

xk+ · · ·+xnk+x�k+ · · ·+x�nk. This implies that xk+ · · ·+xnk+x�k+ · · ·+x�nk

is n-weakly clean in R[x, x�1] which is impossible because Id(R[x, x�1]) ✓ R and

U(R[x, x�1]) ✓ {axi | 0 6= a 2 R, i 2 Z}. Hence, G must be locally finite.

We obtain a partial converse of Theorem 4.3.1 as follows:

Theorem 4.3.2. Let R be a commutative ring and let G be an abelian group.

For any positive integer n, if R is n-weakly clean and G is a locally finite p-group

with p nilpotent in R, then RG is n-weakly clean.

Proof. Since G is a locally finite p-group with p nilpotent in R, it follows by

[24, Proposition 16 (ii)] that �, the augmentation ideal of RG, is nil. Then

since RG is commutative, we have that � ✓ J(RG). Now since RG/� ⇠= R is

n-weakly clean and idempotents lift modulo �, Proposition 4.2.9 tells us that
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RG is n-weakly clean.

4.4 Some results on n-weakly clean matrices

We first show the following:

Proposition 4.4.1. Let R be a ring and let n be a positive integer. If a 2 R is

n-weakly clean, then for any b 2 R, A =

✓
a b
0 0

◆
is n-weakly clean in M2(R).

Proof. Since a is n-weakly clean, then a = u1+· · ·+u
n

+e or a = u1+· · ·+u
n

�e

for some u
i

2 U(R) for i = 1, . . . , n and e 2 Id(R). If a = u1+ · · ·+u
n

+ e, then

A =

✓
a b
0 0

◆

=

8
>>>>>>>>>>><

>>>>>>>>>>>:

 
u1 b

0 �1

!
+

 
u2 0

0 1

!
+ · · ·+

 
u
n

0

0 (�1)n

!
+

 
e 0

0 1

!
,

if n is odd,

 
u1 b

0 �1

!
+

 
u2 0

0 1

!
+ · · ·+

 
u
n

0

0 (�1)n

!
+

 
e 0

0 0

!
,

if n is even.

Note that

✓
u1 b
0 �1

◆
,

✓
u
i

0
0 (�1)i

◆
are invertible matrices with

✓
u1 b
0 �1

◆�1

=

✓
u�1
1 u�1

1 b
0 �1

◆

and
✓
u
i

0
0 (�1)i

◆�1

=

✓
u�1
i

0
0 (�1)i

◆
(i = 2, . . . , n).

It is clear that

✓
e 0
0 1

◆
and

✓
e 0
0 0

◆
are idempotents.
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If a = u1 + · · ·+ u
n

� e, then

A =

✓
a b
0 0

◆

=

8
>>>>>>>>>>><

>>>>>>>>>>>:

 
u1 b

0 1

!
+

 
u2 0

0 �1

!
+ · · ·+

 
u
n

0

0 (�1)n+1

!
�
 
e 0

0 1

!
,

if n is odd,

 
u1 b

0 1

!
+

 
u2 0

0 �1

!
+ · · ·+

 
u
n

0

0 (�1)n+1

!
�
 
e 0

0 0

!
,

if n is even.

Note that

✓
u1 b
0 1

◆
,

✓
u
i

0
0 (�1)i+1

◆
are invertible matrices with

✓
u1 b
0 1

◆�1

=

✓
u�1
1 �u�1

1 b
0 1

◆

and
✓
u
i

0
0 (�1)i+1

◆�1✓
u�1
i

0
0 (�1)i+1

◆
(i = 2, . . . , n).

As above,

✓
e 0
0 1

◆
,

✓
e 0
0 0

◆
are clearly idempotents. Thus A is n-weakly clean

in R.

Remark. Proposition 4.4.1 also holds if A =

✓
a 0
b 0

◆
.

In general, for a commutative ring R, in order for A 2 M
t

(R) to be m-weakly

clean, we show that it su�ces for all the entries in the main diagonal of A to be

n-weakly clean for some n < m.

Theorem 4.4.1. Let R be a commutative ring and let n � 1, t � 2 be integers.

If a11, . . . , att 2 R are n-weakly clean, then for any a
ij

2 R (i, j 2 {1, . . . , t},

i 6= j), the matrix A = (a
ij

) 2 M
t

(R) is m-weakly clean for all m � n+ 1.

Proof. For each i 2 {1, . . . , t}, since a
ii

is n-weakly clean, so we have a
ii

=

u
i1 + · · ·+ u

in + e
i

or a
ii

= u
i1 + · · ·+ u

in � e
i

for some u
i1 , . . . , uin 2 U(R) and
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e
i

2 Id(R). Let U1 = (a(1)
ij

), U2 = (a(2)
ij

) 2 M
t

(R) be defined as follows:

a
(1)
ij

=

8
<

:

a
ij

, if i < j
u
i1 , if i = j

0, if i > j
(i, j = 1, . . . , t).

a
(2)
ij

=

8
<

:

0, if i < j
u
i2 , if i = j

a
ij

, if i > j
(i, j = 1, . . . , t).

Let U3 = (a(3)
ij

), . . . , U
n

= (a(n)
ij

) 2 M
t

(R) be defined as follows:

a
(k)
ij

=

⇢
0, if i 6= j
u
ik
, if i = j

(k = 3, . . . , n; i, j = 1, . . . , t).

Now let L = {i 2 {1, . . . , t} | a
ii

is n-weakly clean but not n-clean} and let

U
n+1 = (a(n+1)

ij

) 2 M
t

(R) be defined as follows:

a
(n+1)
ij

=

8
<

:

0, if i 6= j
1� 2e

i

, if i = j, i 2 L
1, if i = j, i /2 L

(i, j = 1, . . . , t).

Note that U1, . . . , Un+1 are all invertible in M
t

(R) since their determinants are

units in R. Now let E = (e
ij

) 2 M
t

(R) be defined as follows:

e
ij

=

⇢
0, if i 6= j
1� e

i

, if i = j
(i, j = 1, . . . , t).

Then E2 = E and A = U1 + · · · + U
n+1 � E. Hence, A is (n + 1)-weakly clean

and by Proposition 4.2.1, A is m-weakly clean for all m � n+ 1.
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Chapter 5

Pseudo Weakly Clean Rings

5.1 Introduction

Let R be a ring. We say that an element x 2 R is pseudo weakly clean if there

exist an idempotent e and a unit u in R such that x � e � u 2 (1 � e)Rx or

x+ e� u 2 (1� e)Rx. The ring R is said to be pseudo weakly clean if all of its

elements are pseudo weakly clean.

Weakly clean rings are clearly pseudo weakly clean. However, a pseudo weakly

clean ring is not necessarily weakly clean, as will be shown in Section 5.2.

In Sections 5.3 and 5.4, we obtain some characterisations and properties of

pseudo weakly clean rings. In particular, we show that corner rings of pseudo

weakly clean rings are pseudo weakly clean. In the case R is an abelian ring, we

will show that pseudo weakly clean and weakly clean are equivalent conditions on

R. We also obtain a relation between unit regular rings and pseudo weakly clean

rings. Finally, in Section 5.5, we consider the pseudo weakly clean condition in

non-unital rings. We show that if I is a non-unital subring of a ring R and I is

pseudo weakly clean, then every x 2 I is pseudo weakly clean in R.
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5.2 An example

By using arguments similar to those in [58, Example 3.1], we obtain an example

of a ring which is pseudo weakly clean but not weakly clean.

Example 5.2.1. Let F be a field and let MN(F ) be the ring of all infinite

matrices over F with finite columns. As usual, a matrix in MN(F ) is denoted by

A = (a
ij

)
i,j

, where (a
ij

)
i

are columns and (a
ij

)
j

are rows in A. Let R = {A =

(a
ij

)
i,j

2 MN(F ) | there exists a positive integer n
A

such that a
ij

= a
i+1 j+1 for

every i � n
A

, j � 1}. That is, R consists of matrices of the form

0

BBBBB@

...
...

...
⇤ ⇤ ⇤ . . .

a1 a2 a3 . . .
a1 a2 a3 . . .

. . . . . . . . .

1

CCCCCA

where the first finitely many rows are arbitrary. Then R is a ring and following

[58, Example 3.1], every idempotent and every unit in R is upper triangular

(ignoring the first finitely many rows). It follows that matrices that are nonzero

below the main diagonal (ignoring the first finitely many rows) cannot be written

as a sum or a di↵erence of a unit and an idempotent in R. Therefore, R is not

weakly clean. To show that R is pseudo weakly clean, let A 2 R and suppose

first that A is upper triangular, ignoring the first finitely many rows. Then we

may write A as a block decomposition

A =

✓
A0 X
0 T

◆
,

where A0 is a finite matrix and T = (t
ij

) is an upper triangular matrix such

that t
ij

= t
i+1 j+1 for every i, j. By Han and Nicholson [32], the ring of finite

matrices over F is clean. Hence, we may write A0 = U0+E0 for some unit U0 and
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idempotent E0 in R. If the main diagonal of T is non-zero, then T is invertible

in R, and we may write

A =

✓
U0 X
0 T

◆
+

✓
E0 0
0 0

◆

where

✓
U0 X
0 T

◆
is invertible and

✓
E0 0
0 0

◆
is an idempotent in R. If the main

diagonal of T is zero, then T � 1 is invertible and we have

A =

✓
U0 X
0 T � 1

◆
+

✓
E0 0
0 1

◆

where

✓
U0 X
0 T � 1

◆
is invertible and

✓
E0 0
0 1

◆
is an idempotent in R. It follows

that A is clean (hence, pseudo weakly clean).

Now suppose that A is not an upper triangular matrix (ignoring the first

finitely many rows). We may then write A as a block decomposition,

A =

✓
A0 X
K T

◆

where A0 2 M
n

(F ) is a finite matrix and n is chosen large enough so that we

have n � n
A

. Since T = (t
ij

) satisfies t
ij

= t
i+1 j+1 for every i, j and T is not

strictly upper triangular, so T has a left inverse in R, say S. Then ST = 1

and we note that S may be chosen such that SK = 0. Similarly, since 1 � T is

not strictly upper triangular, we may find V 2 R such that V (1 � T ) = 1 and

V K = 0. Since A0 is clean (by [32]), we may write A0 = U0 + E0 where U0 is

invertible and E0 is an idempotent in R. Let

E =

✓
E0 E0XV
0 0

◆
, U =

✓
U0 XV
0 �1

◆
, Z =

✓
E0 �XV � E0XS
0 1 + S

◆
.

It can be shown that E 2 Id(R) and U 2 U(R) such that A � E � U =

(1� E)ZA 2 (1� E)RA. Hence, A is pseudo weakly clean.
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5.3 Some characterisations of pseudo weakly clean

rings

We first give an element-wise characterisation of pseudo weakly clean rings as

follows:

Proposition 5.3.1. Let R be a pseudo weakly clean ring. Then for any x 2 R,

there exists an idempotent g 2 R such that g 2 Rx and 1 � g 2 R(1 � x) or

1� g 2 R(1 + x).

Proof. Let x 2 R. Then x � e � u = (1 � e)rx or x + e � u = (1 � e)rx for

some e 2 Id(R), u 2 U(R) and r 2 R. Set g = 1 � u�1eu. Then g 2 Id(R). If

x � e � u = (1 � e)rx, then by multiplying u�1 on the left of both sides of the

equation, we obtain u�1x� u�1e� u�1rx+ u�1erx = 1. Hence,

g = 1� u�1eu = u�1x� u�1e� u�1rx+ u�1erx� u�1eu

= u�1(1� r)x+ u�1erx� u�1(e+ eu)

= u�1(1� r)x+ u�1erx� u�1ex (* e(x� e� u) = 0)

= u�1((1� r)� e(1� r))x

= u�1(1� e)(1� r)x 2 Rx.

Note that 1� g = 1� (1� u�1eu) = �u�1e+ u�1(e+ eu) = �u�1e+ u�1(ex) =

�u�1e(1�x) 2 R(1�x). Now, if x+e�u = (1�e)rx, then by multiplying u�1 on

the left of both sides of the equation, we obtain u�1x+u�1e�u�1rx+u�1erx = 1.
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Hence,

g = 1� u�1eu = u�1x+ u�1e� u�1rx+ u�1erx� u�1eu

= u�1x� u�1rx+ u�1erx+ u�1(e� eu)

= u�1(x� rx+ erx+ (�ex)) (* e(x+ e� u) = 0)

= u�1((1� r)� e(1� r))x

= u�1(1� e)(1� r)x 2 Rx.

We also note that 1�g = 1�(1�u�1eu) = u�1e�u�1(e�eu) = u�1e�u�1(�ex) =

u�1e(1 + x) 2 R(1 + x). This completes the proof.

Remark. Since a weakly clean ring is pseudo weakly clean, Proposition 5.3.1

tells us that the left analogue of Proposition 2.2.1 also holds, that is, a pseudo

weakly clean ring is left weakly exchange. In fact, by using the left analogue

of the arguments in the proof of Theorem 2.2.1, it may be shown that the left

analogue of Theorem 2.2.1 also holds. Thus, by combining Proposition 5.3.1 and

the left analogue of Theorem 2.2.1, we obtain the following:

Theorem 5.3.1. Let R be an abelian ring. Then R is weakly clean if and only

if R is pseudo weakly clean.

Remarks.

(a) By Proposition 5.3.1, we see that weakly clean rings are right and left weakly

exchange. It is however not known to us whether the weakly exchange

notion is left-right symmetric.

(b) By Theorem 5.3.1, we may deduce that a pseudo weakly clean ring is not

necessarily exchange. Indeed, by Theorem 5.3.1, an abelian ring which is
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pseudo weakly clean is weakly clean. However, by [22], an abelian weakly

clean ring is not necessarily exchange.

It is known by [8, Theorem 1] that a unit regular ring is clean (hence, pseudo

weakly clean). In the following, we show that the converse is true under a certain

additional condition.

Proposition 5.3.2. Let R be a ring. Then R is unit regular if and only if every

x 2 R takes one of the following forms:

(a) x = u + e + (1 � e)rx for some u 2 U(R), e 2 Id(R) and r 2 R such that

Rx \R(e+ (1� e)rx) = {0}.

(b) x = u � e � (1 � e)rx for some u 2 U(R), e 2 Id(R) and r 2 R such that

Rx \R(e+ (1� e)rx) = {0}.

Proof. ()): This follows readily by [8, Theorem 1].

((): Let x 2 R. Assume that (a) occurs. Then x = u+e+(1�e)rx for some u 2

U(R), e 2 Id(R) and r 2 R such that Rx\R(e+(1�e)rx) = {0}. Let f = 1�e.

Then x = u+ e+ frx and we have (e+ frx)u�1x = (e+ frx)u�1(u+ e+ frx) =

(1+ (e+ frx)u�1)(e+ frx) 2 R(e+ frx)\Rx = {0}. Thus, (e+ frx)u�1x = 0

and hence, (x � u)u�1x = 0. This gives us x = xu�1x. Now assume that (b)

occurs. Then x = u � e � (1 � e)rx for some u 2 U(R), e 2 Id(R) and r 2 R

such that Rx\R(e+(1� e)rx) = {0}. Let f = 1� e. Then x = u� e�frx and

we have (�e � frx)u�1x = (�e � frx)u�1(u � e � frx) = �(e + frx)u�1(u �

(e+ frx)) = (�1 + (e+ frx)u�1)(e+ frx) 2 R(e+ frx) \Rx = {0}. Thus, we

have �(e + frx)u�1x = 0 from which we get (x � u)u�1x = 0. It follows that

x = xu�1x. Hence, in both cases we have that x is unit regular. This completes

the proof.
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Theorem 5.3.2. Let R be a ring. Then the following conditions are equivalent:

(a) R is unit regular.

(b) Every x 2 R can be written as x = u + f or x = u� f for some u 2 U(R)

and f 2 Id(R) such that Rx \Rf = {0}.

(c) Every x 2 R can be written as x = u + e + (1 � e)rx for some u 2 U(R),

e 2 Id(R) and r 2 R such that Rx \ R(e + (1 � e)rx) = {0} or x =

u � e � (1 � e)rx for some u 2 U(R), e 2 Id(R) and r 2 R such that

Rx \R(e+ (1� e)rx) = {0}.

Proof. (a) , (b): This follows readily by [22, Theorem 2.2].

(a) , (c): This follows by Proposition 5.3.2.

We next show how a weakly clean matrix over a commutative ring is related

to a pseudo weakly clean element.

Proposition 5.3.3. Let R be a commutative ring and let a 2 R. Then the

matrix

✓
a 0
0 0

◆
is weakly clean in M2(R) if and only if a is pseudo weakly clean

in R.

Proof. Let A =

✓
a 0
0 0

◆
2 M2(R) be weakly clean. Then by Proposition

2.2.3, there exist E 2 Id(M2(R)) and U 2 U(M2(R)) such that UA = EU + I2

or UA + EU = I2 where I2 is the identity matrix

✓
1 0
0 1

◆
. By multiplying

I2 � E 2 M2(R) on the left of UA = EU + I2 and UA + EU = I2, we get

(I2 � E)UA = I2 � E. Since A =

✓
a 0
0 0

◆
, it follows that I2 � E 2 M2(R) is

an idempotent with zeros as the entries in the second column. Hence, I2 � E =
✓
e 0
x 0

◆
for some e 2 Id(R) and x 2 Re. Let f = 1 � e and let U =

✓
↵ �
� �

◆
.
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From the equation UA = EU + I2, we get

✓
↵ �
� �

◆✓
a 0
0 0

◆
=

✓
f 0
�x 1

◆✓
↵ �
� �

◆
+ I2 (5.1)

which gives us ↵a = f↵ + 1, f� = 0, �a = � � x↵ and � � x� + 1 = 0. Since U

is invertible, so is

✓
1 �
0 1

◆✓
1 0
�x 1

◆
U . Note that

✓
1 �
0 1

◆✓
1 0
�x 1

◆
U =

✓
1� �x �
�x 1

◆✓
↵ �
� �

◆

=

✓
↵ + �(� � x↵) � + �(� � x�)

� � x↵ � � x�

◆
. (5.2)

By using the relations obtained from (5.1), we reduce the matrix in (5.2) to
✓
↵ + ��a 0

�a �1

◆
which is invertible because

✓
1 �
0 1

◆✓
1 0
�x 1

◆
U is invertible.

It follows that ↵ + ��a is invertible in R. Let u = ↵ + ��a. Then substituting

↵ = u� ��a into the equation ↵a = f↵ + 1 obtained from (5.1), we get

ua� ��a2 = f(u� ��a) + 1 = fu+ 1

) u�1(ua� ��a2) = u�1(fu+ 1)

) a� u�1��a2 = u�1fu+ u�1

) a� u�1fu� u�1 = u�1��a2.

From the relation f� = 0 in (5.1), we have � = e�. We then obtain a�u�1fu�

u�1 = u�1��a2 = u�1e��a2 = u�1eu(u�1��)a2 = (1 � u�1fu)(u�1��)a2 2

(1� u�1fu)Ra, as desired.

Now consider the equation UA = �EU + I2. We have

✓
↵ �
� �

◆✓
a 0
0 0

◆
= �

✓
f 0
�x 1

◆✓
↵ �
� �

◆
+ I2 (5.3)

which gives us ↵a = �f↵ + 1, f� = 0, �a = x↵ � � and x� � � + 1 = 0. Since
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U is invertible, so is

✓
1 ��
0 1

◆✓
1 0
�x 1

◆
U . Note that

✓
1 ��
0 1

◆✓
1 0
�x 1

◆
U =

✓
1 + �x ��
�x 1

◆✓
↵ �
� �

◆

=

✓
↵ + �(x↵� �) � � �(� � x�)

� � x↵ � � x�

◆
. (5.4)

By using the relations obtained from (5.3), we reduce the matrix in (5.4) to
✓
↵ + ��a 0
��a 1

◆
which is invertible because

✓
1 ��
0 1

◆✓
1 0
�x 1

◆
U is invertible.

It follows that v = ↵ + ��a is invertible and by using arguments similar to

those above, it may be shown that a + v�1fv � v�1 = v�1��a2 = v�1e��a2 =

v�1ev(v�1��)a2 = (1 � v�1fv)(v�1��)a2 2 (1 � v�1fv)Ra, as desired. Hence,

the element a is pseudo weakly clean in R.

Conversely, suppose that a 2 R is pseudo weakly clean. Since R is com-

mutative (hence, abelian), it follows by Theorem 5.3.1 that a is weakly clean.

Thus, a = u + e or a = u � e for some u 2 U(R) and e 2 Id(R). Then

A =

✓
a 0
0 0

◆
=

✓
u 0
0 �1

◆
+

✓
e 0
0 1

◆
or A =

✓
a 0
0 0

◆
=

✓
u 0
0 1

◆
�
✓
e 0
0 1

◆
, that

is, A is weakly clean. This completes the proof.

5.4 Some properties of pseudo weakly clean rings

In this section we determine whether pseudo weakly clean rings have properties

similar to those of other related rings.

Proposition 5.4.1. Every homomorphic image of a pseudo weakly clean ring is

pseudo weakly clean.

Proof. Let R be a pseudo weakly clean ring and let � : R ! S be a ring

epimorphism. Let y 2 S. Then y = �(x) for some x 2 R. Since R is pseudo

weakly clean, we have x = u + e + (1 � e)rx or x = u � e + (1 � e)rx for some
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u 2 U(R), e 2 Id(R) and r 2 R. Since � is an epimorphism, we then have that

�(u) 2 U(S), �(e) 2 Id(S) and y = �(x) = �(u) + �(e) + �(1 � e)�(r)�(x) =

�(u) + �(e) + (1 � �(e))�(r)y or y = �(x) = �(u) � �(e) + �(1 � e)�(r)�(x) =

�(u)� �(e) + (1� �(e))�(r)y. That is, y is pseudo weakly clean in S. It follows

that �(R) = S is pseudo weakly clean.

In [59, Proposition 2.3], it has been shown that the direct product ring R =

Q
i2I Ri

is pseudo clean if and only if each R
i

is pseudo clean. For pseudo weakly

clean rings we show the following:

Proposition 5.4.2. The direct product ring R =
Q

k2I Rk

is pseudo weakly clean

if and only if each R
k

is pseudo weakly clean and at most one R
k

is not a pseudo

clean ring.

In order to prove Proposition 5.4.2, we first prove the following equivalence:

Proposition 5.4.3. Let R be a ring. Then the following conditions are equiva-

lent:

(a) R is a pseudo clean ring.

(b) Every element x 2 R has the form x = u � e + (1 � e)rx where u 2 U(R),

e 2 Id(R) and r 2 R.

Proof. (a) ) (b): Let x 2 R. Since R is pseudo clean, we have �x = v+e+(1�

e)r(�x) for some v 2 U(R), e 2 Id(R) and r 2 R. Then x = u� e + (1 � e)rx

where u = �v 2 U(R).

(b) ) (a): Let x 2 R. Then �x = u � e + (1 � e)r(�x) for some u 2 U(R),

e 2 Id(R) and r 2 R. It follows that x = (�u) + e+ (1� e)rx which shows that

x is pseudo clean.
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Proof of Proposition 5.4.2. ()): Suppose that R =
Q

k2I Rk

is pseudo weakly

clean. By Proposition 5.4.1, it follows that each R
k

, being a homomorphic image

of R, is pseudo weakly clean. Suppose that R
i

and R
j

(i 6= j) are not pseudo

clean. Since R
i

is not pseudo clean, then by Proposition 5.4.3(b), there exists

x
i

2 R
i

such that x
i

6= u�e+(1�e)rx
i

for any u 2 U(R
i

), e 2 Id(R
i

) and r 2 R
i

.

But since R
i

is pseudo weakly clean, we must have x
i

= u
i

+ e
i

+ (1� e
i

)r
i

x
i

for

some u
i

2 U(R
i

), e
i

2 Id(R
i

) and r
i

2 R
i

. Now since R
j

is not pseudo clean but

is pseudo weakly clean, there is an x
j

2 R
j

such that x
j

= u
j

� e
j

+ (1� e
j

)r
j

x
j

for some u
j

2 U(R
j

), e
j

2 Id(R
j

) and r
j

2 R
j

but x
j

6= u + e + (1 � e)rx
j

for

any u 2 U(R
j

), e 2 Id(R
j

) and r 2 R
j

. Let y = (y
k

) 2 R such that

y
k

=

(
x
k

, k 2 {i, j},
0, k /2 {i, j}.

Then y 6= u ± e + (1 � e)ry for any u 2 U(R), e 2 Id(R) and r 2 R , which

contradicts the assumption that R is pseudo weakly clean. Hence, we can only

have at most one R
i

which is not pseudo clean.

((): If every R
i

is pseudo clean, then it follows by [59, Proposition 2.3] that

R =
Q

k2I Rk

is also pseudo clean; hence, pseudo weakly clean. Suppose that R
i0

is pseudo weakly clean but not pseudo clean and all the other R
i

’s are pseudo

clean. Let x = (x
i

) 2 R =
Q

k2I Rk

. Then for x
i0 2 R

i0 , we may write x
i0 =

u
i0 + e

i0 + (1 � e
i0)ri0xi0 or x

i0 = u
i0 � e

i0 + (1 � e
i0)ri0xi0 where u

i0 2 U(R
i0),

e
i0 2 Id(R

i0) and r
i0 2 R

i0 . If x
i0 = u

i0 + e
i0 + (1 � e

i0)ri0xi0 , then for i 6= i0,

since R
i

is pseudo clean, we may let x
i

= u
i

+ e
i

+(1� e
i

)r
i

x
i

where u
i

2 U(R
i

),

e
i

2 Id(R
i

) and r
i

2 R
i

. On the other hand, if x
i0 = u

i0 � e
i0 + (1 � e

i0)ri0xi0 ,

then for i 6= i0, since R
i

is pseudo clean, it follows by Proposition 5.4.3(b) that

we may let x
i

= u
i

� e
i

+ (1� e
i

)r
i

x
i

where u
i

2 U(R
i

), e
i

2 Id(R
i

) and r
i

2 R
i

.
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Hence, x = u + e + (1 � e)rx or x = u � e + (1 � e)rx where u = (u
j

) 2 U(R),

e = (e
j

) 2 Id(R) and r = (r
j

) 2 R. Thus, x is pseudo weakly clean. This

completes the proof.

In [58], it is shown that corner rings of clean rings are not necessarily clean.

In the following we show that corners of pseudo weakly clean rings are pseudo

weakly clean.

Proposition 5.4.4. Let R be a pseudo weakly clean ring. Then so is eRe for

any e 2 Id(R).

Proof. Let R be a pseudo weakly clean ring and let e 2 Id(R). Let x 2 eRe.

Since R is pseudo weakly clean, there exist g 2 Id(R) and u 2 U(R) such that

x� g� u 2 (1� g)Rx or x+ g� u 2 (1� g)Rx. Write h = 1� g and f = 1� e.

Since x 2 eRe, it follows that xf = 0. Hence, gf + uf = 0 or gf � uf = 0. It

follows that

eu�1gf =

⇢
eu�1(�uf), if gf + uf = 0
eu�1(uf), if gf � uf = 0

= 0 (* ef = 0).

Hence, eu�1g 2 eRe.

For x + g � u 2 (1 � g)Rx, we have gf = uf , eu�1gf = 0 and eu�1g 2 eRe

from the previous paragraph. Observe that eu�1geue = eu�1gue = eu�1gu(1 �

f) = eu�1g(u � uf) = eu�1g(u � gf) = eu�1gu � eu�1gf = eu�1gu. It follows

that (eueu�1g)2 = eu(eu�1geue)u�1g = eu(eu�1gu)u�1g = eueu�1g. Hence,

e0 = eueu�1g 2 Id(eRe). We also note that (hfu�1g)2 = hfu�1(gh)fu�1g = 0.

Hence, v = (1 + hfu�1g)u is invertible in R where v�1 = u�1(1 � hfu�1g).

We have vf = (1 + hfu�1g)uf = uf + hfu�1guf = gf + hfu�1gf = gf +
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hfu�1uf = gf + hf = f which implies that v�1f = f . Next, we show that

v0 = eve is invertible in eRe. We have v0(ev�1e) = (eve)v�1e = ev(1� f)v�1e =

e(v � vf)v�1e = e(v � f)v�1e = e. Similarly, (ev�1e)v0 = e. It follows that

v0 = eve 2 U(eRe). Since x+ g� u 2 (1� g)Rx, we then have g(x+ g� u) = 0.

It follows that gx = �g + gu. Then

e0(x+ e0 � v0) = eueu�1gx+ eueu�1g � eueu�1g(eve)

= eueu�1(�g + gu) + eueu�1g � eu(eu�1ge)ve

= eueu�1gu� eu(eu�1g)ve

= eueu�1gu� eueu�1g((1 + hfu�1g)u)e

= eueu�1gu� eueu�1gue (* gh = 0)

= eueu�1gu(1� e)

= eueu�1guf

= eueu�1gf (* uf = gf)

= eueu�1uf (* gf = uf)

= euef

= 0.

Hence, x + e0 � v0 = (e � e0)(x + e0 � v0) 2 (e � e0)R. Note that v0 = eve =

e(1 + hfu�1g)ue = e(1 + (1 � g)fu�1g)ue = e(1 + fu�1g � gfu�1g)ue = eue �

egfu�1gue = eue � eufu�1gue = eue � eufu�1(1 � h)ue = eue + eufu�1hue.

Then e0�v0 = eueu�1g�eue�eufu�1hue = eueu�1(g�u)�eufu�1h(ue�ge) =

eueu�1(g � u)� eufu�1h(u� g) 2 Rx (because u� g = x� (1� g)rx for some

r 2 R). It follows that x+e0�v0 2 Rx. Hence, x+e0�v0 = (e�e0)(x+e0�v0) 2

(e� e0)Rx.
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For x�g�u 2 (1�g)Rx, by taking e0 = eueu�1g 2 Id(eRe), v0 = eve (where

v = (1 � hfu�1g)u with v�1 = u�1(1 + hfu�1g) ) and by arguments similar to

those in the previous paragraph, we obtain x � e0 � v0 2 (e � e0)Rx. Thus, x is

pseudo weakly clean in eRe. This completes the proof.

Proposition 5.4.5. Let R be a ring and let x 2 R. If there exists f 2 = f 2 Rx

such that (1 � f)x(1 � f) is pseudo weakly clean in (1 � f)R(1 � f), then x is

pseudo weakly clean in R.

Proof. Let x 2 R. Suppose that there exists f 2 = f 2 Rx such that exe is

pseudo weakly clean in eRe where e = 1 � f . Then exe = u + g + (e � g)yexe

or exe = u � g + (e � g)yexe for some u 2 U(eRe), g 2 Id(eRe) and y 2 eRe.

Note that f + u 2 U(R) with (f + u)�1 = f + v where v 2 eRe such that

uv = e = vu and 1+ exf 2 U(R) with (1+ exf)�1 = 1� exf . We also note that

exfu = ex(1�e)u = 0 since u 2 eRe. Thus f+u+exf = (1+exf)(f+u) 2 U(R).

Let ↵ = f + u+ exf . For exe = u+ g + (e� g)yexe, we have the equation

gxe = g(exe) = g(u+ g + (e� g)yexe) = gu+ g + g(e� g)yexe = gu+ g.

It follows that g↵ = g(u+f+exf) = gu+gf+gexf = gu+gxf = gu+gx(1�e) =

gu + gx� gxe = gu + gx� (gu + g) = gx� g. Hence, g(x� g � ↵) = 0, which

gives us

x� g � ↵ = (1� g)(x� g � ↵) 2 (1� g)R. (5.5)

By the hypothesis, xe = x(1 � f) = x � xf 2 Rx. It follows that u + g =

exe� (e� g)yexe = (e� (e� g)ye)xe 2 Rx. Thus, ↵ + g = f + u + exf + g =

(1 + ex)f + (u+ g) 2 Rx. It follows that

x� ↵� g = x� (↵ + g) 2 Rx. (5.6)
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By (5.5) and (5.6), we have that x� ↵� g 2 (1� g)Rx.

Similarly, for exe = u� g + (e� g)yexe, we have the equation

gxe = g(exe) = g(u� g + (e� g)yexe) = gu� g + g(e� g)yexe = gu� g.

Note that u�f 2 U(R) with (u�f)�1 = v�f . Then u�f+exf = (1�exf)(u�

f) 2 U(R). Let � = u�f + exf . Then g� = g(u�f + exf) = gu� gf + gexf =

gu + gxf = gu + gx(1 � e) = gu + gx � gxe = gu + gx � (gu � g) = gx + g.

Hence, g(x+ g � �) = 0, which gives us

x+ g � � = (1� g)(x+ g � �) 2 (1� g)R. (5.7)

By the hypothesis, we have xe = x(1 � f) = x � xf 2 Rx. It follows that

u�g = exe�(e�g)yexe = (e�(e�g)ye)xe 2 Rx. Thus, ��g = u�f+exf�g =

(ex� 1)f + (u� g) 2 Rx. It follows that

x� � + g = x� (� � g) 2 Rx. (5.8)

By (5.7) and (5.8), x� � + g 2 (1� g)Rx. Therefore, x is pseudo weakly clean

in R.

A ringR is called semi-abelian if there exist orthogonal idempotents e1, . . . , en 2

R such that 1 = e1 + · · ·+ e
n

and each e
i

Re
i

is an abelian ring.

Proposition 5.4.6. Let R be a semi-abelian ring. If R is pseudo weakly clean,

then there exist orthogonal idempotents e1, . . . , en 2 R such that 1 = e1+ · · ·+ e
n

and each e
i

Re
i

is an abelian weakly clean ring.

Proof. Since R is semi-abelian, there exist orthogonal idempotents e1, . . . , en 2

R such that 1 = e1+ · · ·+e
n

and each e
i

Re
i

is an abelian ring. Since R is pseudo

weakly clean, it follows by Proposition 5.4.4 that each e
i

Re
i

is pseudo weakly
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clean. Since e
i

Re
i

is abelian and pseudo weakly clean, it follows by Theorem

5.3.1 that e
i

Re
i

is weakly clean for each i = 1, . . . , n.

Polynomial rings over pseudo weakly clean rings are not pseudo weakly clean

as shown in the following:

Proposition 5.4.7. Let R be a ring. Then the polynomial ring R[x] is never

pseudo weakly clean.

Proof. We show that the indeterminate x 2 R[x] is not pseudo weakly clean.

Suppose that x = u+e+(1�e)rx or x = u�e+(1�e)rx for some u 2 U(R[x]),

e 2 Id(R[x]) and r 2 R[x]. We may write e = e0 + e1x + · · · + e
n

xn and

u = u0 + u1x+ · · ·+ u
n

xn where (e
n

, u
n

) 6= (0, 0). Then

x = u+ e+ rx� erx

= (u0 + u1x+ · · ·+ u
n

xn) + (e0 + e1x+ · · ·+ e
n

xn) + rx

�(e0 + e1x+ · · ·+ e
n

xn)rx

or

x = u� e+ rx� erx

= (u0 + u1x+ · · ·+ u
n

xn)� (e0 + e1x+ · · ·+ e
n

xn) + rx

�(e0 + e1x+ · · ·+ e
n

xn)rx.

It follows that e0 = �u0 or e0 = u0; hence, e0 2 U(R). Since e0 is also an

idempotent in R (because e 2 Id(R[x])), we have that e0 = 1. Suppose that

e 6= 1. Then e has the form e = 1+xma, where 1  m  n and a = a0+a1x+· · ·+

a
n�m

xn�m with a0 6= 0. Since e2 = e, we thus have that 1 + xm(2a) + x2m(a2) =

1 + xma. Comparing coe�cients of xm, we obtain 2a0 = a0 which gives us
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a0 = 0; a contradiction. It follows that e = 1 and hence, x = u+ 1 or x = u� 1.

Therefore, 1 � x = �u 2 U(R[x]) or 1 + x = u 2 U(R[x]). Suppose that the

former occurs and let (1� x)�1 = b0 + b1x+ b2x
2 + · · ·+ b

l

xl. Then

1 = (1� x)(1� x)�1 = (1� x)�1 � x(1� x)�1

= b0 + (b1 � b0)x+ (b2 � b1)x
2 + · · ·+ (b

l

� b
l�1)x

l � b
l

xl+1.

By comparing coe�cients, we obtain b0 = 1, b1 � b0 = 0, . . . , b
l

� b
l�1 = 0 and

b
l

= 0; a contradiction. Now suppose that 1 + x 2 U(R[x]) and let (1 + x)�1 =

b00 + b01x+ b02x
2 + · · ·+ b0

l

xl. Then

1 = (1 + x)(1 + x)�1 = (1 + x)�1 + x(1 + x)�1

= b00 + (b01 + b00)x+ (b02 + b01)x
2 + · · ·+ (b0

l

+ b0
l�1)x

l + b0
l

xl+1.

By comparing coe�cients, we get b00 = 1, b01+b00 = 0, . . . , b0
l

+b0
l�1 = 0 and b0

l

= 0.

Again, we have a contradiction. Hence, x 2 R[x] is not pseudo weakly clean and

therefore, R[x] is not pseudo weakly clean.

Formal power series rings over commutative pseudo weakly clean rings are

however pseudo weakly clean as shown in the following:

Proposition 5.4.8. Let R be a commutative ring. Then the formal power series

ring R[[x]] is pseudo weakly clean if and only if R is pseudo weakly clean.

Proof. Suppose that R[[x]] is pseudo weakly clean. Then it follows by the

isomorphism R ⇠= R[[x]]/(x) and Proposition 5.4.1 that R is pseudo weakly clean.

Conversely, suppose that R is pseudo weakly clean. Since R is commutative, it

follows by Theorem 5.3.1 that R is weakly clean. Then by [2, Theorem 1.9],

R[[x]] is weakly clean. Hence, R[[x]] is pseudo weakly clean.
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In the remainder of this section, we determine some su�cient conditions for

a group ring to be pseudo weakly clean. First we recall some basic facts about

group rings.

Let R be a ring and let G be a group. The augmentation ideal of RG, denoted

by �, is the ideal of RG generated by {1 � g | g 2 G}. The homomorphism

� : RG ! R given by

�

 
X

g2G

r
g

g

!
=
X

g2G

r
g

is called the augmentation mapping of RG. It is known that the kernel of � is

the augmentation ideal � and that RG/� ⇠= R.

The following proposition will be used later.

Proposition 5.4.9. Let R be a commutative ring. Then R is clean if and only

if R is pseudo clean.

Proof. ()): It is clear by definition that every clean ring is pseudo clean.

((): By [59, Proposition 2.3(i)], every pseudo clean ring is exchange. Since

commutative exchange rings are clean (by [50, Proposition 1.8(2)]), it follows

that commutative pseudo clean rings are clean.

Let p be a prime number. A group G is called a p-group if the order of each

element in G is a power of p.

Proposition 5.4.10. Let R be a commutative ring and let G be an abelian p-

group with p 2 J(R). Then RG is pseudo clean if and only if R is pseudo clean.

Proof. ()): Since any homomorphic image of a pseudo clean ring is pseudo

clean (by [59, Proposition 2.3]) and R ⇠= RG/� is a homomorphic image of RG,

it follows that R is pseudo clean.
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((): Assume that R is pseudo clean. It follows by Proposition 5.4.9 that R is

clean. By [62, Theorem 2.3], it follows thatRG is clean (hence, pseudo clean).

Since any local ring is clean (hence, pseudo weakly clean), we have the fol-

lowing corollary.

Corollary 5.4.1. Let R be a commutative local ring with maximal ideal M and

let G be an abelian p-group with p 2 M . Then RG is pseudo weakly clean.

Lemma 5.4.1. [73, Lemma 2] Let R be a ring and let G be a group. If G is a

locally finite p-group where p is a prime with p 2 J(R), then � ✓ J(RG).

Proposition 5.4.11. Let R be a ring and let p be a prime number with p 2 J(R).

Let G be a locally finite group with G = KH where K is a normal p-subgroup of

G and H is a subgroup of G. If RH is pseudo clean, then RG is pseudo clean.

Proof. For any g 2 G, since G = KH, there exist k 2 K and h 2 H such that

g = kh = (k � 1)h + h 2
P

k2K(1 � k)RG + RH. By Lemma 5.4.1, we have

�(RK) ✓ J(RK) where �(RK) is the augmentation ideal of RK. Since G and

G/K ⇠= H are locally finite, so J(RK) ✓ J(RG) (by [66, Lemma 4.1]). Hence,

�(RK) ✓ J(RG) and this implies that
P

k2K(1 � k)RG ✓ �(RK)(RG) ✓

J(RG). We thus have

RG = J(RG) +RH. (5.9)

By [24, Proposition 9], RH \ J(RG) ✓ J(RH). Since RH/(RH \ J(RG)) ⇠=

RG/J(RG) and RG/J(RG) is semiprimitive, so J(RH) ✓ RH \ J(RG). Thus,

we have J(RH) = RH \ J(RG). Therefore, RH/J(RH) ⇠= RG/J(RG). Since

RH is pseudo clean, we have that RH/J(RH) is pseudo clean and hence, so

is RG/J(RG) (by [59, Proposition 2.3]). To show that RG is pseudo clean, it
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remains to show that idempotents of RG/J(RG) can be lifted to idempotents

of RG (by [59, Proposition 2.3]). Let x2 � x 2 J(RG) where x 2 RG. By

(5.9), we may write x = y + z with y 2 J(RG) and z 2 RH. It follows that

z2 � z 2 RH \ J(RG) = J(RH). Since RH is pseudo clean, there exists e2 =

e 2 RH ✓ RG such that z � e 2 J(RH) (by [59, Proposition 2.3]). Hence,

x� e = y + (z � e) 2 J(RG) + J(RH) ✓ J(RG).

Proposition 5.4.12. Let R be a ring and let p be a prime number with p 2 J(R).

If R is pseudo clean and G is a locally finite p-group, then RG is pseudo weakly

clean.

Proof. Since G is a locally finite p-group, we may take K = G and H = {1} in

Proposition 5.4.11. Then since RH = R{1} ⇠= R is pseudo clean, it follows by

Proposition 5.4.11 that RG is pseudo clean (hence, pseudo weakly clean).

5.5 Pseudo weakly clean in non-unital rings

In this section, by a non-unital ring we mean an associative ring without identity.

Let I be a non-unital ring and let x 2 I. In [59], Ster introduced the notion

of a pseudo clean non-unital ring. An element x 2 I is said to be pseudo

clean in I if x = e + p + erx for some e 2 Id(I), r 2 I and p 2 Q(I) where

Q(I) = {p 2 I | 9q 2 I such that p + q + pq = 0 = p + q + qp}. A non-unital

ring I is said to be pseudo clean if each x 2 I is pseudo clean in I.

Proposition 5.5.1. Let R be a unital ring and let I be a non-unital subring of

R such that I is pseudo clean. If x 2 I, then x is pseudo weakly clean in R.

Proof. Since x 2 I and I is a pseudo clean non-unital ring, we have that

x = e + p + erx for some e 2 Id(I), p 2 Q(I) and r 2 I. Note that x =
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e + p + erx = (�1 + e) + (1 + p) + erx. By taking f = 1 � e, we have that

x = �f +(1+p)+(1�f)rx with f 2 Id(R) and 1+p 2 U(R) where (1+p)�1 =

1 + q. Hence, x is pseudo weakly clean in R.

We now extend the notion of pseudo clean in a non-unital ring to that of

pseudo weakly clean. Let I be a non-unital ring. Let Q(I) = {p 2 I | 9p0 2

I such that p + p0 + pp0 = 0 = p + p0 + p0p} and let Q0(I) = {q 2 I | 9q0 2

I such that q�q0+qq0 = 0 = q�q0+q0q}. An element x 2 I is said to be pseudo

weakly clean in I if x = e + p + erx or x = �e + q + erx for some e 2 Id(I),

r 2 I, p 2 Q(I) and q 2 Q0(I). A non-unital ring I is said to be pseudo weakly

clean if all of its elements are pseudo weakly clean. Clearly, a non-unital pseudo

clean ring is pseudo weakly clean.

We extend Proposition 5.5.1 as follows:

Proposition 5.5.2. Let R be a unital ring and let I be a non-unital subring of

R. If I is pseudo weakly clean, then every x 2 I is pseudo weakly clean in R.

Proof. Let x 2 I. Since I is pseudo weakly clean, we have that x = e+ p+ erx

or x = �e + q + erx for some e 2 Id(I), p 2 Q(I), q 2 Q0(I) and r 2 I. For

x = e + p + erx, we have x = �(1 � e) + (1 + p) + erx where 1 � e 2 Id(R).

Since p 2 Q(I), there exists p0 2 I such that p+ p0+ pp0 = 0 = p+ p0+ p0p. Then

(1+ p)(1 + p0) = 1+ p+ p0 + pp0 = 1 = (1+ p0)(1 + p), that is, 1 + p 2 U(R). By

taking f = 1 � e and u = 1 + p, we may write x = �f + u + (1 � f)rx where

f 2 Id(R), u 2 U(R) and r 2 R. Hence, x is pseudo weakly clean in R. For

x = �e+q+erx, we may write x = (1�e)+(�1+q)+erx where 1�e 2 Id(R).

Since q 2 Q0(I), there exists q0 2 I such that q� q0+ qq0 = 0 = q� q0+ q0q. Then

(�1+q)(1+q0) = �1+q�q0+qq0 = �1 = (1+q0)(�1+q), that is, �1+q 2 U(R).
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By letting f = 1� e and v = �1+ q, we may write x = f + v+ (1� f)rx where

f 2 Id(R), v 2 U(R) and r 2 R. Thus, x is pseudo clean (hence, pseudo weakly

clean) in R.

The converse of Proposition 5.5.2 is not necessarily true. For example, take

R = Q and I = 2Z. Note that any x 2 I is clean in R (hence, pseudo weakly

clean in R) but I itself is not pseudo weakly clean since 2 2 I is not pseudo

weakly clean in I.

In the next proposition, we show that the converse of Proposition 5.5.2 is

true when I is a proper ideal of R.

Proposition 5.5.3. Let R be a unital ring and let I be a proper ideal of R. If

x 2 I is pseudo weakly clean in R, then x is pseudo weakly clean in I.

Proof. Let x 2 I be pseudo weakly clean in R. Then x = e + u + (1 � e)rx

or x = �e + u + (1 � e)rx for some e 2 Id(R), u 2 U(R) and r 2 R. For

x = e+u+(1�e)rx, we have x = (�1+e)+(1+u)+(1�e)rx. By taking f = 1�e,

we may write x = �f + (1 + u) + frx with f 2 Id(R). Since x 2 I and I is an

ideal of R, we have that e+u = x�(1�e)rx 2 I. By multiplying f on the left, it

follows that fu 2 I and therefore, f 2 I. We then have 1+u = f+(e+u) 2 I and

(1+u)�(�1�u�1)+(1+u)(�1�u�1) = 0 = (1+u)�(�1�u�1)+(�1�u�1)(1+u),

that is, 1+u 2 Q0(I). By letting q = 1+u, we may then write x = �f+q+f(fr)x,

where f 2 Id(I), q 2 Q0(I) and fr 2 I. It follows that x is pseudo weakly clean

in I.

For x = �e+u+(1�e)rx, we have x = (1�e)+(�1+u)+(1�e)rx. By taking

f = 1� e and v = �u, it follows that x = f + (�1� v) + frx with f 2 Id(R).

Since x 2 I and I is an ideal of R, we have that �e+ u = x� (1� e)rx 2 I. By
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multiplying f on the left, it follows that fu 2 I and hence, f 2 I. We then have

�1� v = �f + (�e+ u) 2 I and (�1� v) + (�1� v�1) + (�1� v)(�1� v�1) =

0 = (�1 � v) + (�1 � v�1) + (�1 � v�1)(�1 � v), that is, �1 � v 2 Q(I). By

taking p = �1 � v, we may then write x = f + p + f(fr)x where f 2 Id(I),

p 2 Q(I) and fr 2 I. It follows that x is pseudo weakly clean in I.

As an application of Propositions 5.5.2 and 5.5.3 we have the following:

Proposition 5.5.4. Let I be a proper ideal of a unital ring R and let e 2 Id(R).

If I is pseudo weakly clean, then eIe is pseudo weakly clean.

Proof. Suppose that I is pseudo weakly clean and let x 2 eIe. By Proposition

5.5.2, x is pseudo weakly clean in R. It follows by Proposition 5.4.4 that x is

pseudo weakly clean in eRe. Thus, every x 2 eIe is pseudo weakly clean in eRe.

By Proposition 5.5.3, it follows that eIe is pseudo weakly clean.
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Chapter 6

Some Results on g(x)-clean Rings

6.1 Introduction

Let R be a ring and let g(x) be a polynomial in Z(R)[x]. In [10], an element

r 2 R is called g(x)-clean if r = u + s for some u 2 U(R) and s 2 R such that

g(s) = 0. The ring R is g(x)-clean if every element in R is g(x)-clean. Note that

if r 2 R is g(x)-clean and g(x) is a factor of a polynomial h(x) 2 Z(R)[x], then

r is also h(x)-clean.

Clearly, if g(x) = x2�x, then g(x)-clean rings are clean. However, in general,

g(x)-clean rings are not necessarily clean. An example is as follows:

Example 6.1.1. Let Z(7) = {m/n | m,n 2 Z, gcd(7, n) = 1} and let C3 be

the cyclic group of order 3. By [61, Example 2.7], the group ring Z(7)C3 is

(x6 � 1)-clean. However, Han and Nicholson [32] have shown that Z(7)C3 is not

clean.

Conversely, for a clean ring R, there may exist a g(x) 2 Z(R)[x] such that R

is not g(x)-clean as shown in the following example:

Example 6.1.2. (see [29, Example 2.3]) Let R be a Boolean ring containing

more than two elements. Let c 2 R where 0 6= c 6= 1 and let g(x) = x2 + (1 +
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c)x+c = (x+1)(x+c). Since R is Boolean, so it is clean. Suppose that R is g(x)-

clean. Then c = u + s for some u 2 U(R) and s 2 R such that g(s) = 0. Note

that u = 1 since R is Boolean. Therefore, s = c + 1. However, g(c + 1) = c 6= 0

which contradicts the assumption that g(s) = 0. Hence, it follows that R is clean

but not g(x)-clean.

Let R be a ring and let g(x) 2 Z(R)[x]. An element r 2 R is called weakly

g(x)-clean if r = u + s or r = u � s for some u 2 U(R) and s 2 R such that

g(s) = 0. We say that R is weakly g(x)-clean if every element in R is weakly

g(x)-clean. Clearly, a g(x)-clean ring is weakly g(x)-clean.

In this chapter, we investigate further properties of g(x)-clean rings for certain

types of g(x) 2 Z(R)[x]. In particular, we consider polynomials g(x) 2 Z(R)[x]

such that R is g(x)-clean if R is clean and vice versa. In the last section we define

c-topologically boolean rings and show, via set-theoretic topology, that among

conditions equivalent to R being an x(x� c)-clean ring where c 2 U(R) \ Z(R)

is that R is right (respectively, left) c-topologically boolean.

6.2 Some properties of g(x)-clean rings

In this section we investigate some properties of g(x)-clean rings. First, we show

that given a ring R, there exists g(x) 2 Z(R)[x] such that if an element z 2 R is

g(x)-clean in a corner of R, then z is g(x)-clean in R.

Proposition 6.2.1. Let R be a ring and let g(x) = x(x � 1) 2 Z(R)[x]. If

z 2 eRe is g(x)-clean in eRe for some e 2 Id(R), then z is g(x)-clean in R.

Proof. Suppose that there exists e 2 Id(R) such that an element z 2 eRe is

g(x)-clean in eRe. That is, z = v + s where v, s 2 eRe such that vw = e = wv
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for some w 2 eRe and g(s) = 0. Then u = v � (1 � e) is a unit in R with

u�1 = w� (1� e) and z�u = s+(1� e). Since s(1� e) = 0 = (1� e)s, we have

g(s+ (1� e)) = (s+ (1� e))((s+ (1� e))� 1)

= (s+ (1� e))((s� 1) + (1� e))

= s(s� 1)

= g(s)

= 0.

Therefore, z = u+ (s+ (1� e)) is g(x)-clean in R.

By Proposition 6.2.1, we readily have the following general result.

Corollary 6.2.1. Let R be a ring and let g(x) = x(x � 1)h(x) 2 Z(R)[x]. If

z 2 eRe is x(x� 1)-clean in eRe for some e 2 Id(R), then z is g(x)-clean in R.

As a direct consequence of Corollary 6.2.1, we obtain the following known

result.

Corollary 6.2.2. Let R be a ring. If z 2 eRe is clean in eRe for some e 2 Id(R),

then z is clean in R.

We next obtain polynomials g(x) 2 Z(R)[x] where R is a weakly clean ring

such that R is also g(x)-clean.

Proposition 6.2.2. Let R be a weakly clean ring and let g(x) = x(x2 � 1) 2

Z(R)[x]. Then R is g(x)h(x)-clean for any h(x) 2 Z(R)[x].

Proof. Let r 2 R. Then r = u+e or r = u�e for some u 2 U(R) and e 2 Id(R).

Note that g(e) = e(e2 � 1) = 0 and g(�e) = (�e)((�e)2 � 1) = �e(e � 1) = 0.

Thus, r is g(x)-clean and hence, g(x)h(x)-clean for any h(x) 2 Z(R)[x].
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Corollary 6.2.3. Let R be a ring and let g(x) = x(x2 � 1) 2 Z(R)[x]. If R is

clean or local or Boolean, then R is g(x)h(x)-clean for any h(x) 2 Z(R)[x].

Proof. This follows readily by Proposition 6.2.2 and the fact that clean (local,

Boolean) rings are weakly clean.

Proposition 6.2.2 may be extended as follows:

Proposition 6.2.3. Let R be a weakly clean ring and let g(x) = (xm�xn)h(x) 2

Z(R)[x] where m,n are positive integers of the same parity. Then R is g(x)-clean.

Proof. Let r 2 R. Then r = u + e or r = u � e for some u 2 U(R) and

e 2 Id(R). Since m,n are of the same parity, we have g(e) = (em � en)h(e) = 0

and g(�e) = ((�e)m � (�e)n)h(�e) = 0. Thus, r is g(x)-clean.

For a ring R and polynomial g(x) 2 Z(R)[x], we say that an element r 2 R

is (n, g(x))-clean if r = s + u1 + · · · + u
n

for some u1, . . . , un

2 U(R) and

s 2 R such that g(s) = 0. The ring R is (n, g(x))-clean if all of its elements are

(n, g(x))-clean. Clearly, a (1, g(x))-clean ring is g(x)-clean.

In [61, Theorem 2.1], Wang and Chen showed that if g(x) = (x � a)(x � b)

where a, b 2 Z(R) with b � a 2 U(R), then R is g(x)-clean if and only if R is

clean. In [29, Theorem 3.2], Fan and Yang gave another proof of the same result.

In the following, we give an extension to n-clean rings as follows:

Theorem 6.2.1. Let R be a ring and let g(x) = (x � a)(x � b)h(x) 2 Z(R)[x]

such that b� a 2 U(R). If R is n-clean, then R is (n, g(x))-clean (n 2 N).

Proof. Let r 2 R. Since R is n-clean, then (r � a)(b� a)�1 = e+ u1 + · · ·+ u
n

for some e 2 Id(R) and u
i

2 U(R) for i = 1, . . . , n. Thus, r = (e(b � a) + a) +

u1(b � a) + · · · + u
n

(b � a), where u
i

(b � a) 2 U(R) for i = 1, . . . , n. Note that
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g((e(b�a)+a) = e(b�a)(e(b�a)�(b�a))h(e(b�a)+a) = 0 h(e(b�a)+a) = 0.

Hence, e(b� a) + a is a root of g(x). It follows that R is (n, g(x))-clean.

Corollary 6.2.4. Let R be a ring and let g(x) = (x� a)(x� b) 2 Z(R)[x] such

that b�a 2 U(R). Then R is g(x)-clean if and only if R is n-clean for all positive

integers n.

Proof. If R is g(x)-clean, then by [61, Theorem 2.1] (or [29, Theorem 3.2]), it

follows that R is clean; hence, n-clean for all positive integers n. Conversely, if

R is n-clean for all positive integers n, then in particular, R is 1-clean. Hence,

by Theorem 6.2.1, R is (1, g(x))-clean, that is, R is g(x)-clean.

6.3 Some results on x(x� c)-clean rings

We first obtain some results which generalise parts of Theorem 3.5 in [29].

Proposition 6.3.1. Let R be a ring which is weakly xk(x� c)-clean where k is

a positive integer and c 2 Z(R). Then c 2 U(R).

Proof. Let g(x) = xk(x�c). Since R is weakly g(x)-clean, c = u+s or c = u�s

for some u 2 U(R) and s 2 R such that g(s) = 0. For the case c = u + s, we

have that s = �u + c and hence, sk+1 = (�u + c)k+1 = (�u)k+1 + cr for some

r 2 R. Since 0 = g(s) = sk(s � c), we also have sk+1 = csk. Thus, c(sk � r) =

(�u)k+1 2 U(R). This implies that c 2 U(R). For the case c = u � s, we have

that s = u� c and hence, sk+1 = (u� c)k+1 = uk+1 � cr for some r 2 R. Since

0 = g(s) = sk(s � c), we also have sk+1 = csk. Thus, c(sk + r) = uk+1 2 U(R)

which implies that c 2 U(R).

By using Proposition 6.3.1, we obtain in the following an element-wise char-

acterisation of xk(x� c)-clean rings where k is a positive integer:
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Proposition 6.3.2. Let R be a ring which is x(x � c)-clean where c 2 Z(R).

Then for any positive integer k, R is xk(x � c)-clean and any r 2 R can be

expressed as r = u+ v for some u, v 2 R such that u 2 U(R) and

vk = 1 +
1

c
s((1� c)k � 1)

where s 2 R such that s(s� c) = 0.

Proof. Let r 2 R. Since R is x(x � c)-clean, 1 � r = s + w for some s, w 2 R

such that s(s � c) = 0 and w 2 U(R). It follows that r = (1 � s) + u where

u = �w 2 U(R). For any positive integer k, R is clearly also xk(x � c)-clean.

The binomial expansion on (1� s)k gives us

(1� s)k =

✓
k

0

◆
�
✓
k

1

◆
s+

✓
k

2

◆
s2 � · · ·+ (�1)k�1

✓
k

k � 1

◆
sk�1 + (�1)k

✓
k

k

◆
sk.

Since s(s� c) = 0, so sl+1 = csl = cls for all positive integers l. Hence,

(1�s)k =

✓
k

0

◆
�
✓
k

1

◆
s+

✓
k

2

◆
cs� · · ·+(�1)k�1

✓
k

k � 1

◆
ck�2s+(�1)k

✓
k

k

◆
ck�1s.

By Proposition 6.3.1, we have c 2 U(R). It follows that

(1� s)k

= 1 +
1

c
s

✓
1�

✓
k

1

◆
c+

✓
k

2

◆
c2 + · · ·+ (�1)k�1

✓
k

k � 1

◆
ck�1

+(�1)k
✓
k

k

◆
ck � 1

◆

= 1 +
1

c
s((1� c)k � 1).

This completes the proof.

In the case c = 2 in Proposition 6.3.2, we have the following:

Proposition 6.3.3. Let R be a ring which is x(x � 2)-clean. Then for any

positive integer k, R is xk(x � 2)-clean and any r 2 R can be expressed as
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r = u+ v for some u, v 2 R such that u 2 U(R) and

vk =

⇢
1, if k is even
1� s, if k is odd

where s 2 R such that s(s� 2) = 0.

We now return to the more general polynomial g(x) = x(x � c) and obtain

some conditions equivalent to being g(x)-clean. First, we prove the following:

Lemma 6.3.1. Let R be a ring and let g(x) = axm � bxn, h(x) = axm + bxn 2

Z(R)[x] where m,n are positive integers of di↵erent parity. Then R is g(x)-clean

if and only if R is h(x)-clean.

Proof. ()): Assume that R is a g(x)-clean ring. Then for any r 2 R, �r = u+s

where u 2 U(R) and s 2 R such that g(s) = 0. It follows that r = (�u) + (�s).

Note that

h(�s) = a(�s)m + b(�s)n

= (�1)masm + (�1)nbsn

=

⇢
asm � bsn, if m is even, n is odd
�(asm � bsn), if m is odd, n is even

= 0.

It follows that r is h(x)-clean.

((): Suppose that R is h(x)-clean. Then for any r 2 R, �r = u + s where

u 2 U(R) and s 2 R such that h(s) = 0. It follows that r = (�u) + (�s). Then
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since

g(�s) = a(�s)m � b(�s)n

= (�1)masm � (�1)nbsn

=

⇢
asm + bsn, if m is even, n is odd
�(asm + bsn), if m is odd, n is even

= 0,

we have that r is g(x)-clean.

Theorem 6.3.1. Let R be a ring and let c 2 Z(R). Then the following are

equivalent:

(a) R is x(x� c)-clean.

(b) R is x(x+ c)-clean.

(c) R is n-clean for all positive integers n and c 2 U(R).

Proof. (a), (b): This follows readily by Lemma 6.3.1.

(a)) (c): Assume (a). By Proposition 6.3.1, we have c 2 U(R). It follows by

Corollary 6.2.4 that R is n-clean for all positive integers n.

(c)) (a): This follows readily by Theorem 6.2.1 (take n = 1).

As an application of Theorem 6.3.1, consider the group ring R = Z(7)C3. In

Example 6.1.1, it is mentioned that R is not clean. Then since 2 is a unit in R, it

follows by Theorem 6.3.1 that R is not x(x�2)-clean and also not x(x+2)-clean.

The set of equivalent conditions in Theorem 6.3.1 can be extended to a larger

set, as will be shown in Section 6.4.

It is known by definition that a ring which is (x2 � x)-clean is clean; hence,

n-clean for any positive integer n. We now consider the general case of rings

which are (xk � xl)-clean where k, l are distinct positive integers.
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Proposition 6.3.4. If the ring R is (xk�xl)-clean where k, l are positive integers

with k 6= l, then R is 2-clean. In particular, R is n-clean for all integers n � 2.

Proof. Let r 2 R. Then r = u+ s where u 2 U(R) and s 2 R such that sk = sl.

Assume without loss of generality that k > l. Then sl = sl+1sk�l�1 and hence,

s is strongly ⇡-regular. Since strongly ⇡-regular elements are strongly clean, we

may write s = v+ e where v 2 U(R) and e 2 Id(R) such that ev = ve. It follows

that r = u+v+e, that is, r is 2-clean. Therefore R is 2-clean and hence, n-clean

for n � 2 (by Proposition 1.1.2).

Let R and S be rings and let ✓ : Z(R) ! Z(S) be a ring homomorphism

with ✓(1) = 1. For g(x) =
P

a
i

xi 2 Z(R)[x], let ✓0(g(x)) =
P

✓(a
i

)xi 2 Z(S)[x].

Then ✓ induces a map ✓0 from Z(R)[x] to Z(S)[x]. Clearly, if g(x) is a polynomial

with coe�cients in Z, then ✓0(g(x)) = g(x). We state the following results of

Yang [69] which will be used later.

Proposition 6.3.5. [29, Proposition 2.4] Let ✓ : R ! S be a ring epimorphism.

If R is g(x)-clean, then S is ✓0(g(x))-clean.

Proposition 6.3.6. [29, Proposition 2.7] Let g(x) 2 Z[x] and let {R
i

}be a family

of rings. Then the direct product
Q

i2I Ri

is g(x)-clean if and only if every R
i

,

i 2 I, is g(x)-clean.

We now consider the case c = 2 again and obtain further results on x(x� 2)-

clean rings.

Proposition 6.3.7. Let R be a ring. If R is x(x� 2)-clean, then 2 2 U(R) and

R is (xk � 1)-clean for any even positive integer k.

99



Proof. By Proposition 6.3.1, since R is x(x� 2)-clean, we have that 2 2 U(R).

By Proposition 6.3.3, if k is an even positive integer, then any r 2 R can be

written as r = u+ v for some u 2 U(R) and v 2 R such that vk = 1. It is clear

that v is a root of xk � 1. Hence, r is (xk � 1)-clean.

Let R be a ring and let 2 2 U(R). Recall that in the proof of Proposition

4.3.1, we have shown that RC2
⇠= R⇥R (as rings).

Proposition 6.3.8. Let R be a ring, let 2 2 U(R) and let k be a positive integer.

Then R is xk(x� 2)-clean if and only if RC2 is xk(x� 2)-clean.

Proof. If R is xk(x � 2)-clean, then by Proposition 6.3.6 we have that RC2
⇠=

R ⇥ R is xk(x � 2)-clean. Conversely, if RC2 is xk(x � 2)-clean, then it follows

by Proposition 6.3.5 that R⇥R is xk(x� 2)-clean. Hence, by Proposition 6.3.6,

R is xk(x� 2)-clean .

Proposition 6.3.9. Let R be a ring which is xk(x � 2)-clean and let G be a

finite elementary abelian 2-group. Then RG is xk(x� 2)-clean.

Proof. Since G is a finite elementary abelian 2-group, we have that G ⇠= C
(n)
2

⇠=

C2 ⇥ · · ·⇥ C2| {z }
n times

for some positive integer n. By Proposition 6.3.1, we have that

2 2 U(R). Hence, we have the isomorphism RC2
⇠= R ⇥ R. Since 2 2 U(RC2),

we thus have R(C2 ⇥ C2) ⇠= (RC2)C2
⇠= RC2 ⇥ RC2

⇠= R ⇥ R ⇥ R ⇥ R. By

induction, it may be shown that RG is isomorphic to the direct product of 2n

copies of R. Hence, RG is xk(x� 2)-clean by Proposition 6.3.6.

In the following, we shall give some further properties of x(x� c)-clean rings,

where c belongs to the centre of the ring.
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Lemma 6.3.2. Let R be a ring, let c 2 U(R) and let all roots of g(x) = x(x� c)

in R be central. For any a, b 2 R, if ab = c, then ba = c.

Proof. Let a, b 2 R such that ab = c. Since c is a root of g(x), we have

that c is central and therefore, ba(ba � c) = baba � c(ba) = b(ab)a � c(ba) =

c(ba)� c(ba) = 0. Thus, ba is a root of g(x) and hence, ba is also central. Then

ca = (ab)a = a(ba) = baa and it follows that c2 = c(ab) = (ca)b = (baa)b = bac.

Since c 2 U(R) (by the hypothesis), it follows that c = ba.

By Proposition 6.3.1 and Lemma 6.3.2, we readily have the following:

Corollary 6.3.1. Let R be a ring which is x(x � c)-clean and let all roots of

x(x� c) in R be central. For any a, b 2 R, if ab = c, then ba = c.

Proposition 6.3.10. Let R be an abelian ring and let e 2 Id(R). Then the

following hold.

(a) Let g(x) = xk(x�c) 2 Z(R)[x] where k is a positive integer. Then g(se) = 0

for any root s of g(x) in R.

(b) Let ḡ(x) = x(x� c) 2 Z(R)[x]. Then ḡ(se+ t(1� e)) = 0 for any roots s, t

of ḡ(x) in R.

Proof. (a) Let s be a root of g(x). Then sk(s� c) = g(s) = 0 and it follows that

sk+1 = skc. Hence, g(se) = (se)k(se� c) = sk+1ek+1 � skcek = skce� skce = 0.

(b) Let s, t be roots of ḡ(x). Then s(s� c) = 0 and t(t� c) = 0 from which we

have s2 = sc and t2 = tc. Then ḡ(se + t(1 � e)) = (se + t(1 � e))((se + t(1 �

e))� c) = (se+ t(1� e))2 � (se+ t(1� e))c = s2e+ t2(1� e)� (se+ t(1� e))c =

(se+ t(1� e))c� (se+ t(1� e))c = 0.
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Proposition 6.3.11. Let R be a ring and let g(x) = x(x � c) 2 Z(R)[x] with

c 2 U(R). Then r 2 R is weakly clean if and only if rc is weakly g(x)-clean.

Proof. ()): Suppose that r 2 R is weakly clean. Then r = u+e or r = u�e for

some u 2 U(R) and e 2 Id(R). Hence, rc = (u+e)c = uc+ec or rc = (u�e)c =

uc� ec. Note that uc 2 U(R) and g(ec) = ec(ec� c) = �ce(1� e)c = 0. Hence,

rc is weakly g(x)-clean.

((): Suppose that rc is weakly g(x)-clean. Then rc = u + s or rc = u � s for

some u 2 U(R) and s 2 R such that g(s) = 0. It follows that r = uc�1 + sc�1 or

r = uc�1 � sc�1. By the hypothesis, uc�1 2 U(R). Note that (sc�1)2 = s2c�2 =

(sc)(c�2) = sc�1. It follows that sc�1 is an idempotent in R. Hence, r is weakly

clean.

Proposition 6.3.12. Let R be an abelian ring and let g(x) = xk(x�c) 2 Z(R)[x]

where k is a positive integer and c 2 U(R). If r 2 R is clean and 1 + r is g(x)-

clean, then r + e is g(x)-clean for some e 2 Id(R).

Proof. Let r = u+e and let 1+r = v+t where u, v 2 U(R), e 2 Id(R) and t 2 R

such that g(t) = 0. Then r+ e = (1+ r)e+ r(1� e) = (v+ t)e+(u+ e)(1� e) =

(ve + u(1 � e)) + te. Since R is abelian, we have ve + u(1 � e) 2 U(R) with

(ve+ u(1� e))�1 = v�1e+ u�1(1� e) and g(te) = (te)k(te� c) = tk+1e� ctke =

ctke� ctke = 0. It follows that r + e is g(x)-clean.

In the remainder of this section, we shall consider the x(x�c)-clean condition

in the group ring RC2 where R is a commutative ring. We first state the following

lemma:

Lemma 6.3.3. [46, Lemma 3.2] Let R be a commutative ring. Then the element
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a+ bg 2 RC2 where a, b 2 R and g 2 C2 is invertible if and only if a+ b, a� b 2

U(R).

Lemma 6.3.4. Let R be a commutative ring. Then the element a + bg 2 RC2

where a, b 2 R and g 2 C2 is a root of h(x) = x(x � c) 2 R[x] if and only if

a2 + b2 = ca and 2ab = cb. Moreover, in this case a + b and a � b are roots of

h(x).

Proof. Suppose that a+bg 2 RC2 is a root of h(x). Then (a+bg)((a+bg)�c) =

0. It follows that (a+ bg)2 = c(a+ bg). Hence, a2 + b2 + 2abg = ca+ cbg which

gives us the equations a2 + b2 = ca and 2ab = cb. Conversely, let a + bg 2 RC2

such that a2 + b2 = ca and 2ab = cb. Then h(a+ bg) = (a+ bg)((a+ bg)� c) =

(a+bg)2�c(a+bg) = (a2+b2+2abg)�(ca+cbg) = (a2+b2�ca)+(2ab�cb)g = 0.

For the final assertion, we add the equations a2 + b2 = ca and 2ab = cb to get

a2 + b2 + 2ab = c(a + b) which then gives us (a + b)2 = c(a + b). It follows that

h(a + b) = 0. By subtracting the equation 2ab = cb from a2 + b2 = ca, we have

that a2+b2�2ab = c(a�b). Thus, (a�b)2 = c(a�b) and hence, h(a�b) = 0.

Proposition 6.3.13. Let R be a commutative ring, let r 2 R and let 2 2 U(R).

Let h(x) = x(x�c) 2 R[x] and let C2 = hg | g2 = 1i. If the element r+rg 2 RC2

can be written as the sum of a unit in RC2 and a root of h(x) in R, then r is

n-weakly clean for any integer n � 2.

Proof. Suppose that r + rg 2 RC2 can be written as r + rg = (a + bg) + s for

some a + bg 2 U(RC2) and s 2 R such that s(s � c) = 0. Then a + s = r and

b = r. Since a+ bg 2 U(RC2), we have by Lemma 6.3.3 that a+ b and a� b are

invertible. It follows that a+r and a�r are invertible. Since s = r�a = �(a�r)
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is invertible and s(s � c) = 0, we thus have that s = c and hence, c 2 U(R).

Thus, 2r � c = (r � c) + r = a + r 2 U(R) which implies that r = 2�1(c + u)

for some u 2 U(R). That is, r can be written as a sum of 2 units in R. By

Proposition 4.2.1, r is n-weakly clean for any integer n � 2.

6.4 More equivalent conditions for x(x�c)-clean
rings

Let R be a ring. A proper right (left) ideal P of R is said to be prime if aRb ✓ P

with a, b 2 R implies that a 2 P or b 2 P . The ring R is said to be a right

(respectively, left) pm-ring if every prime right (respectively, left) ideal of R is

contained in a unique maximal right (respectively, left) ideal of R.

Given a ring R, let Spec
r

(R) be the set of all proper right ideals of R which are

prime. It has been shown in [72, Corollary 2.8] that if R is not a right quasi-duo

ring, then Spec
r

(R) is a topological space with the weak Zariski topology but not

with the Zariski topology. For a right ideal I of R, let U
r

(I) = {P 2 Spec
r

(R) |

P + I} and V
r

(I) = Spec
r

(R) \ U
r

(I). Let ⌧ = {U
r

(I) | I is a right ideal of R}.

Then ⌧ contains the empty set and Spec
r

(R). In general, ⌧ is just a subbase

of the weak Zariski topology on Spec
r

(R). For any element a 2 R, let U
r

(a) =

U
r

(aR) and V
r

(a) = V
r

(aR). Then U
r

(a) = {P 2 Spec
r

(R) | a /2 P} and

V
r

(a) = {P 2 Spec
r

(R) | a 2 P}. The left prime spectrum Spec
l

(R) and the

weak Zariski topology associated with it are defined analogously. Let Max
r

(R)

(respectively, Max
l

(R)) be the set of all maximal right (respectively, left) ideals

of R. Since maximal right (respectively, left) ideals are prime right (respectively,

left) ideals (see [57]), Max
r

(R) (respectively, Max
l

(R)) inherits the weak Zariski

topology on Spec
r

(R) (respectively, Spec
l

(R)). Let U
r

(I) = Max
r

(R) \ U
r

(I)
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and V
r

(I) = Max
r

(R) \ V
r

(I) for any right ideal I of R. Then, in particular,

U
r

(a) = Max
r

(R)\U
r

(a) and V
r

(a) = Max
r

(R)\V
r

(a) for any a 2 R. A clopen

set in a topological space is a set which is both open and closed. A topological

space is said to be zero-dimensional if it has a base consisting of clopen sets.

In [21], a ring R (not necessarily commutative) is said to be right (respectively,

left) topologically boolean, or a right (respectively, left) tb-ring for short, if for

every pair of distinct maximal right (respectively, left) ideals of R, there is an

idempotent in exactly one of them. Now let g
c

(x) = x(x�c) 2 Z(R)[x]. Here, we

define a ring R to be right (respectively, left) c-topologically boolean, or a right

(respectively, left) c-tb ring for short, if for every pair of distinct maximal right

(respectively, left) ideals of R, there is a root of g
c

(x) in exactly one of them. We

say that R is a c-tb ring if it is both right and left c-tb. Clearly, when c = 1, a

right (respectively, left) c-tb ring is just a right (respectively, left) tb-ring.

In this section we show that among conditions equivalent to R being an

x(x � c)-clean ring where c 2 U(R) \ Z(R) is that R is right (left) c-tb. We

begin with the following lemmas.

Lemma 6.4.1. Let R be a ring, let g(x) = x(x� c) 2 Z(R)[x] where c 2 U(R)

and let s 2 R be a central root of g(x). Let N be a maximal right ideal of R. If

s /2 N , then c� s 2 N .

Proof. Since g(s) = 0, we have that s(s� c) = 0 2 P for any prime right ideal

P of R. Then since s is central, it follows that every prime right ideal of R

contains either s or s� c. Now since c = s+ (c� s) and c 2 U(R), we have that

1 = sc�1 + (c � s)c�1. Hence, every prime right ideal of R contains either s or

c � s but not both. Since maximal right ideals are prime right ideals (by [57]),
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it follows that if s /2 N , then c� s 2 N .

Lemma 6.4.2. Let R be a ring and let g(x) = x(x � c) 2 Z(R)[x] where c 2

U(R). Let s, t 2 R be central roots of g(x). Then c�1st, s+ t� c�1st and c� s

are also roots of g(x).

Proof. We first note that since s(s � c) = 0 and t(t � c) = 0, we thus have

s = c�1s2 and t = c�1t2. Then

g(c�1st) = c�1st(c�1st� c) = c�2(st)2 � st

= c�2(st)2 � c�1s2t (* s = c�1s2)

= c�2(s2t)(t� c)

= 0.

We also have that

g(s+ t� c�1st) = (s+ t� c�1st)(s+ t� c�1st� c)

= s(s� c) + s(t� c�1st) + t(s� c�1st) + t(t� c)

�c�1st(s� c�1st)� c�1st(t� c)

= 0.

Finally, we note that g(c� s) = (c� s)((c� s)� c) = (s� c)s = g(s) = 0.

Let R be a ring and let g(x) = x(x � c) 2 Z(R)[x] where c 2 U(R). Let

⇠ = {U
r

(s) | s 2 R is a central root of g(x) = x(x�c)}. By Lemma 6.4.2 and the

following lemma, we may deduce that ⇠ is closed under intersection and union.

Lemma 6.4.3. Let R be a ring and let g(x) = x(x�c) 2 Z(R)[x] with c 2 U(R)

such that every root of g(x) is central in R. If s, t 2 R are roots of g(x), then

the following hold.
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(a) U
r

(s) \ U
r

(t) = U
r

(c�1st).

(b) U
r

(s) [ U
r

(t) = U
r

(s+ t� c�1st).

(c) U
r

(s) = V
r

(c� s). In particular, every set in ⇠ is clopen.

Proof. (a) Let P 2 U
r

(s) \ U
r

(t). Then P 2 Spec
r

(R) with s, t /2 P . Note

that c /2 P ; otherwise 1 = cc�1 2 P , a contradiction. Since c, s, t are central

in R and P is a prime right ideal of R, it follows that c�1st /2 P . Hence,

P 2 U
r

(c�1st) and therefore, U
r

(s) \ U
r

(t) ✓ U
r

(c�1st). Conversely, suppose

that P 2 U
r

(c�1st). If s or t belongs to P , then since s, t are central in R and

P is a right ideal of R, it follows that c�1st 2 P ; a contradiction. Thus s and t

do not belong to P , that is, P 2 U
r

(s)\U
r

(t). Hence, U
r

(c�1st) ✓ U
r

(s)\U
r

(t).

The equality U
r

(s) \ U
r

(t) = U
r

(c�1st) thus follows. Then U
r

(s) \ U
r

(t) =

U
r

(s) \ U
r

(t) \Max
r

(R) = U
r

(c�1st) \Max
r

(R) = U
r

(c�1st).

(b) Let P 2 U
r

(s) [ U
r

(t). Then s /2 P or t /2 P . Without loss of generality,

suppose that s /2 P . Since s(s � c) = 0 2 P and s /2 P with s central in R, it

follows that s�c 2 P . Then (1�c�1s)t = �c�1(s�c)t 2 P . If s+(1�c�1s)t 2 P ,

then it will follow that s 2 P ; a contradiction. Thus, s + (1 � c�1s)t /2 P and

hence, P 2 U
r

(s+(1� c�1s)t). The inclusion U
r

(s)[ U
r

(t) ✓ U
r

(s+(1� c�1s)t)

therefore holds. For the reverse inclusion, suppose that P 2 U
r

(s+ (1� c�1s)t).

Then s+ (1� c�1s)t /2 P . If s and t both belong to P , then s+ (1� c�1s)t 2 P ;

a contradiction. Hence, either s /2 P or t /2 P , that is, P 2 U
r

(s) or P 2 U
r

(t).

Therefore, P 2 U
r

(s)[ U
r

(t) and the inclusion U
r

(s+(1�c�1s)t) ✓ U
r

(s)[ U
r

(t)

follows. Hence, U
r

(s)[U
r

(t) = U
r

(s+(1�c�1s)t). It follows that U
r

(s)[U
r

(t) =

(U
r

(s) \Max
r

(R)) [ (U
r

(t) \Max
r

(R)) = (U
r

(s) [ U
r

(t)) \Max
r

(R) = U
r

(s+

(1� c�1s)t) \Max
r

(R) = U
r

(s+ (1� c�1s)t).
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(c) By using Lemma 6.4.1, we have U
r

(s) = Max
r

(R) \U
r

(c� s) = V
r

(c� s). It

follows that every set in ⇠ is clopen.

Next, we extend Proposition 2.4 in [21] as follows:

Proposition 6.4.1. Let R be an x(x � c)-clean ring with c 2 Z(R) such that

every root of x(x� c) is central in R. Then R is a right c-tb ring.

Proof. By Proposition 6.3.1, c 2 U(R). Let M and N be distinct maximal right

ideals of R. Then there exists a 2 M \N and N + aR = R. Hence, 1� ar 2 N

for some r 2 R. Since N is a right ideal of R, c � arc = (1 � ar)c 2 N . Let

y = arc. Then c� y 2 N and y 2 M \N . Since R is x(x� c)-clean, there exist

a unit u 2 R and a root s 2 R of x(x � c) such that y = u + s. If s 2 M , then

u = y � s 2 M from which it follows that M = R; a contradiction since M is a

maximal right ideal of R. Thus, s /2 M . If s /2 N , then c � s 2 N (by Lemma

6.4.1) and hence, u = y� s = (y� c)+ (c� s) 2 N . It follows that N = R which

is also not possible since N is a maximal right ideal of R. We thus have that s

is a root of x(x� c) belonging to N only. Hence, R is a right c-tb ring.

In [21], the following lemma was proven.

Lemma 6.4.4. [21, Lemma 2.1] Let R be a ring. Then Max
r

(R) is a compact

T1-space.

Proposition 6.4.2. Let R be a ring and let g(x) = x(x � c) 2 Z(R)[x] with

c 2 U(R) such that every root of g(x) in R is central. If R is a right c-tb ring,

then ⇠ forms a base for the weak Zariski topology on Max
r

(R). In particular,

Max
r

(R) is a compact, zero-dimensional Hausdor↵ space.

Proof. Note that if M1 and M2 are two distinct maximal right ideals of R,

then since R is a right c-tb ring, there exists a root s 2 R of g(x) such that
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s /2 M1, s 2 M2 (that is, M1 2 U
r

(s), M2 /2 U
r

(s)). The points in Max
r

(R) can

therefore be separated by disjoint clopen sets belonging to ⇠. Hence, Max
r

(R)

is Hausdor↵. By Lemma 6.4.4, we have that Max
r

(R) is compact.

To show that ⇠ forms a base for the weak Zariski topology on Max
r

(R),

let K ✓ Max
r

(R) be a closed subset and take M /2 K. For each N 2 K,

since N 6= M , there exists a clopen set U
r

(s
N

) 2 ⇠ separating M and N , say

N 2 U
r

(s
N

). The collection {U
r

(s
N

) | N 2 K} is therefore an open cover of the

set K. Since K is compact, it has a finite subcover, that is, K is contained in

a finite cover of sets of the form U
r

(s
N

) with N 2 K. By Lemma 6.4.3, there

exists a clopen set C 2 ⇠ separating M from K. Hence, ⇠ forms a base for the

weak Zariski topology on Max
r

(R). Since every set in ⇠ is clopen (by Lemma

6.4.3), it follows that Max
r

(R) is zero-dimensional.

Proposition 6.4.3. Let R be a ring and let g(x) = x(x � c) 2 Z(R)[x] with

c 2 U(R) such that every root of g(x) in R is central. If ⇠ forms a base for the

weak Zariski topology on Max
r

(R), then for any a 2 R, there exists a root s of

g(x) such that s /2 M for every M 2 V
r

(a) and s 2 N for every N 2 V
r

(a� c).

Proof. Consider the disjoint closed sets V
r

(a) and V
r

(a � c). Since ⇠ forms a

base for the weak Zariski topology on Max
r

(R) and Max
r

(R) is compact, there

is a clopen set U
r

(s) 2 ⇠ separating the sets V
r

(a) and V
r

(a � c). Without loss

of generality, assume that V
r

(a) ✓ U
r

(s) and V
r

(a� c) ✓ V
r

(s). Then it follows

that s /2 M for every M 2 V
r

(a) and s 2 N for every N 2 V
r

(a� c).

Proposition 6.4.4. Let R be a ring and let g(x) = x(x � c) 2 Z(R)[x] with

c 2 U(R) such that every root of g(x) in R is central. If for every a 2 R there

109



exists a root s 2 Z(R) of g(x) such that V
r

(a) ✓ U
r

(s) and V
r

(a � c) ✓ V
r

(s),

then R is g(x)-clean.

Proof. Let a 2 R. By the hypothesis, there exists a root s 2 Z(R) of g(x) such

that V
r

(a) ✓ U
r

(s) and V
r

(a� c) ✓ V
r

(s). We claim that a� s is a unit. Let M

be a maximal right ideal of R. Note that if a 2 M , then a�s /2 M , since s /2 M .

Next, suppose that a /2 M . If a � s 2 M , then s /2 M , and hence, c � s 2 M

(by Lemma 6.4.1). Then since (a � c) + (c � s) = a � s 2 M , it follows that

a� c 2 M and hence, s 2 M (because V
r

(a� c) ✓ V
r

(s)); a contradiction. Thus,

a� s /2 M . We have therefore shown that a� s /2 M for any maximal right ideal

M of R. Hence, a� s has a right inverse, that is, (a� s)v = 1 for some v 2 R.

Then (a� s)(vc) = c and by Lemma 6.3.2, we have that (vc)(a� s) = c. Since

c 2 U(R)\Z(R), we can conclude that a� s is a unit in R. Hence, a is the sum

of a unit and a root of g(x) in R. Since a is arbitrary in R, it follows that R is

g(x)-clean.

We are now ready for the main result.

Theorem 6.4.1. Let R be a ring and let x(x� c) 2 Z(R)[x] with c 2 U(R). If

every root of x(x�c) is central in R, then the following conditions are equivalent:

(a) R is x(x� c)-clean.

(b) R is x(x+ c)-clean.

(c) R is n-clean for all positive integers n.

(d) R is a right c-tb ring.

(e) The collection ⇠ = {U
r

(s) | s 2 R is a root of x(x� c)} forms a base for the

weak Zariski topology on Max
r

(R).
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(f) For every a 2 R, there exists a root s 2 Z(R) of x(x� c) such that V
r

(a) ✓

U
r

(s) and V
r

(a� c) ✓ V
r

(s).

(g) R is a left c-tb ring.

(h) The collection ⇠ = {U
l

(s) | s 2 R is a root of x(x� c)} forms a base for the

weak Zariski topology on Max
l

(R).

Proof. By Theorem 6.3.1, it follows readily that (a) , (b) , (c). By Proposi-

tion 6.4.1, we readily have (a) ) (d). The implications (d) ) (e) ) (f) follow by

Propositions 6.4.2 and 6.4.3, respectively. The implication (f) ) (a) is straight-

forward by using Proposition 6.4.4. For (a) , (g) , (h), this follows from the

left analogue of the arguments for (a) ) (d) ) (e) ) (f) ) (a).

Remark. Characterisations of clean-related rings in terms of their topological

properties have also recently been obtained in [14]. In that paper, a ring R is said

to be feckly clean provided that for any a 2 R, there exist an element e 2 R and

an element u 2 R satisfying RuR = R such that a = e+u and eR(1�e) ✓ J(R).

Among others, the authors obtained a characterisation of feckly clean rings in

terms of the topological space of all prime ideals containing the Jacobson radical

of R.

111



Chapter 7

Summary of Properties

For the convenience of the reader, we summarise in this final chapter some prop-

erties of the rings covered in this dissertation. The properties considered in this

chapter have been shown to hold (or not to hold) in the previous chapters or in

the available literature.

7.1 Corners

Question 7.1.1. Let R be a clean (respectively, weakly clean, pseudo weakly

clean, uniquely weakly clean, n-weakly clean) ring and let e 2 Id(R). Is the cor-

ner ring eRe also clean (respectively, weakly clean, pseudo weakly clean, uniquely

weakly clean, n-weakly clean)?

Yes Not always uncertain

Clean X
Weakly clean X⇤

Pseudo weakly clean X
Uniquely weakly clean X
n-weakly clean (n � 2) X

⇤ For abelian rings

Question 7.1.2. Let R be a ring and let e 2 Id(R) such that the corner ring eRe

is clean (respectively, weakly clean, pseudo weakly clean, uniquely weakly clean,
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n-weakly clean). Is the ring R also clean (respectively, weakly clean, pseudo

weakly clean, uniquely weakly clean, n-weakly clean)?

Yes Not always uncertain

Clean X
Weakly clean X
Pseudo weakly clean X
Uniquely weakly clean X
n-weakly clean (n � 2) X

7.2 Direct products

Question 7.2.1. Let R =
Q

i2I Ri

where each R
i

is a ring. Suppose that R

is clean (respectively, weakly clean, pseudo weakly clean, uniquely weakly clean,

n-weakly clean). Is each R
i

also clean (respectively, weakly clean, pseudo weakly

clean, uniquely weakly clean, n-weakly clean)?

Yes Not always uncertain

Clean X
Weakly clean X
Pseudo weakly clean X
Uniquely weakly clean X
n-weakly clean (n � 2) X

Question 7.2.2. Let R =
Q

i2I Ri

where each R
i

is a ring. Suppose that each R
i

(i 2 I) is clean (respectively, weakly clean, pseudo weakly clean, uniquely weakly

clean, n-weakly clean). Is R clean (respectively, weakly clean, pseudo weakly

clean, uniquely weakly clean, n-weakly clean)?
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Yes Not always

Clean X
Weakly clean X⇤

Pseudo weakly clean X⇤⇤

Uniquely weakly clean X
n-weakly clean (n � 2) X⇤⇤⇤

Remarks.
⇤ provided at most one R

i

is not a weakly clean ring
⇤⇤ provided at most one R

i

is not a pseudo weakly clean ring
⇤⇤⇤ provided at most one R

i

is not an n-weakly clean ring

7.3 Centres

Question 7.3.1. Let R be a clean (respectively, weakly clean, pseudo weakly

clean, uniquely weakly clean, n-weakly clean) ring. Is the centre of R also clean

(respectively, weakly clean, pseudo weakly clean, uniquely weakly clean, n-weakly

clean)?

Yes Not always uncertain

Clean X
Weakly clean X
Pseudo weakly clean X
Uniquely weakly clean X
n-weakly clean (n � 2) X

7.4 Homomorphic Images

Question 7.4.1. Let R be a clean (respectively, weakly clean, pseudo weakly

clean, uniquely weakly clean, n-weakly clean) ring. Are homomorphic images of

R also clean (respectively, weakly clean, pseudo weakly clean, uniquely weakly

clean, n-weakly clean)?
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Yes No Uncertain

Clean X
Weakly clean X
Pseudo weakly clean X
Uniquely weakly clean X
n-weakly clean (n � 2) X

7.5 Polynomial rings

Question 7.5.1. Is the polynomial ring over a clean (respectively, weakly clean,

pseudo weakly clean, uniquely weakly clean, n-weakly clean) ring also clean (re-

spectively, weakly clean, pseudo weakly clean, uniquely weakly clean, n-weakly

clean)?

Yes No uncertain

Clean X
Weakly clean X
Pseudo weakly clean X
Uniquely weakly clean X
n-weakly clean (n � 2) X

7.6 Power series rings

Question 7.6.1. Is the formal power series ring over a clean (respectively,

weakly clean, pseudo weakly clean, uniquely weakly clean, n-weakly clean) ring

also clean (respectively, weakly clean, pseudo weakly clean, uniquely weakly clean,

n-weakly clean)?

Yes No Uncertain

Clean X
Weakly clean X
Pseudo weakly clean X⇤

Uniquely weakly clean X
n-weakly clean (n � 2) X

⇤ Shown for commutative rings
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