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ABSTRACT 

 

The USDA is the latest universal shell model interaction in the SD (0s1d) shell. It is 

derived by fitting  more than 600 energy levels from experimental data. We assess the 

accuracy of the USDA Hamiltonian in the nuclear structure calculations for odd-A 

magnesium isotopes with neutron numbers between 9 and 17 on the basis of the recently 

reported experimental data. This study provides an example of the applicability and the 

accuracy of the shell model calculations limited to the sd shell. The assessments rely on the 

evaluation of the Hamiltonian’s eigenvalues with the corresponding positive parity energy 

states up to 10 MeV for most isotopes and the Hamiltonian’s eigenvectors with the 

transition strength probability and inelastic electron-nucleus scattering. We show the 

regions in which the Hamiltonian is effective and demonstrated the possibility of 

confirming the known experimental data and suggesting some new nuclear energy levels.  

The calculations of the energy states are performed by using the OXBASH code and 

the results show a good agreement with the experimental states for the 
21- 27

Mg isotopes 

while a clear difference is found with the 
29

Mg data. Many energy states are proposed and 

we have confirmed the existence of some states that were experimentally uncertain . The 

reduced electric quadrupole transition probabilities, reduced magnetic dipole transition 

probabilities, and multipole mixing ratio results show the same precision for related energy 

states. The longitudinal inelastic electron scattering form factors have been calculated for 

the states 0.974(J=    
 ), 1.611(J=    

 ), 1.964(J=    
 ), 2.563(J=    

 ), 2.801(J=    
 ), 

3.405(J=    
 ), 4.059(J=    

 ) and 5.252(J=     
 ) MeV in the 

25
Mg spectrum. The wave 

functions of the radial single-particle matrix elements have been calculated with the 
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Woods-Saxon and Skyrme interaction potentials with the one-body transition densities 

(OBTDs) obtained from the USDA calculations. The result of the longitudinal form factors 

C2 and C4 show good agreement with the available experimental data for all states in the 

first sequence whereas, in the second sequence the accuracy of the results vary according to 

the energy of the states. Two shell-model codes, CPM3Y and OXBASH, have been used to 

calculate the transverse form factors for the 1.611 and 3.405 MeV states in the 
25

Mg 

spectrum with the OBTDs obtained from USDA Hamiltonian. The results of the two codes 

show good agreement with the available experimental data for the J=7/2
+
 state at energy 

1.611 MeV. For the second state J=9/2
+
 at energy 3.405 MeV, the CPM3Y and OXBASH 

results are higher and lower than the experimental data, respectively. The effective   

factors values are used as adjustable parameters to get an agreement with the experimental 

data for OXBASH calculations due to the core-polarization effects.  
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ABSTRAK 

 

USDA adalah interaksi model petala umum terkini di dalam petala SD (0s1d). Ia telah 

diterbitkan oleh  padanan kepada lebih daripada 600 aras tenaga daripada data eksperimen. 

Kami menaksirkan kejituan Hamiltonian USDA dalam pengiraan struktur nuklear bagi 

isotop magnesium A-ganil dengan nombor neutron antara 9 tan 17 pada asas data 

eksperimen yang terkini dilaporkan. Kajian ini memberikan satu contoh keterterapan dan 

kejituan pengiraan model petala yang dihadkan kepada petala sd. Penilaian ini bergantung 

kepada penaksiran nilai eigen Hamiltonian yang sepadan dengan keadaan tenaga pariti 

positif sehingga 10 MeV bagi kebanyakan isotop serta vektor eigen Hamiltonian dengan 

kebarangkalian kekuatan peralihan dan serakan electron-nukleus tak kenyal. Kami 

menujukkan kawasan di mana Hamiltonian adalah efektif dan kebarangkalian untuk 

mengesahkan data eksperimen yang diketahui serta mencadangkan sebahagian keputusan 

baru struktur nuklear. Pengiraan keadaan tenaga dilakukan dengan menggunakan kod 

OXBASH dan keputusannya menunjukkan persetujuan dengan keadaan eksperimen bagi 

isotope  
21- 27

Mg manakala satu perbezaan nyata dijumpai pada data 
29

Mg. Banyak keadaan 

tenaga yang telah dicadangkan dan kami telah mengesahkan kewujudan sebahagian 

keadaan yang tidak dapat dipastikan daripada eksperimen. Keputusan kebarangkalian 

peralihan catur kutub-elektrik terkurang, kebarangkalian peralihan dwikutub magnet 

terkurang dan nisbah campuran multikutub menunjukkan kepersisan yang sama bagi 

keadaan tenaga yang berkaitan. Faktor bentuk serakan membujur elektron tak kenyal telah 

dikira untuk keadaan 0.974(J=    
 ), 1.611(J=    

 ), 1.964(J=    
 ), 2.563(J=    

 ), 

2.801(J=    
 ), 3.405(J=    

 ), 4.059(J=    
 ) dan 5.252(J=     

 ) MeV di dalam 
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spektrum 
25

Mg. Fungsi gelombang elemen matrik jejari satu zarah telah dikira dengan 

menggunakan keupayaan interaksi Woods-Saxon dan Skyrme dengan ketumpatan peralihan 

satu jasad (OBTDs) diperolehi daripada pengiraan USDA. Keputusan faktor bentuk 

membujur C2 dan C4 menunjukkan persetujuan dengan data eksperimen yang sedia ada 

bagi semua keadaan dalam urutan pertama. manakala dalam urutan kedua kejituan 

keputusannya berubah bergantung kepada tenaga bagi keadaan tersebut . Dua kod model 

petala CPM3Y dan OXBASH telah digunakan untuk mengira faktor bentuk melintang bagi 

keadaan 1.611 dan 3.405 MeV dalam spektrum 
25

Mg dengan OBTDs diperolehi daripada 

Hamiltonian USDA.  Keputusan bagi dua kod tersebut menunjukkan persetujuan dengan 

data eksperimen sedia ada bagi keadaan J=7/2
+ 

pada tenaga 1.611 MeV. Bagi keadaan 

kedua J=9/2
+ 

pada tenaga 3.405 MeV, keputusan CPM3Y dan OXBASH masing- masing 

menunjukkan lebih tinggi dan rendah daripada data eksperimen. Nilai efektif faktor   

digunakan sebagai parameter bolehlaras untuk mendapatkan persetujuan dengan data 

eksperimen bagi pengiraan OXBASH disebabkan oleh kesan pengutuban teras.  
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CHAPTER 1 

 

INTRODUCTION 

 

Understanding the composition of matter has been one of the important issues 

throughout human history. Breaking matter into smaller building blocks helped to provide 

information about the molecules which consists of atoms and each atom consists of 

electrons and a nucleus. The nucleus is composed of protons and neutrons and their number 

determines the properties of the nucleus and thus the properties of matter. The nucleus is 

very small, about 10
-12

 to 10
-13

 cm in diameter, and its protons and neutrons orbit relative 

one to another and interact with each other via the nuclear and Coulomb forces. It is 

common using the letter Z as the atomic number which represents the number of protons 

(or electrons) in the nucleus (in the atom), N the number of neutrons and A the mass 

number which is equal to Z+N.  Isotopes are nuclei with same Z but different N [1].   

Nuclei have two types of properties: time-independent properties such as mass, size, 

charge and spin, and time-dependent properties such as radioactive decay and artificial 

transmutation. The excited states of nucleus are the time-independent property where each 

state has a definite energy and angular momentum. Time-dependent processes also involve 

transition between excited states [2]. 

There are almost 1700 species of nuclei that occur naturally on earth and a 

significant number of them are created artificially or in the  interior of stars [3]. For each Z 
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element there are usually one or more stable or long-lived isotopes. At low value of Z, the 

stable nucleus is usually at Z=N and this property changes when N>Z for heavier nuclei 

where the number of protons and the Coulomb force increases. 

From the Rutherford’s discovery of nucleus to till date, scientists have strived to 

find a thorough understanding for this system and the forces which are responsible for 

binding the components in this extremely small size. Our understanding of nuclear structure 

is “barely scratched the surface”. But, we have colossal number of facts about the nucleus 

and we have extensive knowledge about these facts [4]. 

The understanding on nuclear structure means the features of the nucleus and the 

forces that hold it together. The goal of nuclear structure study is to develop models that 

combine all of the nuclear phenomena in order to produce a unified nuclear picture. The 

development of nuclear models has connection to other fields in physics. There are many 

isotopes that will never be attainable in the laboratory but their existence is possible in stars 

or may have existed earlier in cosmological time. The development of generalized nuclear 

models increases the ability to predict nuclear behavior and provides information that is 

required for cosmological calculations. 

To describe the nuclei properties, the theoretical nuclear models must treat the 

weak, strong, and electromagnetic interactions. The accurate mathematical form to the 

nucleon-nucleon interaction cannot be represented clearly because the strong force acts 

non-perturbatively. The solution for this problem was established by using several different 

approaches either theoretically or phenomenologically [5]. The phenomenological and 

empirical considerations represent an alternative to the direct theoretical calculation of the 

effective interactions.  This approach can be applied to parameterize an interaction which 

leads to closer correspondence to experiments. Many ways can be used for making such a 
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parameterization, starting from those depend highly on a model for the interaction to those 

that are ultimately independent of any such assumptions [6]. 

Shell model and collective model are the basic models that from the framework of 

our understanding on nuclei [4]. Shell model is one of the most important models that have 

been used to describe the nuclear system  for more than 60 years, but the  main challenges 

for this model appeared when the nuclei are away from closed shells, far off the stability 

line or in the high energy levels. 

The aim of this work is to study the nuclear structure of the odd-magnesium 

isotopes 
21-29

Mg by employing the new SD-shell Hamiltonian (USDA) [7]  with the proton-

neutron formalism version (USDAPN) in the shell model. USDA represents the closest 

match between realistic and empirical Hamiltonians. 

The first objective of this work is to determine the precision of the USDA 

calculations. The precision of the USDA is derived from the eigenvalues and eigenvectors 

of this Hamiltonian. The eigenvalues are investigated through the comparison with the 

available experimental excited-state for odd-magnesium isotopes.  The Hamiltonian 

eigenvectors are used in the transitions calculations and the investigation of the 

eigenvectors is achieved through the comparison with the available experimental transition 

strengths and form factors. The second objective is to present new theoretical nuclear 

structure data specific in the regions where the USDA shows some reasonable precision. 

The third objective aims to study the recent modifications in some nuclear factors in 

compatibility with USDA calculations in order to increase the accuracy and the resulting  

inferences. 
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In order to clarify the USDA and OXBASH program characteristics, we need to 

illustrate the nuclear structure according to the perspective of the shell model with emphasis 

on the odd-magnesium isotopes properties and their importance through some previous 

studies. All of the above will be discussed in Chapter Two. 

In Chapter Three we will present the details of the mathematical equations which 

are used in our calculations. The results of the state energies and reduced electric 

quadrupole transition probabilities, reduced magnetic dipole transition probabilities, and 

multipole mixing ratio are illustrated in Chapter Four. Chapter Five contains the results of 

the inelastic electron scattering longitudinal and transverse form factors for 
25

Mg nucleus. 

Finally, the conclusions and future work are presented in Chapter Six. 
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CHAPTER 2 
 

SHELL MODEL 

 

2.1 Nuclear Structure Within Shell Model 

 

The liquid drop model is effective in characterizing the nucleus in macroscopic 

terms i. e. volume, surface area, Coulomb repulsion, pairing and symmetry (neutron to 

proton ratio). Other nuclear microscopic properties, such as the increase in binding energy 

for nuclei at closed nuclear shell boundaries, cannot be described using this semi-empirical 

approach. There are experimental data that prove the existence of a shell-like structure that 

is analogous to the observed atomic shell structure [8]. It has been found in nuclei with 

certain values of proton number (Z) and/or neutron number (N) equal to 2, 8, 20, 28, 50, 82 

and 126 that show obvious contrast from the liquid drop model behavior by being 

unusually stable. These values of Z and/or N are called magic numbers because the lack of 

interpretation to these numbers for quite a long time. This unusual behavior of magic nuclei 

has been explained on the basis of the analogy between nuclear and atomic magic numbers. 

The shell model shares remarkable similarities in the complicated details of the atomic 

structure and the same theory has been used to solve problems in nuclear structure. In spite 

of its successes, the model encounter several difficulties when applied in the nuclear field. 

The most important issue is from the potential, where in the atomic shell the potential 

supplied by the Coulomb field of the nucleus-electrons and this external agent establishes 
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the subshells in the atoms. In the nucleus the nucleons move in a potential that is created by 

the nucleons themselves without any external agent [9].   

The shell model describes the filling of orbits or shells with nucleons of certain 

angular momentum and spins with increasing energy within the nuclear potential. Shells are 

filled in a manner consistent with the Pauli Exclusion Principle; it means that each nucleon 

has an individual set of quantum numbers and wave function. Every nucleon is considered 

as an individual particle orbiting in a central potential in spite of the existence of strong 

interactions between nucleons [1]. The central potential governs the motion of each nucleon 

which is designed to approximate most of the nucleons individual interactions. The only 

requirement for this potential V(r) is attractive and V(r) → 0 as r → 0. The Schrodinger 

equation for such potential is [4]: 

   (
  

  
  ( ))    ( )          ( )                                                                     (   ) 

where    is the wavefunction, P  momentum, M is the average nucleon mass and E is the 

eigenvalue for the Hamiltonian H . This equation is separable into radial and angular 

coordinates and therefore the solutions: 

    ( )  
 

 
   ( )   (  )                                                                                                    (   ) 

where n is the radial quantum number n=1, 2,…. ., ℓ the orbital angular momentum ℓ =0, 1, 

2… or s, p, d… , and m the eigenvalue of its z-component, ℓz. 

The harmonic oscillator is an ideal potential because of the ease of analytical and 

computational manipulations. The harmonic potential is given by [4]: 
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 ( )  
 

 
                                                                                                                                 (   )                                                                         

where    is the oscillation frequency, and r the radial distance. For a 3-dimensional 

harmonic oscillator  , the eigenvalues, En ℓ (or energy levels), can be written as [4]:  

    (     
 

 
)                                                                                                                   (   )                                                                 

This leads to exactly degenerate energies of two sub levels. In Figure 2.1, the degenerate 

multiples of levels with more than one value of n (the principle quantum number) can be 

seen in the simple harmonic oscillator scheme. The degeneracy of each level is 2(2ℓ+1), 

which is the number of nucleons in each level. This potential with no modifications 

reproduces only the first three shell closures and above this point, level spacing does not 

represent as has been observed experimentally. This shows that the simple harmonic 

oscillator potential represents a good first approximation to the nuclear potential and must 

be modified to become useful. The first modification comes from adding an 
 
ℓ

2
 term to the 

potential which will flatten out the bottom of the harmonic oscillator potential. The effect 

of the ℓ
2
 term makes the particles with larger angular momentum feel a stronger attractive 

interaction which causes a reduction of the energy of such levels. This energy reducing 

changes the degeneracy of the harmonic oscillator levels which results in the emergence of 

new subshell as shown in Figure 2.1 (Woods-Saxon potential).   
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Figure 2.1: single-particle states with three potential models[10], harmonic oscillator, 

Woods-Saxon without spin-orbit or modified harmonic oscillator with ℓ
 2

term[4] (middle)  

and Woods-Saxon with spin orbit (right). The numbers in square brackets are the maximum 

number of particles in that each level can contain; the following number is a running sum of 

the total. In addition the harmonic oscillator is labeled by the major quantum number 

N=2n+ ℓ, the Woods Saxon is labeled by n, ℓ the Woods-Saxon with spin-orbit is labeled 

by n, ℓ, 2j. 
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One of the most commonly used potentials is the Woods-Saxon potential which has 

the form [9]: 

 ( )  
   

   
   
 

                                                                                                                        (   ) 

where    (well depth) ≈ 50 MeV, R (mean radius) = 1.25 A
1/3

 fm, a (skin thickness) = 0.524 

fm and r is the radial distance from the center of the potential. The Woods-Saxon potential 

represents intermediate form between the square well and harmonic oscillator potentials as 

we can see in Figure 2.2, and it is very similar to the harmonic oscillator potential with a 

modification coming from adding of an ℓ
2
 term [9]. The potential model aim is to allow the 

construction of an appropriate Hamiltonian with the ability of reproducing the nuclear shell 

sequence for closed shells or magic numbers. Despite the degeneracy of the harmonic 

oscillator states has been broken, the reproduction of the magic numbers remains incorrect 

when using the harmonic oscillator potential with an ℓ
2
 correction. The successful 

replication of the magic numbers is achieved by the inclusion of a spin-orbit coupling to the 

Woods-Saxon potential [1]. In addition to the net nuclear potential, each nucleon in the 

nucleus feels a strong inverted spin-orbit interaction proportional to the      value. 

The spin-orbit force in generally is a surface effect, and as such can be written as : 

            

  ( )

  
                                                                                                                   (   ) 

where V (r) is the chosen potential, and Vls is a strength constant [4]. According to the shell 

model perspective, nucleons have an intrinsic angular momentum, s = 
 

 
ħ, known as spin. 

The spin couples to the orbital angular momentum, ℓ, to form the total angular momentum 

j. There are two types of coupling: parallel or anti parallel.  
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Figure 2.2: Potentials radial dependence, square well Vsq., harmonic oscillator Vho, and 

Woods-Saxon potential VWS(r) [11]. 

 

Parallel alignment favors the spin-orbit interaction that affects higher ℓ orbits more than 

oribits with lower ℓ , splitting n ℓ levels into components     
 

 
  and        

 

 
 . 

Due to the effects of splitting; the spin-orbit interaction reproduces the shell gaps at 

the correct magic numbers as shown in Figure 2.1. The energy difference between two 

states with the same n ℓ, originating from the spin-orbit splitting can be found from [10]: 

                                                                                                                                  (   ) 

       ⟩   
  

 
(        )   ⟩ 

  
  

 
( (   )   (   )   (   ))   ⟩                                                                        (   ) 

⟨ 
    

 
 
        

    
 
 
⟩   

 

 
                                                                                              (   ) 

⟨ 
    

 
 
        

    
 
 
⟩   

   

 
                                                                                   (    ) 
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From Equations (2.9) and (2.10), the energy splitting increases linearly with the 

orbital angular momentum ℓ as: 

     
    

 
                                                                                                                      (    ) 

Every nucleon fills the nuclear shells indicated by t n ℓ j, where t represents the type 

of nucleon (proton and neutron). The single-particle states are associated in groups 

according to the principal quantum number n. The nuclear total angular momentum J 

caused by the coupling of all the nucleon single-particle states. Nuclei with an even number 

of neutrons and protons always have a ground state spin of 0
+
 because the strong pairing in 

nuclei whereas in odd-A nuclei, the unpaired nucleon dominate the nuclear spin. The parity 

is the other important feature of the nucleus, which characterizes the properties of the wave 

function under spatial inversion. The individual nucleons are fermions with a definite parity 

π =(-1) ℓ
 and the parity of the of the nucleus is found from product of all the individual 

nucleon parities. 

2.2 The Model Space 

 

 The term “model space” refers to the orbits and the truncation in the set of the orbits 

that is supposed to be used in the calculation [12]. Solving Schrödinger equation in full 

Hilbert space becomes impossible due to the huge number of configurations. In this case, 

the truncation of the Hilbert space is the best technique to solve the Schrödinger equation, 

and there are three parts to this method : 

1- The inert core; all orbits are forced to be always full.  

2- The valence space; a truncated part, model space, consists of the orbits available 

to the valence particles. If the nuclear system consists of N neutron number and 
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Z proton number and the core consists of Nc neutrons and Zc protons then the 

valence protons are Zv=Z-Zc and the valence neutrons are Nv=N-Nc.  

3-  External space; the remaining orbits that are always empty. 

In this work, the truncated model space is defined by the single-particle quantum 

states 0d5/2, 1s1/2, and 0d3/2 as shown in Figure 2.1.  This states configuration is called 

the SD-model space which is commonly used in nuclei with mass number 16 < A < 40 with 

the condition  Z and N > 8 which represents the inert core or the so-called 
16

O. The choice 

of these states is based on the shell gaps between the 0p and 0d ,1s orbits at A=16 and the 

0d, 1s and 0f, 1p orbits at A=40. The gaps are sufficiently large compared with gaps 

between 0d5/2, 1s1/2, and 0d3/2 states. The essential degrees of freedom which are 

necessary to model the typical low-lying positive parity are incorporated in the SD-model 

space [13]. 

Generally, a large model space gives the best and most accurate result while the 

computation time increases exponentially with the model space size. On the other hand, the 

empirical Hamiltonians are more accurate when used in a small model space.  Thus the 

choice of model space is a compromise between what we want to describe and the cost of 

the calculations. It has been found that the truncation of the shell-model spaces in the sd-

shell nuclei has a strong effect in the binding energies but the effect on the excitation 

energies is an order of magnitude smaller [14]. Univ
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2.3 Effective Interaction 

 

 Many methods have been used to calculate the nuclear states energies within higher 

numerical accuracy and to provide wave functions from which the calculation of other 

observables becomes applicable. Shell-model configuration mixing is one of the most 

efficient methods used for this purpose where the conventional shell-model codes provide 

typically 1 keV of numerical accuracy [12]. In this method the matrix is established upon 

all possible Slater determinants with diagonalization on a relatively small subset of valence 

orbits [12]. The standard shell model Hamiltonian can be written as [15]: 

  ∑      ∑ ∑   (     )∑      

 

   

(  )      
(  )

         
 

                        (    )  

where    is the single-particle energies,    denotes the number operators of an orbit a with 

quantum numbers (        )  or sometimes called the one-body transition density, OBTD  

[16],    (     ) the two-body matrix elements.       

 (  ) stands for the creation 

operator of nucleon-pair in orbits a and b with spin quantum number JM and isospin 

quantum number TTz . Occasionally ∑       

 
   

(  )      
(  ) is called the scalar two-

body density operator [7].  

 Shell-model configuration mixing results from diagonalizing a Hamiltonian which 

is a set of single-particle energies (SPEs) [6] or the single-particle matrix elements and two-

body interaction matrix elements (TBME) for a number of particles in a given model space 
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[12] . This Hamiltonian represents the basic requirements for the shell model calculation 

and these sets have recently been referred to as the effective interaction or model space 

Hamiltonian [7]. The same set of SPEs and TBME are conventionally used in the entire 

mass region in the shell-model configuration mixing calculations. This entire mass region is 

covered by the model space.  

There are two general methods to determine the Hamiltonians. The first method is 

the “realistic” method which is constructed for a given shell – model space from known 

data on the free nucleon-nucleon force. The second is an “empirical” method which is 

based on the parameters whose values are determined by agreement between shell-model 

eigenvalues and measured level energies [13].    

One of the most important examples of a realistic Hamiltonian is the renormalized 

G-matrix. It is the starting point for shell-model Hamiltonians according to the nucleon-

nucleon interactions [17]. The set of TBME for the model space is found by using the 

Brueckner G-matrix theory for an assumed closed core. The interaction behavior of the 

short-range repulsive core has been taken into account via the ladder diagrams and the G-

matrix renormalized to contain the mixing configurations effects outside the model space 

plus the core-polarization correction [10]. The TBME resulting from this method 

incorporating the experimental SPE has shown a remarkable achievement for nuclei with a 

few valence particles or holes around the closed shell. When the number of the valence 

particles increases, the comparison with experiment shows clear differences [17]. There are 

several reasons for the inaccuracy of the TBME resulting from the renormalized G-matrix, 

the most important are:  

1- The non-convergence in the perturbation expansion [18]. 
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2- The approximation used in the oscillator basis which is employed for the matrix 

elements and energy denominators [7]. 

3- The requirement of real three-body forces as observed in light nuclei [19]. 

The empirical Hamiltonians have shown to be successful over a wide mass number 

region. In this approach the G-matrix is empirically renormalized to reduce the divergence 

encountered with the G-matrix.  This renormalization is used to calculate the wave function 

and energies for all energy levels under consideration.  An expansion of the theoretical 

energy was provided from these wave functions in terms of a linear combination of SPE 

and TBME which can be fitted with experiment to make a least-square matrix. The general 

steps for the fitting method are [16]: 

1- Starting with a reasonable Hamiltonian, calculate the matrix elements and the 

eigenfunctions.  

2- Calculate the    one-body transition density and scalar two-body density 

operator in Equation (2.12).  

3- By making linear least-squares fitting to the experimental binding energy, we 

can find new values of SPE and TBME. 

4- From the new SPE and TBME values, recalculate the new matrix elements and 

the eigenfunctions. 

The details of the fitting method are presented in Appendix A.  

   Many Hamiltonians have been created during previous decades as a result of the 

evolution of computers and the abundance of experimental data. These Hamiltonians were 

classified according to the model space and the modification used in their calculations. For 

p-shell model space, the TBME was obtained empirically such as P(10-16)T interaction 
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which is the result of the 15 TBME + 2 SPE fit to the A=10-16 p-shell data [20]. In the psd-

shell model space several Hamiltonians have been introduced in the shell model 

calculations, such as SFO [21],WPB [20] and recently obtained monopole-based universal 

interaction VMU [22]. For the sd- shell model space (0d5/2, 0d3/2, 1s1/2), USD Hamiltonian 

[6, 23] is used to provide the wave functions which are used in the calculations of the 

structure models, nuclear astrophysics, and nuclear spectroscopy for over two decades. It 

also represents a main part of the Hamiltonian used for the psd model space [20] and sd-pf 

model spaces [24-26]. The USD Hamiltonian is defined by 63 sd-shell (TBME) and three 

single-particle energies (SPE). The direct predecessors to USD were the Chung-Wildenthal 

particle (CWP) and hole (CWH) Hamiltonians [27], which were obtained from fits to data 

in the lower and upper parts of the  sd-shell, respectively. The Wildenthal interaction or 

USD (“universal” sd Hamiltonian) is set-up by fitting 380 energies data with experimental 

error of 0.2 MeV or less from 66 nuclei. The data was fitted using the lower and upper parts 

of the sd-shell by supposing that the simple mass dependence for the matrix elements 

within [28]: 

     ( )        (    )   (
  

 
)
   

                                                                             (    ) 

where A is the mass number. The new USD interaction call USDA and USDB which 

represent refined derivation of the USD Hamiltonian by updating and using a complete set 

of energy data [7] and details on these Hamiltonians will be discussed later. The large scale 

sdpf model space has great significance in the shell model calculation according to the wide 

range of nuclei in this region. There are many Hamiltonians used in this region such as sd-

pf residual interaction, known as (SDPF-U) [29] and sd-pf cross-shell Hamiltonian, SDPF-
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MU [30]. In the fp- model space we have GXPF1J [31, 32] and KB3G [33] effective 

interactions which are currently used in the  fp-shell calculations [34]. 

 

2.4 USDA Hamiltonian 

 

Brown and Richter updated the USD Hamiltonian when new experimental data 

became available. Two modified Hamiltonians were introduced , called USDA and USDB 

[7]. These Hamiltonians are derived with the fitting procedure described in Appendix A by 

considering 608 states in 77 nuclei. The starting Hamiltonian is taken from the 

renormalized G matrix in the Bonn-A NN interaction with TBME presented in Table 20 of 

reference [17]. The OXBASH program [35] employed to calculate the wave functions, 

energies, occupation numbers, and scalar two-body transition densities are then used in the 

fitting process.  

The USDA resulted through the iteration of the USD Hamiltonian with 30 well 

determined linear combinations and the remaining 36 poorly determined linear 

combinations are set to the renormalized G matrix values. The iterative process continued 

until the linear combinations values and the energies converged to the level of about 10 

keV. In the same approach USDB was calculated with significant difference in the number 

of well determined linear combinations where 56 linear combinations of parameters used in 

three iterations were required for convergence. The two Hamiltonians possess the following 

attributes: the conservative USDA Hamiltonian where its features are closed to the 

renormalized G matrix values and gives a good but not the best fit to the data and the 

USDB that differs more from the renormalized G matrix values but gives a best fit to the 
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data [7]. The single particle energies for the sd model space identified from the USDA 

Hamiltonian are -3.9436,-3.0612 and 1.9798 MeV for shells d5/2, s1/2 and d3/2 

respectively and the TBME values are shown in Table 2.1. 

 

2.5 OXBASH  Program 

 

In this work the calculations are performed using the code OXBASH for Windows 

[35]. The OXBASH is a set of codes for carrying out shell-model calculations by using an 

M-scheme Slater determinant basis with dimensions up to about 2,000,000, wave functions 

with good angular momentum J, isospin T in dimensions up to about 50,000 in the J-T 

scheme, and a projection technique. This code can be used in any Windows PC without the 

need to use any other software with acceptable speed and accurate results. OXBASH is the 

only version that uses the projection technique which is make it convenient for a variety of 

truncations [12]. More details of these methods can found in Chapter Three.  

OXBASH comes with a library of model spaces and interactions. The starting point 

in the use of OXBASH is the selection of an appropriate model space and interaction for 

that model space. For sd-shell there are two model space types; the first is SD which 

depends on the number of valence particles outside the core O
16

 and the range of J and T 

values. The second model space is SDPN which means that the calculation is done in the 

proton-neutron formalism. This means the need for determining the number of protons and 

neutrons out of the core O
16

 and the range of J values. 
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Table 2.1: The two body matrix elements values V (j1, j2, j3, j4; JT) of USDA Hamiltonian 

for T (isospin) = 0 and 1. The orbital labeled by 5 = d5/2, 3 = d3/2, 1 = s1/2 [7] . 

T=0  T=1 

            J USDA              J USDA 

5 5 5 5 1 -1.4277  5 5 5 5 0 -2.4796 
5 5 5 1 1 3.052  5 5 3 3 0 -3.5693 

5 5 1 1 1 1.9658  5 5 1 1 0 -1.1572 

5 5 1 1 1 0.3967  3 3 3 3 0 -1.505 

5 5 1 1 1 -0.89  3 3 1 1 0 -0.9834 

5 1 5 1 1 -6.5106  1 1 1 1 0 -1.8461 

5 1 1 1 1 0.0136  5 3 5 3 1 0.251 

5 1 1 1 1 1.5511  5 3 3 1 1 0.0736 

5 1 1 1 1 1.9021  3 1 3 1 1 0.3105 

1 1 1 1 1 -1.4927  5 5 5 5 2 -0.9899 

1 1 1 1 1 -1.0014  5 5 5 3 2 -0.3092 

1 1 1 1 1 0.0949  5 5 5 1 2 -0.7746 

1 1 1 1 1 -3.8051  5 5 3 3 2 -1.1335 

1 1 1 1 1 -0.6655  5 5 3 1 2 0.8901 

1 1 1 1 1 -3.8693  5 3 5 3 2 0.2248 

5 1 5 1 2 -4.5452  5 3 5 1 2 0.1022 

5 1 5 1 2 -1.0254  5 3 3 3 2 -0.5208 

5 1 1 1 2 -1.2803  5 3 3 1 2 0.2811 

5 1 5 1 2 -0.4874  5 1 5 1 2 -0.9039 

5 1 1 1 2 -2.5947  5 1 3 3 2 -0.5542 

1 1 1 1 2 -1.753  5 1 3 1 2 1.7072 

5 5 5 5 3 -1.4018  3 3 3 3 2 -0.157 

5 5 5 1 3 2.2427  3 3 3 1 2 0.1368 

5 5 5 1 3 -1.7954  3 1 3 1 2 -0.2533 

5 5 1 1 3 0.9812  5 3 5 3 3 0.4777 

5 1 5 1 3 -1.2963  5 3 5 1 3 -0.4507 

5 1 5 1 3 0.8962  5 1 5 1 3 0.647 

5 1 1 1 3 1.8985  5 5 5 5 4 -0.2136 

5 1 5 1 3 -3.9337  5 5 5 3 4 -1.3155 

5 1 1 1 3 0.4599  5 3 5 3 4 -1.2509 

1 1 1 1 3 -2.98        

5 1 5 1 4 -4.4652        

5 5 5 5 5 -4.3811        
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2.6 Magnesium Isotopes 

 

There are 22 known isotopes of magnesium. The atomic number for these isotopes 

is 12 and the neutron number ranges from 7 to 28. There are three stable isotopes 
24

Mg, 

25
Mg, 

26
Mg and 19 other radioisotopes have been discovered. 

28
Mg is the longest-lived 

radioisotope with a half-life of 20.915 hours. The shortest-lived is the rare radioisotope 

40
Mg

 
with a half-life > 170 ns [6]. The lighter isotopes mostly decay to isotopes of sodium 

while the heavier isotopes decay to isotopes of aluminum. Magnesium isotopic chain is of 

particular interest because the special nuclear structure of these isotopes. This interest 

comes from the importance of nuclei that lie far away from β-stability where they had been 

proved to be well adapted for the description of nuclear systems near the valley of stability. 

This feature has made them good test candidates for the nuclear shell model [36]. In this 

work, the odd-magnesium isotopes, with 4 protons in the sd-shell, and neutrons gradually 

filling the sd-shell between N=9 and N=17 are excellent isotopes to study the effect of 

changes in the proton-neutron interaction due to the filling of the neutrons in sd-shell. 

These isotopes represent the extended chain on the two sides of the valley of stability, 

beyond the N =9 shell which represents the neutron deficient side until the N =17 shell at 

the neutron rich side which represents the boundaries of what is known as “islands of 

inversion” [37].  Island of inversion is a region where the usual shell model hypothesis 

filling of the single-particle levels changes as a result of models space overlap. The nuclear 

shell model accurately predicts phenomena occurring in nuclear systems near the valley of 
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stability. The validity of this model has been verified by the nuclei far away from β-

stability [36]. 

Another reason for the surge in recent interest is the importance of odd-magnesium 

isotopes in astrophysics. It has become scientifically recognized that the odd-magnesium 

isotopes represent an important link in nuclear reactions in stars [38] . The identification of 

these isotopes structural properties is crucial for the description and to comprehend many of 

these reactions. Table 2.2 lists these isotopes and the reactions with recent research that 

deal with it. In the next sections we will mention the important research conducted to 

measure and calculate the magnesium isotopes excited states, transition probabilities, and 

electron scattering form factors. 

 

2.7   Excited States and Transitions Probability  

 

The ground state’s angular momentum for the odd nuclei is determined from the 

shell of the last neutron according to the distribution in the model space. In this case the 

ground state’s angular momentum, excited states angular momentum, and isospin are half 

integer. The experimental data of the excited states and transition probabilities are usually 

based on two certified references. The first reference is the Nuclear Data Sheets journal and 

the second is the National Nuclear Data Center database [6]. 

In addition to the experimental values in the previous references, we also adopted 

some new data for some isotopes as follows. The starting point will be with 
21

Mg  which 

has special significance due to the scarce knowledge of any Tz = −3/2 sd-shell nuclei [48]. 
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The first determination of  
21

Mg excited states had been done by using 
24

Mg(
3
He,

6
He)

21
Mg 

reaction [49]. Ground state and the first four excited states have been identified. 

 

Table 2.2:  Magnesium isotopes nuclear reactions in the astrophysics field. 

 

 

 

  

 

 

 

 

 

 

 

 

 

Later, more than 20 states have been identified with excitation energy less than 

6.025 MeV and spin-parity determinations within the same reaction with different energy 

Isotopes Reactions Utility Reference 

21 
20

Na(p, γ )
21

Mg Important for hydrogen burning in 

explosive scenarios. 

 

[38] 

23 
23

Mg(p, γ)
24

Al 

 

Important link between the Ne-Na 

and Mg-Al cycles in O-Ne classical 

novae. 

[39, 40] 

 

22
Na(p, γ)

23
Mg

 22
Na consumes by hydrogen 

burning. 

 

[41-43] 

25 
25

Mg(p, γ)
26

Al 

 

26
Al produce in stellar H-shell 

burning by proton capture process. 

[44] 

 

22
Ne(α,n)

25
Mg 

 

Provide neutrons for the slow 

neutron-capture process (s process) 

in stars which responsible for the 

origin of about one half of the 

elemental abundances beyond iron 

that we observe today. 

 

[45-47] 
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for the projectile particles [50-52]. The 
21

Mg level structure has been probed by using a 

resonant elastic scattering of a radioactive 
20

Na beam incident on protons in a polyethylene 

target [48]. An additional three levels have been observed with energy 4.005, 4.22, and 

4.538 MeV for J=3/2
+
, 5/2

+
, and 3/2

+
, respectively. The shell model with USD Hamiltonian 

was used in the comparison and predicts corresponding states with a disparity of a few keV. 

Recently, the excited states in 
21

Mg were probed in the one-neutron knockout reaction 

9
Be(

22
Mg, 

21
Mg+γ )X at 74 MeV/nucleon projectile energy [38]. A new negative parity 

state has been found with J =1/2
-  

at energy
 
1.084 MeV and determine the J value of the 

other two levels. The WBP shell model effective interaction [20] was used to compare with 

the experimental results. WBP predictions showed a clear difference with the experimental 

levels with only one agreement for the J = 1/2
-
 state. Also, this study led to the first 

identification of the state J= 3/2
+
 at energy 1.651 MeV. 

The excited states of 
23

Mg isotope had a great interest in previous decades. More 

than nine types of reactions have been used to identify these states with energy ≤ 14.56 

MeV for  1/2  ≤ J ≤  21/2 and 1/2 ≤ J ≤ 5/2 in positive and  negative parities respectively 

[53]. As well there are two types of lower transitions probability that have been specified 

for many states which are the electric quadrupole transition and magnetic dipole transitions. 

The 
22

Na(p,γ)
23

Mg reaction has been used to study the 
23

Mg excited states [42, 43]. The β-

delayed proton spectrum of 
23

Al with statistical analysis of the observed β strength has 

shown new energy levels in the 
23

Mg spectrum without specifying the J values for these 

levels. Three levels at energy 8.579, 8.84, and 9.604 MeV have been found and revised 

some others [54].  Another revision was made by A. Saastamoinen et al. [55] with 

determined a new energy level at 7.917 MeV. The first five excited states were discussed in 

detail in A. Gade et al. [56] by using 
12

C(
22

Mg, 
23

Mg + γ )X reaction and USDB 
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Hamiltonian . Research has shown that the energy level 2.714 MeV is assumed to be a 9/2
+
 

state where the previous literature showed it as a cluster of two states [53]. The 

experimental results have been used in a theoretical calculation to substantiate that the 

uncertain state at 2.908 MeV is actually corresponds to J =3/2
+
. Recently, excited states in 

23
Mg were populated using the 

12
C(

12
C,n) reaction at beam energy of 22 MeV [57]. The 

highly excited structures have been found and intensive investigation made up to an 

excitation energy of 8 MeV and spin-parity of 13/2
+ 

. The shell model Hamiltonian USDB 

used to describe positive-parity states while the PSDPF interaction [58] was used to 

describe negative-parity states.  

In 1962, a magnetic spectrograph was used in the  
27

Al (d, α)
25

Mg reaction to 

determine 66 levels in 
25

Mg below 8.7 MeV excitation energy [59]. Since that time to 2009, 

many researches had been conducted to study the structure of this nucleus. At least 75 

positive parity states , and 23 negative parity states with J ≤ 15/2 have been identified.A 

further 15 states with unknown parity and 28 levels with unknown  J have been found 

below 13.33 MeV excitation energy [60]. The reduced electric quadrupole transition 

probability and reduced magnetic dipole transition probability have been measured for 

several states. Important assignments have been made using a model conducted by  

Longland et al. [47] in the J values for many energy levels in 
25,26

Mg.  The energy involved 

in this study was 10.693 ≤  E ≤ 12.343 MeV for 
26

Mg and 11.318 ≤ E ≤12.551 MeV for 

25
Mg. 

The last Nuclear Data Sheets for A = 27 identified 54 excited states in the 
27

Mg 

nucleus [61]. These states are in the energy range ≤ 7.976 MeV and J ≤ 9/2. The positive 

parities are 26 and the negative parities are 9 while there are 3 states with unknown parity 

and 28 states with unknown J. There is one value for the reduced electric quadrupole and 
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dipole transition probabilities and three values for the reduced magnetic dipole transitions 

probability. In addition to the above values, there are other levels published previously such 

as 6.51 MeV at J
π 

=1
-
, 3

-
  with 6.876 ,7.227 and 7.309 MeV unknown J levels [62] and the 

state 6.443 MeV at J
π 

=1
+ 

[63].  

The 
29

Mg isotope which is considered as neutron-rich Mg isotope lies at the border 

of the island of inversion region. This led to the significant interest in the island of 

inversion recently. More information about this region will be presented in Chapter Four. 

As a result of the short half-life for 
29

Mg nucleus (1.3 seconds), a few energy levels have 

been identified. The latest results have found five positive and four negative parity states 

with four unknown parity states and five unknown J within the energy range ≤ 4.28 MeV 

and J ≤7/2 [64]. The J value for energy level 0.054 MeV was not identified in reference 

[64]. But Kowalska et al. [65] showed that  this level should be assigned as J
π
=1/2

+ 

inaccordance with the results of reference [66]. Kowalska et al. [65] measured the ground-

state spins and magnetic moments of neutron-rich 
27

Mg, 
29

Mg, and 
31

Mg with laser and β-

NMR spectroscopy. The results for 
29

Mg compared with the USD and USDB shell model 

interactions which are tailored to the sd-shell nuclei and restrict the valence neutrons and 

protons to this major shell show good agreement for the first two positive states using 

USDB while the USD indecated a clear difference in the ground state and the first excited 

state.  

2.8 Inelastic Electron Scattering Form Factors 

 

Electron high energy scattering from nuclei represents a powerful tool for studying 

nuclear structure using the information provided by the spectroscopy of the target nucleus. 

It is possible to identify the spins and parities of excited states and measures the reduced 
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matrix elements for nuclear transitions [67]. There are many reasons for considering 

electron scattering as a powerful tool for studying nuclear structure. First, the basic 

interaction between the electron and the target nucleus is known in which the electron 

interacts with the electromagnetic charge and current density of the nucleus. Since the 

interaction is relatively weak, one can make measurements on the target nucleus without 

greatly disturbing its structure [68]. The second advantage is that for a fixed energy loss to 

the target, one can vary the three-momentum transfer q and map out the Fourier transforms 

of the static and transition densities [69]. With electron scattering, one can immediately 

relate the cross section to the transition matrix elements of the local charge and current 

density operators and thus directly to the structure of the target nucleus itself [70]. 

Electron scattering is of two kinds: the first one is elastic scattering of electrons 

which can be used to study the ground-state properties such as  the static distributions of 

charge and magnetization. The second kind is inelastic electron scattering, which 

determines transition densities corresponding to the initial and final nuclear states in 

question, for the three quantities in the nucleus that interact with the passing electron, 

namely, the distribution of charge, current and magnetization [68]. 

    The scattering cross-section for relativistic electrons from spinless nuclei of 

charge Ze was first derived by Mott in 1929 [71]. The nuclear size can be taken into 

account by multiplying the Mott’s cross-section by a factor which depends on the charge, 

current and magnetization distributions in the target nucleus. This factor is called the   

nuclear form factor. 

The Born approximation was used to describe the electrons interaction with a 

nucleus as an exchange of a virtual photon carrying a momentum. In the Born 

approximation, the form factor depends only on energy and scattering angle (θ) through the 
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momentum transfer q, where the incident and scattered particles are considered as free, i.e., 

represented by plane waves [72, 73]. The electron scattering form factor is divided into two 

types; 

1- Longitudinal form factor, in which the virtual photon carries angular momentum 

0 along   ⃗ . 

2- Transverse form factor, in which the virtual photon carries angular momentum 

±1 along   ⃗ . Transverse form factor is divided into two parts, electric (E) and magnetic (M) 

form factor [74]. 

Many attempts have been made to explain the electron scattering and to understand 

the nature of nuclear forces and the structure of the nuclei. The 
25

Mg isotope is of special 

interest in these experiments and theoretical studies because it is a stable isotope. This is the 

only odd-mass magnesium isotope where there is experimental data and, therefore in this 

study we will deal with it in the form factor calculation. Some of the previous work which 

deal with the 
25

Mg isotopes could be listed as follows:  

For the elastic electron scattering in 
25

Mg , there are many experimental [75-77] and 

theoretical [73, 78, 79] works that have been done. The inelastic scattering was used to 

study the excited states in 
25

Mg by Fagg  et al. [80]. Longitudinal form factors (C2 and C4) 

were measured by Okazaki et al. [81] for 
25

Mg states J
π
=1/2

+
, 3/2

+
,
 
5/2

+
, 9/2

+
, and

 
11/2

+ 
 
 
at 

energies 2.56, 2.801, 3.909, 4.059 and 5.251 MeV respectively. The experimental data were 

compared with the values calculated in the strong-coupling model [82]. Less et al.  [83] 

made many longitudinal form factor measurements in the 
25

Mg nucleus. The longitudinal 

form factors for the states J
π
=7/2

+ 
and 9/2

+
 at energies 1.611 and 3.405 MeV respectively 

[83] and  J
π
=3/2

+
, 5/2

+
,
 
1/2

+
, 3/2

+
, 9/2

+
 and

 
11/2

+
 at energy 0.974,1.964, 2.563, 2.801, 4.059 
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and 5.251 MeV respectively [84]. Marinelli and Moreira [85] used inelastic electron 

scattering to measure the transverse form factor for the transitions  5/2
+ 

→ 7/2
+ 

( 1.611 

MeV) , 5/2
+ 

→ 3/2
- 
( 3.413 MeV) and 5/2

+ 
→ 9/2

+ 
( 3.405 MeV) using electron beam with 

energy 120 to 260 MeV. Projection and cranking models were used for the theoretical 

calculations to compare with the experimental data.  
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CHAPTER 3 
 

METHODS OF CALCULATIONS 

 

3.1 Introduction 

 

In order to calculate the properties of nuclear ground state and excited states one 

must have obtained the wave functions of these states. The wave functions can be obtained 

by solving the many-body Schrödinger equation for a nucleus of A nucleons represented by 

space vectors r(1),r(2).…,r(A)  [86]: 

  ( ( )  ( )      ( ))    ( ( )  ( )      ( ))                                               (   ) 

Because of the complexity of the nuclear many-body problem, the time- 

independent Schrödinger equation cannot be solved exactly for more than a few particles. 

Various methods have been developed to approximate this equation and to provide 

theoretical estimation of nuclear properties. Configuration Interaction (CI) method and 

Energy Density Functional (EDF) methods are two commonly used sets of nuclear structure 

techniques that expand the range of theoretical calculations beyond the lightest-mass region 

of the nuclear chart. 

 The most part of the study on nuclear structure problems may be classified as a 

study on bound states depending on the perspective of quantum mechanics. The energy 

level values and wave functions can be obtained from solving the eigenvalue problem for 
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the proposed interaction. We can use the eigenfunctions to calculate the matrix elements of 

the operators corresponding to the observables. The strong force between nucleons is 

regarded as the primary interaction while the effects of the Coulomb force often, can be 

treated as perturbation to the dominant nuclear interaction [3]. In this chapter we will 

present the mathematical formulas and concepts that are used in our calculations.  

3.2 Nuclear Excited States 

The nuclear excited states are unstable. Like atomic excited states, they usually 

decay rapidly by emission of electromagnetic radiation to the ground state. According to 

the excitation mechanism, the excited states can give valuable information about the orbits 

of the individual nucleons [9]. On the other hand, these states represent an ideal laboratory 

for studying the quantum many-body effects. They also provide important information on 

the essential nature of the weak and strong interactions, provided that the many body 

aspects are sufficiently well understood. The nuclear shell model is the one of the principal 

approaches for such understanding [6].  

 The original nuclear shell model [1] assumed a single configuration for each 

nuclear level which means corresponding to a single nucleon in one single-particle orbit. A 

significant improvement in the modern nuclear shell model calculation has been found 

when the assumption of configuration interaction (CI) method was used [87, 88]. 

Configuration interaction means a large number of configurations mixed by the residual 

interaction. In this configuration the valence protons and neutrons of the nucleus 

simultaneously occupy several different, partially filled, single –particle quantum states in 

the intended model space. Adoption of the configuration mixing method resulted in the 

increase of the accuracy of calculations and comprehensiveness of the theoretical 

understanding of nuclear states [6].  
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3.3 M-scheme Approach And Projection Technique 

 

 As mentioned in section 2.5, the OXBASH code uses the M- scheme with 

projection technique in shell model calculation. Therefore, we will present the M- scheme 

and projection technique in this section. The first task in understanding the method of 

calculating excited states is to know which values of the total angular momenta J that are 

permissible for n particles configuration under the restrictions imposed by the Pauli 

principle. There are several ways of approaching this issue [4]. In our calculation we used 

the M-scheme computational approach. In this approach, we can construct the many-body 

wave functions with the maximum angular momentum and isospin projection (MJ, Tz) [89]. 

The M-scheme set of states is convenient since MJ is an additive quantum number and one 

need only to consider the subset of basis states Φ with a single value of M in the 

construction of the many-particle wave functions Ѱ. In order to provide for good total 

angular momentum (J), one has to include all states of fixed MJ within a given 

configuration. To illustrate this approach we will give an example of two-nucleon 

configuration in the first shell of the sd-space, (5/2)
2
 in identical configuration (p-p or n-n 

coupling) and unidentical configuration (p-n or n-p coupling) in Table 3.1.  In this simple 

example, the two-particle wave function consists of the subset of basis states with a single 

value of m, tz for the two particles under the restrictions of the Pauli principle which is 

intended to not allowing for any two nucleons to have same wave function in the MJ, Tz 

scheme. The basis state for every nucleon has (2j+1) m-states and the value of m =  j, j-1, 

…, -j. In Table 3.1(a) we have two identical particles (T = 1). Therefore, Φ1 and Φ2 have the 
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same tz and the difference will be in the m-values. In Table 3.1(b), Φ1 and Φ2 have different 

tz values therefore we can take all possible m-values.  

Table 3.1: J and T values for two-particle wave function for (5/2)
2
 configuration. Only the 

positive m1- values are listed; the table is symmetric for m1<0 and will shows the negative 

projections for M. 

 (a) For identical coupling                (b) For unidentical coupling               

Φ1 (m1 , tz1) Φ2(m2 , tz2) M Ѱ 

(J,T=1) 

 Φ1 (m1 , tz1) Φ2(m2 , tz2) M Ѱ 

(J,T=0) 

 

 
 
 

 
 

 

 
 
 

 
 

Not 

Allowed 

   

 
 
 

 
 

 

 
 
  

 
 5  

 

J=5 

 

 
 
 

 
 

 

 
 
 

 
 4 

 

 

J=4 

  

 
 
 

 
 

 

 
 
  

 
 4 

 

 
 
 

 
 

 

 
 
 

 
 3   

 
 
 

 
 

 

 
 
  

 
 3 

 

 
 
 

 
 

  

 
 
 

 
 2   

 
 
 

 
 

  

 
 
  

 
 2 

 

 
 
 

 
 

  

 
 
 

 
 1   

 
 
 

 
 

  

 
 
  

 
 1 

 

 
 
 

 
 

  

 
 
 

 
 0   

 
 
 

 
 

  

 
 
  

 
 0 

 

 
 
 

 
 

 

 
 
 

 
 

Not 

Allowed 
   

 
 
 

 
 

 

 
 
  

 
 3  

 

J=3 

 

 
 
 

 
 

 

 
 
 

 
 2 

 

J=2 

  

 
 
 

 
 

 

 
 
  

 
 2 

 

 
 
 

 
 

  

 
 
 

 
 1   

 
 
 

 
 

  

 
 
  

 
 1 

 

 
 
 

 
 

  

 
 
 

 
 0   

 
 
 

 
 

  

 
 
  

 
 0 

 

 
 
 

 
 

 

 
 
 

 
 

Not 

Allowed 
   

 
 
 

 
 

 

 
 
  

 
 1  

J=1  

 
 
 

 
 

  

 
 
 

 
 0 J=0   

 
 
 

 
 

  

 
 
 

 
 0 
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In order to adopt J value, we should have the M-scheme extension for all J values (i.e. for J 

= 4 we must have M=4,3,2,1,0,-1,-2,-3,-4). The resulting J and T values for the two cases 

achieve antisymmetric condition which requires in this case J+T=odd [86]. We can find the 

J-dimension D(J), which is the total number of states for a given J, from the M-scheme 

dimensions d(M) as follows  [10]: 

 ( )   (   )     (     )                                                                                      (   ) 

In Table 3.1(a), we have two configurations with M = 2, Φ1 (5/2, 1/2) with Φ2 ( -1/2, 

1/2) and Φ1 ( 3/2, 1/2) with Φ2 ( 1/2, 1/2). The first configuration is associated with the J-

states that has J=4 and the second with J=2. The linear combination for any desired J- value 

can be obtained by applying the angular-momentum projection operator [90] which 

constructs explicit linear combinations of the M-scheme Slater determinants have good 

total angular momentum. This operator given by [10]: 

 ̅     
 

 ̂    (    )

  (    )    (    )
                                                                                                (   ) 

where     is the unwanted components and    is the unchanged components. So we can use 

the    to projects out many unwanted components with J=J0 and leaving only one 

component with J=Ji. Then we can use:  

 ̂  
 ∏  ̅     

                                                                                                                    (   )

    

          

 

The unwanted components from the isospin can also be projected out by changing 

the operator formula as follows [89]: 

 ̅     
 

 ̂    (    )

  (    )    (    )
                                                                                              (   ) 
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Hence, if we have  the linear combination of  M-states wave function    ( )  , 

we can choose the component of J (or J and T) by operating with   ̂  
(or  ̂  

 ̂  
) on this 

wave function [10]:  

 ̂  
   ( )   ∑     

 ( )

   

  (    )                                                                                    (   ) 

where  (    ) is the wave function in the J-scheme, D(J) is J-dimension found from 

Equation (3.2). Here,   is an additional quantum number which must be introduced when 

there is more than one state for a given value of J and      
 is the probability of finding the 

component J in the partition  . Partition is defined as a specific distribution of the particles 

into the allowed (active) set of k states. The summation in the above equation is also being 

a linear combination of M-states: 

∑     

 ( )

   

  (    )   ∑      ( )  

 ( )

   

                                                                          (   ) 

The square of     represents the probability of finding the component Ji in the state 

   ( )    [10].  

3.4 Hamiltonians Eigenvalues And Eigenvectors 

 

We can rewrite the Hamiltonian Equation (2.12) as follows:   

                                                                                                                                      (   ) 

where     represents the unperturbed part and    is the perturbed component or the 

residual interaction. If we have linear combinations for   states as [86]: 
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   ∑      
    (       )                                                                                                  (   )

 

   

 

and when applying the Hamiltonian operator on this function and multiply the left-hand 

side with  ⟨  
   we get: 

∑ ⟨  
 |     |  

  ⟩

 

     

                                                                                                 (    ) 

or 

∑       

 

     

                                                                                                                            (    ) 

The last equation possesses the solution under the condition of vanishing 

determinant: 

||

                     

                

     
             

||                                                                 (    ) 

If we multiply Equation (3.11) with     ̀  , we will obtain: 

∑           

 

     

                                                                                                                 (    ) 

∑             

 

   

                                                                                                        (    ) 
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 Equation (3.12) gives the eigenvalue    (state energy) with   roots (p=1,…, ) and 

containing two parts, first is the  diagonal part when (   ) which can be expressed as 

follows: 

      
     

                                                                                                                             (    ) 

where   
  is the single-particle energy and    

  is the residual interaction. The second is the 

off- diagonal part when (   ) which contain only the residual interaction with symmetric 

property: 

   
     

                                                                                                                                         (    ) 

In Equation (3.13),     matrices diagonalize the matrix     according to the 

normalized and orthogonal relation (3.14). After we identify the eigenvalue    one can find 

the eigenvector (mixed-configuration wave functions) from equation (3.13). 

A convenient way to express the many-body wave functions by using the second-

quantized form in terms of creation and destruction operators. In addition to taking into 

account the wave functions antisymmetry we can represent the basis states Φ by binary bit 

patterns with (1) denoting an occupied state and (0) an unoccupied state. In this method the 

computations are based on some finite set of single-particle quantum numbers (α1, . . ., αn), 

where α=(n,  , j, m) [10]. By using creation and destruction operators we can rewrite the 

Hamiltonian in Equation (3.8) as follows [35]:  

  ∑    
    ∑         

              

  
    

                                                                   (    ) 
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where   
   creates one-particle in the k (k =(n,  , j, )) state and    eliminates the one-particle 

from the l state. In the shell model the perturbed Hamiltonian part can be written as a sum 

of two-particle interactions:  

   ∑        

             

  
    

                                                                                             (    ) 

where         is the two-body matrix elements with state k for the first particle and    for 

the second particle. Equation (3.17) shows the importance of the residual interaction in 

obtaining the eigenvalue    (state energy) and the eigenvector (state wave functions) by 

providing the two-body matrix elements and the single-particle energy in the model space. 

It becomes clear that in the sd-shell model space there are 63 independent (J, T) formed for 

two particles through d5/2, s1/2 and d3/2 shells.   

For n particles distributed over three k-states in the sd- model space, there are w 

partitions that give states with J value. The diagonal Hamiltonian matrix elements have the 

form [10]: 

⟨         ⟩       
      

      
 ∑  (     )〈 〉 

 

                                    (    ) 

and the off-diagonal matrix elements have the form: 

⟨          ⟩  ∑  (      )〈 〉 
 

                                                                                    (    ) 

where    
 is the energy of a single-particle in state    and    is the number of particles in 

the state   ,            ,   is the same as in Equation (3.6), 〈 〉  represents the list 

of possible two-body matrix elements in the model space and    are numerical coefficients 
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which are called  double fractional parentage coefficients. This coefficient is used when the 

many-body wave function is converted into the two-body wave function. 

Nuclear binding energy is defined as the energy required in breaking up a given 

nucleus into its constituent parts of N neutrons and Z protons [10]. After determining the 

eigenvalues, the binding energy for the n particles in the    shell is given by [86]: 

   
 (       )       (    )  ∑      

    

 

   

 ∑  (      )〈 〉 
 

                  (    ) 

where    is the Coulomb energy,   (    ) is the binding energy of the core which is equal 

to 127.62 MeV [86], and other symbols as in Equations (3.19) and (3.20). For the 

calculation of the Coulomb energy,   , various approximate expressions exist. One of the 

most important approximations for sd-shell is the approach [86]: 

  (  )      
 

 
  (    )   

 

 
                                                                                   (    )̀  

where    is the number of protons outside the core, the parameters a, b and c depend on the 

orbital and  
 

 
    stands for the largest integer not exceeding 

 

 
  . The highest binding 

energy is identified as the ground state binding energy (EB(gr)) and the excitation energy 

for state n (Ex(n)) is the difference between the binding energy in state n, ( EB(n)), and the 

ground state binding energy ( EB(gr)) [86]: 

  ( )    ( )    (  )                                                                                                (    ) 

It is clear from the equation (3.23) that    and   (    ) did not have any effect in 

the calculations of the excitation energies while they have effect in the calculations of 

binding energies.  
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3.5 Reduced Transition Probability 

 

A wide range of knowledge on nuclei is found from the study of electromagnetic 

transitions. For example, it is the main source of information about the spin assignments of 

nuclear states. Theoretically, we can calculate the transition rates for the multipole 

radiations if the nuclear wave functions are known [86]. The interaction of the 

electromagnetic field with the nucleons can be expressed in terms of a sum of tensor 

operators of rank   called electric  (  ) and magnetic  (  ) operators. The decay rate 

between an initial state       ⟩ and final state |     ⟩ is given by [10]: 

  ∑(
  (   )

      )   
) (

     

 
)

   

|⟨  |  (  ) |  ⟩|
 

(     )
                                                     (    ) 

where     for electric or     for magnetic and    is the wave-number for the 

electromagnetic transition. The last factor in Equation (3.24) is the reduced transition 

probability, which is defined by the reduced matrix elements of one-body operator as given 

in the following equation: 

 (   )  
|⟨  |  (  ) |  ⟩|

 

(     )
                                                                                              (    ) 

where ⟨  |  (  ) |  ⟩ is the reduced matrix operator and it has the property 

|⟨  |  (  ) |  ⟩|
 

 |⟨  |  (  ) |  ⟩|
 
,   is the transition multipolarity and  (  ) is the 

one body operator. The factor (     ) determines the direction of the transition. The 

notation  ( ) symbolizes the electromagnetic transitions in which    is the initial state has 

the higher energy.  ( ) is the Coulomb excitation which is usually the    is the ground 

state.   
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The electric transitions operator,  (  ), is given by: 

 (  )      
 ( ̂)                                                                                                                  (    ) 

where   
  is the spherical harmonic wave function,    is the rank of the tensor 

operators  (  ),               ,  r is the orbital radius for the nucleon  and    ́ is the 

effective charge with  ́ stand for proton (   ) and neutron (    ), for free nucleon 

     and     . 

The magnetic transitions operator,  , is given by: 

 (  )  √ (    ) [[    ( ̂)  ⃗⃗]
 

    
 

(   )
 [    ( ̂)  ⃗]

 

 
  

 ]                     (    ) 

where   
  (   

 ) is the orbital (spin)  -factors for proton and neutron (according to  ) 

respectively which are   
      

      
              

        . Here    is the 

nuclear magneton and its value is 0.105 e fm and the cross symbol   denotes the Clebsch-

Gordan product. 

The electromagnetic transition between two states should be subject to the selection 

rules as a result of the conservation laws. These rules express certain symmetry conditions 

that hold for the system under consideration. Thus, the electromagnetic transitions take 

place only if the emitted gamma ray carries away an amount of angular momentum λ in 

order to achieve the formula        . This means that λ in the electromagnetic 

transitions has the values  [86] : 

|     |                                                                                                                       (    ) 
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This selection rule is known as the triangle condition. Another important selection 

rule results from the conservation of parity. The parity change classifies the elements of the 

operators Eλ and Mλ according to their transformation. The parity selection rule for 

electromagnetic mulipole transition is given by [10, 86]: 

                                                                                                                                       (    ) 

where    and    is the parity for initial and final states, respectively, and    is the parity of 

the operator. For     operator    (  )  and       for  ⃑. Equation (3.29) divides the 

transitions into classes, ones with unchanged parity        , which is done by the 

operators with      . These operators are for example : 

                                                                                                                     (    ) 

and others change the parity        , which is done by the operators with      . 

These operators are for example: 

                                                                                                                     (    ) 

In this work we are dealing with positive parity states, therefore, the operators in 

Equation (3.30) is the type that will be used in our calculations. The most measurable 

transitions are the minimum   values, which are M1 and E2 from Equation (3.30). The 

formula of these operators can be found from Equations (3.26) and (3.27) and given as 

follows [10]: 

 (  )      
( )( ̂)                                                                                                                   (    ) 

 (  )  √
 

  
[ ⃑⃗  

   ⃑  
 ]                                                                                                     (    ) 
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The reduced matrix operator in Equation (3.25) can be expressed as a sum over 

one-body transition densities times the single-particle matrix elements [10]: 

⟨  |  ( ) |  ⟩  ∑     (    
    

     )⟨  |  ( ) |  ⟩                                                  (    ) 

where ⟨  |  ( ) |  ⟩ is the redued single-particle matrix elements and     (       ) is 

the one-body transition densities which are calculated from [10]: 

    (       )  
⟨   | |    

     
  | |     ⟩

√(    )
                                                              (    ) 

where   is the number of nucleons,      and    are the initial and final state quantum 

numbers, respectively. Here     

     
  are the creation and destruction operators, 

respectively in which       are the quantum numbers (      ) and (      ), respectively.  

3.6 Electron Scattering Form Factors 

 

The differential cross section for an electron has initial energy Ei and final energy Ef 

scattering from nucleus of mass M and charge Z through an angle θ in the one-photon 

exchange can be given by the following Equation [10]: 

  (       )

  
            

 (     )   ( )  
 (     )                                                 (    ) 

where  

      [
       (

 

 
)

      
 (

 

 
)
]

 

,  ( )  [
 

 
     (

 

 
)],    

 

[  
   
 

    (
 

 
)]

 and     [
 

(   )
]
 

. 
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Fc and FT are the Coulomb and transverse form factors, respectively, q three-momentum 

transfer,    
  

  
 is the fine structure constant,         is the energy loss, the indices i 

and f stand for all quantum numbers that are needed to specify uniquely the initial and final 

nuclear states, and (   )          
 (

 

 
)    . 

In Section 2.8, we mentioned the two types of the form factors, the Coulomb or 

longitudinal electric  (        ), and the transverse with both types 

magnetic  (        ) and electric  (        ) where λ is the multipolarity. The total 

form factors are given by [10]: 

  
 (     )  ∑   (        )

 

                                                                                                (    ) 

  
 (     )  ∑   (        )

 

    (        )                                                              (    ) 

Every transverse form factors types have two components, λc and λm , arising from 

the convection currents (due to the orbital motion of the nucleons) and the magnetization 

currents (due to the intrinsic magnetic moments of the nucleons), respectively [91]. 

Therefore, we have:  

 (        )   (         )   (         )                                                                  (    ) 

 (        )   (         )   (         )                                                               (    ) 

The final form factor expression is given by [10]: 

  (        )       
 ( )[∑    (            )    ]

 
                                                     (    )  

where: 
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    [
  

  (     )
]                                                                                                                           (    )  

     is the center-of-mass correction which is given: 

     ( )   (
    

  
)                                                                                                                        (    ) 

where b is the oscillator length parameter chosen to reproduce the root mean square radius 

(rms) of the nucleus and A is the mass number , its value determined from [10]: 

  √
            

  
                                                                                                                  (    ) 

and    found from [92]: 

       
 
      

 
                                                                                                                 (    ) 

The character x specifies the convection (c) and magnetic current (m) contributions 

for the electric (X = E) and magnetic (X = M) form factors, and x stands for the single term 

of Equation (3.40), in the case of the Coulomb (X = C) form factor.    (            ) are 

the reduced matrix elements calculated by taking into account the finite-size of the 

nucleons. Here    is the proton (    
 

 
) or neutron (    

 

 
) isospin. These matrix 

elements can be found from: 

   (            )   (            )
   (       )

 (     )
                                                    (    ) 

where  (            ) is the point-nucleon reduced matrix elements [10] or multiparticle 

form factors [91],  (     ) is the free-nucleon   factors, where for Xx=Mc, Ec, or C 

 (     )    (  ) and for Xx=Mm or Em,  (     )    (  )     (       ) are the 
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equivalent q-dependent form factors for free nucleons which are found experimentally in 

reference [93]. The multiparticle form factors  (            ) are given by [10]: 

 (           )  ∑    (     ́       ) (        ́   )

   ́

                                    (    ) 

where X stands for C, Mc, Mm, Ec or Em. The sum (   ́) runs over all pairs of single- 

particle states in the model space.     (     ́       ) are the same as in Equation (3.35) 

but in the isospin formalism which is given by [70] : 

    (             )  
 

 
(  )      √ (

           

          
)        (          ) 

                                                       √ (
           

          
)        (     ́    )                 (    ) 

      (          )  
⟨ ‖|   

      (    ) ‖ ⟩

√(    )(     )
                                                                 (    ) 

where Tz is the projection of the total isospin., Ti and Tf are the total nucleus initial and final 

state isospins, respectively. Here   and  ́ are the initial and final state quantum numbers 

and  (            ) is the reduced single-particle form factors which are given by the 

integrals of the appropriate multipole operators over the nucleon coordinates  ⃗: 

 (            )  ∫⟨    ‖ ( )( ̂)  (  )   ( ⃗) ‖     ⟩ 
                                            (    ) 

 (             )  ∫⟨    ‖ ⃗⃗⃗(       ⃗)  ⃗  (   ⃗) ‖     ⟩ 
                                       (    ) 

 (             )  ∫⟨    ‖ ⃗⃗⃗(       ⃗)  ⃗  (   ⃗) ‖     ⟩ 
                                    (    ) 
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 (             )  
 

 
∫⟨    ‖[ ⃗⃗⃗  ⃗⃗⃗(       ⃗)  ⃗  (   ⃗)] ‖     ⟩ 

                           (    ) 

 (             )  
 

 
∫⟨    ‖[ ⃗⃗⃗  ⃗⃗⃗(       ⃗)  ⃗  (   ⃗)] ‖     ⟩ 

                        (    ) 

 

where ⟨      is the single-particle wave function in the proton-neutron (p/n) formalism, 

  (  ) is the spherical Bessel functions and     
( ⃗) is the charge density operator,  

   
( ⃗)    (  ) ∑ ( ⃗   ⃗    )

 

                                                                                             (    ) 

In OXBASH code, the charge density operator was adopted from reference [93] to include 

the Darwin-Foldy and spin-orbit corrections by using a Gaussian formula and fitting to 

experimental data, as  

 ( ⃗)  
 

(    
  )

 
 

  

    (         )                                                                                        (    ) 

where    and a are parameters with values given in reference [93] and B is a function of the 

initial-final state quantum numbers (k and   ) and b is the harmonic oscillator length 

parameter, see Equation (3.44). 

We define  ⃗  (   ⃗) as the convection current operator, 

 ⃗  (   ⃗)      (  )  ∑[ ⃗⃗⃗  ( ⃗   ⃗    )   ( ⃗   ⃗    ) ⃗⃗⃗ ]

 

                                         (    ) 

 ⃗  (   ⃗) is the magnetic current operator, 

 ⃗  (   ⃗)    (  )  ∑[ ⃗⃗⃗ (
 ⃗ 

 
)]  ( ⃗   ⃗    )

 

                                                             (    ) 
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 ⃗⃗⃗(       ⃗)    (  ) ⃗⃗(   )( ̂)                                                                                                (    ) 

and 

 ⃗⃗(   )( ̂)  
 ⃗ ( )( ̂)

√ (   )
                                                                                                              (    ) 

The quantities    and    are the free-nucleon   factors,     is the nuclear magniton and  ⃗  

is the Pauli spin vector [5]. 

The longitudinal form factor can be approximated in terms of the point proton form 

factor as follows [10]: 

  (        )       
 ( ) [   (     )  

 

 
   (     )]

 

  (           )
          (    ) 

In the calculation of the shell model, it has been assumed that the nuclei consist of a 

core and valence nucleons. The core is inert and only the motion of the valence nucleons in 

the sd shell model space needs to be considered. However, it can be shown theoretically 

that the effects of the virtual excitations of nucleons from the core shells into higher orbits 

are important. One can use the effective charges and   factors values to take into account 

the model-space truncation effects [10]. The effective charges and   factors are often used 

as an approximation in the renormalization of the single-particle matrix elements in shell 

model calculations. The   factors are fairly well described with the experimental magnetic 

moments in the sd-shell model predictions. The values were determined by using the least-

squares fits to the experimental measurements. The effective charges are determined 

empirically in the sd-shell by using the electrical transition (E2 and E4)  matrix elements 

which are found from the observables B(E2) and B(E4) values [94]. The latest   factors and 

effective charges for the sd-shell model space are calculated from Richter et al, [95] using 

the USDA and USDB Hamiltonians. New   factors values are determined by fitting the 
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calculated magnetic dipole moments (M1 ) matrix elements with those from experiments. 

The least-square fit to the E2 data gave essentially the same effective charges values, ep = 

1.36(5) and en = 0.45(5), for all Hamiltonians. The OXBASH default values are ep = 1.35 

and en = 0.35 for effective charges, and free nucleon   factors and the recent values [95] of 

the effective charges and the   factors are investigated in the present work through the 

calibration of the USDA calculations with experimental data. This investigation aims to 

determine the most appropriate values from the previous studies and adjust them for some 

cases as described in the following. 
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CHAPTER 4 

ENERGY STATES AND TRANSITION STRENGTH 

 

4.1 Introduction  

 

The first stage in assessing almost any theoretical study of nuclear structure consists of 

comparing the eigenvalues obtained from the diagonalizations of the model space 

Hamiltonian with the energies measured for the excited states with the matching quantum 

numbers in the corresponding actual nucleus. The precision of the Hamiltonians are 

illustrated in both the energy levels (the Hamiltonian eigenvalues) and the transition 

probabilities which mainly depend on the state wave functions (eigenvectors). The 

comparison of the theoretical and experimental states can be form by the emphasis on the 

spin sequences and energy gaps  and state-to-state correspondences became paramount 

[13]. In this chapter, we explore the assessments of the observables in the odd-A isotopes. 

The assessments rely on the calculations of the energy levels, reduced electric quadrupole 

transition probabilities, reduced magnetic dipole transition probabilities, and multipole 

mixing ratio. The nuclei with odd number of nucleons (A = odd) are known to have half-

integer spins, total angular momentum and intrinsic spin of all the nucleons.  

The comparison between the theoretical and the experimental energies is based on 

different methods. Two of these methods are the spin sequences and energy gaps and state-
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to-state correspondences [13]. The calculated energy levels obtained with USDA effective 

interactions for odd-A Mg isotopes are shown in Figures 4.1 to 4.9. A comparison has been 

made for the first three sequences between the energy obtained from the effective 

interaction calculations and the states obtained from experimental data with non-negative 

parity J values. In the case of non-availability of experimental data, the calculations were 

carried out for the states with J ≤ 13/2
+
. The illustration of the first three sequences clarifies 

the corresponding theoretical and experimental energy states due to the energy gaps 

between the first three sequences states with the same J values. Furthermore, it assists in 

identifying the change in the accuracy of the Hamiltonian for each sequence.  Levels with 

“( )” correspond to cases in which the spin and/or parity of the corresponding states are not 

experimentally well established. 

Transition probability is considered as one of the most sensitive parameters in 

determining the effective interactions. In order to elucidate this sensitivity, the reduced 

electric quadrupole transition probability, B(E2), and the reduced magnetic dipole transition 

probability, B(M1), are calculated. These calculations are performed with the available 

experimental data; two sets of effective charges and   factors are used. For the first set, we 

use the default values in the OXBASH program [91] ; the values of the effective charges are 

ep=1.35e and en=0.35, and the free nucleon   factors are   (p) = 5.586,   (n) = -3.826,    

(p) = 1, and    (n) = 0. In the second set, we use new effective charges ep = 1.36e and en = 

0.45, and the effective   factors values    (p) = 5.0,    (n) = -3.5,    (p) = 1.175, and    (n) 

= -0.106[95]. The purpose of this calculation is to identify an optimal set in the USDA 

calculations for the above transitions. The experimental data that were adopted in this work 

is the latest results for the corresponding nucleus and sometimes we use the mirror nucleus 

data in our discussion of the results.   
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4.2 
21

Mg Nucleus 

 

Figure 4.1 illustrates the 
21

Mg energy levels with the experimental values for the first 

three sequences. The predictions of USDA for the first sequence show good agreement for 

the states J=1/2
+
, 3/2

+
 and 7/2

+ 
with the experimental data. But the state J = 9/2

+
 is found 

experimentally to have energy higher than the theoretical prediction for the two 

Hamiltonians. This can be explained as a result of the possible existence of state with          

J = 9/2
+ 

equivalent to the
 
first theoretical state which is not found experimentally. Our 

interpretation is based on the compatibility of USDA predictions to the other J-states in the 

first sequence and the prediction of USDA for second J2 = 9/2
+
 (3.439 MeV) which is close 

to the experimental first J = 9/2
+
 (at 3.643 MeV [52]). Other evidence enhances that our 

interpretation comes from the existence of the first J1 = 9/2
+ 

 state in the 
21

Mg mirror 

nucleus, 
21

F, at energy 1.754 MeV [52] which approaches the USDA  prediction value at 

1.730 MeV. The USDA calculation and the new experimental energy for the J = 3/2
+
 states 

exhibit an interesting convergence pattern. Previous studies [27, 48, 52] have shown the 

energy of this state to be 3.08 MeV, whereas recent measurements [38] place the value at 

1.651 MeV, comparable with the USDA calculation value of 1.849 MeV which places it at 

the first sequence. No experimental data have been published for J = 11/2 and 13/2 in the 

21
Mg spectrum. However, these states have been found for J = 11/2 in 

21
Na and 

21
Ne with 

Eex. (experimental energy)  = 4.419 and 4.431 MeV, respectively [52]. The USDA 

prediction for this state is 4.604 MeV. In addition, J = 13/2 was found in the 
21

Ne spectrum 

with Eex = 6.448 MeV [52]; and the calculation value for this state is  4.620 MeV.  

A clear difference is found in the second and third sequences. The doublet consisting of 

two states with J=3/2
+
and 5/2

+ 
have been found experimentally in the second and third 

Univ
ers

ity
 of

 M
ala

ya



52 

 

sequences but only the second sequence is found theoretically with clear contrast energy. 

There are three states found in [48] (not shown in Figure 4.1), which have J=3/2
+
, 5/2

+
 and 

3/2
+
 with energies 4.005, 4.228 and 4.538 MeV respectively. The first state with J=3/2

+
 

agrees with the third sequence of J=3/2
+
 of the USDA calculations (J3=3/2

+
, 4.122 MeV) 

and the theoretical value closest to J=5/2
+
 is J3=5/2

+
 with energy 4.578 MeV, while USDA 

did not predict any energy state equivalent to the second J=3/2
+
 at energy 4.538 MeV.  

 

Figure 4.1: Comparison of the experimental energy levels with the energy levels calculated 

in the present theoretical work for the 
21

Mg nucleus. The experimental data (─)  are taken 

from[27, 52] while (*) are taken from[38]. 
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4.3 
23

Mg Nucleus 

 

The experimental [27, 53, 57] and theoretical energy spectra for 
23

Mg are shown in 

Figure 4.2. Many states have been observed recently [57] and are marked with (*), and the 

other states are adopted from references [27, 53]. The comparison between theoretical and 

experimental values show an agreement with USDA for states with J ≤ 15/2
+
 for the yrast 

states, while J=17/2
+
 is found theoretically higher than the experimental value.  

 

Figure 4.2: Comparison of the experimental energy levels with the energy levels calculated 

in the present theoretical work for the 
23

Mg nucleus. The experimental data (─)  are taken 

from[27, 52] while (*) are taken from[57]. 

 

Univ
ers

ity
 of

 M
ala

ya



54 

 

In the second sequence, the USDA calculation shows a remarkable agreement with 

the experimental states especially with recent measurements for the J = 7/2
+
 and 13/2

+
 

states. The grouping of the two states J=9/2
+
 and 11/2

+
 demonstrates the accuracy of the 

USDA. It is worth to mention about the position of the state J=5/2
+
 in the second sequence. 

References [27, 53] reported that 2.714 MeV energy level is identified to the two J values, 

J1= 9/2
+
 and J2= 5/2

+
. Recent experimental work [57] showed that the energy level 2.714 

MeV is identified as the J1= 9/2
+
 only and the J2= 5/2

+
 state is found at energy 3.859 MeV , 

while in references [27, 53], the energy value 3.859 MeV is identified as the uncertain state 

J3= 5/2
+
, which corresponds to the energy spectrum of the 

23
Mg mirror nucleus, 

23
Na [27, 

53]. Another indication appears from the calculation of the B(M1), which shows that the 

energy level at 2.714 MeV is more likely to be J1= 9/2
+
 than J2= 5/2

+
 as shown in Table 4.2. 

The previous discussion is compatible with the USDA calculation for states with J= 5/2
+
 in 

the second and third sequences where the energy value for the J3= 5/2
+
 will be 5.286 MeV 

[57]. The energy state at 2.908 MeV has been identified as the J2=3/2
+
 in reference [57], 

which agrees with the theoretical prediction, but unfortunately, reference [57] just provide 

few states with J=3/2
+
. In references [27, 53], the uncertain J values energy states at 3.864 

and 5.287 MeV are presented with two J values, 5/2
+
 and 3/2

+
.  As stated above, these 

states are set to the J=5/2
+
 based on reference [57]. 

The next state with J=3/2
+
 in the energy spectrum from [27, 53] is found at 7.648 

MeV, and it is unlikely to be the value of J3= 3/2
+
 if it is compared to the energies of the 

other states in the third sequence. Therefore, the experimental state of J3= 3/2
+
 is not 

present in Figure 4.2. The third state with J=3/2
+
 in the 

23
Na spectrum has been determined 

at energy 5.766 MeV and  the closest energy  state observed in the 
23

Mg spectrum is found 

at 5.711 MeV and identified to be J= 1/2
+
 to 9/2

+ 
[27, 53]. Comparing with the theoretical 
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calculation, this state could be the J3= 3/2
+
 if we take into account that this state is not 

identified within the other states with J= 1/2
+
 to 9/2

+
 as shown in Table 4.1. In the third 

sequence, the states 7/2
+
, 9/2

+
, and 11/2

+
 have only been detected recently, while the J=5/2

+
 

state is found in all the aforementioned references and an acceptable agreement is found in 

the USDA calculations. The third J=13/2
+
 state has been experimentally confirmed [57] 

with an energy of 7.26 MeV, which is similar to that of the J=11/2
+
 state.  However, 

because USDA predicts an energy of 8.644 MeV for the third J=13/2
+
 state, some 

reservations are raised about this state when the theoretical energy is taken into 

consideration, Moreover, there is a lack of discussion on this state in reference [57]. The 

agreement of the USDA results with the experimental data leads us to make a comparison 

with the higher sequence states for J =3/2
+
 to 9/2

+
, as shown in Figure 4.3. Theoretical 

calculations have been performed according to the extent of available experimental 

energies and each J value is compared separately.  

From Figure 4.3-a, we can see the lack in the experimental data with J=3/2
+
 from 

the difference in the number of the theoretical states compared with the experiment, and 

this starts from the third sequence in Figure 4.2. The need for more experimental data also 

includes the transition probability, which represents an important characteristic for 

comparison in order to determine the states. This problem has led to the unresolved 

comparison of the determination of equivalent states between experimental and theoretical 

results. In Figure 4.3-b, the arrangement that has been presented in the first three sequences 

for the states with J=5/2
+
 leads to a remarkable consensus between the experimental and 

USDA states of energy up to 7.183 MeV. States with energy higher than this show a clear 

difference in the number of available theoretical states compared with the observed 

experimental data. Reference [57] has identified several new J=7/2
+
 states. 
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Figure 4.3: Comparison between experimental energy levels and the energy levels 

calculated in the present theoretical work for the 
23

Mg nucleus for sequences higher than 

three. Experimental data (─) are taken from [27, 53] while (*)  are taken from[57]. 

 

The new states show significant agreement with the theoretical values in Figure 4.3-

c with the experimental states more than the theoretical in the energy range ≤ 8.353 MeV. 

The same behaviour is shown in the J=9/2
+
 spectrum in the energy range ≤ 7.770 MeV with 

a remarkable agreement for many states. These variations could be resolved by expanding 

the model space to get more energy states within the intended range. Many states appear in 

the references [27, 53] with J= (1/2 to 9/2)
+
. The USDA prediction for these states is 

compatible with the new experimental observations [57]. Table 4.1 shows these states with 

the new experimental values and the theoretical prediction. The states with J= (19/2)
+
 at 

energy 14.560 MeV and (21/2)
+
 at energy 14.130MeV found in references [27, 53] do not 
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appear in Figure 4.2. The USDA predictions for these states are 14.623 and 16.844 MeV 

respectively, which confirms the advantage of USDA for the high J- values states as the 

case  of  J =19/2
+
. 

Table 4.1: Theoretical and new experimental energy for states with J= (1/2 to 9/2)
+
 in 

23
Mg 

spectrum. 

 

 

 

 

 

 

The theoretical and experimental B(E2) (in units of e
2
fm

4
) and B(M1) (in units of 

µ
2
, µ Bohr magneto)  values for 

23
Mg isotope are presented in Table 4.2. The symbols ni 

and nf in Table 4.2 represent the sequences of the closest theoretical J states to the 

experimental data, Set1 represents the results obtained by using the default effective charge 

and free nucleon   factor, while Set2 is obtained by using the new effective charge and 

nucleon   factor values. In general, acceptable agreement is found for the  Hamiltonians in 
 

23
Mg for B(E2)  and B(M1) results at low energy states and diverge at high energy states. 

Set1 B(E2) results are more consistent with experimental  than those of Set2 while no clear 

disagreement is found in the B(M1) results when Set1 and Set2 are used. The fourth state 

with J=11/2
+
 in 

23
Mg spectrum had recently been observed at energy 7.780 MeV and it has 

one B(E2) transition to J1=7/2
+
 as shown in Table 4.2. Predictions of USDA for this state is 

7.627 MeV. 

References[27, 53]  Reference[57]  USDA 

J E (MeV) 

 

J E( MeV) 

 

J E(MeV) 

 
(1/2 to 9/2)

+ 
4.685 7/2

+ 
4.680 7/2

+
 

4.634 

 5.691 (7/2)
+ 

5.689 7/2

+
 

5.363 

 6.236 (9/2)
+ 

6.238 9/2

+ 

6.198 

 6.507 (7/2)
+ 

6.512 7/2

+
 

6.575 

 6.538 5/2
+ 

6.573 5/2

+
 

6.573 

 7.493 9/2
+ 

7.495 9/2

+ 

7.483 
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Table 4.2 Theoretical and experimental B(E2) and B(M1) values for 
23

Mg . Experimental 

data are taken from [53]. 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 
25

Mg Nucleus 

 

The broad experimental spectrum [27, 60] and the nuclear structure of 
25

Mg give 

special significance for this nucleus in the shell model calculations. As shown in Figure 4.4, 

a good agreement is found for the USDA calculations for the 
25

Mg spectrum in the three 

sequences of J ≤ 13/2
+
 with energies up to 8 MeV. However, the states with J=15/2

+
 show a 

clear contrast in the first and second sequences. The correspondence of these data indicate 

Experimental             USDA  

 

 

 

                B(E2)   e
2
fm

4
 

Ei MeV 2Ji Ef MeV 2Jf B(E2) 

e
2
fm

4 
 ni nf Set1 Set2 

0.450 5 0.0 3 85.48(15)  1 1 104.2 117.4 

2.052 7 0.450 5 31.08(4)  1 1 56.69 63.79 

  0.0 3 50.51(4)  1 1 41.65 46.60 

2.359 1 0.450 5 26.80(15)  1 1 25.52 27.52 

7.624 9 0.450 5 7.38(10)  5
 

1 0.05 0.04 

7.780 11 2.052 7 30.30(8)  4
 

1 2.45 2.65 

Experimental              USDA 

    
 

       B(M1) µ
2 

 
Ei MeV 2Ji Ef MeV 2Jf B(M1)µ

2 
 ni nf Set1 Set2 

0.450 5 0.0 3 0.343(13)  1 1 0.288 0.295 

2.052 7 0.450 5 0.139(20)  1 1 0.214 0.201 

2.714 5 2.052 7 0.429(5)  2 1 0.008 0.029 

 9 2.052 7 0.429(5)  1 1 0.519 0.538 
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the existence of J = 13/2
+
 in the second and third sequences as well as the J = 11/2

+
 and J = 

7/2
+
 states in the third sequence, the existence of which was uncertain in the experiments.   

Figure 4.4 Comparison of the experimental energy levels with the energy levels calculated 

in the present theoretical work for the 
25

Mg nucleus. The experimental data are taken from 

[27, 60]. 

 

Higher energies for the J ≤ 11/2 spectrum are compared with USDA calculations, as 

shown in Figures 4.5 and 4.6 with the same approach used in Figure 4.3. The calculation of 

higher sequences aided the comprehensive evaluation of USDA results for A = 25 as well 

as the study of some of the states in 
25

Mg.  In general, one can see that many of the 

experimental states have equivalent theoretical states while the other states are not 

specified, and vice versa.  
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Figure 4.5: Experimental data [27, 60] and energies calculated using USDA for J = 1/2, 

3/2, and 5/2 states in the 
25

Mg nucleus. The equivalent theoretical and experimental states 

are connected by arrows based on matching transition probabilities, see Tables 4.3 and 4.4. 

 

 

The energy intervals have theoretical states higher than the experimental giving an 

indication of the need for more experimental works in these intervals, while in the opposite 

case the theoretical solution could be obtained through the expansion of the model space as 

mentioned for 
23

Mg. 
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Transition probabilities (B(E2) and B(M1)) and the multipole mixing ratio (δ) have 

been used in the determination of  the corresponding states in the theoretical and 

experimental spectra. The multipole mixing ratio is used to calculate the ratios of the 

reduced transition probabilities from [96]: 

 (  )

 (  )
      

  
 

      
                                                                                                              (   )  

where Eγ is the gamma energy in units of MeV.  Reference [60] reported B(E2), B(M1) and 

δ values for many states in 
25

Mg spectrum and all the B(E2) and B(M1) transitions are 

calculated and illustrated in Table 4.3. While for δ calculations, only the states which 

achieved agreement with the experimental data are illustrated in Table 4.4. These results are 

used in conjunction with the discussion on the higher energy states in 
25

Mg. 

The states with J = 1/2 are shown in Figure 4.5-a. The experimental energy range of 

these states is found laying between the interval 6.570 and 8.834 MeV. The USDA 

calculations are considered satisfactory for this energy interval by the closeness of the 

results for several states. The state with energy 8.552 MeV, unknown parity, is located near 

the theoretical state at 8.612 MeV. This finding indicates the possibility of this state having 

a positive parity. Figure 4.5-b illustrates an experimentally observed state attributed to J = 

3/2. One easily notices the state with energy 4.772 MeV without an equivalent theoretical 

state. This state has been found experimentally with two J values, 3/2
+
 and 5/2

+
, whereas 

shell model predicts a state with J=5/2
+
 has energy near to this value as indicated in Figure 

4.5-c. 
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Figure 4.6: Experimental data [27, 60] and energies calculated using USDA for J = 7/2, 

9/2, and 11/2 states in the 
25

Mg nucleus. The equivalent theoretical and experimental states 

are connected by arrows based on matching transition probabilities, see Tables 4.3 and 4.4. 

 

 

The two unknown parity states with energies 6.169 and 6.362 MeV have one 

equivalent theoretical positive parity state with energy 6.213 MeV. Identifying one of them 

to the theoretical state is not possible due to the lack of experimental data but one of these 

states undoubtedly has positive parity. Calculated values of B(M1) confirm that the 

theoretical state with J8=3/2
+ 

at energy 7.049 MeV is the equivalent to the experimental 

state at 7.375 MeV as seen in Table 3.3. The state at energy 7.634 MeV has been found 

experimentally with J=3/2
+
, 5/2

+
 and 7/2

+
 (see Figures 4.5-a,c and 4.6-a).  According to |δ|, 

Table 4.4, this state seems to be J9= 3/2
+
 and J9= 7/2

+
 rather than J11= 5/2

+
. Except for case 
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4.722 MeV, the J=3/2 spectrum achieves a remarkable consensus with USDA calculations. 

Due to the abundance of the theoretical states in the energy interval between 8.597 and 

10.653 MeV, we would expect new experimental values for J=3/2
+
. 

In Figure 4.5-c and Figure 4. 4, one can see the agreement between the experimental 

J=5/2
+
 states and USDA calculations to the first fifth sequences. For energy between 5.860 

MeV and 8.971 MeV, experimental results show the number of states is more than the 

theoretical calculations with a notable agreement for several states. The state with energy of 

6.646 MeV appearing in the USDA spectrum Figure 4.5-c indicates that the unknown 

parity state with energy of 6.678 MeV probably has positive parity. Figure 4.5-c shows the 

uncertain positive parity state at energy 7.089 MeV which is more likely to be the 

theoretical state at energy 7.028 MeV compared to the non-specific party 7.038 MeV. The 

comparison between experimental and theoretical |δ| values, Table 4.4, indicates that the 

experimental state J=5/2
+ 

at 8.076 MeV is equivalent to the theoretically state with J13=5/2
+ 

at energy 8.110 MeV. The J=5/2
+
 spectrum achieves a remarkable consensus with USDA 

calculations when taking the first and last state values. As a result of the theoretical 

calculations, it is expected that the energy interval between 8.971 and 10.618 MeV 

promises new experimental values for J=5/2
+
.   

The J = 7/2 spectrum is shown in Figure 4.6-a, and a greater number of 

experimental states compared to the number of USDA-calculated states is evident. The gap 

in the sequence of experimental states (6.040 MeV to 7.525 MeV) also appears in the 

theoretical spectrum but with a 6.79 MeV state appearing in the middle.   
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Table 4.3: Theoretical and experimental B(E2) and B(M1) values for 
25

Mg . Experimental 

data taken from [60]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental             USDA  

 

 

 

                B(E2)   e
2
fm

4
 

Ei 

MeV 

2Ji Ef MeV 2Jf B(E2) e
2
fm

4 
 ni nf Set1 Set2 

0.585 1 0.0 5 2.44(10)  1 1 3.23 4.27 
0.974 3 0.585 1 47.76(5)  1 1 55.06 63.04 

  0.0 5 3.95(13)  1 1 3.93 4.75 

1.611 7 0.0 5 104.21(6)  1 1 102.9 114.1 

1.964 5 0.974 3 15.20(7)  2 1 19.05 21.70 

  0.585 1 68.61(14)  2 1 63.03 71.40 

  0.0 5 1.95(12)  2 1 2.59 3.23 

2.563 1 0.0 5 17.37(3)  2 1 11.99 14.80 

2.737 7 1.964 5 86.84(15)  2 2 5.13 5.19 

  0.974 3 99.44(24)  2 1 72.22 82.66 

  0.0 5 0.43(5)  2 1 0.69 0.82 

2.801 3 1.964 5 21.71(5)  2 2 1.93 2.09 

  0.585 1 6.51(13)  2 1 0.483 0.435 

  0.0 5 7.38(4)  2 1 7.66 9.54 

3.405 9 1.611 7 52.11(6)  1 1 59.57 66.16 

  0.0 5 29.53(9)  1 1 35.10 39.05 

3.907 5 0.974 3 0.13(+14-3)
 

 3 1 0.14 0.20 

  0.0 5 2.08(19)  3 1 3.90 4.59 

4.059 9 1.611 7 9.11(8)  2 1 21.65 24.60 

  0.0 5 6.55(17)  2 1 2.64 3.21 

4.711 9 1.964 5 130.26(5)  3 2 83.91 92.94 

5.251 11 4.059 9 347.37(40)  1 2 54.09 60.23 

  3.405 9 14.33(12)  1 1 10.89 11.85 

  2.737 7 45.59(18)  1 2 14.12 16.06 

  1.611 7 22.15(12)  1 1 20.34 23.14 

5.461 13 3.405 9 10.68(23)  1 1 6.28 6.99 

5.533 11 3.405 9 18.67(17)  2 1 18.83 20.97 

  1.611 7 39.07(4)  2 1 22.79 25.19 

Experimental      USDA 
    

 
  B(M1) µ

2 

 
Ei 

MeV 

2Ji Ef MeV 2Jf B(M1)µ
2 

 ni nf Set1 Set2 

0.974 3 0.585 1 0.029(17)  1 1 0.035 0.022 
  0.0 5 0.002(12)  1 1 0.006 0.005 

1.611 7 0.0 5 0.537(6)  1 1 0.524 0.593 

1.964 5 0.974 3 0.016(9)  2 1 0.006 0.008 

  0.0 5 0.001(11)  2 1 0.000 0.001 

2.737 7 1.964 5 0.016(20)  2 2 0.022 0.010 

  0.0 5 0.0001(6)  2 1 53×10
-7

 0.00 

2.801 3 1.964 5 1.091(8)  2 2 0.947 0.832 

  0.585 1 0.050(4)  2 1 0.024 0.021 

  0.0 5 0.009(8)  2 1 0.024 0.020 

3.405 9 1.611 7 0.716(4)  1 1 0.646 0.726 

3.907 5 2.737 7 0.537(11)  3 2 0.387 0.361 

  0.974 3 0.179(4)  3 1 0.163 0.149 

  0.0 5 0.010(4)  3 1 0.007 0.006 

4.059 9 1.611 7 0.018(14)  2 1 0.088 0.107 

5.251 11 4.059 9 0.340(3)  1 2 0.161 0.208 

  3.405 9 0.103(9)  1 1 0.192 0.202 

5.533 11 3.405 9 0.411(8)  2 1 0.410 0.451 

7.375 3 0.0 5 0.408  8 1 0.538 

 

0.493 
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An unknown parity state has been observed at energy 8.656 MeV. This state has an 

equivalent theoretical state at energy 8.661 MeV. A grouping of three J value states has 

been found experimentally in the energy state 8.888 MeV. The J=9/2 is found with a 

positive party while in J=7/2 and 11/2, the parity is not identified. For J=7/2 the USDA 

predicts two energy states (8.815 and 8.848 MeV) close to this experimental value. With 

regard to J=9/2
+
, the closest USDA prediction (see Figure 4.6-b) is at energy 8.915 MeV 

while the theoretical J=11/2
+
 shows a state (see Figure 4.6-c) with energy 8.947 MeV and it 

represents non-unknown case as a result of the existence of undetermined parity state for 

J=11/2 with energy 9.013 MeV.  

The calculations of |δ| values, in Table 4.4, enable us to determine the theoretical 

and experimental counterpart states in Figure 4.6.  For states with J=7/2, Figure 4.6-a,   first 

case is the energy state at 5.746 MeV which was found experimentally with J= 7/2
+
and 9/2

+ 

[60]. The difference between the experimental and theoretical values of Eγ and |δ| suggest 

this state to be J= 7/2
+
 rather than 9/2

+
 and the equivalent theoretical state is J4= 7/2

+
 at 

energy 5.891 MeV. States at energies 5.980 and 8.119 MeV are observed with J= 7/2
+
 [60], 

the USDA equivalent predictions for these states are J5 and J11 = 7/2
+
 at energies 5.980 and 

8.119 MeV, respectively. Equal theoretical values are obtained when calculating the |δ| for 

the state at energy 8.532 MeV which was found experimentally with J=7/2
+
 and 11/2

+
 [60]. 

This result means that the theoretical J12=7/2
+
 (Figure 4.6-a) and J6=11/2

+
 (Figure 4.6-c) 

have the same possibility to be the equivalent to the experimental state. In Figure 4.6-b, the 

experimental J=9/2 spectrum shows an energy state 5.746 MeV without equivalent 

theoretical value while the same energy is found in J=7/2 spectrum (see Figure 4.6-a) and 

the theoretical equivalent is determined. 
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Table 4.4: Theoretical and experimental values of absolute multipole mixing ratio |δ| in 

units of (µ/eb)
2
 for 

25
Mg isotopes. 

Experimental [60]  Theoretical 

Ei 

(MeV) 

2Ji Eγ 

(MeV) 

2Jf |δ|. ni nf Eγ 

(MeV) 

B(M1

) µ
2
 

B(E2)   

×10
-4

  e
2
b 

 

2 

|δ| 

4.359 3 3.384 3 0.09(7) 3 1 3.36 0.381 1.1 0.05 

 3 0.585 1 0.19(19) 3 1 0.626 0.354 9.86 0.17 

5.746 7 1.686 9 0.18(+7-2) 

 

4 2 1.961 0.019 0.549 0.09 

 9 1.686 9 0.18(+7-2) 

 

4 2 2.203 0.287 0.038 0.01 

5.971 9 4.359 7 0.31(3) 4 1 4.394 0.036 3.351 0.35 

5.980 7 4.014 5 0.14(3) 5 2 4.022 0.235 3.09 0.12 

6.434 9 0.899 11 0.03(13) 5 2 0.794 0.246 1.402 0.02 

 9 4.821 7 1.0(+15-6) 5 1 4.764 0.0047 2.762 0.96 

7.634 3 7.634 5 0.1(+12-25) 9 1 7.622 0.373 0.652 0.08 

 5 7.634 5 0.1(+12-25) 11 1 7.709 0.042 0.023 0.05 

 7 7.634 5 0.1(+12-25) 9 1 7.771 0.066 0.233 0.12 

8.011 9 2.761 11 0.18(1) 8 1 3.02 0.006 0.106 0.11 

 13 2.761 11 0.18(1) 3 1 2.98 0.021 12.45 0.61 

8.076 5 6.463 7 0.14 13 1 6.371 0.025 0.096 0.1 

8.119 7 8.119 5 0.04(+5-17) 11 1 8.136 0.074 0.04 0.05 

8.267 9 6.655 7 1.2(+2-3) 9 1 6.743 8.9×10
-4 

0.235 0.91 

8.532 7 5.127 9 0.1(6) 12 1 5.146 0.017 0.295 0.18 

 11 5.127 9 0.1(6) 6 1 4.985 0.013 0.244 0.18 

9.685 9 6.280 9 0.14(7) 13 1 6.199 0.018 0.13 0.14 

 11 6.280 9 0.14(7) 9 1 6.246 0.004 0.001 0.03 

9.947 15 2.399 13 0.16(4) 1 2 2.051 0.09 6.93 0.15 

 15 4.487 13 0.5(5) 1 1 3.962 0.35 22.22 0.26 
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Theoretical states at 7.504, 8.775 and 9.478 MeV with positive parity appear near 

the experimental unknown parity states at 7.653, 8.811 and 9.410 MeV respectively. Four 

experimental energies of states with J=9/2
+
 have been theoretically identified in the 

spectrum. States at energy 5.971 and 6.434 MeV have theoretical equivalents to J4 and 

J5=9/2
+
 at energies 6.133 MeV and 6.503 MeV respectively. Calculations of |δ| values show 

that the equivalent theoretical state to the experiment at energy 8.011 MeV is J8=9/2
+
 where 

this state was found experimentally with J=9/2
+
 and 13/2

+
 [60]. The last case is found 

experimentally with energy 9.685 MeV with J=9/2
+
 and 11/2

+
.  Calculation of |δ| values 

with J13=9/2
+
 and J9=11/2

+
 has shown that J13=9/2

+
 has the value approaching to the 

experimental data.  

Figure 4.6-c shows a good agreement for the USDA predictions for J=11/2 states. 

Differences appear only in the three experimental energy states with unknown parity at 

8.811, 8.888 and 9.013 MeV whilst the USDA calculations suggest a positive parity state at 

8.947 MeV. These states also had appeared in the J=9/2 spectrum and the determination of 

the equivalent to the theoretical values is not possible; but it is worth mentioning that one 

of these states has J=11/2
+
. 

The results of B(E2) and B(M1) in Table 4.3, show that USDA has an acceptable 

accuracy in the calculation of the transition probabilities, which indicates that the 

wavefunction obtained from USDA is appropriate to describe the nuclear states. The results 

of USDA for 
25

Mg indicate that the default values of effective charge [91], rather than the 

new values are valid, and the new effective   factors values [95] improve the calculated 

values of B(M1).  
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4.5 
27

Mg Nucleus 

 

 In Figure 4.7, the USDA effective interaction shows a clear agreement for 

the first and second sequences, and the doublet consisting of the state J= 1/2
+
 and 3/2

+
 in 

the second sequence is present amongst the theoretically predicted states. This agreement 

suggests a new energy value for J = 13/2
+
 in the first sequence with an energy of 7.33 MeV, 

which is not experimentally observed, and the possible existence of the J = 11/2
+
 and 13/2

+
 

states in the second and third sequences on the basis of the theoretical values.  

Figure 4.7: Comparison of the experimental energy levels with the energy levels calculated 

in the present theoretical work for the 
27

Mg nucleus. The experimental data are taken from 

[27, 61]. 
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The third sequence shows four experimental states, and we can observe an opposite 

trend in J = 5/2
+
 as the theory and experiment are in agreement for the first and second 

sequences of this state only.  Figure 4.8 shows the USDA calculations and the available 

experimental energy states for J= 3/2
+
 and 5/2

+
 in sequences higher than the third sequence. 

Comparison between theoretical and experimental data for J= 3/2
+
 (Figure 4.8-a) shows 

states at energies 4.150 and 4.553 MeV without any corresponding theoretical values. Other 

experimental values for J= 3/2
+
 have corresponding theoretical states including the first 

three sequences. 

 

 

 

 

 

 

 

 

 

Figure 4.8: Experimental data [27, 61] and USDA calculations of energy states for J = 3/2
+
 

and 5/2
+
 for the 

27
Mg nucleus. 
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Inaccuracies in the predictions of USDA for J=5/2
+
 spectrum as we can observe in 

Figure 4.8-b compared to the experimental data which can starts from the third sequence. 

The J=5/2
+
 spectrum also shows the number of states observed experimentally is more than 

the theoretical prediction. This conclusion indicates that the USDA accuracy decreases as 

the sequence increases in the 
27

Mg configuration. 

Results of the B(E2) and B(M1) calculations are shown in Table 4.5. Clearly, the 

USDA shows less accuracy than with 
25

Mg in the two transitions types.  The comparison 

between Set1 and Set2 did not present any favouritism to the any one of them within the 

two Hamiltonians.  

Table 4.5 Theoretical and experimental B(E2) and B(M1) values for 
27

Mg . Experimental 

data are taken from [61]. 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental             USDA  

 

 

 

                B(E2)   e
2
fm

4
 

Ei MeV 2Ji Ef MeV 2Jf B(E2) e
2
fm

4 
 ni nf Set1 Set2 

0.984 3 0.0 1 28.87(19)  1 1 39.55 43.69 

1.698 5 0.0 1 48.60(23)  1 1 23.73 26.58 

1.940 5 0.984 3 3.85(+13-8)  2 1 9.87 11.24 

3.109 7 1.940 5 192.45(+60-40)  1 2 37.32 43.06 

Experimental              USDA 

    
 

       B(M1) µ
2 

 
Ei MeV 2Ji Ef MeV 2Jf B(M1)µ

2 
 ni nf Set1 Set2 

0.984 3 0.0 1 0.041(6)  1 1 0.040 0.027 

1.940 5 0.984 3 0.046(7)  2 1 0.015 0.021 

3.109 7 1.940 5 0.322(5)  1 2 0.208 0.223 

Univ
ers

ity
 of

 M
ala

ya



71 

 

 4.6 
29

Mg Nucleus 

 

There are six states with positive and unknown parities observed in 
29

Mg spectrum 

[64, 97]. These states are illustrated in Figure 4.9 with USDA calculation in one sequence. 

The first difference between the USDA calculation and experimental data appears in the 

prediction of the ground state and the first excited state. Although convergence of energy 

for the ground state and the first excited state, but with constrasting J values refer to an 

important indication about the difference between configuration mixing used in the USDA 

calculation and the real  configuration of the nucleus.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Comparison of the experimental energy levels with the energy levels calculated 

in the present theoretical work for the 
29

Mg nucleus. The experimental data are taken from 

[64, 97], * refers to states with J value specified by [66].   
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This difference between the configurations led to the inaccuracy in the USDA 

predictions for the highest energy states as we can see in Figure 4.9. The reason of this 

inaccuracy is due to the nuclear structure of the 
29

Mg nucleus. We have mentioned in the 

Section 2.7 that 
29

Mg lies at the border of the “island of inversion” region. Island of 

inversion, located around Z = 10–12 and the magic N = 20, is an exotic part of the nuclear 

landscape where the nuclear ground states are much more deformed than expected for 

semi-magic nuclei. This behavior represents a collapse of the ordinary filling of the single-

particle levels when neutrons occupying the pf shell before the lower sd shell is fully closed 

[65]. From the above it is clear that USDA is not the appropriate effective interaction that 

can be used in the calculations of the 
29

Mg or the other higher odd-A magnesium isotopes 

because USDA is limited to the sd shell only. However, it is appropriate to use as an 

effective interaction that includes  pf and sd shell model spaces for these isotopes. 
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CHAPTER 5 

INELASTIC ELECTRON SCATTERING FORM FACTORS 

OF 
25

Mg 
 

 

5.1 Introduction  

 In Section 3.4, we have illustrated the mathematical formulae which are used to 

calculate the inelastic electron scattering form factors; both types of longitudinal and 

transverse. These formulae have shown the dependence of the form factors on the final and 

initial states wave functions or the Hamiltonian eigenvectors. In other words, the form 

factors values represent a rigorous test to evaluate USDA Hamiltonian and provide 

important knowledge on the nuclear structure of the target nucleus. As we mentioned in 

Chapter Two, the 
25

Mg is the only odd-A magnesium isotope that has experimental data for 

the longitudinal and transverse electron scattering form factors. In Chapter Four, the 

comparison with experimental data showed a good accuracy for the eigenvalues and 

eigenvectors obtained from USDA calculations for 
25

Mg isotope. Therefore, in this chapter 

we will employ the USDA Hamiltonian to calculate the longitudinal and transverse electron 

scattering form factors for this isotope.  

The form factor calculations are based on the model space transition densities which 

combine the single-nucleon wave functions generated by the potential model [70]. 
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Therefore, the potential is an important attribute in the form factor calculations that requires 

identification in this process. OXBASH program contains three types of potentials; 

harmonic-oscillator, Woods-Saxon and Skyrme interaction. In this work, the calculations 

are performed with these potentials and we only present the curves of the potential that 

shows a compatible results with the experimental data. For most excitations, the potential 

taken from Skyrme interaction showed the best results. The potentials can be analytically 

calculated using the Skyrme interaction in terms of the densities that resulted in rapid self-

consistent calculations. The Skyrme interaction has been proven to be remarkably useful 

and successful for nuclear Hartree-Fock calculations. This interaction is based on a set of 

parameters that must be determined from the experimental data because it is a 

phenomenological interaction [10]. The default Skyrme interaction in OXBASH program, 

symbolizes by Sk20, is described in Reference [92] with details of all parameters and 

formulas. In the current work, we use the latest version of these parameters, symbolized by 

Sk42 [98]. 

In Section 5.2, we present the one-body transition density, OBTD. In Sections 5.3 

and 5.4, the results of the theoretical longitudinal and transverse electron scattering form 

factors are presented and compared with the available experimental data, respectively. 

5.2 One-Body Transition Density (OBTD) 

The single-particle matrix elements are universal for all nuclear models since they 

only characterize the properties of the transition operators. The one-body transition 

densities (OBTDs), on the other hand, are model and case specific [99], and in the context 

of shell-model the expression for the OBTD given by Equation (3.49). The OBTD, 

represented in a compact form, which is the most general information needed to calculate 

the matrix elements of one-body operators between a given initial and final state [10] or in 
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other words, the OBTD contains all the information about transitions of given 

multipolarities, embedded in the model wave functions. In some references, the OBTD also 

known as one-body density matrix (OBDM) which is evaluated in a J-scheme basis [70] 

and it has the same values in the M-scheme. The calculated OBTD values which are used in 

this work are presented in Table 5.1. In this table, all the initial states are the ground state 

with J=5/2
+
. The Jf and nf are the total angular momentum and sequence number for the 

final state, respectively. Eexp is the experimental energy taken from [60, 97] and  Etheo. is the 

USDA prediction values. ∆J determines the possible transition type from the multipolarity 

relation (3.28) , where ∆J =1, 3 and 5 for magnetic transverse M1, M3 and M5, respectively 

, and ∆J =2 for electric transverse E2 and / or longitudinal C2, and ∆J =4 electric transverse 

E4 and / or longitudinal C4. (n ℓ j)i and (n ℓ j)f are the quantum numbers for the  initial and 

final subshells. OBTD is the one-body transition density calculated using USDA 

Hamiltonian in proton – neutron formalism version (USDAPN).   

 

Table 5.1: The USDA Hamiltonian one-body transition density (OBTD) matrix elements 

for each transition studied in this work in 
25

Mg nucleus with ∆T=0. The experimental 

energy is taken from [60, 97]. The definition of the terms in the table is explained in the 

text. 

Jf nf Eexp.(MeV) Etheo.(MeV) ∆J (n ℓ j)i (n ℓ j)f OBTD 
Proton Neutron 

3/2 1 0.974 1.035 

 

2 1d5/2 1d5/2 -0.05490 -0.17693 
     1d5/2 1d3/2 -0.06300 -0.08043 

     1d5/2 2s1/2 -0.04014 -0.00405 

     1d3/2 1d5/2 0.07168 -0.24528 

     1d3/2 1d3/2 -0.05922 -0.07005 

     1d3/2 2s1/2 -0.00407 0.01129 

     2s1/2 1d5/2 -0.04798 -0.36788 

     2s1/2 1d3/2 0.00275 0.03094 

    4 1d5/2 1d5/2 0.03222 0.07628 

     1d5/2 1d3/2 0.02903 0.02713 

     1d3/2 1d5/2 -0.04538 -0.21702 
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Table 5.1 (Continued.) 

Jf nf Eexp.(MeV) Etheo.(MeV) ∆J (n ℓ 

j)i 

(n ℓ j)f OBTD 

Proton Neutron 

7/2 1 1.611 1.739 1 1d5/2 1d5/2 0.24688 -0.28368 
     1d5/2 1d3/2 0.09438 -0.06034 

     1d3/2 1d5/2 -0.06998 -0.07832 

     1d3/2 1d3/2 0.03737 0.04533 

     1d3/2 2s1/2 0.02945 0.02594 

     2s1/2 1d3/2 -0.01353 -0.07044 

     2s1/2 2s1/2 -0.00876 -0.03507 

    2 1d5/2 1d5/2 0.74614 0.2362 

     1d5/2 1d3/2 0.31902 0.27801 

     1d5/2 2s1/2 0.34663 0.36697 

     1d3/2 1d5/2 -0.30048 -0.32018 

     1d3/2 1d3/2 0.08133 0.08431 

     1d3/2 2s1/2 -0.16429 -0.15971 

     2s1/2 1d5/2 0.55338 0.56743 

     2s1/2 1d3/2 0.21122 0.16991 

    3 1d5/2 1d5/2 -0.0214 -0.24781 

     1d5/2 1d3/2 0.00134 -0.01237 

     1d5/2 2s1/2 0.00967 0.01176 

     1d3/2 1d5/2 -0.00656 -0.00583 

     1d3/2 1d3/2 0.01039 0.0052 

     2s1/2 1d5/2 -0.01446 -0.06678 

    4 1d5/2 1d5/2 0.21688 0.02635 

     1d5/2 1d3/2 -0.00253 0.02692 

     1d3/2 1d5/2 0.01601 -0.05765 

    5 1d5/2 1d5/2 -0.03308 0.37811 

5/2 2 1.964 2.034 2 1d5/2 1d5/2 0.06439 0.07107 

     1d5/2 1d3/2 0.03894 0.08143 

     1d5/2 2s1/2 0.07006 0.02823 

     1d3/2 1d5/2 -0.07208 0.06594 

     1d3/2 1d3/2 0.02994 0.03898 

     1d3/2 2s1/2 -0.02755 -0.03963 

     2s1/2 1d5/2 0.00521 0.40507 

     2s1/2 1d3/2 -0.01665 0.04167 

    4 1d5/2 1d5/2 -0.05158 0.23973 

     1d5/2 1d3/2 -0.06022 -0.04662 

     1d3/2 1d5/2 0.07529 -0.01297 

 

 

Univ
ers

ity
 of

 M
ala

ya



77 

 

Table 5.1 (Continued.) 

Jf nf Eexp.(MeV

) 

Etheo.(MeV) ∆J (n ℓ j)i (n ℓ j)f OBTD 

Proton Neutron 

1/2 2 2.563 2.722 2 1d5/2 1d5/2 0.1358 0.14057 
     1d5/2 1d3/2 0.07951 0.07879 

     1d5/2 2s1/2 -0.01788 -0.00302 

     1d3/2 1d5/2 -0.12181 -0.45313 

     1d3/2 1d3/2 0.07572 0.10153 

     1d3/2 2s1/2 0.03918 0.03857 

     2s1/2 1d3/2 0.03823 0.22116 

     2s1/2 1d3/2 -0.01951 -0.00515 

3/2 2 2.801 2.868 2 1d5/2 1d5/2 0.12789 0.15314 

     1d5/2 1d3/2 0.04458 0.00389 

     1d5/2 2s1/2 0.04188 0.08456 

     1d3/2 1d5/2 -0.10153 -0.41231 

     1d3/2 1d3/2 0.06317 0.04007 

     1d3/2 2s1/2 0.00449 0.01689 

     2s1/2 1d5/2 0.04939 0.39369 

     2s1/2 1d3/2 -0.03222 -0.06091 

    4 1d5/2 1d5/2 0.01309 0.00108 

     1d5/2 1d3/2 -0.06865 -0.0929 

     1d3/2 1d5/2 0.05403 -0.20064 

9/2 1 3.405 3.515 2 1d5/2 1d5/2 0.57224 0.18925 

     1d5/2 1d3/2 0.25582 0.21305 

     1d5/2 2s1/2 0.08321 0.24093 

     1d3/2 1d5/2 -0.3053 -0.30754 

     1d3/2 1d3/2 0.13028 0.12346 

     1d3/2 2s1/2 -0.09927 -0.09559 

     2s1/2 1d5/2 0.28222 0.29506 

     2s1/2 1d3/2 0.08008 0.05081 

    3 1d5/2 1d5/2 0.13551 -0.2148 

     1d5/2 1d3/2 0.03425 -0.02721 

     1d5/2 2s1/2 -0.04393 0.00217 

     1d3/2 1d5/2 -0.07429 -0.10215 

     1d3/2 1d3/2 -0.00026 -0.01522 

     2s1/2 1d5/2 0.02409 0.09315 

    4 1d5/2 1d5/2 0.26129 0.16461 

     1d5/2 1d3/2 -0.07578 -0.09148 

     1d3/2 1d5/2 0.18501 0.19611 

    5 1d5/2 1d5/2 0.00417 -0.27563 
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Table 5.1 (Continued.) 

Jf nf Eexp.(MeV

) 

Etheo.(MeV) ∆J (n ℓ j)i (n ℓ j)f OBTD 
Proton Neutron 

9/

2 

2 4.059 3.93 2 1d5/2 1d5/2 0.01042 0.22552 
     1d5/2 1d3/2 0.0091 0.12201 

     1d5/2 2s1/2 0.12893 0.16418 

     1d3/2 1d5/2 -0.22466 -0.25496 

     1d3/2 1d3/2 0.14729 0.14184 

     1d3/2 2s1/2 0.00492 -0.0019 

     2s1/2 1d5/2 0.05706 -0.00568 

     2s1/2 1d3/2 -0.13216 -0.07951 

    4 1d5/2 1d5/2 -0.19956 -0.14192 

     1d5/2 1d3/2 -0.12721 -0.09662 

     1d3/2 1d5/2 0.19026 0.18869 

1

1/

2 

1 5.251 5.079 4 1d5/2 1d5/2 -0.14083 -0.02819 

     1d5/2 1d3/2 -0.28082 -0.23595 

     1d3/2 1d5/2 0.4703 0.53665 

 

 

5.3 Longitudinal Form Factors 

 

 In this work, the longitudinal form factors are obtained by applying Equation (3.61). 

The effective charges for C2 transition ( and E2 transverse) are taken from reference [95] 

with  ep = 1.36 and en = 0.45, while for C4 transition ( and E4 transverse) are taken from 

reference [91] with  ep = 1.5 and en = 0.5.  

 Reference [84] showed the experimental values for the electron scattering 

longitudinal form factors for transition from ground state (J
π
 =5/2

+
 ) to the excited state 

with J
π
 =3/2

+
 at energy 0.974 MeV  in the momentum transfer range 0.3 to 1.15 fm

-1
. 

According to the multipolarity relation (3.28), there are two types of transitions C2 and C4 

for this case. The theoretical and experimental results are illustrated in Figure 5.1.   
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Figure 5.1: a- Longitudinal C2 and C4 electron scattering form factors for the      
  

    
   transition in the 

25
Mg obtained using the Woods-Saxon potential and USDA 

Hamiltonian.  b- The total longitudinal form factor obtained by the three potentials. The 

experimental data are taken from [84]. 

 

The theoretical calculation is performed for q ≤ 3 fm
-1

 in order to show a wide range 

of theoretical values. The two types of transitions C2 and C4 are shown in Figure 5.1, (a) 

by using the Woods-Saxon potential [100] and (b) shows that the three potentials harmonic-

oscillator, Woods-Saxon and Skyrme interactions which are used for this transition to 

investigate which interaction can estimate the experimental values better. The three 

potentials are in good agreement with the available experimental data. The C2 shows 

dominance in the region with q ≤ 1.5 fm
-1 

while, for q >1.5 fm
-1

 C4 becomes most 

dominant. The contribution for the quadrupole Coulomb transition C2 and the 

hexadecapole Coulomb transition C4 transition can be known from the values of the 

reduced transition probability of each transition. For this transition, the theoretical 

B(C2,↑)Theo. is 3.16 e
2
 fm

4
 and the experimental B(C2,↑)Exp. is 2.3 ±0.6 e

2
 fm

4 
[84], whereas 
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the theoretical B(C4,↑)Theo. is 314.2 e
2
 fm

8
. The comparison between transition probabilities 

will be more prenounced if we convert B(C2↑) and B(C4↑) to the Weisskopf unit [    ] 

by using the following equations [10]: 

 (   )                
  
    (   )                                                                   (   ) 

 (   )                  
  
    (   )                                                                (   ) 

where A is the atomic mass number. Using Equations (5.1) and (5.2), we found B(C2↑)Theo. 

[    ] = 0.729 and B(C4↑)Theo. [    ] = 0.932 .  It is clear that the probability of C4 

transition is higher than the C2 which emphasizes the importance of C4 in this transition.  

The longitudinal C2 and C4 form factors, obtained by using the USDA Hamiltonian 

and  Skyrme interaction potential Sk42 [98], are in good agreement with the experimental 

data [83] as shown in Figure 5.2-(a), for the transition from the ground state to the first 

J=7/2
+
 at energy 1.611 MeV. In this transition, C4 has a small contribution to the total form 

factor value whereas C2 is dominant for over all q. The comparison between the three 

potentials is shown in 5.2-(b). 

The experimental transition strength  B(C2↑)Exp. is equal to  158±7 e
2
 fm

4
 [84] and 

the theoretical B(C2↑)Theo. =  152.1 e
2
 fm

4
. The compatiblility between experimental and 

theoretical B(C2↑) values demonstrates the accuracy of the USDA Hamiltonian for this 

transition. The theoretical B(C4↑)Theo.  = 232.9 e
2
fm

8
 and following the conversion to 

Weisskopf units we found B(C2↑)Theo. [    ] = 34.97 and B(C4↑)Theo. [    ] = 0.688.  It is 

clear that the C2 dominates this transition. 
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Figure 5.2: a-Longitudinal C2 and C4 electron scattering form factors for the     
  

    
   transition in the 

25
Mg obtained using the Sk42 potential and USDA Hamiltonian. b- 

The total longitudinal form factor obtained by the three potentials. The experimental data 

are taken from [83].  

 

The comparison between the theoretical and experimental data [84] C2 and C4 form 

factors for the transition      
      

  is shown in Figure 5.3. Obviously, the 

experimental measurements have been performed in the area of dominance C2. The C2 

curve shows an acceptable agreement with the experimental data especially when the 

experimental errors are taken into account. On the other hand, the C4 is dominant within 

the range of q >1.5 fm
-1

 as that found in the transition      
      

  (Figure 5.1-(a)). The 

comparison between the three potentials is shown in Figure 5.3-(b).   

Our theoretical results for this transition shows that B(C2↑) is the most probable 

transition than B(C4↑) in this excitation. The  B(C2↑)Theo. (3.23 e
2
 fm

4
) is closed to the 

experimental B(C2↑)Exp. value (3.0±0.5 e
2
 fm

4
 [84]) and B(C4↑) is 130.5 e

2
 fm

8
.   
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Figure 5.3: a-Longitudinal C2 and C4 electron scattering form factors for the     
  

    
   transition in the 

25
Mg obtained using the Sk42 potential and USDA Hamiltonian. b- 

The total longitudinal form factor obtained by the three potentials. The experimental data 

are taken from [84]. 

 

According to the multipolarity relation (3.28), C2 is the only allowed electrical 

transition when 
25

Mg is excited from the ground states to the excited state with J=    
   at 

energy 2.563 MeV. The theoretical results when three potentials are used are shown in 

Figure 5.4. The best agreement between the theoretical C2 and the experimental data [84] 

was found when Sk42  potential is used. Reference [84] indicated that B(C2↑)Exp. value for 

this transition equals to 4.3±0.8 e
2
 fm

4
 and the theoretical calculation of  B(C2↑)Theo. is 4.95 

e
2
 fm

4
. Univ
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Figure 5.4: Longitudinal C2 electron scattering form factors for the     
      

   

transition in the 
25

Mg obtained using the three potentials potential and USDA Hamiltonian. 

The experimental data are taken from [84]. 

 

In Figure 5.5-(a), the theoretical C2 and C4 form factors are in good agreement with 

the experimental data for the q value ranging from 0.5 to 1.0 fm
-1

 when the 
25

Mg nucleus is 

excited from the ground state to the excited state of J =     
   at energy 2.801 MeV. We 

found that Sk42 potential is the best potential that agrees with the experimental data as we 

can see in Figure 5.5-(b). In this transition, the theoretical calculations show a 

predominance of C4 for the limited range of q that lies between 1.7 and 1.8 fm
-1

 with a clear 

dominance of C2 for the rest of the q values. The dominance of C2 also appears from the 

different between B(C2↑)Theo[    ] = 1.46 and B(C4↑)Theo. [    ] = 0.144 where the 

probability of C2 is approximately tenfold of C4. The experimental B(C2↑) was found to be 

equal to 5.3±0.4 e
2
fm

4
 [84] while B(C2↑)Theo. = 6.36 e

2
fm

4
.  
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Figure 5.5: a-Longitudinal C2and C4 electron scattering form factors for the         
  

    
   transition in 

25
Mg obtained using the Sk42 potential and USDA Hamiltonian. b- The 

total longitudinal form factor obtained by the three potentials. The experimental data are 

taken from [84]. 

 

 

Our calculation  shows a good accuracy in the description of the longitudinal form 

factors C2 and C4 for the transition      
      

  at energy 3.405 MeV as shown in 

Figure 5.6. The comparison with the experimental data [83] indicates that C2 has the 

dominant contribution for most of the q values in this transition; in contrast C4 contribution 

is limited to 1.8 < q < 1.9 fm
-1

. The comparison between the three potentials is shown in 

Figure 5.6-(b). From this figure, all potentials are in good agreement with the experimental 

data. The quadrupole Coulomb transition probability B(C2↑) was found experimentally to 

be 57±4 e
2
fm

4
 [83] while the predicted value  is B(C2↑)Theo. = 57.29 e

2
fm

4
. The disparity 

between the probability of C2 and C4 in this excitation can be distinguished from the 

theoretical calculations, where we found that B(C2↑)Theo. [    ] = 13.18 and B(C4↑)Theo. 

[    ] = 0.427.  
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Figure 5.6: a-Longitudinal C2and C4 electron scattering form factors for the      
  

    
   transition in the 

25
Mg obtained using the Sk42 potential and USDA Hamiltonian. b- 

The total longitudinal form factor obtained by three potentials. The experimental data are 

taken from [83]. 

 

The theoretical C2 and C4 values have shown results lower than the experimental data 

in the transition     
      

  with the excited energy 4.059 MeV as shown in Figure 5.7. 

None of the three potentials does a good job in describing the data for the transition.  

According to theoretical calculations for this excitation, C4 form factor has the largest 

contribution in this transition and this dominance is illustrated by   B(C2↑)Theo. [    ] = 

1.01 versus B(C4↑)Theo. [    ] = 14.26. Actually, we can say that the result using USDA 

and Sk42 potential are less accurate in this case in each of the longitudinal form factors and 

reduced transition C2 probability due to the difference between the B(C2↑)Exp. = 9.6±1.0 

e
2
fm

4 
[84] and B(C2↑)Theo. = 4.41 e

2
fm

4
.  
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Figure 5.7: a-Longitudinal C2 and C4 electron scattering form factors for the       
  

    
   transition in the 

25
Mg obtained using the Sk42 potential and USDA Hamiltonian. b- 

The total longitudinal form factor obtained by the three potentials. The experimental data 

are taken from [84]. 

 

The last available experimental longitudinal transition is     
       

  with 

excited energy 5.252 MeV. When applying the selection rule Equation (3.28), we find that 

C4 is the only allowed transition. In Figure 4.8, the  calculation using USDA and three 

potentials produces results in good agreement with the experimental data for this excitation 

[84]. While B(C4↑)Theo. = 10.11×10
3
 e

2
fm

8
  which is higher than the experimental value 

B(C4↑)Exp < 6.5×10
3 

[84]. It is worth mentioning that all the longitudinal form factors are in 

good agreement for all states of different J (3/2, 7/2, 9/2 and 11/2) and energy (0.974, 

1.611, 3.405 and 5.252 MeV) in the first sequence. While the agreement of the calculated 

longitudinal form factors with the experimental data varies for the excitations of the states 

in the second sequence. From Figures 5.3, 5.4, 5.5 and 5.7, it is possible to observe that the 

accuracy in the calculations depends on the state energy value in inverse proportion.  
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Figure 5.8: Longitudinal C2and C4 electron scattering form factors for the       
  

     
   transition in 

25
Mg nucleus obtained using the three potentials and USDA 

Hamiltonian. Experimental data from [84]. 

 

5.4 Transverse Form Factors 

 

 The general formula used to calculate the transverse form factor has been given in 

Equation (3.41) which includes two parts: magnetic and electric transverse form factors. 

Therefore, we have mixed multipolarities for every excitation in the odd nucleus according 

to the selection rule, Equation (3.28).  

In this work, the transverse form factors for inelastic scattering on 
25

Mg have 

already been calculated using OXBASH code. Results of the OXBASH code are compared 

with available experimental data and the theoretical results obtained from employing the 

Michigan three-range Yukawa (M3Y) interaction [101] with the shell-model code CPM3Y. 

The details of this code are given in reference [102]. The OXBASH and CPM3Y codes use 
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the same OBTD values which are obtained from the USDA Hamiltonian as listed in Table 

5.1. In the CPM3Y code, the reduced matrix elements consist of two parts, one is for the 

model-space (MS) matrix elements, and the other is for the core polarization (CP) matrix 

elements, whereas in the OXBASH code, the core-polarization effects are introduced 

through effective charges and effective   factors by considering that the core-polarization is 

one of the model-space truncation effects as we have clarified at the end of Chapter Three. 

Therefore, the comparison between the two theoretical models shows the core-polarization 

effects from the perspective of both models.  

The electron excites the 
25

Mg nucleus from the ground state to the     
  state with 

the excitation energy of 1.698 MeV [85]. The total transverse form factor for this transition 

has mixed multipolarities as shown in Figures 5.9 and 5.10. The theoretical individual 

multipoles are shown in the same figures. The calculated individual multipoles values are 

obtained by using the USDA  and Sk42 potential for OXBASH  and the results are shown 

in Figure 5.9. The new   factors  values (   (p) = 5.0,    (n) = -3.5,    (p) = 1.175, and    

(n) = -0.106) [95] are used in the M1 and M3 magnetic transitions calculations, and the 

free-nucleon   factors are used for M5 [103]. The new effective charge (ep = 1.36 and en = 

0.45) are used with M1 and E2 calculations while ep = 1.5 and en = 0.5 [91] are used for the 

M3, E4 and M5 transitions. In Figure 5.9, the curves of M1 and M3 are cut out for high q 

values for more obvious viewing and the values are taken into consideration in total range 

from 0 < q < 3 fm
-1

. The main contribution in most of the regions of q comes from M1 and 

M5. M1 has the dominant contribution in the region between 0 and 1.05fm
−1

 and M5 has 

the dominant contribution in the range of momentum transfer from 1.1 to 3.0 fm
−1

. The 

total transverse form factor (as a solid curve) is in good agreement with the available 

experimental data.  The results of our calculations using CPM3Y code are shown in Figure 
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5.10. A comparison between Figure 5.9 and Figure 5.10 shows approximately similar 

individual dominant contribution for every multipoles with the remarkable agreement for 

the OXBASH data in the region q < 1.75 fm
-1

. The total transverse form factor from the 

CPM3Y code is closed to the experimental data of the sum of M1+E2+M3+M5 although 

the OXBASH calculations containing all the allowed multipolarities, M1+E2+M3+E4+M5 

for this transition.  

 

 

Figure 5.9: Transverse M1, E2, M3, E4, and M5 electron scattering form factors for the   

    
      

   transition in 
25

Mg nucleus obtained with the Sk42 potential and USDA 

Hamiltonian using OXBASH code. Experimental data from [85]. 

 

Agreements in the data shown in Figure 5.9 indicate that the new values of the free-

space of the one-body operator’s constants (effective charges and   factors) is a good 

assignment to describe the core-polarization effects.  
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The OXBASH code is used to calculate the transverse form factor for the transition 

    
      

  by employing the USDA effective interaction and Sk42 potential. The 

individual multipoles of E2, M3, E4 and M5 are shown in Figure 5.11 with the total 

transverse form factor (E2+M3+E4+M5) shown as a solid curve. 

 

 

Figure 5.10: Transverse M1, E2, M3, E4, and M5 electron scattering form factors for the   

    
      

   transition in 
25

Mg nucleus calculated with the core-polarization effects on 

the sd-shell-model wave function using the CPM3Y code. Experimental data from [85]. 

 

 

From the comparison with the experimental data [85] , the theoretical results (total 

transverse form factor) are less than the experimental data. On the other hand, we find that 

the results of CPM3Y code (E2+M3+M5), shown in Figure 5.12, overestimate the 

experimental data when the same OBTD obtained from USDA are used [102]. We can 
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analyze this case as follows: the difference between OXBASH and CPM3Y results indicate 

the presence of significant core-polarization effects in this excitation. We have mixed 

multipolarities of four types E2, M3, E4 and M5. The electrical multipolarities E2 and E4 

show good agreement with the longitudinal transition as shown in Figure 5.6.  This means 

that it is  appropriate to use the effective charges and effective   factors to describe the 

core-polarization effects for this electrical multipolarities transition. The individual 

multipoles M3 is sensitive to the experimental data and describes it very well in the 

momentum-transfer range 1.25 < q< 1.6 fm
-1

. The M5 is the residual multipoles which has 

the dominant contribution in the experimental data range. Compared with the CPM3Y 

results, we could attribute the differences to the significant core-polarization effects in the 

M5 excitation. To investigate this effect, we change the free-space values for the M5 

excitation which are in this case the   factors values. In Figure 5.11, we use the following 

free-nucleon   factors values:   ( )       ,   ( )        ,   ( )     , and   ( )  

   The calculations are individually achieved with different  values for every   component, 

and we found that the M5 form factor has  higher sensitivity to   ( ) than to the other 

components   ( ),   ( ), and   ( ). We have identified the value of   ( )       and an 

increase of 43% in the absolute   ( ) value, as the best value used to obtain M5 and total 

form factor estimate the experimental data for the transition      
      

 , as shown in 

Figure 5.13.  
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Figure 5.11: Transverse E2, M3, E4, and M5 electron scattering form factors for the   

    
      

   transition in 
25

Mg nucleus obtained with the Sk42 potential and USDA 

Hamiltonian using OXBASH code. Experimental data from [85]. 

 

 

 

 

 

 

 

 

 

Figure 5.12: Transverse E2, M3, E4, and M5 electron scattering form factors for the   

    
      

   transition in 
25

Mg nucleus calculated with core-polarization effects on the 

sd-shell-model wave function using CPM3Y code. Experimental data from [85]. 
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Figure 5.13: Transverse E2, M3, E4, and M5 electron scattering form factors for the   

    
      

   transition in 
25

Mg nucleus obtained with the Sk42 potential, USDA 

Hamiltonian using OXBASH code and free-nucleon   factors with   ( )       in the 

M5 calculation. Experimental data from [85]. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Introduction  

 

 In this thesis, comparison is made between theory and recent experiment of 

corresponding levels in odd-magnesium isotopes with neutron numbers between 9 and 17 

based on energies, reduced electromagnetic transition strengths, multipole mixing ratios, 

and electron scattering form factors. The results obtained by employing the new sd-shell 

interactions USDA (universal sd-shell interaction A). Analyses of the theoretical results and 

experimental data have given a clear indication about the efficiency of the USDA 

Hamiltonian in the calculation of the nuclear structure of these isotopes.  The USDA 

Hamiltonian efficiency has been investigated through the correspondence of its eigenvalues 

to the states energy and eigenvectors corresponding to the transition strengths and electron 

scattering form factors.  In this chapter we will present our conclusions in two sections; the 

first is for the isotopes states energy and the second for the reduced electromagnetic 

transitions and electron scattering form factors. In the third section, we will present our 

suggestions for future work.  

6.2 Isotopes States Energies 

The energy states adopted in this research are of all available experimental data with 

non-negative parity. The study included excitation energies up to 10 MeV for most 
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isotopes. The results of our calculations have verify some states found experimentally and 

suggested some new ones in the isotope spectra where USDA shows good accuracy. The 

first state suggested in this work is J=     
  at energy less than 3.643 MeV in the 

21
Mg 

spectrum which is not observed experimentally. This suggestion is based on the reasonable 

agreement found between the observed states and the theoretical results obtained from 

USDA effective interactions in the first and second sequences for the  
21

Mg spectrum.  The 

USDA calculations of the energy levels show good agreement with the new experimental 

data in the first three sequences for all J values considered for the 
23

Mg nucleus. According 

to the new experimental data and the theoretical calculations, a new rearrangement has been 

proposed for the states with J = 3/2
+
 and 5/2

+
. Our results show the need to experimentally 

investigate the J = 3/2
+ 

states
 
in 

23
Mg spectrum. 

The USDA calculations have confirmed the existence of the J = 13/2
+
 state in the 

second and third sequences as well as the J = 11/2
+
 and J = 7/2

+
 states in the third sequence 

in the 
25

Mg spectrum where the existence of these states has previously been uncertain. The 

confirmation is based on the agreement between the theoretical and experimentally 

observed states for all three sequences. Other states have been confirmed according to the 

USDA calculation for sequences higher than three. The theoretical investigation using 

multipole mixing ratio calculations have confirmed many energy states in 
25

Mg. Some 

successful confirmations have been obtained for some individual states by identifying the 

equivalent theoretical state and for the grouped energy level states. The good agreement 

between the theoretical and experimental states in the 
27

Mg spectrum suggests a value for J 

= 13/2
+
 in the first sequence as well as values for the J = 11/2

+
 and 13/2

+
 states in the 

second sequence. All states that have been confirmed and suggested in this work are listed 

in Table 6.1.  A poor agreement is found in the comparison between the experimental data 

Univ
ers

ity
 of

 M
ala

ya



96 

 

and theoretical results for the 
29

Mg spectrum.  This disagreement is due to the collapse of 

the ordinary filling of the single-particle levels in this nucleus when neutrons occupying the 

pf shell before the lower sd shell is fully closed and that is what makes USDA inadequate 

for these calculations. In general, the USDA shows an acceptable accuracy for the excited 

energy states especially if it compared to the realistic Hamiltonians, for example SDBA 

[104]. 

Table 6.1: Confirmed and suggested states for odd- Mg in this work 

Isotope J
+ 

n E(MeV)Theo. E(MeV)Exp. Status 
21

Mg  3/2 1 1.849 1.651 confirmed 

 9/2 1 1.730 - suggested  

 9/2 2 3.439 3.643 suggested 

 1/2 2 4.259 4.010 confirmed 
23

Mg 1/2 2 4.555 4.353 confirmed 

 7/2 3 5.363 5.689 confirmed 
 3/2 3 6.044 - suggested 

 1/2 3 6.317 - suggested 

 9/2 3 6.198 6.238 confirmed 
 7/2 4 6.575 6.512 confirmed 
 15/2 1 8.929 8.943 confirmed 
 19/2 1 14.623 14.560 confirmed 

25
Mg 7/2 3 4.965 5.012 confirmed 
 11/2 3 6.067 6.040 confirmed 
 13/2 2 7.440 7.551 confirmed 
 13/2 3 8.059 8.011 confirmed 
 9/2 8 8.099 8.011 confirmed

* 

 7/2 11 8.136 8.119 confirmed
* 

 9/2 9 8.482 8.267 confirmed
* 

 11/2 6 8.500 8.532 confirmed
* 

 7/2 12 8.661 8.532 confirmed
* 

 15/2 1 9.491 10.653 confirmed 
27

Mg 7/2 1 3.030 3.109 confirmed 
 7/2 2 3.487 3.427 confirmed 
 9/2 1 4.019 3.884 confirmed 
 9/2 2 4.310 4.398 confirmed 
 7/2 3 4.733 4.776 confirmed 
 9/2 3 5.239 - suggested 
 11/2 1 6.185 - suggested 
 11/2 2 6.823 - suggested 
 13/2 1 7.330 - suggested 
 13/2 2 7.819 - suggested 

* Confirmation based on multipole mixing ratio; see Chapter four for more details.  
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6.3 Electromagnetic Transition and Electron Scattering Form Factors 

 

 We now briefly summarize the main conclusions that may be reported from the 

calculation of the electromagnetic transition and electron scattering form factors in this 

work. One of the main advantages of these calculations is the dependence of the 

electromagnetic transition and the electron scattering form factors on the eigenvalues and 

eigenvectors of USDA Hamiltonian. Therefore, these calculations represent a 

comprehensive measure of the Hamiltonian efficiency established by the OBTD values.  

For B(E2) and  B(M1) values, the USDA approaches the available experimental 

data for 
25

Mg and 
23

Mg, while the USDA accuracy decreases with 
27

Mg results. The 

Skyrme interaction (SK42) [98] is found to be the best than the other potential available in 

the OXBASH code to obtain better agreement between the experimental and theoretical 

results of the two form factors considered in this work.  For 
25

Mg nucleus, the results of the 

longitudinal form factors C2 and C4 are reproduced well data for low momentum transfer q 

< 1.2 fm
-1 

according to the available experimental data. Our calculations have shown a clear 

significance of the C4 transition especially for the region q > 1.2 fm
-1

. The longitudinal 

form factor results show a reasonable accuracy of USDA in the cases of excitation to the 

first sequence states of the 
25

Mg nucleus and this accuracy varies in the second sequence 

according to the energy of the excited state in inverse proportion.  

The OBTDs obtained from USDA are appropriate to calculate the transverse form 

factors using OXBASH and CPM3Y codes.   This is due to the good agreement with the 

available experimental data for the excitation to the J=    
  state in 

25
Mg nucleus. The 

theoretical results are in discrepancy with the experiment data for the transverse form 
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factors observed in the transition to the J=    
  state. The interesting point in the 

calculations of the mixed multipolarities transverse form factors in the above cases is the 

sensitivity of M5 to the experimental data.    

We found that the effective charges and effective   factors are necessary to describe 

the core-polarization effects in the OXBASH code calculations. The new effective charge 

(ep = 1.36 and en = 0.45) and   factors ;    (p) = 5.0,    (n) = -3.5,    (p) = 1.175, and    

(n) = -0.106 [95] are appropriate to show results close to the experimental values for the 

M1, E2 and M3 transitions. On the other hand, the effective charge ep = 1.5 and en = 0. 5 

are the appropriate values that can be used with E4, and the free-nucleon   factors with M5. 

We have found in this work that   (n) = -5.5 is the appropriate coefficient to estimate the 

M5 transverse form factors from the experimental data for the transition to the J=    
  state 

.  

6.4 Future Work 

 

It is suggested to work on the following topics: 

1- Extending the employing of the USDA Hamiltonian to calculate the nuclear 

structure of even magnesium isotopes and neighboring nuclei due to the success of 

the USDA in the description this the region. The theoretical values will be useful to 

fill the void in the knowledge of the nuclear structure of these isotopes. 

2- Using the USDA values in large model space in order to minimize the core-

polarization effects for down extension (p- shell) and contain the effects of islands 

of inversion in the upper extension (fp- shell). 
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3- The good description of USDA for odd magnesium isotopes structure urges us to 

use the USDA for calculating other nuclear characteristics in these isotopes for 

example, Gamow- Teller strengths and spectroscopic factors.  

4- The importance of the the various constants of the one-body operator (effective 

charge and   factors) in the nuclear structure calculations and the possibility of 

changing these values according to the recent research making the development of a 

mathematical formula to find these values an urgent need.  
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APPENDIX A 

 

The Empirical Effective Interaction Fitting Method 

 

The starting point for the fitting method  is rewrite equation (1.12) as [7, 15]: 

  ∑    

 

   

                                                                                                                                   (   ) 

where    represent the single-particle energies or two-body matrix elements,    stand for 

the operators    and scalar two-body density, respectively. The Hamiltonian has 

eigenvectors    and eigenvalues    and we can express in terms of linear combination of 

the Hamiltonian  ⃗: 

   ⟨       ⟩  ∑  ⟨        ⟩  ∑    
                                                                   (   )

 

   

 

   

 

The eigenvalues    standard deviation can be found from: 

   ∑ (
    

    

    
 )

 

                                                                                                               (   )

 

   

 

where     
  are the experimental energies and      

  are the associated errors. The 

minimization condition for this quantity with respect to    is:  
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 ∑  

(    
    )

(    
 )

 

 

   
( ∑    

 )                                                                        (   )

 

   

 

   

 

By assuming that the   
 dependent on    is weak, this leads to  

   
 

   
        and it 

produces to: 

 
 

   
( ∑     

 )    
                                                                                                  (   )

 
    

where j=1, 2, 3,…, p. We will get the following p linear equations: 

∑ (    
  ∑    

 

 

   

)
  

 

(    
 )

     ∑                                                                  (   )

 

   

 

   

 

The last term can be written in a  p×p matrix:  

  (   )  ∑
  

   
 

(    
 )

 

 

   

                                                                                                             (   ) 

and we have a p- dimensional vector 

 ⃗  (  )  ∑
    

   
 

(    
 )

 

 

   

                                                                                                                (   ) 

where we can write the final form of Equation (A.8) in terms of i [7, 15] or keeping it in 

terms of j [27]. This can be expressed through: 

  ⃗    ⃗⃗⃗                                                                                                                                             (   ) 

G is a real symmetric matrix (  
    

 ) and we can obtain any new interaction  ⃗́ by: 

 ⃗́      ⃗                                                                                                                                       (    ) 
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In Equation ( .10),     is referred to the error matrix. In this fitting procedure not all 

matrix elements are well determined because of their dependence on available experimental 

data. To solve this problem, the Linear Combination (LC) method is used which we can 

separate the well determined from the poorly determined parameters. From Equation ( .10) 

if G is real symmetric matrix, it can be diagonalized and the least-squares fit can then be 

reformulated in terms of uncorrelated linear combinations of the TBME or in the other 

words they are orthogonal parameters: 

                                                                                                                                        (    ) 

D is a p-dimensional diagonal matrix with positive elements Di. From Equation ( .9) we 

can find:   ⃗   ⃗   for   ⃗    ⃗ , where  ⃗ is a linear combination of Hamiltonian xi and 

 ⃗    ⃗ . This leads to: 

                                                                                                                                               (    ) 

It is clear from Equation ( .12), the    (variation of data) has a significant effect when    (xi 

associated errors) has a large value or in the other words nearly identical results are 

obtained from largely different Hamiltonians. This linear combination is poorly determined. 

To separate the poorly determined from the well determined parameters we can use a 

certain criterion δ on the magnitude of the corresponding eigenvalues di. To apply the 

certain criterion δ method we need two linear combinations, the first one we find from 

Equation (A.12) and the second from a reasonable Hamiltonian such as G-matrix 

interaction which is used as starting Hamiltonian. Through the adoption of G-matrix values 

as  ⃗   , the second linear combination is from  ⃗    ⃗ . The new linear combinations  ⃗  

are obtained from using the results of Equation (A.12) only for well determined parameters 
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and using starting Hamiltonian values for the rest of the parameters by applying the 

equation: 

  ⃗    (    )     
 (    )                                                                                              (    )           

A new Hamiltonian is obtained from  ⃗      ⃗  and it will be used in the next 

iteration, where the fitted interaction is held to the starting interaction except for the 

part that is well determined by the data set. The process is repeated until the 

differences between the (n+1)
th

 set and n
th

 set of the matrix elements are negligibly 

small. 
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